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Implicit time discretization for the mean curvature flow
of mean convex sets

GUIDO DE PHILIPPIS AND TIM LAUX

Abstract. In this note we analyze the Almgren-Taylor-Wang scheme for mean
curvature flow in the case of mean convex initial conditions. We show that
the scheme preserves strict mean convexity and, by compensated compactness
techniques, that the arrival time functions converge strictly in BV . In particu-
lar, this establishes the convergence of the time-integrated perimeters of the ap-
proximations. As a corollary, the conditional convergence result of Luckhaus-
Sturzenhecker becomes unconditonal in the mean convex case.

Mathematics Subject Classification (2010): 53C44 (primary); 49Q20, 35A15
(secondary).

1. Introduction

In 1993, Almgren-Taylor-Wang [1] proposed an implicit time discretization for
mean curvature flow, which comes as a family of variational problems. Given an
open subset E0 ⇢ Rn and a time-step size h > 0, the sets E1, E2, . . . are succes-
sively obtained by solving

Ek 2 argmin
E

⇢
P(E) +

1
h

Z

E1Ek�1
dEk�1

�
, (1.1)

where P(E) = sup{
R
E div⇠ : k⇠k1  1} denotes the De Giorgi perimeter of a

subset of Rn , dE the distance function to the boundary of E and E1Ek�1 the
symmetric difference of E and Ek�1.

At the very heart of their idea lies the gradient-flow structure of mean curvature
flow: trajectories in state space follow the steepest descent of the area functional
with respect to an L2-type metric. In fact, this scheme inspired Ennio De Giorgi [8]
to define his minimizing movements for general gradient flows in metric spaces,
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see [3]. Given a metric dist and an energy functional E , each time step of his
abstract scheme is a minimization problem of the form

xk 2 argmin
x

⇢
E(x) +

1
2h
dist2(x, xk�1)

�
.

In the smooth finite dimensional case when dist is the induced distance of a Rieman-
nian metric, the Euler-Lagrange equation of the scheme boils down to the implicit
Euler scheme.

In case of mean curvature flow, the metric tensor (L2-metric on normal ve-
locities) is completely degenerate in the sense that the induced distance vanishes
identically [21]. This explains the use of the proxy 2

R
Ek+11Ek dEk for the squared

distance in the minimizing movements scheme (1.1).
The initial motivation of [1] was to define a generalized mean curvature flow

through singularities as limits of the scheme (1.1). The convergence analysis as
h # 0 has a long history: Compactness of the approximate solutions was already
established in [1], together with the consistency of the scheme, in the sense that the
approximations converge to the smooth mean curvature flow as long as the latter ex-
ists. In [6], Chambolle simplified the proof and, furthermore, proved convergence
to the viscosity solution (see [12]), provided the latter is unique. More precisely,
setting Eh(t) = Ek , t 2 [kh, (k + 1)h) to be the piecewise constant in time inter-
polation of the sets Ek obtained from (1.1), then the result reads as follows, see [4]
for the notion of viscosity solution in this context.

Theorem 1.1 (Convergence to viscosity solution [6, Theorem 4]). Suppose T <
1 and E0 is a bounded set inRn with Ln(@E0) = 0 such that the viscosity solution
1E(t) starting from 1E0 is unique, then Eh ! E in L1, i.e.,

R T
0 |Eh(t)1E(t)| dt !

0 as h # 0.

Only shortly after [1], Luckhaus-Sturzenhecker [18] published a conditional con-
vergence result which does not rely on the comparison principle but is purely based
on the gradient-flow structure of mean curvature flow. In particular they showed
that, conditioned on the convergence of the perimeters, the scheme converges to a
BV solution of mean curvature flow, according to the following definition.
Definition 1.2. A set of finite perimeter E ⇢ R+ ⇥ Rn is a BV solution of mean
curvature flow if there exists V 2 L2(0, T ; L2(Hn�1 ¬

@⇤E(t))) such that
Z T

0

Z

@⇤E(t)
(div⇠ � ⌫ · D⇠⌫) dHn�1 dt=�

Z T

0

Z

@⇤E(t)
V ⇠ · ⌫dHn�1 dt, (1.2)

Z T

0

Z

E(t)
@t (t,x) dx dt +

Z

E(0)
 (0,x)dx=�

Z T

0

Z

@⇤E(t)
 (t,x)VdHn�1(x)dt (1.3)

for all ⇠ 2 C1c ([0, T )⇥Rn; Rn) and 2 C1c ([0, T )⇥Rn; R). Here E(t) is the time
slice of E , @⇤ denotes the reduced boundary, and ⌫ the (measure theoretic) exterior
normal.
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The main result in [18] is the following conditional convergence result:

Theorem 1.3 (Conditional convergence [18, Theorem 2.3]). Let n  7 and let
Eh be the (time) piecewise constant approximation built by the Almgren-Taylor-
Wang scheme. Then there exists a set E ⇢ R+ ⇥ Rn and a subsequence {h j } such
that Eh j (t) ! E in L1. Moreover, if

lim
h j#0

Z T

0
P(Eh j (t)) dt =

Z T

0
P(E(t)) dt, (1.4)

then E is a BV solution of mean curvature flow.

We also refer the reader to the work of Mugnai-Seis-Spadaro [22] where the proof
of [18] is revisited in the case of volume-preserving mean curvature flow.

To the best of our knowledge, the only two cases in which assumption (1.4)
has been shown to be satisfied a-priori is in the graphical case [17], in which no
singularities occur, cf. [11], and in the convex case [5], in which no singularities
appear until the solution disappears in a round point [14].

The main result of the present paper is to show that for a relevant class of initial
data (1.4) holds true. The class of sets we will work is the class of strictly mean
convex sets. Recall that a set is said to be strictly mean convex if H > 0. Note that
then, at least locally, E solves a one-sided variational problem, called �-outward
minimization, see Definition 2.3 below.

More precisely, our main theorem reads as follows:

Theorem 1.4. Let E0 ⇢ Rn be a compact set with C2 boundary and let n  7.
Assume that E0 is strictly mean convex in the sense that H@E0 > 0, then (1.4)
holds.

It is easy to construct strictly mean convex sets such that the mean curvature flow
starting from them develops singularities in finite time. Hence our result is the first
one establishing the validity of (1.4) under the possible development of singulari-
ties. Note also that, to the best of our knowledge, there are no examples of initial
data for which (1.4) does not hold.

Let us also remark that a similar question was raised by Ilmanen for the ap-
proximation of the mean curvature flow via the Allen-Cahn equation [16, Section
13, Question 4].

Along the way we establish the following natural properties of the minimizing
movements scheme (1.1) for mean convex sets, which mirror Huisken’s results for
mean curvature flow [14]:

• The sets Ek are nested in the sense that Ek+1 ⇢ Ek for all k � 1.
• The scheme preserves �-outward minimality and moreover, if n  7, the mini-
mum of the mean curvature of @Ek , min H@Ek is increasing in k.
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While Huisken’s proofs are based on the maximum principle, our proofs are solely
of variational nature.

Inspired by the work of Evans-Spruck [12] on mean curvature flow, we intro-
duce the arrival time uh of the scheme. As the name suggests, the arrival time u(x)
of the mean curvature flow starting from E0 ⇢ Rn at a point x 2 E0 is the first time
t > 0 at which the flow reaches x , i.e., the super level set {u > t} is equal to E(t).
Similarly, as the sets Ek obtained by the scheme are nested, one may also define the
arrival time uh of the scheme so that Eh(t) = {uh > t}. As one would expect, uh
converges to u, see Proposition 4.2. By the coarea formula, the proof of Theorem
1.4 then boils down to the convergence of the total variation of the functions uh .
This can be obtained by using a compensated compactness argument in line with
the one in [12], together with some duality formulation of the obstacle problem es-
tablished in [23]. However, we also present a much simpler direct proof which is
self-contained and again based on the variational principle for uh .

As an immediate consequence of our main theorem, the convergence result of
Luckhaus-Sturzenhecker becomes unconditional in the case of mean convex initial
data:

Corollary 1.5. Suppose n  7 and E0 is strictly mean convex, then any L1-limit of
the approximations Eh(t) is a BV solution of mean curvature flow.

The paper is organized as follows. In Section 2, we establish some basic properties
of strictly mean convex, so �-outward minimizing, sets and of the minimization
scheme when applied to such sets. In Section 3 we define the arrival time of the
scheme and prove that it solves an obstacle problem. In Section 4 we show it
converges to the arrival time of the discrete evolution and eventually in Section 5,
we prove Theorem 1.4.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for the careful
reading and helpful comments which highly improved the quality of the manuscript.

2. Basic properties of the scheme and mean convexity

We recall the definition and derive some first properties for the implicit time dis-
cretization scheme (1.1) when the initial set is mean convex. The basis of our
analysis is Lemma 2.7, which states that the scheme preserves mean convexity and
that min H@E(t) is non-decreasing in t .

Let us state the minimization problem (1.1) in a more precise language: Given
initial conditions E0 ⇢ Rn , obtain Ek for k 2 N by successively minimizing
Fh(E, Ek�1):

Ek 2 argminFh( · , Ek�1), (2.1)
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where the functional Fh is given by

Fh(E, F) := P(E) +
1
h

Z

E1F
dF .

Here and throughout the paper dF (x) := dist(x, @F) denotes the distance function
to the boundary of F . We will always work with the representative of F for which
@⇤F = @F , @⇤F being the reduced boundary of F , see [19, Remark 15.3].

We denote by Eh the piecewise constant interpolation of the sets E0,E1,E2,. . .,
i.e.,

Eh(t) = Ek for t 2 [kh, (k + 1)h).

Remark 2.1. It is easy to see that the metric term
R
E1F dF can be rewritten as

Z

E1F
dF =

Z

E
sdF �

Z

F
sdF ,

where sdF := dF � dRn\F denotes the signed distance function to the boundary
@F . Therefore the minimization of Fh( · , F) is equivalent to minimizing

P(E) +
1
h

Z

E
sdF .

Testing (2.1) with Ek�1 and summing over k implies the following a priori estimate
for the implicit time discretization

sup
N�1

n
P(EN ) +

NX

k=1

1
h

Z

Ek1Ek�1
dEk�1

o
 P(E0), (2.2)

which underlies Luckhaus-Sturzenhecker’s compactness and conditional conver-
gence Theorem 1.3.
Remark 2.2. In the radially symmetric case E0 = Br0 , a Steiner symmetrization
argument shows that the minimizers are radially symmetric. Therefore, the mini-
mization problem (2.1) reduces to finding radii r0 > r1 > r2 > . . . so that each rk
minimizes the function

rn�1 +
1
h

Z rk�1

r
⇢n�1(rk�1 � ⇢)d⇢ .

The Euler-Lagrange equation is

r2k � rk�1 rk + (n � 1)h = 0
✓
or equivalently

rk � rk�1
h

= �
n � 1
rk

◆
,

so that for sufficiently small h the optimal radius is explicitly given by

rk =
1
2

⇣
rk�1 +

q
r2k�1 � 4(n � 1)h

⌘
.
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Note that for fixed h, after O(r20h
�1) steps we have rk = 0. Note also that, as one

can easily see by induction

rk �
q
r20 � 2k(n � 1)h.

It is a well known fact in the study of mean curvature flow that mean-convexity of
the initial condition (i.e., H@E0 � 0) is preserved [14] and that in this setting much
stronger results can be obtained, see for instance [13, 26, 27] for an incomplete list
and [20] where a problem similar to ours is studied.

Here, as in [15], we introduce the variational analog of mean convexity:
Definition 2.3. Let � ⇢ Rn . A set E ⇢ � is called outward minimizing in � if

P(E)  P(F) for all F with E ⇢ F ⇢ �. (2.3)

If E is outward minimizing in � = E + B� = {x 2 Rn : dist(x, E) < �} the �-
neighborhood of E , then E is called �-outward minimizing, and (2.3) simply reads

P(E)  P(F) for all F � E with sup
x2F

dist(x, E) < �. (2.4)

Remark 2.4. Outward minimality as defined above is the variational formulation
of the pointwise inequality H � 0. It is easy to see that in our case of a smooth and
strictly mean convex set E0 there exists � > 0 such that E0 is �-outward minimizing,
see for instance [9, Lemma 5.12]. Note carefully that P(E) denotes the perimeter
in Rn , not the one relative to �.

Each iteration of the scheme does not move further than O(
p
h) in Hausdorff

distance, see [18, Lemma 2.1,(1)], i.e., there exists a universal constant C = C(n)
such that

sup
x2@Ek

dEk�1(x)  C
p
h. (2.5)

Let us now recall a few basic properties of �-outward minimizing sets which will
be useful in the sequel. They are well known to experts, but for the sake of com-
pleteness we report here their simple proof, see also [25, Section 3] and [10, Section
1].
Lemma 2.5. E is outward minimizing in � if and only if

P(E \ G)  P(G) for all G ⇢ �. (2.6)

Proof. We employ the basic inequality

P(E \ F) + P(E [ F)  P(E) + P(F). (2.7)

Given any set G ⇢ �, the outward minimizing property (2.3) of E tested with
F = E [ G yields

P(E)
(2.3)
 P(E [ G)  P(E) + P(G) � P(E \ G),

which simplifies to (2.6).
Viceversa, if F � E , we can apply (2.6) with G = F to obtain (2.3).
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A direct consequence of this characterization is that outward minimality is
stable under L1-convergence.

Corollary 2.6. Let Eh ! E in L1 for some sequence {Eh}h of outward minimizing
sets in �. Then E is outward minimizing in �.

Proof. By Lemma 2.5 it is enough to show (2.6) instead of (2.3) for E , which in
turn follows immediately from (2.6) for Eh and the lower semi-continuity of the
perimeter.

If 6(t) is a smooth mean curvature flow then the scalar mean curvature H of
6(t) solves

@t H �1H = |A|2 H,

where A denotes the second fundamental form of6(t) and1 the Laplace-Beltrami
operator on 6(t), cf. [14, Corollary 3.5]. In particular, if H � 0 at t = 0, by the
maximum principle H � 0 for t � 0 and min H(t) is non-decreasing in t . By the
strong maximum principle we even have H > 0 for t > 0.

It is well known and easy to see that �-outward minimality is preserved by
the implicit time discretization (2.1), see for instance [25]. We report the simple
proof of this fact in the next lemma where we also establish the monotonicity of
min H@Eh(t).

Lemma 2.7. Let E0 b � be outward minimizing in �. Then there exists h0 > 0
such that for all 0 < h < h0 the implicit time discretizations Eh are non-increasing
in t , i.e.,

Eh(t) ⇢ Eh(s) for all 0  s  t, (2.8)

Eh(t) is outward minimzing in� for all t � 0, and Eh(t) solves the Euler-Lagrange
equation

H@Eh(t)(x) =
dEh(t�h)(x)

h
� 0, x 2 @⇤Eh(t). (2.9)

Furthermore, if n  7, min H@Eh(t) is non-decreasing in t .

Note that by classical regularity for minimizers of (1.1), see, e.g., [19], @⇤Eh(t)
is a C2-manifold relatively open in @Eh(t) and @Eh(t) \ @⇤Eh(t) has Hausdorff
dimension at most n � 8. In particular (2.9) makes sense.

We also believe that the restriction n  7 needed to show the monotonicity of
min H@Eh(t) can be actually avoided. It seems however that this would require some
version of the maximum principle for singular hypersurfaces in the spirit of [24].
Since however in Theorem 1.3 this restriction does not seem to be easily avoidable,
we decided to restrict ourselves to this case.

By Remark 2.4, if E0 is a bounded open set of class C2 with H@E0 > 0, there
exists � > 0 such that E0 is outward minimizing in its �-neighborhood� = E0+B� .
The smallness condition on h can be dropped if E0 is outward minimizing in Rn .
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Proof. Let h > 0 be such that h < h0 := 1
C2 minx2@� dist

2(x, E0) with C from
(2.5).

Let k � 1 and assume that Ek�1 is outward minimizing in �. We first prove
Ek ⇢ Ek�1 and then the outward minimality of Ek in �.

Since by assumption Ek�1 is outward minimizing in�, by (2.5) and our choice
of h0, we may employ the characterization (2.6):

P(Ek�1 \ Ek)  P(Ek).

We want to use Ek�1 \ Ek as a competitor for the minimization of Fh( · , Ek�1).
Since

(Ek�1 \ Ek)1Ek�1 = Ek�1 \ Ek ⇢ Ek1Ek�1
we have

1
h

Z

(Ek�1\Ek)1Ek�1
dEk�1 

1
h

Z

Ek1Ek�1
dEk�1

with strict inequality if Ln(Ek \ Ek�1) > 0. Hence

Fh(Ek�1 \ Ek, Ek�1)  Fh(Ek, Ek�1)

with strict inequality if Ln(Ek \ Ek�1) > 0, which proves Ek ⇢ Ek�1 (up to
Lebesgue null sets).

Let F be such that Ek ⇢ F ⇢ �; we want to verify P(Ek)  P(F). Using
the outward minimality of the predecessor Ek�1 we have

P(F \ Ek�1)
(2.6)
 P(F)

and hence it is enough to prove the inequality (2.3) for sets F with Ek ⇢ F ⇢ Ek�1.
Using these inclusions we have

F1Ek�1 = Ek�1 \ F ⇢ Ek�1 \ Ek = Ek1Ek�1

and therefore
1
h

Z

F1Ek�1
dEk�1 

1
h

Z

Ek1Ek�1
dEk�1 .

Now the minimality Fh(Ek, Ek�1)  Fh(F, Ek�1) implies P(Ek)  P(F) and
hence Ek is indeed outward minimizing in �.

Since (2.9) is classical, we now turn to the proof of the monotonicity of
inf H@Eh(t). Fix k 2 N and let

x0 2 argmin H@Ek .

Since H@Eh(t) = 1
h dEk�1 is Lipschitz continuous and @Ek is compact, at least one

such x0 exists. We shift Ek�1 by h H@Ek (x0) = dEk�1(x0) in the fixed direction
⌫@Ek (x0), i.e.,

Fk�1 := Ek�1 + h H@Ek (x0) ⌫@Ek (x0).
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By definition of x0 we have Ek ⇢ Fk�1 and x0 2 @Ek \ @Fk�1 and, since n  7,
both boundaries are smooth in a neighborhood of x0. Thus

H@Ek (x0) � H@Fk�1(x0) � min H@Fk�1 = min H@Ek�1,

which is precisely our claim.

By Corollary 2.6, limits of outward minimizing sets are outward minimizing.
From this we can easily infer the monotonicity of the perimeters.

Corollary 2.8. Let E0 b � be outward minimizing in � and let E(t) be an L1-
limit of the implicit time discretizations Eh(t). Then E(t) is outward minimizing in
� for a.e. t and P(E(t)) is non-increasing in t .

Proof. The outward minimizing property of E(t) is an immediate consequence of
Lemma 2.7 and Corollary 2.6. Since by Lemma 2.7 we have E(t) ⇢ E(s) for t � s
we can use the mean convexity (2.4) of E(t) to conclude P(E(t))  P(E(s)) for
t � s.

The basic inequality (2.7) and the observation that we have the analogous
equality for the distance term in F yield the general inequality

Fh(E \ F, Ek�1) +Fh(E [ F, Ek�1)  Fh(E, Ek�1) +Fh(F, Ek�1). (2.10)

Therefore, if E and F are minimizers, so are E\F and E[F . In our setting, where
Ek�1 is outward minimizing , this implies the outward minimality of all these sets
and we have equality in (2.7).

The following general lemma is a comparison result which holds indepen-
dently of the initial conditions E0 being mean convex and revisits Chambolle’s
ideas [6].

Lemma 2.9 (Comparison principle, [6]). Let n  7 and let E0, F0 ⇢ Rn be two
bounded open sets of finite perimeter such that E0 is properly contained in F0 in
the sense that E0 b F0. Let E and F be minimizers of Fh( · , E0) and Fh( · , F0),
respectively, then E is properly contained in F , i.e., E b F .

Proof. The proof consists of two steps. First we prove the inclusion E ⇢ F , second
we prove minx2@E d(x, @F) > 0.

Inasmuch as E0bF0, the boundaries have a definite distance min
x2@E0

d(x,@F0)>0,

which implies the strict inequality

sdF0 < sdE0 in Rn. (2.11)

Probing the minimality of E and F for the modified functionals in Remark 2.1 with
E \ F and E [ F , respectively, yields

P(E) +
1
h

Z

E
sdE0  P(E \ F) +

1
h

Z

E\F
sdE0
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and
P(F) +

1
h

Z

F
sdF0  P(E [ F) +

1
h

Z

E[F
sdF0 .

Summing these two inequalities and using the general inequality for the perimeter
of intersections and unions of sets (2.7) we obtain

Z

E
sdE0 +

Z

F
sdF0 

Z

E\F
sdE0 +

Z

E[F
sdF0 .

Rearranging the terms and using the obvious identities �E\F = �E�F and �E[F =
�E + �F � �E�F along the way, we obtain

0 
Z �

sdE0 � sdF0
�
�E (1� �F ) =

Z

E\F

�
sdE0 � sdF0

�
.

Since by (2.11) the integrand is strictly negative, this means that Ln(E \ F) = 0
and hence E ⇢ F .

Now assume for a contradiction @E \@F 6= ;. Let x0 2 @E \@F be a point in
the intersection. Since E ⇢ F we have H@E � H@F at that point x0 and therefore

1
h
sdE0 = �H@E  �H@F =

1
h
sdF0,

a contradiction to (2.11) (note that as in the proof of Lemma 2.7 we have used the
restriction n  7 to ensure smoothness of the boundaries at the touching point).

3. The arrival time for the implicit time discretization

Since by Lemma 2.7 the sets Eh(t) are nested, we can define the (discrete) arrival
time uh for the scheme. In this section we show that, up to subsequences, uh con-
verges uniformly to some continuous function u. In the next section we will identify
u as the arrival time for the limiting evolution starting from E0.
Definition 3.1. Let E0 be outward minimizing in the sense of Definition 2.3, let Ek ,
k � 1, be given by (2.1) and let Eh denote their piecewise constant interpolation in
time. We define the arrival time uh : Rn ! [0,1) by

uh(x) := h
X

k�0
�Ek (x) =

Z 1

0
�Eh(t)(x) dt (x 2 Rn). (3.1)

Let us first note that uh 2 BV (Rn) since the a priori estimate (2.2) implies
Z

Rn
|Duh| =

Z Th

0
P(Eh(t)) dt  Th P(E0), (3.2)
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where Th denotes the extinction time of (Eh(t))t�0. Note that the extinction time
is finite: If R > 0 is sufficiently large such that E0 ⇢ BR , then by Lemma 2.9 we
have Eh(t) ⇢ Brh(t), where rh is given in Remark 2.2 and satisfies rh(t) = 0 for t
larger than O(R2).

The following lemma states that for our mean convex initial condition, the
arrival time solves a (one-sided) variational problem.

Lemma 3.2. Let E0 b � be outward minimizing in� in the sense of Definition 2.3.
Then there exists h0 > 0 such that for 0 < h < h0, the arrival time uh is outward
minimizing in � in the sense that
Z

Rn
|Duh|

Z

Rn
|Dv| for all v 2 BV (Rn) s.t. v�uh and v=0 in Rn \�. (3.3)

Again, the smallness condition on h can be dropped in case of � = Rn .

Proof. Given v 2 BV (Rn) with v � uh and v = 0 in Rn \� we employ the coarea
formula, cf. [2, Theorem 3.40], to manipulate the total variation of v:

Z

Rn
|Dv| =

Z 1

0
P({x 2 Rn : v(x) > t}) dt.

Since v � uh and v = 0 in Rn \� imply

Eh(t) = {x 2 Rn : uh(x) > t} ⇢ {x 2 Rn : v(x) > t} ⇢ �,

the super level sets of v are admissible for (2.3) and we obtain
Z

Rn
|Duh| =

Z 1

0
P(Eh(t)) dt 

Z 1

0
P({x 2 Rn : v(x) > t}) dt =

Z

Rn
|Dv| .

The next lemma states that we have a uniform estimate on the modulus of
continuity of uh except for fluctuations on scales below h; and hence after passing
to a subsequence, we obtain uniform convergence to a continuous function.

Lemma 3.3. Let n7 and let E0 be a bounded open set of class C2 with H@E0 > 0.
Then there exists a subsequence h j # 0 and a continuous function u : Rn ! [0,1)

with supp u ⇢ E0 such that

uh j ! u uniformly (3.4)
Duh j * Du as measures (3.5)

Proof. Let H0 := min H@E0 > 0, which by Lemma 2.7 implies min H@Ek � H0 for
all k � 0.
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We claim that we have a uniform bound on the modulus of continuity up to
fluctuations on scales below h, i.e.,

|uh(x) � uh(y)| 
1
H0

|x � y| + h for all x, y 2 Rn. (3.6)

In order to prove (3.6) let x, y 2 E0 be given. Without loss of generality we may
assume x 2 En and y 2 Em with�1  m < n, where we have set E�1 := Rn \E0.
Since the sets Ek , k � 0 are nested, the segment [x, y] intersects the intermediate
boundaries non-trivially: There are points zk , k = m + 1, . . . , n, such that zk 2
@Ek \ [x, y]. Using the Euler-Lagrange equation (2.9) along these points we obtain

|x � y| � |zn � zm+1|=
nX

k=m+2
|zk � zk�1|�

nX

k=m+2
d(zk, @Ek�1)�(m�n�1)hH0.

Since |u(x) � u(y)| = (m � n)h, this is precisely our claim (3.6). Therefore,
by Arzelà-Ascoli, we obtain the compactness (3.4). The weak convergence of the
gradients (3.5) follows immediately from the uniform bound (3.2).

4. Convergence to the continuous arrival time

Let E0 be an outward minimizing set such that H@E0 > 0. According to the previous
section the arrival times uh of the discrete scheme converge, up to subsequences, to
a limiting function u. In this section we identify this function as the arrival time of
the limiting equation. We start by recalling the following

Theorem 4.1 (Evans-Spruck [12]). Let E0 be a bounded open set of class C2 with
H@E0 > 0. Then there exists a unique continuous viscosity solution u of

8
<

:
|Du|div

✓
Du

|Du|

◆
= �1 in E0

u = 0 on @E0.
(4.1)

Moreover, for all t 2 [0, sup u] the set {u � t} is the evolution of E0 = {u � 0} via
mean curvature flow.

Here a solution of (4.1) is understood in the viscosity sense, that is for all x 2 E0
and all ' 2 C2(E0) such that u � ' has a minimum at x (respectively a maximum)
then

1'(x) �
D2'(x)[D'(x), D'(x)]

|D'(x)|2
 �1 (� �1) if D'(x) 6= 0 (4.2)

9⌘2Sn�1 such that 1'(x) � D2'(x)[⌘, ⌘]�1 (� �1) if D'(x)=0. (4.3)

The following proposition is the elliptic analog of [6], see also [7, Section 7], and
shows that the discrete arrival times converges to the (unique) viscosity solution
of (4.1).
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Proposition 4.2. Let E0 be as in Theorem 4.1 and let uh be as in Definition 3.1.
Then every limit point u of uh is a viscosity solution of (4.1). In particular the
whole sequence uh converges to u.

Proof. Let u be such that (up to subsequences) uh ! u uniformly. Let x 2 E0
and ' 2 C2(E0) be such that u � ' has a minimum at x . By changing coordinates
we may assume without loss of generality that x = 0, moreover, by replacing ' by
' � C|x |4 we may assume that the minimum is global and strict:

u(x) � '(x) > u(0) � '(0) for all x 2 E0 \ {0}. (4.4)

By classical arguments we can find a sequence of points xh such that xh ! 0 and

(uh)⇤(x) � '(x) � (uh)⇤(xh) � '(xh)

where (uh)⇤ is the lower semicontinuous envelop of uh , namely

(uh)⇤ =
Th/hX

k=1
h�Int(Ek).

Here Th is the extinction time of the scheme. Note in particular that (uh)⇤ ! u
uniformly. For simplicity, from now on we assume that the sets Ek are open and that
uh is already lower-semicontinuous (observe that by the regularity theory for almost
minimizers of the perimeter |Ek \ Int(Ek)| = 0 which allows us to choose such a
representative). We also let kh 2 N be the unique integer such that uh(xh) = khh.
In particular xh 2 Ekh .

We now distinguish two cases.
Case 1: D'(0) 6= 0. Since xh ! 0 we have D'(xh) 6= 0 if h is sufficiently small.
Hence, uh cannot be flat constant in a neighborhood of xh , so xh /2 Int(Ekh \Ekh+1)
and thus, since Ekh is open,

xh 2 @Ekh+1.

In particular

U :=
�
' > '(xh)

 
⇢ Ekh+1 and xh 2 @U \ @Ekh+1.

Since both @U and @Ekh+1 are smooth in a neighborhood of xh , the comparison
principle and the Euler-Lagrange equation (2.9) yield

div
✓
D'(xh)

|D'(xh)|

◆
= �H@U (xh)  �H@Ekh+1(xh)

= �
dist(xh, @Ekh )

h
 �

dist(xh, @{' > '(xh) � h})
h

,

(4.5)

where in the last inequality we have used that

Eckh = {u  u(yh) � h} ⇢ {'  '(xh) � h}.
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Moreover, by Taylor expansion, one easily verifies

dist(xh, @{' > '(xh) � h})|D'(xh)|
h

! 1 as h ! 0. (4.6)

Combining (4.5) and (4.6) we conclude the validity of (4.2).

Case 2: D'(0) = 0. This time we can not assume a priori that D'(xh) 6= 0.
To overcome this difficulty we exploit Jensen’s inf-convolution (on a fixed scale of
order h). To this aim let us define

vh(x) := inf
y2E0

n
uh(y) +

|x � y|4

2c4nh

o
for x 2 E0,

where cn is a constant that will be fixed later in dependence only on the dimension
n. We also let zh be a minimum point of vh � ', namely

vh(x) � '(x) � vh(zh) � '(zh) for all x 2 E0

and let yh 2 E0 be such that

vh(zh) = uh(yh) +
|zh � yh|4

2c4nh
.

Note that the existence of yh is ensured by the lower semicontinuity of uh .
We now divide the proof in some steps:

Step 1: |zh � yh| ! 0. Indeed, since vh  uh  2kuk1 we obtain

|zh � yh|4  8c4nhkuk1 ! 0 as h ! 0.

Step 2: zh ! 0. Indeed, by vh  uh and the definition of zh ,

uh(xh) � '(xh) � vh(zh) � '(zh) � uh(yh) � '(yh) + '(yh) � '(zh).

If we let z̄ 2 E0 be an accumulation point of zh (and hence of yh) we deduce from
the above inequality and the uniform convergence of uh to u that

u(0) � '(0) � u(z̄) � '(z̄)

which in view of (4.4) forces z̄ = 0.

Step 3: zh 6= yh . Let us assume by contradiction that zh = yh . By the very
definition of vh this means that

uh(zh) = vh(zh)  u(y) +
|y � zh|4

c4nh
for all y 2 E0. (4.7)
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Let also jh 2 N be such that uh(zh) = jhh. Note that since u > 0 in E0 and
uh(zh) ! u(0) > 0 we may assume that jh � 1. In particular

zh 2 E jh \ E jh+1.

We now note that (4.7) implies

F0 := B
�
zh, cn

p
h
�
b

�
uh � ( jh � 1)h

 
= E jh�1. (4.8)

If we let F1 and F2 be minimizers of (2.1) starting from F0 and F1, respectively,
Remark 2.2 ensures that

F2 = B
�
zh, rh

�
with rh �

p
cn � 4(n � 1) > 0,

provided cn is chosen sufficiently large. However, by Lemma 2.9 and (4.8)

zh 2 F2 b E jh+1,

a contradiction.

Step 4: Conclusion. By the very definitions of vh , yh and zh we have

uh(yh)+
|zh � yh|4

2c4nh
�'(zh)  uh(y)+

|x � y|4

2c4nh
�'(x) for all x, y 2 E0. (4.9)

In particular, the optimality condition in the x-variable implies

D'(zh) =
2|zh � yh|2(zh � yh)

c4nh
6= 0.

Moreover, if we set

 h(x) := '(x + (zh � yh)) +
|zh � yh|4

2c4nh
,

the function u �  h has a minimum at yh with D h(zh) 6= 0. By the very same
arguments of Case 1 we obtain that

1'(zh) �
D2'(zh)[D'(zh), D'(zh)]

|D'(zh)|2
 �1+ o(1),

which gives (4.3) with ⌘ being any limiting point of the sequence D'(zh)
|D'(zh)| .

Since the case in which u � ' has a maximum at some x 2 E0 can be treated
analogously, this completes the proof.
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5. Compensated compactness for the arrival time and proof
of Theorem 1.4

In this section we establish the convergence of the total variations of the arrival
times uh and prove Theorem 1.4. Our proof is elementary and only uses the vari-
ational principle for uh established in Lemma 3.2. We also state a second proof
which seems more robust and might be applicable to similar problems. This second
proof is based on the compensated compactness argument of Evans-Spruck [12]
together with the dual problem of the variational principle for uh viewed as an ob-
stacle problem for BV functions established in [23].

Proposition 5.1. Let E0 be strictly mean convex in the sense of Definition 2.3 and
let uh j defined by (3.1) satisfy (3.4) and (3.5). Then,

�
�Duh j

�
�* |Du| as measures.

In particular it holds Z

Rn

�
�Duh j

�
� !

Z

Rn
|Du| .

While the compensated compactness argument of Evans-Spruck is based on the
curious estimate

sup
">0

Z

Rn
|H"(x)| dx < 1, (5.1)

which miraculously holds true for the elliptic regularizations u" of the level set
formulation, this estimate is very intuitive in our situation:

Informally, the Euler-Lagrange equation of the minimization problem in Lem-
ma 3.2 reads

�div
✓
Duh

|Duh|

◆
� 0.

This means that these distributions are in fact measures, for which it should be
reasonable to get appropriate bounds. This resembles the L1-bound (5.1) and would
allow us to pass to the limit in
Z
⇣ |Duh| =

Z
⇣Duh ·

Duh
|Duh|

= �
Z
⇣uhdiv

✓
Duh

|Duh|

◆
�

Z
uh

Duh
|Duh|

· D⇣.

(5.2)
This argument can be made rigorous, see Remark 5.2 below. Let us first show a
simpler direct proof.

Proof of Proposition 5.1. By lower semi-continuity, we only need to prove the in-
equality

lim sup
h#0

Z
|Duh| 

Z
|Du| . (5.3)
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Since uh ! u uniformly, for any " > 0 there exists h0 > 0 such that

uh < u + " whenever 0 < h < h0.

Multiplying u + " with a cutoff ⌘ 2 C1
0 (�) of E0 in �, v = (u + ")⌘ is an

admissible competitor for (3.3), so that
Z

|Duh|
(3.3)


Z
|Dv| =

Z
⌘ |Du| +

Z
(u + ") |D⌘| 

Z
|Du| + "

Z
|D⌘| ,

where we have used ⌘  1 for the first, and u + " = " on supp ⌘ ⇢ � \ E0 for
the second right-hand side term. Passing first to the limit h # 0 and then " # 0
yields (5.3).

Remark 5.2. For the alternative proof of Proposition 5.1, which makes the com-
pensated compactness argument (5.2) rigorous, we interpret the minimization prob-
lem in Lemma 3.2 as an obstacle problem in a �-neighborhood � of E0 with ho-
mogeneous Dirichlet boundary conditions. Here the obstacle is of class BV and
happens to be our minimizer uh itself. This allows us to use the general theory for
dual formulations of obstacle problems: By [23, Theorem 3.6, Remark 3.8] the dual
problem reads

max[[�, Du+
h ]](�̄),

where the maximum runs over all measurable vector fields � : �!Rn with |� | 1
a.e. in � and div�  0 distributionally in �. Note that this implies that div� is a
measure on �̄ and

(�div� )(�̄)  Hn�1(@�). (5.4)

Here
u+
h (x) = ap-limsupy!x uh(y)

denotes the largest representative of uh , see [23], and the measure [[�, Du+
h ]] is

defined as

[[�, Du+
h ]](⇣ ) := �

Z

�
⇣u+

h div(� ) dx �
Z

�
uh (� · D⇣ ) dx, (5.5)

for test functions ⇣ 2 C1(�̄). This yields a vector field �h for any h > 0 with the
above mentioned properties and such that

Z
|Duh| = [[�, Du+

h ]](�̄) = [[�, Du+
h ]](Rn). (5.6)

Here we used the fact that uh vanishes away from E0 b �.
Since |�h|  1, we may assume that there exists a measurable vector field �

with |� |  1 such that
�h j

⇤
* � in L1. (5.7)
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Moreover, by (5.4), there exists a subsequence, which we do not relabel, and a
measure µ such that

div�h j * µ as measures. (5.8)
In particular

div� = µ in �. (5.9)
Now we can make the idea of the aforementioned compensated compactness argu-
ment rigorous. By (5.6) we have

Z
⇣ |Duh| = �

Z
⇣u+

h div(�h) dx �
Z
uh (�h · D⇣ ) dx, (5.10)

which is precisely the analog of (5.2) with the important difference that we can give
a meaning to (and have precise estimates for) all products appearing on the right.
Along the subsequence h j # 0, on the one hand, since u = lim uh j is continuous,
we have

lim
h j#0

�
Z
⇣udiv(�h j ) dx

(5.8)
= �

Z
⇣u dµ.

On the other hand, by the uniform convergence (3.4), we have
�
�
�
��

Z
⇣
�
u+
h j � u

�
div(�h j ) dx

�
�
�
�
(5.4)
 k⇣k1ku+

h j � uk1Hn�1(@�) ! 0.

Therefore, we can pass to the limit in the first right-hand side product of (5.10):

lim
h j#0

�
Z
⇣u+

h j div(�h j ) dx = �
Z
⇣u dµ =

Z
D(⇣u) · � dx . (5.11)

Since supp uh ⇢ � is equibounded, the convergence uh j ! u is strong in L1 and
hence we may pass to the limit in the second right-hand side product of (5.10).
Therefore, for any non-negative test function ⇣ 2 C1(Rn) we obtain

lim
h j#0

Z
⇣ |Duh j | =

Z
D(⇣u) ·� dx�

Z
u (� · D⇣ ) dx =

Z
⇣ � ·Du 

Z
⇣ |Du| ,

where we used the pointwise bound |� |  1 a.e. in the last inequality. The lower
semicontinuity of the total variation implies

Z
⇣ |Du|  lim inf

h j#0

Z
⇣
�
�Duh j

�
�

for all non-negative test function ⇣ 2 C1(Rn). Therefore

lim
h j#0

Z
⇣
�
�Duh j

�
� =

Z
⇣ |Du|

holds for all non-negative test functions ⇣ 2 C1(Rn). By linearity and continuity
in ⇣ the convergence holds for all continuous test functions ⇣ 2 C(Rn) without
restriction on the sign, which proves

�
�Duh j

�
�* |Du| as measures.
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We are now ready to prove Theorem 1.4:

Proof of Theorem 1.4. Passing to a subsequence, we may assume Eh j ! E in L1.
By Proposition 4.2 uh j converges to the arrival time of the limiting evolution u. By
the co-area formula and Proposition 5.1

lim
h!0

Z 1

0
P(Eh(t)) dt = lim

h!0

Z

Rn
|Duh| =

Z

Rn
|Du| =

Z 1

0
P(E(t)) dt,

which proves (1.4).
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