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Spinorial classification of Spin(7) structures

Lucia MARTIN-MERCHAN

Abstract. We describe the different classes of Spin(7) structures in terms of
spinorial equations. We relate them to the spinorial description of G, structures
in some geometrical situations. Our approach enables us to analyze invariant
Spin(7) structures on quasi Abelian Lie algebras.
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1. Introduction

Berger’s list [3] (1955) of possible holonomy groups of simply connected, irre-
ducible and non-symmetric Riemannian manifolds contains the so-called excep-
tional holonomy groups, G2 and Spin(7), which occur in dimensions 7 and 8 re-
spectively. Non-complete metrics with exceptional holonomy were given by Bryant
in [4], complete metrics were obtained by Bryant and Salamon in [5], but compact
examples were not constructed until 1996, when Joyce published [13,14] and [15].

The remaining groups of Berger’s list different from SO(n), called special
holonomy groups, are U(n), SU(n), Sp(n) and Sp(n) - Sp(1). If the holonomy of a
Riemannian manifold is contained in a group G, the manifold admits a G structure,
that is, a reduction to G of its frame bundle. Therefore, holonomy is homotopically
obstructed by the presence of G structures. Examples of manifolds endowed with
G structures for some of the holonomy groups in the Berger list are not only easier
to obtain than manifolds with holonomy in G, but also relevant in M-theory, es-
pecially if they admit a characteristic connection [11], that is, a metric connection
with totally skew-symmetric torsion whose holonomy is contained in G. It is worth
mentioning that Ivanov proved in [12] that each manifold with a Spin(7) structure
admits a unique characteristic connection. Moreover, Friedrich proved in [10] that
Spin(7) is the unique compact simple Lie group G such that every G structure admit
a unique characteristic connection.
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The Lie group G, is compact, simple and simply connected. It consists of the
endomorpisms of R’ which preserve the cross product from the imaginary part of
the octonions [22]. Hence, a G; structure on a manifold Q determines a 3-form
W, a metric and an orientation. In [8], Ferndndez and Gray classify Gj structures
into 16 different classes in terms of the G, irreducible components of VW. Related
to this, the analysis of the intrinsic torsion in [6] allowed to obtain equations in-
volving dW and d (xW) for each of the 16 classes, determined by the G irreducible
components of A*T*Q and A>T*Q. In particular, one obtains that the holonomy
of Q is contained in Gj if and only if d¥ = 0 and d(x¥) = 0. The Lie group
Spin(7) is also compact, simple and simply connected. It is the group of endo-
morphisms of R® which preserve the triple cross product from the octonions [22].
Thus, a Spin(7) structure on a manifold M determines a 4-form €2, a metric and an
orientation. In [7], Fernandez classifies Spin(7) structures into 4 classes in terms
of differential equations for d€2, which are determined by the Spin(7)-irreducible
components of A>T*M. Parallel structures verify d2 = 0, locally conformally
parallel structures satisfy d2 = 6 A Q for a closed 1-form 6 and balanced struc-
tures verify x(d2) A Q = 0. A generic Spin(7) structure, which does not satisfy
any of the previous conditions, is called mixed.

The relationship between Gy and Spin(7) structures was firstly explored by
Martin-Cabrera in [18]. Each oriented hypersurface of a manifold equipped with
a Spin(7) structure naturally inherits a Gy structure whose type is determined by
the Spin(7) structure of the ambient manifold and some extrinsic information of
the submanifold, such as the Weingarten operator. Following the same viewpoint,
Martin-Cabrera constructed Spin(7) structures on S!-principal bundles over G,
manifolds in [19]. Both approaches allowed to construct manifolds with G, and
Spin(7) structures of different pure types.

It turns out that manifolds admitting SU(3), G and Spin(7) structures are spin
and their spinor bundle has a unit section  which determines the structure. In [1],
spinorial formalism was used to deal with the distinct aspects of SU(3) and G,
structures, such as the classification of both types of structures, SU(3) structures
on hypersurfaces of G, manifolds and different types of Killing spinors. A clear
advantage of this viewpoint is that a unique object, the spinor, encodes the whole
geometry of the structure. For instance, a G, structure on a Riemannian manifold
(Q, g) with associated 3-form W is determined by a suitable spinor 7 according to
the formula V(X, Y, Z) = (Xn, YZn) where (-, -) denotes the scalar product in
the spinor bundle and juxtaposition of vectors indicates the Clifford product. Any
oriented hypersurface Q' with normal vector field N inherits an SU(3) structure
implicitly defined by ¥ = N* Aw+Re(0), where N*(X) = g(N, X)for X € T Q.
But both the 2-form w and the (3, 0)-form Re(®) turn out to be determined by the
same spinor 7.

In this paper we follow the ideas of [1] to describe the geometry of Spin(7)
structures from a spinorial viewpoint, starting from the classification of these struc-
tures, continuing to analyze the relationship between G and Spin(7) structures and
finishing with the study of invariant Spin(7) structures on quasi Abelian Lie alge-
bras.



SPINORIAL CLASSIFICATION OF SPIN(7) STRUCTURES 875

Our first result, Theorem 4.8 in section 3, describes each type of Spin(7) struc-
ture in terms of differential equations involving the spinor 7 that determines the
structure (see section 2 for details). Parallel Spin(7) structures have already been
studied from a spinorial point of view and correspond to the equation Vi = 0. In
order to state the spinorial equations for the remaining classes let D denote Dirac
operator on the spinor bundle.

Theorem 1.1. A Spin(7) structure determined by n is:

1. Balanced if Dn = 0;
2. Locally Conformally Parallel if there exists V € X(M) such that Vxn = %(X *A
V*Yn. In this case, Dy = V1.

Moreover, in Proposition 5.2 we determine the torsion forms of the structure and
we obtain that the Lee form is 8 = %V* where Dn = V).

Our techniques also allow us to identify the intrinsic torsion of the structure
and to obtain the formula for the unique characteristic connection of each Spin(7)
structure, given by Ivanov in [12, Theorem 1.1]. In Section 6 we also show that the
spinorial equation for balanced structures can be obtained using [12, Theorem 9.1].

We also introduce the concept of G, distributions, a general setting to relate

G and Spin(7) structures.
Definition 1.2. Let (M, g) be an oriented 8-dimensional Riemannian manifold and
let D be a cooriented distribution of codimension 1. We say that D has a G; struc-
ture if the principal SO(7) bundle P (D) is spin and the spinor bundle X (D) admits
a unitary section.

This construction allows us to obtain the results which appear in [18] and [19]
about G structures on hypersurfaces of Spin(7) manifolds and S'-principal bundles
over G, manifolds. Related to this, we also study warped products of manifolds
admitting a G, structure with R.

The formalism of G, distributions enables us to study invariant Spin(7) struc-
tures on quasi-Abelian Lie algebras, that is, Lie algebras with a codimension 1
Abelian ideal. To state the result, which is Theorem 8.7, suppose that the Lie al-
gebra is g = (ep, ..., e7) with Abelian ideal R7 = (e1,...,e7) and it is endowed
with the canonical metric and volume form.

Theorem 1.3. Denote by £ = ad(eg)|g7 and let £13 and Er4 be the symmetric and
skew-symmetric parts of the endomorphism. Then, g admits a Spin(7) structure of
type:

1. Parallel, if and only if £13 = 0 and the eigenvalues of Ey4 are 0, £A1i, £oi,
(A1 + A2)i, for some 0 < A1 < Ap;

2. Locally conformally parallel and non-parallel if and only if £13 = h1d with
h # 0 and the eigenvalues of Ey4 are 0, £Ai, £Ai, =(A1 + A2)i, for some
0<Xi; =Xz

3. Balanced if and only if g is unimodular and the eigenvalues of Ey4 are 0, £111,
A1, £(A1 + Ap)i, for some 0 < A1 < As.

Moreover, if 24 # 0 then it admits a Spin(7) structure of mixed type.
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It follows from this (Corollary 8.8) that there are no quasi Abelian solvmanifolds
which admit a locally conformally parallel Spin(7) structure. In addition, this result
allows us to give an example of a nilmanifold admitting both an invariant balanced
structure and an invariant mixed structure. We also compute an example of an in-
variant strict locally conformally balanced structure, that is a mixed structure whose
Lee form is closed and non-exact.

A compact manifold admitting a parallel structure is also obtained as a quo-
tient of a simply connected solvable Lie group whose Lie algebra is quasi Abelian.
Despite not being diffeomorphic to a torus, it is flat. Indeed, we prove that quasi
Abelian Lie algebras which admit an invariant Spin(7) parallel structure are flat
(Corollary 8.9).

In addition, we also characterize which nilpotent quasi Abelian Lie algebras
admitting invariant balanced and locally conformally balanced structures:

Theorem 1.4. Let L3 be the Lie algebra of the 3-dimensional Heisenberg group,
L4 the unique irreducible 4-dimensional nilpotent Lie algebra and A the j-dimen-
sional Abelian Lie algebra.

. Every invariant Spin(7) structure on the Abelian Lie algebra Ag is parallel;

. The Lie algebras g = A5 @ L3 or g = A3 @ L4 admit strict locally conformally
balanced invariant structures. However, they do not admit invariant balanced
structures;

3. The rest of quasi Abelian nilpotent Lie algebras admit a balanced structure and

a strict locally conformally balanced structure.

N =

This paper is organized as follows. Section 2 contains a review of algebraic aspects
of Spin(7) geometry. Section 3 identifies the instrinsic torsion of the Levi-Civita
connection with a spinor, Section 4 contains the spinorial classification of Spin(7)
structures, Section 5 is devoted to obtain the torsion forms of Spin(7) structures in
terms of spinors and Section 6 provides an alternative proof of the existence of the
characteristic connection. Section 7 provides a complete analysis of G; structures
on distributions and then focuses on the particular cases described above. Section 8
deals with invariant structures on quasi Abelian Lie algebras and provides compact
examples. Finally Section 9 is devoted to the study of quasi Abelian nilpotent Lie
algebras and its Spin(7) structures.

ACKNOWLEDGEMENTS. I am very grateful to the referee for useful suggestions
which improved the exposition of the paper. I would like to thank my thesis direc-
tors, Giovanni Bazzoni and Vicente Munoz, for useful conversations, advices and
encouragement. I also want to thank Ilka Agricola and Mario Garcia Fernandez for
helpful comments.



SPINORIAL CLASSIFICATION OF SPIN(7) STRUCTURES 877

2. Preliminaries

In this section we introduce some aspects of Clifford algebras, 8-dimensional spin
manifolds and Spin(7) representations, which can be found in [9,16] and [22], as
well as the notation that we will use in the sequel.

2.1. The irreducible representation of Clg

The Clifford algebra Clg is isomorphic to the algebra of endomorphisms of R!°.
Such an isomorphism is denoted by p: Clg — End(R!®) and is indeed the unique
irreducible repesentation of Clg up to equivalence [16, Chapter 1, Theorem 4.3].
There is also an inner product on Rm, which we denote by (-, -), such that the
Clifford multiplication with a vector of R® is a skew-symmetric transformation [16,
Chapter 1, Theorem 5.3].

Fix an orientation of R® and let vg be the volume form of R® that has length
one and is positively oriented. Consider the Spin(8) equivariant endomorphism:

vg-: R1® — R, ¢ —> vgo.

Since vg = 1, there is a splitting R'® = AT @ A~ where A¥ is the eigenspace
associated to +1. In addition, this endomorphism anticommutes with the Clifford
multiplication by a vector.

It is well known that Spin(8) contains three distinct conjugacy classes of the
group Spin(7) [16, Chapter 4, Proposition 10.4]. The first one is obtained from the
adjoint action Ad: Spin(8) — SO(8) as the stabilizer of any non-zero v € R8.
The remaining ones, that we denote by Spin(7)¥, are constructed from p as the
stabilizer of a non-zero spinor ¢+ € A*. The adjoint action embeds Spin(7)*
into SO(8) because —1 ¢ Stab(¢+). Note also that the conjugacy classes Spin(7)i
depend on the choice of an orientation of R® and these are conjugated in Pin(8).

Remark 2.1. We can obtain p from the representation of the complex Clifford al-
gebra and the real structure constructed in [9, Chapter 1]. The construction that
allows to obtain an irreducible representation of Clg is similar but there are is a
difference that we outline. Let Cly be the Clifford algebra of (C2, Y"7% | 72), ac-

cording to [9, page 13] there are 2%-dimensional complex vector spaces Ay and
isomorghlsms ko . Clpr — End(Ag). The multiplication by the complex volume
form vy, = i®vo splits Ay into two eigenspaces A2ik associated to the eigenvalue
41 which are irreducible under the action of Spin(2k).

1. There is a Spin(8) equivariant real structure g on Ag which commutes with véc
(see [9, page 32]). Thus, a real representation is (Ag’)Jr ® (Ag) -, where (A;)i
and (Ag )+ are the eigenspaces associated to the eigenvalue +1 of g on A; and
A_ .

8 ’

2. There is a Spin(6) equivariant real structure pg on Ag that anticommutes with

v(6c. Thus the real representation of Clg is (Ag)+ = {¢ + ¢e(@): ¢ € Agr}, the
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eigenspace associated to +1 of . In addition, for a real spinor n = ¢+¢g(¢p) #
0 we have that Stabgpin() (1) = Stabspin(6) (¢) = Stabspin(6) (¢6(¢)) = SU(3).

The Hermitian metric 27 on Ag constructed in [9, page 24] makes the Clifford
multiplication a skew-symmetric transformation. In particular, /2 is Spin(8) invari-
ant. The fact that Agt are irreducible Spin(8) modules guarantees that b(¢, n) =

h(pg(¢), n) is a symmetric bilinear form on Agt and therefore the restrictions of &
to the real and the imaginary part of Agh are real-valued. The subspaces A; and
Ag are orthogonal with respect to i because the multiplication by vc preserves h.

Therefore the real part of & is a scalar product on (Ag)+ ® (Ag)— with the same
properties as (-, -).

2.2. Spin(7) structures

Let (M, g) be an oriented Riemannian 8-manifold and let P (M) be the associated
frame bundle. Provided that M is spin, that is wy(M) = 0, we can take a Spin(8)
principal bundle 15(M ) over M which is a double covering 7 : f’(M) — P(M)
equivariant under the adjoint action Ad: Spin(8) — SO(8). The associated spinor
bundle is X (M) = f’(M) X p R'® and it is endowed with a metric induced by
(-, -) which we denote by the same name. Moreover there is a splitting X (M) =
(M)t @ X(M)~, where (M)* = P(M) x, A*.

Also note that X (X (M)*) ¢ (M)T if X € X(M) and that for each nowhere
vanishing spinor ¢: M — (M) the map:

™M — S(M)¥, Xr— X¢, @2.1)

is an isomorphism.
The Clifford multiplication with a vector field is extended to an action of
AXT*M defined as follows:

1. The product with a covector is defined by X*¢ = X ¢, where we used the canon-
ical identification between the tangent and the cotangent bundle: X* = g(X, -);
2. If the product is defined on AYT*M when ¢ < k, we define

(X" AP =X(Bd) + ({(X)B)¢,

where i (X)f denotes the contraction, § € AXT*M and X € TM. This product
is extended linearly to A¥T17*M.

For instance, we have:

(X* AY*)p = (XY + g(X, V), (2.2)
(X*AY*ANZNp=(XYZ+8(X,Y)Z —g(X,2)Y +g(Y,Z2)X)p. (23)

Observe also that (M) = {¢ p: Vpp = =@} where v is the positively oriented
unit-length volume form of (M, g).
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The action Spin(8) xR0 — R0 lifts to an action P(M) x (M) — X(M),
so that the existence of a unit spinor n € I'(X(M )*) determines an identification
between Spin(7)jE and the stabilizer of 1, at each p € M. This defines a Spin(7)
principal subbundle Stab(n) C P (M) and therefore Ad(Stab(n)) is a Spin(7) reduc-
tion of P(M). In this paper we focus on Spin(7) structures determined by positive
spinors. This condition is not restrictive due to the following result which is not
difficult to prove.

Lemma 2.2. Let (M, g) be a connected oriented spin manifold and let ¥ (M) be
its spinor bundle. Let (M) be the spinor bundle associated to the opposite ori-
entation on M. There is an isomorphism of Cl(M) modules R: X (M) — X (M).

Therefore, R(S(M)¥) = T(M) .
For the convenience of the reader, we shall relate this spinorial approach with the
point of view of positive triple cross products [22, Definitions 6.1, 6.12]. That

was the approach that M. Fernandez followed in [7] to obtain the classification of
Spin(7) structures.

Lemma 2.3. Let (M, g) be a Riemannian oriented spin manifold that admits a unit
spinor n: M — X(M)*. Then there is a well defined map:

TMxTMxTM—TM, (X,Y,Z)—> XxXYXZ s.t, (XXYXZ)n=(X*ANY*AZ")n,

which is in turn a positive triple cross product.
The associated 4-form Q(W, X, Y, Z) = g(W, X x Y x Z) verifies that xQ2 = £Q.

Moreover [22, Theorem 10.3] states that there is a 1 to 1 correspondence between
4-forms €2 that define a positive triple cross product and such that 2 A Q > 0 and
sections of the projectivization of X (M)™.

According to the previous discussion we summarize our basic assumptions in
the following Proposition. In the sequel given a frame (eg ..., e7) and a spinor ¢
we use short-hand notation ¢’ for gei, "), ek for el A el A ek A el and e; ik for
eiejerd.

Proposition 2.4. Let (M, g) be an oriented spin manifold and suppose that there
exists a positive unit spinor. Consider the triple cross product on M defined as in
Lemma 2.3.

1. The associated 4-form is self-dual and is determined by
1
QW, X, Y, Z)= 5((—WXYZ + WZY X)n, n);

2. Given orthonormal vector local fields ey, e1, €2, ea such that eq is perpendic-
ular to e3 = ey x ey X ey there exists a positive oriented orthonormal frame
(e, ..., e7) such that:

Q= 0123 _ 0145 _ 0167 _ 0246 0257 _ 0347 _ 0356
24

1 A6 2367 _ 2345 1357 4 1346 _ 1256 _ 1247

A frame with this property is called Cayley frame.
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Proof. Taking into account Lemma 2.3 and equation (2.3) the associated 4-form of
the triple cross product, which is self-dual, is:

QW,X,Y,Z)=((X xY x Z)n, Wn)
=((XYZ+gX,V)Z —g(X,2)Y +g(X,Y)Z)n, Wn)

1
= S(“WXYZ+WZYX)n. ).

The third statement can be found in [22, Theorem 7.12]. Since Cayley frames verify
(eg - - - e7)n = n, they are positively oriented. ]

2.3. Spin(7) representations

Let us denote the standard basis of R® by (eo, ..., e7), and the standard Spin(7)
structure of R® by g, given by (2.4). We also denote A¥ = A¥(R3)*.

The representation of Spin(7) = Stab(£2¢) € SO(8) on A induces an orthog-
onal decomposition of this space into irreducible Spin(7) invariant subspaces. The
expression A’lf denotes such an £-dimensional subspace of A¥. The Hodge star op-

erator * gives isomorphisms between AX and A3~% determining that Ak = *A?‘k
if kK < 4. We are going to describe briefly the splitting; a complete proof can be
found in [7] and [22, Theorem 9.8]. The decomposition goes as follows:

2 A2 A2
AT =070 Ay,

3 _ A3 A3
AT =75 © Ay,

Y D N I
AT=ATO A O Ay © Ass.

The first one comes from the orthogonal splitting A> = s0(8) = spin(7) & m,
where m = spin(7)L. An alternative description is obtained from the map:

A? = A% B (B AQ),
which is Spin(7)-equivariant, symmetric and traceless. Therefore, A splits into

eigenspaces which must coincide with the previous ones due to the irreducibility. It
can be checked that the eigenvalues are 3 on A% and —1 on A% 1 Moreover, the set

{aj = %(60]‘ +i(ej)i (eo)Qo)};: | is an orthonormal basis of A% and the projection
p% DA% > A% is consequently determined by the equation:

1
Pru AvY) = Z(u* AV i (0)i (1)). (2.5)

The subspaces involved in the splitting of A are:

A =iRHQy, A, =ker(- AQ: A’ > A7).
8 48
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In order to describe the last one observe that Hodge star operator splits A* into two
35-dimensional spaces: anti self-dual and self-dual forms. The space of anti self-
dual forms is A‘3‘5 and the space of self-dual forms is A‘l1 @ A‘7‘ @ A‘2‘7. Obviously,

A‘l1 = () and the space A‘71 is the image of the map,
jim— A% j(B) = pu(B).

with p: SO8) — A*T*M, p(g) = (g7")*Qp. That is, J is the restriction to m of
the map determined by j(u* A v*) = u™ A i(v)Q — v* A i(u)Q and therefore,
AZ = {u* ANi (V) —v* AT (), u, v € R¥}. The subspace A37 is the orthogonal
complement of A‘l1 @ A‘71 ® A‘3‘5.

We now describe the irreducible decomposition of A! ® m which is related
with the intrinsc torsion of the Levi-Civita connection (see Section 3).

Proposition 2.5. Let (eq, ..., e7) be a Cayley basis and let p%: A? — m be the

orthogonal projection. Consider the Spin(7)-equivariant maps:
7
O: A > Alem, Br—0O@B) =) ¢ ® piie)p),
=0
E:A®@m > A, a®Br— anB=3alta®p),

where alt(T)(vy, ..., v,) = % ZoeSn (=D T(vg(1), - - .+ Vo(n)). The eigenval-

ues of E o ® are % and % They are associated to the eigenspaces Ag and Aig
respectively.

Proof. The map Eo® is symmetric and Spin(7)-equivariant, so that its eigenspaces
must be AS and Aig. Taking i(eg)20 € Ag and e!23 4 ¢!® ¢ Aig one can show

: 9 3 1 3
that the eigenvalues are 7 on Ag and 5 on Ayg. O

We formulate an alternative description of A! ® m which can be proved in the
same manner.

Proposition 2.6. Let (e, ..., e7) be an orthonormal frame. Consider the O(8)
equivariant maps,

;
CRE S Alem, (v) = Zei ® (¢ A V™),
i =0
7
ki A'@m— R k() =D ()l (e),
i=0

which do not depend on the orthonormal basis chosen. Then L(RS) = ®(A§) and
ker(x) = ®(A38). Moreover, k o t(v) = Z—lvfor anyv € R8.
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In the same manner one can study the space Al ®A‘7l which is isomorphic to Al@m.
For instance, it is not difficult to check that the map alt: A'® A‘7‘ — A’ isaSpin(7)
equivariant isomorphism.

A Spin(7) structure on the Riemannian manifold (M, g) determines a splitting
of AKT*M into subbundles AIET*M = R Xspin(7) A'g where R is the Spin(7) reduc-
tion R of the SO(8) principal bundle given by the Cayley frames. We also denote
by QIE (M) the space of smooth sections of A]E T*M. In addition, the maps j, ©, E,
t, k induce bundle homomorphisms that we call by the same name. We will also
consider the subbundles of T*M ® A;T*M defined by x; = @(AiST*M) and

X2 = O(AIT*M).

3. The intrinsic torsion

We are going to compute the intrinsic torsion I" of the Levi-Civita connection which
is a section of the bundle TM ® A%T*M . Recall that the Levi-Civita connection
V on T M induces a connection w on P(M). Then a connection on the Spin(7)
reduction R is defined by " = p(w)|rr, where p denotes the orthogonal projection
to spin(7). The connection that ’ induces on T'M is denoted by V' and determines
the intrinsic torsion by means of the expression:

VxY = VyY + T(X)Y.

The skew-symmetric endomorphism I'(X) can be identified with a 2-form which
lies in Q%(M) for each X € TM. To compute it, define H as the subspace of A
which is orthogonal to n with respect to the scalar product (-, -) defined in Section
2.1. Of course, H depends on the choice of the spinor 7. We first prove that the
vector bundles A%T*M and H are isomorphic.

Lemma 3.1. There is a well defined Spin(7)-equivariant map
A’T*M — H, o+ an,

whose kernel is A%l T*M. Indeed, its restriction c: A%T*M — H is an isomor-
phism whose inverse is given by (c'o)(X,Y) = %(qﬁ, (XY +g(X,Y)n).

Proof. The spinor B1 is perpendicular to 7 if 8 € A>T*M. Therefore, the map is
well-defined and it is Spin(7)-equivariant since Spin(7) = Stab(n,).

To prove that ¢ is an isomorphism, we first claim that if (e, . .., e7) is a Cayley
frame then o jn = 4¢% 5. Observe that we only need to check this formula for j = 1
since c is Spin(7)-equivariant and G = Spin(7) N Stab(ep) acts transitively on the
6-sphere generated by (eq, ..., e7). In this case, ] = Ol 4 2 — % — ¢%7 and
if (i, j) € {(2,3),(5,4), (7,6)} we have that Q(ep, e1, ¢;, ¢j) = 1. The previous
equality means that egn = ey;;7, so that Oy =eliy.
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Moreover, since {e% 77}1.7:1 is an orthonormal basis of H we have that
1 1 0i
_ _ 1 i
c (9)= 2 ;:1 (¢, e " na;.

If X = eg, Y = ey are orthonormal vectors then « (e, e1) = (eoj —i(ep)i(e;)2)

(e0, 1) = 8j1. Hence, c™'¢(eo, e1) = (¢, evern).
Finally, by dimensional reasons the Clifford product with n must vanish on
A3 T*M. O

Remark 3.2. These computations and others that we do in the sequel in terms of
Cayley frames may be computed alternatively from a representation of Clg.

The previous result enables us to find a formula for the intrinsic torsion:
Proposition 3.3. The intrinsic torsion is given by T'(X) = 2¢~ V.

Proof. We also denote by V and V' the induced connections on the spinor bundle.
According to [9, page 60] we have that:

! 1
Vx¢ = Vxé + EF(X)QL

where I'(X) acts on ¢ as a 2-form. Since the holonomy of the connection Vs
contained in Spin(7) and Stab(n,) = Spin(7) we have that V/n = 0. Finally,
if X € TM then Vxn € H and I'(X) € A%T*M thus, Lemma 3.1 shows that
I'(X) =2c""vyn. O

4. Classification of Spin(7) structures

The classification of Spin(7) structures was obtained in [7, Theorem 5.3]. There it is
proved that VQ € I'(TM* ® A‘7‘T*M ) and that A! ® A‘7t splits into two irreducible
Spin(7) subspaces that can be described via the isomorphism Id ® j: A' @ m —
Al'® A‘7l (see Section 2.3 for the definition of j). Those are of course (Id ® j) o
®(Ajg) and (Id ® j) 0 O(A]).

We also denote by Id ® j the induced map from T*M ® A%T*M toT*M ®
A;‘T*M and we define W) = (Id ® j)(x1) and W, = (Id ® j)(x2), where x; are
defined as in Section 2.3.

Moreover, it is straightforward to check that Id® j (I")=V 2 and that alt(VQ2)=
dS2. These considerations allow us to describe the classification of Spin(7) struc-
tures in three different ways.

Definition 4.1. Let I" be the intrinsic torsion of the Spin(7) structure determined
by €2. The type of the structure is given by the equivalent conditions:
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r|vaQ dQ
Parallel 0 0 0
Balanced X1 | Wi *(d2))AQ=0
Locally conformally parallel | 2 | Wh | 6 AQ, 6 e Q'(M)

In other case, the structure is said to be mixed.

Definition 4.2. The Lee form of 2 is the unique # € Q'(M) such that the orthog-
onal projection of d€2 to Qg (M) is 0 A Q.

Remark 4.3. According to Proposition 2.6 locally conformally parallel Spin(7)
structures are the class of Spin(7) structures with vectorial torsion in the sense
of [2]. In [2, Proposition 2.2] the reader can find a characterization of compact
manifolds with vectorial torsion and formulas for the Ricci tensor.

Remark 4.4. If the structure is locally conformally parallel then d8 = 0. Let
O be a contractible open set, take a primitive f of —}ﬁlo and define the metric
g = e*/glo. The associated Spin(7) structure is Q' = ¢*/Q|p and it verifies
dQ = 0. Therefore, Q|¢ is conformal to a parallel structure. This justifies the
name.

We now focus in obtaining an alternative description in terms of spinors. For
that purpose, decompose I' = I'; + I'; according to the splitting x1 @ x2 and write
(X)) = % p%(X * A V*). Taking into account Proposition 2.6 and equation (2.5)
we obtain:

1. k([y) = V*; o ‘ .
2.0 =33 ge ApRe AV =LY el nie)i(V)Q = 3i(V)Q.

Remark 4.5. Define Z(V) = {p € M st V(p) = 0} and let R denote the Spin(7)
reduction of the SO(8) principal bundle of M. The frame bundle of (M — Z(V), g)
admits a G reduction that consists of the orthonormal oriented frames on R|y—z(v)
that have the form (V/||V |, e1, ..., e7).

Remark 4.6. We added a factor ‘7—‘ in order to avoid a constant on Theorem 4.7.

We compute the Dirac operator D of the spinor 7 that determines the Spin(7)
structure.

Proposition 4.7. Let Q2 be a Spin(7) structure determined by a spinor n. Let I' =
I’y + 'y be its intrinsic torsion with T'h(X) = %p%(X* A V™). Then,

1. The map A3T*M — S (M)~, a —> an is Spin(7) equivariant and its kernel
is AJgT*M.
Moreover, (i(X)Q)n =T7Xn.

2. The Dirac operator is determined by Dn = V1.

Proof. The first statement is a consequence of Schur’s Lemma. To check that
i(X)Q2n = 7Xn, one can suppose that X is unitary and use a Cayley frame such
that X = ¢g.
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For the second we compute in terms of a Cayley local frame (e, . . ., e7),

7 7
2Dn =Ze,-r‘(e,-)n = Z (¢" AT (&) —i(en)T(e))n
i=0 i=0
=0[)n —«(T)n =2Vn. O

Theorem 4.8. The Spin(7) structure determined by a spinor 1 is,

1. Parallel if Vi) = 0;

2. Balanced if Dn = 0;

3. Locally Conformally Parallel if there exists V € X (M) such that Vxn = %(X A
V*Yn. In this case, Dy = V1.

Proof. The equation for balanced structures follows from Proposition 4.7 and the
equation for locally conformally balanced structures follows from Lemma 3.1. [

5. Torsion forms of a Spin(7) structure

In this section we describe the torsion forms of a Spin(7) structures by means of the
spinor defining the structure. That is, we determine the projections of *d2 to the
spaces Qg (M) and Qis (M). Note that the projection is given by pg C QM) —
QM) p3(B) = —3 % (B A Q) A Q).

For that purpose, denote by D the Dirac operator on X (M). The isomorphism
(2.1) ensures the existence of a unique vector field V such that

Dn=Vn. 5.1)

Then, the 3-form y3(X, Y, Z) = (Dn, (X x Y x Z)n) = ((V)Q)(X, Y, Z) obvi-
ously lies in Qg(M).

Proposition 5.1. Using the previous notation, we have:
xdQ = 2(yg — 12alt(c ™' V).

Proof. Since V is a metric connection on the spinor bundle and acts as a derivation
for the Clifford product, we get:

V)W, X, Y, Z)

1

= 5(((—WXYZ +WZYX)Vrn,n) + ((—WXYZ 4+ WZY X)n, VTn))
1

e 5((—ZYXW + XYZW —WXYZ +WZYX)n, Vrn).
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Take orthonormal vectors X, Y, Z and an orthonormal oriented basis (Xo, ... X7)
such that Xo = X, X; = Y and X, = Z. Then,

6Q(X,Y, 72)
7 7
==Y Vx,Q(X;, X, Y, Z) =2 (XYZn, XiVx,n)
i=3 i=3

==2(Dn, (X XY x Z)n) +2(XYZn, XVxn+YVyn+ ZVzn)
=-2((Dn, X xY x Z)n) — (YZn, Vxn) + (XZn, Vyn) — (XYn, Vzn)

= —2((Dn, (X x Y x Z)n) — 12alt(c”'V)(X, Y, Z)).
The third equality follows from ZZ=3 XiVx,n = Dn — z‘3=1 X;Vx.n. Note

that the coefficient 12 comes from the normalization of alt and the expression
T (Vxm (X, ¥) = 3(XY +g(X, Y))n. Vxn). O

We are going to decompose *d €2 according to the previous splitting.

Proposition 5.2. The 3-form ys3 = 3y — 84 alt(c~'Vn) lies in QiS(M) and

dQ — V4 —Y
7 8 7 8

Moreover, the Lee form is given by 0 = %V*, where V is defined as in the equation
(5.1).

Proof. Take a unitary vector X and a Cayley frame (eg, ey, ..., e7) such that X =
¢q. Then:

(vs A 2)(er, ..., e7)

=(Dn, (e123 — €145 — €167 — €246 + €257 — €347 — €356)1)
=7(Dn, eon) = TV*(X),

(12alt(c™'Vn) A Q) (e, ..., e7)

=6(V, 1, e23n) — &(Ve 1, easn) — &(Ven, e67m)
— &(Ve,n, easn) + &(Veyn, es1m) — S (Veyn, ea7n)
— 6(Veyn, esen) = 3(Dn, eon) = 3V*(X).

We denoted by & the cyclic sums in the indices involved. To arrange the last term
observe that each index appears 3 times and:

S (Ve n, e3n) =(e1Ven + e2Ve,n + €3Veyn, e1231)
=(e1 Ve n + eaVe,n + e3Veyn, eon),

—& (Ve n, easn) =(e1Ve,n + €aVe,n + e5Vesn, —e145m)
=(e1Ve n + e4Ve,n + e5Vesn, eon),
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and so on. Note that we have used, as in the proof of Lemma 3.1, that ej23n =

€l = —e€1457].
Since Cayley bases are positively oriented, we get *(V*) = %(yg AQ) =

4alt(c='Vn), so that y4g as defined above lies in Qj4(M). Finally, taking into
account the formula for xd €2 in Proposition 5.1, we get xdQ2 = %mg + %yg.
To compute the Lee form we have used that the projection of d<2 to Qg(M ) is

- % xyg and the formula i (X)Q2 = *(X™*AQ), which shall be checked by considering
a Cayley frame and X = ¢p. O

6. The characteristic connection

The characteristic connection of a Spin(7) structure is a connection V¢ with totally
skew-symmetric torsion such that V¢Q = 0. The computations above allow us to
prove the existence and uniqueness of the characteristic connection for manifolds
with a Spin(7) structure. This is a well known result which appears in [12, Theorem
1.1]. Our proof is based on the argument of Theorem 3.1 in [10] and uses the
notation of Section 2.3.

Proposition 6.1. Given a Spin(7) structure, there exists a unique characteristic
connection whose torsion T € Q3(M) is given by:

7
T=—3Q—2*(O A9

Proof. A connection with skew-symetric torsion T € Q3(M) is given by VxY +
IT(X.Y,")?, where T(X,Y, -)* is the vector field such that (T(X,Y, )*)*=T(X.Y,").
Thus, the lift to the spinor bundle is Vx¢ + %i (X)To.

Since the condition V2 = 0 is equivalent to Vn = 0 and the kernel of the
Clifford product by n on A>T*M is A%l T*M , the set of characteristic connections

is isomorphic to the set of 3-forms T € Q3 (M) such that
—4c7'Vxn = i(X)Ty = p2G(X)T), VX € X(M).
The last equality may be rewritten as —4¢~!Vy = ©O(T). From the definition of

y4s given in Proposition 5.2 we have: —4E(c~1Vn) = —12alt(c"'Vn) = L(yus —
3yg). Finally, taking into account the eigenvalues of E o ®, we get:

T_1(2 4 ) = *d 2 4 = —6Q ! 06 AQ)
== - = = % — =y =— — =k .
7 Y48 33/8 3)/8 6

To obtain the second equality we have used the formula for d€2 from Lemma 5.2.
To check the last one, note that yg = i(V)Q = x(V* A Q) = % * 0 A Q. ]

Remark 6.2. The Spin(7) structure is balanced if and only if T € Qig (M) and
locally conformally parallel if and only if T € Qg (M).
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Remark 6.3. The equation for balanced structures given in Theorem 4.8 can be
deduced from [12, Theorem 9.1], which states that the Spin(7) structure determined

by 1 on a Riemannian manifold (M, g) is balanced for the metric egf g if and only
if it verifies the following equations:

vip =0, (6.1)

1
(df = 5Tn =0, (6.2)

where VT is the g-metric connection with totally skew-symmetric torsion T. That
is, VI = Vxop + %i(X)Tqb for ¢ € X (M). This connection has an associated
Dirac operator, which is related to D:

7 | 7 ;
T, T 4 _ 1 . o B 3
D¢ = ge,vm =D+ i§:0el A(i(e)T¢ = Dy + To.

Assuming [12, Theorem 9.1], if we suppose that the structure is balanced for the
metric g, equations (6.1) and (6.2) imply that 0 = DTy = Dn + %Tn = Dn. Con-
versely if we suppose that Dn = 0 and we choose T the torsion of the characteristic
connection, we have obviously that VIn = 0 and that 0 = DTy = Dn + %Tn,
so that Tyn = 0. According to Proposition 4.7, T € Qig (M) so that structure is
balanced.

7. G, distributions

In this section we define the notion of a G; distribution on a Spin(7) manifold in
terms of spinors and we study the torsion of the structure with respect to a suitable
connection on the distribution. Then we relate the Spin(7) structure of the ambient
manifold with the G, structure of the distribution. This approach enables us to study
G, structures on submanifolds of Spin(7) manifolds, S'-principal fibre bundles over
G; manifolds and warped products of manifolds admitting a G, structure with R.
Our analysis is very similar to the description of G, structures from a spinorial
viewpoint done in [1], which we briefly recall.

A 7-dimensional Riemannian manifold (Q, g) can be equipped with a Gj
structure if it is spin and its spinor bundle X (Q) admits a unit section 1. A cross
product is then constructed from the spinor and is determined by a 3-form W. De-
note by V€ both the Levi-Civita connection of the manifold and its lift to the spinor
bundle; an endomorphism S of T Q is defined by the condition:

vZn=SX)n.

The intrinsic torsion is —%i(S)lIJ [1, Proposition 4.4], so that pure types of G>
structures are given by the G; irreducible components of End(7 Q). It is known
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that End(R7) = x1 ® x2 ® x3 ® x4, where y; are irreducible G» representations,
defined by:

x1 = (1d),

X2 = 92,

x3 = Symg(R7),
xa={A:RT>R:AX)=X xS, SeR’},

where Sym(z) (R7) denotes the set of symmetric and traceless endomorphisms. The
dimensions of the previous spaces are 1, 14, 27 and 7 respectively.

If we denote by Rp a Gy reduction of the SO(7) principal bundle P(Q) and
define x;(Q) = Rg Xg, Xi, then the pure classes of Gy structures are determined
by the condition S € x;(Q). For instance, nearly parallel G, structures verify
S € x1(Q), almost parallel or calibrated are those with S € x2(Q), and locally
conformally calibrated are such that S € x4(Q). Indeed in the nearly parallel case
it holds that S(X) = A¢X for some Ay € R. Moreover mixed classes are also
relevant, for instance cocalibrated structures verify S € x1(Q) ® x3(Q).

Taking this into account, we define G; structures on distributions and charac-
terise the existence of such structures.

Definition 7.1. Let (M, g) be an oriented 8-dimensional Riemannian manifold and
let D be a cooriented distribution of codimension 1. We say that D has a G, struc-
ture if the principal SO(7) bundle P (D) is spin and the spinor bundle ¥ (D) admits
a unit section.

Lemma 7.2. Consider an oriented 8-dimensional Riemannian manifold (M ,g) and
a cooriented distribution D of codimension 1. Take a unit vector field N perpendic-
ular to D such that TM = (N) @& D as oriented bundles. The manifold M is spin if
and only if the bundle P (D) is spin. In this case, the spinorial bundles are related
by ©(D) = (M) and it holds

X-pp=NX¢, ifXeD, ¢ec2(D), (7.1)

where we have suppressed the symbol -y to denote the Clifford product on M.
Therefore M has a Spin(7) structure if and only if D has a G, structure.

Proof. The bundle P (D) is a reduction of P (M) because of the following inclusion:
i: PD)— PM), Xi,....,X7)—> (N,X1,...,X7).

Suppose that P(D) is spin and denote the spin bllndle by D I3(D) — P(D).
Then, we can define the principal Spin(8) bundle P(M) = P (D) Xspin(7) Spin(8)
and the map:

mm: P(M) — P(M), [F,$]— Ad(@)((mp(F))),
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which is a double covering and Ad-equivariant. Therefore, M is spin. Conversely,
if M is spin then the pullback i*(P(M)) is the spin bundle of P (D).

Moreover, the irreducible 8-dimensional representation of Cl; which maps the
volume form to the identity can be constructed from the composition

Cl; - cly & GL(AY),

where the first map is induced by the embedding R7 — Clg, v — egv, denoting by
(e, . .., e7) the canonical basis of R8.

Therefore, the spinor bundle X (D) coincides with ¥ (M)t and Clifford
products of vectors and spinors are related by the formula (7.1). O

From now on we assume that the manifold (M, g) has a Spin(7) structure €2,
constructed from a unit section 7 of the spinor bundle £ (M)™, as in Proposition 2 4.
We equip M with a distribution D as in Lemma 7.2. We denote by Q¥ (D) the space
of smooth sections of A¥D*.

Remarks 7.3. In this situation, we have the following:

1. If B € Q?%(D) and ¢ € (D) then B -p ¢ = B;
2. There is an orthogonal decomposition ¥ (D) = (n) & (D -p n);
3. The section n defines a cross product on D by means of:

(X x V)n=(X"AY"n = (XY +g(X, ),

which is determined by Wp(X, Y, Z) = (Xn, (Y x Z)n) = —(n, XY Zn);
4. The cross product is determined by Wp = i (N)S2. Therefore, using that xQ =
Qweget 2 =N*"AVp+ xpWp.

We equip D with a suitable connection which is determined by the covariant deriva-
tive of the ambient manifold.

Definition 7.4. The covariant derivative of D induced by M, VP is given by the
expression:

v¥y = VPY + ¢(T(X),Y)N, X,Y eD,

where 7 € End(D) is given by: 2¢g(7(X),Y) = —N(g(X,Y)) — g([X,N],Y) —
g([Y,N], X)+ g([X, Y], N).

We will decompose 7 into its symmetric and skew-symmetric parts, which
we call W and L respectively. The connection V? is a metric connection and the
tensor £ = — %d N* measures the lack of integrability of the distribution.

We will also denote by V7 the lift of this connection to the spinor bundle
3 (D). This connection is metric with respect to (-, -) and behaves as a derivation
with respect to the Clifford product. Hence, VP75 € (1)L, and there is an endo-
morphism of D that we denote by Sp such that V}?n = Sp(X)n. Let us define
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xi(D) = Rp x x;, where Rp is the G reduction of P (D) determined by Wp, we
have a splitting of End(D) and we can decompose S according to it:

Sp(X) =AId+ Sy + S35 + S4,

where . € C®(M), S € x2(D), S3 € x3(D), S4 € xa(D),and let S € X(D) be
such that S4(X) = X x §.

We can relate these components with the Spin(7) structure defined on M. First
of all, since g(Vx N, Y) = —g(VxY, N) we get that the connection VM at = (M)*
in the direction of D is given by:

1
Vin=V¥n— S NT(X)n = NAXn.

where 4 = Sp — %’T. We can decompose £ and W according to the splitting of
End(D) into irreducible parts and then decompose A:

1. L = Ly+ L4, where Ly € x2(D), Ly € x4(D) and let L € X(D) such that
Liy(X)=XXxL;

2. W = hld + W3, where h € C®°(M), W3 € x3(D);

3. A= uld+ Ay + A3 + A4, where u = A — %,Ag =5 - %Lz,A3 =85 — %W3,
Ay = 84 — %L4. We will also denote A = § — %L.

We are going to compute *d <2 in terms of the previous endomorphisms and V}\?n.
Our first lemma is deduced from [1, Theorems 4.6.4.8].

Lemma 7.5. Let (X1, ..., X7) be an orthonormal local frame of D. Then

7
> XiA(Xi)n = ~Tun — 6N An.
i=1
Proof. We will split the endomorphism A into its G, irreducible components and
then compute each term separately. It is obvious that 21721 XiuXin = —Tun.
Moreover,

7 7
Do Xi(Xix A=) Xi(XiNA—g(Xi, AAN)y = —6N A,

i=1 i=1

Finally consider the Gy-equivariant map, m: D ® D — (D), m(X,Y) = XYn.
By dimensional reasons, its kernel must be x2(D) @ x3(D). Therefore, if k € {2, 3}

we have that:
7 7
Y XiA(Xin=m (Z (Ak>i,-xl-x,~> =0,

i=1 i=1

where we have denoted (Ay);; the entries of the matrix Ay with respect to the basis
Xy, ..., X7). O
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Remarks 7.6.

1. Since V}\‘,/I n is perpendicular to n we can take U € X(D) such that V}\‘,/I n =
—NUn.
In order to compute V%n we may take F = (Xo, X1,..., X7) a local or-

thonormal frame of M such that N = Xj, a lifting F € I;(M ) and write
n(p) = [F, s(p)]. With this notation we have:

Mo 1
Ve =lF,ds(Xol+5 Y g(Vx,Xi, X)XiXjn (72)

0<i<j<7

~ 1
=[F,ds(Xo)] + 3 (XOVXOXO + Z g(Vx, Xi, Xj)Xin) n.

1<i<j<7

(7.3)

Then, U depends on the local information of the section and Vx, X;;
2. The Dirac operator of M is

,
DMy =Un+ ) XiNAXin = (U —6A+TuN)n.

i=1
Lemma 7.7. Define the forms By € Q2(D) and B3 € Q3 (D) by:
Ba(X,Y) = g(A2(X),Y), PB(X,Y,Z)= alti(A3)(")¥p)(X, Y, Z).
Then

1. N* Ai(N)(12alt(c™'V)) = i(U — 2A)(N* A Wp) —2N* A Bo;
2. 12alt(c™'Vn)|g = 3i(uN — AR + 3Bs.

Proof. The first equality is a consequence of the symmetric or skew-symmetric
properties of each factor:
12alt(c™' V) (N, X,Y) = — (XY, NUn) — (NY,NAX)n)+(NYn,NAX)n)
=—i(U)¥p(X,Y) —2(Yn, (A2(X) + X x A)n)
=(i(U —=2A)(N* A Wp) —2N* A B2) (N, X, Y).
To check the second one, note that 12 alt(c~!' V)| o = 3alt(i(A(-))¥p). We com-
pute separately each term in the decomposition of A. It is evident that
3alt(@ (uld)¥p)X,Y,Z)=3u¥p(X,Y,Z) and 3 alt(i (A3(-))¥p)= 383. Moreover,

alt(i (A2(-))¥p) = 0 because Az € x2(Q). Finally, if X, Y and Z are orthonormal
vectors in T Q, then:

i(As(X)Wp(Y, Z) = (X x An, Y x Zn) = (X An, YZn) = —(An, (X x Y x Z)1).

Therefore, 3 alt(i (A4()Yp)(X, Y, Z) = —3(An, X x Y X Zn). ]
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From Lemmas 7.5 and 7.7 and the decomposition of *d €2 obtained in Proposi-
tion 5.2 we conclude:
Proposition 7.8. Let U € X(D) such that V% n = —NUn and define the forms
B2 € Q*(D) and B3 € Q3(D) by:

Br(X,Y) = g(A2(X),Y), B3(X.,Y,Z) = alt(i(A3)()¥p)(X, Y, Z).

Then, the pure components of xdS2 in terms of the Gy structure are:
2
(xd2)ag = 7 (—4i(A +U)N* AW +3i(A+U) *p \IID) +4N* A By — 683,

8
(xdQ)g = 5i(U —6A+TuN)(N* AWp + xpWp).

7.1. Hypersurfaces

Consider an 8-dimensional Spin(7) manifold (M, g), whose Spin(7) form is con-
structed from a unit section 1 of the spinor bundle X (M)™, as in Definition (2.4).
Let Q be an oriented hypersurface and take a unit vector field N such that TM =
(N) @ T Q as oriented vector bundles.

The tubular neighbourhood theorem guarantees the existence of a cooriented
distribution D defined on a neighbourhood O of Q such that D|p = T Q. The
coorientation is determined by a unit extension of the normal vector field that we
also denote by N. Both D and Q have G, structures determined by the spinor #;
we are going to relate them using Proposition 7.8 in the manifold O.

Note that the Levi-Civita connection of the hypersurface Q is VD|Q. More-
over, L|p = 0 and W] is the Weingarten operator. Therefore, the restriction of
Sp at Q is the endomorphism S of the submanifold Q. Decompose S|p and W]
with respect to the Gy splitting of End(7" Q):

1. S=Md+ S + S3+ S4;
2. Wlp = HId + W3,

where L € C®(M), $2 € x2(0), S3, W3 € x3(Q), S4 € x4(Q) and H € C*(Q)
is the mean curvature. We will also denote by S the vector field on Q such that
S4(X) =X x S.

Corollary 79. Let U € X(Q) such that V¥nlg = —NUn and ¥y = i(N)Q.
Define the forms B € Q*(Q) and B3 € Q3(Q) by:

. 1
Ba(X,Y) =g(52(X),Y), B3(X,Y,Z) = alt@i((S$3 — §W3)(‘))"IJD)(X, Y. 7).
Then, the pure components of xdS2 in terms of the Gy structure are:

2
(xdQag = 5 (—4i(S+UN* AW +3i(S+U) xg Wo) +4N* Ni* By — 63,

8 1
(+d Qs = =i (U —6S+7(h — EH)N) (N* AWg +%0Wp).
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Remark 7.10. Note that the condition Vyn|g = —NUn does not depend on the
extension of the vectors. Moreover, we can compute U taking into account equation
(7.2). The terms involved are extrinsic and not encoded in S and W.

Therefore, the Spin(7) type of the ambient manifold provides relations between
the G» type of the hypersurface, the vector U and the Weingarten operator. Before
stating the result, we recall that a hypersurface is said to be totally geodesic if
W = 0, totally umbilic if W3 = 0 and minimal if H = 0.

Theorem 7.11. Let (M, g) be a Riemannian manifold endowed with a Spin(7)
structure determined by a spinor 1. Let Q be an oriented hypersurface with normal
vector N and let U € X(Q) be such that Vyn|g = —NUn.

1. If M has a parallel Spin(7) structure, then Q has a cocalibrated G, structure.
Moreover:

1.1 S =0 ifand only if Q is totally geodesic;
12 S € x1(Q) if and only if Q is totally umbilic;
1.3 S € x3(Q) if and only if Q is a minimal hypersurface;

2. If M has a locally conformally parallel Spin(7) structure, then S € x1(Q) ®
D x3(0) @ xa(Q). Indeed:

2.1 S € x1(Q) ifand only if U = 0 and Q is totally umbilic,
22 S e x1(Q) ® x4(Q) if and only if Q is totally umbilic;
3. If M has a balanced Spin(7) structure, then:
3.1 S € x2(0) @ x3(Q) if and only if U = 0 and Q is a minimal hypersurface;

32 S e x1(Q) @ x2(Q) @ x3(Q) ifand only if U = 0;
33 S € x2(0) @ x3(Q) ® x4(Q) if and only if Q is a minimal hypersurface.

Proof. The parallel case follows from the equalities U = S =0, S = 0,24 = H
and 253 = W3. The locally conformally parallel case follows from the equalities
U= -S,5 =0and2S; = W3, which imply that S € x1(Q) @ x2(0Q) ® x3(Q).
Finally the balanced case follows from U = 65 and 2A = 7H. O

7.2. Principal bundles over a G manifold
Let Q be a G, manifold andlet 7: M — QbeaG = Ror G = S! principal
bundle over Q; identify its Lie algebra g with R.

Define the vertical field N(p) = - ‘ (pexp(t)). Aconnectionw: TM — g
defines a horizontal distribution . Con51der the metric on M such that:

1. The map dm: 'H,, — Tx(p)Q is an isometry;
2. The vector N (p) is unitary and perpendicular to H .

The projection dm induce~s amap p: P(H) = P(Q) so ~that the pullback to IS(Q)
defines a spin structure P(H) on P(H). The map p: P(H) — P(Q), which is
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canonically defined, has the property that p(¢F) = ¢ p(F) if ¢ € Spin(8), inducing
a map between the spinorial bundles, that we denote by p. Note that this map yields
isomorphisms X(H), — X(Q)x(p). Moreover, let X € T Q and denote by X hjts
horizontal lift, then p(X” -5 ¢) = X p(¢). Therefore, a section 77: Q — =(Q)
allows us to define a section n: M — X (H) by means of the expression p(n) = 7.
Denote by W the G> form on Q, then ¥p = 7*Wg.

Furthermore, one can check that Vz(ih Yh = (V)((2 Y)". Hence, if we take S €

End(Q) such that VX i = S(X)n, we get that the endomorphism of the distribution
Sp is the lifting of S, that is:

Viin=SX)".

Therefore the distribution H and the manifold Q have the same type of Gy struc-
ture. In order to classify the Spin(7) structure on M, denote the curvature of the
connection w by:

LX) =[X"Y"1-1Xx,Y" e (N), X,YeTOQ.

Since £(X, Y) € (N) we also denote by £ the 2-form that we obtain contracting the
tensor with the metric. As a skew-symmetric endomorphism, we can decompose
£ = Ly+ L4y where L4(X) = X x L for some vector field L € X(Q).

Corollary 7.12. Suppose that V}?ﬁ =S8(X)-gnwithS(X) =Ald+ S + S3+ S4
where A € C*(Q), 2 € x2(0), $3 € x3(Q), S4 € x4(Q) and let S € X(Q) be
such that S4(X) = X x S. Define > € Q*(Q) and B3 € Q3(Q) by:

l- .
BaX,Y) =g (Sz(X) - ZLz(X), Y) , B3(X, Y, Z) = alti ($3(:) Vo) (X, Y, Z).
The pure components of xdS2 in terms of the Gy structure are:

2 1 1-
(dSag = <—4i(sh + ELh)zv* AW +3i(S" + ELh)yf“(*QqJQ))
—AN* AT By + 677 B3,

8 [15-
(xdQ)g = S (ILh —6S" + 7AN) (N* AT*Wg + ¥ (%0 Wp)).

Proof. The result follows immediately from Proposition 7.8 once we check that
W =0,g(L(X),Y) = in*L(X,Y),and U = 3 L".

First of all, since the connection @ is left-invariant we have that [X", N] = 0
if X € X(Q). Thus, WW = 0. Moreover, L(X")(Y") = 2,EZ(X Y). Furthermore, let
F = (X1, ..., X7) be alocal frame of H which lifts some local frame of T Q. Take
alift F € P(H) and write n(p) = [F, s(p)]. We denote Xo = N and compute U
using the formula (7.2).
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By definition, if 7j((p)) = [H(F(p)). 5((p))] then s(p) = 5(zr(p)) so that
ds,(N) = 0. Besides, according to Koszul formulas we have:

VNN =0,

1 1
g(VyX;, X)) = _Eg([xi, X;,N) = _Eg(N’ Lldn(X;),dn(X}))).

Therefore, if we define y; (X, Y) = g(l_,i(X), Y),fori € {2, 4}, then:

1 1 3
Vyn = —-1*8n = ——n*yn = —=NL",
N =gt = — oty = = NL'n

where we have used that 7*y,n = 0 because g, C Spin(7) = A%l and w*yy =

—i(N)i (L") so that T yn = 3Nl_,hn, as we noted in the proof of Lemma 3.1.
O

7.3. Warped products

We analyze Spin(7) structures on warped products of a G, manifold with R. Recall
that a warped product of two Riemannian manifolds (X, g1) and (X2, g2) is (X1 X
X, g1 + fi1g2) where f1: X; — R is a smooth function. Therefore, we have to
distinguish two cases.

7.3.1.

Consider a G, manifold (Q, g) and a smooth function f: R — R. Define the
Riemannian manifold (M = Q x R, ¢2/ g + dr?). This is the so-called spin cone.

The distribution D = T Q obviously admits a G, structure. The spinor bundle
is given by Z(M)* = (T Q x R) = X(Q) x R and Clifford products are related
by (X-g¢,t) = e_fX-D(qb, t) = e_f%X&p, t)if X € T Q. In the last expression,
we have suppressed the symbol - to denote the Clifford product on M.

A unit section 7 is constructed from a section 7: Q@ — X(Q) by defining
n: M — E(D), n(x,t) = (n(x), ). If we denote by Wy the G, form on Q, then
Yp = e3fn*\IJQ and xp(Up) = ¥/ *0 (Vo). In addition, since V?Y = V%Y
when X, Y € X(Q), we have that VPy = ¢~/ S(X) -p n and VZ7 = S(X)7. That
is,Sp = e /8.

Corollary 7.13. Suppose that V27 = S(X) - 7 with S(X) = Ald+ S2+ S3 + 4
where A € C*(Q), $2 € x2(Q), S3 € x3(Q), S4 € x4(Q). Let S € X(Q) be such
that S4(X) = X x S. Denote by W the Ga-form on Q and define B, € Qz(Q) and

B3 € Q3(Q) by:

(X, Y) =g (52(X),Y), B3(X,Y,Z)=altl@(S3()¥V)(X.Y, Z).
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The pure components of xdS2 in terms of the Gy structure are:
(+dQss = % (—4e2f i(S)dt AT Wy + 33 i(S)n*(*Qq/Q))
+del dt* A ¥ By — 62 B,
(xdQ)g = §i<—6e_fS+7<ke_f+%f> %) @ dt A" Wo+e* T (%o Wp)).
Proof. The result follows immediately from Proposition 7.8 once we check that
W=—f'Id,L=0and U = 0.

Since the distribution D is integrable, we have that £ = 0. Take an orthonor-
mal frame of TQ, (X1, ..., X7) and note that W(X;, X;) = —f’ezf(Sij so that

W = — f’. Moreover, using the Koszul formulas we get:
9 —f
Vo —=0=V, (e’ X;).
ar Ot i
Therefore, using formula (7.2) we conclude that V an = 0. O
ot
7.3.2.

Consider a G manifold (Q, g) and a smooth function f: Q — R. Define the
Riemannian manifold (M = Q x R, g + ¢*/dt?).

The distribution D = T Q obviously admits a G, structure. The spinor bundle
is given by Z(M)T = Z(TQ x R) = £(Q) x R and the Clifford products are
related by (X -9 ¢,1) = X -p (¢,1) = e‘f%X(¢,t) if X € TQ. We have
suppressed again the symbol - to denote the Clifford product on M.

A unit section 7 is constructed from a section 7: Q@ — X(Q) by defining
n: M — X(D), n(x,t) = (n(x), t). If we denote by Wy the G> form on Q, then
Vp = 7*W¥g and *p(Wp) = *o(Wp). In addition, since V)I()Y = VgY when

X,Y € X(Q) , if we take S € End(T Q) with Vgﬁ =S(X)7,then Sp = S.

Corollary 7.14. Suppose that V)?ﬁ =S(X)-onwithS(X) =Ald+ S + S3+ S4
where A € C*°(Q), $2 € x2(0), S3 € x3(0), S4 € x4(Q0). Let S € X(Q) be such
that S4(X) = X x §. Denote by V g the Gy-form on Q and define B € Q%(0) and

B3 € Q3(Q) by:
B(X,Y) =g (52(X),Y), B(X,Y,Z)=alti@(S3(:)Vo)(X,Y, Z).

The pure components of xdS2 in terms of the Gy structure are:
2 1

(xd)48 = 5 (—41’ <S+§ grad(f)) eldt A T W + 3i S+grad(f)) n*(*Q\IJQ))
+deldt A* By — 61 B3,

8, 1 _fa f * *
(xd Qg = 5i | 5 grad(f) =65 +The™/ = ) (e dt A" Wg + 77 (x0 Vo).
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Proof. The result follows immediatly from Proposition 7.8 once we check that
W=0,L=0and U = %grad(f).

Since the distribution D is integrable, we have that £ = 0. Take an orthonor-
mal frame of 7 Q, (X1, ..., X7) and note that W(X;, X ;) = 0. Moreover, using
the Koszul formulas we get:

g(Veff%Xi,Xj) =0,
_ ;0
g (vefaate f&? Xl) = _Xl(f)

Therefore, using formula (7.2) we conclude that Vyn=—3e~/ () grad(f)n. O

8. Spin(7) structures on quasi Abelian Lie algebras

As an application of the previous section, we are going to study Spin(7) structures
on quasi Abelian Lie algebras. The geometric setting will be that of a simply con-
nected Lie group with an invariant Spin(7) structure, endowed with an integrable
distribution which inherits a G; structure. The integral submanifolds of the distribu-
tion are actually flat, so that the G, distribution is parallel and these submanifolds
have non-trivial Weingarten operators. In some cases, finding a lattice in the Lie
group will allow us to give compact examples.
First of all, let us recall the following definition:

Definition 8.1. A Lie algebra g is called quasi Abelian if it contains a codimension
1 Abelian ideal b.

The information of g is then encoded in ad (x) for any vector x transversal to f.
The following result shows that  is unique in g with exception of the Lie algebras
R" and L3 @ R"3, where Lj is the Lie algebra of the 3-dimensional Heisenberg
group, which is generated by x,y,z with relations [x, y] = zand [x, z] = [y, z] = 0.

Lemma 8.2. Let g be a n-dimensional quasi Abelian Lie algebra withn >3 . If g
is not isomorphic to R" or L3 @ R" 3, then it has a unique codimension 1 Abelian
ideal. Moreover, codimension 1 Abelian ideals on L3 @ R"3 are parametrized by

RP!.

Proof. Suppose that g is not isomorphic to R” and let ) be a codimension 1 Abelian
ideal with a transversal vector x. Let §’ be a codimension 1 Abelian ideal different
fromb. If u € hissuchthat x +u € h’ andv € h N, then0 = [x +u,v] =
ad(x)(v). Since h Nh’ is (n — 2)-dimensional and g is not Abelian we conclude
that h N h" = ker(ad(x)|y) and ad(x)(h) = (z) for some z € h. Take y € b with
[x, y] = z and observe that z € [g,g] C b/, thatis, z € h N and [x, z] = 0.
Therefore, g is isomorphic to Lz @ R"~3.

Moreover, from the discussion above we get that b’ = (v, z) ®R> for some v €
(x, y). Conversely, all the subspaces of the previous form are actually codimension
1 Abelian ideals. Therefore, they are parametrized by RP!. O
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An invariant Spin(7) structure on a Lie group is determined by the choice
of a Spin(7) form €2, which is in turn determined by a direction of the spinorial
space AT,

Define the set Q.4 with elements (g, b, g, v, Q) where g is a non-trivial quasi
Abelian Lie algebra with a marked codimension 1 Abelian ideal b, g is a metric
on g, v is a volume form on g and €2 is a Spin(7) structure on (g, g, vg). We
will say that ¢": (g, b, g, ve, Q) — (¢, b/, &', ver, Q') is an isomorphism if ¢ is an
isomorphism of Lie algebras such that ¢'(h) = b’, (¢)*g" = g, ¢*vy = vg and
*Q = Q.

Lemma 8.3. The set QA of isomorphisms classes of QA is given by:
QA = ((End(R") - (0)) x P(A%)) /O(D),

where O(7) acts via

¢ (€. [n) = det(p)p o Eo g™, [p(@)n)), (8.1)
where @ is a lifting to Spin(8) of the unique ¢’ € SO(8) such that ¢'|g7 = ¢.

Proof. A map (End(R7) — {0}) x P(A1) — QA can be defined as follows. Take
(€, 1) and define the Lie structure on R3 with oriented basis (e, . . ., e7) such that
R’7 = (e, ..., e7) is a maximal Abelian ideal and £ = ad(ep)|p7. We will en-
dow this algebra with the canonical metric, the standard volume form and the spin
structure determined by 7.

It is obvious that a representative of each element of Q.A can be chosen to lie
in the image of our map. Moreover, if two structures given by (£, 1) and (&', )
are isomorphic via ¢’, we have the following:

1. ¢'(eg) = tep and ¢ = ¢'|p7 € O(7), since ¢’ preserves the metric and the
orientation;

2. Denote by ¢ any lifting of ¢’ to Spin(8). Since (¢")*Q’ = , we have that
Stab(2) = (¢')~! o Stab(') o (¢'), thus Stab(n) = ¢! Stab(n')@. But
Stab(o(@)~'n") = ¢! Stab(n)@, so that n = £p(@)~'n';

3. 9o & =det(p)E' o g, since ¢ is an isomorphism of Lie algebras. 0

From now on we denote by (R, &, [n] to (g,h,g,v, Q) € OA where g is the
Lie algebra R® with maximal Abelian ideal h = R7, ad(eq) = &, g is the canonical
metric, v is the canonical volume form and the Spin(7) form €2 is determined by [].

Remark 8.4. To obtain an analogue of Lemma 8.3, suppressing the condition
¢’ (h) = b/ in the definition of isomorphism, we have to treat separatedly the case of
the Lie algebra L3 & IR5. For this purpose, define £(x) = e} (x)ez and observe that
Lemmas 8.2 and 8.3 allow us to suppose that any isomorphism of structures with un-
derlying Lie algebra L3 R is represented by ¢’ : (R3, 1€, [n]) — (R3, V€, ',
for some A, X" # 0.
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The set ¢’ (R7) is a codimension 1 Abelian ideal, hence Lemma 8.2 guarantees
that ¢’ (eg) = cos(f)ep + sin()e;. Denote R® = (es, ..., e7) and let v, v’ € R®
be such that ¢'(v) = —usin®@)ep + wcos(@)e; + v'. Then, 0 = @'[eg, v] =
[cos(8)eg + sin(B)er, —u sin(B)eg + cos(@)ey + v'] = ur'es. Therefore u = 0,
R is ¢/-invariant and ¢’(e;) = F sin(#)eg % cos(6)e;.

Denote by ¢; the restriction of ¢’ to (eg, e1) and note that: Ag'(er) =
¢'len, e1] = [¢(e0), ¢'(e1)] = det(p)Nes. Hence ¢'(e2) = det(p1)%es and
|A| = |A’|. Then, ¢’ is determined by ¢; and ¢ = ¢'|gs, where R = (e3, ..., e7),
under the conditions % det(¢2) = 1 and ¢/ (e2) = det(¢1) % es.

The condition over the spinor is obviously n” = +p(@)n, where ¢ is any lifting
of ¢’ to Spin(8).

In the following result we describe the action which appears in Lemma 8.3.
Lemma 8.5. Under the action of O(7) on End(R7),
0 -E=det(@)poEogp!, (8.2)
the sets (Id), Sym% Ry and A’R7 are parametrized respectively by:

1. [0, 00);

7
2. {()\'17 e 7)"7): )\'l E)"]+17 Z)"iZO}/N!Where ()"17 . 7)"7) ~ (_)"77 . "_)\'1);
j=1
3. {1, A2, 23): 0 < Ay < Ap < A3}

Proof. The first claim is obvious and the second follows from the fact that each
symmetric matrix has an oriented orthonormal basis of ordered eigenvectors. Note
also that —Id - diag(A1, ..., A7) = diag(—X7, ..., —A1), hence (A1, ..., A7) is re-
lated to (—A7, ..., —A1).

If £ is a skew-symmetric endomorphism of R” we can find a Hermitian basis in
C’ of eigenvectors and the eigenvalues are of the form (—A3i, —Azi, A1, 0, A1, Aol
A3i) with O < A; < Aj41. Moreover, the real parts of the eigenspaces associated
to —A ;i and A i coincide. Thus, we can find a positive oriented orthonormal basis
(v1, wy, v2, w2, V3, w3, u) of R, such that EW;j) = Ajw; and E(u) = 0. Finally
note that (A1, A2, A3) are invariantly defined in the orbit. O

In Lemma 8.3, the second factor of the product of Q.4 depends on Stab(E)
under the action defined by (8.2) and it is determined by the number of equal eigen-
values. Now we compute the invariants that we defined for G, distributions on R”:

Proposition 8.6. Consider (R3, &, [n]) € QA and decompose £ according to the
G structure induced by n, that is £ = hlId+ E, + E3 + E4, where h € R, Ej € 7,
E3 € x3, E4 € x4 and E4(X) = X X E for some E € R . Define ¥, B3 € AST*R’
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by VW = Qg7 and B3(X, Y, Z) = alt(i(E53(-))V)]. We have:
20 9
(%d )48 = 7 Gi(E)e’ NV — ZI(E) xp7 W ) + 683,
(%dQ)g = — 7E+4heo (" AW + *p7W).

Proof. The result follows immediately from Proposition 7.8 once we check that:
j=—%h,Ay=0,A3=—3E3,A=0and U = —3E.

To obtain this, first observe that V9 = 0 and £ = 0 because b is an Abelian
ideal. From the formula of the Weingarten operator we get: YW = hld + E3. To
compute U we use again equation (7.2), obtaining that:

3
Vyn = EeoEn,

since V,,e0 = 0 because b is an ideal and Ve = (E2 + E4)(e;) if j > 0. ]

In the next result we characterise in terms of Lemma 8.5 the type of Spin(7)
structure on quasi Abelian Lie algebras. For this purpose, recall that a Lie algebra
is called unimodular if the volume form is not exact. In the case of the Lie algebra
(R8, &), it is equivalent to say that & is traceless.

Theorem 8.7. Consider the Lie algebra (R8, £) endowed with the standard metric
and volume form. Denote by 13 and Ey4 the symmetric and skew-symmetric parts
of the endomorphism £ # 0. Then, the Lie algebra admits a Spin(7) structure of

type:

1. parallel, if and only if £13 = 0 and Ey4 is associated to (A1, My, A1 + A2) with
0 <Al <X, A2 >0asinLemma8.5;

2. locally conformally parallel and non-parallel if and only if £13 = hld with
h # 0 and &4 is associated to (A1, Ay, A +A2) with0 < A1 < Ay, as in Lemma
8.5,

3. balanced if and only if it is unimodular and &4 is associated to (M1, A2, A1 +12)
withQ < Ay < Ay, as in Lemma 8.5.

Moreover, if £24 # 0 then it admits a Spin(7) structure of mixed type.

Proof. We identify &4 with a 2-form y which can be written with respect to a
positive oriented orthonormal basis (X1, ..., X7) of R7 as y =MX B 4nX® +
13X67 where 0 < Aj < Ajt1and X = XA X}f.

Due to Proposition 8.6, to prove the first part we have to check that under the
assumption E4 # 0, the existence of a spinor 1 such that yn = 0 is equivalent to
the fact that £y4 is associated to (A1, Az, A1 + Ap) with 0 < A; < A,. This spinor
exists if and only if p7(A1 X2X3 + A2X4X5 + A3XX7) is non-invertible for some
8-dimensional real irreducible representation p7: Cl; — End(R?®) which maps the
volume form v7 to the identity, since they are all equivalent [16, Proposition 5.9].
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It is known that the two distinct irreducible representations of Cl; can be con-
structed from the octonions O [16, page 51]. Specifically, those are the exten-
sion to Cly of the maps pg: R7 — End(R®), po(v)(x) = Ovx, where 6 = +£1
and R7 is viewed as the imaginary part of the octonions. Define the isometry ¢
of R7 which maps X; to e¢; and note that the volume form is fixed by the ex-
tension of ¢ to the Clifford algebra. The extensions of py and ¢ to Cl; are de-
noted in the same way. We check the previous condition using the representation
p1=pgog: Cly > End(R?), taking 0 such that pg(v7) = Id. The determinant of
p7(A X2 X3 4+ A X4 X5 + A3X6X7) is given by:

(A1 4 22 4+ 23020 + A2 — 23)2 (A1 — A2 — A3)2 (01 — A2 + A3)2

Since A1 < Ay < Az, the endomorphism is non-invertible if and only if A3 =
A+ Aq.

Finally, if £24 # 0 then p7(A1 X2X3 + A2 X4 X5 + A3X6X7) # O so that there
is a spinor n such that £ # 0; Proposition 8.6 guarantees that n induces a Spin(7)
structure of mixed type. O

Recall that solvmanifolds are compact quotients G/ I', where G is a simply
connected solvable Lie group and I' is a discrete lattice. This forces the Lie algebra
g of G to be unimodular [20, Lemma 6.2]. Thefore, using Proposition 8.6, we
conclude the following:

Corollary 8.8. There exists no quasi Abelian solvmanifold with an invariant locally
conformally parallel and non-parallel Spin(7) structure.

Of course, a torus is solvmanifold which admits a parallel Spin(7) structure.

Corollary 8.9. If (R8, £) is a quasi Abelian Lie algebra such that & is skew-sym-
metric, then it is flat. In particular, quasi Abelian Lie algebras which admit an
invariant parallel Spin(7) structure are flat.

Proof. Let (R, £) be a quasi Abelian Lie algebra and denote by £13 and &4 the
symmetric and skew-symmetric parts of £. It is straightforward to check that if
i, j > 0 then:

Veeo =0,  Veej =Enulej), Veeo=—E13(e), Veej=gEi3(ei), ej)eo.
From this, one can deduce that if i, j, kK > 0, then the curvature tensor is given by:

R(eq, ej)eg = — (E24 0 E13 + E13 0 Ena)(e),

R(eq, ej)ex = — g(E13(ex), (€ + E24)(e)))eo,

R(ei, ej)eg =0,

R(ei, ej)er =g(&r3(e)), er)Erz(er) — g(&rzei, ex)ér3(e)).

Therefore, if £ is skew-symmetric then the Lie group is flat. O
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Examples

Let g be a quasi Abelian Lie algebra determined by an endomorphism £. Consider
the unique simply connected Lie group G whose Lie algebra is g. The split exact
sequence of Lie algebras 0 — h — g — g/bh — 0 lifts to a split exact sequence
of Lie groups 0 — (R7,4) - G — (G/R’” = R,+) — 0. This splitting
and the conjugation € on G by the elements of (R, 4), provide an isomorphism
(R, +) x¢ (R7, +). Therefore %L:Sd(e(t)) = s&, so that d(e(r)) = exp(t€) =
€(r), using that the exponential of R’ is the identity.

A nilmanifold with a balanced and a locally conformal balanced Spin(7) struc-
ture.

Define the endomorphism of R’

0-1 000 O O
00 -200 0 O
00 000 O O
E=100 00-10 O |,
00 000 -10
00 000 O -1
00 000 O O

and consider the quasi Abelian Lie algebra (R3, £). Note that this is a nilpotent Lie
algebra with (de, de', de?, ..., de’) = (0, %%, 2%, &0, 9,00 97 0), where
dB(X.Y) = —B(X, Y]).

The symmetric part of £ is traceless and the eigenvalues of its skew-symmetric
part are of the form (A1, A2, A1 4+ A). Therefore, Theorem 8.7 guarantees the exis-
tence of an invariant Spin(7) structure of type balanced and other invariant Spin(7)
structure which is mixed. To avoid computing the eigenvalues, one can observe
that if we take the standard form Qg in R®, determined by a spinor 7, it holds that
exe3n = —eqesn = —ege7n and ejean = —eseen. Therefore, if we identify the
skew-symmetric part of £ with the 2-form y = > + %(612 + e 4 0 4 97),
we get that yn = 0. Therefore, the 4-form associated to the structure is the stan-
dard Q.

On some nilpotent Lie algebras, the existence of a lattice is guaranteed by
general theorems [17]. This case is really simple and we can compute it explicitly.
The matrix of the endomorphism exp(¢£) is:

1—t 200 0 0
01 =2t00 0 0
00 1 00 0 O

2 3
0001—t’7—2%
00 001 —t %
00 0 00 1 —¢
00 000 0 1
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If we define I' =6Zeg X (Zey x Zey X - - - X Ze7),then G/ T is a compact manifold
with 71(G/T') =T" which inherits both a balanced and a mixed Spin(7) invariant
structure.

Moreover, we claim that G/T is not diffeomorphic to Q x S! for any 7-
dimensional submanifold Q. Since b1 (G/I") = 2, it is sufficient to prove that
if a nilmanifold G’/ T is diffeomorphic to Q x S! then, b1(Q x S') > 3, or
equivallently, b1(Q) > 2. This assertion turns out to be true because we can
check that Q is homotopically equivalent to a nilmanifold. On the one hand, Q
is an Eilenberg-MacLance space K (1, 71(Q)), because G’ is contractible. On the
other hand a group is isomorphic to a lattice of a nilpotent Lie group if and only
if it is nilpotent, torsion-free and finitely generated [21, Theorem 2.18]. Since
I = 71(G'/T) = m1(Q) x Z, both 71(Q) and I’ verify the conditions listed
above. Thus, there is a nilmanifold Q’ such that 7;(Q’) = m1(Q), which is an
Eilenberg-MacLane space K (1, w1(Q)). Therefore, Q' and Q have the same ho-
motopy type and b1 (Q) = b1(Q’) > 2, because Q' is a nilmanifold.

This nilmanifold has also a stict locally conformally balanced Spin(7) structure
(see Definition 9.1), a structure of mixed type with closed and non-exact Lee form.
According to Theorem 8.6, if we show that there exists a spinor 1 and A # O such
that yn = —Ae’n, then the Lee form of the Spin(7) structure determined by 7 is
we’ for some 1 € R and d(ue’) = 0. Take the octonionic representation o, which
extends to Cl;y the map p: R7 — End(R?®), p(v)(x) = vx where R” is viewed as
the imaginary part of the octonions.

The previous condition is then equivalent to (p(e7)p(y) — Ald)n = 0 for some
n € R thatis, A # 0 is a real eigenvalue of p(e7)(y). Computing this condition
we get:

1. The eigenvalue A4 = V/3 has associated unit eigenvectors
nl = J#]_S(O, —/3,0,—+/3,0,3,0,0) and

2 1L — :
= = v/3,0,3+/3,0,-6,0, 3, 0);

2. The eigenvalue A_ = —+/3 has associated unit eigenvectors
nl = =(0.-+/3,0,+/3,0,3,0,0) and

2 _ 1 _ -
77_—\/%(«/5,0, 343,0,—6,0,3,0).

The 4-form associated to nlr is Qo = ¢® A W 4 %W, where * is the Hodge star of
the canonical metric on R” and:

1 3 3 3
U =¢2A (—§e3 - 2%85 + 2%e7) - 2%83 A (64 + e6)

1 2 3
_ g614 A G +2¢7) — 56156 n g6167
3 1 1
- 2£e23(e5 + ) + X0 4 —e7 4 —eM A (=267 +367)
3 > 2 V3 : V3 >
_ 2356 _ 2,367 _p NI 45T | 5 V7 567
5 5 5 5
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A compact manifold with a parallel and a mixed Spin(7) structure

Take the same spinor and basis of R as the previous example. Consider the skew-
symmetric endomorphism such that £(e;) = e3, E(eq) = es and £(X) = 0 on
(e2, €3, eq, e5>L. The rank of this matrix is two and it is associated to (0, 1, 1).
Therefore, Theorem 8.7 guarantees the existence of a parallel invariant Spin(7)
structure and other invariant Spin(7) structure which is mixed. The matrix of the
endomorphism exp(¢&;) in the previous basis is:

1 0 0 0 0 00
0 cos(t) sin(r) O 0 00
0 —sin(?) cos(r) O 0 00
0 0 0 cos(t) —sin(z) 0 0
0 0 0 sin(t) cos(®) 00
0 0 0 0 0 10
0 0 0 0 0 01

If t € wZ, the previous matrix has integers coefficients so that y = wZep X
(Zey x Zey x - - - x Ze7) is a subgroup. Moreover, G/ I is a compact manifold with
m1(G/T") =T and inherits from G both a parallel invariant Spin(7) structure and a
mixed invariant one.

According to Remark 8.9, this manifold is flat. It is the mapping torus of
exp(r&): X — X, where X is a 7 torus. Indeed, since exp(yn‘,‘)2 = Id, the 8-torus
is a 2-fold connected covering of G/ I".

9. Balanced and locally conformally balanced structures on quasi Abelian
Lie algebras

In this section we focus on invariant structures on quasi Abelian nilpotent Lie alge-
bras. As Corollary 8.8 states, a locally conformally calibrated structure on a quasi
Abelian nilpotent Lie algebra is automatically parallel. Indeed, if a quasi Abelian
nilmanifold (R, £) admits an invariant parallel structure, then & is symmetric so
that (R8, £) is a torus. Therefore, we search for quasi Abelian nilpotent Lie al-
gebras which admit a balanced structure. In addition, we introduce a special type
of mixed structure, which we call locally conformally balanced and we analyze its
existence on quasi Abelian nilpotent Lie algebras.

A Spin(7) structure on a Riemannian manifold is locally conformally balanced
if at each contractible neighbourhood there is a conformal change of the metric
whose associated Spin(7) structure is balanced, that is:

Definition 9.1. A Spin(7) structure is locally conformally balanced if its Lee form
is closed. In addition, if the Lee form is not exact, we say that it is strict locally
conformally balanced.

Of course, balanced and locally conformally calibrated structures are locally

conformally balanced. The interesting case is when the structure is mixed and the
Lee form is not exact.
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Remark 9.2. Our spinorial approach enables us to characterise locally conformally
balanced structures. Let V € T M such that Dn = V7. We are going to compute
the Dirac operator of V' as an element of CI(M), thatis, DV = 21-7:1 X;Vy,V for
an orthonormal local basis (X, ..., X7):

;
DV =" g(Vx,V. XXX,
i,j=0
7
=Y (e(Vx,V. X)) — g(Vx;V. X)) XiX; — Y g(Vx, V. X))
i<j i=0
=2 " dV*(X;, X)X X + div(V).
i<j

Since the Lee form is % V*, the structure is locally conformally balanced if and only
it DV =div(V).

If we focus on invariant structures on unimodular quasi Abelian Lie algebras
(R3, £) the problem of determining whether or not the Lee form of a structure is
homothetic to a unitary 1-form 6 becomes an eigenvalue problem.

As Theorem 8.6 states, the Lee form of the Spin(7) structure defined by 7 is
homothetic to a I-form E* € h* determined by the equation y -pn = 3E -, where
y is the 2-form associated to the skew-symmetric part of £. For a unitary 1-form 6,
the condition y -, n = —A6 -y n for some A # 0 is equivalent to (y — A) -pn =0,
that is, the endomorphism of AT given by ¢ —> 6 - y -5 ¢ has 1 as an eigenvalue.

This argument enables us to prove that if a nilpotent quasi Abelian g Lie alge-
bra is decomposable that is, g = g’ @ (W) as Lie algebras then W is homothetic to
the Lee form of a Spin(7) structure.

Lemma 9.3. Let (R3, &) be a unimodular quasi Abelian Lie algebra. If E24 # 0
and E,4(W) = 0 for some non-zero vector W € R, then (R3, £) admits a spinor n
whose associated Spin(7) structure has Lee form homothetic to W*.

In particular, if a decomposable quasi Abelian Lie algebra g = g’ ® (W) is non-
Abelian and nilpotent, it admits a Spin(7) structure whose Lee form is homothetic
to W*.

Proof. First note that y € A2(W*)* so that (W*y) -p ¢ = (W* A y) -y ¢ for all
¢ € AT. But the product by an element of A3(R7)* is a symmetric endomorphism
of A", Therefore, the condition £>4 # 0 guarantees the existence of a non-zero
eigenvalue of the product by W* A y and therefore, a spinor n whose associated
Spin(7) structure has Lee form homothetic to W*.

Suppose that a decomposable quasi Abelian Lie algebra g = g’ & (W) is non-
Abelian and nilpotent. It is straightforward to check that W lies on the Abelian ideal
h. Thus, if we take a metric g with ¢y perpendicular to h and W perpendicular to hN
¢ then (g, g) is identified in terms of Lemma 8.3 with (R8, &) such that £,4(W) =
0. In addition, &4 # 0 because the algebra is non-Abelian and nilpotent. O
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A more detailed analysis of the eigenvalue problem provides the following
result:

Lemma 94. Let (R, £) be a unimodular quasi Abelian Lie algebra and suppose
that £4 is associated to (M1, A2, A3) as in Lemma 8.5 with0 < A1 < Ay < A3 with
A3 < A1 + A2. Then, each 6 € (R7)* is homothetic to the Lee form of a Spin(7)
structure.

Proof. Let 6 in (R7)* and take (X1, ..., X7) an orthonormal oriented basis of R’
such that:

y =M XTEA XS+ AXEAXE+ A XEA XL,
0% =1 X1 + 13 X3 + usXs + 7 X7

Let p be the representation of Cly constructed as in the proof of Theorem 8.7. The
characteristic polynomial of the matrix ,o(@ﬁ),o()»leXz + A X3X4 + A3X5Xg) is
p(t) = (t* + axt* + ait + ag)?, where:

ap=— A1+ A2+ X3) (A1 + A2+ A3)(A1 — A2 + A3) (A1 + A2 — A3),

ay =8A1A2A3u7,

ay = =2 =2+ 23+ 2D+ 130T =23+ 23 + 22 +23 - 4d)
+ 153 423 +43).

Therefore, we have the following:

1. If A3 < A1 4+ Az then ag < O so that p(¢) has a non-zero eigenvalue.
2. If A3 = A1 + Az then p(r) = t>(t> + azt + a1)? with a; < 0. Therefore, p has a
non-zero eigenvalue. O

9.1. Quasi Abelian nilpotent Lie algebras and Spin(7) structures

Quasi Abelian nilpotent Lie algebras are classified by the adjoint action a vector
which is transverse to the Abelian ideal. Therefore, each isomorphism type is asso-
ciated to a unique element of A7/ GL(7), where A is the set of nilpotent matrices
of R7 and GL(7) acts via conjugation. The orbits are matrices with the same Jordan
normal form, and therefore, classified by the dimension those blocks. We have 15
types that we will denote by (n1, ..., ng) withn; < n; 4y and Y5, n; = 7.

We are going to determine those which admit an invariant balanced Spin(7)
structure or an invariant Spin(7) structure with closed Lee form in the cohomology
of the algebra. Note that the last type will induce strict locally conformally balanced
structures on each nilmanifold associated to the algebra because the cohomology of
the algebra is isomorphic to the cohomology of any associated nilmanifold. In this
context we say that the Spin(7) structure of a nilpotent Lie algebra is strict locally
conformally balanced.
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First of all observe that the Abelian Lie algebra only admits parallel invariant
structures. Next, we analyze the algebras L3 @ As and L4 & A4, where L3 denotes
the Lie algebra of the 3-dimensional Heisenberg group, L4 the unique irreducible
4-dimensional nilpotent Lie algebra and A the j-dimensional Abelian Lie algebra.
In our previous notation, they are associated to (2,1, 1, 1,1, 1) and (3, 1, 1, 1, 1).

Proposition 9.5. The Lie algebras Ay® L3 and A3® L4, do not admit any balanced
structure. However, both of them admit strict locally conformal balanced structures.

Proof. Let ) be an Abelian ideal of g and let g be a metric. Take a vector eg
orthogonal to fy and denote £ = ad (eq)|y,. We write in both cases the endomorphism
& with respect to a suitable orthonormal basis (ey, ..., e7) of h:

1. If g = A4 @ L3 we can suppose that ker(€) = (e, ..., ) and E(e7) = —hreg
for some A # 0. Thus, y = Ae%7 so that 5 # 0 for all #;

2. If g = A3 & L4 we can suppose that ker(€) = (eq, ..., es5), E(eg) = —Aies
and £(e7) = —Apeq — Azes — Ageq, where Ajhg # 0. Thefore, y = 1130 +
(kzeA' + Az’ YAel + 14€%7. The spinor A4e67n is non-zero and orthogonal to
(11670 + (Aae* + 13¢°) A €7)n. Therefore, yn # 0 for all 7.

The existence of strict locally conformally balanced structures is a consequence of
Lemma 9.3. O

Now, we focus in types associated to matrices with two distinct Jordan blocks
of dimension greater than 1, which are (5, 2), (4, 3), (4,2, 1), (3,3, 1), (3, 2, 2),
(3,2,1,1),(2,2,2,1) and (2,2, 1, 1, 1).

Proposition 9.6. Nilpotent quasi Abelian algebras with two distinct Jordan blocks
of dimension greater than 1 admit a metric with a both a balanced and a strict
locally conformally balanced Spin(7) structure.

Proof. Let eq be transversal to the Abelian ideal b and observe that there is a split-
ting h = b1 & by ® h3 with dimbh, € {2, 3}, h3 Abelian and ad(ep)(h;) C b;.
Observe that hz may be {0}. We are going to define a metric g which makes e
perpendicular to h and g|y = g1 + g2 + g3 where g; are metrics on b;.

. . . (€100 .
Therefore £ is going to be a block matrix ( 0 & 0> with respect to an or-
000

thonormal basis adapted to the splitting of .

Obviously, for each A > 0 there exists an upper triangular matrix of dimen-
sion 2 or 3, conjugated to a Jordan block of dimension 2 or 3, such that its skew-
symmetric part has eigenvalues £Ai or 0, +Ai. Therefore, once obtained the eigen-
values of the skew-symmetric part of £; with respect to any metric g; we can change
g2 so that g satisfies the balanced condition.

Except for (2,2,1,1,1), (3,2,1,1), (3,3,1) we can change g; so that the
skew-symmetric part of £; has two distinct eigenvalues. Lemma 9.4 ensures the
existence of strict locally conformally balanced structures. Finally, the algebras
considered except (5, 2) and (4, 3) are verify that £,4(W) = 0 for some non-zero
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vector W so that Lemma 9.3 ensures the existence of a strict locally conformally
balanced structure associated to the metric that we have previously defined. O

Remark 9.7. A similar construction ensures the existence of metrics without as-
sociated balanced structures which admit strict locally conformally balanced struc-
tures.

Finally we analyze the case of the algebras associated to (4,1, 1, 1), (5,1, 1),
6, 1), ().

Proposition 9.8. The quasi Abelian nilpotent Lie algebras associated to (4, 1, 1, 1),
(5,1, 1), (6, 1), (7) have both a balanced and a strict locally conformally balanced
Spin(7) structure.

Proof. Lemma 9.3 guarantees the existence of strict locally conformally balanced
structures in the algebras associated to (4, 1, 1, 1), (5, 1, 1), (6, 1). We are going to
prove that all of them admit a balanced structure giving an explicit example of an
structure of the type (R8, &). In the case of (7), the range of &4 will be 6 so that
the same metric also admits a strict locally conformally balanced Spin(7) structure
as Lemma 9 4 states. Define:

0a00 0 O 0
00b0 ¢ O 0
000c O O 0
E=-]10000-1 O —1

0000 0 I4+a O
00000 O 1+5b
0000 0 O 0

Ifa = b = ¢ = 0, the Lie algebra is associated to (4,1, 1,1),ifa = b = 0 and
c#0to(5,1,1),ifa=0,b>0andc #0to (6,1) andifa > 0,5 > 0 and
¢ # 0,10 (7). The skew-symmetric part of £ is associated to the 2-form:

y = ae'? + be® + ce® +ce?t —e® — e + (1 + a)e®® + (1 + b)e?.

Take the spinor n whose associated 4-form is the standard Spin(7) form 9. We
have that yn = 0 as a consequence of the following equalities:

67 45 56 47 34 25 23 67 12 56
e n=e-n en=emen=—e-nen=-—e1i,en=-—¢e H-D

We have proven the following result:

Theorem 9.9.

1. Every invariant Spin(7) structure on the Abelian Lie algebra Asg is parallel;

2. The Lie algebras g = A5 ® L3 or g = A3z @ L4 admit strict locally conformally
balanced invariant structures. They do not admit invariant balanced structures;

3. The rest of quasi Abelian nilpotent Lie algebras admit a balanced structure and
a strict locally conformally balanced structure.
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