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Spinorial classification of Spin(7) structures
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Abstract. We describe the different classes of Spin(7) structures in terms of
spinorial equations. We relate them to the spinorial description of G2 structures
in some geometrical situations. Our approach enables us to analyze invariant
Spin(7) structures on quasi Abelian Lie algebras.
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1. Introduction

Berger’s list [3] (1955) of possible holonomy groups of simply connected, irre-
ducible and non-symmetric Riemannian manifolds contains the so-called excep-
tional holonomy groups, G2 and Spin(7), which occur in dimensions 7 and 8 re-
spectively. Non-complete metrics with exceptional holonomy were given by Bryant
in [4], complete metrics were obtained by Bryant and Salamon in [5], but compact
examples were not constructed until 1996, when Joyce published [13,14] and [15].

The remaining groups of Berger’s list different from SO(n), called special
holonomy groups, are U(n), SU(n), Sp(n) and Sp(n) · Sp(1). If the holonomy of a
Riemannian manifold is contained in a group G, the manifold admits a G structure,
that is, a reduction to G of its frame bundle. Therefore, holonomy is homotopically
obstructed by the presence of G structures. Examples of manifolds endowed with
G structures for some of the holonomy groups in the Berger list are not only easier
to obtain than manifolds with holonomy in G, but also relevant in M-theory, es-
pecially if they admit a characteristic connection [11], that is, a metric connection
with totally skew-symmetric torsion whose holonomy is contained in G. It is worth
mentioning that Ivanov proved in [12] that each manifold with a Spin(7) structure
admits a unique characteristic connection. Moreover, Friedrich proved in [10] that
Spin(7) is the unique compact simple Lie group G such that every G structure admit
a unique characteristic connection.
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The Lie group G2 is compact, simple and simply connected. It consists of the
endomorpisms of R7 which preserve the cross product from the imaginary part of
the octonions [22]. Hence, a G2 structure on a manifold Q determines a 3-form
9, a metric and an orientation. In [8], Fernández and Gray classify G2 structures
into 16 different classes in terms of the G2 irreducible components of r9. Related
to this, the analysis of the intrinsic torsion in [6] allowed to obtain equations in-
volving d9 and d(⇤9) for each of the 16 classes, determined by the G2 irreducible
components of 34T ⇤Q and 35T ⇤Q. In particular, one obtains that the holonomy
of Q is contained in G2 if and only if d9 = 0 and d(⇤9) = 0. The Lie group
Spin(7) is also compact, simple and simply connected. It is the group of endo-
morphisms of R8 which preserve the triple cross product from the octonions [22].
Thus, a Spin(7) structure on a manifold M determines a 4-form �, a metric and an
orientation. In [7], Fernández classifies Spin(7) structures into 4 classes in terms
of differential equations for d�, which are determined by the Spin(7)-irreducible
components of 35T ⇤M . Parallel structures verify d� = 0, locally conformally
parallel structures satisfy d� = ✓ ^ � for a closed 1-form ✓ and balanced struc-
tures verify ⇤(d�) ^ � = 0. A generic Spin(7) structure, which does not satisfy
any of the previous conditions, is called mixed.

The relationship between G2 and Spin(7) structures was firstly explored by
Martı́n-Cabrera in [18]. Each oriented hypersurface of a manifold equipped with
a Spin(7) structure naturally inherits a G2 structure whose type is determined by
the Spin(7) structure of the ambient manifold and some extrinsic information of
the submanifold, such as the Weingarten operator. Following the same viewpoint,
Martı́n-Cabrera constructed Spin(7) structures on S1-principal bundles over G2
manifolds in [19]. Both approaches allowed to construct manifolds with G2 and
Spin(7) structures of different pure types.

It turns out that manifolds admitting SU(3), G2 and Spin(7) structures are spin
and their spinor bundle has a unit section ⌘ which determines the structure. In [1],
spinorial formalism was used to deal with the distinct aspects of SU(3) and G2
structures, such as the classification of both types of structures, SU(3) structures
on hypersurfaces of G2 manifolds and different types of Killing spinors. A clear
advantage of this viewpoint is that a unique object, the spinor, encodes the whole
geometry of the structure. For instance, a G2 structure on a Riemannian manifold
(Q, g) with associated 3-form 9 is determined by a suitable spinor ⌘ according to
the formula 9(X,Y, Z) = (X⌘,Y Z⌘) where (·, ·) denotes the scalar product in
the spinor bundle and juxtaposition of vectors indicates the Clifford product. Any
oriented hypersurface Q0 with normal vector field N inherits an SU(3) structure
implicitly defined by9 = N⇤^!+Re(2), where N⇤(X) = g(N , X) for X 2 T Q.
But both the 2-form ! and the (3, 0)-form Re(2) turn out to be determined by the
same spinor ⌘.

In this paper we follow the ideas of [1] to describe the geometry of Spin(7)
structures from a spinorial viewpoint, starting from the classification of these struc-
tures, continuing to analyze the relationship between G2 and Spin(7) structures and
finishing with the study of invariant Spin(7) structures on quasi Abelian Lie alge-
bras.
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Our first result, Theorem 4.8 in section 3, describes each type of Spin(7) struc-
ture in terms of differential equations involving the spinor ⌘ that determines the
structure (see section 2 for details). Parallel Spin(7) structures have already been
studied from a spinorial point of view and correspond to the equation r⌘ = 0. In
order to state the spinorial equations for the remaining classes let D denote Dirac
operator on the spinor bundle.
Theorem 1.1. A Spin(7) structure determined by ⌘ is:
1. Balanced if D⌘ = 0;
2. Locally Conformally Parallel if there exists V 2 X(M) such thatrX⌘ = 2

7 (X
⇤^

V ⇤)⌘. In this case, D⌘ = V⌘.
Moreover, in Proposition 5.2 we determine the torsion forms of the structure and
we obtain that the Lee form is ✓ = 7

8V
⇤ where D⌘ = V⌘.

Our techniques also allow us to identify the intrinsic torsion of the structure
and to obtain the formula for the unique characteristic connection of each Spin(7)
structure, given by Ivanov in [12, Theorem 1.1]. In Section 6 we also show that the
spinorial equation for balanced structures can be obtained using [12, Theorem 9.1].

We also introduce the concept of G2 distributions, a general setting to relate
G2 and Spin(7) structures.
Definition 1.2. Let (M, g) be an oriented 8-dimensional Riemannian manifold and
let D be a cooriented distribution of codimension 1. We say that D has a G2 struc-
ture if the principal SO(7) bundle P(D) is spin and the spinor bundle 6(D) admits
a unitary section.

This construction allows us to obtain the results which appear in [18] and [19]
about G2 structures on hypersurfaces of Spin(7)manifolds and S1-principal bundles
over G2 manifolds. Related to this, we also study warped products of manifolds
admitting a G2 structure with R.

The formalism of G2 distributions enables us to study invariant Spin(7) struc-
tures on quasi-Abelian Lie algebras, that is, Lie algebras with a codimension 1
Abelian ideal. To state the result, which is Theorem 8.7, suppose that the Lie al-
gebra is g = he0, . . . , e7i with Abelian ideal R7 = he1, . . . , e7i and it is endowed
with the canonical metric and volume form.
Theorem 1.3. Denote by E = ad(e0)|R7 and let E13 and E24 be the symmetric and
skew-symmetric parts of the endomorphism. Then, g admits a Spin(7) structure of
type:
1. Parallel, if and only if E13 = 0 and the eigenvalues of E24 are 0,±�1i,±�2i,

±(�1 + �2)i , for some 0  �1  �2;
2. Locally conformally parallel and non-parallel if and only if E13 = h Id with

h 6= 0 and the eigenvalues of E24 are 0,±�1i,±�2i,±(�1 + �2)i , for some
0  �1  �2;

3. Balanced if and only if g is unimodular and the eigenvalues of E24 are 0,±�1i,
±�2i,±(�1 + �2)i , for some 0  �1  �2.

Moreover, if E24 6= 0 then it admits a Spin(7) structure of mixed type.
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It follows from this (Corollary 8.8) that there are no quasi Abelian solvmanifolds
which admit a locally conformally parallel Spin(7) structure. In addition, this result
allows us to give an example of a nilmanifold admitting both an invariant balanced
structure and an invariant mixed structure. We also compute an example of an in-
variant strict locally conformally balanced structure, that is a mixed structure whose
Lee form is closed and non-exact.

A compact manifold admitting a parallel structure is also obtained as a quo-
tient of a simply connected solvable Lie group whose Lie algebra is quasi Abelian.
Despite not being diffeomorphic to a torus, it is flat. Indeed, we prove that quasi
Abelian Lie algebras which admit an invariant Spin(7) parallel structure are flat
(Corollary 8.9).

In addition, we also characterize which nilpotent quasi Abelian Lie algebras
admitting invariant balanced and locally conformally balanced structures:

Theorem 1.4. Let L3 be the Lie algebra of the 3-dimensional Heisenberg group,
L4 the unique irreducible 4-dimensional nilpotent Lie algebra and A j the j-dimen-
sional Abelian Lie algebra.

1. Every invariant Spin(7) structure on the Abelian Lie algebra A8 is parallel;
2. The Lie algebras g = A5 � L3 or g = A3 � L4 admit strict locally conformally
balanced invariant structures. However, they do not admit invariant balanced
structures;

3. The rest of quasi Abelian nilpotent Lie algebras admit a balanced structure and
a strict locally conformally balanced structure.

This paper is organized as follows. Section 2 contains a review of algebraic aspects
of Spin(7) geometry. Section 3 identifies the instrinsic torsion of the Levi-Civita
connection with a spinor, Section 4 contains the spinorial classification of Spin(7)
structures, Section 5 is devoted to obtain the torsion forms of Spin(7) structures in
terms of spinors and Section 6 provides an alternative proof of the existence of the
characteristic connection. Section 7 provides a complete analysis of G2 structures
on distributions and then focuses on the particular cases described above. Section 8
deals with invariant structures on quasi Abelian Lie algebras and provides compact
examples. Finally Section 9 is devoted to the study of quasi Abelian nilpotent Lie
algebras and its Spin(7) structures.

ACKNOWLEDGEMENTS. I am very grateful to the referee for useful suggestions
which improved the exposition of the paper. I would like to thank my thesis direc-
tors, Giovanni Bazzoni and Vicente Muñoz, for useful conversations, advices and
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2. Preliminaries

In this section we introduce some aspects of Clifford algebras, 8-dimensional spin
manifolds and Spin(7) representations, which can be found in [9, 16] and [22], as
well as the notation that we will use in the sequel.

2.1. The irreducible representation of Cl8

The Clifford algebra Cl8 is isomorphic to the algebra of endomorphisms of R16.
Such an isomorphism is denoted by ⇢ : Cl8 ! End(R16) and is indeed the unique
irreducible repesentation of Cl8 up to equivalence [16, Chapter 1, Theorem 4.3].
There is also an inner product on R16, which we denote by (·, ·), such that the
Clifford multiplication with a vector ofR8 is a skew-symmetric transformation [16,
Chapter 1, Theorem 5.3].

Fix an orientation of R8 and let ⌫8 be the volume form of R8 that has length
one and is positively oriented. Consider the Spin(8) equivariant endomorphism:

⌫8· : R16 ! R16, � 7�! ⌫8�.

Since ⌫28 = 1, there is a splitting R16 = 1+ � 1� where 1± is the eigenspace
associated to ±1. In addition, this endomorphism anticommutes with the Clifford
multiplication by a vector.

It is well known that Spin(8) contains three distinct conjugacy classes of the
group Spin(7) [16, Chapter 4, Proposition 10.4]. The first one is obtained from the
adjoint action Ad : Spin(8) ! SO(8) as the stabilizer of any non-zero v 2 R8.
The remaining ones, that we denote by Spin(7)±, are constructed from ⇢ as the
stabilizer of a non-zero spinor �± 2 1±. The adjoint action embeds Spin(7)±
into SO(8) because �1 /2 Stab(�±). Note also that the conjugacy classes Spin(7)±
depend on the choice of an orientation of R8 and these are conjugated in Pin(8).
Remark 2.1. We can obtain ⇢ from the representation of the complex Clifford al-
gebra and the real structure constructed in [9, Chapter 1]. The construction that
allows to obtain an irreducible representation of Cl6 is similar but there are is a
difference that we outline. Let Cl2k be the Clifford algebra of (C2k,

P2k
i=1 z

2
i ), ac-

cording to [9, page 13] there are 2k-dimensional complex vector spaces 12k and
isomorphisms 2k : Cl2k ! End(12k). The multiplication by the complex volume
form ⌫C

2k = i k⌫2k splits 12k into two eigenspaces 1±
2k associated to the eigenvalue

±1 which are irreducible under the action of Spin(2k).

1. There is a Spin(8) equivariant real structure '8 on18 which commutes with ⌫C
8

(see [9, page 32]). Thus, a real representation is (1+
8 )+ �(1�

8 )�, where (1+
8 )±

and (1�
8 )± are the eigenspaces associated to the eigenvalue±1 of '8 on1+

8 and
1�
8 ;

2. There is a Spin(6) equivariant real structure '6 on 16 that anticommutes with
⌫C
6 . Thus the real representation of Cl6 is (16)+ = {� + '6(�) : � 2 1+

6 }, the
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eigenspace associated to+1 of '6. In addition, for a real spinor ⌘ = �+'6(�) 6=
0 we have that StabSpin(6)(⌘) = StabSpin(6)(�) = StabSpin(6)('6(�)) = SU(3).

The Hermitian metric h on 18 constructed in [9, page 24] makes the Clifford
multiplication a skew-symmetric transformation. In particular, h is Spin(8) invari-
ant. The fact that 1±

8 are irreducible Spin(8) modules guarantees that b(�, ⌘) =
h('8(�), ⌘) is a symmetric bilinear form on 1±

8 and therefore the restrictions of h
to the real and the imaginary part of 1±

8 are real-valued. The subspaces 1+
8 and

1�
8 are orthogonal with respect to h because the multiplication by ⌫C preserves h.

Therefore the real part of h is a scalar product on (1+
8 )+ � (1�

8 )� with the same
properties as (·, ·).

2.2. Spin(7) structures

Let (M, g) be an oriented Riemannian 8-manifold and let P(M) be the associated
frame bundle. Provided that M is spin, that is w2(M) = 0, we can take a Spin(8)
principal bundle P̃(M) over M which is a double covering ⇡ : P̃(M) ! P(M)
equivariant under the adjoint action Ad : Spin(8) ! SO(8). The associated spinor
bundle is 6(M) = P̃(M) ⇥⇢ R16 and it is endowed with a metric induced by
(·, ·) which we denote by the same name. Moreover there is a splitting 6(M) =
6(M)+ � 6(M)�, where 6(M)± = P̃(M) ⇥⇢ 1±.

Also note that X (6(M)±) ⇢ 6(M)⌥ if X 2 X(M) and that for each nowhere
vanishing spinor � : M ! 6(M)± the map:

T M ! 6(M)⌥, X 7�! X�, (2.1)

is an isomorphism.
The Clifford multiplication with a vector field is extended to an action of

3kT ⇤M defined as follows:

1. The product with a covector is defined by X⇤� = X�, where we used the canon-
ical identification between the tangent and the cotangent bundle: X⇤ = g(X, ·);

2. If the product is defined on 3`T ⇤M when `  k, we define

(X⇤ ^ �)� = X (��) + (i(X)�)�,

where i(X)� denotes the contraction, � 2 3kT ⇤M and X 2 T M . This product
is extended linearly to 3k+1T ⇤M .

For instance, we have:

(X⇤ ^ Y ⇤)� = (XY + g(X,Y ))�, (2.2)
(X⇤ ^ Y ⇤ ^ Z⇤)� = (XY Z + g(X,Y )Z � g(X, Z)Y + g(Y, Z)X)�. (2.3)

Observe also that 6±(M) = {�p : ⌫p�p = ±�p} where ⌫ is the positively oriented
unit-length volume form of (M, g).
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The action Spin(8)⇥R16 ! R16 lifts to an action P̃(M) ⇥ 6(M) ! 6(M),
so that the existence of a unit spinor ⌘ 2 0(6(M)±) determines an identification
between Spin(7)± and the stabilizer of ⌘p at each p 2 M . This defines a Spin(7)
principal subbundle Stab(⌘) ⇢ P̃(M) and therefore Ad(Stab(⌘)) is a Spin(7) reduc-
tion of P(M). In this paper we focus on Spin(7) structures determined by positive
spinors. This condition is not restrictive due to the following result which is not
difficult to prove.
Lemma 2.2. Let (M, g) be a connected oriented spin manifold and let 6(M) be
its spinor bundle. Let 6(M) be the spinor bundle associated to the opposite ori-
entation on M . There is an isomorphism of Cl(M) modules R : 6(M) ! 6(M).
Therefore,R(6(M)±) = 6(M)

⌥.
For the convenience of the reader, we shall relate this spinorial approach with the
point of view of positive triple cross products [22, Definitions 6.1, 6.12]. That
was the approach that M. Fernández followed in [7] to obtain the classification of
Spin(7) structures.
Lemma 2.3. Let (M, g) be a Riemannian oriented spin manifold that admits a unit
spinor ⌘ : M ! 6(M)±. Then there is a well defined map:

T M⇥T M⇥T M!T M, (X,Y,Z) 7�! X⇥Y⇥Z s.t, (X⇥Y⇥Z)⌘=(X⇤^Y ⇤^Z⇤)⌘,

which is in turn a positive triple cross product.
The associated 4-form�(W, X,Y, Z) = g(W, X⇥Y ⇥ Z) verifies that ⇤� = ±�.
Moreover [22, Theorem 10.3] states that there is a 1 to 1 correspondence between
4-forms � that define a positive triple cross product and such that � ^ � > 0 and
sections of the projectivization of 6(M)+.

According to the previous discussion we summarize our basic assumptions in
the following Proposition. In the sequel given a frame (e0 . . . , e7) and a spinor �
we use short-hand notation ei for g(ei , ·), ei jkl for ei ^ e j ^ ek ^ el and ei jk� for
ei e j ek�.
Proposition 2.4. Let (M, g) be an oriented spin manifold and suppose that there
exists a positive unit spinor. Consider the triple cross product on M defined as in
Lemma 2.3.
1. The associated 4-form is self-dual and is determined by

�(W, X,Y, Z) =
1
2
((�WXY Z + WZY X)⌘, ⌘);

2. Given orthonormal vector local fields e0, e1, e2, e4 such that e4 is perpendic-
ular to e3 = e0 ⇥ e1 ⇥ e2 there exists a positive oriented orthonormal frame
(e0, . . . , e7) such that:

� = e0123 � e0145 � e0167 � e0246 + e0257 � e0347 � e0356

+ e4567 � e2367 � e2345 � e1357 + e1346 � e1256 � e1247.
(2.4)

A frame with this property is called Cayley frame.
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Proof. Taking into account Lemma 2.3 and equation (2.3) the associated 4-form of
the triple cross product, which is self-dual, is:

�(W, X,Y, Z) = ((X ⇥ Y ⇥ Z)⌘,W⌘)

= ((XY Z + g(X,Y )Z � g(X, Z)Y + g(X,Y )Z)⌘,W⌘)

=
1
2
((�WXY Z + WZY X)⌘, ⌘).

The third statement can be found in [22, Theorem 7.12]. Since Cayley frames verify
(e0 · · · e7)⌘ = ⌘, they are positively oriented.

2.3. Spin(7) representations

Let us denote the standard basis of R8 by (e0, . . . , e7), and the standard Spin(7)
structure of R8 by �0, given by (2.4). We also denote 3k = 3k(R8)⇤.

The representation of Spin(7) = Stab(�0) ⇢ SO(8) on 3k induces an orthog-
onal decomposition of this space into irreducible Spin(7) invariant subspaces. The
expression 3k

` denotes such an `-dimensional subspace of 3k . The Hodge star op-
erator ⇤ gives isomorphisms between 3k and 38�k determining that 3k

` = ⇤38�k
`

if k  4. We are going to describe briefly the splitting; a complete proof can be
found in [7] and [22, Theorem 9.8]. The decomposition goes as follows:

32 =32
7 � 32

21,

33 =33
8 � 33

48,

34 =34
1 � 34

7 � 34
27 � 34

35.

The first one comes from the orthogonal splitting 32 = so(8) = spin(7) � m,
where m = spin(7)?. An alternative description is obtained from the map:

32 ! 32, � 7�! ⇤(� ^ �0),

which is Spin(7)-equivariant, symmetric and traceless. Therefore, 32 splits into
eigenspaces which must coincide with the previous ones due to the irreducibility. It
can be checked that the eigenvalues are 3 on 32

7 and �1 on 32
21. Moreover, the set

{↵ j = 1
2 (e

0 j + i(e j )i(e0)�0)}7j=1 is an orthonormal basis of 3
2
7 and the projection

p27 : 32 ! 32
7 is consequently determined by the equation:

p27(u
⇤ ^ v⇤) =

1
4
(u⇤ ^ v⇤ + i(v)i(u)�0). (2.5)

The subspaces involved in the splitting of 33 are:

33
8 = i(R8)�0, 33

48 = ker(· ^ �0 : 33 ! 37).
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In order to describe the last one observe that Hodge star operator splits34 into two
35-dimensional spaces: anti self-dual and self-dual forms. The space of anti self-
dual forms is 34

35 and the space of self-dual forms is 34
1 � 34

7 � 34
27. Obviously,

34
1 = h�0i and the space 34

7 is the image of the map,

j : m ! 34, j (�) = ⇢⇤(�)�0,

with ⇢ : SO(8) ! 34T ⇤M , ⇢(g) = (g�1)⇤�0. That is, j is the restriction to m of
the map determined by j (u⇤ ^ v⇤) = u⇤ ^ i(v)�0 � v⇤ ^ i(u)�0 and therefore,
37
4 = {u⇤ ^ i(v)�0�v⇤ ^ i(u)�0, u, v 2 R8}. The subspace34

27 is the orthogonal
complement of 34

1 � 34
7 � 34

35.
We now describe the irreducible decomposition of 31 ⌦ m which is related

with the intrinsc torsion of the Levi-Civita connection (see Section 3).

Proposition 2.5. Let (e0, . . . , e7) be a Cayley basis and let p27 : 32 ! m be the
orthogonal projection. Consider the Spin(7)-equivariant maps:

2 : 33 ! 31 ⌦ m, � 7�! 2(�) =
7X

j=0
e j ⌦ p27(i(e j )�),

4 : 31 ⌦ m ! 33, ↵ ⌦ � 7�! ↵ ^ � = 3 alt(↵ ⌦ �),

where alt(T)(v1, . . . , vn) = 1
n!
P

�2Sn (�1)
sgn �T(v� (1), . . . , v� (n)). The eigenval-

ues of 4 � 2 are 9
4 and

1
2 . They are associated to the eigenspaces 33

8 and 33
48

respectively.

Proof. The map4�2 is symmetric and Spin(7)-equivariant, so that its eigenspaces
must be 33

8 and 33
48. Taking i(e0)�0 2 33

8 and e
123 + e145 2 33

48 one can show
that the eigenvalues are 94 on 33

8 and
1
2 on 33

48.

We formulate an alternative description of 31 ⌦ m which can be proved in the
same manner.

Proposition 2.6. Let (e0, . . . , e7) be an orthonormal frame. Consider the O(8)
equivariant maps,

◆ : R8 ! 31 ⌦ m, ◆(v) =
7X

i=0
ei ⌦ (ei ^ v⇤),

 : 31 ⌦ m ! R8, (0) =
7X

i=0
(i(ei )0(ei ))],

which do not depend on the orthonormal basis chosen. Then ◆(R8) = 2(33
8) and

ker() = 2(33
48). Moreover,  � ◆(v) = 7

4v for any v 2 R8.
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In the same manner one can study the space31⌦34
7 which is isomorphic to31⌦m.

For instance, it is not difficult to check that the map alt : 31⌦34
7 ! 35 is a Spin(7)

equivariant isomorphism.
A Spin(7) structure on the Riemannian manifold (M, g) determines a splitting

of3kT ⇤M into subbundles3k
`T

⇤M = R⇥Spin(7)3
k
` where R is the Spin(7) reduc-

tion R of the SO(8) principal bundle given by the Cayley frames. We also denote
by �k

`(M) the space of smooth sections of 3k
`T

⇤M . In addition, the maps j , 2, 4,
◆,  induce bundle homomorphisms that we call by the same name. We will also
consider the subbundles of T ⇤M ⌦ 37

2T
⇤M defined by �1 = 2(33

48T
⇤M) and

�2 = 2(33
8T

⇤M).

3. The intrinsic torsion

We are going to compute the intrinsic torsion 0 of the Levi-Civita connection which
is a section of the bundle T M ⌦ 32

7T
⇤M . Recall that the Levi-Civita connection

r on T M induces a connection ! on P(M). Then a connection on the Spin(7)
reduction R is defined by !0 = p(!)|T R , where p denotes the orthogonal projection
to spin(7). The connection that !0 induces on T M is denoted by r

0 and determines
the intrinsic torsion by means of the expression:

rXY = r
0

XY + 0(X)Y.

The skew-symmetric endomorphism 0(X) can be identified with a 2-form which
lies in �2

7(M) for each X 2 T M . To compute it, define H as the subspace of 1+
which is orthogonal to ⌘ with respect to the scalar product (·, ·) defined in Section
2.1. Of course, H depends on the choice of the spinor ⌘. We first prove that the
vector bundles 32

7T
⇤M and H are isomorphic.

Lemma 3.1. There is a well defined Spin(7)-equivariant map

32T ⇤M ! H, ↵ 7�! ↵⌘,

whose kernel is 32
21T

⇤M . Indeed, its restriction c : 32
7T

⇤M ! H is an isomor-
phism whose inverse is given by (c�1�)(X,Y ) = 1

4 (�, (XY + g(X,Y ))⌘).

Proof. The spinor �⌘ is perpendicular to ⌘ if � 2 32T ⇤M . Therefore, the map is
well-defined and it is Spin(7)-equivariant since Spin(7) = Stab(⌘p).

To prove that c is an isomorphism, we first claim that if (e0, . . . , e7) is a Cayley
frame then ↵ j⌘ = 4e0 j⌘. Observe that we only need to check this formula for j = 1
since c is Spin(7)-equivariant and G2 = Spin(7)\Stab(e0) acts transitively on the
6-sphere generated by (e1, . . . , e7). In this case, ↵1 = e01 + e23 � e45 � e67 and
if (i, j) 2 {(2, 3), (5, 4), (7, 6)} we have that �(e0, e1, ei , e j ) = 1. The previous
equality means that e0⌘ = e1i j⌘, so that e01⌘ = ei j⌘.
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Moreover, since {e0i⌘}7i=1 is an orthonormal basis of H we have that

c�1(�) =
1
4

7X

i=1
(�, e0i⌘)↵i .

If X = e0, Y = e1 are orthonormal vectors then ↵ j (e0, e1) = (e0 j � i(e0)i(e j )�)

(e0, e1) = � j1. Hence, c�1�(e0, e1) = 1
4 (�, e0e1⌘).

Finally, by dimensional reasons the Clifford product with ⌘ must vanish on
32
21T

⇤M .

Remark 3.2. These computations and others that we do in the sequel in terms of
Cayley frames may be computed alternatively from a representation of Cl8.

The previous result enables us to find a formula for the intrinsic torsion:

Proposition 3.3. The intrinsic torsion is given by 0(X) = 2c�1rX⌘.

Proof. We also denote by r and r
0 the induced connections on the spinor bundle.

According to [9, page 60] we have that:

rX� = r
0

X� +
1
2
0(X)�,

where 0(X) acts on � as a 2-form. Since the holonomy of the connection r
0 is

contained in Spin(7) and Stab(⌘p) = Spin(7) we have that r
0
⌘ = 0. Finally,

if X 2 T M then rX⌘ 2 H and 0(X) 2 32
7T

⇤M thus, Lemma 3.1 shows that
0(X) = 2c�1rX⌘.

4. Classification of Spin(7) structures

The classification of Spin(7) structures was obtained in [7, Theorem 5.3]. There it is
proved that r� 2 0(T M⇤ ⌦34

7T
⇤M) and that31⌦34

7 splits into two irreducible
Spin(7) subspaces that can be described via the isomorphism Id ⌦ j : 31 ⌦ m !
31 ⌦ 34

7 (see Section 2.3 for the definition of j). Those are of course (Id ⌦ j) �
2(33

48) and (Id⌦ j) � 2(33
8).

We also denote by Id ⌦ j the induced map from T ⇤M ⌦ 32
7T

⇤M to T ⇤M ⌦
34
7T

⇤M and we defineW1 = (Id⌦ j)(�1) andW2 = (Id⌦ j)(�2), where � j are
defined as in Section 2.3.

Moreover, it is straightforward to check that Id⌦ j (0)=r� and that alt(r�)=
d�. These considerations allow us to describe the classification of Spin(7) struc-
tures in three different ways.
Definition 4.1. Let 0 be the intrinsic torsion of the Spin(7) structure determined
by �. The type of the structure is given by the equivalent conditions:
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0 r� d�
Parallel 0 0 0
Balanced �1 W1 ⇤(d�) ^ � = 0
Locally conformally parallel �2 W2 ✓ ^ �, ✓ 2 �1(M)

In other case, the structure is said to be mixed.
Definition 4.2. The Lee form of � is the unique ✓ 2 �1(M) such that the orthog-
onal projection of d� to �5

8(M) is ✓ ^ �.
Remark 4.3. According to Proposition 2.6 locally conformally parallel Spin(7)
structures are the class of Spin(7) structures with vectorial torsion in the sense
of [2]. In [2, Proposition 2.2] the reader can find a characterization of compact
manifolds with vectorial torsion and formulas for the Ricci tensor.
Remark 4.4. If the structure is locally conformally parallel then d✓ = 0. Let
O be a contractible open set, take a primitive f of �1

4✓ |O and define the metric
g0 = e2 f g|O . The associated Spin(7) structure is �0 = e4 f �|O and it verifies
d�0 = 0. Therefore, �|O is conformal to a parallel structure. This justifies the
name.

We now focus in obtaining an alternative description in terms of spinors. For
that purpose, decompose 0 = 01 + 02 according to the splitting �1 � �2 and write
02(X) = 4

7 p
2
7(X

⇤ ^ V ⇤). Taking into account Proposition 2.6 and equation (2.5)
we obtain:

1. (02) = V ⇤;
2. 2(02) = 4

7
P7

i=0 ei ^ p27(e
i ^ V ⇤) = 1

7
P7

i=0 ei ^ i(ei )i(V )� = 3
7 i(V )�.

Remark 4.5. Define Z(V ) = {p 2 M s.t V (p) = 0} and let R denote the Spin(7)
reduction of the SO(8) principal bundle of M . The frame bundle of (M � Z(V ), g)
admits a G2 reduction that consists of the orthonormal oriented frames on R|M�Z(V )

that have the form (V/kVk, e1, . . . , e7).
Remark 4.6. We added a factor 47 in order to avoid a constant on Theorem 4.7.

We compute the Dirac operator D of the spinor ⌘ that determines the Spin(7)
structure.

Proposition 4.7. Let � be a Spin(7) structure determined by a spinor ⌘. Let 0 =
01 + 02 be its intrinsic torsion with 02(X) = 4

7 p
2
7(X

⇤ ^ V ⇤). Then,

1. The map 33T ⇤M ! 6(M)�, ↵ 7�! ↵⌘ is Spin(7) equivariant and its kernel
is 33

48T
⇤M .

Moreover, (i(X)�)⌘ = 7X⌘.
2. The Dirac operator is determined by D⌘ = V⌘.

Proof. The first statement is a consequence of Schur’s Lemma. To check that
i(X)�⌘ = 7X⌘, one can suppose that X is unitary and use a Cayley frame such
that X = e0.
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For the second we compute in terms of a Cayley local frame (e0, . . . , e7),

2D⌘ =
7X

i=0
ei0(ei )⌘ =

7X

i=0
(ei ^ 0(ei ) � i(ei )0(ei ))⌘

=2(0)⌘ � (0)⌘ = 2V⌘.

Theorem 4.8. The Spin(7) structure determined by a spinor ⌘ is,

1. Parallel if r⌘ = 0;
2. Balanced if D⌘ = 0;
3. Locally Conformally Parallel if there exists V 2 X(M) such thatrX⌘ = 2

7 (X
⇤^

V ⇤)⌘. In this case, D⌘ = V⌘.

Proof. The equation for balanced structures follows from Proposition 4.7 and the
equation for locally conformally balanced structures follows from Lemma 3.1.

5. Torsion forms of a Spin(7) structure

In this section we describe the torsion forms of a Spin(7) structures by means of the
spinor defining the structure. That is, we determine the projections of ⇤d� to the
spaces �3

8(M) and �3
48(M). Note that the projection is given by p38 : �3(M) !

�3
8(M), p38(�) = �1

7 ⇤ ((⇤� ^ �) ^ �).
For that purpose, denote by D the Dirac operator on 6(M). The isomorphism

(2.1) ensures the existence of a unique vector field V such that

D⌘ = V⌘. (5.1)

Then, the 3-form �8(X,Y, Z) = (D⌘, (X ⇥ Y ⇥ Z)⌘) = (i(V )�)(X,Y, Z) obvi-
ously lies in �3

8(M).

Proposition 5.1. Using the previous notation, we have:

⇤d� = 2(�8 � 12 alt(c�1r⌘)).

Proof. Since r is a metric connection on the spinor bundle and acts as a derivation
for the Clifford product, we get:

(rT�)(W, X,Y, Z)

=
1
2

⇣
((�WXY Z + WZY X)rT ⌘, ⌘) + ((�WXY Z + WZY X)⌘,rT ⌘)

⌘

=
1
2
((�ZY XW + XY ZW � WXY Z + WZY X)⌘,rT ⌘).
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Take orthonormal vectors X,Y, Z and an orthonormal oriented basis (X0, . . . X7)
such that X0 = X , X1 = Y and X2 = Z . Then,

��(X,Y, Z)

= �
7X

i=3
rXi�(Xi , X,Y, Z) = �2

7X

i=3
(XY Z⌘, XirXi⌘)

= �2(D⌘, (X ⇥ Y ⇥ Z)⌘) + 2(XY Z⌘, XrX⌘ + YrY⌘ + ZrZ⌘)

= �2((D⌘, (X ⇥ Y ⇥ Z)⌘) � (Y Z⌘,rX⌘) + (XZ⌘,rY⌘) � (XY⌘,rZ⌘)

= �2((D⌘, (X ⇥ Y ⇥ Z)⌘) � 12 alt(c�1r⌘)(X,Y, Z)).

The third equality follows from
P7

i=3 XirXi⌘ = D⌘ �
P3

i=1 XirXi⌘. Note
that the coefficient 12 comes from the normalization of alt and the expression
c�1(rX⌘)(X,Y ) = 1

4 ((XY + g(X,Y ))⌘,rX⌘).

We are going to decompose ⇤d� according to the previous splitting.

Proposition 5.2. The 3-form �48 = 3�8 � 84 alt(c�1r⌘) lies in �3
48(M) and

⇤d� =
2
7
�48 +

8
7
�8.

Moreover, the Lee form is given by ✓ = 8
7V

⇤, where V is defined as in the equation
(5.1).

Proof. Take a unitary vector X and a Cayley frame (e0, e1, . . . , e7) such that X =
e0. Then:

(�8 ^ �)(e1, . . . , e7)
=(D⌘, (e123 � e145 � e167 � e246 + e257 � e347 � e356)⌘)

=7(D⌘, e0⌘) = 7V ⇤(X),

(12 alt(c�1r⌘) ^ �)(e1, . . . , e7)
=S(re1⌘, e23⌘) � S(re1⌘, e45⌘) � S(re1⌘, e67⌘)

� S(re2⌘, e46⌘) + S(re2⌘, e57⌘) � S(re3⌘, e47⌘)

� S(re3⌘, e56⌘) = 3(D⌘, e0⌘) = 3V ⇤(X).

We denoted by S the cyclic sums in the indices involved. To arrange the last term
observe that each index appears 3 times and:

S(re1⌘, e23⌘) =(e1re1⌘ + e2re2⌘ + e3re3⌘, e123⌘)

=(e1re1⌘ + e2re2⌘ + e3re3⌘, e0⌘),

�S(re1⌘, e45⌘) =(e1re1⌘ + e4re4⌘ + e5re5⌘,�e145⌘)

=(e1re1⌘ + e4re4⌘ + e5re5⌘, e0⌘),
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and so on. Note that we have used, as in the proof of Lemma 3.1, that e123⌘ =
e0⌘ = �e145⌘.

Since Cayley bases are positively oriented, we get ⇤(V ⇤) = 1
7 (�8 ^ �) =

4 alt(c�1r⌘), so that �48 as defined above lies in �3
48(M). Finally, taking into

account the formula for ⇤d� in Proposition 5.1, we get ⇤d� = 2
7�48 + 8

7�8.
To compute the Lee form we have used that the projection of d� to �3

8(M) is
�8
7⇤�8 and the formula i(X)� = ⇤(X⇤^�), which shall be checked by considering

a Cayley frame and X = e0.

6. The characteristic connection

The characteristic connection of a Spin(7) structure is a connection rc with totally
skew-symmetric torsion such that rc� = 0. The computations above allow us to
prove the existence and uniqueness of the characteristic connection for manifolds
with a Spin(7) structure. This is a well known result which appears in [12, Theorem
1.1]. Our proof is based on the argument of Theorem 3.1 in [10] and uses the
notation of Section 2.3.

Proposition 6.1. Given a Spin(7) structure, there exists a unique characteristic
connection whose torsion T 2 �3(M) is given by:

T = ��� �
7
6

⇤ (✓ ^ �).

Proof. A connection with skew-symetric torsion T 2 �3(M) is given by rXY +
1
2T(X,Y,·)],where T(X,Y, ·)] is the vector field such that (T(X,Y, ·)])⇤ =T(X,Y,·).
Thus, the lift to the spinor bundle is rX� + 1

4 i(X)T�.
Since the condition rc� = 0 is equivalent to rc⌘ = 0 and the kernel of the

Clifford product by ⌘ on 32T ⇤M is 32
21T

⇤M , the set of characteristic connections
is isomorphic to the set of 3-forms T 2 �3(M) such that

�4c�1rX⌘ = i(X)T⌘ = p27(i(X)T), 8X 2 X(M).

The last equality may be rewritten as �4c�1r⌘ = 2(T). From the definition of
�48 given in Proposition 5.2 we have: �44(c�1r⌘) = �12 alt(c�1r⌘) = 1

7 (�48�
3�8). Finally, taking into account the eigenvalues of 4 � 2, we get:

T =
1
7
(2�48 �

4
3
�8) = ⇤d� �

4
3
�8 = ��� �

7
6

⇤ (✓ ^ �).

To obtain the second equality we have used the formula for d� from Lemma 5.2.
To check the last one, note that �8 = i(V )� = ⇤(V ⇤ ^ �) = 7

8 ⇤ ✓ ^ �.

Remark 6.2. The Spin(7) structure is balanced if and only if T 2 �3
48(M) and

locally conformally parallel if and only if T 2 �3
8(M).
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Remark 6.3. The equation for balanced structures given in Theorem 4.8 can be
deduced from [12, Theorem 9.1], which states that the Spin(7) structure determined
by ⌘ on a Riemannian manifold (M, g) is balanced for the metric e

6
7 f g if and only

if it verifies the following equations:

rT⌘ = 0, (6.1)

(d f �
1
2
T)⌘ = 0, (6.2)

where rT is the g-metric connection with totally skew-symmetric torsion T. That
is, rT� = rX� + 1

4 i(X)T� for � 2 6(M). This connection has an associated
Dirac operator, which is related to D:

DT� =
7X

i=0
eirT

ei� = D� +
1
4

7X

i=0
ei ^ (i(ei )T)� = D� +

3
4
T�.

Assuming [12, Theorem 9.1], if we suppose that the structure is balanced for the
metric g, equations (6.1) and (6.2) imply that 0 = DT⌘ = D⌘ + 3

4T⌘ = D⌘. Con-
versely if we suppose that D⌘ = 0 and we choose T the torsion of the characteristic
connection, we have obviously that rT⌘ = 0 and that 0 = DT⌘ = D⌘ + 3

4T⌘,
so that T⌘ = 0. According to Proposition 4.7, T 2 �3

48(M) so that structure is
balanced.

7. G2 distributions

In this section we define the notion of a G2 distribution on a Spin(7) manifold in
terms of spinors and we study the torsion of the structure with respect to a suitable
connection on the distribution. Then we relate the Spin(7) structure of the ambient
manifold with the G2 structure of the distribution. This approach enables us to study
G2 structures on submanifolds of Spin(7)manifolds, S1-principal fibre bundles over
G2 manifolds and warped products of manifolds admitting a G2 structure with R.
Our analysis is very similar to the description of G2 structures from a spinorial
viewpoint done in [1], which we briefly recall.

A 7-dimensional Riemannian manifold (Q, g) can be equipped with a G2
structure if it is spin and its spinor bundle 6(Q) admits a unit section ⌘. A cross
product is then constructed from the spinor and is determined by a 3-form 9. De-
note by rQ both the Levi-Civita connection of the manifold and its lift to the spinor
bundle; an endomorphism S of T Q is defined by the condition:

rQ
X ⌘ = S(X)⌘.

The intrinsic torsion is �2
3 i(S)9 [1, Proposition 4.4], so that pure types of G2

structures are given by the G2 irreducible components of End(T Q). It is known
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that End(R7) = �1 � �2 � �3 � �4, where �i are irreducible G2 representations,
defined by:

�1 = hIdi,
�2 = g2,

�3 = Sym20(R7),
�4 = {A : R7 ! R7 : A(X) = X ⇥ S, S 2 R7},

where Sym20(R7) denotes the set of symmetric and traceless endomorphisms. The
dimensions of the previous spaces are 1, 14, 27 and 7 respectively.

If we denote by RQ a G2 reduction of the SO(7) principal bundle P(Q) and
define �i (Q) = RQ ⇥G2 �i , then the pure classes of G2 structures are determined
by the condition S 2 �i (Q). For instance, nearly parallel G2 structures verify
S 2 �1(Q), almost parallel or calibrated are those with S 2 �2(Q), and locally
conformally calibrated are such that S 2 �4(Q). Indeed in the nearly parallel case
it holds that S(X) = �0X for some �0 2 R. Moreover mixed classes are also
relevant, for instance cocalibrated structures verify S 2 �1(Q) � �3(Q).

Taking this into account, we define G2 structures on distributions and charac-
terise the existence of such structures.
Definition 7.1. Let (M, g) be an oriented 8-dimensional Riemannian manifold and
let D be a cooriented distribution of codimension 1. We say that D has a G2 struc-
ture if the principal SO(7) bundle P(D) is spin and the spinor bundle 6(D) admits
a unit section.

Lemma 7.2. Consider an oriented 8-dimensional Riemannian manifold (M,g) and
a cooriented distributionD of codimension 1. Take a unit vector field N perpendic-
ular toD such that T M = hN i �D as oriented bundles. The manifold M is spin if
and only if the bundle P(D) is spin. In this case, the spinorial bundles are related
by 6(D) = 6+(M) and it holds

X ·D � = NX�, if X 2 D, � 2 6(D), (7.1)

where we have suppressed the symbol ·M to denote the Clifford product on M .
Therefore M has a Spin(7) structure if and only if D has a G2 structure.

Proof. The bundle P(D) is a reduction of P(M) because of the following inclusion:

i : P(D) ! P(M), (X1, . . . , X7) ! (N , X1, . . . , X7).

Suppose that P(D) is spin and denote the spin bundle by ⇡D : P̃(D) ! P(D).
Then, we can define the principal Spin(8) bundle P̃(M) = P̃(D) ⇥Spin(7) Spin(8)
and the map:

⇡M : P̃(M) ! P(M), [F̃, '̃] ! Ad('̃)(i(⇡D(F̃))),
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which is a double covering and Ad-equivariant. Therefore, M is spin. Conversely,
if M is spin then the pullback i⇤(P̃(M)) is the spin bundle of P(D).

Moreover, the irreducible 8-dimensional representation of Cl7 which maps the
volume form to the identity can be constructed from the composition

Cl7 ! Cl08
⇢
�! GL(1+),

where the first map is induced by the embedding R7 ! Cl08, v ! e0v, denoting by
(e0, . . . , e7) the canonical basis of R8.

Therefore, the spinor bundle 6 (D) coincides with 6 (M)+ and Clifford
products of vectors and spinors are related by the formula (7.1).

From now on we assume that the manifold (M, g) has a Spin(7) structure �,
constructed from a unit section ⌘ of the spinor bundle6(M)+, as in Proposition 2.4.
We equip M with a distributionD as in Lemma 7.2. We denote by�k(D) the space
of smooth sections of 3kD⇤.
Remarks 7.3. In this situation, we have the following:

1. If � 2 �2k(D) and � 2 6(D) then � ·D � = ��;
2. There is an orthogonal decomposition 6(D) = h⌘i � (D ·D ⌘);
3. The section ⌘ defines a cross product on D by means of:

(X ⇥ Y )⌘ = (X⇤ ^ Y ⇤)⌘ = (XY + g(X,Y ))⌘,

which is determined by 9D(X,Y, Z) = (X⌘, (Y ⇥ Z)⌘) = �(⌘, XY Z⌘);
4. The cross product is determined by 9D = i(N )�. Therefore, using that ⇤� =

� we get � = N⇤ ^ 9D + ⇤D9D.

We equipD with a suitable connection which is determined by the covariant deriva-
tive of the ambient manifold.
Definition 7.4. The covariant derivative of D induced by M , rD, is given by the
expression:

rM
X Y = rDX Y + g(T (X),Y )N , X,Y 2 D,

where T 2 End(D) is given by: 2g(T (X),Y ) = �N (g(X,Y )) � g([X, N ],Y ) �
g([Y, N ], X) + g([X,Y ], N ).

We will decompose T into its symmetric and skew-symmetric parts, which
we callW and L respectively. The connection rD is a metric connection and the
tensor L = �1

2dN
⇤ measures the lack of integrability of the distribution.

We will also denote by rD the lift of this connection to the spinor bundle
6(D). This connection is metric with respect to (·, ·) and behaves as a derivation
with respect to the Clifford product. Hence, rD⌘ 2 h⌘i?, and there is an endo-
morphism of D that we denote by SD such that rDX ⌘ = SD(X)⌘. Let us define
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�i (D) = RD ⇥ �i , where RD is the G2 reduction of P(D) determined by 9D, we
have a splitting of End(D) and we can decompose S according to it:

SD(X) = �Id+ S2 + S3 + S4,

where � 2 C1(M), S2 2 �2(D), S3 2 �3(D), S4 2 �4(D), and let S 2 X(D) be
such that S4(X) = X ⇥ S.

We can relate these components with the Spin(7) structure defined on M . First
of all, since g(rX N ,Y ) = �g(rXY, N ) we get that the connection rM at 6(M)+

in the direction of D is given by:

rM
X ⌘ = rDX ⌘ �

1
2
NT (X)⌘ = NA(X)⌘,

where A = SD � 1
2T . We can decompose L andW according to the splitting of

End(D) into irreducible parts and then decomposeA:

1. L = L2 + L4, where L2 2 �2(D), L4 2 �4(D) and let L 2 X(D) such that
L4(X) = X ⇥ L;

2. W = hId+ W3, where h 2 C1(M), W3 2 �3(D);
3. A = µId+ A2+ A3+ A4, where µ = �� h

2 , A2 = S2� 1
2 L2, A3 = S3� 1

2W3,
A4 = S4 � 1

2 L4. We will also denote A = S � 1
2 L .

We are going to compute ⇤d� in terms of the previous endomorphisms and rDN ⌘.
Our first lemma is deduced from [1, Theorems 4.6,4.8].

Lemma 7.5. Let (X1, . . . , X7) be an orthonormal local frame of D. Then

7X

i=1
XiA(Xi )⌘ = �7µ⌘ � 6N A⌘.

Proof. We will split the endomorphism A into its G2 irreducible components and
then compute each term separately. It is obvious that

P7
i=1 XiµXi⌘ = �7µ⌘.

Moreover,

7X

i=1
Xi (Xi ⇥ A)⌘ =

7X

i=1
Xi (Xi N A � g(Xi , A)N )⌘ = �6N A.

Finally consider the G2-equivariant map, m : D ⌦ D ! 6(D), m(X,Y ) = XY⌘.
By dimensional reasons, its kernel must be �2(D)��3(D). Therefore, if k 2 {2, 3}
we have that:

7X

i=1
Xi Ak(Xi )⌘ = m

 
7X

i=1
(Ak)i j Xi X j

!

= 0,

where we have denoted (Ak)i j the entries of the matrix Ak with respect to the basis
(X1, . . . , X7).
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Remarks 7.6.

1. Since rM
N ⌘ is perpendicular to ⌘ we can take U 2 X(D) such that rM

N ⌘ =
�NU⌘.
In order to compute rM

N ⌘ we may take F = (X0, X1, . . . , X7) a local or-
thonormal frame of M such that N = X0, a lifting F̃ 2 P̃(M) and write
⌘(p) = [F̃, s(p)]. With this notation we have:

rM
X0⌘ =[F̃, ds(X0)] +

1
2

X

0i< j7
g(rX0Xi , X j )Xi X j⌘ (7.2)

=[F̃, ds(X0)] +
1
2

 

X0rX0X0 +
X

1i< j7
g(rX0Xi , X j )Xi X j

!

⌘.

(7.3)

Then, U depends on the local information of the section and rX0Xi ;
2. The Dirac operator of M is

DM⌘ = U⌘ +
7X

i=1
Xi NA(Xi )⌘ = (U � 6A + 7µN )⌘.

Lemma 7.7. Define the forms �2 2 �2(D) and �3 2 �3(D) by:

�2(X,Y ) = g(A2(X),Y ), �3(X,Y, Z) = alt(i(A3)(·)9D)(X,Y, Z).

Then

1. N⇤ ^ i(N )(12 alt(c�1r⌘)) = i(U � 2A)(N⇤ ^ 9D) � 2N⇤ ^ �2;
2. 12 alt(c�1r⌘)|Q = 3i(µN � A)�|Q + 3�3.

Proof. The first equality is a consequence of the symmetric or skew-symmetric
properties of each factor:

12 alt(c�1r⌘)(N ,X,Y ) = � (XY⌘, NU⌘) � (NY⌘,NA(X)⌘)+(NY⌘,NA(X)⌘)

= � i(U)9D(X,Y ) � 2(Y⌘, (A2(X) + X ⇥ A)⌘)

=
�
i(U � 2A)(N⇤ ^ 9D) � 2N⇤ ^ �2

�
(N , X,Y ).

To check the second one, note that 12 alt(c�1r⌘)|Q = 3 alt(i(A(·))9D). We com-
pute separately each term in the decomposition of A. It is evident that
3 alt(i(µId)9D)(X,Y,Z)=3µ9D(X,Y,Z) and 3 alt(i(A3(·))9D)= 3�3. Moreover,
alt(i(A2(·))9D) = 0 because A2 2 �2(Q). Finally, if X , Y and Z are orthonormal
vectors in T Q, then:

i(A4(X))9D(Y, Z) = (X⇥A⌘,Y⇥Z⌘) = (X A⌘,Y Z⌘) = �(A⌘, (X⇥Y⇥Z)⌘).

Therefore, 3 alt(i(A4(·))9D)(X,Y, Z) = �3(A⌘, X ⇥ Y ⇥ Z⌘).
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From Lemmas 7.5 and 7.7 and the decomposition of ⇤d� obtained in Proposi-
tion 5.2 we conclude:
Proposition 7.8. Let U 2 X(D) such that rM

N ⌘ = �NU⌘ and define the forms
�2 2 �2(D) and �3 2 �3(D) by:

�2(X,Y ) = g(A2(X),Y ), �3(X,Y, Z) = alt(i(A3)(·)9D)(X,Y, Z).

Then, the pure components of ⇤d� in terms of the G2 structure are:

(⇤d�)48 =
2
7
�
�4i(A +U)N⇤ ^ 9 + 3i(A +U) ⇤D 9D

�
+ 4N⇤ ^ �2 � 6�3,

(⇤d�)8 =
8
7
i(U � 6A + 7µN )(N⇤ ^ 9D + ⇤D9D).

7.1. Hypersurfaces

Consider an 8-dimensional Spin(7) manifold (M, g), whose Spin(7) form is con-
structed from a unit section ⌘ of the spinor bundle 6(M)+, as in Definition (2.4).
Let Q be an oriented hypersurface and take a unit vector field N such that T M =
hN i � T Q as oriented vector bundles.

The tubular neighbourhood theorem guarantees the existence of a cooriented
distribution D defined on a neighbourhood O of Q such that D|Q = T Q. The
coorientation is determined by a unit extension of the normal vector field that we
also denote by N . Both D and Q have G2 structures determined by the spinor ⌘;
we are going to relate them using Proposition 7.8 in the manifold O .

Note that the Levi-Civita connection of the hypersurface Q is rD|Q . More-
over, L|Q = 0 andW|Q is the Weingarten operator. Therefore, the restriction of
SD at Q is the endomorphism S of the submanifold Q. Decompose S|Q andW|Q
with respect to the G2 splitting of End(T Q):
1. S = �Id+ S2 + S3 + S4;
2. W|Q = H Id+ W3,
where � 2 C1(M), S2 2 �2(Q), S3,W3 2 �3(Q), S4 2 �4(Q) and H 2 C1(Q)
is the mean curvature. We will also denote by S the vector field on Q such that
S4(X) = X ⇥ S.
Corollary 7.9. Let U 2 X(Q) such that rM

N ⌘|Q = �NU⌘ and 9Q = i(N )�.
Define the forms �2 2 �2(Q) and �3 2 �3(Q) by:

�2(X,Y ) = g(S2(X),Y ), �3(X,Y, Z) = alt(i((S3 �
1
2
W3)(·))9D)(X,Y, Z).

Then, the pure components of ⇤d� in terms of the G2 structure are:

(⇤d�)48 =
2
7
�
�4i(S +U)N⇤ ^ 9Q + 3i(S +U) ⇤Q 9Q

�
+ 4N⇤ ^ i⇤�2 � 6�3,

(⇤d�)8 =
8
7
i
✓
U � 6S + 7(� �

1
2
H)N

◆
(N⇤ ^ 9Q + ⇤Q9Q).
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Remark 7.10. Note that the condition rN⌘|Q = �NU⌘ does not depend on the
extension of the vectors. Moreover, we can computeU taking into account equation
(7.2). The terms involved are extrinsic and not encoded in S andW .

Therefore, the Spin(7) type of the ambient manifold provides relations between
the G2 type of the hypersurface, the vector U and the Weingarten operator. Before
stating the result, we recall that a hypersurface is said to be totally geodesic if
W = 0, totally umbilic if W3 = 0 and minimal if H = 0.

Theorem 7.11. Let (M, g) be a Riemannian manifold endowed with a Spin(7)
structure determined by a spinor ⌘. Let Q be an oriented hypersurface with normal
vector N and let U 2 X(Q) be such that rN⌘|Q = �NU⌘.

1. If M has a parallel Spin(7) structure, then Q has a cocalibrated G2 structure.
Moreover:
1.1 S = 0 if and only if Q is totally geodesic;
1.2 S 2 �1(Q) if and only if Q is totally umbilic;
1.3 S 2 �3(Q) if and only if Q is a minimal hypersurface;

2. If M has a locally conformally parallel Spin(7) structure, then S 2 �1(Q) �
��3(Q) � �4(Q). Indeed:
2.1 S 2 �1(Q) if and only if U = 0 and Q is totally umbilic;
2.2 S 2 �1(Q) � �4(Q) if and only if Q is totally umbilic;

3. If M has a balanced Spin(7) structure, then:
3.1 S 2 �2(Q) � �3(Q) if and only if U = 0 and Q is a minimal hypersurface;
3.2 S 2 �1(Q) � �2(Q) � �3(Q) if and only if U = 0;
3.3 S 2 �2(Q) � �3(Q) � �4(Q) if and only if Q is a minimal hypersurface.

Proof. The parallel case follows from the equalities U = S = 0, S2 = 0, 2� = H
and 2S3 = W3. The locally conformally parallel case follows from the equalities
U = �S, S2 = 0 and 2S3 = W3, which imply that S 2 �1(Q) � �2(Q) � �3(Q).
Finally the balanced case follows from U = 6S and 2� = 7H .

7.2. Principal bundles over a G2 manifold

Let Q be a G2 manifold and let ⇡ : M ! Q be a G = R or G = S1 principal
bundle over Q; identify its Lie algebra g with R.

Define the vertical field N (p) = d
dt

�
�
�
t=0

(p exp(t)). A connection ! : T M ! g

defines a horizontal distributionH. Consider the metric on M such that:

1. The map d⇡ : Hp ! T⇡(p)Q is an isometry;
2. The vector N (p) is unitary and perpendicular toHp.

The projection d⇡ induces a map p : P(H) ! P(Q) so that the pullback to P̃(Q)

defines a spin structure P̃(H) on P(H). The map p̃ : P̃(H) ! P̃(Q), which is
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canonically defined, has the property that p̃('̃ F̃) = '̃ p̃(F̃) if '̃ 2 Spin(8), inducing
a map between the spinorial bundles, that we denote by p̄. Note that this map yields
isomorphisms 6(H)p ! 6(Q)⇡(p). Moreover, let X 2 T Q and denote by Xh its
horizontal lift, then p̄(Xh ·H �) = X p̄(�). Therefore, a section ⌘̄ : Q ! 6(Q)
allows us to define a section ⌘ : M ! 6(H) by means of the expression p̄(⌘) = ⌘̄.
Denote by 9Q the G2 form on Q, then 9D = ⇡⇤9Q .

Furthermore, one can check that rHXhY
h = (rQ

X Y )h . Hence, if we take S 2

End(Q) such that rQ
X ⌘̄ = S(X)⌘, we get that the endomorphism of the distribution

SD is the lifting of S , that is:

rHXh⌘ = S(X)h⌘.

Therefore the distribution H and the manifold Q have the same type of G2 struc-
ture. In order to classify the Spin(7) structure on M , denote the curvature of the
connection ! by:

L(X,Y ) = [Xh,Y h] � [X,Y ]h 2 hN i, X,Y 2 T Q.

SinceL(X,Y ) 2 hN iwe also denote byL the 2-form that we obtain contracting the
tensor with the metric. As a skew-symmetric endomorphism, we can decompose
L = L̄2 + L̄4 where L̄4(X) = X ⇥ L̄ for some vector field L̄ 2 X(Q).

Corollary 7.12. Suppose that rQ
X ⌘̄ = S(X) ·Q ⌘̄ with S(X) = �Id+ S2+ S3+ S4

where � 2 C1(Q), S2 2 �2(Q), S3 2 �3(Q), S4 2 �4(Q) and let S 2 X(Q) be
such that S4(X) = X ⇥ S. Define �2 2 �2(Q) and �3 2 �3(Q) by:

�2(X,Y ) = g
✓
S2(X) �

1
4
L̄2(X),Y

◆
, �3(X,Y, Z) = alt(i(S3(·))9Q)(X,Y, Z).

The pure components of ⇤d� in terms of the G2 structure are:

(⇤d�)48 =
2
7

✓
�4i(Sh +

1
2
L̄h)N⇤ ^ ⇡⇤9Q + 3i(Sh +

1
2
L̄h)⇡⇤(⇤Q9Q)

◆

� 4N⇤ ^ ⇡⇤�2 + 6⇡⇤�3,

(⇤d�)8 =
8
7
i
✓
15
4
L̄h � 6Sh + 7�N

◆
(N⇤ ^ ⇡⇤9Q + ⇡⇤(⇤Q9Q)).

Proof. The result follows immediately from Proposition 7.8 once we check that
W = 0, g(L(X),Y ) = 1

2⇡
⇤L(X,Y ), and U = 3

4 L̄
h .

First of all, since the connection ! is left-invariant we have that [Xh, N ] = 0
if X 2 X(Q). Thus,W = 0. Moreover, L(Xh)(Y h) = 1

2L(X,Y ). Furthermore, let
F = (X1, . . . , X7) be a local frame ofH which lifts some local frame of T Q. Take
a lift F̃ 2 P̃(H) and write ⌘(p) = [F̃, s(p)]. We denote X0 = N and compute U
using the formula (7.2).
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By definition, if ⌘̄(⇡(p)) = [ p̃(F̃(p)), s̄(⇡(p))] then s(p) = s̄(⇡(p)) so that
dsp(N ) = 0. Besides, according to Koszul formulas we have:

rN N = 0,

g(rN Xi , X j ) = �
1
2
g([Xi , X j ], N ) = �

1
2
g(N ,L(d⇡(Xi ), d⇡(X j ))).

Therefore, if we define �i (X,Y ) = g(L̄i (X),Y ), for i 2 {2, 4}, then:

rN⌘ = �
1
4
⇡⇤L⌘ = �

1
4
⇡⇤�4⌘ = �

3
4
N L̄h⌘,

where we have used that ⇡⇤�2⌘ = 0 because g2 ⇢ Spin(7) = 32
21 and ⇡⇤�4 =

�i(N )i(L̄h)� so that ⇡⇤�4⌘ = 3N L̄h⌘, as we noted in the proof of Lemma 3.1.

7.3. Warped products

We analyze Spin(7) structures on warped products of a G2 manifold with R. Recall
that a warped product of two Riemannian manifolds (X1, g1) and (X2, g2) is (X1⇥
X2, g1 + f1g2) where f1 : X1 ! R is a smooth function. Therefore, we have to
distinguish two cases.

7.3.1.

Consider a G2 manifold (Q, g) and a smooth function f : R ! R. Define the
Riemannian manifold (M = Q ⇥ R, e2 f g + dt2). This is the so-called spin cone.

The distribution D = T Q obviously admits a G2 structure. The spinor bundle
is given by 6(M)+ = 6(T Q ⇥ R) = 6(Q) ⇥ R and Clifford products are related
by (X ·Q�, t) = e� f X ·D (�, t) = e� f @

@t X (�, t) if X 2 T Q. In the last expression,
we have suppressed the symbol · to denote the Clifford product on M .

A unit section ⌘ is constructed from a section ⌘̄ : Q ! 6(Q) by defining
⌘ : M ! 6(D), ⌘(x, t) = (⌘̄(x), t). If we denote by 9Q the G2 form on Q, then
9D = e3 f ⇡⇤9Q and ⇤D(9D) = e4 f ⇤Q (9Q). In addition, since rDX Y = rQ

X Y
when X,Y 2 X(Q), we have that rDX ⌘ = e� f S(X) ·D ⌘ and rQ

X ⌘̄ = S(X)⌘̄. That
is, SD = e� f S .

Corollary 7.13. Suppose that rQ
X ⌘̄ = S(X) ·Q ⌘̄ with S(X) = �Id+ S2+ S3+ S4

where � 2 C1(Q), S2 2 �2(Q), S3 2 �3(Q), S4 2 �4(Q). Let S 2 X(Q) be such
that S4(X) = X ⇥ S. Denote by 9Q the G2-form on Q and define �2 2 �2(Q) and
�3 2 �3(Q) by:

�2(X,Y ) = g (S2(X),Y ) , �3(X,Y, Z) = alt(i(S3(·))9Q)(X,Y, Z).
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The pure components of ⇤d� in terms of the G2 structure are:

(⇤d�)48 =
2
7

⇣
�4e2 f i(S)dt ^ ⇡⇤9Q + 3e3 f i(S)⇡⇤(⇤Q9Q)

⌘

+ 4e f dt⇤ ^ ⇡⇤�2 � 6e2 f ⇡⇤�3,

(⇤d�)8 =
8
7
i
✓
�6e� f S+7

✓
�e� f +

1
2
f 0
◆

@

@t

◆
(e3 f dt ^ ⇡⇤9Q+e4 f ⇡⇤(⇤Q9Q)).

Proof. The result follows immediately from Proposition 7.8 once we check that
W = � f 0 I d, L = 0 and U = 0.

Since the distribution D is integrable, we have that L = 0. Take an orthonor-
mal frame of T Q, (X1, . . . , X7) and note that W(Xi , X j ) = � f 0e2 f �i j so that
W = � f 0. Moreover, using the Koszul formulas we get:

r @
@t

@

@t
= 0 = r @

@t
(e� f Xi ).

Therefore, using formula (7.2) we conclude that r @
@t

⌘ = 0.

7.3.2.

Consider a G2 manifold (Q, g) and a smooth function f : Q ! R. Define the
Riemannian manifold (M = Q ⇥ R, g + e2 f dt2).

The distribution D = T Q obviously admits a G2 structure. The spinor bundle
is given by 6(M)+ = 6(T Q ⇥ R) = 6(Q) ⇥ R and the Clifford products are
related by (X ·Q �, t) = X ·D (�, t) = e� f @

@t X (�, t) if X 2 T Q. We have
suppressed again the symbol · to denote the Clifford product on M .

A unit section ⌘ is constructed from a section ⌘̄ : Q ! 6(Q) by defining
⌘ : M ! 6(D), ⌘(x, t) = (⌘̄(x), t). If we denote by 9Q the G2 form on Q, then
9D = ⇡⇤9Q and ⇤D(9D) = ⇤Q(9Q). In addition, since rDX Y = rQ

X Y when
X,Y 2 X(Q) , if we take S 2 End(T Q) with rQ

X ⌘̄ = S(X)⌘̄, then SD = S .

Corollary 7.14. Suppose that rQ
X ⌘̄ = S(X) ·Q ⌘̄ with S(X) = �Id+ S2+ S3+ S4

where � 2 C1(Q), S2 2 �2(Q), S3 2 �3(Q), S4 2 �4(Q). Let S 2 X(Q) be such
that S4(X) = X ⇥ S. Denote by 9Q the G2-form on Q and define �2 2 �2(Q) and
�3 2 �3(Q) by:

�2(X,Y ) = g (S2(X),Y ) , �3(X,Y, Z) = alt(i(S3(·))9Q)(X,Y, Z).

The pure components of ⇤d� in terms of the G2 structure are:

(⇤d�)48 =
2
7

✓
�4i

✓
S+

1
2
grad( f )

◆
e f dt ^ ⇡⇤9Q + 3i (S+grad( f ))⇡⇤(⇤Q9Q)

◆

+ 4e f dt ^ ⇡⇤�2 � 6⇡⇤�3,

(⇤d�)8 =
8
7
i
✓
1
2
grad( f ) � 6S + 7�e� f @

@t

◆
(e f dt ^ ⇡⇤9Q + ⇡⇤(⇤Q9Q)).
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Proof. The result follows immediatly from Proposition 7.8 once we check that
W = 0, L = 0 and U = 1

2 grad( f ).
Since the distribution D is integrable, we have that L = 0. Take an orthonor-

mal frame of T Q, (X1, . . . , X7) and note thatW(Xi , X j ) = 0. Moreover, using
the Koszul formulas we get:

g(re� f @
@t
Xi , X j ) = 0,

g
✓

re� f @
@t
e� f @

@t
, Xi

◆
= �Xi ( f ).

Therefore, using formula (7.2) we conclude that rN⌘=�1
2e

� f � @
@t
�
grad( f )⌘.

8. Spin(7) structures on quasi Abelian Lie algebras

As an application of the previous section, we are going to study Spin(7) structures
on quasi Abelian Lie algebras. The geometric setting will be that of a simply con-
nected Lie group with an invariant Spin(7) structure, endowed with an integrable
distribution which inherits a G2 structure. The integral submanifolds of the distribu-
tion are actually flat, so that the G2 distribution is parallel and these submanifolds
have non-trivial Weingarten operators. In some cases, finding a lattice in the Lie
group will allow us to give compact examples.

First of all, let us recall the following definition:
Definition 8.1. A Lie algebra g is called quasi Abelian if it contains a codimension
1 Abelian ideal h.

The information of g is then encoded in ad(x) for any vector x transversal to h.
The following result shows that h is unique in g with exception of the Lie algebras
Rn and L3 � Rn�3, where L3 is the Lie algebra of the 3-dimensional Heisenberg
group, which is generated by x ,y,z with relations [x, y] = z and [x, z] = [y, z] = 0.

Lemma 8.2. Let g be a n-dimensional quasi Abelian Lie algebra with n � 3 . If g
is not isomorphic to Rn or L3 � Rn�3, then it has a unique codimension 1 Abelian
ideal. Moreover, codimension 1 Abelian ideals on L3 � Rn�3 are parametrized by
RP1.
Proof. Suppose that g is not isomorphic toRn and let h be a codimension 1 Abelian
ideal with a transversal vector x . Let h0 be a codimension 1 Abelian ideal different
from h. If u 2 h is such that x + u 2 h0 and v 2 h \ h0, then 0 = [x + u, v] =
ad(x)(v). Since h \ h0 is (n � 2)-dimensional and g is not Abelian we conclude
that h \ h0 = ker(ad(x)|h) and ad(x)(h) = hzi for some z 2 h. Take y 2 h with
[x, y] = z and observe that z 2 [g, g] ⇢ h0, that is, z 2 h \ h0 and [x, z] = 0.
Therefore, g is isomorphic to L3 � Rn�3.

Moreover, from the discussion above we get that h0 = hv, zi�R5 for some v 2
hx, yi. Conversely, all the subspaces of the previous form are actually codimension
1 Abelian ideals. Therefore, they are parametrized by RP1.
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An invariant Spin(7) structure on a Lie group is determined by the choice
of a Spin(7) form �, which is in turn determined by a direction of the spinorial
space 1+.

Define the setQA with elements (g, h, g, ⌫g,�) where g is a non-trivial quasi
Abelian Lie algebra with a marked codimension 1 Abelian ideal h, g is a metric
on g, ⌫g is a volume form on g and � is a Spin(7) structure on (g, g, ⌫g). We
will say that '0 : (g, h, g, ⌫g,�) ! (g0, h0, g0, ⌫g0,�0) is an isomorphism if ' is an
isomorphism of Lie algebras such that '0(h) = h0, ('0)⇤g0 = g, '⇤⌫g0 = ⌫g and
'⇤�0 = �.

Lemma 8.3. The setQA of isomorphisms classes ofQA is given by:

QA =
⇣
(End(R7) � {0}) ⇥ P(1+)

⌘
/O(7),

where O(7) acts via

' · (E, [⌘]) = (det(')' � E � '�1, [⇢('̃)⌘]), (8.1)

where '̃ is a lifting to Spin(8) of the unique '0 2 SO(8) such that '0|R7 = '.

Proof. A map (End(R7) � {0}) ⇥ P(1+) ! QA can be defined as follows. Take
(E, ⌘̄) and define the Lie structure on R8 with oriented basis (e0, . . . , e7) such that
R7 = he1, . . . , e7i is a maximal Abelian ideal and E = ad(e0)|R7 . We will en-
dow this algebra with the canonical metric, the standard volume form and the spin
structure determined by ⌘.

It is obvious that a representative of each element of QA can be chosen to lie
in the image of our map. Moreover, if two structures given by (E, ⌘̄) and (E 0, ⌘̄0)
are isomorphic via '0, we have the following:

1. '0(e0) = ±e0 and ' = '0|R7 2 O(7), since '0 preserves the metric and the
orientation;

2. Denote by '̃ any lifting of '0 to Spin(8). Since ('0)⇤�0 = �, we have that
Stab(�) = ('0)�1 � Stab(�0) � ('0), thus Stab(⌘) = '̃�1 Stab(⌘0)'̃. But
Stab(⇢('̃)�1⌘0) = '̃�1 Stab(⌘0)'̃, so that ⌘ = ±⇢('̃)�1⌘0;

3. ' � E = det (')E 0 � ', since '0 is an isomorphism of Lie algebras.

From now on we denote by (R8,E, [⌘]) to (g, h, g, ⌫,�) 2 QAwhere g is the
Lie algebraR8 with maximal Abelian ideal h = R7, ad(e0) = E , g is the canonical
metric, ⌫ is the canonical volume form and the Spin(7) form� is determined by [⌘].
Remark 8.4. To obtain an analogue of Lemma 8.3, suppressing the condition
'0(h) = h0 in the definition of isomorphism, we have to treat separatedly the case of
the Lie algebra L3 � R5. For this purpose, define E(x) = e⇤1(x)e2 and observe that
Lemmas 8.2 and 8.3 allow us to suppose that any isomorphism of structures with un-
derlying Lie algebra L3�R5 is represented by '0 : (R8, �E, [⌘]) ! (R8, �0E, [⌘0]),
for some �, �0 6= 0.
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The set '0(R7) is a codimension 1 Abelian ideal, hence Lemma 8.2 guarantees
that '0(e0) = cos(✓)e0 + sin(✓)e1. Denote R6 = he2, . . . , e7i and let v, v0 2 R6
be such that '0(v) = �µ sin(✓)e0 + µ cos(✓)e1 + v0. Then, 0 = '0[e0, v] =
[cos(✓)e0 + sin(✓)e1,�µ sin(✓)e0 + µ cos(✓)e1 + v0] = µ�0e2. Therefore µ = 0,
R6 is '0-invariant and '0(e1) = ⌥ sin(✓)e0 ± cos(✓)e1.

Denote by '1 the restriction of '0 to he0, e1i and note that: �'0(e2) =
'0[e0, e1] = ['0(e0),'0(e1)] = det('1)�0e2. Hence '0(e2) = det('1)�0

� e2 and
|�| = |�0|. Then, '0 is determined by '1 and '2 = '0|R5 , where R5 = he3, . . . , e7i,
under the conditions �0

� det('2) = 1 and '0(e2) = det('1)�0

� e2.
The condition over the spinor is obviously ⌘0 = ±⇢('̃)⌘, where '̃ is any lifting

of '0 to Spin(8).

In the following result we describe the action which appears in Lemma 8.3.

Lemma 8.5. Under the action of O(7) on End(R7),

' · E = det (')' � E � '�1, (8.2)

the sets hIdi, Sym20(R7) and 32R7 are parametrized respectively by:

1. [0,1);

2. {(�1, . . . , �7) : �i � j+1,
7P

j=1
�i =0}/⇠, where (�1, . . . , �7) ⇠ (��7, . . . ,��1);

3. {(�1, �2, �3) : 0  �1  �2  �3}.

Proof. The first claim is obvious and the second follows from the fact that each
symmetric matrix has an oriented orthonormal basis of ordered eigenvectors. Note
also that �Id · diag(�1, . . . , �7) = diag(��7, . . . ,��1), hence (�1, . . . , �7) is re-
lated to (��7, . . . ,��1).

If E is a skew-symmetric endomorphism ofR7 we can find a Hermitian basis in
C7 of eigenvectors and the eigenvalues are of the form (��3i,��2i, �1i, 0, �1i, �2i,
�3i) with 0  � j  � j+1. Moreover, the real parts of the eigenspaces associated
to �� j i and � j i coincide. Thus, we can find a positive oriented orthonormal basis
(v1, w1, v2, w2, v3, w3, u) of R7, such that E(v j ) = � jw j and E(u) = 0. Finally
note that (�1, �2, �3) are invariantly defined in the orbit.

In Lemma 8.3, the second factor of the product of QA depends on Stab(E)
under the action defined by (8.2) and it is determined by the number of equal eigen-
values. Now we compute the invariants that we defined for G2 distributions on R7:

Proposition 8.6. Consider (R8,E, [⌘]) 2 QA and decompose E according to the
G2 structure induced by ⌘, that is E = hId+ E2+ E3+ E4, where h 2 R, E2 2 �2,
E3 2 �3, E4 2 �4 and E4(X) = X⇥E for some E 2 R7. Define9,�3 2 33T ⇤R7
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by 9 = �|R7 and �3(X,Y, Z) = alt(i(E3(·))9)]. We have:

(⇤d�)48 =
2
7

✓
6i(E)e0 ^ 9 �

9
4
i(E) ⇤R7 9

◆
+ 6�3,

(⇤d�)8 = �

✓
12
7
E + 4he0

◆
(e0 ^ 9 + ⇤R79).

Proof. The result follows immediately from Proposition 7.8 once we check that:
µ = �1

2h, A2 = 0, A3 = �1
2E3, A = 0 and U = �3

2E .
To obtain this, first observe that rh⌘ = 0 and L = 0 because h is an Abelian

ideal. From the formula of the Weingarten operator we get: W = hId + E3. To
compute U we use again equation (7.2), obtaining that:

rN⌘ =
3
2
e0E⌘,

since re0e0 = 0 because h is an ideal and re0e j = (E2 + E4)(e j ) if j > 0.

In the next result we characterise in terms of Lemma 8.5 the type of Spin(7)
structure on quasi Abelian Lie algebras. For this purpose, recall that a Lie algebra
is called unimodular if the volume form is not exact. In the case of the Lie algebra
(R8,E), it is equivalent to say that E is traceless.

Theorem 8.7. Consider the Lie algebra (R8,E) endowed with the standard metric
and volume form. Denote by E13 and E24 the symmetric and skew-symmetric parts
of the endomorphism E 6= 0. Then, the Lie algebra admits a Spin(7) structure of
type:

1. parallel, if and only if E13 = 0 and E24 is associated to (�1, �2, �1 + �2) with
0  �1  �2, �2 > 0 as in Lemma 8.5;

2. locally conformally parallel and non-parallel if and only if E13 = hId with
h 6= 0 and E24 is associated to (�1, �2, �1+�2) with 0  �1  �2, as in Lemma
8.5;

3. balanced if and only if it is unimodular and E24 is associated to (�1, �2, �1+�2)
with 0  �1  �2, as in Lemma 8.5.

Moreover, if E24 6= 0 then it admits a Spin(7) structure of mixed type.

Proof. We identify E24 with a 2-form � which can be written with respect to a
positive oriented orthonormal basis (X1, . . . , X7) of R7 as � = �1X23 + �2X45 +
�3X67, where 0  � j  � j+1 and Xi j = X⇤

i ^ X⇤
j .

Due to Proposition 8.6, to prove the first part we have to check that under the
assumption E24 6= 0, the existence of a spinor ⌘ such that � ⌘ = 0 is equivalent to
the fact that E24 is associated to (�1, �2, �1 + �2) with 0  �1  �2. This spinor
exists if and only if ⇢7(�1X2X3 + �2X4X5 + �3X6X7) is non-invertible for some
8-dimensional real irreducible representation ⇢7 : Cl7 ! End(R8) which maps the
volume form ⌫7 to the identity, since they are all equivalent [16, Proposition 5.9].
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It is known that the two distinct irreducible representations of Cl7 can be con-
structed from the octonions O [16, page 51]. Specifically, those are the exten-
sion to Cl7 of the maps ⇢✓ : R7 ! End(R8), ⇢✓ (v)(x) = ✓vx , where ✓ = ±1
and R7 is viewed as the imaginary part of the octonions. Define the isometry '
of R7 which maps Xi to ei and note that the volume form is fixed by the ex-
tension of ' to the Clifford algebra. The extensions of ⇢✓ and ' to Cl7 are de-
noted in the same way. We check the previous condition using the representation
⇢7 = ⇢✓ � ' : Cl7 ! End(R8), taking ✓ such that ⇢✓ (⌫7) = Id. The determinant of
⇢7(�1X2X3 + �2X4X5 + �3X6X7) is given by:

(�1 + �2 + �3)
2(�1 + �2 � �3)

2(�1 � �2 � �3)
2(�1 � �2 + �3)

2.

Since �1  �2  �3, the endomorphism is non-invertible if and only if �3 =
�2 + �1.

Finally, if E24 6= 0 then ⇢7(�1X2X3 + �2X4X5 + �3X6X7) 6= 0 so that there
is a spinor ⌘ such that E 6= 0; Proposition 8.6 guarantees that ⌘ induces a Spin(7)
structure of mixed type.

Recall that solvmanifolds are compact quotients G/0, where G is a simply
connected solvable Lie group and 0 is a discrete lattice. This forces the Lie algebra
g of G to be unimodular [20, Lemma 6.2]. Thefore, using Proposition 8.6, we
conclude the following:

Corollary 8.8. There exists no quasi Abelian solvmanifold with an invariant locally
conformally parallel and non-parallel Spin(7) structure.

Of course, a torus is solvmanifold which admits a parallel Spin(7) structure.

Corollary 8.9. If (R8,E) is a quasi Abelian Lie algebra such that E is skew-sym-
metric, then it is flat. In particular, quasi Abelian Lie algebras which admit an
invariant parallel Spin(7) structure are flat.

Proof. Let (R8,E) be a quasi Abelian Lie algebra and denote by E13 and E24 the
symmetric and skew-symmetric parts of E . It is straightforward to check that if
i, j > 0 then:

re0e0 = 0, re0e j = E24(e j ), rei e0 = �E13(ei ), rei e j = g(E13(ei ), e j )e0.

From this, one can deduce that if i, j, k > 0, then the curvature tensor is given by:

R(e0, e j )e0 = � (E24 � E13 + E13 � E24)(e j ),
R(e0, e j )ek = � g(E13(ek), (E + E24)(e j ))e0,
R(ei , e j )e0 = 0,
R(ei , e j )ek = g(E13(e j ), ek)E13(ei ) � g(E13ei , ek)E13(e j ).

Therefore, if E is skew-symmetric then the Lie group is flat.
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Examples

Let g be a quasi Abelian Lie algebra determined by an endomorphism E . Consider
the unique simply connected Lie group G whose Lie algebra is g. The split exact
sequence of Lie algebras 0 ! h ! g ! g/h ! 0 lifts to a split exact sequence
of Lie groups 0 ! (R7,+) ! G ! (G/R7 = R,+) ! 0. This splitting
and the conjugation ✏ on G by the elements of (R,+), provide an isomorphism
(R,+) n✏ (R7,+). Therefore d

dt
�
�
t=sd(✏(t)) = sE , so that d(✏(t)) = exp(tE) =

✏(t), using that the exponential of R7 is the identity.

A nilmanifold with a balanced and a locally conformal balanced Spin(7) struc-
ture.

Define the endomorphism of R7

E =

0

B
B
B
B
B
B
B
@

0 �1 0 0 0 0 0
0 0 �2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 �1 0 0
0 0 0 0 0 �1 0
0 0 0 0 0 0 �1
0 0 0 0 0 0 0

1

C
C
C
C
C
C
C
A

,

and consider the quasi Abelian Lie algebra (R8,E). Note that this is a nilpotent Lie
algebra with (de0, de1, de2, . . . , de7) = (0, e02, 2e03, e04, e05, e06, e07, 0), where
d�(X,Y ) = ��([X,Y ]).

The symmetric part of E is traceless and the eigenvalues of its skew-symmetric
part are of the form (�1, �2, �1 + �2). Therefore, Theorem 8.7 guarantees the exis-
tence of an invariant Spin(7) structure of type balanced and other invariant Spin(7)
structure which is mixed. To avoid computing the eigenvalues, one can observe
that if we take the standard form �0 in R8, determined by a spinor ⌘, it holds that
e2e3⌘ = �e4e5⌘ = �e6e7⌘ and e1e2⌘ = �e5e6⌘. Therefore, if we identify the
skew-symmetric part of E with the 2-form � = e23 + 1

2 (e
12 + e45 + e56 + e67),

we get that � ⌘ = 0. Therefore, the 4-form associated to the structure is the stan-
dard �0.

On some nilpotent Lie algebras, the existence of a lattice is guaranteed by
general theorems [17]. This case is really simple and we can compute it explicitly.
The matrix of the endomorphism exp(tE) is:

0

B
B
B
B
B
B
B
B
@

1 �t t2 0 0 0 0
0 1 �2t 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 �t t2

2 � t3
6

0 0 0 0 1 �t t2
2

0 0 0 0 0 1 �t
0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
A

.
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If we define 0=6Ze0⇥✏ (Ze1⇥Ze2⇥ · · ·⇥Ze7), then G/0 is a compact manifold
with ⇡1(G/0) = 0 which inherits both a balanced and a mixed Spin(7) invariant
structure.

Moreover, we claim that G/0 is not diffeomorphic to Q ⇥ S1 for any 7-
dimensional submanifold Q. Since b1(G/0) = 2, it is sufficient to prove that
if a nilmanifold G 0/00 is diffeomorphic to Q ⇥ S1 then, b1(Q ⇥ S1) � 3, or
equivallently, b1(Q) � 2. This assertion turns out to be true because we can
check that Q is homotopically equivalent to a nilmanifold. On the one hand, Q
is an Eilenberg-MacLance space K (1,⇡1(Q)), because G 0 is contractible. On the
other hand a group is isomorphic to a lattice of a nilpotent Lie group if and only
if it is nilpotent, torsion-free and finitely generated [21, Theorem 2.18]. Since
00 = ⇡1(G 0/00) = ⇡1(Q) ⇥ Z, both ⇡1(Q) and 00 verify the conditions listed
above. Thus, there is a nilmanifold Q0 such that ⇡1(Q0) = ⇡1(Q), which is an
Eilenberg-MacLane space K (1,⇡1(Q)). Therefore, Q0 and Q have the same ho-
motopy type and b1(Q) = b1(Q0) � 2, because Q0 is a nilmanifold.

This nilmanifold has also a stict locally conformally balanced Spin(7) structure
(see Definition 9.1), a structure of mixed type with closed and non-exact Lee form.
According to Theorem 8.6, if we show that there exists a spinor ⌘ and � 6= 0 such
that � ⌘ = ��e7⌘, then the Lee form of the Spin(7) structure determined by ⌘ is
µe7 for some µ 2 R and d(µe7) = 0. Take the octonionic representation ⇢, which
extends to Cl7 the map ⇢ : R7 ! End(R8), ⇢(v)(x) = vx where R7 is viewed as
the imaginary part of the octonions.

The previous condition is then equivalent to (⇢(e7)⇢(� )��Id)⌘ = 0 for some
⌘ 2 R8, that is, � 6= 0 is a real eigenvalue of ⇢(e7)⇢(� ). Computing this condition
we get:
1. The eigenvalue �+ =

p
3 has associated unit eigenvectors

⌘1+ = 1p
15

(0,�
p
3, 0,�

p
3, 0, 3, 0, 0) and

⌘2+ = 1p
75

(�
p
3, 0, 3

p
3, 0,�6, 0, 3, 0);

2. The eigenvalue �� = �
p
3 has associated unit eigenvectors

⌘1� = 1p
15

(0,�
p
3, 0,

p
3, 0, 3, 0, 0) and

⌘2� = 1p
75

(
p
3, 0,�3

p
3, 0,�6, 0, 3, 0).

The 4-form associated to ⌘1+ is �0 = e0 ^ 9 + ⇤9, where ⇤ is the Hodge star of
the canonical metric on R7 and:

9 = e12 ^

 

�
1
5
e3 � 2

p
3
5
e5 + 2

p
3
5
e7
!

� 2
p
3
5
e13 ^ (e4 + e6)

�
1
5
e14 ^ (3e5 + 2e7) �

2
5
e156 +

3
5
e167

� 2
p
3
5
e23(e5 + e7) + e246 +

1
5
e257 +

1
5
e34 ^ (�2e5 + 3e7)

�
3
5
e356 �

2
5
e367 � 2

p
3
5
e457 + 2

p
3
5
e567.
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A compact manifold with a parallel and a mixed Spin(7) structure

Take the same spinor and basis of R7 as the previous example. Consider the skew-
symmetric endomorphism such that E(e2) = e3, E(e4) = e5 and E(X) = 0 on
he2, e3, e4, e5i?. The rank of this matrix is two and it is associated to (0, 1, 1).
Therefore, Theorem 8.7 guarantees the existence of a parallel invariant Spin(7)
structure and other invariant Spin(7) structure which is mixed. The matrix of the
endomorphism exp(tE2) in the previous basis is:

0

B
B
B
B
B
B
B
@

1 0 0 0 0 0 0
0 cos(t) sin(t) 0 0 0 0
0 � sin(t) cos(t) 0 0 0 0
0 0 0 cos(t) � sin(t) 0 0
0 0 0 sin(t) cos(t) 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
A

.

If t 2 ⇡Z, the previous matrix has integers coefficients so that � = ⇡Ze0 ⇥✏

(Ze1⇥Ze2⇥ · · ·⇥Ze7) is a subgroup. Moreover, G/0 is a compact manifold with
⇡1(G/0) = 0 and inherits from G both a parallel invariant Spin(7) structure and a
mixed invariant one.

According to Remark 8.9, this manifold is flat. It is the mapping torus of
exp(⇡E) : X ! X , where X is a 7 torus. Indeed, since exp(⇡E)2 = Id, the 8-torus
is a 2-fold connected covering of G/0.

9. Balanced and locally conformally balanced structures on quasi Abelian
Lie algebras

In this section we focus on invariant structures on quasi Abelian nilpotent Lie alge-
bras. As Corollary 8.8 states, a locally conformally calibrated structure on a quasi
Abelian nilpotent Lie algebra is automatically parallel. Indeed, if a quasi Abelian
nilmanifold (R8,E) admits an invariant parallel structure, then E is symmetric so
that (R8,E) is a torus. Therefore, we search for quasi Abelian nilpotent Lie al-
gebras which admit a balanced structure. In addition, we introduce a special type
of mixed structure, which we call locally conformally balanced and we analyze its
existence on quasi Abelian nilpotent Lie algebras.

A Spin(7) structure on a Riemannian manifold is locally conformally balanced
if at each contractible neighbourhood there is a conformal change of the metric
whose associated Spin(7) structure is balanced, that is:
Definition 9.1. A Spin(7) structure is locally conformally balanced if its Lee form
is closed. In addition, if the Lee form is not exact, we say that it is strict locally
conformally balanced.

Of course, balanced and locally conformally calibrated structures are locally
conformally balanced. The interesting case is when the structure is mixed and the
Lee form is not exact.
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Remark 9.2. Our spinorial approach enables us to characterise locally conformally
balanced structures. Let V 2 T M such that D⌘ = V⌘. We are going to compute
the Dirac operator of V as an element of Cl(M), that is, DV =

P7
i=1 XirXi V for

an orthonormal local basis (X0, . . . , X7):

DV =
7X

i, j=0
g(rXi V, X j )Xi X j

=
X

i< j

�
g(rXi V, X j ) � g(rX j V, Xi )

�
Xi X j �

7X

i=0
g(rXi V, Xi )

=2
X

i< j
dV ⇤(Xi , X j )Xi X j + div(V ).

Since the Lee form is 87V
⇤, the structure is locally conformally balanced if and only

if DV = div(V ).
If we focus on invariant structures on unimodular quasi Abelian Lie algebras

(R8,E) the problem of determining whether or not the Lee form of a structure is
homothetic to a unitary 1-form ✓ becomes an eigenvalue problem.

As Theorem 8.6 states, the Lee form of the Spin(7) structure defined by ⌘ is
homothetic to a 1-form E⇤ 2 h⇤ determined by the equation � ·h⌘ = 3E ·h⌘, where
� is the 2-form associated to the skew-symmetric part of E . For a unitary 1-form ✓ ,
the condition � ·h ⌘ = ��✓ ·h ⌘ for some � 6= 0 is equivalent to (✓� � �) ·h ⌘ = 0,
that is, the endomorphism of1+ given by � 7�! ✓ ·h� ·h� has � as an eigenvalue.

This argument enables us to prove that if a nilpotent quasi Abelian g Lie alge-
bra is decomposable that is, g = g0 � hW i as Lie algebras then W is homothetic to
the Lee form of a Spin(7) structure.

Lemma 9.3. Let (R8,E) be a unimodular quasi Abelian Lie algebra. If E24 6= 0
and E24(W ) = 0 for some non-zero vector W 2 R7, then (R8,E) admits a spinor ⌘
whose associated Spin(7) structure has Lee form homothetic to W ⇤.

In particular, if a decomposable quasi Abelian Lie algebra g = g0�hW i is non-
Abelian and nilpotent, it admits a Spin(7) structure whose Lee form is homothetic
to W ⇤.

Proof. First note that � 2 32hW ⇤i? so that (W ⇤� ) ·h � = (W ⇤ ^ � ) ·h � for all
� 2 1+. But the product by an element of 33(R7)⇤ is a symmetric endomorphism
of 1+. Therefore, the condition E24 6= 0 guarantees the existence of a non-zero
eigenvalue of the product by W ⇤ ^ � and therefore, a spinor ⌘ whose associated
Spin(7) structure has Lee form homothetic to W ⇤.

Suppose that a decomposable quasi Abelian Lie algebra g = g0 � hW i is non-
Abelian and nilpotent. It is straightforward to check thatW lies on the Abelian ideal
h. Thus, if we take a metric g with e0 perpendicular to h andW perpendicular to h\
g0 then (g, g) is identified in terms of Lemma 8.3 with (R8,E) such that E24(W ) =
0. In addition, E24 6= 0 because the algebra is non-Abelian and nilpotent.
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A more detailed analysis of the eigenvalue problem provides the following
result:

Lemma 9.4. Let (R8,E) be a unimodular quasi Abelian Lie algebra and suppose
that E24 is associated to (�1, �2, �3) as in Lemma 8.5 with 0 < �1  �2  �3 with
�3  �1 + �2. Then, each ✓ 2 (R7)⇤ is homothetic to the Lee form of a Spin(7)
structure.

Proof. Let ✓ in (R7)⇤ and take (X1, . . . , X7) an orthonormal oriented basis of R7
such that:

� =�1X⇤
1 ^ X⇤

2 + �2X⇤
3 ^ X⇤

4 + �3X⇤
5 ^ X⇤

6,

✓] =µ1X1 + µ3X3 + µ5X5 + µ7X7.

Let ⇢ be the representation of Cl7 constructed as in the proof of Theorem 8.7. The
characteristic polynomial of the matrix ⇢(✓])⇢(�1X1X2 + �2X3X4 + �3X5X6) is
p(t) = (t4 + a2t2 + a1t + a0)2, where:

a0 = � (�1 + �2 + �3)(��1 + �2 + �3)(�1 � �2 + �3)(�1 + �2 � �3),

a1 =8�1�2�3µ7,
a2 = � 2(µ21(��21 + �22 + �23) + µ23(�

2
1 � �22 + �23) + µ25(�

2
1 + �22 � �23)

+ µ27(�
2
1 + �22 + �23)).

Therefore, we have the following:

1. If �3 < �1 + �2 then a0 < 0 so that p(t) has a non-zero eigenvalue.
2. If �3 = �1 + �2 then p(t) = t2(t3 + a2t + a1)2 with a2 < 0. Therefore, p has a
non-zero eigenvalue.

9.1. Quasi Abelian nilpotent Lie algebras and Spin(7) structures

Quasi Abelian nilpotent Lie algebras are classified by the adjoint action a vector
which is transverse to the Abelian ideal. Therefore, each isomorphism type is asso-
ciated to a unique element ofN7/GL(7), whereN7 is the set of nilpotent matrices
ofR7 and GL(7) acts via conjugation. The orbits are matrices with the same Jordan
normal form, and therefore, classified by the dimension those blocks. We have 15
types that we will denote by (n1, . . . , nk) with ni  ni+1 and

Pk
i=1 ni = 7.

We are going to determine those which admit an invariant balanced Spin(7)
structure or an invariant Spin(7) structure with closed Lee form in the cohomology
of the algebra. Note that the last type will induce strict locally conformally balanced
structures on each nilmanifold associated to the algebra because the cohomology of
the algebra is isomorphic to the cohomology of any associated nilmanifold. In this
context we say that the Spin(7) structure of a nilpotent Lie algebra is strict locally
conformally balanced.
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First of all observe that the Abelian Lie algebra only admits parallel invariant
structures. Next, we analyze the algebras L3 � A5 and L4 � A4, where L3 denotes
the Lie algebra of the 3-dimensional Heisenberg group, L4 the unique irreducible
4-dimensional nilpotent Lie algebra and A j the j-dimensional Abelian Lie algebra.
In our previous notation, they are associated to (2, 1, 1, 1, 1, 1) and (3, 1, 1, 1, 1).

Proposition 9.5. The Lie algebras A4�L3 and A3�L4, do not admit any balanced
structure. However, both of them admit strict locally conformal balanced structures.

Proof. Let h be an Abelian ideal of g and let g be a metric. Take a vector e0
orthogonal to h and denote E = ad(e0)|h. We write in both cases the endomorphism
E with respect to a suitable orthonormal basis (e1, . . . , e7) of h:

1. If g = A4 � L3 we can suppose that ker(E) = he1, . . . , e6i and E(e7) = ��e6
for some � 6= 0. Thus, � = �e67 so that � ⌘ 6= 0 for all ⌘;

2. If g = A3 � L4 we can suppose that ker(E) = he1, . . . , e5i, E(e6) = ��1e5
and E(e7) = ��2e4 � �3e5 � �4e6, where �1�4 6= 0. Thefore, � = �1e56 +
(�2e4 + �3e5) ^ e7 + �4e67. The spinor �4e67⌘ is non-zero and orthogonal to
(�1e56 + (�2e4 + �3e5) ^ e7)⌘. Therefore, � ⌘ 6= 0 for all ⌘.

The existence of strict locally conformally balanced structures is a consequence of
Lemma 9.3.

Now, we focus in types associated to matrices with two distinct Jordan blocks
of dimension greater than 1, which are (5, 2), (4, 3), (4, 2, 1), (3, 3, 1), (3, 2, 2),
(3, 2, 1, 1), (2, 2, 2, 1) and (2, 2, 1, 1, 1).

Proposition 9.6. Nilpotent quasi Abelian algebras with two distinct Jordan blocks
of dimension greater than 1 admit a metric with a both a balanced and a strict
locally conformally balanced Spin(7) structure.

Proof. Let e0 be transversal to the Abelian ideal h and observe that there is a split-
ting h = h1 � h2 � h3 with dim h2 2 {2, 3}, h3 Abelian and ad(e0)(hi ) ⇢ hi .
Observe that h3 may be {0}. We are going to define a metric g which makes e0
perpendicular to h and g|h = g1 + g2 + g3 where gi are metrics on hi .

Therefore E is going to be a block matrix
✓
E1 0 0
0 E2 0
0 0 0

◆
with respect to an or-

thonormal basis adapted to the splitting of h.
Obviously, for each � > 0 there exists an upper triangular matrix of dimen-

sion 2 or 3, conjugated to a Jordan block of dimension 2 or 3, such that its skew-
symmetric part has eigenvalues±�i or 0,±�i . Therefore, once obtained the eigen-
values of the skew-symmetric part of E1 with respect to any metric g1 we can change
g2 so that g satisfies the balanced condition.

Except for (2, 2, 1, 1, 1), (3, 2, 1, 1), (3, 3, 1) we can change g1 so that the
skew-symmetric part of E1 has two distinct eigenvalues. Lemma 9.4 ensures the
existence of strict locally conformally balanced structures. Finally, the algebras
considered except (5, 2) and (4, 3) are verify that E24(W ) = 0 for some non-zero
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vector W so that Lemma 9.3 ensures the existence of a strict locally conformally
balanced structure associated to the metric that we have previously defined.

Remark 9.7. A similar construction ensures the existence of metrics without as-
sociated balanced structures which admit strict locally conformally balanced struc-
tures.

Finally we analyze the case of the algebras associated to (4, 1, 1, 1), (5, 1, 1),
(6, 1), (7).

Proposition 9.8. The quasi Abelian nilpotent Lie algebras associated to (4, 1, 1, 1),
(5, 1, 1), (6, 1), (7) have both a balanced and a strict locally conformally balanced
Spin(7) structure.

Proof. Lemma 9.3 guarantees the existence of strict locally conformally balanced
structures in the algebras associated to (4, 1, 1, 1), (5, 1, 1), (6, 1). We are going to
prove that all of them admit a balanced structure giving an explicit example of an
structure of the type (R8,E). In the case of (7), the range of E24 will be 6 so that
the same metric also admits a strict locally conformally balanced Spin(7) structure
as Lemma 9.4 states. Define:

E = �

0

B
B
B
B
B
B
B
@

0 a 0 0 0 0 0
0 0 b 0 c 0 0
0 0 0 c 0 0 0
0 0 0 0 �1 0 �1
0 0 0 0 0 1+ a 0
0 0 0 0 0 0 1+ b
0 0 0 0 0 0 0

1

C
C
C
C
C
C
C
A

.

If a = b = c = 0, the Lie algebra is associated to (4, 1, 1, 1), if a = b = 0 and
c 6= 0 to (5, 1, 1), if a = 0, b � 0 and c 6= 0 to (6, 1) and if a � 0, b � 0 and
c 6= 0, to (7). The skew-symmetric part of E is associated to the 2-form:

� = ae12 + be23 + ce25 + ce34 � e45 � e47 + (1+ a)e56 + (1+ b)e67.

Take the spinor ⌘ whose associated 4-form is the standard Spin(7) form �0. We
have that � ⌘ = 0 as a consequence of the following equalities:

e67⌘ = e45⌘, e56⌘ = e47⌘, e34⌘ = �e25⌘, e23⌘ = �e67⌘, e12⌘ = �e56⌘.

We have proven the following result:

Theorem 9.9.

1. Every invariant Spin(7) structure on the Abelian Lie algebra A8 is parallel;
2. The Lie algebras g = A5 � L3 or g = A3 � L4 admit strict locally conformally
balanced invariant structures. They do not admit invariant balanced structures;

3. The rest of quasi Abelian nilpotent Lie algebras admit a balanced structure and
a strict locally conformally balanced structure.
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