
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XXI (2020), 801-826

Atomic decomposition and interpolation via
the complex method for mixed norm Bergman spaces

on tube domains over symmetric cones

DAVID BÉKOLLÉ, JOCELYN GONESSA AND CYRILLE NANA

Abstract. Starting from an adapted Whitney decomposition of tube domains in
Cn over irreducible symmetric cones of Rn, we prove an atomic decomposition
theorem in mixed norm weighted Bergman spaces on these domains. We also
characterize the interpolation space via the complex method between two mixed
norm weighted Bergman spaces.
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1. Introduction

The context and the notation are those of [20]. Let � be an irreducible symmetric
cone of rank r in a vector space V of dimension n, endowed with an inner product
(.|.) for which � is self-dual.

We recall that � induces in V a structure of Euclidean Jordan algebra with
identity e such that

� =
�
x2 : x 2 V

 
.

Let {c1, · · · , cr } be a fixed Jordan frame in V and

V =
M

1i jr
Vi, j

be its associated Peirce decomposition of V . We denote by

11(x), · · · ,1r (x)

the principal minors of x 2 V with respect to the fixed Jordan frame {c1, · · · , cr }.
More precisely, 1k(x), k = 1, · · · , r is the determinant of the projection Pkx of
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x , in the Jordan subalgebra V (k) =
L

1i jk Vi, j . We have 1k(x) > 0, k =
1, · · · , r , when x 2 �, and the determinant 1 of the Jordan algebra is given by
1 = 1r . The generalized power function on � is defined as

1s(x) = 1
s1�s2
1 (x)1s2�s3

2 (x) · · ·1sr
r (x), x 2 �, s = (s1, · · · , sr ) 2 Cr .

A typical example of an irreducible symmetric cone is the Lorentz cone3n, n � 3,
of Rn , i.e. the set defined by

3n =
�
(y1, · · · , yn) 2 Rn : y1 + y2 > 0 and y21 � · · · � y2n > 0

 
,

which is a symmetric cone of rank r = 2 with11(y) = y1+ y2 and its determinant
function is given by the Lorentz form

1(y) = y21 � · · · � y2n .

We adopt the following standard notation:

nk = 2(k � 1)
n
r � 1
r � 1

and mk = 2(r � k)
n
r � 1
r � 1

.

For s = (s1, · · · , sr ) 2 Rr and ⇢ real, the notation s + ⇢ will stand for the vector
whose coordinates are sk + ⇢, k = 1, · · · , r . For 1  p  1 and 1  q < 1, let
L p, qs denote the mixed norm Lebesgue space constisting of measurable functions
F on T� such that

kFkL p, qs
=

✓Z

�
kF(· + iy)kqp1s� n

r
(y)dy

◆ 1
q

< 1

where

kF(· + iy)kp =

✓Z

V
|F(x + iy)|pdx

◆ 1
p

(with the obvious modification if p = 1). The mixed norm weighted Bergman
space Ap,qs is the (closed) subspace of L p, qs consisting of holomorphic functions.
Following [18], Ap,qs is non-trivial if and only if sk > nk

2 , k = 1, · · · , r . When
p = q, we write L p, qs = L ps and A

p, q
s = Aps which are respectively the usual

weighted Lebesgue space and the usual weighted Bergman space. Moreover, when
p = q = 2 the orthogonal projector Ps from the Hilbert space L2s onto its closed
subspace A2s is called weighted Bergman projector. It is well known that Ps is the
integral operator on L2s given by the formula

PsF(z) =
Z

T�
Bs(z, u + iv)F(u + iv)1s� n

r
(v)dudv,
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where

Bs(z, u + iv) = ds1�s� n
r

✓
z � u + iv

i

◆

is the reproducing kernel on A2s , called weighted Bergman kernel of T�. Precisely,
1�s� n

r
( x+iyi ) is the holomorphic determination of the (�s � n

r )-power which re-
duces to the function 1�s� n

r
(y) when x = 0.

The atomic decomposition problem for Bergman spaces in tube domains over
irreducible symmetric cones had been studied in the eighties by Coifman and
Rochberg [17] by using the L p-continuity properties of the Bergman projectors.
But they assumed in their work that the Bergman projection is L p bounded in these
domains for all p 2]1,1[, p 6= 2, which happens not be true. In fact, the ques-
tion of whether Ps extends or not as a bounded operator on L

p
s (T�) for p 6= 2 has

attracted a lot of attention in recent years (see [1–6, 11, 12, 18] and the references
therein). So far, only partial answers are known. For a brief review of these results,
we suppose first that s = (s, · · · , s), s > n

r � 1. In this case, we write Ps instead of
Ps and L

p
s instead of L

p
s . The following conjecture has been stated in [5] for these

domains.

Conjecture. The Bergman projector Ps admits a bounded extension to L ps (T�) if
and only if

p0
s < p < ps :=

s + 2n
r � 1

n
r � 1

�
(1� s)+
n
r � 1

;

where p0
s is the conjugate exponent of ps .

The conjecture concerns the “if” part. A weaker result was proved in general in [4]
and [3], namely the boundedness for

1+
s + n

r � 1
s

< p < 1+
s + n

r � 1
n
r � 1

.

Still for s = (s, · · · , s), s > n
r � 1, we suppose next that p may be different

from q. A more general conjecture was stated in [4] for tube domains over Lorentz
cones, which proposed a necessary and sufficient condition on the couples (p, q)
for Ps be bounded on L

p,q
s (T3n ). Finally, the case of the tube domains over Lorentz

cones has been completely settled after the works [4,11,22] and the recent proof of
the l2-decoupling conjecture by Bourgain and Demeter [13] in [12] and [7]. More
precisely, the proofs of the two conjectures were announced in [12] and given in
detail in [7].

We suppose finally that s = (s1, · · · , sr ) 2 Rr , with s j >
n j
2 , j = 1, · · · , r.

Weighted L ps estimates were also considered for the tube domains over general sym-
metric cones. In this case, Debertol [19] and Nana and Trojan [24] established nec-
essary conditions and sufficient conditions for the L ps -boundedness of the weighted
Bergman projector Ps. To state their sufficient conditions, according to [19], we
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denote

ps = 1+ min
j=1,...,r

s j + n
r�

(r � j)d2 � s j
�
+

;

qs(p) = min{p, p0} min
j=1,...,r

 

1+
s j � ( j � 1)d2

(r � j)d2

!

.

Theorem 1.1 ([19] and [24]). The weighted Bergman projector Ps extends to a
bounded operator on L p,qs whenever 1

qs(p) < 1
q < 1 � 1

qs(p) in the following two
cases:

(i) s j >
n j
2 , j = 1, · · · r and 1  p < ps [19];

(ii) s j > n
r � 1, j = 1, · · · r and 1  p  1 [24].

Restricting again to tube domains over Lorentz cones (r = 2), Theorem 1.1 was also
extended in [7] to other values of p and q again using the l2-decoupling inequality
of Bourgain and Demeter [13].

Our aim here is to develop atomic decomposition and interpolation of mixed
norm weighted Bergman spaces by using L p-continuity properties of the Bergman
projectors. We shall then be assuming the boundedness of the Bergman projectors
in the statement of our results.

Our first result is an atomic decomposition theorem for functions in mixed
norm weighted Bergman spaces on tube domains over symmetric cones. It gener-
alizes the result of [8] for usual weighted Bergman spaces on tube domains over
symmetric cones and the result of [25] for mixed norm weighted Bergman spaces
on the upper half-plane (the case n = r = 1).

Theorem A. Let s be a vector of Rr such that sk > nk
2 , k = 1, · · · , r. Assume

that Ps extends to a bounded operator on L
p,q
s . Then there is a sequence of points

{zl, j = xl, j + iy j }l2Z, j2N in T� and a positive constant C such that the following
assertions hold:

(i) For every sequence {�l, j }l2Z, j2N such that

X

j

 
X

l
|�l, j |

p

! q
p

1s+ nq
rp

�
y j
�

< 1,

the series X

l, j
�l, j1s+ nq

rp

�
y j
�
Bs
�
z, zl, j

�

is convergent in Ap,qs . Moreover, its sum F satisfies the inequality

kFkqAp,qs
 C

X

j

 
X

l
|�l, j |

p

! q
p

1s+ nq
rp

�
y j
�
;
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(ii) Every function F 2 Ap,qs may be written as

F(z) =
X

l, j
�l, j1s+ nq

rp
(y j )Bs

�
z, zl, j

�
,

with
X

j

 
X

l
|�l, j |

p

! q
p

1s+ nq
rp

�
y j
�

 CkFkqAp,qs
.

Our second result is an interpolation theorem between mixed norm weighted
Bergman spaces. It generalizes the result of [8] for usual weighted Bergman spaces.

For s 2 Rr , we adopt the notation:

qs = min
1kr

✓
1+

sk � nk
2

mk
2

◆
.

Theorem B.

(1) Let s0, s1 2 Rr be such that (s0)k, (s1)k > n
r � 1, k = 1, · · · , r and let

1  p0, p1  1, 1  q0, q1 < 1. Assume that there exists t 2 Rr , tk >
n
r � 1, k = 1, · · · , r such that Pt is bounded on L

pi ,qi
si , i = 0, 1. Then for

every ✓ 2 (0, 1), we have
h
Ap0,q0s0 , Ap1,q1s1

i

✓
= Ap,qs

with equivalent norms, where 1p = 1�✓
p0 + ✓

p1 ,
1
q = 1�✓

q0 + ✓
q1 and

s
q = (1�✓)s0

q0 +
✓s1
q1 ;

(2) Let s 2 Rr be such that sk > nk
2 , k = 1, · · · , r. Assume that Ps extends to a

bounded operator on L pi ,qis , i = 0, 1 for 1  p0, p1  1 and 1 < q0, q1 <
1. Then for every ✓ 2 (0, 1), we have

h
Ap0,q0s , Ap1,q1s

i

✓
= Ap,qs

with equivalent norms, where 1
p = 1�✓

p0 + ✓
p1 and

1
q = 1�✓

q0 + ✓
q1 ;

(3) Let s 2 Rr be such that (s)k > n
r � 1, k = 1, · · · , r, let 1  p0 < p1  1

and let q0, q1 be such that 1  q0 < qs  q1. We assume that Ps extends to a
bounded operator on L p1,q1s . Then for some values of ✓ 2 (0, 1), we have

h
Ap0,q0s , Ap1,q1s

i

✓
= Ap,qs

with equivalent norms, where 1
p = 1�✓

p0 + ✓
p1 and

1
q = 1�✓

q0 + ✓
q1 .
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We then mention that the assumption on Pt in assertion (1) of Theorem B is
true whenever 1q<qsi for every i=0, 1; in fact, it holds when all the components
t j , j = 1, · · · , r are sufficiently large. For q > 1, this is just the case ↵= 0 in [7,
Theorem 3.8], while the case q=1 is an easy exercise (cf. e.g., [9, Theorem II.7]).

The plan of this paper is as follows. In Section 2, we overview some prelimi-
naries and useful results about symmetric cones and tube domains over symmetric
cones. In Section 3, we study atomic decomposition of mixed normBergman spaces
and we prove a more precise statement of Theorem A. In Section 4, we study inter-
polation via the complex method between mixed norm weighted Bergman spaces
and we prove Theorem B. In particular we give a more precise statement of asser-
tion (3) of this theorem (Theorem 4.6) and we ask an open question. A final remark
will point out a connection between the two main theorems of the paper (Theorem
A and Theorem B).

For s = (s, · · · , s) real, Theorem A and Theorem B were presented in the PhD
dissertation of the second author [21].

As usual, given two positive quantities A and B, the notation A . B (respec-
tively A & B) means that there is an absolute positive constantC such that A  CB
(respectively A � CB). When A . B and B . A, we write A ' B and say A and
B are equivalent.

ACKNOWLEDGEMENTS. The authors wish to express their gratitude to the referee
for valuable suggestions.

2. Preliminaries

Materials of this section are essentially from [20]. We give some definitions and
useful results.

Let � be an irreducible symmetric cone of rank r in a real vector space V of
dimension n endowed with the structure of Euclidean Jordan algebra with identity
e. In particular, � is self-dual with respect to the inner product

(x |y) = tr(xy)
on V .

2.1. Group action

Let G(�) be the group of linear transformations of the cone � and G its identity
component. By definition, the subgroup G of G(�) is a semi-simple Lie group
which acts transitively on �. This gives the identification � ⇠ G/K , where K :=
{g 2 G : g · e = e} is a maximal compact subgroup of G. More precisely,

K = G \ O(V ),

where O(V ) is the orthogonal group in V . Furthermore, there is a solvable subgroup
T ofG acting simply transitively on�. That is, every y 2 � can be written uniquely
as y = t · e, for some t 2 T .
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Let {c1, · · · , cr } inRn be a fixed Jordan frame in V (that is, a complete system
of idempotents) and

V = �
1i jr

Vi, j

be its associated Peirce decomposition of V where
(
Vi,i = Rci
Vi, j =

�
x 2 V : ci x = c j x = 1

2 x
 
if i < j.

We have e =
P
1ir ci . Then the solvable Lie group T factors as the semidirect

product T = N A = AN of a nilpotent subgroup N consisting of lower triangular
matrices, and an abelian subgroup A consisting of diagonal matrices. The latter
takes the explicit form

A =

(

P(a) : a =
rX

i=1
ai ci , ai > 0

)

,

where P is the quadratic representation of Rn . This also leads to the Iwasawa and
Cartan decompositions of the semisimple Lie group G:

G = N AK and G = K AK .

Still following [20], we shall denote by 11(x), · · · ,1r (x) the principal minors of
x 2 V , with respect to the fixed Jordan frame {c1, · · · , cr }. These are invariant
functions under the group N ,

1k(nx) = 1k(x),

where n 2 N , x 2 V , k = 1, · · · , r , and satisfy a homogeneity relation under A,

1k(P(a)x) = a21 · · · a2k1k(x),

if a = a1c1 + · · · + arcr .
The determinant function 1(y) = 1r (y) is also invariant under K , and more-

over, satisfies the formula

1(gy) = 1(ge)1(y) = Det
r
n (g)1(y), 8g 2 G, 8y 2 � (2.1)

where Det is the usual determinant of linear mappings. It follows from this formula
that the measure d⇠

1
n
r (⇠)

is G-invariant in �.

Finally, we recall the following version of Sylvester’s theorem.

� =
�
x 2 Rn : 1k(x) > 0, k = 1, · · · , r

 
.
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2.2. Geometric properties

With the identification � ⇠ G/K , the cone can be regarded as a Riemannian man-
ifold with the G-invariant metric defined by

h⇠, ⌘iy :=
⇣
t�1⇠ |t�1⌘

⌘

if y = t · e with t 2 T and ⇠ and ⌘ are tangent vectors at y 2 �. We shall denote by
d� the corresponding invariant distance, and by B�(⇠) the associated ball centered
at ⇠ with radius �. Note that for each g 2 G, the invariance of d� implies that
B�(g⇠) = gB�(⇠). We also note that:

• On compact sets of Rn contained in �, the invariant distance d� is equivalent
to the Euclidean distance in Rn;

• The associated balls B� in � are relatively compact in �.

We also need the following crucial invariance properties of d� and 1k , obtained
in [3, 4].

Lemma 2.1. Let �0 > 0. Then there is a constant � 0 depending only on �0 and �
such that for every 0 < �  �0 and for ⇠ , ⇠ 0 2 � satisfying d�(⇠, ⇠ 0)  � we have

1
�


1k(⇠)

1k(⇠ 0)
 � , 8k = 1, · · · , r.

Lemma 2.2. Let �0 > 0 be fixed. Then there exist two constants ⌘1 > ⌘2 > 0,
depending only on �0 and �, such that for every 0 < �  �0 we have

{|⇠ � e| < ⌘2�} ⇢ B�(e) ⇢ {|⇠ � e| < ⌘1�}.

The next corollary is an easy consequence of the previous lemma for �0 = 1.

Corollary 2.3. There is a positive constant � such that for every � 2 (0, 1) such
that ⌘1� < 1, we have

B�(⇠) ⇢ {y 2 � : y � � ⇠ 2 �}

for all ⇠ 2 �.

2.3. Gamma function in �

The generalized gamma function in � is defined in terms of the generalized power
functions by

0�(s) =
Z

�
e�(⇠ |e)1s(⇠)

d⇠
1

n
r (⇠)

�
s = (s1, · · · , sr ) 2 Rr �.
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This integral is known to converge absolutely if and only if <e sk > nk
2 , k =

1, · · · , r. In this case,

0�(s) = (2⇡)
n�r
2

rY

k=1
0
⇣
sk �

nk
2

⌘
,

where 0 is the classical gamma function. We shall denote 0�(s) = 0�(s) when
s = (s, · · · , s). In view of [20], the Laplace transform of a generalized power
function is given for all y 2 � by

Z

�
e�(⇠ |y)1s(⇠)

d⇠
1

n
r (⇠)

= 0�(s)1s
⇣
y�1

⌘

for each s 2 Cr such that <e sk > nk
2 for all k = 1, · · · , r . We recall that

y�1 = t⇤�1 · e whenever y = t · e with t 2 T . Here t? denotes the adjoint of
the transformation t 2 T with respect to the inner product (·|·).

The power function 1s(y�1) can be expressed in terms of the rotated Jordan
frame {cr , · · · , c1}. Indeed if we denote by 1⇤

k , k = 1, · · · , r , the principal minors
with respect to the rotated Jordan frame {cr , · · · , c1} then

1s
⇣
y�1

⌘
=
h
1⇤
s⇤(y)

i�1
, 8s = (s1, · · · , sr ) 2 Cr .

Here s⇤ = (sr , · · · , s1).

2.4. Bergman distance on the tube domain T�

Following [3], we define a matrix function {g j,k}1 j,kn on T� by

g j,k(z) =
@2

@z j@ z̄k
log B(z, z)

where B is the unweighted Bergman kernel of T�,, i.e., B = Bs with s = (nr , · · ·
n
r ).

The map
T� 3 z 7! Hz

with

Hz(u, v) =
nX

j,k=1
g j,k(z)uk v̄k, u = (u1, · · · , un), v = (v1, · · · , vn) 2 Cn

defines a Hermitian metric on Cn , called the Bergman metric. The Bergman length
of a smooth path � : [0, 1] ! T� is given by

l(� ) =
Z 1

0

�
H� (t)(

.
� (t), .

� (t))
 1
2 dt
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and the Bergman distance d(z1, z2) between two points z1, z2 of T� is

d(z1, z2) = inf
�
l(� )

where the infimum is taken over all smooth paths � : [0, 1] ! T� such that � (0) =
z0 and � (1) = z1. It is well known that the Bergman distance d is equivalent to
the Euclidean distance on the compact sets of Cn contained in T� and the Bergman
balls in T� are relatively compact in T�. Next, we again denote by Rn the group of
translations by vectors in Rn . Then the group Rn ⇥ T acts simply transitively on
T� and the Bergman distance d is invariant under the automorphisms of Rn ⇥ T .

2.5. A Whitney decomposition of the tube domain T�

In the sequel, the Bergman ball in T� with centre at z and radius ⌘ will be denoted
B⌘(z).

Lemma 2.4. There exists a constant R > 1 such that for all ⌘ 2 (0, 1) and z0 =
x0 + iy0 2 T�, the following inclusions hold:

n
x + iy 2 T� :

�
�g�1(x � x0)

�
� <

⌘

R
and y 2 B ⌘

R
(y0)

o
⇢ B⌘(z0),

B⌘(z0) ⇢
n
x + iy 2 T� :

�
�g�1(x � x0)

�
� < R⌘ and y 2 BR⌘(y0)

o
,

where g is the element of T satisfying g · e = y0.

Proof. From the invariance under translations and automorphisms of T we have
that

g�1(x � x0) + ig�1y 2 B⌘(ie)

for all x + iy 2 B⌘(z0). We recall that the Bergman distance d and the Euclidean
distance dEucl are equivalent on compact sets of Cn contained in T�. So there exists
a constant R > 1 such that

1
R
d(X + iY, ie) < dEucl(X + iY, ie) < Rd(X + iY, ie)

for all X + iY 2 B1(ie). The proof of the lemma follows from the following
equivalence

dEucl(X1 + iY1, X2 + iY2) t max(kX1 � X2k, kY1 � Y2k)

and the equivalence given in Lemma 2.2 between d� and the Euclidean distance
|| · || in Rn on compact sets of Rn contained in �.

The starting point of our analysis is the following Whitney decomposition of
the cone � which was obtained, e.g., in [3, 4].
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Lemma 2.5. There is a positive integer N such that given � 2 (0, 1), one can find
a sequence of points {y j } j=1,2,··· in � with the following properties:

(i) The balls B �
2
(y j ) are pairwise disjoint;

(ii) The balls B�(y j ) cover �;
(iii) Each point of � belongs to at most N of the balls B�(y j ).

Definition 2.6. The sequence {y j } is called a �-lattice of �.

Our goal is to obtain an atomic decomposition theorem for holomorphic functions
in Ap,qs spaces. To this end, we need to derive a suitable version of the classical
Whitney decomposition of Rn . Let {y j } be a �-lattice of � and let g j 2 T be such
that g j ·e = y j . Let R > 1 be a constant like in Lemma 2.4. We adopt the following
notation:

Il, j =

⇢
x 2 Rn :

�
�
�g�1

j (x � xl, j )
�
�
� <

�

R

�

I 0l, j =

⇢
x 2 Rn :

�
�
�g�1

j (x � xl, j )
�
�
� <

�

2R

�

where {xl, j } is a sequence in Rn to be determined.
From Lemma 2.4 we have immediately the following.

Remark 2.7. For the constant R > 1 of Lemma 2.4, the following inclusion holds

Il, j + i B �
R

�
y j
�

⇢ B�
�
xl j + iy j

�
.

Lemma 2.8. Let � 2 (0, 1). There exist a positive constant R > 1, a positive
integer N and a sequence of points {xl, j }l2Z, j2N in Rn such that the following
hold:

(i) {Il, j }l form a cover of Rn;
(ii) {I 0l, j }l are pairwise disjoint;
(iii) For each j, every point of Rn belongs to at most N balls Il, j .

Proof. Fix j in N and define the collectionA j of sets in Rn by

A j =

⇢
A ⇢ Rn : 8 x, y 2 A, x 6= y,

�
�
�g�1

j (x � y)
�
�
� �

�

R

�
.

Clearly the collectionA j is non empty. Indeed the sets { �R y j , 0Rn } are members of
A j . Furthermore, the collectionA j is partially ordered with respect to inclusion.

Let C be a totally ordered subcollection of A j . We set F = [A2C A. Given
two distinct elements x, y of F, there are two members A1 and A2 of C such that
x 2 A1 and y 2 A2. But either A1 ⇢ A2 or A2 ⇢ A1. So we have either x, y 2 A1
or x, y 2 A2. Hence ||g�1

j (x � y)|| � �
R . This shows that F is a member ofA j . In

other words, the collection A j is inductive. An application of Zorn’s lemma then
gives that the collectionA j has a maximal member E j .We write E j = {xl, j }l2L j .
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To prove assertion (ii), consider l and k such that l 6= k and assume that I 0l, j \
I 0k, j contain at least an element x . Then
�
�
�g�1

j
�
xl, j � xk, j

���
� 

�
�
�g�1

j
�
xl, j � x

���
�+

�
�
�g�1

j
�
x � xk, j

���
� <

�

2R
+

�

2R
=
�

R
.

This would contradict the property that {xl, j , xk, j } is a subset of E j , which is a
member ofA j .

For assertion (i), let us suppose [l2L j Il, j 6= Rn . Then there exists ⇠ j 2 Rn

such that ⇠ j /2 [l2L j Il, j . Clearly the set E j [ {⇠ j } is a member of A j . This would
contradict the maximality of E j inA j . This completes the proof of assertion (i).

To prove assertion (iii), we fix j. Given x 2 Rn, it follows from assertion (i)
that there exists a subset L j (x) of L j such that

x 2 \
l2L j (x)

Il, j .

We will show that there is a positive integer N independent of � such that Card
L j (x)  N for all j 2 N and x 2 Rn. It follows from Lemma 2.4 and Lemma 2.5
that for every l 2 L j ,

B �

2R2

�
xl, j + iy j

�
⇢ I 0l, j ⇥ B �

2R

�
y j
�
.

So the balls B �

2R2
(xl, j + iy j ), l 2 L j are pairwise disjoint since R > 1.Moreover,

for every l 2 L j (x), we have

B �

2R2

�
xl, j + iy j

�
⇢

⇢
⇠ + i� 2 T� :

�
�
�g�1

j (⇠ � x)
�
�
� <

3�
2R

and � 2 B �
2R

�
y j
�
�

⇢ B 3�
2

�
x + iy j

�
.

For the first inclusion, we applied the triangle inequality. We obtain

[
l2L j (x)

B �
2R

�
xl, j + iy j

�
⇢ B 3�R

2

�
x + iy j

�
.

We call m the invariant measure on T� given by

dm(⇠ + i� ) = 1� 2n
r (� )d⇠d�.

We conclude that

Card L j (x) 
m
⇣
B 3�R

2
(ie)

⌘

m
⇣
B �
2R

(ie)
⌘ ,

because

m
✓

[
l2L j (x)

B �
2R

�
xl, j + iy j

�
◆

= Card L j (x) ⇥ m
⇣
B �
2R

(ie)
⌘

 m
⇣
B 3�R

2
(ie)

⌘
.
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We finally prove that the collection {Il, j }l, j is countable. It suffices to show that
for each j, the collection {Il, j }l2L j is countable. We fix j. To every set I 0l, j , we
assign a point of Qn belonging to I 0l, j . Since

T
l I

0
l, j = ;, this defines a one-to-one

correspondence from the collection {I 0l, j }l2L j to a subset ofQn. This shows that the
collection {I 0l, j }l2L j is at most countable. Moreover the collection {Il, j }l2L j which
has the same cardinal as the collection {I 0l, j }l2L j is infinite: the proof is elementary
since

S
l2L j

Il, j = Rn is unbounded. The proof of the lemma is complete.

Remark 2.9. We just proved in Lemma 2.8 that for each j = 1, 2, . . . , the index
set L j is countable. In analogy with the one-dimensional case [25], we took L j = Z
in the statement of Lemma 2.8 and in the statement of Theorem A.

2.6. A �-lattice in T�

Definition 2.10. The sequence {zl j = xl j + iy j }l2Z, j2N defined in Lemma 2.8 will
be called a �-lattice in T�.
We have the following lemma.

Lemma 2.11. Let {zl, j = xl, j + iy j }l2Z, j2N be a �-lattice in T�. There exists a
positive constant C = C(�, R) such that for all l 2 Z, j 2 N, the following hold.

(a)
Z

Il, j
dx ' 1

n
r (y j );

(b)
Z

Rn

X

l2L j

�{x2Il, j : d(x+iy,w)<1}(x)dx  C1
n
r (y j ), 8y 2 B�(y j ),8w 2 T�.

Proof. We denote Det the usual determinant of an endomorphism of Rn .

(a) We set u = g�1
j (x � xl j ). Then
Z

Il, j
dx =

Z

kuk< �
R

Det
�
g j
�
du

= 1
n
r
�
y j
� Z

kuk< �
R

du = C1
n
r
�
y j
�
.

This proves assertion (a).
(b) By assertion (iii) of Lemma 2.8, we have

X

l2L j

�Il, j (x)  N

for every j. Then
Z

Rn

X

l2L j

�{x2Il, j : d(x+iy,w)<1}(x)dx  N
Z

{x2Rn : x+iy2B1(w)}
dx .
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We set w = u + iv. By Lemma 2.4, we have the implication

x + iy 2 B1(w) )
�
�
�
�
�
�g�1(x � u)

�
�
�
�
�
� < R and y 2 BR(v)

with g · e = v. So
Z

{x2Rn : x+iy2B1(w)}
dx 

Z

{x2Rn : ||g�1(x�u)||<R}
dx = C Det (g) = C1

n
r (v).

But d�(y, y j ) < � and d�(y, v) < R. This implies that d(v, y j ) < � + R. Hence-
forth 1

n
r (v)  C1

n
r (y j ) by Lemma 2.1. This gives assertion (b).

3. Atomic decomposition

3.1. The sampling theorem

We first record the following lemma (see, e.g., [3]).

Lemma 3.1. Let 1  p < 1. Given � 2 (0, 1), there exists a positive constant C
such that, for each holomorphic function F in T� we have:

(i) |F(z)|p  C��2n
R
B�(z) |F(u + iv)|p du dv

1
2n
r (v)

;

(ii) If d(z, ⇣ ) < � then

|F(z) � F(⇣ )|p  C� p
Z

B1(z)
|F(u + iv)|p

du dv

1
2n
r (v)

.

For the second lemma, the reader should refer to [4, Lemma 4.5].

Lemma 3.2. Suppose � 2 (0, 1) and 1  p, q < 1. There exists a positive
constant C such that

kF(· + iy)kqp  C
Z

B�(y)
kF(· + iv)kqp

dv

1
n
r (v)

(3.1)

for every holomorphic function F on T� and every y 2 �.

The following is our sampling theorem.

Theorem 3.3. Let � 2 (0, 1) satisfy the assumption of Corollary 2.3 and let {zl, j =
xl, j + iy j }l2Z, j2N be a �-lattice in T�. Let 1  p, q < 1 and let s 2 Rr be such
that sk > nk

2 , k = 1, · · · , r. There exists a positive constant C� = C�(s, p, q) such
that for every F 2 Ap,qs , we have

X

j

 
X

l

�
�F
�
zl, j
���p
! q

p

1s+ nq
rp

�
y j
�

 C�kFkqAp,qs
. (3.2)
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Moreover, if � is small enough, the converse inequality

kFkqAp,qs
 C�

X

j

 
X

l

�
�F
�
zl, j
���p
! q

p

1s+ nq
rp

�
y j
�

(3.3)

is also valid.

Proof. From Lemma 3.1 we have

�
�F
�
zl, j
���p  C��2n

Z

B �
2R2

(zl, j )
|F(u + iv)|p

du dv

1
2n
r (v)

. (3.4)

It follows from the inclusion B �

2R2
(zl, j ) ⇢ {u + iv : u 2 I 0l, j , v 2 B �

2R
(y j )} that

�
�F
�
zl, j
���p  C��2n

Z

I 0l, j
du
Z

B �
2R

(y j )
|F(u + iv)|p

dv

1
2n
r (v)

. (3.5)

From the equivalence of 1(v) and 1(y j ) whenever v 2 B �
2R

(y j ), we obtain that

�
�F
�
zl, j
���p 

C��2n

1
2n
r (y j )

Z

I 0l, j
du
Z

B �
2R

(y j )
|F(u + iv)|p dv. (3.6)

Next, a successive application of Lemma 2.8, Corollary 2.3 and the non-increasing
property of the function � 3 v 7! kF(· + iv)kpp gives the existence of a positive
constant � such that

X

l2L j

�
�F
�
zl, j
���p 

C��2n

1
2n
r (y j )

Z

Rn
du
Z

B �
2R

(y j )
|F(u + iv)|p dv

=
C��2n

1
2n
r (y j )

Z

B �
2R

(y j )
kF(· + iv)kpp dv


C��2n

1
2n
r (y j )

Z

B �
2R

(y j )

�
�F
�
· +i� y j

���p
p dv


C��2n

1
n
r (y j )

�
�F
�
· +i� y j

���p
p.

Finally, we obtain

X

j

 
X

l

�
�F
�
zl, j
���p
! q

p

1s+ nq
rp

�
y j
�

 C
q
p
�

X

j

�
�F
�
· +i� y j

���q
p1s

�
y j
�
. (3.7)
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We define the holomorphic function F� by

F� (x + iy) = F(� (x + iy)).

By Lemma 3.2, we get
�
�F
�
· +i� y j

���q
p = �

nq
p
�
�F�

�
· +iy j

���q
p

 C�
nq
p

Z

B �
2R2

(y j )

�
�F� (· + iy)

�
�q
p

dy
1

n
r (y)

.
(3.8)

It follows from (3.8), Lemma 2.5 and the equivalence of1(y) and1(y j ) whenever
y 2 B �

2R2
(y j ) that

X

j

�
�F
�
· +i� y j

���q
p1s

�
y j
�

 C�
nq
p

Z

�

�
�F�

�
· +iy

���q
p1s� n

r
(y) dy

= C
Z

�

�
�F
�
· +i� y

���q
p1s� n

r
(y)dy.

Moreover, taking v = � y we obtain
X

j

�
�F
�
· +i� y j

���q
p1s

�
y j
�

 C(� , s, p, q)

Z

�

�
�F
�
· +iv

���q
p1s� n

r
(v) dv. (3.9)

So the estimate (3.2) is a direct consequence of (3.7) and (3.9).
Conversely, a successive application of Lemma 2.8, the triangle inequality and

assertion a) of Lemma 2.11 gives

kF(· + iy)kppCp

8
<

:

X

l2L j

Z

Il, j

�
�F(x+iy)�F

�
zl, j
���p dx+

X

l2L j

�
�F
�
zl, j
���p

Z

Il, j
dx

9
=

;

Cp

8
<

:

X

l2L j

Z

Il, j

�
�F(x+iy)�F

�
zl, j
���p dx+

X

l2L j

�
�F
�
zl, j
���p1

n
r
�
y j
�
9
=

;
,

for all y 2 �. In the sequel, for fixed y 2 �, we set

K j (w) =
Z

Rn

X

l2L j

�{x2Il, j : d(x+iy,w)<1}(x)dx

and we write

Np,q(F) =
Z

y2�

X

j2N
�B�(y j )(y)

⇥

 Z

v2�

Z

Rn
K j (u + iv)|F(u+iv)|p�d�(y,v)(v)

du dv

1(v)
2n
r

! q
p

1s� n
r
(y)dy.
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Using assertion (ii) of Lemma 3.1, we obtain easily that

kFkqAp,qs

Z

[
j
B�(y j )

kF(· + iy)kqp1s� n
r
(y)dy

 Cp,q�
q Np,q(F) + Cp,q

X

j

 
X

l
|F(zl, j )|p

! q
p

1s+ nq
rp

�
y j
�
.

To prove (3.3) it suffices to establish the following inequality:

Np,q(F)  CkFkqAp,qs
.

To this end, first observe that by assertion (b) of Lemma 2.11, we have

K j (w)  C1
n
r
�
y j
�
, 8y 2 B�

�
y j
�
, 8w 2 �.

Now by Lemma 2.1, we have the equivalence 1(v) ⇠ 1(y j ) ⇠ 1(y) whenever
v 2 BR(y) and y 2 B�(y j ) with equivalence constants independent of �. This
combined with an application of assertion (iii) of Lemma 2.5 gives that

Np,q(F)  CN
Z

�

✓Z

d(v,y)<R
kF(· + iv)kpp

dv

1
n
r (v)

◆ q
p
1s� n

r
(y)dy.

Next, from the non-increasing property of the mapping v 2 � 7! kF(· + iv)kp,
Corollary 2.3 and the G-invariance of the measure dv

1
n
r (v)

on �, there exists a posi-
tive constant � independent of � such that

Np,q(F)  CN
Z

�
kF(· + i� y)kqp1s� n

r
(y)dy.

Finally, taking t = � y on the right hand side of the previous inequality, we obtain
that

Np,q(F)  C(� )kFkqAp,qs
.

3.2. Proof of Theorem A

We can now prove the atomic decomposition theorem (Theorem A). Here is its
more precise statement.



818 DAVID BÉKOLLÉ, JOCELYN GONESSA AND CYRILLE NANA

Theorem 3.4. Let � 2 (0, 1) and let {zl, j = xl, j + iy j }l2Z, j2N be a �-lattice in T�.
Let s be a vector of Rr such that sk > nk

2 , k = 1, · · · , r. Assume that Ps extends to
a bounded operator on L p,qs . Then there exists a positive constant C such that the
following two assertions hold:

(i) For every sequence {�l, j }l2Z, j2N such that

X

j

 
X

l
|�l, j |

p

! q
p

1s+ nq
rp

�
y j
�

< 1,

the series X

l, j
�l, j1s+ nq

rp

�
y j
�
Bs
�
z, zl, j

�

is convergent in Ap,qs . Moreover, its sum F satisfies the inequality

kFkqAp,qs
 C�

X

j

 
X

l

�
��l, j

�
�p
! q

p

1s+ nq
rp

�
y j
�
;

(ii) For � small enough, every function F 2 Ap,qs may be written as

F(z) =
X

l, j
�l, j1s+ nq

rp

�
y j
�
Bs
�
z, zl, j

�
,

with
X

j

 
X

l

�
��l, j

�
�p
! q

p

1s+ nq
rp

�
y j
�

 C�kFkqAp,qs
.

Proof. Let p 2 [1,1], q 2 (1,1), and call p0 and q 0 their conjugate exponents,
i.e., 1p + 1

p0 = 1 and 1
q + 1

q 0 = 1. Let s 2 Rr such that sk > nk
2 , k = 1, · · · , r.

Recall that (cf. [18]) if Ps : L p
0,q 0

s ! Ap
0,q 0

s is bounded, then the dual space of
Ap

0,q 0

s identifies with Ap,qs with respect to the pairing

hF,Gis =
Z

T�
F(x + iy)G(x + iy)1s� n

r
(y)dxdy.

Denote by l p,qs the space of complex sequences {�l, j }l2Z, j2N such that

�
���l, j

 ��
l p,qs

=

0

@
X

j

 
X

l

�
��l, j

�
�p
! q

p

1s+ nq
rp

�
y j
�
1

A

1
q

< 1.
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We have the duality l p,qs = (l p
0,q 0

s )0 with respect to the pairing

h�, µi
l p

0,q0
s , l p,qs

=
X

l, j
�l, jµl, j1s+ n

r

�
y j
�
.

Then from the first part of the sampling theorem, the operator

R : Ap
0,q 0

s ! l p
0,q 0

s
F 7! RF =

�
F
�
zl, j
� 
l2Z, j2N

is bounded. So the adjoint operator R⇤ of R is also a bounded operator from l p,qs to
Ap,qs . Its explicit formula is

R⇤���l, j
 �

(z) =
X

l, j
�l, j1s+ n

r

�
y j
�
Bs
�
z, zl, j

�
.

This completes the proof of assertion (i).
From the second part of the sampling theorem, if � is small enough, the adjoint

operator R⇤ : l p,q⌫ ! Ap,q⌫ of R is onto. Moreover, we callN the subspace of l p,q⌫

consisting of all sequences {�l, j }l2Z, j2N such that the mapping

z 7!
X

l, j
�l, j1s+ n

r

�
y j
�
Bs
�
z, zl, j

�

vanishes identically. Then the linear operator

' : l p,qs /N ! Ap,qs�
�l, j

 
7!

X

l, j
�l, j B⌫

�
z, zl, j

�
1s+ n

r

�
y j
�

is a bounded isomorphism from the Banach quotient space l p,q⌫ /N to Ap,qs . The
inverse operator '�1 of ' is continuous. This gives assertion (ii).

4. Interpolation

In this section we determine the interpolation space via the complex method be-
tween two mixed norm weighted Bergman spaces.

4.1. Interpolation via the complex method between Banach spaces

Throughout this section we denote by S the open strip in the complex plane defined
by

S = {z = x + iy 2 C : 0 < x < 1}.
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Its closure S is
S = {z = x + iy 2 C : 0  x  1}.

Let X0 and X1 be two compatible Banach spaces, i.e. they are continuously em-
bedded in a Hausdorff topological space. Then X0 + X1 becomes a Banach space
with the norm

k f kX0+X1 = inf
�
k f0kX0 + k f1kX1 : f = f0 + f1, f0 2 X0, f 2 X1

 
.

We will denote by F(X0, X1) the space of analytic mappings

f : S ! X0 + X1
⇣ 7! f⇣

with the following properties:

(1) f is bounded and continuous on S;
(2) f is analytic in S;
(3) For k = 0, 1 the function y 7! fk+iy is bounded and continuous from the real

line into Xk .

The space F(X0, X1) is a Banach space with the following norm:

k f kF = max

 

sup
<e ⇣=0

k f⇣kX0, sup
<e ⇣=1

k f⇣kX1

!

.

If ✓ 2(0,1), the complex interpolation space [X0,X1]✓ is the subspace ofF(X0, X1)
consisting of holomorphic functions g on T� such that f✓ = g for some f 2
F(X0, X1). The space [X0, X1]✓ is a Banach space with the following norm:

kgk✓ = inf
�
|| f ||F(X0,X1) : g = f✓

 
.

Referring to [10] and [26] (cf. also [29]), the complex method of interpolation
spaces is functorial in the following sense: if Y0 and Y1 denote two other compatible
Banach spaces of measurable functions on T�, then if

T : X0 + X1 ! Y0 + Y1

is a linear operator with the property that T maps X0 boundedly into Y0 and T maps
X1 boundedly into Y1, then T maps [X0, X1]✓ boundedly into [Y0,Y1]✓ , for each
✓ 2 (0, 1). See [10] for more information about complex interpolation.

A classical example of interpolation via the complex method concerns L p,q
spaces with a change of measures. We state it in our setting of a tube domain T�
over a symmetric cone �.
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Theorem 4.1 ([16,27]). Let 1  p0, p1, q0, q1  1. Given two positive measur-
able functions (weights) !0, !1 on �, then for every ✓ 2 (0, 1), we have

⇥
Lq0

�
(�,!0(y)dy); L p0(Rn, dx)

�
, Lq1

�
(�,!1(y)dy); L p1(Rn, dx)

�⇤
✓

= Lq
�
(�,!(y)dy); L p(Rn, dx)

�

with equal norms, provided that

1
p

=
1� ✓

p0
+
✓

p1
1
q

=
1� ✓

q0
+
✓

q1
!
1
q = !

1�✓
q0
0 !

✓
q1
1 .

We finally record the Wolff reiteration theorem [23,28].

Theorem 4.2. Let A1, A2, A3, A4 be compatible Banach spaces. Suppose [A1,
A3]✓ = A2 and [A2, A4]' = A3. Then

[A1, A4]⇠ = A2, [A1, A4] = A3

with ⇠ = ✓'
1�✓+✓' , = '

1�✓+✓' .

4.2. A preliminary property of weighted Bergman projectors on tube domains
over symmetric cones

We recall the following notation given in the introduction:

nk =
2(nr � 1)(k � 1)

r � 1
, mk =

2(nr � 1)(r � k)
r � 1

for every k = 1, · · · , r.We recall the following result [7, 24].

Proposition 4.3. Let s 2 Rn be such that sk > nk
2 , k = 1, · · · , r. Assume that

t 2 Rn and 1  p, q < 1 are such that Pt extends to a bounded operator on L
p,q
s .

Then Pt is the identity on A
p,q
s ; in particular Pt(L

p,q
s ) = Ap,qs .

4.3. Proof of Theorem B

(1) We adopt the following notation:

||g||✓ = ||g||h
L p0,q0s0 , L p1,q1s1

i

✓

, ||g||anal✓ = ||g||h
Ap0,q0s0 , Ap1,q1s1

i

✓

.

It suffices to show the existence of a positive constant C such that the following two
estimates are valid:

||g||anal✓  C||g||Ap,qs 8g 2 Ap,qs ; (4.1)

||g||Ap,qs  ||g||anal✓ 8g 2
⇥
Ap0,q0s0 , Ap1,q1s1

⇤
✓
. (4.2)
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We first the estimate (4.1). By Theorem 4.1, we have
⇥
L p0,q0s0 , L p1,q1s1

⇤
✓

= L p,qs

with equivalent norms, provided that

1
p

=
1� ✓

p0
+
✓

p1
1
q

=
1� ✓

q0
+
✓

q1
s
q

=
(1� ✓)s0

q0
+
✓s1
q1

.

In particular, for every g 2 L p,qs , we have

||g||L p,qs ' ||g||✓ = inf
⇢
|| f ||F

⇣
L p0,q0s0 , L p1,q1s1

⌘ : g = f✓
�

. (4.3)

We assume that there exists t 2 Rr , tk > n
r � 1, k = 1, · · · , r such that Pt is

bounded on L pi ,qisi , i = 0, 1, and hence from L p,qs onto Ap,qs . Then by Proposition
4.3, for every g 2 Api ,qisi , i = 0, 1 and for every g 2 Ap,qs , we have Ptg = g.

Now let g 2 Ap,qs . For f 2 F(L p0,q0s0 , L p1,q1s1 ), we define the mapping

Pt � f : S ! Ap0,q0s0 + Ap1,q1s1

by (Pt � f )⇣ = Pt � f⇣ . Then Pt � f 2 F(Ap0,q0s0 , Ap1,q1s1 ) and if f✓ = g, we have
(Pt � f )✓ = Pt � f✓ = Ptg = g. So

||g||anal✓ := inf{||'||F
⇣
Ap0,q0s0 , Ap1,q1s1

⌘ : g = '✓ }

 kPt � f kF
⇣
Ap0,q0s0 , Ap1,q1s1

⌘

:= max

(

sup
<e ⇣=0

||(Pt � f )⇣ ||Ap0,q0s0
, sup
<e ⇣=1

||(Pt � f )⇣ ||Ap1,q1s1

)

for every f 2 F(L p0,q0s0 , L p1,q1s1 ) such that f✓ = g. By the boundedness of Ps on
L pi ,qisi , i = 0, 1, we get

||g||anal✓  Ct inf
n
|| f ||F(L p0,q0s0 , L p1,q1s1 )

: f✓ = g
o

⇠ Ct||g||L p,qs .

This proves the estimate (4.1).
We next prove the estimate (4.2). Let g 2 [Ap0,q0s0 , Ap1,q1s1 ]✓ . We first suppose

that ||g||anal✓ = 0, i.e. g = 0 in the Banach space
⇥
Ap0,q0s0 , Ap1,q1s1

⇤
✓
.We notice that

||'||F(Ap0,q0s0 , Ap1,q1s1 )
= ||'||F

⇣
L p0,q0s0 , L p1,q1s1

⌘ (4.4)

for all ' 2 F
�
Ap0,q0s0 , Ap1,q1s1

�
. This implies that

||g||h
L p0,q0s0 , L p1,q1s1

i

✓

 ||g||h
Ap0,q0s0 , Ap1,q1s1

i

✓

and hence ||g||h
L p0,q0s0 ,L p1,q1s1

i

✓

= 0. By the estimate (4.3), we obtain ||g||L p,qs = 0.
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We next suppose that 0 < ||g||anal✓ < 1. There exists ' 2 F(Ap0,q0s0 , Ap1,q1s1 )

such that g = f✓ and ||'||F
⇣
Ap0,q0s0 ,Ap1,q1s1

⌘  2||g||anal✓ . By (4.3) and (4.4), we

obtain:
||g||Ap,qs = ||g||L p,qs . |g||h

L p0,q0s0 ,L p1,q1s1

i

✓

. ||'||F
⇣
Ap0,q0s0 ,Ap1,q1s1

⌘  2||g||anal✓ .

This proves the estimate (4.2).
(2) In this assertion, we have s1 = s2 = s. The weighted Bergman projector

Ps extends to a bounded operator from L pi ,qis onto Api ,qis , i = 0, 1 and hence from
L p,qs onto Ap,qs . Then by Proposition 4.4, for every g 2 Ap,qs , we have Psg = g.
The proof of assertion (2) is the same as the proof of assertion (1) with t = s in
the present case. More precisely, for the proof of the estimate (4.1), we replace the
mapping

Pt � f : S ! Ap0,q0s0 + Ap1,q1s1

with f 2 F(L p0,q0s0 , L p1,q1s1 ), by the mapping

Ps � f : S ! Ap0,q0s + Ap1,q1s

with f 2 F(L p0,q0s , L p1,q1s ). The proof of the estimate (4.2) remains the same.
(3) We are going to prove the following more precise statement.
Recall that

qs = min
1kr

✓
1+

sk � nk
2

mk
2

◆
.

Theorem 4.4. Let s 2 Rr be such that sk > n
r � 1, k = 1, · · · , r. Let 1  p0, p1 

1 and let q0, q1 be such that 1  q0 < qs  q1 < 1. Assume that Ps extends to a
bounded operator on L p1,q1s . Let ✓,' 2 (0, 1) be related by the equation

1
2

=
1� ✓

q0
+ ✓

✓
1� '

2
+
'

q1

◆
(?)

and assume that

' <

1
2 � 1

qs
1
2 � 1

q1

. (??)

Then for ⇠ = ✓'
1�✓+✓' ,  = '

1�✓+✓' , we have
⇥
Ap0,q0s , Ap1,q1s

⇤
⇠

= Ap2,2s and
⇥
Ap0,q0s , Ap1,q1s

⇤
 

= Ap3,q3s

with equivalent norms, with
1
p2

=
1� ⇠

p0
+
⇠

p1
(? ? ?)

8
>><

>>:

1
p3

=
1� '

p2
+ '

p1

1
q3

=
1� '

2
+ '

q1 .

(? ? ??)
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Proof. We apply the Wolff reiteration theorem (Theorem 4.2) with A1 = Ap0,q0s ,
A2 = Ap2,2s , A3 = Ap3,q3s and A4 = Ap1,q1s . On the one hand, we observe that
qs > 2 and hence the couple (p2, 2) satisfies the condition

1
qs(p2)

<
1
2

< 1�
1

qs(p2)

of Theorem 1.1. So Ps extends to a bounded operator on L
p2,2
s as well as we as-

sumed that Ps extends to a bounded operator on L
p1,q1
s .We next apply assertion (2)

of Theorem B to get the identity [A2, A4]' = A3 with p3 and q3 defined by the
system (? ? ??).

On the other hand, the condition (??) and the definition of q3 given by the
second equality of (? ? ??) imply that 1 < q3 < qs. We recall that 1 < q0 < qs.
Then by assertion (1) of Theorem B and the remark immediately following the
statement of this theorem, we obtain the identity [A1, A3]✓ = A2 with

8
>><

>>:

1
p2

=
1� ✓

p0
+
✓

p3
1
2

=
1� ✓

q0
+
✓

q3
.

The latter identity and the second identity of (? ? ??) give the relation (?). The
former identity and the first identity of (? ? ??) give the relation (? ? ?).

Question. Is L p,q -boundedness of the Bergman projector necessary to conclude
for both Theorem A and Theorem B? Or are there other methods that give a wider
range of exponents?
Further notice. After the completion of this work, we became aware of the Arxiv
preprint [14] where J.G. Christensen provides with a different method an atomic
decomposition for functions in Ap,qs (s real) for the same range of exponents.
His atoms are different from ours. More precisely, he uses the characterization
of (Shilov) boundary values of functions in Ap,qs obtained in [4] as distributions
in the Besov space Bp,q

s ; he next applies atomic decompositions of the previous
spaces established in [15]. We point out that the Laplace transforms of his atoms
are compactly supported in the cone �; so by the Paley-Wiener theorem, his atoms
are not “samples” of the Bergman kernel.

Final remark. We recall that g 2 [Ap0,q0s0 , Ap1,q1s1 ]✓ if there exists a mapping
f 2 F(Ap0,q0s0 , Ap1,q1s1 ) such that f✓ = g. For s0 = s1 real and pi = qi , i =
1, . . . , r , an explicit construction was presented in [8] for such a mapping f in
terms of an analytic family of operators and the atomic decomposition of the rele-
vant (usual) Bergman spaces and this construction was generalized in [21] to mixed
norm Bergman spaces associated to the same scalar parameter s = (⌫, · · · , ⌫).
It may be interesting to extend this construction to mixed norm Bergman spaces
Ap0,q0s0 , Ap1,q1s1 associated to more general vectors s0, s1 2 Rr .
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