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Atomic decomposition and interpolation via
the complex method for mixed norm Bergman spaces
on tube domains over symmetric cones
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Abstract. Starting from an adapted Whitney decomposition of tube domains in
C" over irreducible symmetric cones of R”, we prove an atomic decomposition
theorem in mixed norm weighted Bergman spaces on these domains. We also
characterize the interpolation space via the complex method between two mixed
norm weighted Bergman spaces.
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1. Introduction

The context and the notation are those of [20]. Let €2 be an irreducible symmetric
cone of rank r in a vector space V of dimension n, endowed with an inner product
(.|.) for which €2 is self-dual.

We recall that 2 induces in V a structure of Euclidean Jordan algebra with
identity e such that

Q:{xz:xEV}.

Let {cy, -+, ¢/} be a fixed Jordan frame in V and
v= D v
I<i<j<r

be its associated Peirce decomposition of V. We denote by
Ar(x), -+, Ar(x)

the principal minors of x € V with respect to the fixed Jordan frame {ci, - - , ¢/ }.
More precisely, Ax(x), k = 1,---,r is the determinant of the projection Pyx of
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x, in the Jordan subalgebra V®) = @1<i<i<k Vi,j. We have Ag(x) > 0,k =

1,---,r,when x € , and the determinant A of the Jordan algebra is given by
A = A,. The generalized power function on €2 is defined as

As(x) = AYTENAY V(@) - AY (), x€Q, s=(s1,-0,5) € C

A typical example of an irreducible symmetric cone is the Lorentz cone A,, n > 3,
of R", i.e. the set defined by

Ap={01. . y) €R "y +y,>0and yf —--- — y7 > 0},

which is a symmetric cone of rank » = 2 with A{(y) = y; + y» and its determinant
function is given by the Lorentz form

A =yi ==y

We adopt the following standard notation:

n_q n_
ng =2k —1)~ and my =2(r — k)L .
r— r—1
Fors = (s1,---,s,) € R" and p real, the notation s 4+ p will stand for the vector
whose coordinates are sy + p,k =1,--- ,r.Forl < p <oocand1 < g < oo, let

L% 7 denote the mixed norm Lebesgue space constisting of measurable functions
F on T such that

1

q
IFllpo = ( /Q IF( +iy>||;€As¢<y>dy) <00

where
1
)4
IFC+ iyl = (/ Flx +iy>|de)
\%

(with the obvious modification if p = o0). The mixed norm weighted Bergman
space ALY is the (closed) subspace of L." ¢ consisting of holomorphic functions.
Following [18], Af’q is non-trivial if and only if s; > %, k=1,---,r. When
p = q,wewrite L"?Y = LI and AY"? = Al which are respectively the usual
weighted Lebesgue space and the usual weighted Bergman space. Moreover, when
p = q = 2 the orthogonal projector Ps from the Hilbert space L2 onto its closed
subspace Ag is called weighted Bergman projector. It is well known that P is the
integral operator on Lg given by the formula

PsF(2) =/ Bs(z, u 4+ iv)F(u +iv) Ag_z (v)dudv,
To
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where

: Z—u-+iv
Buetiv) =y (S

is the reproducing kernel on Ag, called weighted Bergman kernel of Tq. Precisely,

A_gn (xf.iy ) is the holomorphic determination of the (—s — 7)-power which re-

duces to the function A_s_»rl (y) when x = 0.

The atomic decomposition problem for Bergman spaces in tube domains over
irreducible symmetric cones had been studied in the eighties by Coifman and
Rochberg [17] by using the L”-continuity properties of the Bergman projectors.
But they assumed in their work that the Bergman projection is L? bounded in these
domains for all p €]1, oo[, p # 2, which happens not be true. In fact, the ques-
tion of whether P extends or not as a bounded operator on LY (Tq) for p # 2 has
attracted a lot of attention in recent years (see [1-6,11,12,18] and the references
therein). So far, only partial answers are known. For a brief review of these results,

we suppose first thats = (s, --- ,5),s > % — 1. In this case, we write P, instead of

Ps and LY instead of LY. The following conjecture has been stated in [5] for these
domains.

Conjecture. The Bergman projector Py admits a bounded extension to LY (Tg) if
and only if

s+ (I =5+

/ .
Py < P <Pps = T T
r r

’

where p; is the conjugate exponent of p.

The conjecture concerns the “if” part. A weaker result was proved in general in [4]
and [3], namely the boundedness for

s+4 -1 s+4—1
l+ —— < p<1l+—-+
T—1
Still for s = (s,---,s), s > % — 1, we suppose next that p may be different

from g. A more general conjecture was stated in [4] for tube domains over Lorentz
cones, which proposed a necessary and sufficient condition on the couples (p, g)
for P, be bounded on LY (Ta,)- Finally, the case of the tube domains over Lorentz
cones has been completely settled after the works [4,11,22] and the recent proof of
the lz—decoupling conjecture by Bourgain and Demeter [13] in [12] and [7]. More
precisely, the proofs of the two conjectures were announced in [12] and given in
detail in [7].

We suppose finally that s = (s1,---,s,) € R", with s; > %,j =1,---,r
Weighted LY estimates were also considered for the tube domains over general sym-
metric cones. In this case, Debertol [19] and Nana and Trojan [24] established nec-
essary conditions and sufficient conditions for the L -boundedness of the weighted
Bergman projector Ps. To state their sufficient conditions, according to [19], we
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denote

.....

(-4
gs(p) = min{p, p'} min (l+w>-

Theorem 1.1 ([19] and [24]). The weighted Bergman pr0]ect0r Ps extends to a

bounded operator on LYY whenever qéT < é <1- = (p) in the following two
cases:

() sj>%,j=1,---rand1 < p < ps[19];
(i) s; > —1,j=1,---rand 1 < p <00 [24].

Restricting again to tube domains over Lorentz cones (r = 2), Theorem 1.1 was also
extended in [7] to other values of p and ¢ again using the /2-decoupling inequality
of Bourgain and Demeter [13].

Our aim here is to develop atomic decomposition and interpolation of mixed
norm weighted Bergman spaces by using L”-continuity properties of the Bergman
projectors. We shall then be assuming the boundedness of the Bergman projectors
in the statement of our results.

Our first result is an atomic decomposition theorem for functions in mixed
norm weighted Bergman spaces on tube domains over symmetric cones. It gener-
alizes the result of [8] for usual weighted Bergman spaces on tube domains over
symmetric cones and the result of [25] for mixed norm weighted Bergman spaces
on the upper half-plane (the case n =r = 1).

Theorem A. Let s be a vector of R" such that sp > %, k = 1,---,r. Assume

that Py extends to a bounded operator on LY. Then there is a sequence of points
{z1,j = x1,j +iyjhez, jen in Tq and a positive constant C such that the following
assertions hold:

(i) For every sequence {A, j}icz, jeN Such that

4
P
2 (Z Wﬂp) Ay (yj) < oo,
; [

the series

Z)\l] ”‘? YJ)Bs(Z Zl])

is convergent in AL . Moreover, its sum F satisﬁes the inequality

IF1pe < C Z (Z I, Jlf’) Agyna (¥7);
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(ii) Every function F € ALY may be written as
Y y

F(z) = Z)»l,jAH%(yj)Bs(Z, Zz,j),
Lj

with

q
p
> (Z Wﬂp) Agpra(yj) = CIF I pa-
I

J

Our second result is an interpolation theorem between mixed norm weighted
Bergman spaces. It generalizes the result of [8] for usual weighted Bergman spaces.

For s € R, we adopt the notation:

-
= min |1+ .
s 1§k§r< Tk )

Theorem B.

)]

2

3

Let s, s1 € R” be such that (so)k, (s1)x > % -1, k=1,---,r and let
1 < po, p1 < 00,1 < qo, q1 < 00. Assume that there exists t € R”, t;, >
% —1, k=1,---,r such that P is bounded on Lfii’qi, i =0, 1. Then for
every 0 € (0, 1), we have

Po-90 P1,91 p.q
[Aso P Asl :|9 = Ay

i i 1_1-6,6 1 _1-6_, 6 s — (=03
with equivalent norms, where = +p1’ 7= o +q1 andq = +
s .
q1’

Let s € R” be such that s > "7", k=1,---,r. Assume that P extends to a

bounded operator on LY i = 0,1 for 1 < py, p1 < ocoand 1 < qo, q1 <
00. Then for every 6 € (0, 1), we have

[Afo,%’ Aé’l’ql]g — AP

; ; 1_1-6 4, 6 1 _1-6 , 0.
with equivalent norms, where 5= + o and 7 o + o
Let s € R" be such that (s); > %— Lk=1,---,r,letl < pyp < p; <00
and let qo, q1 be such that 1 < qy < qs < q1. We assume that Ps extends to a

bounded operator on LY. Then for some values of 6 € (0, 1), we have

[Abljo,%’ Afl,ql]g — AP

. . 1 _1-6 , 6 1 1-6 | 6
with equivalent norms, where = o + o and Z m + o
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We then mention that the assumption on P in assertion (1) of Theorem B is
true whenever 1 <q < g, for every i =0, 1; in fact, it holds when all the components
tj, j=1,---,r are sufficiently large. For ¢ > 1, this is just the case « =0 in [7,
Theorem 3.8], while the case g =1 is an easy exercise (cf. e.g., [9, Theorem I1.7]).

The plan of this paper is as follows. In Section 2, we overview some prelimi-
naries and useful results about symmetric cones and tube domains over symmetric
cones. In Section 3, we study atomic decomposition of mixed norm Bergman spaces
and we prove a more precise statement of Theorem A. In Section 4, we study inter-
polation via the complex method between mixed norm weighted Bergman spaces
and we prove Theorem B. In particular we give a more precise statement of asser-
tion (3) of this theorem (Theorem 4.6) and we ask an open question. A final remark
will point out a connection between the two main theorems of the paper (Theorem
A and Theorem B).

Fors = (s, --- , s) real, Theorem A and Theorem B were presented in the PhD
dissertation of the second author [21].

As usual, given two positive quantities A and B, the notation A < B (respec-
tively A 2 B) means that there is an absolute positive constant C such that A < CB
(respectively A > CB). When A < Band B < A, we write A ~ B and say A and
B are equivalent.

ACKNOWLEDGEMENTS. The authors wish to express their gratitude to the referee
for valuable suggestions.

2. Preliminaries

Materials of this section are essentially from [20]. We give some definitions and
useful results.

Let © be an irreducible symmetric cone of rank r in a real vector space V of
dimension n endowed with the structure of Euclidean Jordan algebra with identity
e. In particular, €2 is self-dual with respect to the inner product

(x]y) = tr(xy)
onV.

2.1. Group action

Let G(€2) be the group of linear transformations of the cone Q2 and G its identity
component. By definition, the subgroup G of G(£2) is a semi-simple Lie group
which acts transitively on €. This gives the identification 2 ~ G/K, where K :=
{g € G: g-e=e}isamaximal compact subgroup of G. More precisely,

K=GnNno(),

where O (V) is the orthogonal group in V. Furthermore, there is a solvable subgroup
T of G acting simply transitively on Q2. Thatis, every y € €2 can be written uniquely
asy=t-e,forsomer eT.
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Let{cy,- -, ¢} in R" be a fixed Jordan frame in V (that is, a complete system
of idempotents) and
V= & Vi
I<i<j=<r

be its associated Peirce decomposition of V where
{Vi,i = Re;

Vi,jz{er: cix=cj~x=%x}ifi<j.

We have e = ), _,_, ¢;. Then the solvable Lie group T factors as the semidirect
product T = NA = AN of a nilpotent subgroup N consisting of lower triangular
matrices, and an abelian subgroup A consisting of diagonal matrices. The latter
takes the explicit form

,
A= {P(a): a:Zaici, a; >0¢,
i=1
where P is the quadratic representation of R”. This also leads to the Iwasawa and
Cartan decompositions of the semisimple Lie group G:
G =NAK and G = KAK.
Still following [20], we shall denote by A1(x), - - - , A, (x) the principal minors of

x € V, with respect to the fixed Jordan frame {cy, --- , ¢,}. These are invariant
functions under the group N,

Ar(nx) = Ar(x),
wheren € N,x € V,k =1, .- ,r,and satisfy a homogeneity relation under A,
Ak(P(a)x) = ai -+~ ai Ar(v),
ifa=aic1+---+arc,.

The determinant function A(y) = A, (y) is also invariant under K , and more-
over, satisfies the formula

A(gy) = A(ge)A(y) = Deti (g)A(y), Vg € G, Vy € Q 2.1

where Det is the usual determinant of linear mappings. It follows from this formula

that the measure A‘f is G-invariant in €2.

r

Finally, we recall the following version of Sylvester’s theorem.

Q={xeR": A(x)>0, k=1,---,r}
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2.2. Geometric properties

With the identification  ~ G /K, the cone can be regarded as a Riemannian man-
ifold with the G-invariant metric defined by

(€. = (1€l )

if y=1¢-ewitht € T and & and 7 are tangent vectors at y € 2. We shall denote by
dg the corresponding invariant distance, and by Bs(€) the associated ball centered
at £ with radius 6. Note that for each g € G, the invariance of dg implies that
Bs(g&) = gBs(&). We also note that:

e On compact sets of R” contained in €2, the invariant distance dg is equivalent
to the Euclidean distance in R";
e The associated balls Bs in €2 are relatively compact in €2.

We also need the following crucial invariance properties of dg and Ay, obtained
in [3,4].

Lemma 2.1. Let 8§y > 0. Then there is a constant y0 depending only on &g and Q2
such that for every 0 < § < 8y and for &, &' € Q satisfying do (&, &') < & we have

1 A
— < k(&) <y, Vk=1,---,r

y T A@ED T

Lemma 2.2. Let 8o > 0 be fixed. Then there exist two constants n; > np > 0,
depending only on &y and 2, such that for every 0 < § < &g we have

{15 —el <md} C Bs(e) C{l§ — el <mid}.
The next corollary is an easy consequence of the previous lemma for §p = 1.

Corollary 2.3. There is a positive constant y such that for every § € (0, 1) such
that n1é6 < 1, we have

Bs¢§)Cc{yeQ: y—y&EeQ}

Jorall& € Q.

2.3. Gamma function in 2

The generalized gamma function in €2 is defined in terms of the generalized power
functions by

Ta(s) = / e DAL () ff"’& (s=(s1,-+-,8) eR).
Q AT (&)
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This integral is known to converge absolutely if and only if Resp > 5, k =
1,---, r. In this case,

r

Fa(s) = @m) = [ (s— %),

k=1 2

where I is the classical gamma function. We shall denote I'q(s) = ['q(s) when
s = (s,---,s). In view of [20], the Laplace transform of a generalized power
function is given for all y € Q2 by

_ 3 _
€ A =Tqa(s)As(y™!
Le © 7o =Te® (™)

n
7

for each s € C" such that Res; > "7" forall k = 1,---,r. We recall that

y~! = r*71 . e whenever y = 7 - e with r € T. Here r* denotes the adjoint of
the transformation ¢ € T with respect to the inner product (-|-).

The power function Ag(y~!) can be expressed in terms of the rotated Jordan
frame {c,, - - - , c1}. Indeed if we denote by A}, k =1, --- , r, the principal minors
with respect to the rotated Jordan frame {c,, - -- , c¢1} then

As<y_1> =[ ;;(y)]fl, Vs = (s1,--- ,5) € C.
Here s* = (s, -+ -, 51).

2.4. Bergman distance on the tube domain Tgq

Following [3], we define a matrix function {g; x}1<jk<n On Tg by

2
k() = — log B(z, z
gj.k(2) 92,95 g B(z,2)
where B is the unweighted Bergman kernel of T, ,i.e., B = Bs withs = (%, --- 7).
The map
To >z H,
with

n
He(u, v) = Z gjk@urve, u=(uy, -, up), v=_1,---,v,) €C"
jk=1

defines a Hermitian metric on C", called the Bergman metric. The Bergman length
of a smooth path y : [0, 1] — Tgq is given by

1
mo=A{memxwmﬁw
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and the Bergman distance d(z1, z2) between two points z1, z» of T is

d(z1,22) = irylfl(y)

where the infimum is taken over all smooth paths y : [0, 1] — Tgq such that y (0) =
zo and y (1) = z;. It is well known that the Bergman distance d is equivalent to
the Euclidean distance on the compact sets of C" contained in T, and the Bergman
balls in Tg, are relatively compact in Tq. Next, we again denote by R” the group of
translations by vectors in R”. Then the group R” x T acts simply transitively on
Tq and the Bergman distance d is invariant under the automorphisms of R” x T'.

2.5. A Whitney decomposition of the tube domain T

In the sequel, the Bergman ball in T, with centre at z and radius 1 will be denoted
B, (2).

Lemma 2.4. There exists a constant R > 1 such that for all n € (0, 1) and z¢9 =
xo0 + iyo € Tq, the following inclusions hold:

. — n
{x—i—ly eTq: ||g e —xo)” <z and y € B%(yo)} C B, (20).
B, (z0) C {x +iyeTq: ||g71(x —xo)” <Rnandy e BR,,(yo)} ,

where g is the element of T satisfying g - e = yp.

Proof. From the invariance under translations and automorphisms of 7" we have
that

g (x —x0) +ig "'y € By(ie)

for all x + iy € B;(z0). We recall that the Bergman distance d and the Euclidean
distance dgyc) are equivalent on compact sets of C” contained in Tq. So there exists
a constant R > 1 such that

1
2A(X +iY.ie) < duuat(X +iY.ie) < RA(X +1Y. i)

for all X +iY € Bj(ie). The proof of the lemma follows from the following
equivalence

deuc (X1 + Y1, X2 + 1Y) = max(|| X1 — Xz, Y1 — Y2l

and the equivalence given in Lemma 2.2 between dg and the Euclidean distance
[| - || in R" on compact sets of R” contained in £2. O

The starting point of our analysis is the following Whitney decomposition of
the cone 2 which was obtained, e.g., in [3,4].
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Lemma 2.5. There is a positive integer N such that given § € (0, 1), one can find
a sequence of points {y;}j=1,2,... in Q with the following properties:
(1) The balls B s (yj) are pairwise disjoint;
(ii) The balls Bs(y;) cover §2;
(iii) Each point of Q belongs to at most N of the balls Bs(y;).
Definition 2.6. The sequence {y;} is called a §-lattice of 2.

Our goal is to obtain an atomic decomposition theorem for holomorphic functions
in AJ"? spaces. To this end, we need to derive a suitable version of the classical
Whitney decomposition of R". Let {y;} be a §-lattice of 2 and let g; € T be such
that g;-e = y;. Let R > 1 be a constant like in Lemma 2.4. We adopt the following
notation:

)
. -1
Il,jz{xeR”. ng (x_XI’j)H<E}

é
. —1
”/’f:{“R"- aCE] <ﬁ}

where {x; ;} is a sequence in R" to be determined.
From Lemma 2.4 we have immediately the following.

Remark 2.7. For the constant R > 1 of Lemma 2.4, the following inclusion holds

Ij+1Bs (vj) C Bs(xi; +iy;).

Lemma 28. Let 6 € (0,1). There exist a positive constant R > 1, a positive
integer N and a sequence of points {x; j}icz, jen in R" such that the following
hold:

(i) {11, j}1 form a cover of R";
(1) {7 l/, j}l are pairwise disjoint;
(iii) For each j, every point of R" belongs to at most N balls I ;.

Proof. Fix j in N and define the collection A; of sets in R” by

Aj={AcR”: Vx,yeA,x #y,

‘g,‘l(x —y)H > %}

Clearly the collection .A; is non empty. Indeed the sets {% ¥, Ogrn} are members of
A ;. Furthermore, the collection A; is partially ordered with respect to inclusion.
Let C be a totally ordered subcollectlon of A;. We set F = UyecA. Given
two distinct elements x, y of F, there are two members A and A, of C such that
x € Arand y € A,. Buteither A] C Ay or A C Aj. So we have either x, y € A
orx,y € Ap. Hence ||g_1(x = é . This shows that F' is a member of 4 ;. In
other words, the collectlon Ajis 1nduct1ve An application of Zorn’s lemma then
gives that the collection A has a maximal member E ;. We write Ej = {x;,j}ier;
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To prove assertion (ii), consider / and k such that / # k and assume that /] in
I j contain at least an element x. Then

_ _ _ I} ) 1)
&7 (s =) = 57 (g =) | + |7 (= )| < 55 + 57 = &

This would contradict the property that {x; ;, xi ;} is a subset of E;, which is a
member of A;.

For assertion (i), let us suppose Uier; 11,j # R". Then there exists §; € R"
such that§; ¢ Ujer; 1, j. Clearly the set E; U {§;} is a member of A . This would
contradict the maximality of E; in .4;. This completes the proof of assertion (i).

To prove assertion (iii), we fix j. Given x € R", it follows from assertion (i)
that there exists a subset L j(x) of L ; such that

xe N I;.
IeL;j(x)
We will show that there is a positive integer N independent of § such that Card
Lj(x) < N forall j € Nand x € R". It follows from Lemma 2.4 and Lemma 2.5
that foreveryl € Lj,

B = (xlj +iy;) C I ; % BLR(yj)~

So the balls B s (x; ;j +iy;),l € L; are pairwise disjoint since R > 1. Moreover,
2R2
forevery l € Lj(x), we have

B&(xl,j—{—iyj) {.’E—i—la eTq: Hg] (& —x)H <— and o € BiR( )}
C B%(x +iyj)-
For the first inclusion, we applied the triangle inequality. We obtain

IGLU(X)BZBR (xl it zyj) C stR (x + ly,)

We call m the invariant measure on T given by
dm(E +io) = A~ 7 (0)dEdo.

‘We conclude that

m (BasTR(ie))

m (B%(ie)> ’

m (IELU(X B, (x,) + iyj)> = Card L;(x) x m (B 4 (ie)) < m (Basz Gie) ).

Card L(x) <

because
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We finally prove that the collection {/; ;}; ; is countable. It suffices to show that
for each j, the collection {1} ;}icL ; is countable. We fix j. To every set Il’ j» we

assign a point of Q" belonging to /] ;- Since N1/ ; =1, this defines a one-to-one
correspondence from the collection {/ l’ j}le L, to a subset of Q". This shows that the
collection {/, 1’7 j}le L; is at most countable. Moreover the collection {I; j};e Lj which
has the same cardinal as the collection {7/ j}le L, 1s infinite: the proof is elementary
since | ;¢ L= R" is unbounded. The proof of the lemma is complete. O

Remark 2.9. We just proved in Lemma 2.8 that for each j = 1,2, ..., the index
set L ; is countable. In analogy with the one-dimensional case [25], we took L j = Z
in the statement of Lemma 2.8 and in the statement of Theorem A.

2.6. A §-lattice in To

Definition 2.10. The sequence {z;; = x;; +iy;}icz, jen defined in Lemma 2.8 will
be called a 8-lattice in Tg,.

We have the following lemma.

Lemma 2.11. Let {27 j = x;,j +iy;}icz, jeN be a 8-lattice in Tq. There exists a
positive constant C = C (8, R) such that for alll € Z, j € N, the following hold.

(a) /dx:A?’(yj);
Il,j

(b) / > Xiwelj: detiyany<1)(@)dx < CA7(y)), ¥y € Bs(y;), Yw € Ta.
nlELj

Proof. We denote Det the usual determinant of an endomorphism of R”.

(a) We set u = gj_l(x — x;5). Then

J

dx = / Det (gj)du
llull <

\J
:A’J(yj)f Cdu=Cab(y)).
llull<%

This proves assertion (a).

(b) By assertion (iii) of Lemma 2.8, we have

Z xn,;(x) =N
IEL/'
for every j. Then
/ Z Xixel,;: d(x+iy,w)<1}(X)dx < N dx.
! leL; {xeR": x+iyeB;(w)}
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We set w = u 4 iv. By Lemma 2.4, we have the implication
x+iy e Bj(w) = Hg_l(x —u)H <R and y € Bg(v)

with g -e = v. So

/ dx < / dx = CDet (g) = CA* (v).
{(xeR": x4iyeBy(w)) {xeR": ||g~ (x—u)||<R}

But do(y, yj) < 8 and do(y, v) < R. This implies that d(v, y;) < 8 + R. Hence-
forth A7 (v) < CA¥(y;) by Lemma 2.1. This gives assertion (b). O

3. Atomic decomposition

3.1. The sampling theorem
We first record the following lemma (see, e.g., [3]).

Lemma 3.1. Let 1 < p < 00. Given é € (0, 1), there exists a positive constant C
such that, for each holomorphic function F in Tq we have:

(1) |F(Z)|p < C5_2n fBa(Z) |F(u_|_l'v)|pAdzl:_ndz .
(i) Ifd(z,¢) < 8 then
dudv

|F(z>—F(¢>|ﬂscaP/ F(u + iv)|P 222
B (2) A (v)

For the second lemma, the reader should refer to [4, Lemma 4.5].

Lemma 3.2. Suppose 6 € (0,1) and 1 < p,q < oo. There exists a positive
constant C such that

IFC+inl} EC/ IF (¢ +iv)l (3.1

Bs(y) A r (v)
for every holomorphic function F on Tq and every y € Q.
The following is our sampling theorem.

Theorem 3.3. Let 6 € (0, 1) satisfy the assumption of Corollary 2.3 and let {z;,; =
X1,j +1iyjliez, jen be a b-lattice in Tq. Let 1 < p,q < oo and let s € R” be such
that s, > "7", k =1, ---,r. There exists a positive constant Cs = Cs(s, p, q) such
that for every F € ALY, we have

<R

> (Z |F(Zl,j)|p> Asing (v)) < CollF Iy (32)
l

J
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Moreover, if § is small enough, the converse inequality

q
P

IF 1% <Cs ) (Z ‘F(zl’j)|1’) e (37) (3.3)
I /

is also valid.

Proof. From Lemma 3.1 we have

du dv

|F(z,)]" < ca—z”f |F(u+iv)|? (3.4)

B s (z.)) A r (v)
2R2

It follows from the inclusion B%(z[,j) Clu+iv: ue Il’j,
2R ’

ve By (y)) that

dv
|F(z)[" = C8” 2”/, du/ |F(u+iv))” —; (3.5)
BB ) AT

(v)

From the equivalence of A(v) and A(y;) whenever v € B 5 (¥j), we obtain that

ca 2
/ du/ |F(u+iv)|? dv. (3.6)
A (y] I B%(y_i)

Next, a successive application of Lemma 2.8, Corollary 2.3 and the non-increasing
property of the function 2 > v — ||F(- 4 iv) ||§ gives the existence of a positive
constant y such that

C5—2n
Z |F(Zl j

Dls o / d”/ |F(u+iv)|” dv
I€L; AT (y;) R B s O]

C8_2n
=— f |F(-+iv)|5dv
A7 (y)) B%(Yj)
C5—2n
2n
A7 (y))
cs—2n

. p
alop I CFirl

|F(Zl,1) p

IA

IA

[ ArCi
B (y))

IA

Finally, we obtain

> (Xl: |F(Zl,f)|p> Aspra () < cl YIFC+ivy)lias(yy). G

J

SR
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We define the holomorphic function F,, by
Fy(x +iy) = F(y(x +iy)).
By Lemma 3.2, we get

|F(-+ivy)=v7

<Cy / Fo(+ip|—2
B s () I HpA?(y)

(3.8)

It follows from (3.8), Lemma 2.5 and the equivalence of A(y) and A(y;) whenever
y € B% (y;) that
2R

SUF(-+ivs)last) = v [ 5, (+inlsacs oy
J

=C/Q [F (- +iyy)[§Asn()dy.

Moreover, taking v = yy we obtain
Y NF(-+ivy)[5as(y) < Cv.s. p, q)/g |F(-+iv) % As_r ) dv. (39)
J

So the estimate (3.2) is a direct consequence of (3.7) and (3.9).
Conversely, a successive application of Lemma 2.8, the triangle inequality and
assertion a) of Lemma 2.11 gives

IFC+inlp<Cpy Y /|F<x+zy> F a1, }”dx+Z\F(zz,j)|”/ dx
leL; leL; I,

<Gl 3 [ It =Fa )| st I ()8R 0)
leL; leL;
for all y € 2. In the sequel, for fixed y € 2, we set
Kj(w) = / Z X{xel,j: d(x+iy,w)<1} (x)dx
leL;

and we write

Np.q(F) :/ > X8 )
yEQ jEN
q

. NP dudv \"
X Kj(u+iv)|[Fu+iv)|" Xdg(y,0) (V) ——77 | As—z(y)dy.
veQ JR” A()r
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Using assertion (ii) of Lemma 3.1, we obtain easily that

1F0ge = [ IFCHiIA 20Xy
s UBs(y;)

J
q

P
< Cpgd?Npq(F)+ Cp,qz <Z|F(Zl,j)|p> As+%(yj)'

j ]
To prove (3.3) it suffices to establish the following inequality:
Npg(F) = CIF I
To this end, first observe that by assertion (b) of Lemma 2.11, we have
Kjw) < CA7(y;), VyeBs(y), YweS.

Now by Lemma 2.1, we have the equivalence A(v) ~ A(y;) ~ A(y) whenever
v € Bg(y) and y € Bs(y;) with equivalence constants independent of §. This
combined with an application of assertion (iii) of Lemma 2.5 gives that

. p dv F
Npqg(F) <CN IFC+ivllp—7—] As_an(y)dy.
Q \Jd(v,y)<R A7 (v) 4

Next, from the non-increasing property of the mapping v € Q — [[F(- +iv)|p,

Corollary 2.3 and the G-invariance of the measure —2— on €2, there exists a posi-

AT (v)

tive constant y independent of § such that

Np4(F) <CN fQ IF G+ iyl As— 2 (ndy.

Finally, taking ¢+ = yy on the right hand side of the previous inequality, we obtain
that

Np.g(F) < CONIF Y pa- -

3.2. Proof of Theorem A

We can now prove the atomic decomposition theorem (Theorem A). Here is its
more precise statement.
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Theorem 3.4. Let§ € (0, 1) and let {z; j = x;,j +iyj}iez, jeN be a 8-lattice in Tg,.
Let s be a vector of R” such that s, > ”7", k=1,---,r. Assume that P extends to

a bounded operator on LY . Then there exists a positive constant C such that the
following two assertions hold:

(i) For every sequence {A; j}icz, jeN such that

q
p
> (Z A1, jI”) Agins () < o0
J l

the series

Z)“l] +24 y])Bs(z Zl})

is convergent in ALY . Moreover, its sum F satisfies the inequality

q

P
q p .
IF e < Cs ) (ZW,A ) Asina (3)):
J
(ii) For 8 small enough, every function F € AY? may be written as

F(z) = ZAU u (vj)Bs(z, z1,)),

with
> (Z 24" ) s+ () < CIF I -
J

Proof. Let p € [1,00],q € (1, 00), and call p’ and ¢’ their conjugate exponents

i.e.,%—i—#:landé—l—%:l. Lets € R” such that sy > %,k = 1,-

Recall that (cf. [18]) if Ps : LY RN AF "4 is bounded, then the dual space of
AL identifies with AL*? with respect to the pairing

(F,G)g = / F(x+iy)G(x + iy)AS__(y)dxdy
T

Denote by 17 the space of complex sequences {A1,j}1ez, jen such that

q

et = (X (z |M,,-|p> PN

j l
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We have the duality 177 = (1f /’q/)’ with respect to the pairing
Ao djpar pa = > _r T Bse (37).
s S l,]
Then from the first part of the sampling theorem, the operator
R : Af,’q/ — lspl’q/

F > RF ={F(21,)},cz jen

is bounded. So the adjoint operator R* of R is also a bounded operator from 17 to
AP? Tts explicit formula is

R* ({201 @ =Dk jAsin (v7)Bs(z, 21,5)-
0

This completes the proof of assertion (i).

From the second part of the sampling theorem, if § is small enough, the adjoint
operator R* : [["Y — A% of R is onto. Moreover, we call \/ the subspace of 1}
consisting of all sequences {A; j};ez, jen such that the mapping

2> Y M jAgin(yj)Bs(z 2 ))
l’j
vanishes identically. Then the linear operator
@ YN — A1

(g} = Do hBulz ) Asyr (v))
I

is a bounded isomorphism from the Banach quotient space 1" /N to AJ"?. The
inverse operator ¢ ! of ¢ is continuous. This gives assertion (ii). O

4. Interpolation

In this section we determine the interpolation space via the complex method be-
tween two mixed norm weighted Bergman spaces.

4.1. Interpolation via the complex method between Banach spaces

Throughout this section we denote by S the open strip in the complex plane defined
by
S={z=x+iyeC: 0<x<1}.
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Its closure S is
S={z=x+iyeC: 0<x <1}.

Let Xo and X be two compatible Banach spaces, i.e. they are continuously em-
bedded in a Hausdorff topological space. Then Xo + X; becomes a Banach space
with the norm

I fllxo+x, = inf{ll follx, + I fillx, = f = fo+ f1. fo € Xo, f € Xi1}.
We will denote by F(Xo, X1) the space of analytic mappings

f:§—>Xo+X1
¢ =t

with the following properties:

(1) f is bounded and continuous on S;

(2) f is analytic in S;

(3) For k =0, 1 the function y > fi;y is bounded and continuous from the real
line into Xj.

The space F(Xo, X1) is a Banach space with the following norm:

||f||f=maX< sup || fzllxo. sup IIf;IIXI).

Re r=0 NRe =1

If 6 € (0, 1), the complex interpolation space [ X, X 1] is the subspace of F(Xo, X1)
consisting of holomorphic functions g on Tq such that fy = g for some f €
F(Xo, X1). The space [ X, X1]p is a Banach space with the following norm:

ligllo = inf {I| fllFxo.x1) : & = fo}-

Referring to [10] and [26] (c¢f. also [29]), the complex method of interpolation
spaces is functorial in the following sense: if Yy and Y] denote two other compatible
Banach spaces of measurable functions on T, then if

T: Xo+X,—> Yy+Y;

is a linear operator with the property that 7 maps Xo boundedly into Yy and 7" maps
X1 boundedly into Y7, then T maps [Xo, X1]p boundedly into [Yp, Y1]g, for each
0 € (0, 1). See [10] for more information about complex interpolation.

A classical example of interpolation via the complex method concerns L?-4
spaces with a change of measures. We state it in our setting of a tube domain Tq
over a symmetric cone €2.
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Theorem 4.1 ([16,27]). Let 1 < po, p1, 90, g1 < 00. Given two positive measur-
able functions (weights) wg, w) on 2, then for every 6 € (0, 1), we have

[L7((R2, o (y)dy); LP(R", dx)), LY (2, w1 (y)dy); LP'(R", dx))],
= L9((. w(y)dy); LP(R", dx))
with equal norms, provided that

1 1-6 6 1 1-6 6 I
p po P19 G q

We finally record the Wolff reiteration theorem [23,28].

Theorem 4.2. Let Ay, Ay, A3, Ag be compatible Banach spaces. Suppose [Aj,
Azlg = Az and [Az, A4ly = A3. Then

[A1, Aqle = Az, [Al, Agly = A3
. 0
with & = %,WZ %~

4.2. A preliminary property of weighted Bergman projectors on tube domains
over symmetric cones

We recall the following notation given in the introduction:

_2G-Dk-1 iy — 2(; = Dr — k)

’

nk

r—1 r—1

forevery k =1, - -, r. We recall the following result [7,24].

Proposition 4.3. Let s € R" be such that s, > "7" k=1,---,r. Assume that

teR"and 1 < p,q < oo are such that Py extends to a bounded operator on LYY .
Then Py is the identity on AL?; in particular Py(LY?) = AP9.

4.3. Proof of Theorem B
(1) We adopt the following notation:

1
llglle = 118lIr, ro90 , p1a l1glg™ = l1gllr ,roq0 yp1ean -
I:Ls(? ()’lel l:|e’ 0 [As(? ()’ASII 1]9

It suffices to show the existence of a positive constant C such that the following two
estimates are valid:

lgllg™ < Cllgllypa Vg € ALY (4.1)

llgll pra < llgllg™ Vg € [AGT, AL ], (4.2)
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We first the estimate (4.1). By Theorem 4.1, we have
[Léz)o,% , Lé)ll 41 ]9 — Lé’aq
with equivalent norms, provided that

1 1—06 0 1—-6 0 S 1 —-0)s Os
1_ _ L0 s _U=0Ps% osi

1
p Do D1 q q0 q1 q q0 q1

In particular, for every g € L7, we have

gl ra = 1Iglle = lnf{||f||]_—<LSP(§)-qO’Lé’11v41) (8= fa}- (4.3)

We assume that there exists t € R”, ¢, > % —1, k=1,---,r such that P is
bounded on L, i = 0, 1, and hence from L{? onto A{"?. Then by Proposition
4.3, forevery g € AL"% i =0, 1 and for every g € AL, we have Pig = g.

Now let g € A?. For f e F(LE"™, LYV, we define the mapping

Piof: S§— AR+ AQNT
by (Pto f)¢ = Peo fr. Then Pro f € F(AR?, APV?") and if fp = g, we have
(Pto flg = Pro fo = Pig=g.So

anal .__ ; - o —
lgllg™ = lnf{llfpllf(Agg.qo,Agll,ql) 18 = o}

<
< ||Pto f||]_-<Aé7(;)-tIo’ Aé’ll’ql)

:=max { sup |[[(Pro f)ell roa, sup [[(Pro fell pra
Re £=0 0 Rer=1 51

for every f € F(LE™, L") such that fy = g. By the boundedness of Ps on

LE9 i =0, 1, we get

anal

115" < Coinf {ILflLe pom g, fo = g} ~ Cullgllpa-

This proves the estimate (4.1).
We next prove the estimate (4.2). Let g € [AL"?, APV ']y, We first suppose

that ||g]|3"! = 0, i.e. g¢ = 0 in the Banach space [AR, Aé’ll’ql]e . We notice that

ollzqagyeo, agyny =10l man ) (4.4)

forall ¢ € F (AL, AL"") . This implies that
<
||g||[L£(?vqo’L;’11-q1]9 = ||g||[A§(§)vq0’A;’11-q1]9

and hence ||g||[L,;0,q0 Lp],q,} = 0. By the estimate (4.3), we obtain ||g||L§.q =0.
SO ’ Sl 0
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We next suppose that 0 < ||g||2"! < co. There exists ¢ € F(AL", AP
such that g = fp and ||(P||}-<Apo-qo AT’Iv‘il) < 2||gl|3". By (4.3) and (4.4), we
SO ’ S]

obtain:

anal
lgllags = lglleps S 18l ma ppin] 1l gy < 2l

6
This proves the estimate (4.2).

(2) In this assertion, we have s; = s = s. The weighted Bergman projector
Ps extends to a bounded operator from L% onto AY"% i =0, 1 and hence from
LY onto AL"?. Then by Proposition 4.4, for every g € A}™?, we have Psg = g.
The proof of assertion (2) is the same as the proof of assertion (1) with t = s in
the present case. More precisely, for the proof of the estimate (4.1), we replace the

mappin —
ppine Piof: S— AR 4 ADT
with f € F(LE?, LL"), by the mapping
Psof: §— AL 4 AT

with f e F(LE"", L"), The proof of the estimate (4.2) remains the same.
(3) We are going to prove the following more precise statement.

Recall that
ng
= min {1+ %2
s = 1<k<r % ’
Theorem 4.4. Lets € R be such that s, > %— Lk=1,---,r.Let1 < py, p1 <

oo and let qo, q1 be such that 1 < gy < g5 < q1 < 00. Assume that Py extends to a
bounded operator on L' . Let 6, ¢ € (0, 1) be related by the equation

1 1—-6 1-—
== +6 ( L ﬂ) ()
2 40 2 q1
and assume that X |
27 g
<7 ql . (%)
27 q
0
Then for € = 1_9i0¢, Y= 1—6ﬂ0¢’ we have
, , 2 , , ,
[AfO qO’ Aé’l 611]5 — ASI‘)z and [A?O 610’ ASIle ql]w — A§~73 q3
with equivalent norms, with
1 1-—
— = § + i (% % %)
p2 Po P1
1 _ 1—¢ @
p3 M P
| 1= ¢ (% % %)
@
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Proof. We apply the Wolff reiteration theorem (Theorem 4.2) with A| = A",

Ay = AP?? Ay = AP and Ay = AP™'. On the one hand, we observe that
gs > 2 and hence the couple (p3, 2) satisfies the condition

1 1 1
<-<1-
qs(p2) 2 qs(p2)

of Theorem 1.1. So P extends to a bounded operator on LY 22 as well as we as-
sumed that Pg extends to a bounded operator on LY"*?". We next apply assertion (2)
of Theorem B to get the identity [As, A4], = A3 with p3 and g3 defined by the
system (x * %*).

On the other hand, the condition (xx) and the definition of g3 given by the
second equality of (x x xx) imply that 1 < g3 < gs. We recall that 1 < gp < gs.
Then by assertion (1) of Theorem B and the remark immediately following the
statement of this theorem, we obtain the identity [A], A3z]g = A, with

1 1-6 6

P p P
1 1-6 6
J— +

2 q0 q3

The latter identity and the second identity of (x » xx) give the relation (x). The
former identity and the first identity of (x x xx) give the relation (x x x). U

Question. Is L?”-9-boundedness of the Bergman projector necessary to conclude
for both Theorem A and Theorem B? Or are there other methods that give a wider
range of exponents?

Further notice. After the completion of this work, we became aware of the Arxiv
preprint [14] where J.G. Christensen provides with a different method an atomic
decomposition for functions in AY*¢ (s real) for the same range of exponents.
His atoms are different from ours. More precisely, he uses the characterization
of (Shilov) boundary values of functions in A" obtained in [4] as distributions
in the Besov space B?; he next applies atomic decompositions of the previous
spaces established in [15]. We point out that the Laplace transforms of his atoms
are compactly supported in the cone €2; so by the Paley-Wiener theorem, his atoms
are not “samples” of the Bergman kernel.

Final remark. We recall that g € [AL"?, AP"?']y if there exists a mapping

f e FAR?, ALV 1) such that fy = g. Forsy = sj real and p; = ¢;, i =
1,...,r, an explicit construction was presented in [8] for such a mapping f in
terms of an analytic family of operators and the atomic decomposition of the rele-
vant (usual) Bergman spaces and this construction was generalized in [21] to mixed
norm Bergman spaces associated to the same scalar parameter s = (v, --- , V).
It may be interesting to extend this construction to mixed norm Bergman spaces

ARSI ALY associated to more general vectors so, s1 € R”.
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