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Moment varieties of measures on polytopes

KATHLÉN KOHN, BORIS SHAPIRO AND BERND STURMFELS

Abstract. The uniform probability measure on a convex polytope induces piece-
wise polynomial densities on its projections. For a fixed combinatorial type of
simplicial polytopes, the moments of these measures are rational functions in the
vertex coordinates. We study projective varieties that are parametrized by finite
collections of such rational functions. Our focus lies on determining the prime
ideals of these moment varieties. Special cases include Hankel determinantal
ideals for polytopal splines on line segments, and the relations among multisym-
metric functions given by the cumulants of a simplex. In general, our moment
varieties are more complicated than in these two special cases. They offer chal-
lenges for both numerical and symbolic computing in algebraic geometry.

Mathematics Subject Classification (2010): 13P25 (primary); 14Q15, 52B11,
62H05 (secondary).

1. Introduction

Inverse moment problems for positive and real-valued measures have been an ac-
tive area of research since the 19th century when Stieltjes obtained first signifi-
cant results in the one-dimensional case. One point of entry to this subject area is
Schmüdgen’s textbook [31].

In applications one usually considers a restricted class of measures, e.g., those
with finite or low-dimensional support, Gaussian mixtures, unimodal measures, just
to mention a few. The set of moments is often restricted as well, e.g., by degree or
structure. One classical situation occurs in logarithmic potential theory where one
studies harmonic moments [29]. Such restrictions reveal many interesting features,
such as the non-uniqueness of a measure with given moments (cf. [6]). Another fea-
ture that is important, but much less studied, is the overdeterminacy of the moment
problem. This arises from relations among the moments.

We are interested in polynomial relations among moments of probability mea-
sures on Rd . Such relations exist for many natural families of measures [7]. They
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define the moment varieties of these families. For finitely supported measures these
are the secant varieties of Veronese varieties [27]. Moment varieties of Gaussians
and their mixtures were characterized in [1, 2].

In this paper we study moment varieties arising from realization spaces of con-
vex polytopes [35]. If P is a polytope in Rd , then we write µP for the uniform
probability distribution on P . The moments of the distribution µP are the expected
values of the monomials:

mi1i2···id =
Z

Rd
w
i1
1 w

i2
2 · · ·wid

d dµP for i1, i2, . . . , id 2 N. (1.1)

The list of all moments
�
mI : I 2 Nd � uniquely encodes the polytope P since

any positive or real-valued measure with compact support is determined by its full
list of moments.

The inverse moment problem for polygons and polytopes is still largely unex-
plored. It has appeared in logarithmic potential theory [6, 30], and in connection
with the mother body problem [23]. Algorithms for reconstructing P from its axial
moments can be found in [18, 19]. A practical application for moments of pla-
nar polygons was suggested by Sharon and Mumford [32] as a tool to reconstruct
arbitrary planar shapes from their fingerprints.

To introduce our topic of investigation, suppose that P is a simplicial polytope
in Rd with n vertices, denoted xk = (xk1, xk2, . . . , xkd) for k = 1, 2, . . . , n. One
can vary these vertices locally without changing the combinatorial type P of the
polytope P . Following [35, Chapter 3], by the combinatorial type P we mean the
lattice of faces of P . For fixed P , each moment mI , for I = (i1, . . . , id), becomes
a locally defined function of the n ⇥ d-matrix X = (xkl). We shall see in Section 2
that this function is rational and therefore extends to a dense set of matrices X .
Furthermore, it is homogeneous of degree |I |, i.e., mI (t X) = t |I |mI (X).

Figure 1.1. The cubic surface (1.4) represents the first three moments (1.2) of a line
segment. Segments of length zero correspond to points on the twisted cubic curve
(shown in darker color).

Example 1.1 (d = 1, n = 2). The polytope is a segment P = [a, b] on the real line
R1. Here a = x11 and b = x21. The i th moment of the uniform distribution on P
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is found by calculus:

mi =
1

b � a

Z b

a
wi dw =

1
i+1

bi+1 � ai+1

b � a

=
1
i+1

(ai + ai�1b + ai�2b2 + · · · + bi ).
(1.2)

These expressions are the coefficients of the normalized moment generating func-
tion

1X

i=0
(i + 1) · mi · t i =

1
(1� at)(1� bt)

. (1.3)

The parametrization (a, b) 7! (m0 : m1 : · · · : mr ) defines a surface in projective
r-space Pr , for any r � 3. The first such moment surface, shown in Figure 1.1, is
defined by the equation

2m31 � 3m0m1m2 + m20m3 = 0. (1.4)

This cubic surface in P3 is singular along the line {m0 = m1 = 0} in the plane at
infinity. It also contains the twisted cubic curve {m0m2 = m21, m0m3 = m1m2,
m1m3 = m22}. Points on that curve correspond to degenerate line segments [a, a]
of length zero.

The objects studied in this paper generalize Example 1.1. We fix a combinato-
rial type P of simplicial d-polytopes and a subset A ⇢ Nd with 0 62 A. Consider
the semialgebraic set of n ⇥ d matrices X whose rows are the vertices of a poly-
tope of type P . This set is open in Rn⇥d . Each moment mI depends rationally
on X , so it extends to a unique rational function on Cn⇥d . The vector of moments�
mI : I 2 A [ {0}

�
defines a rational map Cn⇥d 99K P|A|. The moment variety

MA(P) is the closure of the image of this map. By construction,MA(P) is an
irreducible projective variety. Its dimension is nd, provided A is big enough. Our
aim is to compute these moment varieties as explicitly as we can. Of particular
interest is the variety given by all moments of order  r . This is denoted

M[r](P) ⇢ P(d+r
d )�1. (1.5)

If A lies in a coordinate subspace then we can reduce the dimensionality of our
problem, but at the cost of passing to non-uniform measures on polytopes. Suppose
that A ⇢ Nd 0 for d 0 < d and let ⇡ be the projection Rd ! Rd 0 . All moments
mI with I 2 A of the original polytope P ⇢ Rd are moments of the induced
distribution ⇡⇤(µP) on P 0 = ⇡(P) in Rd 0 . Its density at p 2 P 0 is the (d � d 0)-
dimensional volume of the inverse image ⇡�1(p) ⇢ P . In other words, ⇡⇤(µP)
is the push-forward of µP under the projection ⇡ . Densities of such measures are
piecewise polynomial functions of degree d � d 0 and are called polytopal splines.
They have been studied since the pioneering paper [10]; for more details consult
[11, 13].
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This paper is organized as follows. In Section 2 we derive the parametric rep-
resentation for our moment varieties. It is encoded in a rational generating function
(Theorem 2.2) whose numerator polynomial (2.6) is Warren’s adjoint from geo-
metric modeling [33, 34]. Section 3 concerns the univariate distribution obtained
by projecting P onto a line segment P 0. This corresponds to the above polytopal
splines with d 0 = 1. Their moment varieties are determinantal. Explicit Gröbner
bases are furnished by the Hankel matrices in Theorem 3.3.

In Section 4 we examine the case whenP is the d-simplex. We study moments
and cumulants for uniform probability distributions on simplices, and we express
these as multisymmetric functions. This connects us to an interesting, but notori-
ously difficult, subject in algebraic combinatorics. Brill’s equations [22] are used
to characterize the moment varieties of simplices. A Grassmannian makes a sur-
prise appearance in Proposition 4.7. The section concludes with tetrahedra: their
moments of order  3 form a 12-dimensional variety in P19.

Moment varieties of polytopes are invariant under affine transformations but
not under projective transformations. Section 5 explores these group actions and
their invariant theory. This is subtle because the affine group is not reductive, but
Theorem 5.5 offers a remedy.

Section 6 presents a computer-aided case study for quadrilaterals. We calcu-
late their moment hypersurfaces in P9. This includes the invariant hypersurface
of degree 18 in Theorem 6.3. We also examine concrete issues of identifiability
and symmetry, seen in the fiber of ten quadrilaterals in Figure 6.1, and in relations
among moments of tetrahedra in Proposition 6.7. Some of our results are proved by
certified numerical computations as in [4].

Section 7 offers a summary of this paper and an outlook for future directions.
Readers will find numerous open questions that arise from our investigations in the
earlier sections.

ACKNOWLEDGEMENTS. We thank Jan Draisma, Frank Grosshans and Hanspeter
Kraft for communications on invariant theory. We are grateful to Taylor Brysiewicz,
Paul Breiding and Sascha Timme for helping us with our experiments using numer-
ical algebraic geometry. Kathlén Kohn and Boris Shapiro are grateful to the MPI
MIS in Leipzig for the hospitality in June 2018 where this project was initiated.

2. Generating functions

The moments of a polytope P can be encoded in a rational generating function.
We begin by explaining this for the special case n = d + 1, when P is a d-
dimensional simplex 1d in Rd . The vertices of the simplex 1d are denoted by
xk = (xk1, . . . , xkd) for k = 1, 2, . . . , d + 1.

Lemma 2.1. The moments mI of the uniform probability distribution on the sim-
plex 1d are obtained from the coefficients of the normalized moment generating
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function
d+1Y

k=1

1
1� (xk1t1+xk2t2+ · · ·+xkd td)

=
X

i1,i2,...,id2N

(i1+i2+ · · ·+id + d)!

i1! i2! · · · id ! d!
mi1i2···id t

i1
1 t

i2
2 · · · t tdd .

(2.1)

Each momentmI is a homogeneous polynomial of degree |I | in the d2+d unknowns
xkl . This polynomial is multisymmetric: it is invariant under permuting the vertices
x1, x2, . . . , xd+1.

Proof. This can be found in several sources, e.g., [3, Theorem 10] and [19, Corol-
lary 3].

Observe that the normalized moment generating function (2.1) is different from
the standard exponential moment generating function, commonly used in statistics
and probability: X

i1,i2,...,id2N

mi1i2···id
i1! i2! · · · id !

t i11 t
i2
2 · · · t tdd . (2.2)

This is the exponential version of the ordinary generating function
X

i1,i2,...,id2N
mi1i2···id t

i1
1 t

i2
2 · · · t tdd . (2.3)

The reason why we prefer (2.1) over these is that (2.2) and (2.3) are not rational
functions. This can be seen already for d = 1 and n = 2 as in Example 1.1. In that
case, (2.1) is the rational function in (1.3), whereas the two other series (2.2) and
(2.3) are the non-rational functions

1X

i=0

mi

i !
t i =

exp(bt) � exp(at)
(b � a)t

and
1X

i=0
mi ti =

log(1� ta) � log(1� tb)
(b � a)t

.

(2.4)
Let P be a full-dimensional simplicial polytope in Rd with vertices x1, . . . , xn ,
where n � d + 2. Fix any triangulation 6 of P that uses only these vertices. We
identify 6 with the collection of subsets � = {�0, . . . , �d} that index the maximal
simplices conv(x�0, . . . , x�d ). The volume of P equals the sum of the volumes of
these simplices. We write this as

vol(P) =
X

�26

vol(� ).

If µ� denotes the uniform probability distribution on each simplex � then we have

µP =
1

vol(P)

X

�26

vol(� )µ� .
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Since the moments depend linearly on the measure, Lemma 2.1 implies the follow-
ing result:

Theorem 2.2. The normalized moment generating function for the uniform proba-
bility distribution µP on the simplicial polytope P is equal to

1
vol(P)

X

�26

vol(� )
Q

k2� (1� xk1t1 � xk2t2 � · · · � xkd td)

=
X

i1,...,id2N

(i1+ · · ·+id+d)!

i1! · · · id ! d!
mi1···id t

i1
1 · · · t tdd .

This expression is independent of the triangulation6. The coefficient mI = mI (X)
of t I is a rational function whose numerator is a homogeneous polynomial of de-
gree |I | + d in X and whose denominator equals vol(P), which is a homogeneous
polynomial of degree d in X .

To highlight the complexity of these moments, we examine the smallest non-simplex
case.
Example 2.3 (d = 2, n = 4). The polytope P is a quadrilateral in the plane, with
cyclically labeled vertices x1, x2, x3, x4. The moments of its uniform probabil-
ity distribution µP are rational functions in eight unknowns xkl . The area of the
quadrilateral is the quadratic form

vol(P) =
1
2
(x11x22�x12x21+ x21x32�x22x31+ x31x42�x32x41+ x41x12�x42x11).

The mean vector of the distribution µP is the centroid (m10,m01) = 1
2vol(P) ⇥

(M10,M01), where

M10 = (x41 � x21)(x41 + x11 + x21)x12 + (x11 � x31)(x11 + x21 + x31)x22
+ (x21 � x41)(x21 + x31 + x41)x32 + (x31 � x11)(x31 + x41 + x11)x42,

M01 = (x22 � x42)(x42 + x12 + x22)x11 + (x32 � x12)(x12 + x22 + x32)x21
+ (x42 � x22)(x22 + x32 + x42)x31 + (x12 � x32)(x32 + x42 + x12)x41.

The covariance matrix of the distribution µP equals
✓
m20 m11
m11 m02

◆
=

1
24 · vol(P)

·

✓
2M20 M11
M11 2M02

◆
,

where

M20 = x12(x41 � x21)(x211 + x11x21 + x11x41 + x221 + x21x41 + x241)
+x22(x11 � x31)(x211 + x11x21 + x11x31 + x221 + x21x31 + x231)
+x32(x21 � x41)(x221 + x21x31 + x21x41 + x231 + x31x41 + x241)
+x42(x31 � x11)(x211 + x11x31 + x11x41 + x231 + x31x41 + x241).
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The other diagonal entry M02 is similar, and the off-diagonal entry equals

M11 = (x11x22 � x12x21)(2x11x12 + x11x22 + x12x21 + 2x21x22)
+(x21x32 � x22x31)(2x21x22 + x21x32 + x22x31 + 2x31x32)
+(x31x42 � x32x41)(2x31x32 + x31x42 + x32x41 + 2x41x42)
+(x12x41 � x11x42)(2x11x12 + x11x42 + x12x41 + 2x41x42).

In Section 6 we shall examine the relations satisfied by higher moments of quadri-
laterals.

Let us return to Theorem 2.2 and take a closer look at the rational function seen
there. The normalized moment generating function can be written with a common
denominator

AdP(t1, t2, . . . , td)Qn
k=1(1� xk1t1 � xk2t2 � · · · � xkd td)

. (2.5)

The numerator is an inhomogeneous polynomial of degree at most n � d � 1 in
the variables t1, t2, . . . , td . Its coefficients are rational functions in the entries of the
n ⇥ d matrix X = (xkl):

AdP(t1, t2, . . . , td) =
X

�26

vol(� )

vol(P)

Y

k 62�

�
1� xk1t1 � xk2t2 � · · · � xkd td

�
, (2.6)

where 6 is any triangulation of the simplicial polytope P . Since (2.5) does not
depend on the triangulation6, so does the polynomial AdP . It is an invariant of the
simplicial polytope P .

We refer to AdP as the adjoint of P . This polynomial was introduced by War-
ren to study barycentric coordinates in geometric modeling [33, 34]. He associates
this to the simple polytope P⇤ dual to P . For simplicity, we assume 0 2 int(P).
The polytope P⇤ is the set of points (t1, . . . , td) for which all linear factors in (2.5)
and (2.6) are nonnegative. This implies that AdP is nonnegative on P⇤. The main
result in [33] states that the adjoint depends only on P , and not on its triangulation
6. For us, this is a corollary to Theorem 2.2.

Corollary 2.4. The adjoint AdP is independent of the triangulation 6 of the poly-
tope P .

The n linear factors in (1.3), (2.5) and (2.6) vanish on the n facets of the dual
polytope P⇤. This imposes interesting vanishing conditions on the adjoint AdP .
A non-face of P is any subset ⌧ of {1, 2, . . . , n} such that {xk : k 2 ⌧ } is not
the vertex set of a face of P . For any non-face ⌧ , we write L⌧ for the affine-
linear space in Rd that is defined by the equations

Pd
j=1 xk j t j = 1 for k 2 ⌧ .

The collection of subspaces L⌧ is denoted by NF(P). We call this the non-face
subspace arrangement of the simplicial polytope P . Equivalently, NF(P) is the
set of all intersections in Rd\P⇤ of collections of facet hyperplanes of the simple
polytope P⇤.
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Corollary 2.5. The adjoint AdP is a polynomial of degree at most n � d � 1 that
vanishes on the non-face subspace arrangementNF(P).

Proof. The vanishing property follows from the fact that, for every non-face ⌧ of the
polytope P , there exists a triangulation 6 of P that does not have ⌧ as a face.

In an earlier version of this article, we conjectured that, for every simplicial
d-polytope P with n vertices, the adjoint AdP is the unique polynomial of degree
n� d � 1 with constant term 1 that vanishes on the non-face subspace arrangement
NF(P). This is not quite true: For instance, if P is a regular octahedron such that
its three diagonals intersect in a common point (�1, �2, �3) 2 R3, then the adjoint
AP is (1 � �1t1 � �2t2 � �3t3)2 and the non-face subspace arrangement NF(P)
consists of three lines in the plane defined by �1t1 + �2t2 + �3t3 = 1. So there
is not a unique quadratic polynomial vanishing along NF(P), as every reducible
quadratic polynomial with (1� �1t1� �2t2� �3t3) as one of its two factors satisfies
this vanishing property. However, varying the vertices of P without changing its
combinatorial type makes the three lines inNF(P) skew such that there is indeed
a unique quadric surface passing through these three lines. A corrected version of
our conjecture was recently proven:

Theorem 2.6 (see [26]). Let P be a d-polytope with n vertices. If the projective
closure HP⇤ ⇢ Pd of the hyperplane arrangement formed by the linear spans of
the facets of the dual polytope P⇤ is simple (i.e., through any point in Pd pass at
most d hyperplanes in HP⇤), then there is a unique hypersurface in Pd of degree
n � d � 1 which vanishes along the projective closure of NF(P). The defining
polynomial of this hypersurface is the adjoint of P .

We note that the assumption in Theorem 2.6 that the hyperplane arrangementHP⇤

is simple implies that the polytope P is simplicial. For instance, for a regular octa-
hedron P , the plane arrangement HP⇤ is not simple, but varying the vertices of P
makesHP⇤ simple.

The adjoint AdP is closely related to barycentric coordinates on the simple
polytope P⇤ and the associated Wachspress variety in Pn�1; see [25, 26, 33, 34].
These objects can be defined as follows. Suppose the origin 0 lies in the interior
of our simplicial polytope P , and let 60 be the triangulation of P obtained by
connecting 0 to the boundary of P . The facets of 60 are � = 0 [ ⇢ where ⇢ is any
facet of P . The formula (2.6) holds for 60, and we get

AdP(t1, t2, . . . , td) =
X

⇢ is a facet of P
�⇢

Y

k 62⇢

�
1� xk1t1 � · · · � xkd td

�
. (2.7)

Here �⇢ is the probability of the simplex 0 [ ⇢, which is given by |det(xk : k 2 ⇢)|
divided by d ! vol(P). Each summand in (2.7) has degree n � d, but their sum has
degree n � d � 1.

Let N denote the number of facets ⇢ of P , i.e., the number of vertices of
P⇤. Consider the map Rd ! RN whose coordinates are the following rational
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functions, one for each ⇢:

(t1, . . . , td) 7!
�⇢

Q
k 62⇢

�
1� xk1t1 � · · · � xkd td

�

AdP(t1, t2, . . . , td)
.

These are the barycentric coordinates of [33, 34]. These coordinate functions are
nonnegative on P⇤ and they sum up to 1. The image of P⇤ lies in the probability
simplex with N vertices. We call this the Wachspress model of P . The term model
is meant in the sense of algebraic statistics [15]. Its Zariski closure in PN�1 is the
d-dimensionalWachspress variety of P .

In summary, the adjoint AdP was introduced in geometric modeling byWarren
[33]. It equals the numerator of the normalized moment generating function for the
uniform distribution µP on a simplicial polytope P of type P . The map P 7! AdP
represents the computation of all moments of µP . This induces a polynomial map
X 7! AdX on a dense open set of matrices X 2 Rn⇥d . Its image lies in an affine
space of dimension

�n�1
d
�
�1, namely the space of polynomials of degree n�d�1

in d variables with constant term 1. Passing to complex projective space, we define
the adjoint moment variety MAd(P) to be the Zariski closure of this image in
P(n�1d )�1. Readers of [25] are invited to regard MAd(P) as a moduli space of
Wachspress varieties, and to contemplate the questions in Section 7.

3. One-dimensional moments
In this section we characterize the relations among the moments of the 1-dimen-
sional probability distributions that are obtained by projecting the measures µP
onto a line. As before, let P be a d-dimensional simplicial polytope with n vertices.
We fix the coordinate projection ⇡ : Rd ! R that takes (t1, t2, . . . , td) to its first
coordinate t1. The pushforward ⇡⇤(µP) is a probability distribution on the line
R1. The i th moment mi of this distribution equals the moment mi0···0 of µP . For
normalized moment generating functions, equation (2.5) implies

1X

i=0

✓
d + i
d

◆
mi ti =

An�d�1(t)
(1� u1t)(1� u2t) · · · (1� unt)

, (3.1)

where u j = x j1 is the first coordinate of the j th vertex of the polytope P , and the
numerator is An�d�1(t) = AdP(t, 0, 0, . . . , 0). This is a univariate polynomial of
degree n�d�1. We now confirm that the density of ⇡⇤(µP) is the polytopal spline
mentioned in the Introduction.

Proposition 3.1. The density of ⇡⇤(µP) is a piecewise polynomial function of de-
gree d � 1. Its value at any point a 2 R1 is the (d � 1)-dimensional volume of the
fiber ⇡�1(a)\ P . Moreover, this density function is d � 2 times differentiable at its
break points u1, . . . , un .

Proof. The pushforward ⇡⇤(µP) is the measure that assigns to a segment [v,w] in
R1 the nonnegative real numberµP(⇡�1([v,w])\P). This number is the probabil-
ity that a uniformly chosen random point in the d-polytope P has its first coordinate



748 KATHLÉN KOHN, BORIS SHAPIRO AND BERND STURMFELS

between v and w. That probability can be computed by integrating the normalized
(d � 1)-dimensional volumes of ⇡�1(a) for the scalars a ranging from v to w. It
is well-known in the theory of polyhedral splines (cf. [13]) that this volume (called
the polytopal density) is a piecewise polynomial function of degree d � 1 in the
parameter a. This spline function is polynomial on each of the intervals [ui , ui+1],
and it is d � 2 times differentiable at all its break points ui .

Fix any integer r � 2n � d and consider the moments m0,m1, . . . ,mr . These
correspond to the moments of µP whose index set A equals {{r}} = {ie1 : i =
1, 2, . . . , r}. Using the notation from the Introduction, we are interested in the
moment varietiesM{{r}}(P) ⇢ Pr .
Lemma 3.2. The moment varietyM{{r}}(P) has dimension 2n � d � 1 in Pr . This
variety depends only on d, n and r . It is independent of the combinatorial type P
of the polytope.

Proof. Consider the probability distribution ⇡⇤(µP) where P runs over all poly-
topes of combinatorial type P . Such a distribution is parametrized by the n param-
eters ui in the denominator of (3.1) and the n � d � 1 nonconstant coefficients of
the numerator polynomial An�d�1. Thus there are 2n � d � 1 degrees of freedom
in specifying such a distribution, or the associated spline function on R1. Since
the distribution can be recovered from its first 2n � d moments (e.g., by [18]), the
irreducible varietyM{{r}}(P) has dimension min(2n � d � 1, r).

In the parametrization above we obtain all polynomials An�d�1 which are de-
fined in some open set of the coefficient space Rn�d�1. Hence the polytope type P
imposes only inequalities but no equations on that parameter space. We therefore
conclude that, for any combinatorial type P of simplicial d-polytopes with n ver-
tices, the moment varietyM{{r}}(P) is equal to the irreducible variety in Pr that is
given by the parametric representation (3.1).

We are now ready to state the main result in this section. Our object of study
is the subvariety M{{r}}(d, n) of Pr that is parametrically given by (3.1), where
u1, u2, . . . , un are arbitrary and An�d�1(t) ranges over polynomials with constant
coefficient 1. We refer to this (2n � d � 1)-dimensional variety as the r-th moment
variety of polytopal measures of type (d, n). To describe its homogeneous prime
ideal, we introduce the normalized moments

c0 = c1 = · · · = cd�1 = 0 and ci+d =

✓
d + i
d

◆
mi for i = 0, 1, . . . , r.

We form the following Hankel matrix with n+ 1 rows and r + d � n+ 1 columns:
0

B
B
@

c0 c1 . . . cn cn+1 . . . cr+d�n
c1 c2 . . . cn+1 cn+2 . . . cr+d�n+1
...

...
...

...
...

cn cn+1 . . . c2n c2n+1 . . . cr+d

1

C
C
A . (3.2)

Note that each entry of this matrix is a scalar multiple of one of the moments mi .
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Theorem 3.3. The homogeneous prime ideal in R[m0,m1, . . . ,mr ] that defines
the moment varietyM{{r}}(d, n) is generated by the maximal minors of the Hankel
matrix (3.2). These minors form a reduced Gröbner basis with respect to any an-
tidiagonal term order, with initial monomial ideal hmn�d ,mn�d+1, . . . ,mr�nin+1.
The degree ofM{{r}}(d, n) equals

�r�n+d+1
n

�
.

The set-theoretic version of this theorem is implicit in the literature on polytopal
moments (cf. [18, Theorem 1]). We offer a proof based on results from commutative
algebra.

Proof. Let I be the ideal generated by the maximal minors of the matrix in (3.2).
The statement that I is prime and has the expected codimension appears in [16, Sec-
tion 4A]. We fix the reverse lexicographic term order with m0 > m1 > · · · > mr .
The leading monomial of each maximal minor of (3.2) is the product of the entries
along the antidiagonal. The ideal generated by all such antidiagonal products is the
(n + 1)st power of the linear ideal hmn�d ,mn�d+1, . . . ,mr�ni. The codimension
of that ideal equals the number r � 2n + d + 1 of occurring unknowns, and its
degree is the number

�r�n+d+1
n

�
of monomials of degree  n in these unknowns.

The Gröbner basis property for that term order follows from [9, Lemma 3.1]. For
an interesting refinement of that Gröbner basis result see [28, Corollary 3.9].

It remains to show that our moment varietyM{{r}}(d,n) equals the zero set
of I . Let M(t) denote the formal power series on the left-hand side of (3.1). Fix a
polynomial �(t) = b0 + b1t + b2t2 + · · · + bntn with unknown coefficients such
that �(t)M(t) is a polynomial of degree n � d � 1. Hence the coefficient of t i in
�(t)M(t) is zero for all integers i � n � d. This constraint is a linear equation in
b = (bn, bn�1, . . . , b1, b0) whose coefficients are the normalized moments c j+d =�d+ j

j
�
m j . More precisely, the equation for the coefficient of t i is

bnci+d�n + bn�1ci+d�n+1 + · · · + b2ci+d�2 + b1ci+d�1 + b0ci+d = 0.

These equations for i = n � d, n � d + 1, . . . , r are equivalent to the requirement
that the row vector b is in the left kernel of the Hankel matrix (3.2). Hence that
matrix has rank  n onM{{r}}(d, n). We conclude thatM{{r}}(d, n) is contained
in the variety of I . We already saw that both are irreducible varieties of the same
dimension. Therefore, they are equal.

Remark 3.4. The recovery algorithm of [18] can be derived from the proof above.
For a given valid sequence of real moments, the Hankel matrix (3.2) has rank n.
For such a matrix, we compute a generator b = (bn, . . . , b1, b0) of its left kernel.
The node points u1, . . . , un are recovered as the roots of �(t) =

Pn
i=0 bi t i . The

numerator polynomial in (3.1) is found to be

An�d�1(t) =
1
b0

n�d�1X

`=0

✓X̀

i=0
bi c`+d�i

◆
· t`.
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It is instructive to revisit Example 1.1 from the perspective of Theorem 3.3.
Example 3.5 (d = 1, n = 2). The varietyM{{r}}(1, 2) is the moment surface in Pr
whose points represent the uniform probability distributions on line segments inR1.
The prime ideal of this surface is generated by the 3⇥ 3 minors of the 3⇥ r Hankel
matrix 0

@
0 m0 2m1 3m2 4m3 · · · (r � 1)mr�2
m0 2m1 3m2 4m3 5m4 · · · rmr�1
2m1 3m2 4m3 5m4 6m5 · · · (r + 1)mr

1

A . (3.3)

These cubics form a Gröbner basis. The moment surface has degree
�r
2
�
in Pr . Up

to a factor of 4, the leftmost 3 ⇥ 3 minor is equal to the cubic (1.4) whose surface
is shown in Figure 1.1.

4. Simplices

In what follows we focus on the case n = d + 1 when the polytope P is the d-
simplex 1d with vertices xk = (xk1, xk2, . . . , xkd) for k = 1, . . . , d + 1. From the
normalized moment generating function in Lemma 2.1 we can derive the following
explicit formula for the moments of µ1d .

Proposition 4.1. For I = (i1, . . . , id) 2 Nd , the corresponding moment of the
simplex equals

mI (X) =
i1! i2! · · · id ! d!

(i1+i2+ · · · + id + d)!

·
X

u

d+1Y

k=1

(uk1+uk2+ · · ·+ukd)!
uk1!uk2! · · · ukd !

xuk1k1 x
uk2
k2 · · · xukdkd ,

(4.1)

where the sum is over nonnegative integer (d+1)⇥d matrices u with column sums
given by I .

Proposition 4.1 shows that mI is a fairly complicated polynomial of degree |I | in
the d2 + d entries of X = (x1, . . . , xd+1)

T . However, these polynomials are still
simpler than the rational functions we obtain for moments of polytopes other than
simplices. For instance, consider the subalgebra of R[X] generated by all moments
mI (X) in (4.1) where I runs over Nd . We shall argue in Section 7 that this is the
algebra of multisymmetric polynomials [12].

In this section we are interested in the polynomial relations among the mo-
ments mI where I runs over an appropriate finite subset A of Nd\{0}. We homog-
enize these relations with the special unknown m00···0 that represents the total mass
of the simplex. This gives us homogeneous polynomial relations among the mo-
ments indexed by A [ {0}. Their zero set in P|A| is the moment varietyMA(1d).
The special case d = 1 and A = {{r}}, where our variety is a surface, was seen in
Example 3.5.
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We next present an algorithm for recovering the (d + 1) ⇥ d matrix X = (xkl)
from the above moments mI of order |I |  d + 1. There are

�2d+1
d

�
such moments

mI . Let L denote the sum of all terms on the right-hand side in (2.1) where 1 
i1 + i2 + · · · + id  d + 1. This is a polynomial in t1, t2, . . . , td with zero constant
term. We compute the formal inverse:

(1+L)�1=1�L+L2�L3+L4+· · ·+(�1)d+1Ld+1 mod
⌦
t1, t2, . . . , td

↵d+2
. (4.2)

Thus (1 + L)�1 is a polynomial of degree  d + 1 in t1, t2, . . . , td with constant
term 1. This polynomial must factor into linear factors, one for each vertex of the
desired simplex:

(1+ L)�1 =
d+1Y

k=1

�
1 � xk1t1 � xk2t2 � · · · � xkd td

�
. (4.3)

A necessary and sufficient condition for such a factorization to exist is that the
coefficients of (1+L)�1 satisfy Brill’s equations [12,22]. These classical equations
characterize polynomials that are products of linear factors, among all polynomials
of degree  d + 1 in d variables. We write [d + 1] for the set of vectors I 2 Nd

with |I |  d + 1. Our discussion implies:

Corollary 4.2. Homogeneous equations that defineM[d+1](1d) set-theoretically
are obtained by substituting the polynomials in mI on the left-hand side of (4.3)
into Brill’s equations.

If we are given numerical values in Q for the moments mI then the factoriza-
tion (4.3) is found in exact arithmetic by the built-in factorization methods in any
computer algebra system, provided the vertex coordinates xkl of our simplex are ra-
tional numbers. If the moments mI are rational but the xkl are not rational then they
are algebraic over Q, and one can use algorithms for absolute factorization to ob-
tain the right-hand side of (4.3). If the moments are floating point numbers then one
uses tools from numerical algebraic geometry (e.g., the software Bertini [4]) to
obtain an accurate factorization purely numerically.

We now return to the problem of computing the prime ideal of our variety
M[d+1](1d). In practise, the method in Corollary 4.2 did not work so well. In
what follows, we discuss some techniques that we found more effective in obtaining
relations among moments.

In all computations, it helps to use the fact that the ideal ofMA(P) is ho-
mogeneous with respect to a natural Zd+1-grading. On the unknown moments this
grading is given by

degree(mi1i2···id ) = (1, i1, i2, . . . , id). (4.4)

This follows from the parametric representation of the moment varieties given in
(2.1). Our first result concerns the case d = 2, i.e., the ideal of a moment variety
for triangles.
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Proposition 4.3. The triangle moment varietyM[3](12) has dimension 6 and de-
gree 30. It lives in the projective space P9. Its prime ideal is minimally generated
by eight quartics and one sextic. The degrees of the nine ideal generators in the
Z3-grading given in (4.4) are

(4, 2, 3), (4, 3, 2), (4, 2,4), (4, 3, 3), (4, 3, 3), (4,4, 2), (4, 3,4), (4,4, 3), (6, 6, 6).

Proof. This computation was carried out with the technique of cumulants, to be
introduced below. For an explicit example, the ideal generator of degree (4, 2, 3)
equals

3m02m210m01 � 6m11m10m201 + 3m20m301 � m03m210m00 + 4m211m01m00
+ m21m02m200 � 4m20m02m01m00 + 2m12m10m01m00 � m21m201m00
+ m03m20m200 � 2m12m11m200.

(4.5)

We shall present the derivation by means of Macaulay2 in the proof of Proposi-
tion 4.7.

Logarithms turn products into sums, and this can greatly simplify calculations.
To do this in the context of probability and statistics, one passes from moments to
cumulants. Let M be the generating function on the right of (2.1). The associated
normalized cumulant generating function is defined as the formal logarithm via
log(1+ x) = x � 1

2 x
2 + 1

3 x
3 � · · · :

K = log(M) =
X

i1,...,id2N

(i1+i2+ · · ·+id � 1)!
i1! i2! · · · id !

ki1i2···id t
i1
1 t

i2
2 · · · t idd . (4.6)

Here k00···0 = 0. By comparing the coefficients of monomials t I in this identity,
we obtain the expressions for each cumulant kI as a polynomial in the moments mJ
where |J |  |I |.

Example 4.4 (d = 2). Here are the formulas for the cumulants kI of order |I | 
3 in terms of the moments mJ of order |J |  |I |, written in the language of
Macaulay2 [20]:

S = QQ[m30, m21, m12, m03, m20, m11, m02, m10, m01, m00];
k01=3*m01; k02=12*m02-9*m01ˆ2; k03=27*m01ˆ3+30*m03-
54*m01*m02; k10=3*m10;
k11=12*m11-9*m01*m10;
k12 = -36*m01*m11-18*m10*m02+30*m12+27*m10*m01ˆ2;
k20 = 12*m20-9*m10ˆ2;
k21 = -18*m01*m20-36*m10*m11+30*m21+27*m01*m10ˆ2;
k30 = 30*m30+27*m10ˆ3-54*m10*m20;

We shall revisit this piece of code shortly, to represent the ideal generators in Propo-
sition 4.3.
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The transformation (4.6) frommoments to cumulants is easily invertible. Namely,
the moment generating function is the exponential of the cumulant generating func-
tion:

M = exp(K) = 1 + K +
1
2
K2 +

1
6
K3 +

1
24

K4 + · · · .

This identity expresses each momentmI as a polynomial in the cumulants kJ where
|J |  |I |.

The factorial multipliers in the generating function (4.6) are chosen so that the
normalized cumulants ki1i2···id of a simplex 1d coincide with the standard power
sum multisymmetric functions [12, Section 1.2] in its vertices x1, . . . , xd+1. This is
the content of the following corollary.

Corollary 4.5. The cumulants of the uniform probability distribution on the sim-
plex 1d are

ki1i2···id =
d+1X

j=1
xi1j1x

i2
j2 · · · xidjd . (4.7)

Proof. Taking the logarithm of the left-hand side in (2.1), we see that K is the sum
of the expressions �log

�
1� x j1t1 � x j2t2 � · · · � x jd td

�
for j = 1, 2, . . . , d + 1.

The coefficient of a non-constant monomial t i11 t
i2
2 · · · t idd in the expansion of that

expression equals xi1j1x
i2
j2 · · · xidjd .

Remark 4.6. Both the moments (4.1) and the cumulants (4.7) are multisymmetric
functions in x1, x2, . . . , xd+1, and they are expressible in terms of each other. How-
ever, the formula for the cumulants is much simpler than that for the moments. For
that reason, it seems advantageous to use cumulant coordinates when studying the
moment varieties of simplices.

Replacing moments with cumulants amounts to a change of coordinates in the
affine space

A(d+r
d )�1 =

�
m00···0 = 1

 
=

�
k00···0 = 0

 
.

This is the affine chart of interest inside the projective space (1.5) which harbors
M[r](1d).

Ciliberto et al. [8] refer to this non-linear automorphism as a Cremona lin-
earization. In our situation, the Cremona linearization greatly simplifies the equa-
tions that defineM[r](1d). We now illustrate this explicitly for a simple case,
namely for triangles (d = 2) with k = 3. Here, Cremona linearization identifies
our moment variety with a Grassmannian.

Proposition 4.7. The restriction of the 6-dimensional triangle moment variety
M[3](12) in P9 to the affine chart A9 = {m00 = 1} = {k00 = 0} can be identified
with an affine chart of the 6-dimensional Grassmannian of lines in P4, which has
its Plücker embedding in P9.
Proof. We give the identification with the Grassmannian as Macaulay2 code,
starting from Example 4.4. The following ten expressions in the cumulants serve as
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Plücker coordinates:
p01 = 3*k20-k10ˆ2;
p02 = 6*k11-2*k10*k01;
p03 = 9*k21+12*k11*k10-5*k10ˆ2*k01;
p04 = 18*k30-24*k20*k10+6*k10ˆ3;
p12 = 3*k02-k01ˆ2;
p13 = 9*k12-6*k11*k01+6*k02*k10-k10*k01ˆ2;
p14 = 18*k21-12*k11*k10+12*k20*k01-2*k10ˆ2*k01;
p23 = 9*k03-12*k02*k01+3*k01ˆ3;
p24 = 18*k12+24*k11*k01-10*k10*k01ˆ2;
p34 = 72*k21*k01+72*k12*k10+9*k20*k02-9*k20*k01ˆ2

-9*k11ˆ2+18*k11*k10*k01-9*k02*k10ˆ2-16*k10ˆ2*k01ˆ2;

We next form the ideal generated by the five quadratic Plücker relations:
I = ideal(p01*p23-p02*p13+p03*p12, p01*p24-p02*p14+p04*p12,
p01*p34-p03*p14+p04*p13, p02*p34-p03*p24+p04*p23, p12*p34-
p13*p24+p14*p23);

The ideal I now contains five of the eight quartics in Proposition 4.3 starting with
that of degree (4, 2, 3) in (4.5). These five quartics generate the prime ideal of
the affine varietyM[3](12) \ A9. To pass to the projective closure in P9 we now
homogenize and saturate:

J = saturate(homogenize(I,m00),m00);
toString mingens J

This displays all nine minimal generators of the homogeneous prime ideal of
M[3](12).

Using the cumulant coordinates, it is possible to derive defining equations for
M[r](1d) for r � d + 2 in terms of the equations for r = d + 1. This is done by
the following technique:

Proposition 4.8. For the uniform probability distribution on the simplex 1d , each
cumulant kI of order |I | � d + 2 is a polynomial in the cumulants kJ of order
|J |  d + 1.

Proof. We abbreviate Xk = xk1t1+ xk2t2+· · ·+ xkd td for k = 1, 2, . . . , d+1. For
any ` � d+2, we consider the power sum X`1+ X`2+· · ·+ X`d+1. Using Newton’s
identities, we can write this uniquely as a polynomial P` with rational coefficients
in the first d + 1 such power sums:

d+1X

k=1
X`k = P`

✓ d+1X

k=1
X1k ,

d+1X

k=1
X2k , . . . ,

d+1X

k=1
Xd+1
k

◆
. (4.8)

By Corollary 4.5, the left-hand side is the following polynomial of degree ` in
t1, . . . , td :

d+1X

k=1
X`k =

X

I : |I |=`

✓
|I |
I

◆
kI t I .
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The same holds for the power sums occurring on the right-hand side of (4.8). We
expand the right-hand side and write it as a polynomial in t1, t2, . . . , td . Then each
coefficient is a polynomial in the cumulants kJ with |J |  d + 1. This gives the
desired formula for kI .

Example 4.9 (d = 2). The five fourth-order cumulants for a triangle in the plane
R2 admit the following polynomial expressions in terms of the nine cumulants of
lower order:

k04 = k401 + 3k202 + 4k03k01 � 6k02k201,
k13 = �3k02k10k01 + 3k11k02 + k03k10 + 3k12k01 � 3k11k201 + k10k301,
k22 = k20k02 � k02k210 + 2k211 + 2k12k10 + k210k

2
01 + 2k21k01 � 4k11k10k01 � k20k201,

k31 = k30k01 + 3k20k11 + 3k21k10 � 3k11k210 � 3k20k10k01 + k310k01,
k40 = k410 + 3k220 + 4k30k10 � 6k20k210.

These identities hold if we substitute ki j = xi11x
j
12 + xi21x

j
22 + xi31x

j
32, so they pro-

vide valid equations forM[4](12) on the affine chart A14 = {m00 = 1}. To trans-
late these equations into moment coordinates, we simply use the identities arising
from K = log(M), such as

k04= 60m04 � 72m202 � 81m401 + 216m201m02 � 120m01m03,
k13=60m13+108m10m01m02�30m10m03�81m10m301+108m

2
01m11�90m01m12�72m11m02.

Consider the ideal generated by these polynomials in moments. Just like in the end
of the proof of Proposition 4.7, we homogenize and saturate with respect to m00.
This yields generators for the homogeneous prime ideal of the triangle moment
varietyM[4](12) in P14.

At this point, we note that all results in this section are valid for configurations
of n � d + 2 points x1, x2, . . . , xn in Rd , but with the uniform measure on their
convex hull replaced by a canonical polytopal measure. Namely, consider the gen-
erating function on the left-hand side in (2.1) but with the upper index n instead of
d + 1. This is the normalized moment generating function for the probability mea-
sure ⇡⇤(µ1n�1) on Rd where ⇡ denotes the canonical projection from the simplex
1n�1 onto the polytope P = conv(x1, x2, . . . , xn):

nY

k=1

1
1� (xk1t1+xk2t2+ · · ·+xkd td)

=
X

i1,i2,...,id2N

(i1+i2+ · · ·+id + n � 1)!
i1! i2! · · · id ! (n � 1)!

mi1i2···id t
i1
1 t

i2
2 · · · t tdd .

The density function of ⇡⇤(µ1n�1) is the canonical polytopal spline supported on
P . This is piecewise polynomial of degree n � d � 1 and differentiable of order
n � d � 2 [13].

We consider the moments mI of order |I |  r on the right-hand side above.
These are polynomial functions in the nd unknowns xkl . Let Ir,d,n denote the
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prime ideal of homogeneous polynomial relations among these
�r+d
d
�
moments.

For instance, the ideal I3,2,3 is the one with 9 generators in 10 unknowns seen in
Propositions 4.3 and 4.7.

It would be interesting to compute the ideals Ir,d,n for as many values of r ,
d and n as possible, and to better understand their varieties. For instance, the case
d = 2 and n = 4 concerns the canonical piecewise linear densities on quadrilaterals
in R2. It should be compared to the uniform distribution on quadrilaterals, to be
studied in Section 6.

We conclude this section with a discussion of the tetrahedron 13. This has
12 parameters, namely the coordinates of the vertices xk = (xk1, xk2, xk3) for k =
1, 2, 3, 4. We are interested in the moment varietyM[3](13) in P19. Points on this
variety represent cubic surfaces in P3. The coefficients of a cubic are specified by
the cumulants of the uniform distribution on 13:

ki jl = xi11x
j
12x

l
13 + xi21x

j
22x

l
23 + xi31x

j
32x

l
33 + xi41x

j
42x

l
43 for 1  i + j + l  3.

We computed polynomials in the prime ideal of relations among these 19 cumu-
lants. This ideal is not homogeneous in the usual grading but it is homogeneous in
the Z3-grading given by deg(ki jl) = (i, j, l). For a concrete example, here is an
ideal generator of degree (3, 2, 2):

k2010k200k102 + k2100k020k102 + k2001k100k
2
110 + k2010k100k

2
101 � k3100k002k020 + k2100k002k120 + k3100k

2
011 + 4k2110k102 + 2k001k

2
100k020k101

+4k2101k120 + 4k2011k300 � 2k001k010k100k101k110 + 2k001k010k100k011k200 � k2010k100k002k200 � k2001k100k020k200 � 2k010k
2
100k011k101

+2k010k
2
100k002k110 � 2k001k

2
100k011k110 + 10k100k011k101k110 + 5k100k002k020k200 � 2k010k100k110k102 + 2k010k100k101k111

+2k001k100k110k111 � 2k001k010k200k111 � 2k001k100k101k120 + 2k010k100k011k201 � 2k001k100k020k201 + 2k001k010k110k201
�2k010k100k002k210 + 2k001k100k011k210 + 2k001k010k101k210 � 2k001k010k011k300 + k2001k200k120 � 4k002k020k300 + 8k002k110k210
�8k101k110k111 � 2k2100k011k111 � 4k002k200k120 + 8k011k200k111 � 5k100k002k

2
110 � 5k100k020k

2
101 + k2010k002k300 � 4k020k200k102

�5k100k
2
011k200 + 8k020k101k201 � 8k011k110k201 � 8k011k101k210 + k2001k020k300 � 2k2001k110k210 � 2k2010k101k201.

Each relation among cumulants translates into a Z4-homogeneous relation among
the moments. The above polynomial translates into the following polynomial of
degree (5, 3, 2, 2):

m2000m002m020m300 � 2m2000m002m110m210 + m2000m002m120m200 � m2000m
2
011m300 + 2m2000m011m101m210 + 2m2000m011m110m201

�2m2000m011m111m200 � 2m2000m020m101m201 + m2000m020m102m200 � m2000m
2
101m120 + 2m2000m101m110m111 � m2000m102m

2
110

�2m000m001m010m110m201 + 2m000m
2
001m110m210 � m000m

2
001m120m200 + 2m000m001m010m011m300 � 2m000m001m010m101m210

�m000m
2
001m020m300 + 2m000m001m010m111m200 � 2m000m001m011m100m210 + 2m000m001m020m100m201 + 2m000m001m100m101m120

�2m000m001m100m110m111 � m000m002m
2
010m300 + 2m000m002m010m100m210 � 5m000m002m020m100m200 � m000m002m

2
100m120

+2m000m010m100m102m110 + 2m000m
2
010m101m201 � m000m

2
010m102m200 � 2m000m010m011m100m201 � 2m000m010m100m101m111

+5m000m002m100m
2
110 + 5m000m

2
011m100m200 + 2m000m011m

2
100m111 � 10m000m011m100m101m110 � m000m020m

2
100m102

+5m000m020m100m
2
101 + 4m2001m020m100m200 � 4m2001m100m

2
110 � 8m001m010m011m100m200 + 8m001m010m100m101m110

+8m001m011m
2
100m110 � 8m001m020m

2
100m101 + 4m002m

2
010m100m200 � 8m002m010m

2
100m110 + 4m002m020m

3
100

�4m2010m100m
2
101 + 8m010m011m

2
100m101 � 4m2011m

3
100.

Based on our computations, we propose the following conjecture.
Conjecture 4.10. Consider cumulants and moments of order  3 for the uniform
distribution on a tetrahedron. They specify irreducible varieties of dimension 12 in
A19 and P19 respectively. The prime ideal for cumulants has 44 minimal generators.
Their degrees are

(223), (232), (322), (134), (143), (314), (341), (413), (431), (224), (224), (242), (242), (422), (422), (332), (332), (332), (323), (323), (323), (233),
(233), (233), (144), (414), (441), (333), (333), (225), (252), (522), (234), (234), (243), (243), (324), (324), (342), (342), (423), (423), (432), (432).
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The prime ideal for moments has 93 minimal generators, namely 90 quintics and 3
sextics.

We shall return to the 90 ideal generators of degree five in Proposition 6.7.

5. Symmetry and invariants

In this section we study the symmetries arising from the group of affine transforma-
tions:

Affd := Rd o GLd(R).

This group is a subgroup of GLd+1(R). It acts on column vectors x=(x1, . . . , xd)T
via ✓

x
1

◆
7!

✓
A b
0 1

◆✓
x
1

◆
, (5.1)

where A = (ai j ) is an invertible d ⇥ d-matrix and b = (bi ) is a column vector in
Rd . This group acts naturally on the space of realizations of a polytope typeP . The
action (5.1) also induces an action on monomials and hence an action on moments
mI , I 2 Nd . Explicitly,

mI 7!
X

J
⌫I J · mJ , (5.2)

where ⌫I J = ⌫I J (A, b) is the coefficient of the monomial x J in the expansion of
(Ax + b)I . The sum in (5.2) is over all J 2 Nd such that |J |  |I |. Here are
formulas for two simple cases.
Example 5.1 (d = 1). The group Aff1 acts on the real line R1 via x 7! ax + b,
where a, b 2 R with a 6= 0. Under this action, the i-th moment of a probability
measure onR1 is transformed into the following linear combination of all moments
of order at most i :

mi 7!
iX

j=0

✓
i
j

◆
a jbi� jm j . (5.3)

Example 5.2 (d = 2). The moments of order  2 are the entries of the symmetric
matrix

M =

0

@
m20 m11 m10
m11 m02 m01
m10 m01 m00

1

A .

The upper left 2⇥2 block is the covariance matrix. The group Aff2 consists of 3⇥3
matrices

Ab =

0

@
a11 a12 b1
a21 a22 b2
0 0 1

1

A .

With this matrix notation for |I |  2, the action (5.1) takes the form M 7! Ab ·
M · AbT . More generally, if we consider all moments of order  r then we can
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write these as an r-dimensional symmetric tensor of format 3 ⇥ 3 ⇥ · · · ⇥ 3. The
action (5.1) is given by multiplication of this tensor on all its r sides by the 3 ⇥ 3
matrix Ab.

We have identified the space of moments of order  r with the projective
space P(d+r

d )�1. The formula (5.1) defines a linear action of the group Affd on that
projective space. Recall that, for each simplicial polytope P in Rd and each subset
A ⇢ Nd with 0 /2 A, its associated moment varietyMA(P) is a projective variety
in P|A|. In particular, if A is the index set [r] = {I 2 Nd | 1  |I |  r}, then the
moment varietyM[r](P) lives in P(d+r

d )�1, as in (1.5).

Lemma 5.3. The moment varietyM[r](P) of a simplicial polytope P in Rd is in-
variant under the action of the groupAffd of affine transformations on the projective
space P(d+r

d )�1.

Proof. The group Affd acts on P(d+r
d )�1, and it also acts on the space of all realiza-

tions P of a given combinatorial type P . The map that takes a specific simplicial
polytope P to its point in the varietyM[r](P) is equivariant with respect to the two
actions, i.e., the image of P under an affine transformation is mapped to the image
of its moment vector under the same transformation. This implies thatM[r](P) is
invariant under the action by Affd .

In cases where our moment variety is a hypersurface in P(d+r
d )�1, its defining

equation is a polynomial that is invariant under Affd . It is thus of interest to study
the invariant ring

R
⇥
mI : |I |  r

⇤Affd . (5.4)

Here and in what follows we use the term invariant for relative invariants, i.e., such
that the transformation of an invariant polynomial equals the original polynomial
times a power of det(A). In other words, an invariant is an absolute invariant of the
subgroup Affd \ SLd+1(R).
Example 5.4 (d=1, r=3). The group Aff1 acts on the polynomial ringR[m0,m1,
m2,m3] via (5.3). The invariant ring has four generators, in degrees (1, 1), (2, 2),
(3, 3) and (4, 6):

a = m0 , b = m0m2 � m21 , c = m20m3 � 3m0m1m2 + 2m31,
d = m20m

2
3 � 6m0m1m2m3 + 4m0m32 + 4m31m3 � 3m21m

2
2.

We verified the equality R[m0,m1,m2,m3]Aff1 = R[a, b, c, d], see Theorem 5.5
below. Note that b and d are the discriminants of binary forms of degree two and
three. The four invariants satisfy the relation a2d � 4b3 � c2 = 0. This expresses
the discriminant d in terms of the other three invariants on the affine open set {m0 =
1}. The invariant c is the one of interest to us. The cubic surface it defines in P3 is
given by (1.4) and shown in Figure 1.1.
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Once we know generators for this invariant ring (5.4), we can try to express our
hypersurface as a polynomial in these fundamental invariants. Note that Hilbert’s
theorem on finite generation does not directly apply here, because the group Affd
is not reductive. However, there is a nice method from classical invariant theory
using covariants, which allows us to conclude finite generation and to compute the
invariants of Affd we are interested in.

Set V = Rd+1, with standard basis denoted by {u1, u2, . . . , ud+1}. We identify
the symmetric power Sr (V ) with our space of moments mI of order |I | at most r .
The action of the general linear group G = GLd+1(R) on Sr (V ) restricts to the
action of the affine group Affd on moments. The group G acts naturally on the dual
space V ⇤. We consider the action of G on the direct sum Sr (V ) � V ⇤, and the
induced action on the polynomial ring

R[Sr (V ) � V ⇤] = R
⇥
mI : |I |  r

⇤
⌦R R[u1, u2, . . . , ud+1 ]. (5.5)

A G-invariant in this polynomial ring is known as a covariant. Thus R[Sr (V ) �
V ⇤]G is the ring of covariants of Sr (V ). This ring is finitely generated because G
is reductive.

Let  be the ring epimorphism R[Sr (V ) � V ⇤] ! R[Sr (V )] defined by
ud+1 7! 1 and ui 7! 0 for i = 1, 2, . . . , d. This reflects the special role played by
the last index in the realization of Affd as a subgroup of G. The following result is
known in classical invariant theory.

Theorem 5.5. The map  induces an isomorphism between covariants and affine
invariants:

R[ Sr (V ) � V ⇤ ]G ' R[Sr (V )]Affd . (5.6)

Proof. This statement is a special case of [21, Theorem 11.7].

The basic covariant is the homogeneous polynomial itself. In our notation,

f = f (m, u) =
X

|I |r
( r
I,r�|I |) · mI · uI ur�|I |

d+1 . (5.7)

The image of f under the isomorphism (5.6) is the Affd -invariant moment coordi-
nate

 ( f ) = m00···0.

The degree of a covariant g = g(m, u) is its degree in the unknowns mI . The
order of g is its degree in the unknowns u j . The form f is a covariant of degree
1 and order r . Covariants of order 0 are invariants of G. The degree of an affine
invariant in the Zd+1-grading (4.4) can be read off from the degree and the order of
the corresponding covariant:

Lemma 5.6. Let g be a covariant of degree p and order o for the space Sr (Rd+1)
of degree r forms. Then the integer rp�o is a positive multiple of the number d+1
of unknowns. Setting q = rp�o

d+1 , the degree of the associated affine invariant  (g)
equals (p, q, q, . . . , q).
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Proof. Consider the diagonal matrix diag(t, t, . . . , t) in G = GLd+1(R). It acts
on Sr (V ) by mutiplying the vector m with tr . It acts on V ⇤ by multiplying the
vector u with t�1. The covariant g(m, u) of degree p and order o is transformed
by the action of this diagonal matrix into g(trm, t�1u) = t pr�og(m, u). The
multiplier t pr�o is a power of det(A) = td+1, so q = rp�o

d+1 is an integer. It
follows that diag(t1, t2, . . . , td+1) takes g(m, u) to tq1 t

q
2 · · · tqd+1g(m, u). We find

that  (g)(m) = g(m, ed+1) has degree (p, q, . . . , q) with respect to the grading
in (4.4).

Example 5.7 (d = 1, r = 3). We derive Example 5.4 from the classically known
covariants of the binary cubic. The four generators of the ring R[m0,m1,m2,m3,
u1, u2]G are

• the binary cubic A itself, of degree 1 and order 3;
• the Hessian B, of degree 2 and order 2;
• the Jacobian of A and B, denoted by C , of degree 3 and order 3;
• the discriminant D, of degree 4 and order 0.

Applying  to these covariants yields the corresponding affine invariants in Exam-
ple 5.4.
Example 5.8 (d = 2, r = 3). Consider any probability measure on R2. Its mo-
ments of order  3 can be encoded as the coefficients of a ternary cubic

f = m30u31 + 3m21u21u2 + 3m20u21u3 + 3m12u1u22 + 6m11u1u2u3
+3m10u1u23 + m03u32 + 3m02u22u3 + 3m01u2u23 + m00u33.

(5.8)

The notation is as in (5.7). It is classically known that f has six fundamental co-
variants:

covariant f S T H G J
(degree, order) (1, 3) (4, 0) (6, 0) (3, 3) (8, 6) (12, 9) (5.9)

First is the ternary cubic f itself, of degree 1 and order 3. Next are the Aronhold
invariants S and T , of degree 4 and 6 resp. These are followed by the Hessian H .
The covariant G is explained in Dolgachev’s book [14, Section 3.4.3], where the
following formula can be found:

G = det

0

B
@

f11 f12 f13 h1
f12 f22 f23 h2
f13 f23 f33 h3
h1 h2 h3 0

1

C
A with fi j =

@2 f
@ui@u j

and hi =
@H
@ui

.

The last covariant J is the Jacobian of f , H and G. This is known as the Brioschi
covariant.

The six fundamental affine invariants are the images of the fundamental co-
variants under replacing (u1, u2, u3) with (0, 0, 1):
affine invariant m00= ( f ) s= S t=T h= (H) g= (G) j= (J )

Z3-degree (1, 0, 0) (4, 4, 4) (6, 6, 6) (3, 2, 2) (8, 6, 6) (12, 9, 9)
# terms 1 25 103 5 168 892

(5.10)
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We summarize our derivation of the affine invariants of ternary cubics as follows:

Proposition 5.9. For d = 2 and r = 3, the invariant ring (5.4) equals R[m00, s, t,
h, g, j] modulo one homogeneous relation of degree (24, 18, 18). Hence its Hilbert
series equals

1+ x12y9z9

(1� x)(1� x4y4z4)(1� x6y6z6)(1� x3y2z2)(1� x8y6z6)(1� x12y9z9)
. (5.11)

The moment varietiesM[r](P) are hypersurfaces in only very few cases. Examples
include P = quadrilateral with r = 3, P = 13-gon with r = 6, orP = octahedron
with r = 3. In those cases there is a single affine invariant. The first one is featured
in the next section.

6. Quadrilaterals and beyond

This section is devoted to the smallest non-simplex. Let Q be a quadrilateral in
the plane. Some of its moments were already explicitly shown in Example 2.3.
We know the normalized moment generating function from Section 2. The only
non-faces of the quadrilateral Q are its two diagonals. Hence, the adjoint AdQ is
given by the intersection point of these diagonals. More specifically, if x1, x2, x3, x4
denote the cyclically labeled vertices of Q and (�1, �2) is the diagonal intersection
point, then the normalized moment generating function of Q equals

1� �1t1� �2t2
(1� x11t1� x12t2)(1� x21t1� x22t2)(1� x31t1 � x32t2)(1� x41t1 � x42t2)

. (6.1)

It is a non-trivial task to compute relations among the moments of quadrilaterals.
The easiest relations are given by Theorem 3.3, if we take the Hankel matrix (3.2)
for r = 6.
Example 6.1. Consider the moments mi0 where i = 0, 1, . . . , 6. The correspond-
ing moment varietyM{{6}}(Q) is the hypersurfaceM{{6}}(2, 4) ⇢ P6. It is defined
by the determinant of

0

B
B
B
@

0 0 m00 3m10 6m20
0 m00 3m10 6m20 10m30
m00 3m10 6m20 10m30 15m40
3m10 6m20 10m30 15m40 21m50
6m20 10m30 15m40 21m50 28m60

1

C
C
C
A

. (6.2)

This relates the moments of the pushforward measure given from projecting Q onto
a line.

What we are actually interested in are mixed relations, i.e., equations in the
moments mi j that do not come from projections onto lines as in Example 6.1. The
dimension ofMA(Q) in P|A| is eight if A ⇢ N2 is big enough. We first show an
interesting scenario with |A| = 8.
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Example 6.2. Let A := ({0, 1, 2} ⇥ {0, 1, 2})\{(0, 0)}. These moments are al-
gebraically independent. Hence the moment varietyMA(Q) is equal to the am-
bient space P8. Consider the map (C2)4 99K P8 which sends quadrilaterals to
their moments in A. A computation with the software HomotopyContinua-
tion.jl [5] reveals that randomly chosen fibers of this map consist of 80 points
over C. We conclude that the map (C2)4 99K P8 is generically 80-to-1. The di-
hedral group of order 8 acts on each fiber by permuting vertices of Q. Hence each
fiber consists of 10 geometric configurations, generally over C.

For a concrete example, consider the quadrilateral X = {(1,�1), (3, 2), (2, 4),
(�1, 2)}. The fiber for this X consists of 80 real points. These correspond to four
non-convex quadrilaterals, two convex quadrilaterals and four quadrilaterals with
self-crossings; see Figure 6.1.

Figure 6.1. Ten real quadrilaterals having the same moments mi j for i, j 2 {0, 1, 2}.

In what follows we consider sets A with |A| = 9. Here, the moment variety
MA(Q) is typically a hypersurface in P9. The most natural index sets A arise
from partitions of the integer 10. Given a partition � = {�0 � �1 � · · · � �s > 0},
the corresponding index set is

A� :={(0,1), (0,2), . . . , (0,�0�1), (1,0), (1,1), . . . , (1,�1�1), . . .
. . . , (s,0), . . . , (s,�s�1)}.

We simply writeM� := MA� . For example,M4 3 2 1(Q) is the variety of mo-
ments up to order three which was earlier denoted byM[3](Q). We determine this
hypersurface explicitly.
Theorem 6.3. Let Q be a quadrilateral in the plane. The moment varietyM[3](Q)

is a hypersurface in P9, whose defining polynomial has 5100 terms of degree (18,
12, 12). It equals
2125764h6 + 5484996m200h

4s � 1574640m00gh3 + 364500m300h
3t + 3458700m400h

2s2

�2041200m300ghs+472500m
5
00hst�122500m

6
00s

3+291600m200g
2�135000m400gt+15625m

6
00t

2,
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where the affine invariants in (5.10) are normalized to have content one and leading
monomials
s=m00m02m12m30+· · ·, t=m200m

2
03m

2
30+· · · , h=m00m02m20+· · ·, g=m300m

3
02m

2
30+· · · .

Derivation and Proof. The above formula was found as follows. By Table 6.1 be-
low, the Z3-degree of the hypersurface is (18, 12, 12). We used Proposition 5.9 to
generate affine invariants of this degree with indeterminate coefficients. By plug-
ging in the moments mi j from various random quadrilaterals, we created a system
of linear equations in the coefficients. This system was solved which led to the for-
mula above. Independent verification of the formula was carried out by checking
that it vanishes on the parametrization (C2)8 !M[3](Q).

We demonstrate the same technique for another interesting hypersurface in
P9 that is also invariant under Aff2. It represents the moments of order  3 of
probability measures on the triangle 12 whose densities are linear functions. This
hypersurface is the image of the 8-dimensional variety P2 ⇥M[4](12) under the
map into P9 whose coordinates are

Mi j = ↵ · mi+1, j + � · mi, j+1 + � · mi, j for 0  i + j  3.

Here (↵ : � : � ) 2 P2 and mi, j are the moments of the uniform probability
measure on 12.
Proposition 6.4. The above hypersurface has degree (52,36,36). Its defining poly-
nomial is

12288754756878336m16s9 � 125913170530271232h2m14s8 � 11555266180939776hm15s7t � 423695444226048m16s6t2

�242587475329941504h4m12s7 � 67888179490848768h3m13s6t � 2253544388296704h2m14s5t2 + 92156256976896hm15s4t3

+4239929831616m16s3t4 � 2425179321925632ghm13s7 + 767341894828032gm14s6t � 1302706722212675584h6m10s6

�108262506929061888h5m11s5t + 673312350928896h4m12s4t2 + 535497484271616h3m13s3t3 + 31959518257152h2m14s2t4

+440798423040hm15st5 + 195936798885543936gh3m11s6 � 410140620619776gh2m12s5t � 412398826108747776gh6m8s3t
�2360537593675776ghm13s4t2 � 89805332054016gm14s3t3 � 486870353365172224h8m8s5 + 6819936693387264h7m9s4t
+29422733985054720h6m10s3t2 + 2782917213290496h5m11s2t3 + 58246341746688h4m12st4 � 587731230720h3m13t5

+3602104581095424g2m12s6 � 157746980481662976gh5m9s5 � 79828890012352512gh4m10s4t � 10700934975848448gh3m11s3t2

�668738492301312gh2m12s2t3 � 10448555212800ghm13st4 + 275499014400gm14t5 + 1321196639636946944h10m6s4

+814698134331457536h9m7s3t + 92179893357379584h8m8s2t2 + 2541749079638016h7m9st3 � 13792092880896h6m10t4

+58678654946770944g2h2m10s5 + 16167862146170880g2hm11s4t + 705486447968256g2m12s3t2 � 1103687847816200192gh7m7s4

+13931406950400gh3m11t4 � 44584171418419200gh5m9s2t2 � 9685512225m16t6 � 1132386035171328gh4m10st3

+7839053087502237696h12m4s3 + 1352219532013338624h11m5s2t + 51427969540816896h10m6st2 � 147941222252544h9m7t3

+356552602772570112g2h4m8s4 + 65355404946702336g2h3m9s3t + 5201278745444352g2h2m10s2t2 + 99067782758400g2hm11st3

�3265173504000g2m12t4 � 5301992678571900928gh9m5s3 � 984505782412247040gh8m6s2t � 37440870596739072gh7m7st2

+260713381625856gh6m8t3 + 7163309458867617792h14m2s2 + 495888540219998208h13m3st � 613682107121664h12m4t2

�33414364526542848g3hm9s4 � 2441030167166976g3m10s3t + 1297818789047435264g2h6m6s3 + 235088951956733952g2h5m7s2t
+8250658482290688g2h4m8st2 � 132090377011200g2h3m9t3 � 7123133303988682752gh11m3s2 � 506754841838616576gh10m4st

+2079004689432576gh9m5t2 + 1846757322198614016h16s � 126388861612851200g3h3m7s3 � 17847573389770752g3h2m8s2t
�469654673817600g3hm9st2 + 20639121408000g3m10t3 + 2594242435278176256g2h8m4s2 + 183620365983940608g2h7m5st

�1848091141472256g2h6m6t2 � 2445243491429646336gh13ms + 5610807836540928gh12m2t + 3143555283419136g4m8s3

�408993036765233152g3h5m5s2 � 26702361435045888g3h4m6st + 626206231756800g3h3m7t2 + 1246806603479384064g2h10m2s
�9737274975584256g2h9m3t + 22822562857746432g4h2m6s2 + 1113255523123200g4hm7st � 73383542784000g4m8t2

�299841218941026304g3h7m3s + 5822326385934336g3h6m4t � 12824703626379264g2h12 + 32389413531025408g4h4m4s
�1484340697497600g4h3m5t + 15199648742375424g3h9m � 1055531162664960g5hm5s + 139156940390400g5m6t

�6878544743366656g4h6m2 + 1407374883553280g5h3m3 � 109951162777600g6m4.

Here m = m00 and s, t, h, g are the affine invariants in Example 5.8 and Theo-
rem 6.3.
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We now return to the hypersurfacesM�(Q) that encode moments of the uniform
probability distribution on a quadrilateral Q. These also live in P9 but they are not
invariant under Aff3. We consider arbitrary partitions � of 10 and notice that their
total number is 42.
Remark 6.5. For every partition � of 10, except those in the following table, the
moment varietyM�(Q) is a hypersurface in P9. The dimensions of the remaining
moment varieties coming from partitions of 10 are as follows. Here �c denotes the
conjugate partition of �.

� �c dimM�(Q)

10 110 5
9 1 2 18 6
8 2 22 16 7
8 12 3 17 7

In light of Theorem 3.3, we find that all equations for moment varieties in this
table arise from projections onto a line. In particular, adding either m10,m11,m12
or m10,m11,m20 or m10,m20,m30 to the moments m00,m01, . . . ,m06 does not
impose any new relations. The hypersurfacesM7 3,M7 2 1 andM7 13 are all cut
out by the same Hankel determinant (6.2).

We now come to the census of mixed relations we are interested in. These
are the moment hypersurfacesM�(Q) in P9 that are not featured in Remark 6.5.
One of them is defined by the polynomial of degree 18 seen in Theorem 6.3. The
other hypersurfaces are not invariant under Aff3. We computed all of them using
numerical algebraic geometry. Here is the result:

Theorem 6.6. Table 6.1 lists the Z3-degrees of the moment hypersurfacesM�(Q)
in P9, where Q is a quadrilateral and � is a partition of 10. We also report the size
of the general fiber of the map '� : (C2)4 ! M�(Q) which sends the vertices of
Q to the moments indexed by �.

Derivation and Proof. This is based on numerical computations. We started out
with Bertini [4], but then we mainly used the Julia package Homotopy-
Continuation.jl [5].

Consider the parametrization of the affine cone over the moment hypersurface
M�(Q) given by C9 ! C10, (t, X) 7! t · '�(X). Let us first describe how we
compute the usual degree of this affine cone in C10. We pick a random point on
the cone together with a random line passing through this point. Our goal is to
compute all intersection points of the line with the cone. We do this via numerical
monodromy, i.e., we move the line around and track the already known intersection
point. When the original line is reached again, we might have found a new solution.
These monodromy loops are executed until no new solutions are found. To verify
that all solutions have been found, we applied the trace test [4, Section 10.2.1].

To compute the other two coordinates in the Z3-degree of the moment hyper-
surfaceM�(Q), we proceed as above, but the line is now replaced by a monomial
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� �c degM�(Q) deg'�
7 3 23 14 (5, 10, 0) 144
7 2 1 3 2 15 (5, 10, 0) 144
7 12 4 16 (5, 10, 0) 144
6 4 24 12 (27, 3, 36) 8
6 3 1 3 22 13 (51, 6, 54) 8
6 22 32 14 (96, 12, 90) 8
6 2 12 4 2 14 (136, 18, 126) 8
6 14 5 15 (480, 72, 424) 8
52 25 (33, 6, 39) 8
5 4 1 3 23 1 (36, 6, 36) 8
5 3 2 32 2 12 (42, 12, 36) 8
5 3 12 4 22 12 (60, 18, 48) 8
5 22 1 4 3 13 (72, 36, 42) 8
5 2 13 5 2 13 (139, 70, 72) 8
42 2 32 22 (42, 16, 32) 8
42 12 4 23 (60, 24, 42) 8
4 32 33 1 (47, 20, 34) 8
4 3 2 1 4 3 2 1 (18, 12, 12) 8

Table 6.1. Degrees of moment hypersurfaces of quadrilaterals.

curve. For the middle coordinate of the Z3-degree, we use the curve in C10 with
parametric representation

s 7!
⇣
p1 + si1v1, p2 + si2v2, . . . , p10 + si10v10

⌘
.

Here p and v are random vectors in C10. The moments indexed by the partition
� appear in the order mi1, j1,mi2, j2, . . . ,mi10, j10 . Analogously, for the last en-
try in the Z3-degree, we use the monomial curve in C10 parametrized by s 7!�
p1 + s j1v1, p2 + s j2v2, . . . , p10 + s j10v10

�
.

In each case, we solve a square system of 10 polynomial equations in 10 un-
knowns s,t,x11, . . . ,x42. The number of solutions is the desired degree inC10 times
the degree of the map '�. For instance, the number of solutions (s,t,x11, . . . ,x42)
for � = (4, 3, 2, 1) equals 144. The solutions form 18 clusters of size 8, where each
cluster consists of all solutions that map to the same point on the affine cone. This
is how the degree 18 was first determined. It allowed us to make the ansatz that
eventually led to the invariant in Theorem 6.3.

The use of invariant theory of the affine group Affd was essential for comput-
ing the moment hypersurfaces in Theorem 6.3 and Proposition 6.4. However this
method does not directly apply to moment varieties of codimension two or more.
For such moment varieties, the minimal generators of the ideal form an invariant
vector space, but the individual generators are not invariants. In such a situation,
one might employ representation theory of Affd . We shall demonstrate this for the
moment varietyM[3](13) in Conjecture 4.10.
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Proposition 6.7. The Aff3-module V spanned by the 90 quintics that vanish on
M[3](13) in P19 is the direct sum of two indecomposable Aff3-modules V1 and
V2, each of dimension 45. As a GL3-module, V decomposes into 12 irreducibles:
V1 and V2 split into six irreducible GL3-modules each. Table 6.2 lists the highest
weights of these GL3-modules and their dimensions.

V1 (3, 3, 4) (3, 4, 4) (2, 4, 4) (2, 3, 4) (1, 4, 4) (1, 3, 4)
V2 (2, 2, 3) (2, 3, 3) (2, 2, 4) (2, 3, 4) (2, 2, 5) (2, 3, 5)
dim 3 3 6 8 10 15

Table 6.2. Decomposition of the Aff3-modules V1 and V2 into irreducible GL3-
modules.

Proof. The weight of a polynomial is given by its Z4-grading. Each isotypical
component of V as a GL3-module is spanned by all polynomials in V having the
same fixed Z4-degree. This isotypical decomposition consists of 43 vector spaces
with dimensions 1, 2, 4 or 6.

For each isotypical component, we computed its U3-invariant polynomials,
whereU3⇢GL3 is the subgroup of upper triangular matrices with diagonal (1, 1, 1).
Ten isotypical components contain exactly one U3-invariant (up to scaling), while
the component with weight (2,3,4) has a two-dimensional subspace ofU3-invariant
polynomials; see Table 6.2. Each U3-invariant generates an irreducible GL3-
module. Ten of these irreducible modules in V are unique. The two irreducible
GL3-modules with highest weight (2, 3, 4) are not unique.

Finally, we studied which of the described irreducible GL3-modules merge
when we add translation, i.e., when we act on V by the whole affine group Aff3.
The ten unique GL3-modules get merged into two clusters, as seen in Table 6.2.
Moreover, there is a unique way of choosing two GL3-modules with highest weight
(2, 3, 4) such that acting with the affine group on one of these modules stays within
one of the two clusters in Table 6.2.

7. Outlook

Moment varieties furnish an algebro-geometric representation for various probabil-
ity measures on Rd . In this article we focused on measures that are associated with
convex polytopes. We were able to determine their moment varieties for a range of
interesting cases. However, this is just the beginning. Many questions remain open,
and we see considerable potential for further developing our algebraic tools, so that
they become practical for inverse problems.

This section discusses a number of open problems and directions for future
research. It also offers a perspective on some aspects of moment varieties not dis-
cussed in Sections 2–6.
Adjoints andWachspress Varieties. At the end of Section 2 we defined the adjoint
moment variety MAd(P) for a given combinatorial type P , but we did not state
any results on this topic. The varietyMAd(P) is the moduli space for the Wach-
spress varieties of the polytopes in the class P . The study of Wachspress varieties
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and their moduli is a promising direction at the interface of geometric combina-
torics and algebraic geometry (see [26]). It extends the familiar repertoire of toric
varieties.

A concrete open problem is to compute the adjoint moment varietyMAd(P)

in the smallest cases where the ambient dimension
�n�1
d
�
� 1 exceeds the number

nd of parameters. This happens for polytopes with n = 8 vertices in dimensions
d = 2, 3, 4. Another interesting case is d = 2 and n = 7. Here the adjoint is
a plane curve of degree 4, so it has 14 parameters. It is parametrized by the 14
vertex coordinates of a heptagon. What is the degree of this map? It would be
worthwhile to study the geometry of this map, in light of the beautiful classical
connections [14, Section 6.3.3] between genus 3 curves and del Pezzo surfaces of
degree 2.
Step Functions. It can be shown that mixtures of uniform distributions of line
segments are algebraically identifiable whenever this is permitted by the parameter
count. To be precise, the delicate algebro-geometric proof for mixtures of univariate
Gaussians that is given in [2, Section 2] can be transferred to mixtures of line seg-
ments. The point of departure for this transfer argument is the proof of [2, Lemma
4] which holds verbatim for the matrix in (3.3).

This opens the door to moment varieties of distributions whose density is a
step function on the line R1. Indeed, each step function is a mixture of uniform
distributions on line segments. Since mixture models correspond to secant varieties
in Pr , we can phrase our question as follows: study the secant varieties of the
surfacesM{{r}}(1, 2) in Example 3.5. Pearson’s hypersurface of degree 39 in [1,
Theorem 1] suggests that this will not be easy.
Recovery Algorithms. Theorem 3.3 characterizes all relations among axial mo-
ments of a polytope P for any fixed axis. From this one can recover the projections
of all vertices of P onto that axis. Different variations of this result are known in the
literature; see, e.g., [18]. On the other hand, in order to uniquely recover a polytope
P in Rd using axial moments, one has to know the projections of its vertices on at
least d + 1 different lines in Rd . The moments on d + 1 lines are highly depen-
dent. For instance, for d = 2 and P a quadrilateral, the � = 6 14 entry in Table 6.1
reveals a relation of degree 480 among moments on two axes. Understanding such
dependencies among the axial moments for general polytopes seems difficult, but it
is an important step towards developing more advanced recovery algorithms. This
issue is related to multidimensional variants of Prony’s method. Indeed, the Hankel
matrix (3.2) which connects polytopal densities and its node points on R1 with the
axial moments is analogous to that for the classical Prony system [17]. Extending
known results about the Prony system to our setting in Rd may lead to applications
in signal processing.
Multisymmetric Functions. LetR[X] denote the ring of polynomials in the entries
of an n ⇥ d matrix of unknowns X = (xkl). The symmetric group Sn acts on R[X]
by permuting the rows of X . Following Dalbec [12], we write 3d,n = R[X]Sn for
the ring of invariants under this action. In words,3d,n is the ring of multisymmetric
functions for n vectors in d-space.
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The case n = d + 1 appeared in Section 4. Proposition 4.1 and Corollary 4.5
imply that the moments of simplices in Rd generate the ring 3d,d+1. Indeed, the
moments and the cumulants generate the same algebra, and the cumulants coincide
with the power sum multisymmetric polynomials. By [12, Theorem 1.2], the latter
are known to generate 3d,n for any n. Furthermore, our Proposition 4.8 is closely
related to the well-known fact (cf. [12, Theorem 1.3]) that elementary multisym-
metric polynomials also generate the algebra 3d,n .

The discussion at the end of Section 4 shows that, for any n > d, the ring
3d,n arises from our polytopal measures. Namely, consider the projection of an
(n � 1)-simplex to a subspace Rd . Suppose that the image is a d-polytope with
n vertices. The moments of the induced polytopal measure are multisymmetric
polynomials in 3d,n , and, in fact, these moments generate the invariant ring 3d,n .
Therefore we obtain all possible rings of multisymmetric polynomials as special
cases of the rings of moments of simplices and their projections. It is known in
algebraic combinatorics that these rings are quite complicated, see, e.g., [24].
Symmetry and Invariants. We demonstrated in Section 5 that invariants of the
affine group can be determined from covariants of the general linear group, and this
was used in Section 6 to give explicit formulas for two specific moment hypersur-
faces in P9. In the case of moment varieties of codimension � 2, we do not really
know how to take advantage of symmetries arising from the affine group Affd . It
would be desirable to understand this.
More Hypersurfaces. In Theorem 6.6 we determined many moment hypersurfaces
of quadrilaterals in P9, one for each partition � of the integer 10. Our computations
were based on methods from numerical algebraic geometry. One could try to push
this further, either to pentagons (d = 2, n = 5) or to tetrahedra (d = 3, n = 4).
In the former case we would aim for moment hypersurfaces in P11 associated with
partitions of 12, and in the latter case we would seek moment hypersurfaces in P13
associated with plane partitions of 14. The remark after Proposition 5.9 suggests
the following problem for numerical algebraic geometry: compute the degrees of
the moment hypersurfaces M[6](13-gon) ⇢ P27 and M[3](octahedron) ⇢ P19.
Special Subvarieties. It would be interesting to study the singular loci of moment
varieties as well as the subvarieties whose points correspond to degenerate geomet-
ric configurations. This was discussed for the cubic surface in Figure 1.1 but we
never returned to that topic.
Moment rings of polytopes. Fix a combinatorial type P of simplicial polytopes in
Rd . We define the moment ring MP to be the subalgebra of the rational function
field R(X) that is generated by the moments mI (X) for P where I runs over Nd .
We can realizeMP as the subalgebra of the polynomial ringR[X], generated by the
numerators mI (X) · vol(X). These products are polynomials in the nd unknowns
xkl by Theorem 2.2. If P is the d-simplex then the moment ring MP is the ring
3d,d+1 of multisymmetric polynomials, as discussed above. A priori, it is not even
clear that MP is a Noetherian ring. However, we strongly believe this. In other
words, we conjecture thatMP is finitely generated. It would be very interesting to
identify explicit generators, or, at least, to find degree bounds for the generators of
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MP . The same question makes sense for the moment rings that are analogous to
3d,n for n > d+1. To be specific, we seek the subalgebra ofR(X) that is generated
by all moments of univariate polytopal measures of type (d, n). A natural place to
start is the case of the convex n-gon in the plane. Here we might take advantage of
the dihedral group acting on the n vertices. In the case of the ring generated by all
harmonic moments of plane polygons such study was carried out in [7].

The group of symmetries of the combinatorial type P acts on its moment ring
MP . This explains why the moment ring of a simplex consists of multisymmet-
ric functions and why the dihedral group acts on the moment rings of n-gons. Of
course, there are many other types of simplicial polytopes with interesting symme-
try groups. How about the octahedron?
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[1] C. AMÉNDOLA, J.-C. FAUGÈRE and B. STURMFELS, Moment varieties of Gaussian mix-
tures, J. Algebr. Stat. 7 (2016), 14–28.
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