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Smooth quotients of Abelian varieties by finite groups

ROBERT AUFFARTH AND GIANCARLO LUCCHINI ARTECHE

Abstract. We give a complete classification of smooth quotients of Abelian
varieties by finite groups that fix the origin. In the particular case where the
action of the group G on the tangent space at the origin of the Abelian variety
A is irreducible, we prove that A is isomorphic to the self-product of an elliptic
curve and A/G ⇠= Pn . In the general case, assuming dim(AG) = 0, we prove
that A/G is isomorphic to a direct product of projective spaces.

Mathematics Subject Classification (2010): 14L30 (primary); 14K99 (sec-
ondary).

1. Introduction

Quotients of Abelian varieties by finite groups have appeared in many different
contexts and topics of research. For example, in [7] Kollár and Larsen study groups
acting on simple Abelian varieties in dimension greater than or equal to 4, and prove
that the quotient has canonical singularities and Kodaira dimension 0. This is done
in the context of studying quotients of Calabi-Yau varieties by finite groups. In [6],
Im and Larsen study the existence of rational curves lying on quotients of Abelian
varieties by finite groups, and they find a condition on the group that implies that
rational curves actually exist on the quotient.

Along another line, in [14] Yoshihara initiates the study of Galois embeddings
of varieties, where he asks when a projective variety embedded into projective space
admits a finite linear projection that is a Galois morphism. In particular, the exis-
tence of a Galois embedding implies that the variety has a finite group of automor-
phisms such that the quotient variety is isomorphic to projective space. Yoshihara
finishes the paper by analyzing the case of Abelian surfaces. In [1], the first author
generalizes Yoshihara’s results to arbitrary dimension, and proves that if the quo-
tient of an Abelian variety by a finite group is projective space, then the Abelian
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variety is isogenous to the self-product of an elliptic curve. As a matter of fact,
when there is an action of an irreducible finite subgroup of GL(T0(A)) with Schur
index 1 on an Abelian variety A, then A is isogenous to the self-product of an ellip-
tic curve, as was proven in [11].

These examples show that quotients of Abelian varieties by finite groups have
indeed garnered attention in varied contexts within algebraic geometry. On the
other hand, group actions on Abelian varieties over C lead to the study of finite-
dimensional complex representations via their universal covering space, and vicev-
ersa. In this sense, a classic article by Looijenga relates root systems and self-
products of elliptic curves in [8]. There is also work by Popov [10] and Tokunaga-
Yoshida [13] on complex crystallographic reflection groups, which are extensions
0 of a finite complex reflection group G by a G-stable lattice 3 in Cn . In [13]
the authors study the corresponding quotient Cn/0 for n = 2 and in [4], Bernstein
and Schwarzman do the same in arbitrary dimension for complex crystallographic
groups of Coxeter type. Note that such quotients correspond to the quotient of the
Abelian variety A = Cn/3 by G. However, for a given finite complex reflection
group G, not every G-stable lattice comes from a complex crystallographic reflec-
tion group and hence the study of smooth quotients of Abelian varieties remains an
open question.

The purpose of this paper is to give a full classification of smooth quotients of
Abelian varieties by finite groups in the particular case in which the group fixes the
origin. Our main theorem states the following:

Theorem 1.1. Let A be an Abelian variety of dimension n � 3, and let G be a (non
trivial ) finite group of automorphisms of A that fix the origin. Then the following
conditions are equivalent:

(1) A/G is smooth and the action of G on T0A is irreducible;
(2) A/G is smooth of Picard number 1;
(3) A/G ⇠= Pn;
(4) There exists an elliptic curve E such that A ⇠= En and (A,G) satisfies exactly

one of the following:
(a) G ⇠= Cn o Sn where C is a non-trivial (cyclic) subgroup of automorphisms

of E that fix the origin; here the action of Cn is coordinatewise and Sn
permutes the coordinates;

(b) G ⇠= Sn+1 and acts on

A ⇠=
�
(x1, . . . , xn+1) 2 En+1 : x1 + · · · + xn+1 = 0

 

by permutations.

The two cases found in item (4) of the above theorem were studied in detail in [1],
where it was proven that both examples give projective spaces as quotients. This
gives the proof of (4) ) (3). Our theorem shows that these are the only cases that
give smooth quotients in dimension n � 3. Throughout the paper we will refer to
these two examples as Example (a) and Example (b), respectively.
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Note that the case of dimension n = 1 is obvious: every pair (A,G) gives P1
as a quotient. For n = 2, according to Yoshihara (cf. [14]), this classification was
already done by Tokunaga and Yoshida in [13]. This paper classifies 2-dimensional
complex crystallographic reflection groups. However, as stated above, these do
not cover all possible G-stable lattices and hence not all possible group actions
on Abelian surfaces. The classification in this case was thus incomplete, but was
recently achieved by P. Quezada and the authors in [2]. The outcome is that, in
the irreducible case, there is only one example different from Examples (a) and (b)
giving a smooth quotient: it is the pair (A,G) with A = E2 for E = C/Z[i] and G
is the order 16 subgroup of GL2(Z[i]) generated by:

⇢✓
�1 1+ i
0 1

◆
,

✓
�i i � 1
0 i

◆
,

✓
�1 0
i � 1 1

◆�
,

acting on A in the obvious way.
An interesting corollary, which was a first motivation for writing this paper is

the following:

Corollary 1.2. If G is a finite group that acts on an Abelian variety A such that the
elements ofG fix the origin and A/G ⇠= Pn , then A is isomorphic to the self-product
of an elliptic curve.

The general case is quickly reduced to the irreducible case.

Theorem 1.3 (Cf. Theorem 2.7). Let G be a group that acts by algebraic homo-
morphisms on an Abelian variety A such that A/G is smooth. Assume that
dim(AG) = 0. Then G =

Qr
i=1 Gi , A =

Qr
i=1 Ai and each pair (Ai ,Gi ) sat-

isfies the equivalent conditions from Theorem 1.1 above.

When AG has positive dimension, the situation does not necessarily split, but we
can still describe the quotient A/G as a fibration over an Abelian variety with
smooth fibers that are isomorphic to the quotients in Theorem 1.3. Actually, we
prove in the general case that A/G is smooth if and only if PG/G is smooth, where
PG is the complementary Abelian subvariety of the connected component of AG
that contains 0, cf. Proposition 2.9. The notation PG comes from the fact that in the
case that A is the Jacobian of a curve X and G is a group of automorphisms of X ,
PG is the Prym variety associated to the morphism X ! X/G.

As an application of our main theorems, we expect to give in a subsequent pa-
per a classification of quotients of principally polarized Abelian varieties by groups
preserving the divisor class of the polarization. This will be applicable to the spe-
cific case of Jacobian varieties with group action coming from an action on the
corresponding curve. As a final application, B. Lim pointed out to us that our clas-
sification would be a key ingredient in solving a conjecture by Polishchuk and Van
den Bergh (cf. [9, Conjecture A]) on semiorthogonal decompositions of categories
of equivariant coherent sheaves in the case of Abelian varieties.

The structure of this paper is as follows: In Section 2, we cover some basic
properties of Abelian varieties with a finite group action and smooth quotient. In
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particular, we prove in Section 2.1 the implication (2) ) (1) from Theorem 1.1,
while Section 2.2 is dedicated to the study of G-equivariant isogenies in this con-
text, which are used in the sequel. In Section 2.3 we prove Theorem 1.3 and we
briefly look at the ultimate general case in which AG may have positive dimension.
Section 3 is dedicated to the proof of (1) ) (4) (note that (3) ) (2) is evident and
(4) ) (3) was established in [1], so this concludes the proof of Theorem 1.1). This
is the heart of the article and therefore its longest and most technical part. Here
we use Shephard-Todd’s classification of irreducible complex reflection groups in
order to study them case by case. The case of the symmetric group Sn is studied
in Section 3.1 and the infinite family of groups G(m, p, n) for m � 2 is studied in
Section 3.2. Finally, Section 3.3 is dedicated to the remaining sporadic cases.

ACKNOWLEDGEMENTS. We would like to thank Anita Rojas and Giancarlo Urzúa
for interesting discussions, Antonio Behn for help with the computer program Sage-
Math and the anonymous referees for their comments.

2. Groups acting on Abelian varieties with smooth quotient

2.1. Generalities

Let A be an Abelian variety of dimension n and let G be a group of automorphisms
of A that fix the origin, such that the quotient variety A/G is smooth. By the
Chevalley-Shephard-Todd Theorem, the stabilizer in G of each point in A must
be generated by pseudoreflections; that is, elements that fix a divisor pointwise,
such that the divisor passes through the point. In particular, G is generated by
pseudoreflections and G acts on the tangent space at the origin T0(A) (this is the
analytic representation). Thus, an element in G is a pseudoreflection (at the origin)
if and only if it fixes a hyperplane in T0(A) pointwise. We will often abuse notation
and display G as either acting on A or T0(A); it will be clear from the context which
action we are considering.

In what follows, let L be a fixed G-invariant polarization on A (take the pull-
back of an ample class on A/G, for example). For � a pseudoreflection in G of
order r , define

D� := im
�
1+ � + · · · + � r�1

�
,

E� := im(1� � ).

These are both Abelian subvarieties of A.

Lemma 2.1. We have the following:

1. D� is the connected component of Fix(� ) := ker(1�� ) that contains 0 and E�

is the complementary Abelian subvariety of D� with respect to L. In particular,
D� is a divisor and E� is an elliptic curve;
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2. h� i acts faithfully on E� and hence r 2 {2, 3, 4, 6};
3. For a 6⌘ 0 (mod r), E� a = E� and D� a = D� ;
4. D� \ E� consists of 2-torsion points for r = 2, 4, of 3-torsion points for r = 3
and D� \ E� = 0 for r = 6.

Proof. Since
�
1+ � + · · · + � r�1

�
(1� � ) = (1� � )

�
1+ � + · · · + � r�1

�
= 1� � r = 0,

we see that D� ⇢ ker(1�� ) and E� ⇢ ker(1+� +· · ·+� r�1). If x 2 ker(1�� ),
then

r x = x + � (x) + · · · + � r�1(x) =
�
1+ � + · · · + � r�1

�
(x) 2 D� ,

and so after possibly adding an r-torsion point to x we obtain that it lies in D� .
Therefore both spaces are of the same dimension and, since D� is irreducible, we
get that it corresponds to the connected component containing 0.

To show that E� is the complementary Abelian subvariety of D� , let H be the
first Chern class of L, seen as a Hermitian form H on T0(A) = Cn . Then, since �
preserves the numerical class of L, we have that � t H = H��1. Hence

 
r�1X

i=0
� i

!t

H(In � � ) = H

 
r�1X

i=0
��i

!

(In � � ) = 0.

This shows that the vector subspaces of T0(A) induced by D� and E� are orthog-
onal with respect to H ; i.e. they are complementary Abelian subvarieties. This
proves 1.

Since � and (1� � ) clearly commute, we see that � (E� ) = E� by definition.
Moreover, if � i acts trivially on E� , then � i acts trivially on the whole variety A
since A = D� + E� . This implies immediately that the action of h� i is faithful and
hence r 2 {2, 3, 4, 6}. This proves 2. For the third assertion, we know that both D�

and D� a are irreducible divisors. But clearly ker(1� � a) � ker(1� � ) and hence
D� = D� a . Complementarity implies then that E� = E� a . Finally, note that since
D� ⇢ ker(1� � ) and E� ⇢ ker(1+ � + · · · + � n�1), for every x 2 D� \ E� we
have

r x= x�� (x)+x+� (x)+· · ·+� r�1(x) = (1�� )(x)+
�
1+� +· · ·+� r�1

�
(x)=0.

This proves that D� \ E� consists of r-torsion points. Using the third assertion for
a = 2, 3 we prove 4.

We are now in a position to prove that (2) ) (1) in Theorem 1.1; the proof
goes along the lines of [1, Remark 2.1].

Proposition 2.2. Let G be a finite group acting on an Abelian variety A via alge-
braic homomorphisms. Assume that A/G is smooth and the Picard number of A/G
is 1. Then the analytic representation of G is irreducible.
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Proof. Assume that A/G is of Picard number 1. We will first show that G does not
leave a non-trivial Abelian subvariety invariant. Indeed, let X ✓ A be an Abelian
subvariety on which G acts, and let NX 2 End(A) be its norm endomorphism with
respect to some fixed G-invariant polarization L (NX on tangent spaces is just the
orthogonal projection onto the linear subspace that defines X with respect to the
first Chern class of L). Now

N⇤
XL 2 NS(A)GQ

⇠= NS(A/G)Q ⇠= Q,

where the subscriptQ indicates that we extended scalars toQ. Since L 2 NS(A)GQ,
we have that N⇤

XL is a rational multiple of L and therefore the self-intersection
number (N⇤

XL)n is non zero. However, by [3, Proposition 3.1], if X is non-trivial
then this number must be zero. Therefore X must be trivial.

Now let W be a G-stable linear subspace of T0(A), and let � 2 G be a pseu-
doreflection. Since the image of 1 � � is an elliptic curve on A induced, say, by a
linear subspace hz0i  T0(A), we have that for every z 2 W , (1� � )(z) = �zz0 for
some �z 2 C.

If �z 6= 0 for some z 2 W , then z0 2 W . Now, since the translates of z0
by G all lie in W and

P
⌧2G ⌧ (E� ) = A by the previous discussion, we have that

W = T0(A).
Assume now that �z = 0 for every z 2 W and every pseudoreflection � 2 G.

In particular, W is fixed by every � , and since these generate the group, we have
thatW is fixed pointwise by G. Now, since G does not fix pointwise any non-trivial
Abelian subvariety of A, we have that

\

⌧2G
ker(1� ⌧ ) ✓ A

is finite and so its preimage in T0(A) is discrete. However W is contained in this
preimage, and so it must be trivial.

2.2. G-equivariant isogenies

We will consider now a new Abelian variety B equipped with a G-equivariant
isogeny to A, which we will call a G-isogeny from now on. Let 3A denote the
lattice in Cn such that A = Cn/3A. Let3B ✓ 3A be a G-invariant sublattice, and
let B := Cn/3B be the induced Abelian variety, along with the G-isogeny

⇡ : B ! A,

whose analytic representation is the identity. Note that this implies that � 2 G
is a pseudoreflection of B if and only if it is a pseudoreflection of A. We may
then consider the subvarieties E� , D� ⇢ A defined as above, which we will denote
by E�,A and D�,A. Now, we can do the same thing for B and hence we obtain
subvarieties E�,B, D�,B ⇢ B. Note that, by definition, ⇡ sends E�,B to E�,A and
D�,B to D�,A.
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Define 1 := ker(⇡). Since ⇡ is G-equivariant, G acts on 1 and hence we
may consider the group 1 o G. This group acts on B in the obvious way: 1 acts
by translations and G by automorphisms. In particular, we see that the quotient
B/(1 o G) is isomorphic to A/G.

Our goal is to reduce as much as we can the structure of B/G and 1 and to
prove that the latter must be trivial in several cases. Fix then a pseudoreflection
� 2 G of order r and consider the subvarieties E�,A, D�,A ⇢ A and E�,B, D�,B ⇢
B. Define moreover F�,A = E�,A \ D�,A and F�,B similarly. Then the isogeny
⇡ : B ! A sends F�,B to F�,A.

Lemma 2.3. Assume that the map E�,B ! E�,A is injective and that the map
F�,B ! F�,A is surjective. Then 1 ⇢ D�,B .

Proof. Since E�,B and D�,B generate B, we have z = x + y 2 1 = ker(⇡) with
x 2 E�,B and y 2 D�,B for every z 2 1. Then ⇡(z) = 0 implies ⇡(x) = �⇡(y) 2
F�,A. But since F�,B ! F�,A is surjective and E�,B ! E�,A is injective, we have
that x 2 E�,B \ ⇡�1(F�,A) = F�,B . Thus x 2 D�,B and hence 1 ⇢ D�,B .

Since all conjugates of a pseudoreflection are pseudoreflections and everything
is G-equivariant, we immediately get the following result.

Proposition 2.4. Let � 2G be a pseudoreflection and assume that the map E�,B !
E�,A is injective and that the map F�,B ! F�,A is surjective. Then the subgroup
1 = ker(⇡) is contained in D⌧�⌧�1,B for every ⌧ 2 G.

We conclude this section by studying pseudoreflections in 1 o G.

Lemma 2.5. Let � 2 1 o G be a pseudoreflection. Then � = (t, ⌧ ) with ⌧ 2 G a
pseudoreflection and t 2 1 \ E⌧,B .

Proof. Let t 2 1 and ⌧ 2 G be such that � = (t, ⌧ ) 2 1 o G. This element acts
on B sending x to ⌧ (x) + t . By definition, � must fix a divisor pointwise, that is,
there is a subvariety C ⇢ B of codimension 1 such that x = ⌧ (x) + t for all x 2 C ,
or equivalently, x 2 (1 � ⌧ )�1(t). But since 1 � ⌧ 2 End(B), we see that C is a
translate of ker(1� ⌧ ), which is a divisor if and only if ⌧ is a pseudoreflection and
t 2 (1� ⌧ )(B) = E⌧,B .

2.3. Reduction to irreducible representations

Let G be a group that acts by algebraic homomorphisms on an Abelian variety A
such that A/G is smooth. In particular the analytic representation of G on T0(A)
is a finite complex reflection group. It is well-known (cf. for instance [12] or [10,
Section 1.4]), that G ⇠= G1 ⇥ · · · ⇥ Gr and T0(A) = W0 � W1 � · · · � Wr where:

• Wi is an irreducible complex representation of Gi that makes Gi an irreducible
finite complex reflection group for i > 0;

• G j acts trivially on Wi for i 6= j .

In particular, W0 = T0(A)G .
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Lemma 2.6. The subspace Wi induces a G-stable Abelian subvariety Ai of A such
that G j acts trivially on Ai for i 6= j . Moreover, Ai/G = Ai/Gi is smooth.

Proof. Since W0 = T0(A)G , then A0 is the neutral connected component of AG
and A0/G = A0. Assume now i > 0, let � 2 Gi be a pseudoreflection and let
L be the linear subspace of T0(A) that induces E� . It is clear that L ✓ Wi , since
L = (1� � )(T0(A)). Since the representation of Gi on Wi is irreducible, we have
that

Wi =
X

⌧2G
(⌧ (L)).

Therefore, Wi is the tangent space of the Abelian subvariety Ai =
P

⌧2G ⌧ (E� ). It
is clear that Ai is G-stable and G j acts trivially on Ai for i 6= j so that Ai/G =
Ai/Gi . Moreover, since StabGi (x) = StabG(x) \ Gi for x 2 Ai and every pseu-
doreflection in G belongs to some G j , it is easy to see that StabGi (x) is generated
by pseudoreflections in Gi whenever StabG(x) is generated by pseudoreflections
in G. This is the case by the Chevalley-Shephard-Todd Theorem because A/G is
smooth and therefore Ai/Gi is smooth.

We can now prove that, whenever A0 is trivial, it is enough to understand the
case when the action of G on T0(A) is irreducible.

Theorem 2.7. Let G be a group that acts by algebraic homomorphisms on an
Abelian variety A such that A/G is smooth. Assume that dim(AG) = 0. Then
A is the direct product of the Ai , defined as above. In particular,

A/G ⇠= A1/G1 ⇥ · · · ⇥ Ar/Gr .

We will need the following small result on irreducible finite complex reflection
groups:

Lemma 2.8. Let G be a finite complex reflection group acting irreducibly on Cn .
Then there exists ⌧ 2 G such that (1� ⌧ ) is surjective.

Proof. This amounts to finding an element ⌧ 2 G such that 1 is not an eigenvalue
of ⌧ . Now this follows directly from [12, Theorem 5.4].

Proof of Theorem 2.7. Consider the subvarieties Ai ⇢ A from Lemma 2.6 for i � 1
(A0 is trivial by the hypothesis on AG). Then there is a natural G-isogeny

B := A1 ⇥ · · · ⇥ Ar ! A,

given by the sum in A. In particular, the kernel of this isogeny is

1 :=

(

(a1, . . . , ar ) 2 A1 ⇥ · · · ⇥ Ar |
rX

i=1
ai = 0

)

.
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We claim that 1 is fixed pointwise by G. Indeed, since ai 2 Ai , we know that G j
acts trivially on it for j 6= i ; but since ai = �

P
j 6=i a j 2

P
j 6=i A j , we also know

that Gi acts trivially on it (since it acts trivially on every A j for j 6= i). We see then
that G acts trivially on every coordinate of every element of 1, which proves the
claim.

Thus, 1 ⇥ G acts on B and hence A/G is isomorphic to B/(1 ⇥ G), i.e.

A/G ⇠=
⇥
(A1/G1) ⇥ · · · (Ar/Gr )

⇤
/1.

All we need to prove now is that1 has to be trivial. Assume then that this is not the
case and note that the action of (a1, . . . , ar ) 2 1 on X := (A1/G1) ⇥ · · · (Ar/Gr )
corresponds coordinatewise to the action of ai on Ai/Gi (which is well defined
since ai is Gi -invariant and thus its action commutes with that of Gi ). Now, the
action of ai on Ai/Gi always has a fixed point pi . Indeed, by Lemma 2.8 we know
that there exists ⌧ 2 Gi such that (1 � ⌧ ) is surjective. Thus, there exists xi 2 Ai
such that xi � ⌧ (xi ) = ai , which implies that the image pi of xi in Ai/Gi is fixed
by ai . We see then that (p1, . . . , pr ) 2 X is a point that is fixed by (a1, . . . , ar ) and
thus the action of 1 on X is not free. It is also a non-trivial action since the image
of 0 2 B in X is clearly moved by 1.

Since A/G = X/1 is smooth, the Chevalley-Shephard-Todd Theorem tells
us then that every stabilizer of this action has to be generated by pseudoreflections.
Now this is impossible since, for every non-trivial (a1, . . . , ar ) 2 1, its fixed locus
in X corresponds to the product of the fixed loci in each Ai/Gi via ai . We see
then that if any element in 1 is a pseudoreflection, it must fix all but one Ai/Gi
(otherwise the fixed locus would not be a divisor), which amounts to ai = 0 for
all but one i , and this is impossible since

Pr
i=1 ai = 0. This proves that 1 is

trivial.

Let us consider now the “degenerate” case in which dim(AG) > 0.

Proposition 2.9. Let G be a group that acts by algebraic homomorphisms on an
Abelian variety A. Let A0 be the connected component of AG containing 0 and let
PG be its complementary Abelian subvariety with respect to a G-invariant polar-
ization. Then there exists a fibration A/G ! A0/(A0\ PG) with fibers isomorphic
to PG/G. Moreover, A/G is smooth if and only if PG/G is smooth.

Proof. Consider as in the last proof the natural G-isogeny A0 ⇥ PG ! A and
denote its kernel by 1. This can be rewritten as

A ⇠= (A0 ⇥ PG)/1.

Now, the same argument from the proof above shows that 1 is fixed pointwise by
G. In particular, the actions of G and 1 on PG commute and it is easy to see then
that

A/G ⇠= ((A0 ⇥ PG)/G)/1 ⇠= (A0 ⇥ (PG/G))/1.
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Recalling that 1 ⇠= A0 \ PG , we get a natural projection A/G ! A0/(A0 \ PG)
whose fibers are easily seen to be isomorphic to PG/G.

Finally note that, since the action of 1 on A0 is free, the quotient A/G =
(A0 ⇥ PG/G)/1 is smooth whenever PG/G is. On the other hand, by the same
argument we used for Ai/Gi , PG/G is smooth if A/G is.

Note that this fibration is non-trivial in general, as shown by the following
example: Let E be an elliptic curve and let e 2 E[2]. Define B = E ⇥ E and let
G = {±1} act on the second factor. Note in particular that (e, e) is G-invariant.
Put then A = B/h(e, e)i and denote by ⇡ : B ! A the projection. We have that
A0 = ⇡(E ⇥ {0}), PG = ⇡({0}⇥ E), B = A0⇥ PG and1 = h(e, e)i. We see then
that

A/G ⇠= B/(1 ⇥ G) ⇠= (B/G)/1 ⇠=
�
E ⇥ P1

�
/1,

where, up to a base change in P1,1 acts on E⇥P1 by sending (x, y) to (x+e,�y).
Looking at the first coordinate, we see then that the action is free and thus defines by
étale descent a non-trivial P1-bundle over the elliptic curve E 0 = E/hei. This bun-
dle can be given explicitly as follows: consider the constant sections E ! E ⇥ P1
given by 0 and 1. Since the action of 1 fixes both points on P1, we see that this
section passes to the quotient, defining two sections E 0 ! A/G with trivial inter-
section. Then by [5, Ex. V.2.2], the bundle is decomposable. A direct computation
tells us then that it corresponds to the projectivization of OE 0 � OE 0(D), where
D = [e0] � [0] and e0 generates the kernel of the isogeny E 0 ! E dual to the
natural projection E ! E 0.

3. Quotients by irreducible finite complex reflection groups

Given the results from the last section, we will now concentrate on group actions on
Abelian varieties that satisfy the following condition (which is condition (1) from
Theorem 1.1):

A/G is smooth and the analytic representation of G is irreducible. (?)

If the pair (A,G) satisfies (?), we see that the analytic representation makes G
an irreducible finite complex reflection group, in the sense of Shephard-Todd [12].
These groups were completely classified by Shephard and Todd in [12], where they
discovered that any finite irreducible complex reflection group is either a group
G(m, p, n) depending on m, p, n 2 Z>0 where p | m and n � 1, or is one of 34
sporadic cases. The group G(m, p, n) consists of the semidirect product H o Sn of
the Abelian group

H=H(m, p, n)=
��

⇣ a1m , . . . , ⇣ anm
�

| a1 + · · · + an ⌘ 0 (mod p)
 

⇢ µn
m (3.1)

with the symmetric group Sn , where ⇣m is a primitive m-th root of unity and Sn acts
on each member by permuting the coordinates in the obvious way. For m = p = 1,
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G(1, 1, n) is just the symmetric group on n letters, and acts irreducibly on an (n�1)-
dimensional complex vector space. For m > 1, G(m, p, n) acts irreducibly on an
n-dimensional complex vector space.

The purpose of this section is to describe which of these actions actually appear
on Abelian varieties of dimension n � 3 such that (?) is satisfied. In the follow-
ing subsections we will analyze each case of the Shephard-Todd classification. In
particular, in this section we prove (1) ) (4) of Theorem 1.1.

3.1. The case m = p = 1: the standard representation of Sn+1

Let G(1, 1, n + 1) = Sn+1 act on an Abelian variety A of dimension n � 2 in such
a way that its action on T0(A) is the standard one. Let � = (1 2) and E = E� be
induced by a line L� ✓ T0(A), and define the lattice

3B :=
X

⌧2Sn+1

⌧ (L� \ 3A).

This gives us a G-invariant sublattice of 3A, and we therefore get a G-equivariant
isogeny ⇡ : B ! A with kernel 1. Applying this construction to Example (b), we
see that it gives the whole lattice and hence corresponds to Example (b) itself. We
can thus see B as

B =
�
(x1, . . . , xn+1) 2 En+1 | x1 + · · · + xn+1 = 0

 

and Sn+1 acts coordinatewise in the natural way. Using the notations from Sec-
tion 2.2, we see by inspection that F�,B = E�,B[2] ⇠= E[2], hence the map ⇡ :
F�,B ! F�,A is surjective since by Lemma 2.1 we have F�,A ⇢ E�,A[2] ⇠= E[2].
Moreover, the induced map E�,B ! E�,A is injective by construction. Thus, by
Proposition 2.4, we have that 1 is contained in the fixed locus of all the conjugates
of � . In other words, 1 consists of elements of the form (x, . . . , x) 2 En+1 such
that (n + 1)x = 0. Note that this implies that the direct product 1 ⇥ G acts on B.

Proposition 3.1. Let n � 2. If Sn+1 acts on A in such a way that its analytic
representation is the standard representation and (A, Sn+1) satisfies (?), then A ⇠=
En and Sn+1 acts as in Example (b).

Proof. Let ⇡ : B ! A be the G-isogeny defined above. We have to prove then
that 1 = {0}. Let t̄ = (t, . . . , t) 2 1 be a non-trivial element and let ⌧ 2 G be
an element such that (1 � ⌧ ) is surjective (such an element exists by Lemma 2.8).
Then there exists an element z 2 B such that z� ⌧ (z) = t̄ and thus the stabilizer of
z contains the element (t̄, ⌧ ) 2 1 ⇥ G.

Note now that 1 \ E�,B = {0} for every pseudoreflection � 2 G. Thus, by
Lemma 2.5, the only pseudoreflections in1⇥G are the transpositions inG = Sn+1,
and so StabG(z) cannot be generated by pseudoreflections. Therefore if 1 6= 0,
A/G is not smooth by the Chevalley-Shephard-Todd Theorem, which contradicts
condition (?).
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3.2. The case of G(m, p, n), m � 2, n � 3

Now we will study when G = G(m, p, n) acts on an Abelian variety A of dimen-
sion n for m � 2. We assume here that n � 3 (recall that the case of dimension
2 was already dealt with elsewhere). Recall that G = H o Sn , where H ⇢ µn

m is
defined in (3.1) and it acts coordinatewise on Cn = T0(A), while Sn permutes the
variables in the obvious way.
Remark 3.2. In what follows, we will try as much as we can to prove results on G
without splitting into subcases depending on the value of p. Hence, in the following
arguments we will only consider elements in G(m,m, n) ⇢ G(m, p, n), even if in
some cases a simpler argument can be found for certain values of p. We will also
keep all arguments (with one exception) depending on at most three dimensions, so
that they are all valid for n � 3.
Let Ei be the image of Cei in A via the exponential map. We claim that it corre-
sponds to an elliptic curve. Indeed, consider the element ⌧ =(1, ⇣m, ⇣�1

m , 1, . . . ,1)2
H and denote ⇢ = 1+ ⌧ + · · · + ⌧m�1. Then a direct computation shows that, for
� = (1 2) 2 Sn ⇢ G, im(⇢(1 � � )) = Ce1. This tells us that E1 = ⇢(1 � � )(A)
and hence it corresponds to an elliptic curve. This allows us to prove the following.

Lemma 3.3. Assume that G acts on A as above. Then m 2 {2, 3, 4, 6} and, if
m � 3, then the curves Ei ⇢ A have non-trivial automorphisms.

Proof. Consider the curve E1 ⇢ A defined as above. We see then that the element
(⇣m, ⇣�1

m , 1, . . . , 1) 2 H induces an automorphism of order m of E1. Therefore
m 2 {2, 3, 4, 6} and, if m � 3, then E1 has non-trivial automorphisms. The other
Ei are obtained from E1 via the action of Sn and hence are isomorphic to it.

Now, let3A be a lattice for A in Cn . Then Cei \3A corresponds to the lattice
of Ei in C = Cei . We can thus define the G-stable sublattice of 3A

3B :=
nM

i=1
(Cei \ 3A).

As in Section 2.2, this defines a G-isogeny ⇡ : B ! A. Moreover, we see that
B ⇠= E1 ⇥ · · · ⇥ En ⇠= En and that ⇡ |Ei is an injection. As in the previous section,
let 1 be the kernel of ⇡ . We will study the different possible quotients A/G by
studying the possible quotients B/(1 o G) and thus by studying the possible 1’s.
Let us start with the case of a trivial 1:

Proposition 3.4. Let G = G(m, p, n) with n � 2 act on B = En as above. Then
the quotient B/G is smooth if and only if p = 1.

Proof. By Lemma 3.3, we know that m 2 {2, 3, 4, 6}. Thus, if p = 1, the action of
G on B is by construction the same as in Example (a), which tells us that B/G ⇠= Pn
and hence it is smooth.
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Assume now that p � 2. By Lemma 3.3, we also know that if m 6= 2 then E
has non-trivial automorphisms given by multiplication by ⇣m . In particular, E is a
very specific curve in each of these cases and it is easy to see that:

• If m = 3, 6, then there exists a non-trivial t 2 E[3] such that ⇣6t = �t ;
• If m = 4, then there exists a non-trivial t 2 E[2] such that ⇣4t = t .

Consider one such element t 2 E unless (m, p) 2 {(2, 2), (6, 2)}, in which case
take any non-trivial element t 2 E[2]. Let (x3, . . . , xn) 2 En�2 be a general el-
ement. Then, if x̄ = (t, 0, x3, . . . , xn) 2 B = En , we immediately see that an
element in StabG(x̄) must be in H ⇢ G since the coordinates cannot be permuted,
even after applying automorphisms on some coordinates via H . A direct computa-
tion tells us then that StabG(x̄) is equal to the (Abelian) subgroup of H ⇢ G given
in each case by the following table:

(m, p) Generators of StabG(x̄)
(2,2) (�1,�1, 1, . . . , 1)
(3,3) (⇣3, ⇣

�1
3 , 1, . . . , 1)

(4,2) (⇣4, ⇣4, 1, . . . , 1), (�1, 1, 1, . . . , 1), (1,�1, 1, . . . , 1)
(4,4) (⇣4, ⇣

�1
4 , 1, . . . , 1)

(6,2) (�1,�1, 1, . . . , 1), (1, ⇣3, 1, . . . , 1)
(6,3) (⇣3, ⇣

�1
3 , 1, . . . , 1), (1,�1, 1, . . . , 1)

(6,6) (⇣3, ⇣
�1
3 , 1, . . . , 1)

However we observe that in all cases the first element is not a pseudoreflection,
since its fixed locus is of codimension 2. Moreover, the only pseudoreflections in
StabG(x̄) are the other given generators (and their powers) and hence they cannot
generate the first one. Therefore, by the Chevalley-Shephard-Todd Theorem, the
quotient B/G is not smooth.

Let us consider now the case of a non-trivial kernel 1. We start with an appli-
cation of Proposition 2.4.

Lemma 3.5. If 1 is non-trivial, then m 6= 6 and, if we define the following type of
elements in 1:

• Diagonal: (t, . . . , t) with t 2 E;
• Hyperplanar: (t,�t, 0, . . . , 0) with t 2 E;

then1 contains a non-trivial hyperplanar element unless it consists purely of diag-
onal elements. Moreover, the coordinates of every hyperplanar element are invari-
ant by ⇣m , so in particular these elements are 2-torsion if m = 2, 4 and 3-torsion if
m = 3.
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Proof. Let � = (1 2) and note that (t,�t, 0, . . . , 0) 2 E�,B . Then there being no
non-trivial hyperplanar element in 1 amounts to E�,B ! E�,A being an isomor-
phism. By inspection, we see that F�,B = E�,B[2] and we can thus apply Propo-
sition 2.4, which tells us that elements in 1 are invariant by every transposition,
hence diagonal.

Assume now that 1 contains a hyperplanar element t̄ . Then, since 1 is G-
stable, we have that, for ⇢1 = (⇣m, 1, ⇣�1

m , 1, . . . , 1) 2 H ,

(1� ⇢1)(t̄) = ((1� ⇣m)t, 0, . . . , 0) 2 1.

But, by construction, there are no elements of the form (x, 0, . . . , 0) in 1. We
deduce then that t is ⇣m-invariant. The assertion on the torsion of its coordinates
follows immediately.

Assume finally that m = 6 and let (t1, . . . , tn) 2 1. Define �i = (1 i) 2 Sn ⇢
G and ⇢2 = (⇣�1

6 , ⇣6, 1, . . . , 1) 2 H ⇢ G. Then

[(1� ⇢2)(1� ⇢1)�i ](t̄) = (ti , 0, . . . , 0) 2 1,

which implies as above that ti = 0 and thus 1 = 0.

Let us study now pseudoreflections in 1 o G. Define the elements

⇢ :=
�
⇣m, ⇣�1

m , 1, . . . , 1
�

2 H ⇢ G;

� := (1 2) 2 Sn ⇢ G;

⌧ :=
�
⇣
p
m , 1, . . . , 1

�
2 H ⇢ G.

Then there are two types of pseudoreflections in G:

(I) Conjugates of ⇢a� for 0  a < p;
(II) Conjugates of powers of ⌧ (these do not exist if m = p);

and the corresponding elliptic curves in B are respectively:

E⇢a� =
�
(x,�⇣ amx, 0, . . . , 0) | x 2 E

 
;

E⌧ = {(x, 0, 0, . . . , 0) | x 2 E}.

Note now that elements of the form (x, 0, . . . , 0) are not in1 by construction of the
isogeny ⇡ : B ! A. Using Lemmas 2.5 and 3.5, we see then that pseudoreflections
in 1 o G that are not in G must be of the form:

(III) Conjugates of (t̄, ⇢a� ) 2 1 o G for 0  a < p;

where t̄ = (t,�t, 0, . . . , 0) 2 1 and t is ⇣m-invariant.
With these considerations, we can restrict further the structure of 1. For in-

stance, diagonal elements in1 are bound to bring problems since they do not belong
to any elliptic curve E� for a pseudoreflection � 2 G. Thus, they cannot bring up
new pseudoreflections in1oG unless they are generated by hyperplanar elements.
This is explained by the following proposition.
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Proposition 3.6 (1 is not diagonal). Assume that there exists s 2 E such that
(s, . . . , s) 2 1 but (s,�s, 0, . . . , 0) 62 1. Then A/G is not smooth.

In particular, we see that 1 has to contain at least one hyperplanar element.

Proof. Since A/G ⇠= B/(1 o G), we will work with this last quotient using the
Chevalley-Shephard-Todd theorem.

Let s̄ 2 1 denote the diagonal element in the statement of the proposition. We
will prove first that an element of the form (s̄,�) cannot be generated by pseudore-
flections in 1 o G. Indeed, the only pseudoreflections that are not in G are those
of type (III), so that if (s̄,�) was generated by pseudoreflections, we should be able
to write

s̄ =
X̀

i=1
�i (t̄i ), (3.2)

with t̄i = (ti ,�ti , 0 . . . , 0) 2 1 a hyperplanar element and �i 2 G. In particular,
s̄ would be contained in the sub-G-module of 1 generated by the t̄i . But since
ti is ⇣m-invariant, the only way in which G acts on the t̄i is by permuting their
coordinates. Thus, by looking at the first coordinate in equation (3.2), we get that s
is a linear combination of the ti , which implies immediately that (s,�s, 0, . . . , 0)
is a linear combination of the t̄i and hence is in 1, contradicting our hypothesis.

Having proved this, it suffices then to exhibit an element x̄ 2 B such that its
stabilizer in 1 o G has an element of the form (s̄,�). In other words, we need
� 2 G and x̄ 2 B such that �(x̄) + s̄ = x̄ , and this is a direct consequence of
Lemma 2.8.

Denote by E0 the subgroup of ⇣m-invariant elements of E . Then E0 is equal to
E[2] ⇠= (Z/2Z)2 if m = 2, isomorphic to Z/3Z if m = 3 and isomorphic to Z/2Z
if m = 4. Now that we know that diagonal elements in 1 only appear if generated
by hyperplanar elements, Lemma 3.5 tells us that 1 is contained in En0 = BH , and
more precisely in the “hyperplane”

H :=

(

(x1, . . . , xn) 2 En0 |
nX

i=1
xi = 0

)

⇢ En0 ⇢ B. (3.3)

Indeed, for m = 3, 4 the mere presence of a hyperplanar element implies by G-
stability that 1 actually contains the whole “hyperplane” and thus the presence of
any additional element in 1 would imply the existence of elements of the form
(x, 0, . . . , 0), which is forbidden by construction. A similar argument using Propo-
sition 3.6 works for m = 2. In this last case, one hyperplanar element does not
suffice to generate the whole subgroupH ⇢ En0 since E0 = E[2] needs two gener-
ators. We prove now that if 1 is not the wholeH, things do not work either.

Proposition 3.7. Assume that m = 2, 1 6= {0} and there exists a hyperplanar
2-torsion element that is not in 1. Then A/G is not smooth.
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Proof. As before, we can use the Chevalley-Shephard-Todd Theorem on the quo-
tient B/(1 o G) ⇠= A/G.

By the previous proposition, we may assume that 1 has a non-trivial element
t̄ = (t, t, 0, . . . , 0) 2 1 with t 2 E[2]. But since E[2] ⇠= (Z/2Z)2, we easily
see from the hypothesis that there are no elements of the form (s, s, 0, . . . , 0) for
s 6= 0, t .

Let s 2 E[2] be such an element. Let t1 2 E[4] be such that 2t1 = t and let
t2 = t1 + s 2 E[4]. Let (x3, . . . , xn) 2 En�2 be a general element and consider the
element x̄ = (t1, t2, x3, . . . , xn) 2 B. Recalling the notations given in page 686, it
is easy to see that (t̄, ⇢) 2 1 o G fixes x̄ . Since t1 6= ±t2, it is also easy to see
that no element in G fixes x̄ , so that pseudoreflections fixing x̄ can only be of type
(III), that is either (t̄, � ) or (t̄, ⇢� ). But again, since t1 6= ±t2, we see that neither
of these fixes x̄ . Thus, Stab1oG(x̄) is not generated by pseudoreflections and hence
B/(1 o G) cannot be smooth by the Chevalley-Shephard-Todd Theorem.

Thus, we are reduced to the “full hyperplanar” case, that is,1 = H. We prove
then the following:

Proposition 3.8 (1 is not hyperplanar). Assume that 1 = H (cf. (3.3)). Then
A/G is not smooth except if G = G(2, 2, 3).

Proof. As always, it will suffice to give an element x̄ 2 B = En such that its
stabilizer in 1 o G is not generated by pseudoreflections. The idea, as in the last
proof, is to exhibit an element whose coordinates xi are “different enough” so that
it is clear that elements in Sn ⇢ G cannot appear in Stab1oG(x̄), even after being
mixed up with elements of1⇥H ⇢ 1oG. This amounts to ensuring that different
coordinates do not belong to the same (E0 ⇥ µm)-orbit (this is how 1 ⇥ H acts on
coordinates). Then the stabilizer must be contained in 1 ⇥ H and hence it is easy
to exhibit examples that are not generated by pseudoreflections.

Consider then the following element x̄ 2 B:

• If G = G(2, p, n) and n � 4, then x̄ = (0, a0, b0, c0, x5, . . . , xn).
Here, (x5, . . . , xn) 2 En�4 is a general element and 2a0 = a, 2b0 = b, 2c0 = c,
where E[2] = {0, a, b, c};

• If G = G(2, 1, 3), then x̄ = (a0, b0, c0), where a0, b0, c0 are as above;
• If G = G(3, p, n), then x̄ = (0, d, 2d, x4, . . . , xn).
Here (x4, . . . , xn) 2 En�3 is a general element and d 2 E[3] is not ⇣3-invariant;

• If G = G(4, p, n), then x̄ = (0, d, e0, x4, . . . , xn).
Here, (x4, . . . , xn) 2 En�3 is a general element, d and e = 2e0 are in E[2], d is
not ⇣4-invariant and e is ⇣4-invariant.

The fact that these coordinates are in different (E0 ⇥ µm)-orbits is seen as follows.
In the first two cases, multiplication by 2 kills the actions of E0 and µ2 on 4-torsion
elements and the coordinates are still all different. In the third case, the action of
⇣3 on d is by translation by a ⇣3-invariant element (say, e), so E0 and µ3 act in the
same way on d. A direct computation tells us then that 0, d and 2d are in different
(E0 ⇥ µ3)-orbits. In the fourth case, all coordinates have different torsion.
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Thus, Stab1oG(x) ⇢ 1 ⇥ H as it was explained above. And easy direct
computations in 1 ⇥ H tell us that the stabilizer of x̄ is given in each case by:

(m, p, n) Generators of Stab1oG(x̄) ⇢ 1 ⇥ H
(2, p, n), n � 4 ((0, a, b, c, 0, . . . , 0), (�1,�1,�1,�1, 1, . . . , 1))

(0̄, (�1, 1, . . . , 1)) (exists only if p = 1).
(2, 1, 3) ((a, b, c), (�1,�1,�1))
(3, p, n) ((0, 2e, e, 0, . . . , 0), (⇣3, ⇣3, ⇣3, 1, . . . , 1))

(0̄, (⇣3, 1, . . . , 1)) (exists only if p = 1)
(4, p, n) ((0, e, e, 0, . . . , 0), (⇣4, ⇣4,�1, 1, . . . , 1))

(0̄, (�1, 1, . . . , 1)) (exists only if p  2)
(0̄, (⇣4, 1, . . . , 1)) (exists only if p = 1)

In every case, the first element is clearly not a pseudoreflection and it cannot be
generated by the others, which proves the proposition.

The statement of the last proposition hints that the quotient A/G is indeed
smooth for G = G(2, 2, 3). This is actually the case, since it is well-known that
G(2, 2, 3) is isomorphic, as a complex reflection group, to S4 and was therefore
already considered in the previous section. The proof of (1) ) (4) is now complete.

3.3. Sporadic groups

We deal now with complex reflection groups that are not of the type G(m, p, n). As
we recalled before, these are 34 sporadic groups with given actions on Cn where n
varies from 2 to 8.

Let G be such a sporadic group. Recall that having an Abelian variety A with
an action of G by automorphisms gives us in particular a linear action of G on
T0(A) ⇠= Cn that preserves the lattice 3 = 3A. We need then a classification
of G-invariant lattices up to equivalence. A great part of this work was done by
Popov in [10], where he studied infinite complex reflection groups, in particular
crystallographic complex reflection groups, which turn out to be extensions of a
finite complex reflection group G by some lattice 3 in Cn , where the action of G
on Cn is the one given by Shephard-Todd. In order to deal with sporadic groups,
we use then some of Popov’s results, which we briefly recall here.

First of all, we need the notion of root lattice. Given a finite (irreducible) com-
plex reflection group G, we can consider the directions on which the pseudoreflec-
tions act. With these one can define an actual (irreducible) root system which in turn
is useful for classifying these groups (cf. [10, Section 1]). Here, we only care about
the lines generated by these roots, that is the eigenspaces of eigenvalue 6= 1 for some
pseudoreflection � 2 G, which Popov calls root lines. If we consider a G-invariant
lattice 3 ⇢ Cn , then the sublattices 3 \ L for L a root line generate a G-invariant
sublattice 30 of 3 called the root lattice of 3. Note that this is precisely how we
constructed the G-equivariant isogeny B ! A for G = G(1, 1, n + 1) = Sn+1.

We have then the following result, cf. [10, Section 2.6]:
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Theorem 3.9 (Popov). The only sporadic groups G in the list of Shephard-Todd
that admit a G-invariant lattice are the numbers 4, 5, 8, 12, 24-26, 28, 29, 31-
37. Their corresponding root lattices are classified up to equivalence by the table
in [10, Section 2.6, pages 37-44].

Note that Popov’s notion of equivalence of G-invariant lattices induces isomor-
phisms between the corresponding Abelian varieties with G-action, so that we only
need to study Abelian varieties A = Cn/3 for lattices 3 such that its root lattice
30 is in Popov’s table. Let us recall then another result that will be useful to classify
lattices that are not a root lattice cf. [10, Sections 4.2-4.4].

Consider the endomorphism of Cn defined as S := n · In �
Pn

i=1 Ri , where
Ri denotes the i-th pseudoreflection of a fixed generating set of pseudoreflections
of G.

Theorem 3.10 (Popov). Let 3 be a G-invariant lattice in Cn and let 30 be its
root lattice. Then 30 ⇢ 3 ⇢ S�130. In particular, if | det(S)| = 1, then every
G-invariant lattice is a root lattice.

All we are left to do then is to explicitly verify, for each lattice 30 in Popov’s list
and for each G-invariant lattice between 30 and S�130, whether the quotient of
the corresponding Abelian variety by G is smooth or not. As it turns out, this is
never true, which we summarize in the following proposition:

Proposition 3.11. Let G be a sporadic group from the Shephard-Todd list. If G
acts on an Abelian variety A in such a way that its action on T0(A) is an irreducible
representation, then A/G is not smooth.

Proof. For every such pair (A,G), we consider the associated pair (3,G), where
A = Cn/3. Tables 3.1 and 3.2 give, for every such pair, a point x0 2 A such that
its stabilizer is not generated by pseudoreflections. The result follows then from the
Chevalley-Shephard-Todd theorem.

We start with the groups G such that | det(S)| = 1, so that we only need to
verify Popov’s explicit lattices. For these, Table 3.1 gives:

• The group G (by giving its number in Shephard-Todd’s list);
• Popov’s name for the group 30 o G;
• A rational linear combination v0 of the Z-basis {e1, . . . , e2n} of 3 = 30;
• The order of the stabilizer S0 = StabG(x0) of the image x0 of v0 in the Abelian
variety A = Cn/3;

• The order of the subgroup P0 of S0 that is generated by pseudoreflections.

We refer to [10, Section 2.6, pages 37-44] for the explicit Z-basis. In each case, the
first n elements of the basis are Popov’s e1, . . . , en and the (n+ i)-th element is ⌧i ei
for some explicit ⌧i 2 C.

We consider now those groups G in Popov’s table for which | det(S)| 6= 1, so
that we need to check for new lattices aside from Popov’s. These correspond to
the numbers 4, 25, 33, 35 and 36 in Shephard-Todd’s list. Since we always have
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Table 3.1. Examples of non-smooth points in A/G for sporadic groups G such that
| det(S)| = 1.

#G 30 o G v0 2 30 ⌦Z Q |S0| |P0|
5 [K5] ( 13 ,

1
3 ,

1
3 , 0) 3 1

8 [K8] ( 13 ,
1
3 ,

1
3 , 0) 3 1

12 [K12] (0, 0, 0, 12 ) 16 8
24 [K24] ( 14 ,�

1
4 ,�

1
4 ,

1
2 ,

1
4 ,�

1
4 ) 4 1

26 [K26]1 ( 12 ,
1
2 ,

1
2 , 0,

1
2 ,

1
2 ) 36 18

26 [K26]2 (0, 0,� 1
3 , 0, 0,

1
3 ) 72 24

28 [F4]↵1 ( 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0) 12 6

28 [F4]
�
2 (0, 12 ,

1
2 , 0, 0, 0,

1
2 , 0) 16 8

28 [F4]
�
3 (0, 12 , 0, 0, 0, 0,

1
2 , 0) 16 8

29 [K29] ( 12 , 0, 0, 0,
1
2 , 0, 0, 0) 768 384

31 [K31] ( 12 ,
1
2 , 0, 0, 0, 0, 0, 0) 384 192

32 [K32] ( 12 , 0, 0, 0, 0, 0, 0, 0) 1296 648
34 [K34] ( 13 , 0, 0, 0, 0, 0,�

1
3 , 0, 0, 0, 0, 0) 155520 51840

37 [E8]↵ ( 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0,

1
2 ,

1
2 , 0, 0, 0, 0, 0,

1
2 ) 103680 51840

30 ⇢ 3 ⇢ S�130 and [S�130 : 30] = | det(S)|2, we see that there are finitely
many other lattices to look at. Actually, in all five cases we get that the action of G
on the quotient S�130/30 is trivial, so that every lattice in between is a G-invariant
lattice and needs to be considered. We keep then notations as above (in particular,
Popov’s Z-basis is given by {e1, . . . , e2n}) and we go case by case:

• In case 4, a Z-basis for S�130 is given by {d1, d2, e3, e4}, where d1 = 1
2e1 +

1
2e2+

1
2e3 and d2 = 1

2e1+
1
2e4. In particular, we see that the quotient S

�130/30

is a Klein group and thus, apart from S�130, we have 3 new lattices to consider:
31 := hd1,30i, 32 := hd2,30i, 33 := hd1 + d2,30i;

• In case 25, a Z-basis for S�130 is given by {d1, e2, . . . , e6}, where d1 = 1
3e1 +

1
3e3 + 2

3e4 + 2
3e6. Since the index is 3, this is the only new lattice that needs to

be checked;
• In case 33, a Z-basis for S�130 is given by {d1, e2, . . . , e5, d6, e7 . . . , e10},
where d1 = 1

2e1+
1
2e3+

1
2e5 and d6 = 1

2e6+
1
2e8+

1
2e10. In particular, we see that

the quotient S�130/30 is a Klein group and thus, apart from S�130, we have 3
new lattices to consider: 31 := hd1,30i,32 := hd6,30i,33 := hd1+d6,30i;

• In case 35, a Z-basis for S�130 is given by {d1, e2, . . . , e6, d7, e8 . . . , e12},
where d1 = 1

3e1 � 1
3e3 + 1

3e5 � 1
3e6 and d7 = 1

3e7 � 1
3e9 + 1

3e11 � 1
3e12.

In particular, we see that the quotient S�130/30 is isomorphic to (Z/3Z)2 and
thus, apart from S�130, we have 4 new lattices to consider: 31 := hd1,30i,
32 := hd7,30i, 33 := hd1 + d7,30i, 34 := hd1 + 2d7,30i;
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• In case 36, aZ-basis for S�130 is given by {e1, d2, e3, . . . , e8, d9, e10, . . . , e14},
where d2 = 1

2e2 + 1
2e5 + 1

2e7 and d9 = 1
2e9 + 1

2e12 + 1
2e14. In particular, we

see that the quotient S�130/30 is a Klein group and thus, apart from S�130,
we have 3 new lattices to consider: 31 := hd2,30i, 32 := hd9,30i, 33 :=
hd2 + d9,30i.

Table 3.2 gives then, for every pair (A,G) with A = Cn/3:

• The group G (by giving its number in Shephard-Todd’s list);
• The corresponding lattice 3 (as we named them here above);
• A rational linear combination v0 of the corresponding Z-basis (as given here
above);

Table 3.2. Non-smooth points in A/G for sporadic groups G such that | det(S)| 6= 1.

#G 3 v0 2 3 ⌦Z Q |S0| |P0|
4 30 ( 12 , 0, 0, 0) 2 1
4 31 (0, 12 , 0, 0) 4 1
4 32 (0, 0, 12 ,

1
2 ) 4 1

4 33 (0, 12 ,
1
2 , 0) 6 3

4 S�130 (0, 0, 0, 12 ) 8 1
25 30 (0,� 1

3 , 0, 0,
1
3 ,�

1
3 ) 3 1

25 S�130 (0, 0, 0, 13 , 0,
1
3 ) 72 24

33 30 (0, 12 , 0,
1
2 ,

1
2 ,

1
2 , 0,

1
2 , 0,

1
2 ) 108 54

33 31 ( 12 , 0, 0, 0, 0, 0, 0, 0, 0, 0) 1296 648
33 32 (0, 0, 0, 0, 0, 12 , 0, 0, 0, 0) 1296 648
33 33 ( 12 , 0, 0, 0, 0,

1
2 , 0, 0, 0, 0) 240 120

33 S�130 ( 12 , 0, 0, 0, 0,
1
2 , 0, 0, 0, 0) 1296 648

35 30 (0, 12 , 0,
1
2 ,

1
2 ,

1
2 , 0,

1
2 , 0, 0, 0, 0) 72 36

35 31 (0, 13 ,
1
3 , 0,

1
3 , 0, 0, 0, 0, 0, 0, 0) 648 216

35 32 (0, 0, 0, 0, 0, 0, 0, 13 ,
1
3 , 0,

1
3 , 0) 648 216

35 33 (0, 13 ,
1
3 , 0,

1
3 , 0, 0,

1
3 ,

1
3 , 0,

1
3 , 0) 648 216

35 34 (0, 13 ,
1
3 , 0,

1
3 , 0, 0,�

1
3 ,�

1
3 , 0,�

1
3 , 0) 648 216

35 S�130 (0, 13 ,
1
3 , 0,

1
3 , 0, 0,

1
3 ,

1
3 , 0,

1
3 , 0) 648 216

36 30 ( 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0,

1
2 ) 1440 720

36 31 (0, 12 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 103680 51840
36 32 (0, 0, 0, 0, 0, 0, 0, 0, 12 , 0, 0, 0, 0, 0) 103680 51840
36 33 (0, 12 , 0, 0, 0, 0, 0, 0,

1
2 , 0, 0, 0, 0, 0) 3840 1920

36 S�130 (0, 12 , 0, 0, 0, 0, 0, 0,
1
2 , 0, 0, 0, 0, 0) 103680 51840
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• The order of the stabilizer S0 = StabG(x0) of the image x0 of v0 in the Abelian
variety A;

• The order of the subgroup P0 of S0 that is generated by pseudoreflections.

This concludes the proof of Proposition 3.11.

Remark 3.12. For each lattice 3 and each “bad” element x0 analyzed here above,
we computed the stabilizer S0 and its subgroup P0 by brute force using basic Sage-
Math algorithms (we thank once again Antonio Behn for his enormous help in opti-
mizing our first algorithms). Since these are really basic, readers can certainly write
their own (and probably in a more efficient manner than ours!). However, for those
who would like to look at our code, it is presented in an appendix to a previous
version of this article (cf. arxiv.org/abs/1801.00028v2).

The main idea in order to find these elements was to check the stabilizers
(and the pseudoreflections therein) of small torsion elements chosen via the fol-
lowing principle: for every element g of the matrix group G, we decomposed Z2n
as ker(g� I2n) � ker(g� I2n)?, where the ? is taken with respect to a G-invariant
Hermitian form H on Cn . By restricting g to ker(g � I2n)?, we obtain an integer-
valued matrix g̃ such that g̃� I is invertible overQ. The columns of (g̃� I )�1 that
contain rational, non-integer numbers therefore correspond to fixed points of g in A
that do not come from the eigenspace associated to 1 of g. These were the vectors
whose stabilizers we calculated and analyzed.
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