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Diophantine transference inequalities: weighted, inhomogeneous,
and intermediate exponents
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Abstract. We extend the Khintchine transference inequalities, as well as a
homogeneous-inhomogeneous transference inequality for lattices, due to Bugeaud
and Laurent, to a weighted setting. We also provide applications to inhomoge-
neous Diophantine approximation on manifolds and to weighted badly approx-
imable vectors. Finally, we interpret and prove a conjecture of Beresnevich-
Velani (2010) about inhomogeneous intermediate exponents.

Mathematics Subject Classification (2010): 11J83 (primary); 11J13 (sec-
ondary).

1. Introduction

Dirichlet’s approximation theorem [12] is a foundational result in Diophantine ap-
proximation, and follows straightforwardly from the pigeonhole principle.

Theorem 1.1 (Dirichlet’s approximation theorem). If ✓ = (✓1, . . . , ✓m) 2 Rm

and N 2 N then there exists q 6 N such that

kq✓ikR/Z 6 N�1/m (1 6 i 6 m).

In general it is sharp, but for some ✓ there are closer rational approximations. This
leads to the notion of exponents of Diophantine approximation, as introduced by
Khintchine [25] and Jarnı́k [21]. In this article, we concern ourselves with the very
general setting of weighted Diophantine exponents, uniform or otherwise.
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Definition 1.2. Let m, n 2 N denote dimensions, and let s = (s1, . . . , sm) 2 Rm
>0

and r = (r1, . . . , rn) 2 Rn
>0 be weights, that is

mX

i=1
sm =

nX

j=1
rn = 1.

Write

k(x1, . . . , xm)ks = max
16i6m

|xi |
1
si , k(y1, . . . , yn)kr = max

16 j6n
|y j |

1
r j .

Let A 2 Mm⇥n(R) and ✓ 2 Rm . The inhomogeneous weighted exponent, denoted
!s,r(A, ✓), is the supremum of the real numbers ! for which, for some arbitrarily
large real numbers T , the inequalities

kqkr < T, kAq� p� ✓ks < T�! (1.1)

have a solution (p,q) 2 Zm ⇥ (Zn \ {0}). The uniform inhomogeneous weighted
exponent, denoted !̂s,r(A, ✓), is the supremum of the real numbers !̂ for which, for
all sufficiently large real numbers T , the inequalities

kqkr < T, kAq� p� ✓ks < T�!̂

have a solution (p,q) 2 Zm ⇥ (Zn \ {0}). Moreover, define the homogeneous
exponents

!s,r(A) = !s,r(A, 0), !̂s,r(A) = !̂s,r(A, 0).
Finally, in the unweighted case s = (1/m, . . . , 1/m) and r = (1/n, . . . , 1/n),
write !(A, ✓) and !̂(A, ✓) for !s,r(A, ✓) and !̂s,r(A, ✓), respectively.
Remark 1.3. Diophantine exponents are allowed to equal +1. We have nor-
malised in such a way that Dirichlet’s approximation theorem delivers the lower
bound 1 for the exponent, as in [4]; it is more common to normalise so that Dirich-
let’s approximation theorem delivers the lower bound n/m. This value is said to
be critical, as it is attained by almost all matrices A, especially in the context of
Section 7.
Exponents of multiplicative Diophantine approximation can be similarly defined.
Definition 1.4. Let A 2 Mm⇥n(R) and ✓ 2 Rm . The inhomogeneous multiplicative
exponent, written !⇥(A, ✓), is the supremum of the real numbers ! for which, for
some arbitrarily large real numbers T , the inequalities

5+(q) < T, 5(Aq� p� ✓) < T�!

have a solution (p,q) 2 Zm ⇥ (Zn \ {0}), where

5+(q) =
nY

j=1
max{1, |q j |}, 5(y) =

mY

i=1
|yi |
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with y = (y1, . . . , ym). The uniform inhomogeneous multiplicative exponent, writ-
ten !̂⇥(A, ✓), is the supremum of the real numbers !̂ for which, for all sufficiently
large real numbers T , the inequalities

5+(q) < T, 5(Aq� p� ✓) < T�!̂

have a solution (p,q) 2 Zm ⇥ (Zn \ {0}). The homogeneous multiplicative expo-
nents are

!⇥(A) := !⇥(A, 0), !̂⇥(A) := !̂⇥(A, 0).
Remark 1.5. It follows directly from the definitions that for any weights (s, r) and
any (A, ✓) we have

!⇥(A, ✓) > !s,r(A, ✓), !̂⇥(A, ✓) > !̂s,r(A, ✓),

and in particular

!⇥(A) > !s,r(A), !̂⇥(A) > !̂s,r(A).

It is well-known that, for A 2 Mm⇥n(R), the Diophantine exponent !(A) and
that of its transpose !(t A) are related by transference inequalities. This was first
observed by Khintchine [25] in the n = 1 (simultaneous approximation) or m =
1 (dual approximation) cases. The following generalisation is due to Dyson [13,
Theorem 4], see also [19, Chapter 6, Section 45, Theorem 8] and [44, Chapter IV,
Section 5].

Theorem 1.6. Let A 2 Mm⇥n(R). Write ! = !(A) and t! = !(t A). Then

t! >
n! + m � 1

(n � 1)! + m
and ! >

m t! + n � 1
(m � 1)t! + n

.

In particular, we have ! = 1 if and only if t! = 1. The inequalities also hold for
the uniform exponents with ! = !̂(A) and t! = !̂(t A).

We extend Dyson’s transference inequalities to the weighted case. Set

⇢s = max
16i6m

si , �s = min
16i6m

si , and ⇢r = max
16 j6n

r j , �r = min
16 j6n

r j .

Theorem 1.7. Let A 2 Mm⇥n(R). Write ! = !s,r(A) and t! = !r,s(t A). Then

t! >
(m + n � 1)⇢s⇢r(�r + �s!) + ⇢s�r�s(! � 1)
(m + n � 1)⇢s⇢r(�r + �s!) � ⇢r�r�s(! � 1)

and
! >

(m + n � 1)⇢s⇢r(�s + �rt!) + ⇢r�r�s(t! � 1)
(m + n � 1)⇢s⇢r(�s + �rt!) � ⇢s�r�s(t! � 1)

.

In particular, ! = 1 if and only if t! = 1. The inequalities also hold for the uniform
exponents with ! = !̂s,r(A) and t! = !̂r,s(t A).
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Our next result concerns the following elegant result due to Bugeaud and Lau-
rent [8].

Theorem 1.8 (Bugeaud-Laurent). For A 2 Mm⇥n(R) and ✓ 2 Rn we have

!(t A, ✓) > !̂(A)�1, !̂(t A, ✓) > !(A)�1,

with equality for Lebesgue-almost all ✓ .

The proof in [8] fails to deliver a weighted version. Using a slightly different proof,
we are able to establish the following more general assertion.

Theorem 1.9. If A 2 Mm⇥n(R) and ✓ 2 Rn then

!r,s
� t A, ✓

�
> !̂s,r(A)�1, !̂r,s

� t A, ✓
�
> !s,r(A)�1, (1.2)

with equality for Lebesgue-almost all ✓ .

The inequalities (1.2) still hold for the natural multiplicative analogue, in view of
Remark 1.5, as was already noted in [18]. However, if !⇥(A) > !s,r(A) then
equality is never attained.
Remark 1.10. The homogeneous case ✓ = 0 can be quickly seen as follows. There
is a weighted form of Dirichlet’s approximation theorem (whose proof is essen-
tially the same, using Minkowski’s first convex body theorem) which implies that
!s,r(A) > !̂s,r(A) > 1. Hence

!r,s
�t A

�
> 1 > !̂s,r(A)�1.

In the course of the proof of Theorem 1.9, we extend the theory of best approxima-
tions to a weighted setting in Section 4. As a by-product, we obtain results on the
dimension of a certain set of inhomogeneous shifts for weighted "-badly approx-
imable matrices, namely a weighted generalisation of [7, Theorem 1.5].

Theorem 1.11. Let A 2 Mm⇥n(R) be a matrix for which the group G := t AZm +
Zn has rank

rankZ(G) = m + n.

Let (qk)k>1 be a sequence of weighted best approximations associated to t A, and
suppose limk!1 kqkk1/kr = 1. For " > 0, define

Bad"r,s
�t A

�
=

⇢
✓ 2 Rn : lim inf

(p,q)2(Zm\{0})⇥Zn
kpkskt Ap� q� ✓kr > "

�
.

Then there exists " = "(A) > 0 such that

dimH Bad"r,s
�t A

�
= n.
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This is often referred to as twisted Diophantine approximation: the inhomoge-
neous shift is metric. The analogous problem for weighted badly approximable
matrices has hitherto been investigated in [6, 20]; therein the object of study is
Badr,s(t A) := [">0 Bad"r,s(

t A). Our conclusion is stronger than the assertion that
dimH Badr,s(t A) = n.
Remark 1.12. As noted in [7] and prior works, if the maximal rank condition is
not met then t Ax = 0 possesses infinitely many solutions x 2 Zm , and the theory
of best approximations breaks down. This excluded case is less interesting: the
conclusion is still valid, since any ✓ 2 Bad"r,s(t A) would need to lie close to a
discrete family of parallel hyperplanes in Rn . The rank condition will be discussed
further in Section 5, in a similar context.
When m = 1 or n = 1, the matrix A may be interpreted as a vector. In these special
cases, the exponents defined above are the classical exponents of simultaneous and
dual approximation; as discussed, these are related by Khintchine’s transference
inequality [25]. In [34], Laurent introduced intermediate exponents, refining the
above quantities.

In a nutshell, the dth intermediate exponent quantifies a vector’s proximity to
d-dimensional rational subspaces. We can write down a d-dimensional linear sub-
variety L of PnR using homogeneous coordinates. These span a (d+1)-dimensional
subspace V of Rn+1, and L = P(V ) is rational if V has a rational basis, that is, a
basis

{x0, . . . , xd} ⇢ Qn+1.

To define the height H(L) of a d-dimensional rational linear subvariety, Schmidt
[43] began by using the Plücker embedding

Gr
�
d, PnR

�
,! P(n+1d+1)�1

R

to obtain Grassmannian coordinates for L. Explicitly, this yields

L 7! X := x0 ^ · · · ^ xd 2 P(n+1d+1)�1
R

and, since the basis is rational, we in fact have X 2 P(n+1d+1)�1
Q . The height H(L) of

L is the Weil height |X| of X (one rescales the projective coordinates to obtain a
primitive integer vector, then evaluates the supremum norm). Schmidt did not work
projectively; in this aspect we follow Laurent [34].

The distance generalises the notion of projective distance between two points
[1, 40, 42]. Recall that there is a unique defined inner product on 3t (Rn+1) such
that for any two multivectors

u = u1 ^ · · · ^ ut and v = v1 ^ · · · ^ vt

we have
hu, vi = det(hui , v j i)ti, j=1, (1.3)
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see [1, Section 3]. Then the Euclidean norm |u| of a multivector

u = u1 ^ · · · ^ ut

is given by
|u|2 =

�
�
� det

�⌦
ui ,u j

↵�t
i, j=1

�
�
�.

For P, Q 2 PnR, the projective distance between P and Q is

d(P, Q) =
|x ^ y|
|x| · |y|

,

where x and y are homogeneous coordinates for P and Q respectively. If P 2 PnR
then

d(P,L) := min
Q2L

d(P, Q) (1.4)

is the least projective distance between P and a point of L.
Definition 1.13. Let d be an integer in the range 0 6 d 6 n � 1, and let ↵ 2 Rn .
Define the dth ordinary exponent !d(↵) (respectively the dth uniform exponent
!̂d(↵)) as the supremum of the real numbers ! for which there exist d-dimensional
rational linear subspaces L ⇢ Rn such that

H(L)(
n
d) 6 T, (T · d([1 : ↵],L))(

n
d+1) 6 T�!

for some arbitrarily large real numbers T (respectively for every sufficiently large
real number T ).
Here we have chosen the normalisation with powers

�n
d
�
and

� n
d+1

�
so that the expo-

nent is generically 1. The cases d = 0 and d = n�1 correspond to the simultaneous
and dual cases, respectively, see [34].

In [4] an associated inhomogeneous Diophantine exponent !d(↵, ✓) is posited
but not defined, where

↵ 2 Rn, d 2 {0, 1, . . . , n � 1}, ✓ 2 Rn�d .

Then, the following transference inequality is conjectured [4, Conjecture 3].
Conjecture 1.14 (Beresnevich-Velani). Let ↵ 2 Rn and d 2 {0, . . . , n� 1}. Then
for all ✓ 2 Rn�d we have

!d(↵, ✓) >
1

!̂n�1�d(↵)
.

In [34, Section 2], Laurent introduced an equivalent definition of dist(↵,L). We
will use this to formally define the inhomogeneous intermediate exponents !d(↵, ✓)
in Section 8, and establish the resulting interpretation of Conjecture 1.14. This
applies to a shift ✓ 2 R( n

d+1).



DIOPHANTINE TRANSFERENCE INEQUALITIES 649

Theorem 1.15. Let ↵ 2 Rn and d 2 {0, . . . , n � 1}. Then for ✓ 2 R( n
d+1) we have

!d(↵, ✓) >
1

!̂n�1�d(↵)
,

with equality for Lebesgue-almost all ✓ .

After working with the definitions, we will see that this follows directly from The-
orem 1.8.

Organisation

In Section 2, we use the geometry of numbers to establish a property for gen-
eral approximating functions, which would imply (1.2). Then, in Section 3, we
prove Theorem 1.7. In Section 4, we extend the theory of best approximations to
a weighted setting. This allows us to finish the proof of Theorem 1.9 in Section 5.
Theorem 1.11 is established in Section 6. In Section 7, we discuss applications to
the theory of inhomogeneous Diophantine approximation on manifolds. Finally, in
Section 8, we define !d(x, ✓) and prove Theorem 1.15.

ACKNOWLEDGEMENTS. We thank Yann Bugeaud for an inspiring question and
for fruitful discussions, Matthias Schymura for helpful comments regarding Lem-
ma 2.1, and an anonymous referee for carefully reading the manuscript and sug-
gesting a few small changes. AG gratefully acknowledges the hospitality of the
Technion and the Weizmann Institute.

2. The geometry of numbers

For the proof of Theorem 1.9, the following lemma is pivotal, and we anticipate
that it will find uses in other contexts. Evertse has recently pointed out in a survey
article [14] that this lemma is implicit in Mahler’s work [37] from the late 1930s (in
German). For completeness, we supply the details below.

Lemma 2.1. Let d 2 N, and let C = Cd = d!(3/2)
d�1
2 d. Let 3 be a full lattice in

Rd , and letR ✓ Rd be a symmetric, convex body such thatR\3 = {0}. Then for
all � 2 Rd we have

(CR⇤ + � ) \3⇤ 6= ;,

and moreover
CR⇤ \ (3⇤ \ {0}) 6= ;.

Here and throughout, we use an asterisk to denote a dual/polar convex set or lat-
tice [10].
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Proof. By assumption, the first successive minimum satisfies µ1(R) > 1, and so
[10, Chapter VIII, Theorem VI] gives

µd(R⇤) < d!. (2.1)

Now the inequality at the end of the proof of the First finiteness theorem in [45,
Lecture X, Section 6] implies that CdR⇤ contains a basis b⇤

1, . . . ,b
⇤
d for 3

⇤. Hence
CR⇤ contains db⇤

1, . . . , db
⇤
d , as well as the origin, and therefore also contains the

convex hull of these vectors, which in turn contains the fundamental parallelepiped
n
w1b⇤

1 + · · · + wdb⇤
d : w 2 [0, 1]d

o

for3⇤. Therefore any translate of CR⇤ intersects3⇤. The second assertion follows
directly from (2.1).

Remark 2.2. The reader may consult [23, 24] for sharper and more general results
in this direction.
Lemma 2.1 enables us to tackle transference inequalities for more general approxi-
mation functions.
Definition 2.3. Let  : R>0 ! R>0 be a strictly decreasing function. A pair
(A, ✓)2 Mm⇥n(R)⇥Rn is ( , s, r)-approximable (respectively uniformly ( , s, r)-
approximable) if for some arbitrarily large (respectively all sufficiently large) real
numbers T the inequalities

kqkr < T, kAq� p� ✓ks <  (T ) (2.2)

have a solution (p,q) 2 Zm ⇥ (Zn \ {0}). The matrix A 2 Mm⇥n(R) is( , s, r)-
approximable (respectively uniformly( ,s,r)-approximable) if this holds for(A,0).
In the special case  (T ) = T�!, we also write (uniformly) (!, s, r)-approximable
to mean (uniformly) ( , s, r)-approximable.

Lemma 2.4. Let A 2 Mm⇥n(R) and ✓ 2 Rn . Let  ,� : R>0 ! R>0 be strictly
decreasing functions with

lim
T!1

 (T ) = lim
T!1

�(T ) = 0, (2.3)

and suppose that if C and T are sufficiently large then

�
⇣
C (T )�1

⌘
> CT�1. (2.4)

If A is not ( , s, r)-approximable, then (t A, ✓) is uniformly (�, r, s)-approximable
for all ✓ 2 Rn . If A is not uniformly ( , s, r)-approximable, then (t A, ✓) is
(�, r, s)-approximable for all ✓ 2 Rn .
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Proof. For T > 0, write

gr(T ) = diag
�
T r1, . . . , T rn

�
2 GLn(R),

and define gs(T ) 2 GLm(R) similarly. For Q, T > 0 and A 2 Mm⇥n(R), we define
a full lattice in Rm+n as follows,

3(Q, T, A) =

✓
gs(Q�1)

gr(T�1)

◆✓
Im A
In

◆
Zm+n.

Observe that (2.2) has a non-zero integer solution with ✓ = 0 if and only if

3( (T ), T, A) \ B 6= {0},

where B = [�1, 1]m+n . The dual region is

B⇤ =

(

(x1, . . . , xm+n) 2 Rm+n :
m+nX

i=1
|xi | 6 1

)

,

and in particular B⇤ ⇢ B.
We now set about proving the first assertion. The proof of the second statement

is similar, and omitted. Let T be a large positive real number, and let ✓ 2 Rn . If A
is not ( , s, r)-approximable then (2.2) has no solution with ✓ = 0. In light of the
discussion above, we have

3( (T ), T, A) \ B = {0},

and now Lemma 2.1 yields

3( (T ), T, A)⇤ \ (CB + � ) 6= ;
�
� 2 Rm+n�. (2.5)

A standard calculation gives

3( (T ), T, A)⇤ =

✓
gs( (T ))

gr(T )

◆✓
Im

�t A In

◆
Zm+n.

Applying (2.5) with � = � T,✓ := (0, gr(T )✓) 2 Rm+n , we find that the inequalities

kpks < C1 (T )�1,
�
�t Ap� q� ✓

�
�
r < C1T�1 (2.6)

have a solution (p,q) 2 Zm+n . Here C1 = C
1
�s .

We claim that p can be chosen to be non-zero. There are two cases to consider.
When ✓ /2 Zn , we know that kq� ✓kr is bounded away from 0, so as T is large the
second inequality of (2.6) cannot be satisfied when p = 0. On the other hand, when
✓ 2 Zn , we may freely suppose that ✓ = 0, whereupon the second part of Lemma
2.1 allows us to take (p,q) 6= (0, 0), and then the largeness of T forces p 6= 0.
Using (2.3) and (2.4), we finally conclude that if T1 is large then the inequalities

kpks < T1,
�
�t Ap� q� ✓

�
�
r < �(T1)

have a solution (p,q) 2 (Zm \ {0}) ⇥ Zn . Therefore (t A, ✓) is uniformly (�, r, s)-
approximable.
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3. Dyson’s theorem with weights

The purpose of this section is to prove Theorem 1.7. As in the unweighted case,
this essentially follows from Minkowski’s second convex body theorem.

By symmetry, it suffices to prove the first assertion of the theorem. For t1, t2 2
R, set

L(t1, t2, A) = 3
�
et1, et2, A

�
, h(t1, t2) = diag

�
gs
�
et1
�
, gr

�
et2
��

.

Let v < !. By definition, for some arbitrarily large t , we have

L(�vt, t, A) \ B 6= {0},

where B = [�1, 1]m+n , or equivalently

h
⇣
�r(�s + �r)

�1(1� v)t, �s(�s + �r)
�1(1� v)t

⌘ �
L(�vt, t, A) \ B

�
6= {0}.

It then follows that

L(�t1, t1, A) \ h
⇣
�r(�s + �r)

�1(1� v)t, �s(�s + �r)
�1(1� v)t

⌘
B 6= {0},

where t1 = (�s + �r)�1(�r + �sv)t . Hence

µ1(L(�t1, t1, A),B) 6 e�t0,

where
t0 = (�s + �r)

�1�s�r(v � 1)t = (�sv + �r)
�1�s�r(v � 1)t1.

By [10, Chapter VIII, Theorem VI], we now have

µm+n
�
L(�t1, t1, A)⇤,B

�
> et0 .

Minkowski’s second convex body theorem [9, Appendix B, Theorem V] now gives

µ1
�
L(�t1, t1, A)⇤,B

�
6 Ce�(m+n�1)�1t0,

for some constant C > 0 depending only on m + n, and so
✓
gs(e�t1)

gr(et1)

◆✓
Im

�t A In

◆
Zm+n \ e�(m+n�1)�1t0+logCB 6= {0}.

Therefore
L
�
� t 0, t 00, t A

�
\ B 6= {0},

where

t 0 = t1�⇢�1
s

⇣
(m+n�1)�1t0�logC

⌘
and t 00 = t1+⇢�1

r

⇣
(m+n�1)�1t0�logC

⌘
.
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Since C is constant, we get

t! >
1+ ⇢�1

r t�11 (m + n � 1)�1t0
1� ⇢�1

s t�11 (m + n � 1)�1t0
.

As v < ! is arbitrary, a direct calculation completes the proof of Theorem 1.7.
If we consider uniform exponents, the proof is the very same by choosing any

sufficiently large t , instead of some arbitrarily large t .
Remark 3.1. We do not know whether Theorem 1.7 is optimal for every choice of
weights. The special case in which the weights are uniform, namely Theorem 1.6, is
however known to be optimal: Jarnı́k [22] established this in quite some generality,
for example if

1 6 m 6 n, 1 6 ! 6 1

then the first inequality in Theorem 1.6 is sharp. All of this is discussed more
broadly after the proof of [19, Chapter 6, Section 45, Theorem 8]; the reader should
be wary of the difference in normalisation therein.

4. Best approximations

When working in higher dimensions, the theory of best approximations often acts
as a proxy for the theory of continued fractions. Best approximations were intro-
duced by Voronoi [49] as minimal points in lattices, and Rogers [41] was the first to
define them in the context of exponents of Diophantine approximation. We require
a weighted version of the best approximations employed in [8, Section 3]. The
properties presented therein generalise cleanly to a broad setting, which includes
the weighted case. We supply full details for completeness, closely following [8].
Definition 4.1. Let 3 be a lattice in a real vector space. Let N , L : 3 ! [0,1)
be functions such that

(i) L attains its minimum on sets of the form

{X 2 3 \ {0} : N (X) 6 B} for any B 2 R>0;

(ii)
L(X) 6= 0 (0 6= X 2 3); (4.1)

(iii) And
inf

X23\{0}
L(X) = 0. (4.2)

A sequence of (N , L)-best approximations is (Xi )1i=1 2 3N such that:

(i) The sequence N (X1), N (X2), . . . is strictly increasing;
(ii) The sequence L(X1), L(X2), . . . is strictly decreasing;
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(iii) For every X 2 3 \ {0},

if N (X) < N (Xi+1) then L(X) > L(Xi ). (4.3)

Informally, the function N (usually a height) measures the size of a point in3. The
function L will, in practice, depend on some point in E that we wish to approximate;
it measures the quantitative strength of the best approximations. The condition
infX23\{0} L(X) = 0 ensures that good approximations exist at all.

In the context of weighted exponents, given A 2 Mm⇥n(R) we shall consider

3 = Zm, N (X) = kXks, L(X) = inf
p2Zn

�
�t AX� p

�
�
r, (4.4)

and call X1,X2, . . . weighted best approximations for A. We will require an addi-
tional hypothesis on A to ensure that

�t AX : X 2 Zm \ {0},p 2 Zn 

does not contain the origin, but contains points arbitrarily close to it.
Observe that the requirement (i) on N and L is met if N possesses theNorthcott

property
#{X 2 3 : N (X) 6 B} < 1 for any B 2 R>0.

For example, one may consider best approximation vectors and exponents of best
approximation for 3 being the ring of integers of a Northcott field.

For i 2 N we write Yi = N (Xi ) and Mi = L(Xi ). The sequences (Yi )1i=1 and
(Mi )

1
i=1 are respectively strictly increasing and strictly decreasing, and furthermore

lim
i!1

Yi = 1, lim
i!1

Mi = 0.

We will see from the construction below that there can be several distinct sequences
of (N ,L)-best approximations. Notwithstanding, the sequences(Yi )i>0 and(Mi )i>0
are uniquely determined.

We now demonstrate, by construction, the existence of a sequence of (N , L)-
best approximations. When i = 0, let M0 be the minimum of L on the set of
X 2 3 \ {0} such that N (X) 6 1, and choose X0 to be a point were this minimum
in reached. Neither X0 nor Y0 := N (X0) is uniquely determined. Next, suppose
that X1, . . . ,Xk have already been chosen, that (4.3) holds for i 6 k � 1, and that

if X 2 3 \ {0} and N (X) < N (Xk) then L(X) > L(Xk).

Let Y > N (Xk) be minimal such that

min{L(X) : X 2 3, N (X) 6 Y } < Mk .

This minimum is well-defined, since infX23 L(X) = 0 and L is strictly positive.
Putting Yk+1 = Y , by the definition of Y there exists a (non-unique) point Xk+1
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such that Yk+1 = N (Xk+1) and L(Xk+1) = Mk+1 < Mk satisfy (4.3). From
our recursive definition, it is clear that the sequence X1,X2, . . . so constructed is a
sequence of (N , L)-best approximations.

For a sequence of (N , L)-best approximations, define the exponents

!N ,L := lim sup
i!1

log(Mi )

log(Yi )
, !̂N ,L := lim inf

i!1

log(Mi )

log(Yi+1)
.

The quantities are well-defined, and compatible with our previous definitions.

Lemma 4.2. In the setting (4.4), we have

!r,s
�t A

�
= !N ,L , !̂r,s

�t A
�

= !̂N ,L .

Proof. From the definitions, if Mi 6 Y�!
i for infinitely many indices i , then ! 6

!r,s(t A). This shows that !r,s(t A) > !N ,L .
Conversely, for any ! < !r,s(t A), we can choose T > 0 arbitrarily large such

that �
�t Ap� q

�
�
r < T�!, kpks < T

for some (p,q) 2 (Zm \ {0}) ⇥ Zn . Let k be the index such that Yk 6 T < Yk+1.
From the definition of weighted best approximations, we have

Mk 6
�
�t Ap� q

�
�
r < T�! 6 Y�!

k .

We conclude that !N ,L > !r,s(t A).
We have proved the first assertion, and the second follows by a similar argu-

ment.

Next we show, under a further assumption on L and N , that the sequence
(Yi )1i=1 exhibits geometric growth, generalising the fact that continued fraction
denominators enjoy this property. This is well-understood in the context of un-
weighted best rational approximations, see [8, Lemma 1] and [32,33].

Lemma 4.3. Suppose that L and N satisfy the slack triangle inequalities

N (�(a+ b)) 6 ��(N (a) + N (b)) (� 6 1)

L
�
U�1(a+ b)

�
6
1
2
(L(a) + L(b))

(4.5)

for some � > 0 and all U > U0(�). Then there exist c > 0 and � > 1 such that

Yi > c� i (i 2 N).

Remark 4.4. Note that the inequalities (4.5) hold in the setting (4.4) of weighted
exponents, with � = min{�s, �r} = min{si , r j : 1 6 i 6 m, 1 6 j 6 n}.
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Proof. Let us take U 2 N constant, but large enough to ensure that

U � > 3. (4.6)

Consider any V := 2Un consecutive vectors Xi+1, . . . ,Xi+V . By the pigeonhole
principle, there exist indices j, k with 1 6 j < k 6 V such that Xi+ j � Xi+k 2
UZn . By the slack triangle inequality, the vector

X = U�1�Xi+k � Xi+ j
�

satisfies

N (X) = N
⇣
U�1�Xi+k � Xi+ j

�⌘
6 U���Yi+ j + Yi+k

�
6
1
3
�
Yi+ j + Yi+k

�

and
L(X) = L

⇣
U�1�Xi+k � Xi+ j

�⌘
6
1
3
�
Mi+ j + Mi+k

�
< Mi+ j .

By the definition of (N , L)-best approximations, we must have

Yi+ j+1 6 N (X) 6
1
3
�
Yi+ j + Yi+k

�
,

and consequently

Yi+V > Yi+k > 3Yi+ j+1 � Yi+ j > 2Yi+ j+1 > 2Yi (i 2 N).

With � = 21/V , the inequality Yi � � i now follows by induction.

5. The Bugeaud-Laurent theorem with weights

Our objective in this section is to establish Theorem 1.9. First and foremost, we use
Lemma 2.4 to deduce (1.2). By definition, if !̂ > !̂s,r(A) then A is not uniformly
(!̂, s, r)-approximable. Observe that the functions �(T ) = T�! and  (T ) =
T�!̂ satisfy the condition (2.4) whenever !!̂ > 1. Therefore (t A, ✓) is (!, r, s)-
approximable for all ✓ 2 Rn , by Lemma 2.4. Since !, !̂ are arbitrary real numbers
for which !r,s(t A, ✓) > ! > !̂�1, this confirms the second inequality in (1.2). The
proof of the first inequality is similar.

Next, we show that for any fixed A, equality holds in the first inequality of (1.2)
for almost all ✓ 2 Rn; the analogous statement for the second inequality will follow
by similar reasoning. We will apply the theory of weighted best approximations in
the setting (4.4), when A 2 Mm⇥n(R) has the property that G := t AZm+Zn 6 Rm

has maximal rankm+n as a group. This implies (4.1) and, by Kronecker’s theorem
[9, Chapter III, Theorem IV], also ensures that the condition (4.2) is met.

When G does not have maximal rank, the observation made by Bugeaud and
Laurent [8] still applies in our weighted framework: the exponents !r,s(t A, ✓) and
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!̂r,s(t A, ✓) vanish unless ✓ lies in a discrete family of parallel hyperplanes in Rn .
The upshot is that, in this case, equality in (1.2) certainly holds almost surely.

We proceed on the assumption that G has maximal rank. It suffices to prove
that if 0 < " < !̂s,r(A) then the set of ✓ 2 [0, 1]n satisfying

!r,s
�t A, ✓

�
>

1+ "

!̂s,r(A) � "
+ " (5.1)

has Lebesgue measure 0. Denote by h·, ·i the inner product on Rn , that is, write

hx, yi = x1y1 + · · · + xn yn.

We compute that

|hx, yi| 6
nX

i=1
|xi yi | 6

nX

i=1
kxkrir kykrir 6 nmax

n
kxk�rkyk

�
r, kxkrkykr

o
,

where � is as in Remark 4.4.
Fix a positive real number " < !̂s,r(A), as well as a sequence q1,q2, . . . of

weighted best approximations for t A, and for k 2 N write Yk = kqkkr as before.
We claim that for ⌘ = 1

2�" > 0, the set of ✓ 2 [0, 1]n satisfying (5.1) is contained
in lim supk!1 Sk , where

Sk =
n
y 2 [0, 1]n : dist(hy,qki, Z) < Y�⌘

k

o
(n 2 N).

It is easy to check that the Lebesgue measure of Sk does not exceed 2nY
�⌘
k . Thus,

by Lemma 4.3 and the first Borel-Cantelli lemma, the theorem will follow from our
claim. It remains to confirm the claim.

Suppose ✓ 2 [0, 1]n satisfies (5.1), and put

!̂ = !̂s,r(A) � ", ! =
1+ "

!̂
+ ".

By (5.1) we have ! < !r,s(t A, ✓), so we may select an arbitrarily large positive
real number T such that the inequalities

kpks < T,
�
�t Ap� q� ✓

�
�
s < T�!

have a solution (p,q) 2 Zm ⇥ (Zn \ {0}). Let k be the unique index for which
Yk 6 T!�" < Yk+1, so that Lemma 4.2 gives

Mk < Y�!̂
k+1 < T�!̂(!�✏) = T�1�".

Since A is the Hermitian adjoint of t A, we obtain

hqk, ✓i =
⌦
qk, t Ap

↵
+ hqk,qi �

⌦
qk, t Ap� q� ✓

↵

⌘ hAqk � pk,pi �
⌦
qk, t Ap� q� ✓

↵
mod 1,

(5.2)
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where pk is the integer vector nearest to Aqk . Moreover, as T is large we have

|hAqk � pk,pi| 6 m ·max
n
M�
kkpk

�
s ,Mkkpks

o
6 mT��" <

1
2
T�⌘

and
�
�⌦qk, t Ap� q� ✓

↵�� 6 n ·max
�
Y �k T

�!�,YkT�! 6 nT��" <
1
2
T�⌘.

The triangle inequality now reveals that ✓ 2 lim supk!1 Sk , establishing our claim
and hence the theorem.

6. Weighted inhomogeneous Bad

In this section, we establish Theorem 1.11, closely following [7]. We begin by
recalling the setup. For " > 0, set

Bad"r,s
�t A

�
=

⇢
✓ 2 Rn : lim inf

(p,q)2(Zm\{0})⇥Zn
kpkskt Ap� q� ✓kr > "

�
,

and
Badr,s

�t A
�

=
[

">0
Bad"r,s

�t A
�
.

It is known that Badr,s(t A) has full Hausdorff dimension, see [31], however the task
of determining the Hausdorff dimension of Bad"r,s(t A) is much more delicate. The
case of vectors in Rn has been recently studied in [35], where it is proved that for
" > 0 and for an explicit class of vectors v termed heavy, we have

dim
⇣
Bad"r,s(v)

⌘
< n. (6.1)

Heavy vectors form a set of full Lebesgue measure.
Subsequently, the unweighted sets Bad"(A) were investigated in [7], where

necessary and sufficient conditions were obtained in dimension 1, so that
dim(Bad"(v)) = 1 for some " > 0. These conditions were expressed in terms
of the continued fraction expansion of v, and were shown to be equivalent to v be-
ing “singular on average”. In higher dimensions, [7, Theorem 1.5] states sufficient
conditions, in terms of best approximation vectors for a matrix A, to ensure that
dim(Bad"(A)) = n for some " > 0. Theorem 1.11 is a weighted extension of the
latter result.

We begin by proving a weighted version of [7, Theorem 5.1].
Theorem 6.1. For any ↵ 2 (0, 1/2), there exists R = R(↵) > 1 with the following
property. Let (yk)k>1 be a sequence in Rn \ {0} such that kyk+1kr/kykkr > R for
all k > 1 and limk!1 kykk1/kr = 1. Then the set

S↵ :=
�
✓ 2 [0, 1]n : dist(hyk, ✓i, Z) > ↵ for all k > 1

 

has Hausdorff dimension n.
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Proof. Let ↵ 2 (0, 1/2) be fixed. Choose R large enough that

c := 1� 2↵ � 3nR��r > 0.

We proceed to verify the theorem for such R. By the mass distribution principle [15,
Chapter 4], it suffices to demonstrate the existence of a measure µ, supported on
S↵ , with the following property: if " > 0 then there exist C("), r0(") > 0 such that
for any Euclidean ball B of radius r 2 (0, r0(")) we have

µ(B) 6 C(")rn�". (6.2)

The measure µ will be constructed in a standard way. Write

Yk = kykkr, Zk,↵ =
�
✓ 2 [0, 1]n : dist(hyk, ✓i, Z) < ↵

 
.

The first step is to construct two sequences (Ik)k>1 and (Jk)k>1 of collections of
subsets of I0 := [0, 1]n . Set I0 = {I0}. The sequences (Ik)k>1 and (Jk)k>1 will
be defined recursively, so that Jk ⇢ Ik , and so that Ik comprises a collection of
translates of5(Yk), where

5(Yk) =
⇥
0,Y�r1

k
⇤
⇥ · · · ⇥

⇥
0,Y�rn

k
⇤
.

It is easily seen that there exists a collection Pk+1 of translates of 5(Yk+1) satisfy-
ing:

(1) Elements from Pk+1 are subsets of5(Yk) and have mutually disjoint interiors;
(2) 1k+1 := #Pk+1 =

Y

16i6n

⌅
Y�ri
k Y rik+1

⇧
.

We record the following lower bound on 1k+1 for later use:

1k+1 >
Y

16i6n

⇣
Y�ri
k Y rik+1 � 1

⌘
> Y�1

k Yk+1

 

1�
X

16i6n
Y rik Y

�ri
k+1

!

>
⇣
1� nR��r

⌘
Y�1
k Yk+1.

Now assume that Ik and Jk have been defined. For any I = ✓ +5(Yk) 2 Ik , set

I(I ) =
�
✓ + I1 : I1 2 Pk+1

 
and J (I ) =

�
I2 2 I(I ) : I2 \ Zk,↵ = ;

 
.

Then choose
Ik+1 =

[

I2Ik
I(I ) and Jk+1 =

[

I2Jk
J (I ).

For any I 2 Ik , we have #I(I ) = 1k+1. Next, we estimate #J (I ). Observe that if
I3 2 I(I ), with I3 \ Zk,↵ 6= ;, then I3 ⇢ Zk,� , where

� = ↵ +
X

16i6n
Y rik Y

�ri
k+1 6 ↵ + nR��r .
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Hence

#J (I ) > 1k+1 �
�(Zk,� \ I )
�(I3)

> 1k+1 � 2�Y�1
k Yk+1 > cY�1

k Yk+1,

where � denotes Lebesgue measure onRn . Consequently, we have the lower bound

#Jk > ck�1Y�1
1 Yk .

We are ready to specify the measure µ, as promised. Define

µ = lim
k!1

µk,

where
µk = (#Jk)�1Yk

X

I2Jk
�|I .

It follows from the construction that µ is a probability measure supported on S↵ .
Let B be a ball of radius r 2 (0, r0(")). Choose k such that

Y��r
k+1 < r 6 Y��r

k .

Then B can be covered by at most 4nrnYk+1 many elements from Ik+1. Thus

µk+1(B) 6 4nrnYk+1(#Jk+1)�1 6 4nrnckY1 6 C1r
n� k log c

�r logYk ,

for some C1 > 0. By our assumption that Y 1/kk ! 1, this implies (6.2), which
completes the proof.

We are equipped to prove Theorem 1.11. Fix ↵ 2 (0, 1/2), and let R = R(↵)
be as in Theorem 6.1. For k 2 N, write

Yk = kqkkr, Mk = inf
p2Zm

kAqk � pks = kAqk � pkks,

as before. Since lim
k!1

Y 1/kk = 1, the proof of [7, Theorem 2.2] reveals that there
exists a function � : N ! N for which

Y�(k+1) > RY�(k) and Y�(k)+1 > R�1Y�(k+1).

By Theorem 6.1, it suffices to show that the set

S :=
�
✓ 2 [0, 1]n : dist(hq�(k), ✓i, Z) > ↵ for all k > 1

 

is a subset of Bad"r,s(t A), for some " > 0.
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Let ✓ 2 S . For any (p,q) 2 (Zm \ {0}) ⇥ Zn , let k be the unique index for
which

Y�(k) 6 "�11 kpks < Y�(k+1),

where "1 = R�1(↵/2m)1/� . With � as in Remark 4.4, we have

�
�⌦Aq�(k) � p�(k),p

↵��6m ·max
n
M�
�(k)kpk

�
s ,M�(k)kpks

o

6m ·max
n
Y��
�(k)+1kpk

�
s ,Y

�1
�(k)+1kpks

o
6 m(R"1)� 6

↵

2
.

Now the calculation (5.2) yields, for any (p,q) 2 (Zm \ {0}) ⇥ Zn , the inequality

�
�⌦q�(k),

t Ap� q� ✓
↵�� >

↵

2
.

Hence

Y�(k)
�
�t Ap� q� ✓

�
�
r > min

⇢
↵

2n
,
⇣ ↵
2n

⌘1/��
=
⇣ ↵
2n

⌘1/�
,

which implies

kpks ·
�
�t Ap� q� ✓

�
�
r > "1

⇣ ↵
2n

⌘1/�
=
1
R

 
↵2

4mn

!1/�
.

Therefore ✓ 2 Bad"r,s(t A), for " = 1
R

⇣
↵2

4mn

⌘1/�
, completing the proof of Theo-

rem 1.11.

7. Applications to inhomogeneous Diophantine approximation
on manifolds

Transference principles such as Theorem 1.9 play a crucial role in inhomogeneous
Diophantine approximation on manifolds by providing lower bounds for inhomo-
geneous Diophantine exponents. In this section, we illustrate this principle in a
number of examples. The corresponding upper bound in each case is found using
a (suitable adaptation of) the transference principle of Beresnevich and Velani. We
begin with

Proposition 7.1. Assume that !s,r(A) = 1. Then for every ✓ 2 Rm ,

!s,r(A, ✓) > 1,

with equality for Lebesgue-almost all ✓ .
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Proof. We follow the argument in [4]. Let A 2 Mm⇥n(R) be as above. By
the weighted version of Dyson’s transference principle (Theorem 1.7), we have
!r,s(t A) = 1. Now applying the weighted form of Dirichlet’s approximation theo-
rem and the trivial inequality !r,s(t A) > !̂r,s(t A) yields

1 = !r,s
�t A

�
> !̂r,s

�t A
�
> 1.

These inequalities must be equalities, so in particular !̂r,s(t A) = 1. By Theorem
1.9, we finally have !s,r(A, ✓) > 1, with equality for almost all ✓ .

As a consequence we have:

Corollary 7.2. Let µ be a measure on Mm⇥n(R). Assume that !s,r(A) = 1 for
µ-almost all A. Then for every ✓ 2 Rm and µ-almost all A, we have

!s,r(A, ✓) > 1.

We now discuss the above corollary in the context of some interesting measures.
Dirichlet’s theorem implies that !(A) > 1 for every A 2 Mm⇥n(R). A matrix
A 2 Mm⇥n(R) is said to be very well approximable if !(A) > 1. Metric Diophan-
tine approximation on manifolds is concerned with the question of whether typical
Diophantine properties in Mm⇥n(R), i.e. those which are generic for Lebesgue
measure, are inherited by proper submanifolds (or, more generally, supports of suit-
able measures).

In 1932, Mahler [36] conjectured that for almost every x 2 R the vector

�
x, x2, . . . , xn

�
(7.1)

is not very well approximable. A measure µ is called extremal if µ-almost every
A is not very well approximable. A manifold is extremal if a measure in its nat-
ural volume class–for example, the pushforward of Lebesgue measure by a map
parametrising the manifold–is extremal. We can similarly define (weighted) inho-
mogeneously very well approximable matrices (see [3, Sections 6.1-6.2]) and (in-
homogeneously) very well multiplicatively approximable matrices, as well as the
corresponding notions of extremality.

Mahler’s conjecture was resolved by Sprindžuk [46, 47], who in turn formu-
lated a more general conjecture [48] that was proved by Kleinbock and Margulis
[29]. They showed that almost every point on a smooth, “nondegenerate” sub-
manifold of Rn is not very well (multiplicatively) approximable. Subsequently,
there have been numerous advances in the subject. The inhomogeneous version of
Sprindžuk’s conjectures were established by Beresnevich and Velani [4] using their
transference principle. They proved, for instance, the following result ( [4, Theo-
rem 1]).
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Theorem 7.3. Let µ be a measure on Mm⇥n(R). If µ is contracting almost every-
where, then for every ✓ 2 Rm , we have that

!(A, ✓) = 1

for µ-almost every A 2 Mm⇥n(R).

We refer the interested reader to the papers above for the definitions of the terms
“nondenegenerate” and “contracting”. Since there is no inhomogeneous version
of Dirichlet’s theorem, the notion of extremality is more delicate and both upper
and lower bounds for the exponent are required. The proof of the Theorem above
accordingly has two steps. The lower bound for the exponent proceeds using the
transference results of Bugeaud and Laurent, combined with Dyson’s transference
principle. The upper bound is proved using a homogeneous-inhomogeneous trans-
ference principle introduced for the purpose, by Beresnevich and Velani.

Subsequently, Beresnevich, Kleinbock and Margulis [3] considered the more
general problem of Diophantine approximation on manifolds in the space of matri-
ces. We recall their notation. Let X be a Euclidean space. Given x 2 X and r > 0,
let B(x, r) denote the open ball of radius r centred at x . If V = B(x, r) and c > 0,
let cV stand for B(x, cr). Let µ be a Radon measure on X . Given V ⇢ X such that
µ(V ) > 0 and a function f : V ! R, let

k f kµ,V := sup
x2V\supp µ

| f (x)|.

A Radon measure µ will be called D-Federer on U , where D > 0 and U is an
open subset of X , if µ(3V ) < Dµ(V ) for any ball V ⇢ U centred in the support
of µ. The measure µ is called Federer if for µ-almost every point x 2 X there is a
neighbourhood U of x and D > 0 such that µ is D-Federer on U .

Given C,↵ > 0 and an open subset U ⇢ X , we say that f : U ! R is called
(C,↵)-good on U with respect to the measure µ if for any ball V ⇢ U centred in
supp µ and any " > 0 one has

µ({x 2 V : | f (x)| < "}) 6 C
✓

"

k f kµ,V

◆↵
µ(V ).

Given f = ( f1, . . . , fN ) : U ! RN , we say that the pair ( f, µ) is good if for
µ-almost every x 2 U there is a neighbourhood V ⇢ U of x and C,↵ > 0 such
that any linear combination of 1, f1, . . . , fN over R is (C,↵)-good on V . The
pair ( f, µ) is called non-planar if for any ball V ⇢ U centred in supp µ the set
f (V \ supp µ) is not contained in any affine hyperplane of RN . Non-planarity
is a generalisation of the nondegeneracy property of smooth manifolds mentioned
above. The theorem below deals with Diophantine properties of submanifolds in the
space of matrices, and therefore requires a slightly more general notion. Informally,
we say that the pair (F, µ) is weakly non-planar if F(supp µ) does not locally lie
entirely inside a certain polynomial hypersurface. The precise definition may be
found in [3, Section 2].

The following is [3, Theorem 6.5].
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Theorem 7.4. Let U be an open subset of Rd , µ a Federer measure on U , and
F : U ! Mm⇥n(R) a continuous map such that (F, µ) is

(1) Good;
(2) Weakly non-planar.

Then F⇤µ is inhomogeneously (s, r)-extremal for any (m + n)-tuple (s, r) of
weights.

The conclusion of the theorem above asserts that !s,r(A, ✓) 6 1 for µ-almost every
A in F(U). We may apply Corollary 7.2 using the homogeneous (✓ = 0) case of
Theorem 7.4, along with the weighted version of Dirichlet’s theorem, to conclude
thus.

Theorem 7.5. Let U, µ, F be as in Theorem 7.4. Then for µ-almost every A 2
F(U) and every ✓ , we have

!s,r(A, ✓) = 1.

Whilst the scope of the result is very general, we note that it is new even for the
Veronese curve (7.1) in both the simultaneous and the dual approximation contexts.

We now turn our attention to measures which do not satisfy the weak non-
planarity condition. Natural examples are provided by affine subspaces, and the
reader may consult [17] for a recent survey. We specialise to the case of simulta-
neous approximation. The results below also hold in the dual setting: see [2] for
examples of inhomogeneous dual Diophantine approximation on affine subspaces.

Theorem 7.6. Let L be an r-extremal affine subspace of Rn and let M be a smooth
nondegenerate submanifold of L . Then, for almost every A 2 M and every ✓ 2 Rn ,

!r(A, ✓) = 1.

Proof. The unweighted analogue of this result was proved in [4]. First we note
that L is r-extremal if and only if M is. This is more or less proved by Klein-
bock in [26]. More precisely, the unweighted (Theorem 1.2) and multiplicative
(Theorem 1.4) variants of the statement are known. We indicate the minor changes
required to prove the weighted version. The argument in [26] is based on the dy-
namical approach developed in [29]. To a row vector y 2 Rn , one can associate a
unimodular lattice

uyZn+1 :=

✓
1 y
0 In

◆
.

The Diophantine properties of y may be viewed in terms of the F-orbit of uyZn+1

on the moduli space of lattices SLn+1(R)/SLn+1(Z), where

F =
�
gt | t > 0

 
and gt = diag

�
et , e�t/n, . . . , e�t/n

�
.
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One then invokes a quantitative nondivergence result [29, Theorem 5.2]. In order to
address the weighted case, we replace F by Fr, where for r = (r1, . . . , rn), we set

Fr :=
�
g(r)t | t > 0

 
and g(r)t = diag

�
et , e�r1t , . . . , e�rnt

�
.

It remains to apply the arguments in [26, Section 3], mutatis mutandis, to deliver
our weighted analogue of [26, Theorem 4.2].

Assume therefore that M is an r-extremal, smooth, nondegenerate submanifold
of an affine subspace L . Then for almost every A 2 M , we have that !r(A) = 1.
We may therefore apply Corollary 7.2 to conclude that for almost every A 2 M and
every ✓ we have !r(A, ✓) > 1.

To prove the lower bound, we apply the transference principle developed by
Beresnevich and Velani [4]; see also [5] where a simplified exposition of the si-
multaneous transference principle is given, and additionally [3] where the weighted
theory is developed. The proof proceeds via a more or less verbatim repetition
of [4], so we omit it.

The results of Kleinbock [27], alluded to above, apply to more general situ-
ations than extremality. In particular, it has been shown that arbitrary Diophan-
tine exponents (not just the critical exponent) of affine subspaces are inherited by
smooth nondegenerate submanifolds. These results also have counterparts in inho-
mogeneous approximation. All of this was investigated in the non-weighted and
multiplicative cases in [18] by two of the authors of the present article, where it
was shown that the Beresnevich-Velani transference principle can be adapted to the
non-extremal setting to get an upper bound for inhomogeneous exponents. The cor-
responding lower bound was then obtained using the results of Bugeaud and Laurent
along with more transference results of German [16]. We can provide a weighted
analogue in the non-extremal case, using a similar adaptation of the Beresnevich-
Velani transference principle for the upper bound. The weighted analogues of the
Bugeaud-Laurent and Dyson theorems, namely theorems 1.9 and 1.7, together with
the trivial relation !r,s > !̂r,s, provide the lower bound as follows.

Theorem 7.7. Let U, µ, F be as in Theorem 7.4. Suppose that for µ-almost every
A 2 F(U) we have !s,r(A) =: !. Then for µ-almost every A 2 F(U) and every
✓ , we have

! > !s,r(A, ✓) >
(m + n � 1)⇢s⇢r(�r + �s!) � ⇢s�r�s(! � 1)
(m + n � 1)⇢s⇢r(�r + �s!) + ⇢r�r�s(! � 1)

.

Note that in [18] the trivial relation ! > !̂ is also used, and the results can be
refined by using the recent optimal lower bound ! > G(!̂) for vectors obtained
in [39]. The corresponding optimal lower bounds for matrices, or in the weighted
case, remain open.
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8. Inhomogeneous intermediate exponents

In this final section, we prove Theorem 1.15, first defining !d(↵, ✓). As a prelude,
we briefly discuss Laurent’s “algebraic” definition [34, Section 2] in the homoge-
neous setting ✓ = 0, with the same notation as in the introduction. Laurent made
the following observations:

(1) Recall from the introduction that to a rational subspace L we may associate
Grassmannian coordinates X. Let ↵ 2 Rn . Let ↵0 = (1,↵) 2 Rn+1 and

X0 2 R(n+1d+1) be homogeneous coordinates for [1 : ↵] 2 PnR and X 2 P(n+1d+1)�1
R

respectively. As shown in [34, Lemma 1], we have

d([1 : ↵],L) =
|↵0 ^ X0|

|↵0| · |X0|
.

This circumvents the need for the extremal definition (1.4);
(2) The Plücker embedding is known to establish a bijection from Gr(d, PnR)

to the set of non-zero decomposable multivectors in the exterior algebra
3d+1(Rn+1), up to homothety;

(3) When optimising over L 2 Gr(d, PnR), or equivalently over multivectors in
3d+1(Rn+1), one may drop the assumption of decomposability–see the remark
following [34, Definition 4].

We thus arrive at the following variant of [34, Definition 4], which is equivalent to
Definition 1.13 (we have normalised in accordance with Remark 1.3).

Definition 8.1. Let n 2 N, let d 2 {0, 1, . . . , n � 1}, and let ↵0 = (1,↵) with
↵ 2 Rn . The dth ordinary exponent !d(↵) (respectively the dth uniform exponent
!̂d(↵)) is the supremum of ! 2 R such that there existsX 2 3d+1(Zn+1) for which

|X|(
n
d) 6 T, |↵0 ^ X|(

n
d+1) 6 T�!

for some arbitrarily large real numbers T (respectively for every sufficiently large
real number T ).

Before we define inhomogeneous intermediate exponents, we give another equiva-
lent definition of intermediate exponents.

Definition 8.2. Let n 2 N, let d 2 {0, 1, . . . , n � 1} and let ↵ 2 Rn . The dth or-
dinary exponent !d(↵) (respectively the dth uniform exponent !̂d(↵)) is the supre-
mum of ! 2 R such that there exists Z 2 3d(Zn) \ {0} and Y 2 3d+1(Zn) for
which

|Z|(
n
d) 6 T, |↵ ^ Z+ Y|(

n
d+1) 6 T�!
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for some arbitrarily large real numbers T (respectively for every sufficiently large
real number T ).

Proof of equivalence of these two definitions. We set e0 = (1, 0, . . . , 0) 2 Zn+1,
and identify {x = (x0, . . . , xn) 2 Zn+1 : x0 = 0} and {x = (x0, . . . , xn) 2 Rn+1 :
x0 = 0} with Zn and Rn , respectively. We have

3d+1�Zn+1� = e0 ^
⇣
3d�Zn�

⌘
�3d+1�Zn�,

so we can uniquely decompose any X 2 3d+1(Zn+1) as e0 ^ Z � Y, with Z 2
3d(Zn) and Y 2 3d+1(Zn). This gives

↵0 ^ X =
�
e0 + ↵

�
^
�
e0 ^ Z� Y

�
= �e0 ^ Y+ ↵ ^ e0 ^ Z� ↵ ^ Y

= �
�
e0 + ↵

�
^ (↵ ^ Z+ Y).

From the definition (1.3) of the inner product on 3d+1(Rn), we see that e0 ^ (↵ ^
Z+ Y) is orthogonal to ↵ ^ (↵ ^ Z+ Y). Thus it follows that

|↵ ^ Z+ Y| 6
�
�↵0 ^ X

�
� 6

�
�↵0
�
�|↵ ^ Z+ Y|.

Note that e0 ^ Z is orthogonal to Y, hence

max{|Z|, |Y|} 6 |X| 6 2max{|Z|, |Y|}.

The equivalence of Definition 8.1 and Definition 8.2 follows from the inequalities
above.

We proceed to define inhomogeneous intermediate exponents. By lexicograph-
ically ordering a basis for 3d+1(Rn+1), we obtain a canonical isomorphism

3d+1�Rn+1� ' R(n+1d+1),

which we use to identify the two spaces.

Definition 8.3. Let n 2 N, let d 2 {0, 1, . . . , n � 1} and let ↵ 2 Rn . Let ✓ 2
R( n

d+1). The dth ordinary exponent !d(↵, ✓) (respectively the dth uniform exponent
!̂d(↵, ✓)) is the supremum of ! 2 R such that there exists Z 2 3d(Zn) \ {0} and
Y 2 3d+1(Zn) for which

|Z|(
n
d) 6 T, |↵ ^ Z+ Y+ ✓ |(

n
d+1) 6 T�! (8.1)
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for some arbitrarily large real numbers T (respectively for every sufficiently large
real number T ).
Our definition matches the usual definitions for the d = 0 (simultaneous) and d =
n�1 (dual) cases. The lemma below formalises this, and generalises the discussion
following [34, Definition 2].

Lemma 8.4. If we interpret ✓ as an element of Rn in the former case and ✓ as an
element of R in the latter, then

!0(↵, ✓) = !(↵, ✓), !̂0(↵, ✓) = !̂(↵, ✓)

and
!n�1(↵, ✓) = !

�t
↵, ✓

�
, !̂n�1(↵, ✓) = !̂

�t
↵, ✓

�
.

Proof. By comparing Definition 8.3 with Definition 1.2, it is clear that to prove the
lemma, it suffices to compare (8.1) with (1.1). When d = 0, Z 2 Z \ {0} and
Y 2 Zn . Writing Z = z and Y = y, we have ↵ ^ Z = z↵. Now (8.1) becomes

|z| 6 T |z↵ + y+ ✓ |n 6 T�!,

which coincides with (1.1).
When d = n � 1, we have Z 2 Zn \ {0} and Y 2 Z. Writing Z = z, Y = y

and ✓ = ✓ , we have ↵ ^ Z = h↵, zi. Now (8.1) becomes

|z|n 6 T |h↵, zi + y + ✓ | 6 T�!,

which coincides with (1.1).

We are ready to prove Theorem 1.15. The wedge product with ↵ defines a
linear map from 3d(Rn) to 3d+1(Rn). Hence, in view of Definition 8.3, Theorem
1.15 follows from Theorem 1.8; we expound on this below.

Instead of using matrices, we may define our Diophantine exponents for linear
maps and their transpose linear maps. Taking the wedge product with ↵ 2 Rn

defines linear maps

RN ' 3d(Rn)
f=↵^·

����! 3d+1(Rn) ' RM

and
RM ' 3n�d�1(Rn)

g=↵^·
����! 3n�d(Rn) ' RN .

Thesearetransposes of one another, up to sign, for if� 23n�d�1(Rn)'3d+1(Rn)_

and � 2 3d(Rn) then

|� ^ f (� )| = |� ^ ↵ ^ � | = |g(�) ^ � |.
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Theorem 1.8 therefore reveals that

!d(↵, ✓) >
1

!̂n�1�d(↵)
,

with equality for almost all ✓ .
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