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Sign-changing blowing-up solutions
for the critical nonlinear heat equation

MANUEL DEL PINO, MONICA MUSSO, JUNCHENG WEI
AND YOUQUAN ZHENG

Abstract. Let Q be a smooth bounded domain in R” and denote the regular
part of the Green function on 2 with Dirichlet boundary condition by H (x, y).
Assume the integer kq is sufficiently large, g € Q and n > 5. For k > kg we
prove that there exist initial data ug and smooth parameter functions () — ¢
and 0 < p(t) — O fort — 400 such that the solution u, of the critical nonlinear
heat equation

4
uy = Au+ |lu|"—2u in 2 x (0, o0)
u=~0 on dQ2 x (0, 00)
u(-,0) =ug in

has the form

ug(x,t) ~ M(t)_% (Qk (x ;é)(t)) — Hx, q)) ,

where the profile Qy is the non-radial sign-changing solution of the Yamabe equa-
tion
4
AQ+10|"2Q =0inR",
constructed in [9]. In dimension 5 and 6 we also investigate the stability of
ug(x,t).
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1. Introduction

Let 2 be a smooth bounded domain in R” with n > 3. We consider the following
critical nonlinear heat equation

ut=Au+|u|%u in  x (0, co0)
u=0 on Q2 x (0, 0o) (1.1)
u(-,0) = up in

for a function u : 2x[0, 00) — R and smooth initial datum u satisfying ug|yo = 0.
Problem (1.1) can be viewed as a special case of the well-known Fujita equa-

tion
ur = Au+ |ul?'u (12)

with p > 1, which appears in many applied disciplines and becomes a prototype
for the analysis of singularity formation in nonlinear parabolic equations. A large
amount of literature has been devoted to this problem on the asymptotic behaviour
and blowing-up solutions after Fujita’s seminal work [18]. See, for example, [1,
2,11,12,19-23,27-29,31,41] and the references therein. We refer the interested
readers to [39] for the corresponding background and a comprehensive survey of
the results until 2007. Blowing-up phenomena for problem (1.2) are very sensitive
to the exponent p, the critical case p = Z—‘_L% is special in several ways, positive

steady state solutions do not exist if p < Z—f% Radial and positive global solutions

must go to zero and bounded, see [35,36,39], they exist in the case p > % with
infinite energy, see [24]. Infinite time blowing-up solutions exist in that case but
they exhibit entirely different nature, see [37,38].

The motivation of this paper is twofolds. In [2], Cortazar, del Pino and Musso
proved the following result. Suppose n > 4, denote the Green’s function of the
Laplacian A in € with Dirichlet boundary value as G(x, y) and H (x, y) is the

regular part of G(x, y). Let g1, --,qx be k distinct points in  such that the
matrix
H(q1,q91) —G(q1,q92) -+ —G(q1, qr)
. —G(q2,q1) H(q2,q2) - —G(q2, qk)
G(g) = ) ) . ) (1.3)

-G gk q1) —G(qk, q2) - H(gx, qr)
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is positive definite. They proved the existence of ©( and smooth parameter functions
£i(t) - qj,0 < uj(t) - 0,ast — +oo, j =1,---,k,such that (1.1) has an
infinite time blowing-up solution u, with approximation form

n—2
k 2

N ()
t Z_I“"(uﬁ(rwu—sj(z)ﬁ) '

J

Moreover, for some positive constants 8;, i ;(t) = B jt_ﬁ (1 4+ o(1)). Note that
the profile of u is
n—2

1 p
U = (W) , (14)

which is the unique radial symmetrical solution for the Yamabe equation

AQ 410|720 = 0in R". (15)

On the other hand, much less is known for the sign-changing solutions to (1.5).
Pohozaev’s identity tells us that any sign-changing solution of (1.5) is non-radial.
The existence of non-radial sign-changing and with arbitrary large energy elements
of ¥ := {Q e D2(RM\{0} : Q satisfies (1.5)} was first proved by W. Ding [14]
using variational arguments. Indeed, using stereographic projection to S”, (1.5)
transforms into
-2
Agnv + % <|v|ﬁv — v) =0in §",

(see, for example, [26,40]), Ding proved the existence of infinitely many critical
points to the corresponding energy functional in the space of functions satisfying

v(x) = v(|x1], [x2),  x = (x1,x2) € " C R = RE x R k>0,

More explicit constructions of sign-changing solutions to (1.5) were obtained in
[9,10,30]. Furthermore, [33] proves the rigidity results (non-degeneracy) of the
solutions found in [9,10]. Classification of solutions in X plays an important role
in the soliton resolution conjecture for energy critical wave equation, for exam-
ple, [15,16] and the references therein. Therefore, a natural question is: does the
infinite time blowing-up phenomenon for problem (1.1) occurs with sign-changing
profiles? The aim of this paper is to show that the sign-changing blowing-up solu-
tions with basic cell constructed in [9] do exist.

Our starting point is the sign-changing solutions Q of (1.5) constructed in [9]
and [10]. Let us describe these solutions more precisely. In [9], it was proven that
there exists a large positive integer ko such that Yk > kg, a solution Q = Qj of
(1.5) exists. Furthermore, if we define the energy functional by

| 1 2
E(u) = —/ Vuldy — —— [ wptiax, p="F=
2 Jge p+1 Jrn n—2
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then we have

(k+1)S, (14+0K™) iftn >4

E(Qr) = . .
(k+1)S3 (1+ Ok '[logk|™") ifn=3

as k — oo. Here S, is a positive constant depending on n. Q = Qy decays like the
radial symmetrical solution U (x) defined in (1.4) at infinity, that is to say, we have

. n—2 4 "772 n-2
lim |x|"7 O (x) = | ———¢ 27 (I+di) (1.6)
|x|—00 nn—2)
where
O(k™") iftn>4,
dy = as k— oo
O(k~'logkl?) ifn=3

Furthermore, we have
12 n—2 o 3
Q) =[n(r =21 = | I = ——|x["+ O(IxI°) ) as |x| =0
and there exists n > 0 (depending only on kg) such that for any &,

n<Q0x) <Q@) forall [x|]<

| =

On the other hand, Q = Qy is invariant under rotation of angle 27” in the x1, xp
plane,i.e.,

Q(ezT”x,x’>=Q(x,x/), T=(nx3), X =03 ....x). (A7)

It is also even in the x j-coordinates, for any j = 2, --- , n and invariant under the
Kelvin’s transformation, namely, we have

Oty voyXjy ooy X)) =01, ooy, =Xj, oy X)), J=2,...,0 (1.8)

and
0(x) = x> Q(Ix|"%x). (1.9)

It was proved in [33] that these solutions are non-degenerate. More precisely, fix
one solution Q = Qy and define the linearized operator of (1.5) at Q as

L(¢) = Ap + plQIP 1. (1.10)

The invariance of any solution of (1.5) under dilation (if u satisfies (1.5), then the
function u_nz;zu(u,_lx) solves (1.5) for all & > 0), under translation (if u solves
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(1.5), then u(x 4+ &) also solves (1.5) for & € R"), together with the invariance (1.7),
(1.8), (1.9) produce natural kernel functions ¢ of L, that is to say, we have

L(p) = 0.

These are 3n linearly independent functions defined as follows:

-2
Z0(x) = nTQ(x) +VOW) - x, (1.11)
za(x)ziQ(x), for a=1,...,n, (1.12)
0Xy

d 0
21 (1) = =12 — 0 () +x17—0(x), (1.13)

X1 0x2
Znp2(x) = =2x120(%) + X221 (x),  Zu43(¥) = —2x220(x) + |¥[*22(x) (1.14)

and,for/ =3,...,n

ZnH+1(x) = =x1z1(x) + x121(x),  Zon4i—1(x) = —x722(x) + x2z;(x).  (1.15)

Indeed, direct computations yield that
L(zy) =0, forall a«a=0,1,...,3n—1.

The function zg defined by (1.11) is from the invariance of (1.5) under dilation

u_% Q(,tflx). zi, i = 1,...,n defined by (1.12) are due to the invariance of
(1.5) under translation Q(x 4 &). The function z,+; in (1.13) is generated from the
invariance of Q with respect to rotation in the (x1, x2)-plane. The functions z,4+2
and z,43 in (1.14) are generated from the invariance of (1.5) with respect to the
Kelvin transformation (1.9). The functions in (1.15) are due to the invariance of
(1.5) under rotations in the (x1, x7)-plane, (x2, x;)-plane respectively.

Let us recall that the Green’s function G(x, y) is defined by the following
Dirichlet boundary value problem

—AG(x,y)=c(n)s(x —y) in
GG, y)=0 on 092,

where §(x) is the Dirac measure at the origin and c(n) is a constant depending on n
satisfying

L 00) [ —2))"F

- |x|"‘2 - |x|”_2

—Al'(x) = c(n)d(x), T'(x)
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Denote the regular part of G(x, y) as H(x, y), namely, H(x, y) satisfies the fol-
lowing problem

—AH(x,y)=0 in Q
H(,y)=T(—-y) indQ.

Our main result can be stated as follows.

Theorem 1.1. Assume ko is a sufficiently large integer, n > 4 and q is a point in
Q such that H(q, q) > 0, then for any k > ko, there exist an initial datum ug and
smooth parameter functions £(t) — q,0 < u(t) — 0 (ast — +00) such that the
solution uy to (1.1) has form

x—§@)

ug(x,1) = ()" (Qk ( o

) —H(x,q)-i—go(x,t)), (1.16)

where ¢ (x, t) is a bounded smooth function satisfying ¢(x,t) — 0 uniformly away
fromq ast — 400.

Theorem 1.1 exhibits new blowing-up phenomena where the profile of bubbling is
sign-changing rather than the positive solution for the critical heat equation. In the
case of positive bubbling, the linear operator around the basic cell contains exactly
n + 1 dimensional kernels corresponding to the rigidity motions (translation and
dilation). However, in the case of sign-changing (non-radial) blowing-up solution,
the kernel of the linearized operators at the basic cell includes not only the functions
generated from dilation and translations, but also functions due to rotation around
the sub-planes and Kelvin transform. Therefore we have to find enough parameter
functions to adjust. Similar to the supercritical Bahri-Coron’s problem in [34], our
computations indicate that the dominated role played is still scaling and translations.
Indeed, (1.16) has a more involved form, see (2.18) below for details. Note that
in [43], sign-changing blow-up solutions were also constructed, but their basic cell
is the positive radial solution U (x) defined in (1.4).

We believe that this is the first example of blowing-up solutions in nonlinear
parabolic equations whose core profile is non-radial. In a series of interesting pa-
pers, Duyckaerts, Kenig and Merle [15,17] introduced the notion of nondegenracy
for nonradial solutions of the equation (1.5) and obtained the profile decomposition
for possible blow-up solutions for energy critical wave equation in general setting.
Existence of bubbling solutions with the positive radial profile for the energy crit-
ical wave equations has been constructed in [13,25]. However as far as we know
there are no examples of noradial blow-up for energy critical wave equation.

To prove Theorem 1.1, we will use the inner-outer gluing scheme for parabolic
problems. Gluing methods have been proven very useful in singular perturbation
elliptic problems, for example, [6-8]. Recently, this method has also been devel-
oped to various evolution problems, for instance, the construction of infinite time
blowing-up solutions for energy critical nonlinear heat equation [2,12], the forma-
tion of singularity to harmonic map flow [3], finite time blowing-up solutions for
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energy critical heat equation [11], vortex dynamics in Euler flows [4] and type 11
ancient solutions for the Yamabe flow [5].

The proof consists of constructing an approximation to the solution with suf-
ficiently small error, then we solve for a small remainder term using linearization
around the bubble and the Schauder fixed-point arguments. In Section 2, we con-
struct the first approximation with form (2.18). To get an approximation with fast
decay far away from the point ¢, we add nonlocal terms to cancel the slow decay
parts as in [3]. Then we compute the error, in order to improve the approximation
error near the point g, we have to use solvability conditions for the correspond-
ing elliptic linearized operator around the sign-changing bubble. These conditions
yield an ODE for the scaling parameter function, from which deduce the blow-up
dynamics of our solutions. After the approximate solution has been constructed, the
full problem is solved as a small perturbation by the inner-outer gluing scheme, see
Section 3. This consists of decomposing the perturbation term into form n¢ + v,
where 7 is a smooth cut-off function vanishing away from ¢. The tuple (¢, ¥)
satisfy a coupled nonlinear parabolic system where the equation for ¥ is a small
perturbation of the standard heat equation, and ¢ satisfies the parabolic linearized
equation around the bubble.

When dealing with parabolic problems for ¢, a crucial step is to find a solution
to the linearized parabolic equation around the bubble with sufficiently fast decay.
However, it seems that the argument in [2] for the positive bubbling of the critical
heat equation does not work in our sign-changing case since we can not perform
Fourier mode expansions. Inspired by the linear theory of [3,32] and [42], our
main contributions in this paper is to use blowing-up arguments based on the non-
degeneracy of bubbles proved in [33] and a removable of singularity property for the

corresponding limit equation. As pointed out in [15], the term |Q|? -1 =0 =
in L(¢) = A¢p + p|O|P~ ¢ is not C'! when the space dimension n > 7, as a
result of this fact, the solution ¢, ¥ do not have Lipschitz property with respect
to the parameter functions. This is the reason we use Schauder fixe-point theorem
rather than Contraction Mapping Theorem to solve the inner-outer gluing parabolic
system in Section 4. In dimension 5 and 6, ¢ and ¥ do have Lipschitz continuity
with respect to the parameter functions, Theorem 1.1 as well as a stability result for
ug can be proved using the Contraction Mapping Theorem in the spirit of [2], see
Section 8.

2. Construction of the approximation

2.1. The basic cell

Let O(n) be the orthogonal group of n x n matrices M with real coefficients and
MTM = I,50(n) C O(n) be the special orthogonal group of all matrices in O (n)
satisfying det(M) = 1. It is well known that SO (n) is a compact group containing
all rotations in R”, and via isometry, it can be identified with a compact subset of
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Rn(n’; : . Let S be the subgroup of S O (n) generated by rotations in the (x1, x2)-plane

and (x;, xo)-plane, forany j = 1,2,a = 3,...,n. Then § is a compact manifold
of dimension 2n —3 without boundary. That is to say, there exists a smooth injective

map x : § — R™" such that x(8)is a compact manifold without boundary of
dimension 2n — 3 and x ! : x(§) — S is the smooth parametrization of S in a
neighborhood of the identity map. Let us write

0eK=x(©S). Ry=x"'0)
for a smooth compact manifold K of dimension 2n — 3 and Ry denotes a rotation

map in S.
Let A= (u, £ a,0) € Rt x R" x R? x R*"=3, define

Ro (5 —al5P)

—n2 2—n
= , 2.1
0a(x) =pu~ 7 a0 0 TG (2.1
where
natr) = 225 =dl 2.2)
|x —&] 2

and Q is the fixed non-degenerate solution to problem (1.5) as described in the
introduction. It was proved in [15] that for any choice of A, Q 4 still satisfies (1.5),
ie.,

AQA+104P10Qa =0, in R".

Direct computations yield the following relations between the differentiation of Q 4
with respect to each component of A and z, defined in (1.11), (1.12), (1.13), (1.14)
and (1.15). Precisely, we have

0
z0(y) = T [QA()]|u=1,6=0,a=0,6=0 (2.3)
0
2a(y) = ~ie, [Qa()]ju=1,6=0,a=0,0=0, @ =1,...,n, 24)
o
0
Znt2(y) = a4, [Q ()] u=1,6=0,a=0,0=0 » (2.5)
d
Zn+3(y) = 9 [QA(X)]ju=1,6=0,a=0,6=0 - (2.6)
Let 6 = (012,613, ...,01n, 623, ...,062,), where Gij is the rotation in the (i, ])-

plane, then we have

0
Zn+1(y) = 30 [Qa(X)]ju=1,6=0,a=0,6=0 (2.7)
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and, for/ =3,...,n,
d
Zni1(y) = 900 [QA(X)]ju=1,6=0,a=0,6=0 » (2.8)
0
2n41-1(y) = 90 [QA(X)]|u=1,6=0,a=0,6=0 - (2.9)

Following the definition in [15], a solution Q of (1.5) is non-degenerate if
Kernel(L) = Span{z, : « =0,1,2,...,3n — 1}, (2.10)

or equivalently, any bounded solution of L(¢) = 0 is a linear combination of z,,
o =0,...,3n — 1. It was proved in [33] that, the solution Q is non-degenerate
when the dimension satisfies some extra conditions. Indeed, the authors showed that
for all dimensions n < 48, any solution Q = Qy is non-degenerate, for dimension
n > 49, there exists a subsequence of solutions Qk; which is non-degenerate in the
sense (2.10).

2.2. Setting up the problem
Let 1o > 0 be a sufficiently large constant, let us consider the heat equation

4 .
Uy = Au + |u|"2u %n Q x (19, 00) @2.11)
u=20 in 082 x (ty, 00).
Observe that the solution of (2.11) provides a solution u(x,t) = u(x,t — fy) to
(1.1). Given a fixed point g € €2, we will find a solution u(x, ¢) of equation (2.11)
with approximate form

(1) ~ )T 0 (x - sm) .

w(t)

More precisely, let A = A(t) = (u(t), £(t), a(t),6(t)) € RT x R* x R2 x R21-3
be the parameter functions and define the function

2
n-2 2 R@(,)(x;(ét()t) —a() %‘Sl()t) )
=p@)" 2 - . (2.12
Qany®)=p®~ 7 |[napn@®|" "0 BN (2.12)
where £() x — ()|
X — X —
Nag (x) = rE0] a(t) 0 (2.13)

and Q is the non-degenerate solution for (1.5) described in Section 2.1. With
abuse of notation when there is no ambiguity, here and in what follows, A(¢) =
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(u(t), (1), a(t), 6(t)) will be abbreviated as A = (u, &, a, 0), a is a vector in R?,
a= (Zé ) € R?, it is also a vector in R”, namely,

aj
aj
a=] 0 | e R".

0
To begin with, we assume that for a fixed positive function ug(z) — 0 (t — +00)

and a constant o > 0, there hold

w(t) = po(t) + Oyt () as 1 — +oo,

Et)=q+ O(uy™ (1) as 1 — +00,
a(t) = O(,u0 (1) as t — 400,
0(t) = O(y,g(t)) as t — 4oo.

In [15], it was proven that for any choice of A, the function Q 4 still satisfies (1.5),
namely

AQa+104IP7 Qs =0inR".

2
Re(z)( S —a( | )
Lety = " P " and n = |§ g& a(t)lxﬂ(gt()’)| then we have the
following expansions
x —&(1) lx —
P = | —a()———=
lx — &) w(t)

1 —2a(t) -

s< ) 2lx — £
)+|a<r>| e

(0 R0)

—E(t) o lx — &)
>+0<|a(>| 20 )
Rem( u(t) ) —a()

0] 2)
@)
In|?
= Roq) (x S(t)) + Ro@wya(r) +0 (| |2%> ‘
Su) = —u; + Au+ [ulPu,

1 =240 - (x s<z>)+|a(t)|z|x £
1 4 2a(t) - (

x —&(1)
wu(t)

w(t)

Denote the error operator as



SIGN-CHANGING BLOW-UP SOLUTIONS FOR THE CRITICAL HEAT EQUATION 579

with p = Z—i‘% . Then the error of the first approximation Q 4 (x, ¢) can be computed
as

J
S(Qa) = ~% (Qax, 1)) =E+E+E+Es.

x=£(1)

For y = =725, using Taylor expansion, the expressions of &0, &1, & and & are
given below explicitly.
1(t n— - () _n2 _ o
g0 = 0= () Iy 205) + 2 =" (0 InP" 20(5) @25 - Roa)
w(t) w(t)
[(t)  _n2 - ( 3 Red) lx — £@)|?
——Zu v ) =
o” () Inl o) e 20
_ D) e 1 F 0
= oM (Hzo (y) (1 + (v -a) Fo(n.§,a,0,y)),

where f are generic smooth bounded functions of the tuple (u, &, a, 6, y) which
may different from one place to another, Fo(u, &, a, 6, y) is a smooth bounded
function depending on (i, &, a, 6, y). Similarly, we have

x—§& & N
X — & M)Q@)

ne 1 e a(x — &) &
+u—72|n|2—"vg<y>-[—21ee (5 e I 5)}
nl Iz Iz

2w (525 (a(Z25E)))
\Y i AT 0

+u” 7 nl Q.(Y) <y|,7|2 a4 lx — & u

— VO () —— (14 (v @) Fi(w§.a.0.y)).
w(t)

where f are generic smooth bounded functions of the tuple (u, &, a, 8, y) which
may different from one place to another, Fi(u, €, a, 9, y) is a smooth bounded
function depending on (u, &, a, 0, y). Furthermore, & = & + £, where

£l =n®) ™" (n =2y ™" (n-a)<

n— - 2
N L [ X CTRE [%Q(&) +VO@) - &}

x—§
U

2
_n=2 _ . ~
+u” 7 InlT"Rear - VO()

2

‘x—%‘ .
— | a1
%

n— _2 ~ ~ ~
T 2 [”T 0G) +VOG) - y]

S}

n—

uw

N|

-2
{—2(511 -y) [HTQ(y) +VQ(y)-y} +ar-Vo () |y|2}

X (1 + (y 'a) F21(Mv$7a797 y))

n—2

=u Tzn+2(y)d1(1 +(-a) Fai(n,§,a,0, y))
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and

o _2
En = —/L_Tz|n|_"2 (az2-y) [nTQ M+VoQ)- fi|

2
_n=2 . ~ x_";:
+u” 7 InlT"Reaz - VO()

2

n—2 —2 —
T 2 [”T 0G) +VOG) - y] ‘% axs

n—2

= {_2((12 - y) [HT_ZQ(y) +VO(©)- y:| +az- VO (y) |J’|2}
x (14 (y-a) Fn(u,§,a,6,y))
= 1T 2 Maa(1+ (v - @) Fo(u.§.a,6, ).
Here we identify the component a; of a with the vector
ai

0
0| eR?,

the component a, with the vector

0| eR",
0
f are generic smooth bounded functions of the tuple (u, &, a, 6, y) which may
different from one place to another, F,1(u, &, a,6,y) and Fo(u,§,a,0,y) are
smooth bounded functions depending on (i, &, a,6,y). Finally, & = &1z +
Y3 &1+ X3 &2, where
n—2 - o~
Sun=up"7 MP"VOE) - (561
n—2 .
=1 7 2a1(MN012 (1 + (v - Rga) F321(1, €, a,6,y))

and similarly, for j =3, --- ,n,

(¥}

n—

N|

Zntj+1(0)01 (14 (y- Rga) F3,1;(n,&,a,6,y)),
2on1-1(N02 (1 + (v - Rea) F32; (1, £,a,0, ),

[}

n—

Eaj=un"

N|

E32j =W
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where i is the rotation matrix with angle % around the axes xp, x2 in &3 12, around
the axes x1, x; in &3 and around the axes x, x; in &35, respectively, F3 12(u,
§,a,0,y), F31j(n,§,a,0,y)and F37;(u,§,a,0,y), j =3,---,n, are smooth
bounded functions depending on (i, &, a, 0, y).

To perform the gluing method, the terms ,u_nz;z_] nzo(y), u_%_lé -VO()

and ,u_% ~IVQ(y)-(i Rg&) 6 do not have enough decay, inspired by [3], we should
add nonlocal terms to cancel them out at main order. By the detailed construction
of O (see [9]) and (1.6) we know that the main order of zo(y) is

Dy 2 —|y1»)
(14 1y?)?

n—2

with D,y = —”—;2 [L] ! 2% (1 4+ di). Therefore, we consider the follow-

nn-2)
x—§& ‘2
”w

5‘2 :
”w

ing heat equation

. Dy k (2 —
—gi+ Ap + Lm0
n
(1 +

By the Duhamel principle, we known

=0inR" x (f9, +00).  (2.14)

_|y=£®)
0 M(s) 2 Dn’k(z ‘ u(s) ) B
(x, )= //p(t—s x—y) ——= "2 (§) dyds (2.15)
" 1 +‘y—s~(§> 2
u(s)
xR
provides a bounded solution for (2.14). Here p(¢, x) = m 1)% e i is the stan-
Tt

dard heat kernel for the heat operator —- + A on R" x (fy, +00). By the super-

; +4
sub solution argument, ®O(x, 1) satlsﬁes the estimate ®°(x,7) ~ EW (see
Lemma 4.3).

To cancel the main order ,u_%_lé . E”ikzyﬂ of ;L_nz;z_lé - VQ(y) where
(I+y1»)2

E, k is a constant depending on n and k, for y = %
heat equation

, we consider the following

1

@i+ Ap + Epap” " ————
(1+1y2)?

£ -y =0inR"” x (19, +00).  (2.16)
"
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The solution defined from the Duhamel principle

' £(5) - 158
®'(x, 1) = —Enx / Pt — 5. x — Y~ "DE) 1)
1o n M(S)
1 N
X —dyds
y=£(@)
(”‘ 76
m M—n+4

satisfies the estimate &1 (x, 1) ~

Ho ]y =3
Similarly, for i = 1, 2, we consider the heat equation

—(n-2) En,k|y|2 _2Dn,k(2 - |J’|2)

(1 | |2)% c'l,-yl- =0in R"x(to,—f—oo), 2.17)
+ 1y

—ortAp+u

which has a bounded solution given by

t _ ~
R N N (y—é(”)
fo n .

wu(s)
) -2
y—£G) y—£G)
Emk‘ ae | 2Dnk (2_‘ e ) )
X dyds
I

2\ 2
y=§6)
(1 + ’ ) )
Now we define ®*(x, 1) = ®%(x, 1) + &' (x, 1) + Z%:l &2 (x, t). Since the

final solution must sasify u = 0 in d€2, a better approximation than Q 4 (x, #) should
be

. . 2. . —n+4
satisfies the estimate @' (x, 1) ~ |a;|

UA(x, 1) = Qalx, 1)+ p'7 ®*(x, 1) — u'T H(x, q). (2.18)

The error of u 4 can be computed as follows,
— p—1 p—1 n=2 *
S(ua) = —0ua+lual™ ua— 104" Qa+u 2 ADP™(x,1). (2.19)

2.3. The error S(uy4)

Near the given point ¢, the following expansion holds.

Lemma 2.1. Consider the region |x — q| < ¢ for & small enough, we have

_nt2
S(ua) =pn 2 (uEo + pnEy + nEry + nE3 +R)
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with

Dy (2—y?
Eo=plOI" ™ [~w" P H (g, )+ 0%, )] +i2(r) (mpM) ,

(1+1yP)?

Er=plo"™ [0 2V H . )| -y + plo ! [0 g, 1)

E, .
- (VQ(y) -k ) £,
(1+1yP)?

Er=plQI"™! [w 70 g, + w02 (g, 1)

D, (2— 2 9 E,
+M(l)al(—Zyl(Zo(y)—Lb/L)>+|y|2<a_Q(y)_ kY1 ))
(1+1yP)? y (1+1y1?)

D, 2—|y|? 0 E,
Fu(n)an (—Zyz (mw—L'y'ﬂ)) +|y|2(a— Q(y)—’—"”ﬁ)) :
(1+1yP)? 2 (1+1yP)?

(SR

n
E3 = 251012 + Y (2ntjr1 ()b + 2201 j-1 () ;) |
=3

-

T na g
-a +
1+ |y? 1+ [y[*

R= (ki + ') £ + (5 —q) + ngé - b,

where f, f , 8 and h are smooth and bounded functions depending on the tuple of
variables (,ual,u, E,a,0,x —&).

Proof. Set

2
x—&E@) _ |x=§@®)
5 Ry ( w4 o )
y= )
n|?

we have

-2

ua(x.t) = u( T [P Q) + p'T O, 1) — p' T H(x. q)

and
S(up) =81+ 95,
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where
n—2 a4,
S1 :=So+81+82+83+Tu2 wH(x, q)
n—2 a4, n=2
- w2z pd(x,t) —uz 0,9%(x, 1),
S B M n2 n=2 p=1
S 1= [~ W Q () + 1T Ot ) — 1T Hx, )
_n=z. 9 ~ n=2 _ n=2
x (RO WP Q (M) + 1T O ) — w T Hx, )
_nt2 - ~ | p— ~ n=2
—u@®7T TGP Q) + 1T ADH(x, 0).
Let

$2 =% 2 [106) + 01 (0G) +©) — 10! 0],

and
© =" 2|n" 2 (x, 1) — " 0" 2 H (x, q). (2.20)

Observe that |©] < ug_z when ¢ is small enough, we may assume Q(y)~'|®] < %

in the considered region |[x — g| < ¢. Using Taylor’s expansion, we obtain the
following

s 1
Sy=p =T |2 [p 1OGHIP ' O+p(p — 1)/0<1—s> 10(5) + 50|72 ds@z} .

Hence we have

® = u" "2 0* ((In|*R-65 + aly|*) + &, 1)
— W2 P H (10 R-6F + alyl*)n + £, q).

We further expand as

© = —u" 20"~ (H(q. q) — ©*(q. 1))
+ (PR3 +alyP)u+& —q)-[ =" 20l (H(g. q) — 9*(q. )

1
+f0 {—u"—2|n|"—2D,%H(q +s((InPR-63 +alyl)n + & —q),q)}
2
x [(1nPR-5 +alyP)u+& - q] (1 = 5)ds
1
+/0 {201 =2D20% (g + s (1nPR=67 + alyP) + & = q).1)]

2
x [(1nPR-03 +alyP)u+& —q| (1 = 5)ds.
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Therefore, we have
O =—u" 2" 2H(gq.q) — "' [nI"VH(q.q) - R—_F
— "2 "2V H(q. @) - € — ) — u" "2V H(q. q) - alyl?
+ U T TR0 (g 1) + 1T " V¥ (g, 1) - R_gF
+ UV (g 1) - (E — @) — 1T I TEV ¥ (g, 1) - aly
g F (g o€ 0.0, x — &)

n-2
2

= "2 (1—2a-xﬂzj la |2| ) H(q,q)
—M”1(1—2a-xu()$+ll2| )) VH(g.q)- R_g7
2 (1‘2"'%5 |2'x o )zzvmq D€ -
— ! (I—ZG-XM;f |2|x 20 )fVH(q ) -aly?
+ "2 (I—Za u;t)g $)|2>224>*(q,t)

4! (1_2‘1');;:)5 |2|x E)lz) Vo*(q,1) - R_gy
+ "2 (1 20');;)5 la|? |x 0 )TZWD*(q n-E—q)
+ ! (1—2a-xu(f+| |2'x )zzvcb*w 1) - alyl?

+UBF(ug . 6.a,0,x =€)
= —u""2 (1 + 0(ally]) H(q. q)
111+ 0lally) VH(g. q) - y (1 + O(lally])
121+ 0(lallyD) VH(q. @) - 6 —q) — 1" =1 (1 + O(lally]) VH(q. @) - aly|?
+ 1" (1+ 0(lally)) @*(g. 1) + w1 (1 + O(lallyD) V*(g.1) - y (1 + O(lally])
+ 1" (1+ 0(lally) VO*(q. 1) - (€ — q)
+ 1" (1 + 0(lally) VO*(q. 1) - aly? + uf Fug ' 1. 6.a.0,x — £)
=—u""?H(q.q)— n""'VH(q.q) -y — n" *VH(q.q) - (€ — q)
— 1" 'VH(q. q) - alyl* + 1" 2% (g, 1)
- u”*IW*(q, 0y +u"TEVON g, 1) - (€ — )+ 1TV (g, 1) - alyl?
UG F (g ok a.0.x — &) + g 2lally | F(ug ' 1.6.a.0.x — £)
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and
plemI~'e
= p|o (Roy +aly?+ 0 (Pip))| e
= p|0e) + VO - (aly?+ (Ray — ) + 00aPyP)|" ©
=p (121" 0) + Oallyh) ©
= p (121"~ 0) + 0daliyD) ( —W'?H(q.q) — 1" "' VH(g.q) -y
~W'"*VH(q.q) - (¢ —q) — "' VH(g.q) - aly?
U TN (g. )+ u" TV (g 1)y + TV 1) - (6 —q)
+u" VMg, 1) - alylP + ugF g € 0,0, x — &)

+ g Plally|F(pg ', €.a,0,x — s>>

=plo|™! (y)( — " 2H(q,q) — W""'VH(q,q) -y

— 1" 2VH(q,q)- € —q) — 1W""'VH(q, q) - aly|?

+ U RO (g, 1) + W IV (g, 1) -y + TV (g, 1) - (E — q)

1o~ 2lallyl
1+ |y[4

where the smooth functions F are bounded in its arguments which may different
from line to line.
Decompose S; as S| = S11 + S12, where

+ IV ar(g, 1) -a|y|2) + F(ug'm, & a,0,x — &),

n—2
SHi=E+E+E+E—uz 3,9%(x, 1),

n—2 a4, n—2 a4,
Si2 = 5 m? wH(x,q) — — K w®*(x, 1).

Observe that ,
.
7

1. —
S12 = I'LO MF(MO 1/"4 Saayea-x - ‘S)

holds for a function F smooth and bounded in their arguments. This proves the
lemma. [

Recall that we are trying to find a solution with form

u(x,t) =uaslx,t)+ (ﬁ(x, 1),
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where ¢ is a small term compared with u4(x, ¢). By the relation S(u4 + $) =0,
the main equation can be written as

—3p+ AP+ plual”' ¢+ Sua) + Na(®), (221)
where

~ o~ ~p—1 ~ 1 ~ 1z
NA@) = [ua+0|  wa+® —ual”™ (ua+@ = plual’™"§. (222)

Note that around ¢ it is more convenient to use the self-similar form, so we write

¢(x,t) as

$r.n) = pun)""To (x - S(”) . 2.23)
wu(t)

2.4. Improvement of the approximation

The largest term in the expansion for ,u% S(ua) is wEp. To improve the approxi-
mation error near the point ¢, ¢ (y, t) should be the solution of the elliptic equation
(at main order)

Aygo+plQIP~ (g0 = —poEo inR",  ¢po(y.1) > 0 as|y| — oco. (2.24)
Equation (2.24) is an elliptic equation of the form

LIY1:=A,0+plQIP' 0¥ =h(y) inR", ¥(y) —>0 as|y|—>o0. (2.25)
By the nondegeneracy of the basic cell Q (see [33]), we know that each bounded
solution of L[y] = 0 in R” is contained in the space

span{zo, - - , Z3n—1}-
Standard elliptic theory tells us that problem (2.25) is solvable for 2 (y)= O (|y|™™),
m > 2, if and only if the L? orthogonal identities

/h(y)zi(y)dyzo foralli =0,---,3n — 1
R~

hold.
For (2.24), we first consider the following condition,

/H; ,, 1T Sa) (v, D20 ()dy = 0. (2.26)

We claim that, for suitable positive constant b and a positive constant ¢, depending

1
only on n, choosing u = buo(t) , uo(t) = cpt™ "*,(2.26) can be achieved at main

order. Observe that jio(t) = — 41) — u8_3 (t) and the main contribution to the
n—a)cy

left of (2.26) comes from the following term

Dy (2 — |y?
Eoj=plQIP ™ [1"= (0. 1) = H(g. )] + 1) (zo(y) _ 2es2—HF) )) :

(1+1y12)*
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Now let us compute the term ®%(g, 1) which is given by (2.15). Note that the heat
‘2

kernel function p(t, x) = m l)ﬂ e% satisfies the following transformation law
)2
- —_n lg — ¥l
pt—5,q—y)=@C—-5"2p|L, ,
(t — s)2
therefore we have
®°(q, 1)
12
—(n=2) (3 _|y=E®)
’ N T L (2 5 > !
—/f pt—5.9—y)—= 7 dyds
1) n /’L(S) 1 + ‘.}'_RG(§)S(§) 2\ 2
n(s)
2
—(n-2) g I e’
t _ /:L(g) I’L " (S)Dn,k (2 M(g) ) ~
=—( +0(1))/ / pt—=S,q—y)—= 7 dyds
0 JR wu(s) —a 12\ 2
1+ ‘m
_ w5
=—(1+0(1))/ ds/ pll, q yl &N)
v (t—75) n (t—5)2 ) n@®)

1
(=52 9=y
n(s) (—5)2

1 "DE) (1 — 5)7 Do (2 -

<1 +
_ M( ) _(n_z) = g q—-)
=~ +o) | ¢as [ pf1 1=

" (t—39)2

2)

% d y—4qj
1

(=52 g-y

2\ (t —§)2
G (t—§)%

1 2
_ =52 g—y
k (2 T )
(=) y—q
X n d 1
1+ —5) % 9=y %\’ (t—5)2
M(s) (1—5)%

-1
— (40 (1))/ ’“‘() w26y p (202 g5
w(s)

with
Dy (2 —a?|xP?) i

(] +a2|x|2)%

F(a) :/ p (1, x)
Rn
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We claim that, for a suitable positive constant ¢ depending on n and b, it holds that

wu(s)

Indeed, for a small positive constant §, decompose the integral

/ 116 J (t—f)é s
0 /L(S) w(s)
as

1
n(s) —(n=2) (t—3s)2 d5 _f M(S) —(n-2) (t—5)2 ds
/tou(s)” ®F ( 6 ) Bl AT L e A
! M(S) _(,, 2) (t—E)% ~
d
+/t eI W A

=11+ Db.

(g, 1)=— a+oa»/‘“) ‘W4k®F<U_fp)d§=ca+oa».@zﬂ

For 11, we have t — § > §, therefore

b4—n t—§ B (l _ )— _

0<-1I _ 2 d

=—-0 = " —4)0;,’_4v/t0 $F < G) ) s
(t =5

pi-n - —(n=2)
<C——— no(s)
m—®$44 w(s)

ds
C /“51 1 C 2 1

= :—ds<
n—4J, % (n—Mdrpn —4 525

Note that we have used the definition pg = bc,,t_m and the fact |a|*"2F(a) < C.

For
! M( ) _(n 2) (t ) -
I = d 9’
’ / G W A

1
after the change of variables (tl;(sg))z = §, we have

di = — ) ds,

Yo =977 + ()3

LG (=97 o
L= d
2 / G R WE N A
1
- / RS TOVIE s
b uG) Tt =572 + ()8
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Observe that for small 8, §(t = 572 + ()5 = 1 =721 — o 25: (t = ) >
o1
F =970 = 5258),d5 = —E(1 + 0(8))d3, hence

Ya-9H72

1
52

2p4n —8) 6) 2p4n
h=—-———"—-7 ( )ds+0(1) =——T—7A+o0()
n—4)ch 0 (n —4)ch

1
when % is large enough. Here the constant A = fooo §F(8)ds < 4oo since the
dimension of the space satisfies n > 4. Hence we have

(g, 1) =—(1+ (1))/ “() —(n—2>(§)F<(t 5)2 )ds

©) (2.28)
2b4—n A
=————A+o(l):=Bb"" +0(1)
(n —4)cy~
when 1y is sufficiently large. Here the constant B is B = B, := ” 4)c” — A. This is
(2.27).
Direct computations yield that
—(n— 2c1A+c
3 - 1 2
l%m)w/,%@meﬂy%ﬁN3H@ﬂ%"———7zb (2.29)
R” (n —4)cy

with
cL=-—p /Rn 1017~ (0)z0(y)dy € (0, +00),

Dy k(2
1) =f (zo(y) - M) zo0(y)dy € (0, +00).
" (1+ 1y]?)2

Note that ¢ < 400 and ¢; < 400 are due to the assumption n > 4. We will prove
this
c1>0, >0 (2.30)

in the Appendix. Write

__L
u(t) = buo(t) = beyt™ =2,
Then (2.26) can be satisfied at main order if the following holds

2ciA+c2

b* = 0. (231)
(n—4ep?

b"?H(q,q) —
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. 2c1 A+ 2 .
Imposing =442 — £ je.,
P & (n—4)c ¢, n—2

Q2c1A+e)(n—2) 7
= ,
! 2(n —4)cy
we get
2¢y n—3
1).
GaAteym—r "
By (2.31) and (2.32), the constants b should satisfy the relation
2b

H(g,q)b" > = —.
n—2

po(r) = —

It is clear that (2.33) can be uniquely solved if and only if

H(g,q) >0,

which holds from the maximum principle. Under the assumption (2.34),

2 L
hb=—< " )
<(n—2)H(q,q))

/ WSy, Dz ()dy =0, i=1,---3n—1
Rn

Similarly, the relations

can be achieved at main order by choosing &y = ¢,ap = (0, 0) and 6y = (O, -

Now fix ©o(¢) and the constant b satisfying (2.35), denote

fto = bpo(7).

591

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

-, 0).

Let ® be the solution for (2.24) for © = o which is unique, then we have the

following

Ay® 4 p|OIP (3)® = —poEolpo, ftol in R", ®(y, 1) — 0as |y| — oo.

From the definitions for ug and b, we obtain

1oEo = —yug *q0(y),

where y is positive,

_plOIPT (y)eab? b? Dy k(2 —1yI?)
qo(y) = -+ = | 200 = ————=—
(n—4)cy e (n—4)cy (1+1y%)?

and [, go(y)zody = 0.

(2.37)
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Let po = po(]y]) be the solution for L(pg) = qo. Then po(y) = O(|y|_2) as
|y| — oo since (2.37) holds. Therefore,

Dy, 1) = yug 2po(y). (2.38)

Thus the corrected approximation should be

Wi (x, 1) = ua(x, 1) + (x, 1) (2.39)
with £0)
~ n—2 X — t
S, 1) =p)”" 2 ® :
(D= ( o) )

2.5. Estimating the error S (u’:‘)

In the region |x — g| > &, S(u%) can be described as

|=

n+2 -
2

n=2_q n=2_, X n, S
S, ) =py’  Lfituy’ tuy” §-fituga-fatpgl- fi (240)

where fi, f2, fl fg and ]?3 are smooth bounded functions depending on the tuple
(x, 1y ' E.a,0).

In the region near the point g, direct computations yields that
oy _ng2 o
S(y)=Swa) —pu = poEolito, fto]

n -2
n+2 n o

+u 2 {—u28z<1>(y,t)+uu [T (y’t)+Y‘qu>:|+Vch(Yat)‘,U«é}

< | P T p—1 —nd2 p—1
fua+ | a+®) = lual”™ wa = pu= T 10O 00, ),
(241)
where y = %.Iflx —q| <8,
w2 nt2 _.
wz Swuy)=pn 2 Sua) — poEolito, ol + A(y), (2.42)

where

2n—4
_ Iz _ x—§
A=ug ™ g g a0 u)+ s gy e Eoa 0 y). y=—= (243)

for smooth and bounded functions f and g.
Now we write w(z) as

w(t) = fro + A(1).
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From (2.42),

_n2 . - . :
Swi)=n"7 {no(Eolu, il — Eolfto, fol)+rEolu, il+1E [, E]1+R+A} .
Observe that ®° is a nonlocal term depending on s, £t and we have

w300 g + A, bpio + A(g, 1) — " @ 2o, briol(q, 1)
=—2Ak — ug~*(n — 3)BA

which can be deduced by similar arguments as (2.28), one gets
Eolito + &, bfio + A — Eolfio. biio]

Dy k(2 — 1y1%)

=).¥(ZO(Y)_ n
(1+1yP)?

) — P11 ) [(n = 30" H (g, 2]

+ 187 plOIP () (n — 3)BA — p| Q1P ()24
— 1t ploIP () (n — 3) B2,

As for AEg[ i, 1], we have

) Dy (2 —|y|?
AEo[p, 1] = AA (zo(y) - M)
(1+1y1%)2
- 2
+Ab[/3£0 (Zo(y) - M)
(1+1y1%)?

+ P10 g (- b H g, q))}
+ plOIP~ (»buf 7 Ba
— 1 plOIPT () (g A2,

where f is smooth and bounded in its arguments.
Combining all the estimates above, we get the expansion for S(u%).

Lemma 2.2. In the region |x — q| < 8 for a fixed small 6 > 0, set u = o + A
with |[A(1)| < o) for some positive number o € (0,n — 4). When t is large
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enough, we have the expansion of S(u’%) as
S(uy)
Dy (2 - Iyl )
(1+1yl )
— ot plOI ) [ = 3" H g, 2]

:M"Zz{uox (Zo(y)— —2Ap|Q|P~ ‘(y))

Eyry
(1+[y?

D, N
+ Mz(t)dl (—2y1 (Zo(y) — M)_H | < Q( )y — —kyl)>
(1+1yP?)? (1+1y[2)2
Dy (2 E,
+u2(r)a2(—2yz (m(y) ~ D@2 ) )>+| ? ( 0(y) — ——mk22 ))
(1+1yP?)? (1+1y1%)?

+ w2 (00122041 () + Z (:U«Z(t)éljzn+j+l()’) + Mz([)92j22n+jl(y)>}

+<VQ(y)— ) E+plolr [ 2VHG. 9|

Jj=3

RS S D2 — |y

+u 2”{#0(%()’)—"—ﬂ
(1+1y?)>
+plOIP (ug” 3<—b”_4H(q,q)+B>}

_# [ n—4 p—1 2 f n+2 n—1 -
o T Mo PIQITT ) fiAT+ WMHL g afa

_nt2 :._. . > .o
tug ¢ [Ef+ER+ER]
b [ e e, ]

N R T I N e R |4

where x = & + uy, fi, f, f3.fa fi, fo. f5 1, 82, €3 and 81, &2 are smooth
bounded (vector) functions depending on the tuple of variables (i, ! uw,€,a,0,x).

3. The inner-outer gluing procedure

We will find a solution for (2.11) with form
u=u+o

when 7y is large enough, the function ¢~>(x, t) is small compared to “Z- To this aim,
we use the inner-outer gluing procedure.
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Write
GGx,1) =Y (x, 1) +¢"(x, 1) where ¢ (x,1):=nr(x,)(x,1)
with

~ _n=2 —
px,t)i=py * ¢ (XMOSJ> . Mo(t) = bpo(r)

nr(x,t) =n ('XR;?)-

In above, n(t) is a (smooth) cut-off function defined on the interval [0, 4+00),
n(t) =1for0 <t < 1andn(r) =0 for t > 2. R is a fixed number defined as

and

R=1] with 0<p<1. (3.1)

Under this ansatz, problem (2.11) can be written as

0p=A¢+ puiP~'d+ N@) + Sw}) in Qx (1, 00)

* . (3.2)
¢ =—u’ in 9 x (fg, 00)

where N4 (@) = [u}+@17~ (wh+¢)—pluy [P ¢—luy 1P~ uky, Suy) = =00+
Au’y + |u’;|l’_1uj\. Let us write S(u%) as

Swh) = Sa+ 8¢,

where
Sa
PO Dux(2— |y _
=p 7 {V«OA (ZO(Y) — = —24pl0I" ()
(14 1y1?)2

— oy p1QIP~ () [ (1 = 3B" " H g, )2 ]

Dy (2—|yl? _
+ b |:ll0 (Zo(y) - "(7?')) +pIOIP T g (b H g, q>+B>]
(1+1y/%)?
En iy

+<VQ(y)— )~é+p|Q|”_'[—M”_2VH(q,q)]-y

(1+1y%)?

Dy k(2 = |y|? 0 E,
+u2(0)ay (—2y1 <Zo(y)——’k( bl ))+|y|2<—a O(y) — ——mkI ))
(1+1y0?)2 % (1+1y1?)?

Dy (2 — |y? 9 E,
+ ur(t)ar (—2y2 (zo(y) - ﬁ) +1yl? (a— o®y) — _m))
(1+1y[?)? y2 (1+1y1?)2

+ 12002011 0) + Y (KO0 201501 0) + 12062 22041 () }
j=3
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Define

Va=p (wmp—l - ‘M_¥Q (x _5)
1%

then ¢ satisfies problem (3.2) if

p—1
) nr + p(1—np)lui P!, (33)

(1) ¢ solves the outer problem

WY = AY + Vay +2VnpVé

+6(A = 0)nr + Na(@) + Sour  in Q X (to, 00) (34)
Vo= —u¥ on 02 x (ty, 00),
with )
Sout = ST + (1 = nr)Sa. (3.5)

2) ¢~§ solves

1ROG = 1k [ A+ POy eol” ™+ POl + 4]

in Bagy (§) x (19, 00,

(3.6)

for Q¢ = M_"z;z 0] (%) In the self-similar form, (3.6) becomes the so-called
inner problem

133ip = Ayg + plOIP ()¢ + MTSA(E + 1oy, 1)

HZMO

Mo
+ puy® 10177 (=

y)l/f(é + oy, t) + Blgl + Blp] G
in BzR(O) x (1o, OO),

where

B[] := oo <—¢ +y-V ¢) + uoVe - € (3.8)

and

BO[¢] :=p[IQ|”_‘<M ) Tollon l(y)}as
+p [uéw’m"—l — 10! ( )} 9.

4. Scheme of the proof

(3.9)

To find a solution (¢, V) satisfying (3.4) and (3.7), we proceed with the following
steps.
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4.1. Linear theory for (3.7)
Let us rewrite problem (3.7) as

150d = Ay + plOIP ()¢ @
+ H[A E,a,0,4,6,0,6,¢, 91y, 1), y € Bag(0),

for t > ty, where
HrE,a,0,3,6,0,0,0, 9] :=p,> Sa + woy, t) + Blgl + B'[¢]

_ 42)
2 g ey (B (
+ Py’ M—ngl” 1(Iy V(€ + poy, t),

the terms B[¢], B'[¢] are defined in (3.8), (3.9) respectively. Using change of
variables

t =1(1), 1= o),

(4.1) becomes

0 = Ayd+ plOIP T G+ HIr E,a,0,4,8,4,0,0,9]1(y, 1(r)) (4.3)

for y € Bor(0), T > 19. Here 19 the (unique) positive number such that ¢ (7p) = 1p.
We try to find a solution ¢ to the following equation:

dep = Ayp + plOIP (NG
+H[%£.0.0.3.8.0.0.4.¥1(y.1(T)) y € Br(0). 1210

K 44
P(y.10) =Y _eZi(y) y € Byg(0),
=1
for suitable constants ¢;,/ = 1,--- , K. Here Z; are eigenfunctions associated to

negative eigenvalues of the problem
L(p)+rp =0, ¢eL®R".
It was proved in [15] that K is finite and Z; satisfies
e~V —Alx]

)
x|~z

Zi(x) ~ as x| — oo.

Next, we prove that (4.4) is solvable for ¢, provided 1/ is in suitable weighted spaces
and the parameter functions A, £, a, 6 are chosen so that the term H[A, &, a, 6, X S ,
a,0, ¢, ¥](y, t (7)) in the right-hand side of (4.4) satisfies the following L? orthog-
onality conditions

Hr E,a,0,3,6,a,0,¢0, 910y, t(x)z(y)dy =0, (4.5)

Bor
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forall T > 19,/ = 0,1,2,---,3n — 1. These conditions will impose highly
nonlinearity to (4.4), to get a solution ¢, we apply the Schauder fixed-point theorem.
We first need a linear theory for (4.4).

For R > 0 large but fixed, consider the following initial value problem

drp=A¢+ plOIP (M +h(y,T) y € Bwr(0)T>10

K (4.6)
PO 10) =Y eaZi(y), y € Bag(0).
I=1
Set
v=1+ “
n—2’
then we have /L(’)’_2+“ ~ 777, Define the weighted norm for & as

I2lle,v := sup sup T°(1+ |y|*)|h(y, D).

T>7) yeBop
Then the following estimates for (4.6) hold.

Proposition 4.1. Suppose v € 2,n —2),v > 0, ||h]l24a,» < +00 and
/ h(y,t)zj(y)dy =0 forall T € (19,00), j=0,1,---,3n—1.
Byg

Then there exist functions ¢ = ¢[h](y, ) and (e1,--- ,ex) = (e1[h](z), -
- ,ex[h](T)) satisfying (4.6). Furthermore, for T € (19, +00), y € Byg(0),
there hold

L+ yDIVyd (. DI+ 18, DI S T A+ [yD ™I llotaw (4.7)

and
le[h]] S hllogan forl =1,--- K. (4.8)

Here and in the following of this paper, the symbol @ < b means a < Cb for some
positive constant C which is independent of ¢ and #y. The proof of Proposition 4.1
is given in Section 5.

4.2. The orthogonality conditions (4.5)

To apply Proposition 4.1, we should choose the parameter functions 1, &, a and 6
such that (4.5) hold.

Letusfixao € (0, n—4). Given h(t) : (fp, 00) — R¥and § > 0, the weighted
L®° norm is defined as

I72ls == Ilo(®) "2 h()]| Lo (1 .00) -
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In what follows, « is always a positive constant such that @ > 2 and o — 2 is small
enough. Also assume the parameter functions A, &, a, 0, A, &, a and 6 satisfy the
following constraints,

. . . . c
2@ ln—3+0 + 1§ @O ln-340 + @) ln—446 + [10(E)ln—446 =< a2 4.9)

IAO)l140 + 160 = gllo + 6Ol + 100 < ==, (4.10)

here c is a positive constant which is independent of R, ¢ and fy. Let us define the
norm ||@||p—2+4¢,« Of ¢ as the least number M > 0 such that

—2+40
Iun
1+ yDIVyp (. D + o (y. )] < M2 " (4.11)
L+ 1yl
and || Y [|s, 8,« 1s the least M > O such that
Yol M— el (4.12)
X, <M ————::, = .
Tt pye2 s
holds. Here 8 = 251"—:2@ + -Z;. We suppose ¢ and ¥ satisfy
lpln—2+0a <cty® (4.13)
and
cty”
”W”**,ﬂ,a =< Ra—2
for some small ¢ > 0, respectively.
Then we have the following result.
Proposition 4.2. (4.5) is equivalent to
o+ TG = Tolh. £.a,0.4.6.4.0.¢. 1),
%-l:Hl[)\'aSaaaea)\’s’daev(b"p](t)’ lzla'”an’
00 = g ' Myy1lh,€,a,0,4,&,a,6,¢,¥1(0),
a1 = pg Masolr, &,a,0,4,€,4,0, ¢, 1), (4.14)

iy = g ' Mysslh.§.a,0,4.8.0,6, ¢, 910),
01 =g Musralr,5.a,.0.5.6,0,0,6,910),  1=3.--.n
b = 1y 'Mongi—1[r. €,a,0,4,6,4,0,¢,910), [=3,---.,n

The terms in the right-hand side of (4.14) can be written as
Molh, §.a,0,4,§,4,6,, y1(t)

—& —&

t, t,
_ " n—3+o 0
= X510 0 + 2

.. . . _ _ _ _ _ n=2 4
x@o[x,s,uoa,uoe,ug Y Orpy T E—) g a g0, mh 0, w]a)



600 M. DEL PINO, M. MUSSO, J. WEI AND Y. ZHENG

andforl=1,---,3n—1,
[h, &, a,0,7,&,a,0,p, ¥]1()

—&

4
= el [P PVH G )|+ 10 /i) + 2o

n—2
2o 5 n—d —4 -3 -3 -3 S5 to
X®1[A,$,Moa,uot9,u8 Or g E=q) g a0, P, 1y w}m,

where c; are suitable constants, fi(t) and ©;[---1(¢) (I =0, -, 3n — 1) are bounded
smooth functions for t € [ty, 00).

The proof of Proposition 4.2 is given in Section 6.

4.3. The outer problem

Let us consider the out problem (3.4),

0y = AY + Vay +2VngV + (A — 3 )ik
+NA(D) + Souts in Q x (fg, 00), 4.15)
Y =-—uy on 9Qx (to,00), Y(to,-) =1vo inQ,

with a smooth and small initial datum .
To apply the Schauder fixed-point theorem to (4.15) and get a solution v, we
first consider the corresponding linear problem

oY =AY+ Var + f(x, 1) in Q x (f, 00),
Y=g on 082 x (fy, 00), (4.16)
Y (to, ") =h in Q,

where f(x,t), g(x, t) and h(x) are smooth functions, V,, ¢ is defined in (3.3). We
denote || fl+,y,2+« as the least M > O such that

w2y x—§
y =

x, )| <M-——,
G0l = My -

4.17)

for given ¢, y > 0. Then the following a priori estimate holds for problem (4.16).

Proposition 4.3. Suppose || f||«,y2+c < +00 for some constants ¢, y > 0,0 <
¢ K L, |lhlle@) < +oo and ||[t¥g(x, )l Lo@Gax@,.00) < +00. Let ¢ =
YL f, g, h] be the unique solution of (4.16), then there exists § = §(2) > 0 small
such that, for all (x, t), one has

7Y —S(—
[V (x, 1)l 5 ||f||*,y,2+gm +e 4 tO)HhHLOO(Q)
Y . (4.18)

U

+ 177tV g(x, DllL>@ax@.oe), Y=
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and

wley
VY (x, )] S ”f”*,y,Z-‘rg] Jor |yl < R. (4.19)

+ |y|sH!

The proof is the same as Lemma 4.1 in [2], so we omit it. This result will be applied
to problem (4.15), as a first step, we establish the following estimates for

FIYIx, 1) = 2VnrVe + $(A — 3 )nr + Na(@) + Sout.
Proposition 4.4. We have
(1)

-
[Sou (6, D1 S 2= : (4.20)

2)

: L ! 1Rt T 4o
2VnRV¢+¢(A—at)nR(5Wn¢nn_z+o,aw, (421)

3)
Na(9)

(4.22)

0 et W ) e when 62,
~ ) T+0
R ()
16 (191 + 1V 1L, o) s o when6 < n.

The proof of Proposition 4 4 is given in Section 7.

4.4. Proof of Theorem 1.1: solving the inner-outer gluing system

Let us formulate the whole problem into a fixed point problem.

Fact 1. Let & be a function satisfying |2 ]l,—3+0 S #. The solution for

e

can be expressed as follows

14(n—4) S ERE)
ARy =t 0B |:d+f T =9 h(r)dt], (4.24)
Iy
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with d be an arbitrary constant. Therefore, it holds that
_(n=4—0c

||l‘” 4)\.(2‘)”[,00(10 00) 5 to I d+ ”h”n 340

and
_(n=4—0

”)‘(t)”n 340 5 to e d+ ||h||n 340-
Set A(t) = i(t), then we have

11 —4

L)f A(s)ds = h(t), (4.25)
t —4)

which defines a bounded linear operator £; : h — A associating the solution

A of (4.25) to any h satisfying ||i|,—3+o < +00. Moreover, the operator £ is

continuous between the space L (#y, c0) endowed with the || - ||,,—3+-topology.
For any 4 : [tp, 00) — R”" with ||k||;,—3+6 < +00, the solution of

E =y [P 2VH@G )+ o) (4.26)

can be written as ~
En =80 +/ h(s)ds, (4.27)
t
where
o
1 =qg+c [—b”_ZVH(q, q)] / o2 (s)ds.
t
Thus
_2 4o

1E@) — q| S A A (]| P

and

1E = E%n310 S Mhlln—3t0-
Define E(r) = £(r) — &9, then (4.27) defines a continuous linear operator Ly : h —
E inthe || - ||,—34+-topology.

Similarly, from Proposition 4.2, we can define L3 :h - T :=a() and
L4 : h — Y := 6(t) which are continuous linear operators in the || - ||,—4+0-
topology.

Note that (2, &, a, 0) is a solution of (4.14) if (A = @), E = £@t) — E0p),
I':=a(t), Y :=6(t)) is a fixed point of the following problem

(A, B, T,Y)=To(A, B, T, Y), (4.28)
where
To: = (L1(LIA, B, T T, 6, v, L2(TaA, B, T, Y. ¢, 1),
L3(3[A, BT, 6, ¥, La(lalA, B, T, T, 9, 91)
= (A1(A, B, T, Y, 6, ¥), Ax(A, B, T, Y, b, %), A3(A, E, T, Y, b, ¥),
As(A BT, T, ¢, 9))
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with

A, 8, 1,7, ¢, ]

o o0 o0 o
=1 |:/ A,C]-l-/ E,MO/ F,/ T, A, B, pol’, T,¢,l/f:|
t t t t

forl=0,1,---,3n —1.

Fact 2. Proposition 4.1 tells us that there exists a linear operator 7| associating
to the solution of (4.6) for any function A(y, ) with ||/||24« ,-bounded. Thus the
solution of problem (4.3) is a fixed point of the problem

¢=Ti(H[ME a,0,iE,a,0,0,9](, 1(1). (4.29)

Fact 3. Proposition 4.3 defines a linear operator 7, which associates any given
functions f(x, 1), g(x, t) and h(x) to the corresponding solution ¥ = 7>(f, g, h)
for problem (4.16). Denote v (x, t) := 72(0, —u’, ¥o). From (2.39), (2.18) and
(2.38), Vx € 012, one has

* < 2
g (x, OIS 1wy~ ().

From Lemma 4.3,

-2 o
< ,—8(t—19) sormm 4 1B ()2~ where 8 — — '
[l Se Yol Loo@ny + 17" po(t0)™ where g IO S—

Therefore, ¥ + 1 is a solution to (4.15) if i is a fixed point of the following
operator

AW =T (f[¥],0,0),
with o o
fI¥]1=2VnrVe + ¢(A — 9)nr + Na(@) + Sour- (4.30)

That is to say, we have to solve the fixed point problem
v ="D(fl¥],0,0). (4.31)

From Fact 1-3, to prove Theorem 1.1, we should solve the following fixed point
problem with unknowns (¢, ¥, A, &,a,0,A,&,a,0),
(AE,T,Y) =T(A, B, T, Y),
¢ =Ti(H[LE a,0,4E a,6,¢, 9]y, 1(x))), (4.32)
v ="D(f(¥),0,0),

where o o
F@W) =2VnrVe + ¢(A = 9)nr + Na(@) + Sour-
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To find a fixed point, we will use the Schauder fixed-point theorem in the set

B= {(dh U A E,a,0, 30, E,4,0) 1 RHAD In—3+0 + R*ED In-3+0

+ RO2a() lln—ato + RO n—a+6 + R* A 110
+ R2E() — qlli+o + R*2llalle + R*8ls + 1§ RV llss. g

+ té ||¢||n—2+(7,0{ =< C}

for some large but fixed positive constant c.
Let

K = max{||f0||n_3+a, ”fl ||n—3+(ra ) ||f3n—1 ||n—3+a}

where fo, f1,- -, f3n—1 are the functions defined in Lemma 4.2. Then we have

n=3+o

t n—4 Az(Aa E,F, T7¢7 1,0)

_(n—4-0o

< n—4 ! :
<1 d+ o5 1 Pln—2t0a + o5 1V s o +

Ro—2
[
+ a8 l340 + 3 1 E st

e e
Thus, for d satisfying 1, "™ d <
(3.1) sufficiently small).
On the set B, it is clear that

_K_
Ro—2>

To(B) C B (choose the constant p in

n—2+o
—e Mo

CL -
|H[x &,a,0,4,8,a,0,0,v1(v, t ()| Sty e

From Proposition 4.1, 7;(B) C B holds.

Similarly, Proposition 4.4 ensures that 7(18) C B. Therefore the operator 7
defined in (4.32) maps the set B into itself. Since A, &, a,0, X, S ,a,0, ¢ and Y decay
uniformly when ¢+ — 4-00, this fact combines with the standard parabolic estimate
ensures that 7 is compact. By the Schauder fixed-point theorem, we conclude that
(4.32) has a fixed point in B. That is to say, we find a solution to the system of outer
problem (3.4) and inner problem (3.7), which provides a solution to (1.1). This
completes the proof of Theorem 1.1.

5. Proof of Proposition 4.1
In the following, we assume that 4 = h(y, t) is a function defined on R” which is

zero outside the ball B>z (0) for all T > 79. As a first step to the proof of proposition
4.1, we have the following:
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Lemma 5.1. Suppose o € 2,n —2),v > 0, [|A]|24a,v < +00 and

/ h(y,1)z;(y)dy =0 forall T € (19,00), j=0,1,---,3n—1.
Rn

Then for any t1 > 10 large enough, the solution (¢ (y, t), c1(t), --- , cx (7)) to the
following problem

K
3.0 = Ap + plOIP ' (M + h(y, T) — ZC](‘[)ZI();)’ yeR", > 1,
=1
/ (v, 1)Z;(y)dy =0 forall T € (19, +00), [=1,---, K,
RV!

¢y, 10) =0, y e R",

(5.1)

satisfies
o, Dllaz S Mhll2ta.z (5.2)

andVvl =1, ---,K,
ler(@) S T "R |hll24a.r for T € (0, T1).

Here ||hllp,z, := SUPre(zy,ry) TN+ [Vl oo .

Proof. (5.1) is equivalent to

K
0 = A+ plOIP ' (MP +h(y, 1) = Y a(®Zi(y), y R, T > 1,

2 (5.3)
¢(y’T0) :0’ y eRn

with ¢;(7) given by the following relation

() A.@ |Zl(y)|2dy = /Rn h(y,0)Z;(y)dy, l=1,---,K.

Then
lc (D] S T "RY1hll24a,n (54

holds for T € (79, 71). Therefore we are left with the proof of (5.2) for the solution
¢ of equation (5.3). Inspired by Lemma 4.5 of [3], the linear theory of [32] and [42],
we use the blowing-up argument.

First, we have Claim: given 71 > 10, ||¢|l¢,;r; < +00 holds. Indeed, given
Ry > 0, the standard parabolic theory ensures that there is a constant K| =
K1(Ro, t1) such that

lp(y, DI = K1 in Bry(0) x (70, 1].
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Let us fix Ry > 0 large enough and take K> > O large enough, then K>p % is a
super-solution of (5.3) when p > Ry. Therefore, for any 7; > 0, |¢| < 2Kpp~ ¢
and [|¢]lq,r; < +00. Next, we prove the following identities,

/ ¢(y,t)zj(y)dy =0forall T € (19, 71), j=0,1,---,3n—1 5.5)
Rn

and
/ ¢(y,1)Z1(y)dy =0forallt € (9, 11), [ =1,---, K. (5.6)
RVI

Indeed, (5.6) follows from the definition of ¢;(z). Let us test (5.3) with z 1, where
nly) = n0(|y|/I§), j=0,1---,3n -1, Risa positive constant and g is a
smooth cut-off function defined by

1, forr <1

o) = {o, forr > 2.

Then we have

T K
/Rn¢(‘,f)zjn =/0 ds /Rn@’(‘»s)LO[’?Zj]+th77—ZCl(S)Zle77)-

=1

Furthermore,
K
/ (¢L0[772j] +hzjn— ZCI(S)ZIZjﬁ)
R” =1

= / ¢(ZjA77 + 2V7]VZ]‘>
RVI

K

—hzi(1 =)+ Y _ () Ziz;(1 —n)
=1

= O(R™®)

holds uniformly on T € (79, 71) for a small positive number €. Letting R — +00,
we get (5.5). Finally, we claim that when 71 > 79 is large enough, for any solution
¢ of (5.3) satisfying ||@|lq,z, < +00,(5.5) and (5.6), there holds

Il S Ill2ta- (.7)

This proves (5.2).
To prove estimate (5.7), we use the contradiction arguments. Suppose there
are sequences rlk — 400 and ¢, hy, cf‘ ( =1,---, K) satisfying the following
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parabolic problem

K
0 = Ay + plOIP i+l — Y _ [ () Zi(y), y eR", T > 10,
=1

f ¢k(y7 T)Z]()’)dy :0f0rallr € (TO,T{(),j:O, 11 ,371 - la
RI‘I

/ or(y, 1) Zi(y)dy =0forallt € (19, 71), [ =1,---, K,
RH

¢k(y,10) =0,y e R"

and
bl o6 =1, Mhkllyy g+ — 0. (5.8)
By (5.4), we obtain SuPre(rO,r{‘) r”clk(r) — 0,1l =1,..., K. First, we claim that
the following holds
sup 7¥|pr(y, D) — 0 (5.9)
‘L'()<T<le

uniformly on compact subsets of R”. Indeed, if for some |yx| < M, 19 < 'ré‘ < tlk ,

1
()"l (e, T5)| > >

then we have ré‘ — +00. Now, define

(3, T) = (1) " u(y, T5 + 7).
Then
B B 5 K
0 = LIal + i = Y (1) Zi(y) in R x (r — 73, 0],
=1

with i, — 0, Ef‘ — 0 = 1,---, K) uniformly on compact subsets in R" x
(—00, 0], moreover, we have

g (y. T)| <

T PR x - 75, 0].

Using the dominant convergence theorem and the fact that @ € (2, n — 2), ok — ¢
uniformly on compact subsets in R” x (—o0o, 0] for a function ¢ # 0 satisfying

=24 +plQIP~ (M in R" x (=00,0]
/ $(y. 1)z (y)dy=0 forall r€(—00,0], j=0,1,---,3n—1
Rn

/ ¢y, 1)ZI(y)dy=0  forallte(—00,0], [ =1, --- , K (5.10)
Rﬂ

$0n D=1 o inR" x (=00, 0]

¢y, 10)=0 y e R
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Now we claim that ¢ = 0, which contradicts the fact that $ # 0. Standard parabolic
regularity tells us that ¢(y, 7) is C>€ for some ¢ € (0, 1). Then a scaling argument
shows that

(L4 1YDIVO] + de] + 1G] < (1 + [y)) 27,
Differentiating (5.10) with respect to 7, we have 3;¢; = Ad: + p|O|P~  (y)$, and
(14 YDV | + |pee] + 1AG: | < (1 + [y~

Furthermore, it holds that

1 - - -
Ear/ B2 + B(@r, ¢e) = O,
Rn

where

BG.9) = [ [IV6F - plor 0] dy.
Rﬂ

Since [pn #(y, 1)z;(y)dy = 0 and [p, $(y, T)Z;(y)dy = 0 hold V1 € (—o00, 0],
j=0,1,---,3n—1,1=1,---, K, we have B(¢, ¢) > 0. Note that

- 1 - o~
f|¢f|2=—58f3<¢,¢>.
Rn

Combine the above facts, we get

0
af/ 162 <0, / dr/ 162> < +oo.
Rn —00 n

Hence éf = 0. Thus q; is independent of 7, L[(fb] = 0. Since q~5 is bounded,
from the nondegeneracy of L,  is a linear combination of the kernel functions z s
j=0,1,--,3n—1.But fpuz; =0, =0,1,---,3n— 1, we get ¢ = 0,2
contradiction. Therefore (5.9) holds.

From (5.8), there exists a sequence y; with |y;z| — +00 such that

() 0+ ) e T = 5.
Let
bz, 7) = (25" Iyl“Dr Ok + |yxlz, el + 13).
Then 3 3 3 y
0k = APr + arpr + hi(z, T),
with

hi(z, T) = (@)Y I P + 1kl z, [yel > + T5).
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From the assumptions on Ay, one gets

lhi(z, D1 S o)k + 21727 ((@) P+ D7

with
A Ik N
Y= > e
| vkl
and |¢| = 1. Hence hy(z, T) — O uniformly on compact subsets in R” \ {¢} x

(—o00, 0]. a; has the same property as fzk (z, ). Furthermore, |q~5k 0, 79)| = % and

~ v
166z D1 S 1k + 217 (@O welPe +1)

Hence one may assume ¢~>k — qg # 0 uniformly on compact subsets in R" \ {e} x
(—00, 0] for ¢ satisfying

$: = A inR"\ {&} x (—o0,0] (5.11)
and ~
1Pz, T)| <|z—¢|™* inR"\ {&} x (—o00,0]. (5.12)

Similar to Lemma 5.2 of [42], functions qNS satisfying (5.11) and (5.12) is zero, which
is a contradiction to the fact that ¢ % 0. This concludes the validity of (5.7). Indeed,
set

u(p,1) = (P +C0™ 4 ——.
P
Then
C C
—ur 4+ Au < (0 +CH)Y Y Na(w+2—n) + Ea] <0, fa <n—2-— 5

For any @ < n — 2, we can always find a fixed C > 0 such that o < n—Z—%

Hence u(|z—e|, T+ M) isa positive super-solution of (5.12) in (0, 00) x [-M, 0].
Via the comparison principle, |¢(z, T)| < 2u(|z — é|, T + M). Letting M — 400
we get

~ 2¢e
Z’ .C 5 7/\
9GOl = 50

Since & > 0 is arbitrary, we conclude that ¢ = 0. The proof is complete. O
Proof of Proposition 4.1. First let us consider the following problem

K
0 = A+ plOIP (MG +h(y,T) = Y a(t)Z, y eR", T > 1,
=1

o(y,79) =0, y e R".
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Let (¢ (y, 1), c1(1), - -+ , cx (7)) be the unique solution to problem (5.1). By Lem-
ma 5.1, for 7y > 19 large enough, there hold

o, Ol S "+ yD™*Nhll24a,r forall T € (10, 1), y € R”

and
lci()] < T "R||All24a,r, forall T € (19, 71), I[=1,---,K.

From the assumptions of the proposition, for an arbitrary 7y, ||A]244,v < +00 and
1201240,2; < lhl24«,v hold. Therefore, one has

P, DI ST+ [y) " “Nhll24a, forall T € (w0, 71), y € R"

and
lci(D)] < T RY|| A4,y forall T € (r0, 71), [=1---,K.

From the arbitrariness of 7|, we have
(v, O St "+ [yD) " Inll244,v forall T € (10, +00), y € R"

and
lci(D)] < TR l24a, forall T € (7o, +00), [=1---,K.

Using the parabolic regularity results and a scaling argument, we get (4.7) and
(4.8). O

6. Proof of Proposition 4.2

The following integral identities will be useful in the computation of this section.

Lemma 6.1. Ask — +o0o,for j =0,---,3n — 1, we have
/ 2005) Dux(2— |y 2 i(y)dy= 1900 + 0™ fj=0
: a+np)i )7 ok ifj #0
a1+ 0k ifj=1
0 Enky1 ' _1 P
8_Q(y)_72% zidy=qain2+O0k™) ifj=n+2
. (1+ 1) o) i 1n+2
a2+ 0k ifj=2
a En,ky2 ’ _1 o
a—Q(y)—iz% zj(Wdy=\arnt3+0Kk™) ifj=n+3
R \ 02 (1+1yP) ok if j #2.n+3.

Fori=3,---,n,j=0,---,3n—1, we have

d En ki aii+O0Gk™) ifj=i
- - ; dy = ’
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Furthermore,

‘ _ i +OGTY ifj=n+1
/Rn i1 ()2 ()dy = {O(k—l) ifj #n+1,

Dy x2—1y|? 9 E,
/ <—2y1 (Zo(y) - M) P (8— 0(y) - 7"”)) 2 (ndy
R (1+1y2)3 7 (1+1y2)2

ang2,1+ O™ fj=1
= Yn2,n42 + O(k_l) ifj=n+2
ok ifj#1,n+2,

Dy (2—1y|? 9 E,
/ (—2yz (Zo(y)——’k( b 'n)>+|y|2 (—a Q(y)——”‘”n)) 2 (ndy
n (1+|y|2)2 2 (1+|y|2)2

an32 + OK™") fj=2
= 1an+3.043 *+ O(k_l) ifj=n+3
Ok™") ifj #2,n+3.

Fori=3,---,n,

Antitinyisl + Ok fj=n+i+l
ok ifj#n+i+1

nyi-1onti-1 + OK™)  ifj=2n+i-1
ok ifj#2n+i—1.

/ Znti+1 (N z;(Y)dy = {
]Rn

/ on+i—1(V)zj(y)dy = {
Rﬂ

In the above, a; ; are positive constants depending on n and k, the matrices

a1 ain2 as Ay p+3
Ani2,1 Ani2.n42)° An+3,2 An+3,n+3
are invertible.

The proof of this lemma is given in the Appendix.

6.1. The equation for A
We consider (4.5) for [ = 0.
Lemma 6.2. Whenl = 0, (4.5) is equivalent to

14+ (1 —4) 1\ . 1 L.

+W)&+ (0] <%>§+0 (;) o (a1 + az)
1 . o . .. . 6.1)

+0 (;) 1o <912 +Y 61 + ezJ-)) =Tolh, &, a,60,4,€,4,6,6, 1)

i=3
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The right-hand side term of (6.1) can be expressed as

—& —&

.. . 7
Molx, &, a,0,4.,4,0,6,910) =g " @) fo() +

0
Ro—2

C. N B 3 a n=2
x ®g [f\,é,uoa,uoauﬁ YOr g E—) ol a g 0,10, 1, "w}@

where fo(t) and Ogl- - - 1(¢) are bounded smooth functions for t € [ty, 00).

Proof. We compute

’ H\ E,a,0,AE,a,0,¢, Y1y, t(1)z20()dy,
2R

where H[A, €, a,60, i, &, a,0,¢,¥](y, t(1)) is defined in (4.2). Write

n42

to® SaE + poy. 1)

n42

2
B <%> [“051 (z,1) + AbSa(z, 1) + 1S3(z, 1) + u?Sa(z, 1)

+ 1285z 1)]
z=E+uy

wolS1¢€ + oy, 1) — S1(6 + ny, 1]

Ab[S2(§ + oy, t) — $2(6 + ny, D]

WS4 (E + oy, 1) — Sa(E + uy, 1]

W3[Ss5(& + oy, 1) — Ss(& + wy, 1)1,

(%)

(%)
+(%Q7ﬂmms+myn—&@+uym

(%)

(%)

62)
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where
Si(z) = 4 (ZO(Z /:§> _
—Mg_4P|Q|P—1(Z; )
S$2(2) = 1o (zo<z I_LS) _
+ pIQI’H(%)MS3 —b"*H(q,q) + B),
=&
S3(z) = (VQ(ZMS)_ E”Zk_; n) ¥
rolor (5w va.g)-

wa=a (), (o5

=t

’2> ) 2Ap|Qp1(ZM§))

M—SW4H@4n}

(f 15333))’
) h + e

S5(z) =z +1(

613
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Direct computations yield that

/B S1(& + uy)zo(y)dy = 2Act + e2)(1 4+ O(R*™) + O(R™)i
. +er(l+ OR D)y~ [ = 3" H g, )2,

/B $2(E + uy)zo(»)dy = O(R*™ + R™ s,
2R
1\ .
/B S35 + uy)zo(y)dy = O (g)é +00+ R_Z)MS_Z’
2R

1
/ S4(€ + uy)zo(y)dy = O (E) (a1 + az) ,
Bog

1 . . .
/ S5(& + puy)zo(y)dy = O (%) (912 + Z (61, + 921)) :
Bor j=3

Since "70 =+ %)_l,forl =1,2,3,4,5, we have the following estimates

/B [S1E + 10y, 1) — Si(E + iy, D20 ()dy
2R

A\ . 2\ - AN . )
=g<t, —))»Jrg <t, —>$+g<t, —) (a1 +a)
o Mo o

+ g (t, %) <912 + i (élj + 92j))

Jj=3

A\ - _
+8 <l %) T <)»+(E—q)+a1+a2+912+2 (01,-+02,-))+u8 T f),
Jj=3

where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0.
Thus

o
oz ot )
+ (0(%) + tggg(t, %)) M(dl + 6'12)
oot Do

A ~ n
+g(f’ %)u()’ 4 (X+($ —q) + pa +M02+M912+MZ(9U +92j))
Jj=3

%3 2
c( ) MOl/B o’ Sa€ + poy, Hzo(y)dy
2R

for smooth bounded functions g satisfying g(-, s) ~ s ass — 0.
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Let us compute the term

n=2 A\ 72
Pity? <1+—> | 1o 1( >¢($+Moy,t)zo(y)dy
1224] Bor n

Its principal part is [ := fsz 1017~ Y (Y)W (& + poy, H)zo(y)dy. From (4.12), we

—& n—2
have I = Rta 5 /L02 o f(¢) for a smooth bounded function f.

Furthermore, we have

—&

| B8 020000y = o[y 0e1810) + elo10)]
2R

Ro—2

and

e N
/ BY[¢1(y, Dz0()dy = o Lyt <—) [$1(1)
Bor Mo

for smooth bouned function g(s) with g(s) ~ s (s — 0) and £[¢](¢) is bounded
smooth in 7.
Combine the above estimations, we have the validity of the lemma. O

6.2. The equation for &

Now we compute (4.5) for/ =1,--- , n.

Lemma 6.3. Forl = 1, (4.5) is equivalent to
: . 1Y) . 1 .
ai,1§1 + an+2,1 001 + O % A+ O 7 | Hodz

1 . no. .
+0 (z) Ho (912 + 2(91]' + 92j)) 6.3)

=3

=Ti[r &, a,0, 4 &,a,0,0, v]).

Forl =2, (4.5) is equivalent to
. . 1\ . 1 .
a22& + apq32pnoaz + O T A+ 0 L ) Hodn

+0 (k) o (912 + 2(91, +921)) 64)

j=3

=TIh[A, £,a,0, 4, &,a,0,¢, ¥]().
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Forl =3,---,n,(4.5) is equivalent to
. 1\ . 1 ) .
&+0 % A+0O 3 wo (a1 + az)

1 . LI .
+0 (%) Ho (912 + 2(91/' + sz)) (6.5)

j=3
=T[r, &, a,0,7,&,4,0,9, ¥]@).
Forl=1,---,n,

A E,a,0,h &,a,0,0,9]1)

—&
X
R(x—2

=y Ca [bn*zVH(q, q)] +ud W (0 + 0

n—2
.. . . _4 _4 _ _ _ <244
x [)»,S,u«oa,uo@,ug Or g E—q) g a 0,180, 1, w} ),
where c; is a positive constant, f(t) and ®; are smooth bounded for t € [ty, 00).
Proof. We compute

H[AE,a,0,)0,E,a,0,¢, Y10, t(0)z(y)dy,

Bor

where H[A, &, a, 6, A, &, a, 6, ¢, ¥1(y, t(1)) is defined in (4.2). Expanding

n+2
/LOZ Sa(€ + noy, t) as (6.2), by direct computations, we have

1 .
| s+ mnamidy =0 (%) (4 42).
Bar

1 . n—3
/ $2(6 + puy)zi(y)dy = O <—) (Mo + 1 ) ;
Bog k
/B S3(& + uy)z(y)dy = (1 + O(R™")ay i

—(1+0(R)p fR 101 a0y PV Hg.q).

any2.1(14+ O(R*™)a
+0 () (1 +0R™ar ifi=1,
/ Su(E + un) () dy = { ant22(1+ O(R*™))ay
B +0 () (1 +0R " ar ifl =2,
0 (}) 1+ O0R™) @+ if1=3,.n
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and
1 ) noo, .
/BzR S5(& + uy)zi(y)dy = O (;) (912 + Z (61 + 921)) :

=3

Since £ _(1+A)1forj—12345wehave

/B [S;( + poy. 1) — S; (& + wy. D]z ()dy
2R

A A Ao
=g, —)A+gt, —)E+gt, —) (a1 +a)
Mo Mo o

A . L .
80t (912 +) (61 + 921))

j=3

A B n
+ (@, %)Mg 4 <K+ (6 —q)+ai+ax+ 612 +Z(91j +92j)>
=3
+ug T f (o),

where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0.
Thus

n+2

my\ ? o %
Lad 1"y Sa + woy, Hz1(y)dy
0 sz

A\
. =P Jen Q1P iy, -2 ( (1) — ( K))
= b 0 - s T
|:E+ Jgn |211%dy - k T\l Ho ¢
1 A
+ (0 (%) +1,°8 (t, —)) o (a1 + az)
140
+ (0 (1) +1,%8 (t i))Mo 912+zn:(91'+92')
k 0 ' Ho j=3 ! !

A B n
+8 (t %) o 4()»'1‘ (& — g)+ poar+ poaz+ pobrz + 1o Yy (61j+ 92;)) ,
=3

for smooth bounded functions g satisfying g(-,s) ~ s ass — 0.
The computations for the term

n—=2

02 A\ 72
Py’ (1 + —) / 10177 E2y)w (€ + oy, Dz ()dy,
1220) Bor 1%

B[¢] and BO[d)] are similar to that of Lemma 6.2. O
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6.3. The equation for 6y,

Now we compute (4.5) for/ =n + 1.

Lemma 64. Forl =n + 1, (4.5) is equivalent to
. 1\ . 1\ . 1 . .
mot2 + O - |JA+O0 - )E+ 0|~ ) o(ar+a)
k k k

1 no, .

+0<—>,LLO< 91j+92j)
k ;

j=3
- Hn-‘rl[)\'a %‘a a, 95 )'\'7 éa da év ¢)7 w](t)a

(6.6)

Myi1lr,€,a,0,4,6,a,0,¢, Y1)
_ ty °
=1y OO + =5 Ot

.. X . _ _ B _ B n=2,
x [k,é,uoa,MOG,/LS Y Orpg T E—a) g a0, b, 1y Gl/f](t),
where f(t) and ©,41 are smooth bounded for t € [ty, 00).

Proof. We compute

H[)"v E’ a, 97 )."a é’ dv é7 ¢a 1/’]()” t(T))ZnH(Y)dy,

Bor

where H[)\,&, a,0, A,E,a,0,¢,%](y,t(1)) is defined in (4.2). Expand ,u02 Saé+
Hoy, t) as (6.2), by direct computations, we have

fB $2(6 + uy)zn+1(y)dy = O
2R

()
1\ .

/B 836 + 1y)zay1(y)dy = O (;) E+ 00+ R Huy™,
(%) (14+ O(R™?)) (a1 + d2)

/B Su(E + 1Y) 2011 ()dy = O
2R

and

n

. 1 . .
/ S5 (& + 1) zn+1(Mdy =dni1n41(1 + O(R*)B124+ 0 <§> (61 + 625) -
Bog j=3



SIGN-CHANGING BLOW-UP SOLUTIONS FOR THE CRITICAL HEAT EQUATION 619

Since % =(1+ %)_l,forj =1,2,3,4,5, we have

/B [S1(E + poy. 1) — Si(E + 1y, D21 ()dy

Ao A A )
=g, —)A+ g, —)& +gt, —) (@1 +a)
7 7 o

+g (t, %) (912 + Xn: (01 + 921))

j=3

A B n
+g<t,%)u8 4<)»+(f‘3—6])+a1+a2+912+2(91j+92j)>

=3
+ug £ (o),

where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0.
Thus

5= nt2
Mal / /,LOQ SaE + oy, Hznr1(y)dy
Bog

: N ., A
= pob2 + | O r) o gt,—) )&
m

+
I .
+ (0 (Z) +1y°g(t, —)) o (a1 + az)
Hno
1 n
(i)

A . )
+15 g, %)> o Z (61 + 62))

j=3

A B n
+8 (t, %> T ()»+(€—q) + poar + poaz + obiz + 1oy (61 +92j)) ;
=3

for smooth bounded functions g satisfying g(-,s) ~ s ass — 0.
The computations for the term

i Al —1, M0
piy” (1 +—) / Q177 (— V¥ (& + poy, Hznr1(y)dy,
o B 12

2R

B[¢] and B°[¢] are similar to that of Lemma 6.2. O

6.4. The equation for a; and a,

Now we compute (4.5) forl =n+2,n + 3.
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Lemma 6.5. Forl =n + 2,n + 3, (4.5) is equivalent to
. , 1\ . 1\ . 1\ .
a n+281 + a2, 21001 + O 3 A+ O T §+0 i ) Hod

+0 <k> o (912 + 2(911 + 92j)> ©.7)

j=3
= Hn-‘rZ[)"’ Sv a, 9’ )."’ é? dv év ¢3 ‘/f](t),

. . 1\ . 1\ . 1 .
a2 n+382 + apy3 pr3moaz + O <%> A+ 0 (%> E4+0 <%> Hodi

+0 (k) Mo (912 + 2(91J + 92])> ©.8)

j=3
= M,43[r, E,a,0, i E,a,0, ¢, ¥]),

Hn+2[)‘" S’ a, 9’ )."a éa d’ év ¢a W](l‘)

T 2+”(t)f(t)+ O

.. . A -~ B n=2,
X[/\,S,uoa,uo&uﬁ HOrup T E— ) up a1t 0,1 g, Ut/f] ),

M,13[1, &,a,0,4,&,a,6, ¢, 1)

—8

= uy IO f () + -2 O3

Ro— Pa—2
x[i,é,uod,uoé,ug“*(z)A,ug“‘(s—q),ug—3a,u0 30, ul g,y w}(o

where f(t) and ©, 42, O3 are smooth bounded functions for t € [tg, 00).

Proof. We compute

H[)"v 'i:’ a, 97 )."a é’ dv é7 ¢a 1/’]()” t(T))Zn+2(Y)dy,

Bor

n+2
where H[),&,a,0, A S a0 ,¢,¥]1(y, t(1)) is defined in (4.2). Expand /,LO Sa€ +



SIGN-CHANGING BLOW-UP SOLUTIONS FOR THE CRITICAL HEAT EQUATION 621

Hoy, t) as (6.2), by direct computations, we have

1 .
/ S1(€ + uy)znt2(y)dy = O (%) (A i M8_4k> ’
Bog

1 . n—3
/ $2(6 + uy)znt2(y)dy = O (%) (/Lo + Ky ) ,
Bor

/ S3(E + 1) zns2(Ddy = arniaf + O(1 +log Ryl
Bor

. 1 N
/ S4(§ + uy)zn+2(0)dy = apy2,n+2a1 + O <%> (14+ O(R™?))aa,
Bor

1 . o .
/ S5(& + 1Y) znt2()dy = O (;) (912 + (61 + ezj)> :
Bag Jj=3

; Mo _ Ayl —
Since L= 1+ MO) ,forl =1,2,3,4,5, we have
/ [SIE + 1oy, 1) — SI(E + 1y, Dlzns2()dy
Bor

A A Ao,
=g, —)A+ g, —)§ + g, —) (a1 +a2)
o o Mo

r . no )
+ g(t, %) (912 +Y (61 +921)>

=3

)\' _ n
+ g(t, %),ug 4 ()» + (Ro§ —q) + a1 +ax + 612 + Z (61 + 92j))
j=3
+ug £ (o),
where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0.
Thus

n+2

n 2 2 n+2
c( ) o / to® SaE + oy, Dzn2(y)dy
Bog

Mno
= ap n+3& + any2,n+2M041

Olt_‘ft)"Olt“”?t)u 7
w0 g) rsn )i+ (o (g) v ) mi

1 A ST (G
(o) vaee ) (s S v

j=3
)\’ n
+8 (t’%> T <K+(§—Q)+Moal +uoaz+ pobi2+ o Z (61 + 92j)) )
=3

for smooth bounded functions g satisfying g(-, s) ~ s ass — 0.
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The computations for the term

n—2

n2 A\ 2
Py’ (1 + —) / o|”~! ( ) V(€ + rnoy, NDznt+2(y)dy,
Ho Bog M

B[¢] and B°[¢] are similar to that of Lemma 6.2. This proves (6.7). The proof of
(6.8) is similar. O
6.5. The equation for 6y; and 0;,[ =3,--- ,n

Now we compute (4.5) forl =n+4,---,3n— 1.

Lemma 6.6. Forl =3, --- ,n, (4.5) is equivalent to

. 1\ . 1\ . 1
M0911+0<%)X+0<—)$+0 (;) mo (a1 + az)

+0< >M0 (912-1-291]4-292]) (6.9)

T j
= Mypi1r, E,a,0, 4, &, 4,0, ¢, ¥](1),

. 1\ . 1\ . 1
M0921+0<%))»+0<—)€+0 (;) o (a1 + az)

+0< )MO (912-1-292]4-2911) (6.10)

j#l J
= HZI’!-‘,—I—] [)\'7 Sa a, 07 )"7 57 aa 93 (P? W]([)v

Myti+1lr, &,a,0,4,€,a,0,¢, Y1)

—8

= ul IO F () + S5 Ontit

Ra2

x[i,é,uoa,uoé,ug“‘(r)x,ug“‘(s—q),ug—3a,u0 30,01, 1y x/f}a)

H2n+171[)\’1€7a7 Qsj‘vé"dsé3 ¢7 l!fjl(t)
t—é‘
=g TOL O+ e Ot
L. . B B n=2,
x[x,s,uoa,uoe,ug HOh T E— ) up a1l 0,1 g, "w}m,

where f(t) and O, 4141, O41—1 are smooth bounded for t € [ty, 00).
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The proof is similar to Lemma 6.4. Since the matrices

ar al,n+2 a2 az n43
An+2,1 An+2,n+2)° An+3,2 Ant3,n+3

are invertible, equations (6.3), (6.4), (6.7) and (6.8) can be decoupled by inverting
the coefficient matrices. Combine Lemmas 6.3, 6.4, 6.5, 6.6 and 6.1, we get the
result of Proposition 4.2.

7. Proof of Proposition 4.4

Proof of (4.20). Let us recall from (3.5) that

Sout = S + (1 — ng)Sa.

From (2.40) and Lemma 2.2, in the region |x — ¢g| > § with 6 > 0, we have the
following estimate for Soy,

n—2+o,

n_2 . —-2,.7 2
v — —4,2)—(a—2)— S %
1Sout (e, DI S 1g? (U3 + =4 < pgn =220 )W (7.1)

In the region |x — g| < § with § > O sufficiently small, Lemma 2.2 tells us that

@ 2 g 2—(a=2) IFZM? o
S x,t‘< ~7 < 2o, B Ho 72
5900 < g T S 0 (7.2)

By the definition of ng,if |[x — &| > woR, (1 — ng) # 0. Therefore we have

N 1 ) 1 2p®
Rn—2—«a R4—a | Ra-2 1+|y|a

+o
(7.3)

|(1 = nr)Sal < (

Here the decaying assumptions (4.9) and (4.10) are used, respectively. This proves
the validity of (4.20). 0

Proof of (4.21). For the term 2Vng V(E, recalling that

~ _% x—£
¢(xvt) = :u'() ¢(—7t>

1o
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and the assumptions (4.11) and (4.13), we have

(Ve V) (x|

n’(ﬁ

Ruo 0 no
v (|5E]) (7.4)
<

Ru 127
> C——lln-2t0a
RuZ (14 |yl

, 244
< —||¢||n_z+m’”‘2“—°2,
~ Ra2 T+ 1y

where, in the region n (|RM0 ) #0,(1+y) ~R,y= . As for the second

term ¢( — 0;)nr, by direct computations, we have

a0 (J5])] e
| )

Ruo
o]
2
R 0

77/( ) |x_§|lio+ lé
R Rpo

From the definition of ¢, we have the following estimate for the first term in the
right-hand side of (7.5),

’&(A —9
(7.5)
x—§&
Ruo

_n=2
2

+ Mo =l

n—=2
Tl ~2s+a,
Rud 0 R (L yl
. (7.6)
t4o
w2 (1)
S m||¢||n—2+a,aw

here the fact that |An(| le) )\ ~ 1+|]%|2

second term in the right-hand side of (7.5) as

/(X—§> |x — &4 + poé —”;2|¢|
1 R Ru(z) Ho
x—&

/
| ([e))|

was used. From (4.9), we estimate the

Ru
RZM%

) .
< (g 2R + g > Ry 11 TD

~

— u+0
o | w2y ()
~ RQ,Z ||¢||n72+o,aW

From (7.4)-(7.7), we obtain (4.21). ]
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Proof of (4.22). Since p —2 > 0 when n < 6, we have the following

Na( + Y1 + nr)

< |k |P—2 [|1/f|2+|1/f1|2+|nR¢3|2] when 6 > n
TP + 1yl 4 nrel? when 6 < n.

When 6 > n, there hold

) M37”—5+2J
@] S I

2o

_ _ 1 u2p
S up O RY2 )12

n—24o0,a Ra_2 1 + |y|a

and
N e L
‘(”A)p v ‘ SIU“O W”‘/f”**,ﬁ,a
2.8
1 m;'t
a—2, n—dto+a—2| 12 /
S R 'U“O ”w”**,ﬂ,a Ra—z W
When 6 < n, one has
) M(%w)p
~ < Mo p
‘TIR¢‘ ~ 1+ [y|er ”¢”n—2+0’,0{
n—2
2 g to
2+ (p—1)0 pa—2. 201 1P LK T
S J7 R M0”¢”n72+0,a Ro—2 14+ |y|a
and
< t_p'B p
|1ﬁ| S W”w”**,ﬂ,a
n—2
-2, 7 fe
1 K Mo

< @A) Hpla=2)—a pa=2y 4y P
<4 5 RN s p.0 ga=2 1+ [y*

The estimate for v is similar. This proves (4.22).

8. Stability result in dimension 5 and 6

4

625

(7.8)

In dimension 5 and 6, we have p — 1 = =5 > 1. In this case, all the equations

2

can be solved by the Contraction Mapping Theorem since the operators 7y, 7; and
T, are Lipschitz continuous with respect to the parameter functions. Therefore,
Theorem 1.1 can be proved by the Contraction Mapping Theorem arguments in

dimension 5 and 6, moreover, we have the following stability result.
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Theorem 8.1. Assume ko is a sufficiently large integer, n = 5,6 and q is a point
in 2, then the conclusion of Theorem 1.1 holds when k > ko. Furthermore, there
exists a sub-manifold M with codimension K in C 1(Q) containing uy(x,0) such
that, if ug € M and is sufficiently close to uy(x, 0), the solution u(x, t) to (1.1) still

has the form
ue. 1) =10~ <Qk (x T (f)(”) +¢(x, r)) :

where § = lim;_, 400 £(t) is close t0 q.

Recalling that K is the dimension of the space V := {f € H! RMLS, f) < 0}
and L is defined in (1.10). The proof is similar to [2] and [32], so we give a sketch
here. We divide the whole process into three steps.

Step 1. Solving the outer problem (4.15)

Proposition 8.2. _Assume 1., §,a, 0, A, f Jaand® satisfy (4.9) and (4.10), ¢ satisfies
(4.13), Yo € C*(Q) and

—&

t
0
”W()”Loo(ﬁ) + ||vw0”Loo(§) < W-

Then (4.15) has a unique solution v = V[A,&,a,0, X, é, a, é, Pl, fory = XM;OE,
there exist small constants o > 0 and & > 0 such that

n—=2
— —-to
¢ ,U«()2 ()

V0Dl S —o ] T + e Yol o
. 1240
1€ M_IM 2 (t)
VY (601 S 2o 1+°|y|a_1 for |yl <R

hold. Here R is defined in (3.1).

Proposition 8.2 is a direct consequence of Proposition 4.3, Proposition 4.4 and the
Contraction Mapping Theorem, whose proof we omit here. This result indicates
that for any small initial datum v, (4.15) has a solution . Moreover, the following
proposition clarifies the dependence of W[, &, a, 6, A, é ,a,0, ¢] on the parameter
functions A, &, a, 0, X, S a, é, ¢ which is proved by estimating, for instance,

aqbqj[)"v ";:v a, 97 ).‘1 éi dv é’ ¢][¢_)] = 8Y\IJ[)"1 Ss a, 91 )."’ ‘i:’ d’ év ¢ + S¢_)]|S=0

as a bounded linear operator between weighted parameter spaces. For simplicity,
the above operator is denoted by 95 W[¢]. Similarly, we define 9, W[A], d: W[£],

3, V[al, d (0], 3; W[A], as-qf[é], 9;W[a] and 3;W[A].
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Proposition 8.3. Under the assumptiOns of Proposition 8.2, ¥ depends smoothly
on the parameter functions A, &€, a, 0, A, S a,o, ¢ and, for y =

hold:

|9, WIA]| <

|0 WIE]| S

9. Wlall <

ERIAIBS

|0 W1, 1) <

|0 WA, )] S

|9aWlalx, ] <

|0, W[01(x, )] <

0o W[l (x, )| S

n=2_
_8 PL()2 ( )
R“ 2” ”HGW’
2
2
(O TP -
Roz—2 1+ |y|a—2
to—e 5 (t)
oz (1l T |
t—é‘ n22 ( )
| 16—
Ra—2 o 1 _|_ ly|e— 2|
_ L
MR R0
Ra—2 n—3t+o 14+ |y|a—2
e )1;6
) % (1)
272 A n-3+0 W
_ —16_24
o wo 2 ()
R"‘ 2||a(f)||n 4+o W
_ —n=6 o4
o o 2 ()
R"‘ 2||9(t)||n 440 W
-2
- ()
Ra—2 lo(Oln—240,a I()Tyl‘)“z

= the following

(8.1)

Proof. We prove (8.1). Decompose the term B V[A(x, 1) = Z1 + Z with Z; =

70,
of the following problem

WZ=AZ+VaZ+ HValkly

+0,.Na (¥ + ¢™) [X] + 8. Sou[A]

Z=0
Z(- 10) =0

in 2.

in 2 x (fg, 00)
in 02 x (fg, 00)

—8,xuj‘[)_»], 0), where 73 is defined by Proposition 4.3. Then Z is a solution

(8.2)
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For any x € 0€2,

| (31, 0] S g 0150

ﬂ+2 —
S OO 140

(8.3)

From (8.3) and Proposition 4.3, we obtain

121
Mo ()
L+ [yle—2

—&

1 -
12106, 01'S 2oz [ 1RO o

To prove the estimation for Z, which can be viewed as a fixed point for the operator
A(Z) =T, (g,0,0) (8.4)

with
g = B VaIAY + 3, Na (1# + ¢’") [A] + 33 Sout[ A1,

we estimate 9; Souc[1] first. In the region |x — g| > §, from (2.40), (4.9) and (4.10),
we have

_ n=2_ _
10, Sow 10, 0| S g F (s g s £.a, 0)IAD))]

n—=2

— 1
¢ ,U«()2 ()

< _0 At 0 7
< oz (ROl Ty

where the function f is smooth and bounded depending on (x, ! w, & a,0). In
the region |x — ¢g| < §, from (2.42), we have

RS, 1) = BRI, (A + po f(x, g 1. &, a. 0)),

where the function f is smooth and bounded depending on (x, ! u, &, a,0). Dif-
ferentiating (2.19) with respect to A, easy but long computations yield that

12
A we> (0
memsédnmmﬁﬁwﬁz (8.5)

By the definition of S, together with (8.5), we obtain

n-2_
i (¢ _ wo? (1)
|axSout[)¥](x’t)| S/ R(Ofo ||)\.(t)||1+010_|_|W
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Now we estimate the other terms of g. When n = 5, 6, we have
B Valll(x, 1) =p(p — 1)[|“Z|p_3u23w>2[)—»]

ne 3 . o .
— IR ‘“_TZ Q(Y)‘p W QW (T Q(y))m]

. _n=2 1| _n=2 _ . .
Slnce‘ax(,u 2 Q(y))‘rﬁuol‘u 2 Q(y)‘and,Bzz("n—_%l)—i-m,weobtam

—e ) nZ;Z—l-‘r(T
7 o 3 Ky
|0, VMY (x, )] < 1Vl ama IR0 =
Similarly, we estimate the term p(p — D)|uy [P =3u® (¥ + ¢™™)d,u*[A] as

—e "S-l

_ ; - o i3y KK
— Dlu®1? 3% nya, ‘ < _0 x 0
|p(p = DIk uip + ¢ R| € 225 1Rl T

when n = 5,6. The last term p [‘u’g +y+ ¢i"|p_l uy — |M”A’p_1 uj}] can be
estimated analogously.

In the set of functions satisfying
n-2_4

—& 2

Ho

17
Z(x, )| <M —_—
70l 1+ |yle—2

—e
s Wl

for a fixed large constant M, the operator A defined in (8.4) has a fixed point.
Indeed, A is a contraction map when R is large in terms of #y. Hence (8.1) holds.
The proof of the other estimates are similar, we omit them. O

Substituting the solution ¥ = W[A, £, a,6, 4, &, a, 6, ¢] of (4.15) given by
Proposition 8.2 into (3.7), the full problem becomes

133 = Ay + plOIP ()¢

OGS (8.6)
+H[)"7é7a797)"vssa707 ¢](yvt)vy € BZR(O)

Similar to Section 4.1, using change of variables

dt
t =1(1), g7 M(z)(t)’

(8.6) reduces to

3 = Ayo+ plOIP (y)p + HIr E,a,0, 4, €, 4,0, 91(y, (7))
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for y € Byg(0), T > 19, 10 is the unique positive number such that 7 (zg) = f9. We
try to find a solution ¢ to the equation

dep = Ayp + plOIPT (G
+H[)"’§va19’)"’$’d’91 ¢](y,f(f)) y € BZR(O)’ T27

K (8.7)
P, 70) =Y eaZi(y) y € Bar(0),
=1
for some suitable constants eg;, [ = 1, ---, K. To apply the linear theory Propo-

sition 4.1, the parameter functions A, &, a, 0 need to satisfy the following orthogo-
nality conditions

H[Ar E,a,0,hE,a,0,01(y,t(t)z(»)dy=0, [=0,1,---,3n—1. (8.8)

Bag

Step 2. Choosing the parameter functions o )
By the Lipschitz properties for ¥ = W[A, &,a,60, A, &, a, 0, ¢] given by Proposi-
tion 8.3, Proposition 4.2 can be strengthened as

Proposition 8.4. (8.8) is equivalent to

b BN = TIo[h, §,0,0, 4, §,4,0, 0, Y1),

= W5

& =1[r & a,0,16,a,0,0,v](), I=1,---.n,

b2 = sy Mgl 6.0.6.5.,6,.0.6.9.910).

a1 =y ' Tppalr, §,0,0,5,€,0,6,0, 910), (8.9)

i = g ' Mysslh.§.a,60,4.6.0.6,¢.910).
0=ty Mpyi1lr&,a,0,0.6.0,0,0,910), =3, ,n,
921 = M51H2n+171[)\'1 §7 a, 91 )"7 gv d, 99 ¢)v ‘//](t), l = 37 e, n

The terms in the right-hand side of the above system can be expressed as
—& —&

S s A Q) n—3+o lo
HO[)\,,&,G,Q,)\,,S,G,G, ¢»W](l‘) = RO{—ZMO (t)fo(t)+ Ra_z

.. . . _ _ _ _ _ u_,_g
x@o[x,s,uoa,uoe,ug Ot E— Q) a,nd 0, 1T, 1, w}m

andfor j=1,---,3n—1,

(A, & a,0,4,£,a,0,¢,9]1@)

—&

_ 1
=y e [ V@ ) |+ 1 050 + 22

.. . . _ _ _ _ _ n=2 4
X®j|}»,§,uoa,/t09,%’ Or 1l E =)ol w0, 1 1y w}@,
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where f;(t) and ©;[---1(t) (j =0, --- , 3n — 1) are bounded smooth functions for
t €[tg,00),¢j(j=0,---,3n—1)are suitable constants. Moreover, we have

—8

0514110 = 0;[A] ()] S Zo=5 111 = A2(0)]

1©;[&11(1) — ©;[61(0)| < E1(2) — E2(1)],

O
Ra—2

—&
. (1 .(2
ez hold ) = a0,

—e
1 . (2
0 poladV @) — af? 01,

©0d" 1) = 01100 1(1)|

1©110a8"10) = ©;110a 10| S 2

—8

[©j110611) = ©[1021(0)] S Ze=5 10161 (2) = 62(0)],

—8

O 4110 = 013210 S 2ozl (D) = 220

—&

0,11y~ € — Dl - 0,11~ & - DIO)| S 2161 (0) - &)1,

0
Ro—2

—&
- 3 fo 2
0515 af"10) = 0,5 10| £ Lz molaf” ) — a0,

—&

— -3 (2 2
15 a"10) — 0,010 S <Lgrmolal’®) = a0,

—&

05170110 = 0,111 7 02)(0)| S 2z m0l01 (1) = 20,

—8

L7 9110) = OLy 7 92))] S 2251911 = B2 (Dlln200

System (8.9) is solvable for 1, &, a, 6 satisfying (4.9) and (4.10). Indeed, we have:

Proposition 8.5. (8.9) has a solution A = A[¢](t), & = E[P](t), a = a[¢](t) and
0 = 0[¢](t) satisfying estimates (4.9) and (4.10). Moreover, for t € (tg, 00), there
hold

t
1o OO — e O] < 225161 = S2ln-2400

—&

o 0 [E1911(0) — Elal(0)] S RS‘—Z 161 = $2lln—2+0.0-

157 (0]alr1() — algal ()] <

RO‘ ) ||¢1 ¢2”n—2+a,a,

78

ug” (]01911(1) — 6182)(0)] S —o

Using Proposition 8.3, the proof of Proposition 8.4 and 8.5 is similar to that of [2]
and [32], we omit it.

o1 — d2lln—2+40,a-
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Step 3. Gluing: the inner problem

After choosing parameter functions A = A[@](¢), & = &[P](¢), a = a[¢](t) and
0 = 0[¢](¢) such that (8.8) hold, we solve problem (8.7) in the class of functions
with [|¢||,—240,« bounded. Problem (8.7) is a fixed point of

¢ =A1(®) :=Ta(H[A, &, a,0,4 &, a,0,8)).

It is easy to see that

n—2+o
. . —¢ M
|H[x, 6, 4,8, 0100, 0| S 1 Hf)lw (8.10)
and
|HI6 1= HIg@1| 0.0 S G716 = 6P la-2400 (8.11)

hold. From (8.10) and (8.11), A; has a fixed point ¢ in the set of functions
dlln—25s+00 < cty ¢ for suitable large constant ¢ > 0. From the Contraction
Mapping Theorem, we obtain a solution to (2.11). Then the rest argument to the
stability part of Theorem 8.1 is the same as [2], we omit it.

9. Appendix
9.1. Proof of Lemma 6.1

Let us recall from [9] and [33] that

k i 2 \'T
Qk(x) =U) — > U;(x) +¢(x) with U(x)=( )

2
— 1+ [x]

and _n=2 .
Uix)=¢, > U (x—E)).

Here ¢ is a positive constant satisfying ¢ ~ k=2, & =4/1— gkz(nj, 0),n; =

(cos®j,sinf;,0),0; = 27”(1' —1)and (]3 is a small term than U (x) — Zl;zl Uj(x).
Let us introduce the functions

n—2 n—2-. -
Zo(x) = TU(x) +VU() - x, mo(x) = Tqb(x) + Vo(x) - x

and 9 d -~
Zy(x) = —U(x), mu(x)=—¢x) for a=1,...,n.
00Xy 0Xgy
Forl =1, ...,k,define
n—2

Zo(x) = Ui(x) + VU (x) - (x = &).

From (1.11) and (1.12),

zo0(x) = Zo(x)—Xk: Zor(x)+4/1 —{2 cos QliUl(x)-i- 1 —{2 sin 6; iU]()C) +770 (%)
— k ax1 k 9x9 '
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Forl =1, ...,k,define

d d
Z1(x) =4/1— ;'kz |:COSQI—8X] Ux)+ Sin@l—axz U;(x):| ,
0 d
Zy(x) =4/1— é‘kz |:— Sin@la—XIU[(x) + COSQ[a—szl(x)] ,

d
Zoi(x) = WUZ(X), for «=3,...,n.
o

Then we have
k

20(x) = Zo(x) — Y [Zor(x) + Zu ()] + 7o (x),

=1
k

d
20 =210 = ) ——Uix) +m )
=1 °X1
20— Xk: [cos 6 Z1;(x) — sin6) Z; (x)]

I=1 J1-¢2

k

a
2(0) = Zo() = Y ——Ua(x) + 1)
=1 °%2

P 2": [sin 6 Z1;(x) + cos 6 Z2; (x)]

1= J1-¢2

2 (X) = Za(X) = Y Zag + 7o (x) fora =3, . n.
=1

+ i (x),

+ ma(x),

Moreover, the following identities hold,

k
a1 (0) = ) Zon(x) + xo71 (x) — x17m2(x),

=1
k k

Zn2(X) = Z\/ 1 — g2 cos 6 Zoi(x) — Z\/ 1 — g2 cos6,Zy(x)
=1 =1

— 2xy70(x) + |x P71 (x),

k k
23 (0) =Y /1= gZsin Zo(x) = Y /1= ¢Zsin6Zy(x)
=1 =1

— 2xmo(x) + |x P (%),

k
Zntar1(¥) = 1= 82 Y o860 Zai (x) + x174(x), fora =3,....n,
=1

k
Dnta—1(X) = /1= 82 > sin6) Zoy (x) + xo74/(x), fore =3,....n.
=1

633

9.1)

9.2)

9.3)

94

9.5)

(9.6)

9.7)

(9.8)

(9.9)
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Then we have the following estimations:

Lemma 9.1.

/ Zai(x)Zo(x)dx

f Zixydx + 0k~ ifa=0,1=0
= Rn

ok otherwise,

/ Zo(x)Zpg(x)dx
Rn

_ /Zf(x)dx+0(k—1) ifa=pe(l,-

ok=h otherwise,

/  Zaa() Zoj (0

B / Zi(x)dx + 0™ ifa=0,1=j
ok otherwise,

/ Zoi(x)Zpj(x)dx
Rn

/Rn Zi(x)dx + 0™ ifa=pge(l
ok=h otherwise,

x| —
n 2Jr1Z,g,(x)dx
1 + |x |

(Ix]? — 2)
= Zo)dx+ 0k
(1+ Ix]?)
ok=h

/ #_zlzﬁj(x)dx
R (14 x2) 2 "

/ (xﬁzi(x)dx + O(k_l)
1+ x2) T
Ok

,n}, 1 =0
s Tt 7n}7 l=j
ifB=0, j=0
otherwise,

if B=0,j=iefl, -

otherwise.

(9.10)

©.11)

9.12)

(9.13)

9.14)

(9.15)

,n}
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Proof. We prove (9.12). Let n > 0 be a small fixed real number independent of k.
Then

/ Za1(x)Zpj(x)dx =/ Zal(x)ZOI(x)dx+/ Za1(x)Zoj(x)dx.
R” B R™\B(&, 1)

=11+ i.
Changing the variable via x = & + ¢y, we obtain

(/ Z5(x)dx + 0((;kk)”)> ifa =0
]Rﬂ

i =/ Zy(x)Zo(x)dx =
BO. ) 0 ifa #0.

As for the term i, decompose

ir = / Zo1(x) Zoj(X)dx + ) / Zai(x)Zoj(x)dx = iz) + in.
RN B, 1) A/ BED)

ip1 can be estimated as
) 00 1 ) m>rn—1
lzeq [ ar=cg [ D
k ei=2) |x|2n—4 k n p2n—4

k
<Cg k"t =0 (%) .

And

linl <CY

j;él B(EI k) |x_%-l|n -2

n—2
2 1 1

Zoj(x)dx < Cg, T g 2/
0

rn—2

n=2 1
< C§k2 Kt <Ci =0 <%> ,

where C are generic positive constants independent of k. Hence we have (9.12).
The proofs of (9.10), (9.11), (9.13), (9.14) and (9.15) are similar, we omit them.
This concludes the proof. O

Then Lemma 6.1 follows from Lemma 9.1, (9.1)-(9.9) and Proposition 2.1 of [33]
by long but easy estimates.

9.2. Proof of (2.30)

First, we claim that

1
/ IQI”“(y)Zo(y)dy=/ ur- ‘(y)20<y)dy+0(ks) (9.16)
R7 Rn
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for some small s > 0. Indeed, we have

/R ) 10171 (y) Zo(y)dy

:/Rn

= f Uy Zo(y)dy + (p — 1) f Ur—2(y)
Rn Rn

p—1
Zo(y)dy

k
Uy) =Y Ui+ ()
j=1

k
=D Ui + (k)
=1

J:
k

+o Y [ 1P »mzZomdy |+ 0 ( | 16WIPT () Zo()dy
j=l R R”

k
= /R U~ () Zo(y)dy + O (Z /I'R Up—2(y)Uj(Y)Zo(y)dy)
n J:l n

k
+o Y [ Ui »mZomdy |+ 0 ( | 16WIPT () Zo()dy
=l R~ R~

+o < | v foo] zo(y>dy)

Zo(y)dy

and

_ %
Ui1P Y (0 Zo(y)d =4/ k Zo(y)d
/Rnl T Zo(y)dy e &P o(y)dy
1
_qrn—2 .
= % re (14 |21%)? 2otz +Epdy
n—2 1 1

< C¢g

—dy
rr (L4122 gz 4 g7

= CC’”/ 1 Ly
=Cy; —
l2l< 53 (1+1z[»? |§kZ + §j|n 2
1 1

+C§,f‘2/ —dy
HESTS (14 1z[»)? |§kZ +§j\n :

— 1 1 Ckz
=C§”2/ — <1+O<—)>dy
C st A+ P2 g €)1
- 1 1 £
+c"2/ <1+0(—">>d
‘K l2l= 25 A+ 1215? |z 2 %4 Y

~o(e?) =0 ().
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- G 1
UP=2(0U;(y) Zo(y)d <C/ ‘ a
/Rn MU Zo()dy < B (g2 4 |y — &) "7 L+ 1D ’

_c 2+1f 1 1 dy
e (42T A+ G+ gD

+1 1 1
<Cg’ / = 7dy
R (141227 |Gz + &

[N | 1 1
=Cyl / T Zdy
Rl=at (141217 |Gz + &

1 1
+C§2+1/ = dy
|

z\zﬁ 1+ Izlz)% |§kZ + r§j|4

1y 1 1 Ckz

_cef / | — 4(1+0(L.>)dy
d=ag (1+ 12277 [ 5]

|€j|>>

22 ) )a

(é“kz Y

+C;2“f 1 14<1+0
Kz (1+ 12122 12zl
ﬂfl

=o(a).

f ldIP () Zo(y)dy =0 (k—fiz/ ;dy) —0 (k‘fﬁ)

R” re (1 [y))n+2 ,
() | = = L N 1
/Rn UP~2(y) ‘¢>(y)( Zo(y)dy = O (k /Rn 0T |y|)n+2dy> —0 (k )

hold. Now (9.16) follows from the above estimates. Similarly, we have

1
/ 1017~ () Zoi (y)dy = / \UI1P~ ) Zor(v)dy + O (k1+‘>
Rn 7
and
-1 1 !
/ Q1P (M Zu(y)dy = / \UI1P () Zu(y)dy + O (k1+s)'
Rn

Moreover,

p—1 n—2 p
-p | U (Zo(y)dy = — UP(y)dy > 0,
R~ R~

-p /R U ) Zaddy = 5 (—p fR ) UP—‘(y)zo(y)dy>

_ i
_é‘k 5

/R U ) Zu )y = 0.

2
/,, U?(y)dy,
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Then from (9.1),

- ”/Rn 12177 (1)z0(x)dy

k
= —p/R 1017~ () Zo(y)dy + p Z/R 1017~ () Zoi (v)dy
n =1 n
k
+PZ/R 1017~ (1 Zu(y)dy —P'é mo(¥) Zor (y)dy
=1 n n
k
=—p fR Ur'mzo(mdy +p Y /R U7~ () Zoi (y)dy
n l:l n

k 1
+p) | PP MZudy = p | w0 Zo(»dy + O |
— Jgn R k

n_ -2 1
= kgt DS [ vrondy+ o (5
2 Rfl ks

which is positive when k is large. This proves c¢; > 0 when ko is large enough.
Dy 2=1y[*)

7— can be written as
(1+y1?)2

Finally, we prove ¢ > 0. From (9.1), zo(y) —

Dk 2=y
(1+1y2)?

—2a,2—|y)?
:(Zo<y>—”2 0 ( |y|ﬂ>>
(1+Iy[2)?

k (0 Iy
-y (ZOI()’) -4 fn¢>
=1

(1+1yP)?

20(y) —

2=y

7> (k— +00).
(1+1y1%)?

k
=Y Zu) +mo(y) — o(Hh,
=1

A direct computation yields that

—2a,2—|y)?
/ (Zo(y) - 5 2al ly',,)) z0(y)dy
" (1+ 1y]?)?

—2a,2 —|y|? 1

:/ (Zo(y)—n2 ! 'y'ﬂ)>20(y)dy+o<%>
R (1+ 1y]?)?

n—2ym2" (g—1)+0<1>’

=« —
"2 or(w)

k
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n—=2

k =2 (2= |y 1
Z/ Zo(y) = ¢ * fn(ilyl)n 20(y)dy = O <%>
=1 JR"

(I+1yP?)?
d 1
) / ZuMz(dy = 0 <%> ,
=1 R~
k 2 _ 2 1
» f 70(y) — oWy (i ydy = 0 <;)
=1 /R" (1 + |y|2)2

Therefore,

Dy (2 — |y?
/n 00) — K2 =119

k

— | zo(dy =«

n—2Jm27"T (5 —1) 1
(1+1yP)? 2 F(%lz) +0( )

which is positive when £ is large enough. Hence ¢z > 0 if kg is sufficiently large.
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