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Sign-changing blowing-up solutions
for the critical nonlinear heat equation

MANUEL DEL PINO, MONICA MUSSO, JUNCHENG WEI

AND YOUQUAN ZHENG

Abstract. Let � be a smooth bounded domain in Rn and denote the regular
part of the Green function on � with Dirichlet boundary condition by H(x, y).
Assume the integer k0 is sufficiently large, q 2 � and n � 5. For k � k0 we
prove that there exist initial data u0 and smooth parameter functions ⇠(t) ! q
and 0 < µ(t) ! 0 for t ! +1 such that the solution uq of the critical nonlinear
heat equation 8

><

>:

ut = 1u + |u|
4

n�2 u in �⇥ (0,1)

u = 0 on @�⇥ (0,1)

u(·, 0) = u0 in �
has the form

uq (x, t) ⇡ µ(t)�
n�2
2

✓
Qk

✓
x � ⇠(t)

µ(t)

◆
� H(x, q)

◆
,

where the profile Qk is the non-radial sign-changing solution of the Yamabe equa-
tion

1Q + |Q|
4

n�2 Q = 0 in Rn,
constructed in [9]. In dimension 5 and 6 we also investigate the stability of
uq (x, t).
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1. Introduction

Let � be a smooth bounded domain in Rn with n � 3. We consider the following
critical nonlinear heat equation

8
><

>:

ut = 1u + |u|
4

n�2 u in �⇥ (0,1)

u = 0 on @�⇥ (0,1)

u(·, 0) = u0 in �
(1.1)

for a function u : �⇥[0,1)!R and smooth initial datum u0 satisfying u0|@� = 0.
Problem (1.1) can be viewed as a special case of the well-known Fujita equa-

tion
ut = 1u + |u|p�1u (1.2)

with p > 1, which appears in many applied disciplines and becomes a prototype
for the analysis of singularity formation in nonlinear parabolic equations. A large
amount of literature has been devoted to this problem on the asymptotic behaviour
and blowing-up solutions after Fujita’s seminal work [18]. See, for example, [1,
2, 11, 12, 19–23, 27–29, 31, 41] and the references therein. We refer the interested
readers to [39] for the corresponding background and a comprehensive survey of
the results until 2007. Blowing-up phenomena for problem (1.2) are very sensitive
to the exponent p, the critical case p = n+2

n�2 is special in several ways, positive
steady state solutions do not exist if p < n+2

n�2 . Radial and positive global solutions
must go to zero and bounded, see [35, 36, 39], they exist in the case p > n+2

n�2 with
infinite energy, see [24]. Infinite time blowing-up solutions exist in that case but
they exhibit entirely different nature, see [37,38].

The motivation of this paper is twofolds. In [2], Cortazar, del Pino and Musso
proved the following result. Suppose n > 4, denote the Green’s function of the
Laplacian 1 in � with Dirichlet boundary value as G(x, y) and H(x, y) is the
regular part of G(x, y). Let q1, · · · , qk be k distinct points in � such that the
matrix

Ĝ(q) =

2

6
6
4

H(q1, q1) �G(q1, q2) · · · �G(q1, qk)
�G(q2, q1) H(q2, q2) · · · �G(q2, qk)

...
...

. . .
...

�G(qk, q1) �G(qk, q2) · · · H(qk, qk)

3

7
7
5 (1.3)
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is positive definite. They proved the existence of u0 and smooth parameter functions
⇠ j (t) ! q j , 0 < µ j (t) ! 0, as t ! +1, j = 1, · · · , k, such that (1.1) has an
infinite time blowing-up solution uq with approximation form

uq ⇡
kX

j=1
↵n

 
µ j (t)

µ2j (t) + |x � ⇠ j (t)|2

! n�2
2

.

Moreover, for some positive constants � j , µ j (t) = � j t�
1

n�4 (1 + o(1)). Note that
the profile of uq is

U(x) = ↵n

✓
1

1+ |x |2

◆ n�2
2

, (1.4)

which is the unique radial symmetrical solution for the Yamabe equation

1Q + |Q|
4

n�2 Q = 0 in Rn. (1.5)

On the other hand, much less is known for the sign-changing solutions to (1.5).
Pohozaev’s identity tells us that any sign-changing solution of (1.5) is non-radial.
The existence of non-radial sign-changing and with arbitrary large energy elements
of 6 :=

�
Q 2 D1,2(Rn)\{0} : Q satisfies (1.5)

 
was first proved by W. Ding [14]

using variational arguments. Indeed, using stereographic projection to Sn , (1.5)
transforms into

1Snv +
n(n � 2)

4

⇣
|v|

4
n�2 v � v

⌘
= 0 in Sn,

(see, for example, [26, 40]), Ding proved the existence of infinitely many critical
points to the corresponding energy functional in the space of functions satisfying

v(x) = v(|x1|, |x2|), x = (x1, x2) 2 Sn ⇢ Rn+1 = Rk ⇥ Rn+1�k, k � 2.

More explicit constructions of sign-changing solutions to (1.5) were obtained in
[9, 10, 30]. Furthermore, [33] proves the rigidity results (non-degeneracy) of the
solutions found in [9, 10]. Classification of solutions in 6 plays an important role
in the soliton resolution conjecture for energy critical wave equation, for exam-
ple, [15, 16] and the references therein. Therefore, a natural question is: does the
infinite time blowing-up phenomenon for problem (1.1) occurs with sign-changing
profiles? The aim of this paper is to show that the sign-changing blowing-up solu-
tions with basic cell constructed in [9] do exist.

Our starting point is the sign-changing solutions Q of (1.5) constructed in [9]
and [10]. Let us describe these solutions more precisely. In [9], it was proven that
there exists a large positive integer k0 such that 8k � k0, a solution Q = Qk of
(1.5) exists. Furthermore, if we define the energy functional by

E(u) =
1
2

Z

Rn
|ru|2dx �

1
p + 1

Z

Rn
|u|p+1dx, p =

n + 2
n � 2

,
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then we have

E(Qk) =

(
(k + 1) Sn

�
1+ O(k2�n)

�
if n � 4

(k + 1) S3
�
1+ O(k�1| log k|�1

�
if n = 3

as k ! 1. Here Sn is a positive constant depending on n. Q = Qk decays like the
radial symmetrical solution U(x) defined in (1.4) at infinity, that is to say, we have

lim
|x |!1

|x |n�2 Qk(x) =


4

n(n � 2)

� n�2
4
2
n�2
2 (1+ dk) (1.6)

where

dk =

(
O
�
k�1� if n � 4 ,

O
�
k�1| log k|2

�
if n = 3

as k ! 1.

Furthermore, we have

Q(x) = [n(n � 2)]
n�2
4

✓
1�

n � 2
2

|x |2 + O
�
|x |3

�
◆

as |x | ! 0

and there exists ⌘ > 0 (depending only on k0) such that for any k,

⌘  Q(x)  Q(0) for all |x | 
1
2
.

On the other hand, Q = Qk is invariant under rotation of angle 2⇡
k in the x1, x2

plane, i.e.,

Q
⇣
e
2⇡
k x̄, x 0

⌘
= Q(x̄, x 0), x̄ = (x1, x3), x 0 = (x3, . . . , xn). (1.7)

It is also even in the x j -coordinates, for any j = 2, · · · , n and invariant under the
Kelvin’s transformation, namely, we have

Q(x1, . . . , x j , . . . , xn) = Q(x1, . . . ,�x j , . . . , xn), j = 2, . . . , n (1.8)

and
Q(x) = |x |2�nQ

�
|x |�2x

�
. (1.9)

It was proved in [33] that these solutions are non-degenerate. More precisely, fix
one solution Q = Qk and define the linearized operator of (1.5) at Q as

L(�) = 1� + p|Q|p�1�. (1.10)

The invariance of any solution of (1.5) under dilation (if u satisfies (1.5), then the
function µ� n�2

2 u(µ�1x) solves (1.5) for all µ > 0), under translation (if u solves
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(1.5), then u(x+⇠) also solves (1.5) for ⇠ 2 Rn), together with the invariance (1.7),
(1.8), (1.9) produce natural kernel functions ' of L , that is to say, we have

L(') = 0.

These are 3n linearly independent functions defined as follows:

z0(x) =
n � 2
2

Q(x) + rQ(x) · x, (1.11)

z↵(x) =
@

@x↵
Q(x), for ↵ = 1, . . . , n, (1.12)

zn+1(x) = �x2
@

@x1
Q(x) + x1

@

@x2
Q(x), (1.13)

zn+2(x) = �2x1z0(x) + |x |2z1(x), zn+3(x) = �2x2z0(x) + |x |2z2(x) (1.14)

and, for l = 3, . . . , n

zn+l+1(x) = �xl z1(x) + x1zl(x), z2n+l�1(x) = �xl z2(x) + x2zl(x). (1.15)

Indeed, direct computations yield that

L(z↵) = 0, for all ↵ = 0, 1, . . . , 3n � 1.

The function z0 defined by (1.11) is from the invariance of (1.5) under dilation
µ� n�2

2 Q(µ�1x). zi , i = 1, . . . , n defined by (1.12) are due to the invariance of
(1.5) under translation Q(x + ⇠). The function zn+1 in (1.13) is generated from the
invariance of Q with respect to rotation in the (x1, x2)-plane. The functions zn+2
and zn+3 in (1.14) are generated from the invariance of (1.5) with respect to the
Kelvin transformation (1.9). The functions in (1.15) are due to the invariance of
(1.5) under rotations in the (x1, xl)-plane, (x2, xl)-plane respectively.

Let us recall that the Green’s function G(x, y) is defined by the following
Dirichlet boundary value problem

(
�1G(x, y) = c(n)�(x � y) in �
G(·, y) = 0 on @�,

where �(x) is the Dirac measure at the origin and c(n) is a constant depending on n
satisfying

�10(x) = c(n)�(x), 0(x) =
Q(0)
|x |n�2

=
[n(n � 2)]

n�2
4

|x |n�2
.
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Denote the regular part of G(x, y) as H(x, y), namely, H(x, y) satisfies the fol-
lowing problem (

�1H(x, y) = 0 in �
H(·, y) = 0(· � y) in @�.

Our main result can be stated as follows.

Theorem 1.1. Assume k0 is a sufficiently large integer, n > 4 and q is a point in
� such that H(q, q) > 0, then for any k � k0, there exist an initial datum u0 and
smooth parameter functions ⇠(t) ! q, 0 < µ(t) ! 0 (as t ! +1) such that the
solution uq to (1.1) has form

uq(x, t) = µ(t)�
n�2
2

✓
Qk

✓
x � ⇠(t)

µ(t)

◆
� H(x, q) + '(x, t)

◆
, (1.16)

where '(x, t) is a bounded smooth function satisfying '(x, t) ! 0 uniformly away
from q as t ! +1.

Theorem 1.1 exhibits new blowing-up phenomena where the profile of bubbling is
sign-changing rather than the positive solution for the critical heat equation. In the
case of positive bubbling, the linear operator around the basic cell contains exactly
n + 1 dimensional kernels corresponding to the rigidity motions (translation and
dilation). However, in the case of sign-changing (non-radial) blowing-up solution,
the kernel of the linearized operators at the basic cell includes not only the functions
generated from dilation and translations, but also functions due to rotation around
the sub-planes and Kelvin transform. Therefore we have to find enough parameter
functions to adjust. Similar to the supercritical Bahri-Coron’s problem in [34], our
computations indicate that the dominated role played is still scaling and translations.
Indeed, (1.16) has a more involved form, see (2.18) below for details. Note that
in [43], sign-changing blow-up solutions were also constructed, but their basic cell
is the positive radial solution U(x) defined in (1.4).

We believe that this is the first example of blowing-up solutions in nonlinear
parabolic equations whose core profile is non-radial. In a series of interesting pa-
pers, Duyckaerts, Kenig and Merle [15, 17] introduced the notion of nondegenracy
for nonradial solutions of the equation (1.5) and obtained the profile decomposition
for possible blow-up solutions for energy critical wave equation in general setting.
Existence of bubbling solutions with the positive radial profile for the energy crit-
ical wave equations has been constructed in [13, 25]. However as far as we know
there are no examples of noradial blow-up for energy critical wave equation.

To prove Theorem 1.1, we will use the inner-outer gluing scheme for parabolic
problems. Gluing methods have been proven very useful in singular perturbation
elliptic problems, for example, [6–8]. Recently, this method has also been devel-
oped to various evolution problems, for instance, the construction of infinite time
blowing-up solutions for energy critical nonlinear heat equation [2, 12], the forma-
tion of singularity to harmonic map flow [3], finite time blowing-up solutions for
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energy critical heat equation [11], vortex dynamics in Euler flows [4] and type II
ancient solutions for the Yamabe flow [5].

The proof consists of constructing an approximation to the solution with suf-
ficiently small error, then we solve for a small remainder term using linearization
around the bubble and the Schauder fixed-point arguments. In Section 2, we con-
struct the first approximation with form (2.18). To get an approximation with fast
decay far away from the point q, we add nonlocal terms to cancel the slow decay
parts as in [3]. Then we compute the error, in order to improve the approximation
error near the point q, we have to use solvability conditions for the correspond-
ing elliptic linearized operator around the sign-changing bubble. These conditions
yield an ODE for the scaling parameter function, from which deduce the blow-up
dynamics of our solutions. After the approximate solution has been constructed, the
full problem is solved as a small perturbation by the inner-outer gluing scheme, see
Section 3. This consists of decomposing the perturbation term into form ⌘�̃ +  ,
where ⌘ is a smooth cut-off function vanishing away from q. The tuple (�̃, )
satisfy a coupled nonlinear parabolic system where the equation for  is a small
perturbation of the standard heat equation, and �̃ satisfies the parabolic linearized
equation around the bubble.

When dealing with parabolic problems for �̃, a crucial step is to find a solution
to the linearized parabolic equation around the bubble with sufficiently fast decay.
However, it seems that the argument in [2] for the positive bubbling of the critical
heat equation does not work in our sign-changing case since we can not perform
Fourier mode expansions. Inspired by the linear theory of [3, 32] and [42], our
main contributions in this paper is to use blowing-up arguments based on the non-
degeneracy of bubbles proved in [33] and a removable of singularity property for the
corresponding limit equation. As pointed out in [15], the term |Q|p�1 = |Q|

4
n�2

in L(�) = 1� + p|Q|p�1� is not C1 when the space dimension n � 7, as a
result of this fact, the solution �̃,  do not have Lipschitz property with respect
to the parameter functions. This is the reason we use Schauder fixe-point theorem
rather than Contraction Mapping Theorem to solve the inner-outer gluing parabolic
system in Section 4. In dimension 5 and 6, �̃ and  do have Lipschitz continuity
with respect to the parameter functions, Theorem 1.1 as well as a stability result for
uq can be proved using the Contraction Mapping Theorem in the spirit of [2], see
Section 8.

2. Construction of the approximation

2.1. The basic cell

Let O(n) be the orthogonal group of n ⇥ n matrices M with real coefficients and
MT M = I , SO(n) ⇢ O(n) be the special orthogonal group of all matrices in O(n)
satisfying det(M) = 1. It is well known that SO(n) is a compact group containing
all rotations in Rn , and via isometry, it can be identified with a compact subset of
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R
n(n�1)
2 . Let Ŝ be the subgroup of SO(n) generated by rotations in the (x1, x2)-plane

and (x j , x↵)-plane, for any j = 1, 2, ↵ = 3, . . . , n. Then Ŝ is a compact manifold
of dimension 2n�3 without boundary. That is to say, there exists a smooth injective
map � : Ŝ ! R

n(n�1)
2 such that �(Ŝ) is a compact manifold without boundary of

dimension 2n � 3 and ��1 : �(Ŝ) ! Ŝ is the smooth parametrization of Ŝ in a
neighborhood of the identity map. Let us write

✓ 2 K = �(Ŝ), R✓ = ��1(✓)

for a smooth compact manifold K of dimension 2n � 3 and R✓ denotes a rotation
map in Ŝ.

Let A = (µ, ⇠, a, ✓) 2 R+ ⇥ Rn ⇥ R2 ⇥ R2n�3, define

QA(x) = µ� n�2
2 |⌘A(x)|2�n Q

0

@
R✓

⇣
x�⇠
µ � a| x�⇠µ |2

⌘

|⌘A(x)|2

1

A , (2.1)

where
⌘A(x) =

x � ⇠

|x � ⇠ |
� a

|x � ⇠ |

µ
(2.2)

and Q is the fixed non-degenerate solution to problem (1.5) as described in the
introduction. It was proved in [15] that for any choice of A, QA still satisfies (1.5),
i.e.,

1QA + |QA|
p�1QA = 0, in Rn.

Direct computations yield the following relations between the differentiation of QA
with respect to each component of A and z↵ defined in (1.11), (1.12), (1.13), (1.14)
and (1.15). Precisely, we have

z0(y) = �
@

@µ
[QA(x)]|µ=1,⇠=0,a=0,✓=0 (2.3)

z↵(y) = �
@

@⇠↵
[QA(x)]|µ=1,⇠=0,a=0,✓=0 , ↵ = 1, . . . , n, (2.4)

zn+2(y) =
@

@a1
[QA(x)]|µ=1,⇠=0,a=0,✓=0 , (2.5)

zn+3(y) =
@

@a2
[QA(x)]|µ=1,⇠=0,a=0,✓=0 . (2.6)

Let ✓ = (✓12, ✓13, . . . , ✓1n, ✓23, . . . , ✓2n), where ✓i j is the rotation in the (i, j)-
plane, then we have

zn+1(y) =
@

@✓12
[QA(x)]|µ=1,⇠=0,a=0,✓=0 (2.7)
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and, for l = 3, . . . , n,

zn+l+1(y) =
@

@✓1l
[QA(x)]|µ=1,⇠=0,a=0,✓=0 , (2.8)

z2n+l�1(y) =
@

@✓2l
[QA(x)]|µ=1,⇠=0,a=0,✓=0 . (2.9)

Following the definition in [15], a solution Q of (1.5) is non-degenerate if

Kernel(L) = Span{z↵ : ↵ = 0, 1, 2, . . . , 3n � 1}, (2.10)

or equivalently, any bounded solution of L(') = 0 is a linear combination of z↵ ,
↵ = 0, . . . , 3n � 1. It was proved in [33] that, the solution Q is non-degenerate
when the dimension satisfies some extra conditions. Indeed, the authors showed that
for all dimensions n  48, any solution Q = Qk is non-degenerate, for dimension
n � 49, there exists a subsequence of solutions Qk j which is non-degenerate in the
sense (2.10).

2.2. Setting up the problem

Let t0 > 0 be a sufficiently large constant, let us consider the heat equation
(
ut = 1u + |u|

4
n�2 u in �⇥ (t0,1)

u = 0 in @�⇥ (t0,1).
(2.11)

Observe that the solution of (2.11) provides a solution u(x, t) = u(x, t � t0) to
(1.1). Given a fixed point q 2 �, we will find a solution u(x, t) of equation (2.11)
with approximate form

u(x, t) ⇡ µ(t)�
n�2
2 Q

✓
x � ⇠(t)

µ(t)

◆
.

More precisely, let A = A(t) = (µ(t), ⇠(t), a(t), ✓(t)) 2 R+ ⇥ Rn ⇥ R2 ⇥ R2n�3
be the parameter functions and define the function

QA(t)(x)=µ(t)�
n�2
2

�
�⌘A(t)(x)

�
�2�n Q

0

B
B
@

R✓(t)
✓
x�⇠(t)
µ(t) � a(t)

�
�
� x�⇠(t)µ(t)

�
�
�
2
◆

|⌘A(t)(x)|2

1

C
C
A , (2.12)

where
⌘A(t)(x) =

x � ⇠(t)
|x � ⇠(t)|

� a(t)
|x � ⇠(t)|

µ(t)
(2.13)

and Q is the non-degenerate solution for (1.5) described in Section 2.1. With
abuse of notation when there is no ambiguity, here and in what follows, A(t) =
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(µ(t), ⇠(t), a(t), ✓(t)) will be abbreviated as A = (µ, ⇠, a, ✓), a is a vector in R2,
a =

� a1a2
�

2 R2, it is also a vector in Rn , namely,

a =

0

B
B
B
@

a1
a2
0
· · ·
0

1

C
C
C
A

2 Rn.

To begin with, we assume that for a fixed positive function µ0(t) ! 0 (t ! +1)
and a constant � > 0, there hold

µ(t) = µ0(t) + O(µ1+�0 (t)) as t ! +1,

⇠(t) = q + O(µ1+�0 (t)) as t ! +1,

a(t) = O(µ�0 (t)) as t ! +1,

✓(t) = O(µ�0 (t)) as t ! +1.

In [15], it was proven that for any choice of A, the function QA still satisfies (1.5),
namely

1QA + |QA|
p�1QA = 0 in Rn.

Let ỹ =
R✓(t)

✓
x�⇠(t)
µ(t) �a(t)

�
�
� x�⇠(t)µ(t)

�
�
�
2
◆

|⌘|2
and ⌘ = x�⇠(t)

|x�⇠(t)| � a(t) |x�⇠(t)|
µ(t) , then we have the

following expansions

|⌘|2 =

�
�
�
�
x � ⇠(t)
|x � ⇠(t)|

� a(t)
|x � ⇠(t)|

µ(t)

�
�
�
�

2

= 1� 2a(t) ·

✓
x � ⇠(t)

µ(t)

◆
+ |a(t)|2

|x � ⇠(t)|2

µ2(t)
,

1
|⌘|2

=
1

1� 2a(t) ·
⇣
x�⇠(t)
µ(t)

⌘
+ |a(t)|2 |x�⇠(t)|2

µ2(t)

= 1+ 2a(t) ·

✓
x � ⇠(t)

µ(t)

◆
+ O

 

|a(t)|2
|x � ⇠(t)|2

µ2(t)

!

,

ỹ =
R✓(t)

✓
x�⇠(t)
µ(t) � a(t)

�
�
� x�⇠(t)µ(t)

�
�
�
2
◆

|⌘|2

= R✓(t)
✓
x � ⇠(t)

µ(t)

◆
+ R✓(t)a(t)

�
�
�
�
x � ⇠(t)

µ(t)

�
�
�
�

2
+ O

 

|a|2
|x � ⇠(t)|3

µ3(t)

!

.

Denote the error operator as

S(u) := �ut +1u + |u|p�1u,
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with p = n+2
n�2 . Then the error of the first approximation QA(x, t) can be computed

as

S(QA) = �
@

@t
(QA(x, t)) = E0 + E1 + E2 + E3.

For y = x�⇠(t)
µ(t) , using Taylor expansion, the expressions of E0, E1, E2 and E3 are

given below explicitly.

E0 =
µ̇(t)
µ(t)

µ� n�2
2 (t) |⌘|2�n z0(ỹ) +

µ̇(t)
µ(t)

µ� n�2
2 (t) |⌘|2�n z0(ỹ) (2ỹ · R✓a)

�
µ̇(t)
µ(t)

µ� n�2
2 (t) |⌘|2�n

✓
rQ(ỹ) ·

R✓a
|⌘|2

◆ 
|x � ⇠(t)|2

µ2(t)

!

=
µ̇(t)
µ(t)

µ� n�2
2 (t)z0 (y) (1+ (y · a) F0(µ, ⇠, a, ✓, y)) ,

where f are generic smooth bounded functions of the tuple (µ, ⇠, a, ✓, y) which
may different from one place to another, F0(µ, ⇠, a, ✓, y) is a smooth bounded
function depending on (µ, ⇠, a, ✓, y). Similarly, we have

E1 = µ(t)�
n�2
2 (n � 2)|⌘|�n (⌘ · a)

✓
x � ⇠

|x � ⇠ |
·
⇠̇

µ

◆
Q(ỹ)

+ µ� n�2
2 |⌘|2�nrQ(ỹ) ·


1

|⌘|2
R✓

✓
⇠̇

µ
�
2a(x � ⇠) · ⇠̇

µ2

◆�

+ µ� n�2
2 |⌘|2�nrQ(ỹ) ·

✓
ỹ
2⌘
|⌘|2

✓
a
✓
x � ⇠

|x � ⇠ |

⇠̇

µ

◆◆◆

= µ� n�2
2 rQ (y) ·

⇠̇

µ(t)
(1+ (y · a) F1(µ, ⇠, a, ✓, y)) ,

where f are generic smooth bounded functions of the tuple (µ, ⇠, a, ✓, y) which
may different from one place to another, F1(µ, ⇠, a, ✓, y) is a smooth bounded
function depending on (µ, ⇠, a, ✓, y). Furthermore, E2 = E21 + E22, where

E21 = �µ� n�2
2 |⌘|�n2 (ȧ1 · y)


n � 2
2

Q (ỹ) + rQ(ỹ) · ỹ
�

+ µ� n�2
2 |⌘|�n R✓ ȧ1 · rQ(ỹ)

�
�
�
�
x � ⇠

µ

�
�
�
�

2

+ µ� n�2
2 |⌘|�n2


n � 2
2

Q(ỹ) + rQ(ỹ) · ỹ
� ��
�
�
x � ⇠

µ

�
�
�
�

2
a1ȧ1

= µ� n�2
2

⇢
�2 (ȧ1 · y)


n � 2
2

Q (y) + rQ (y) · y
�

+ ȧ1 · rQ (y) |y|2
�

⇥
�
1+ (y · a) F21(µ, ⇠, a, ✓, y)

�

= µ� n�2
2 zn+2(y)ȧ1

�
1+ (y · a) F21(µ, ⇠, a, ✓, y)

�
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and

E22 = �µ� n�2
2 |⌘|�n2 (ȧ2 · y)


n � 2
2

Q (ỹ) + rQ(ỹ) · ỹ
�

+ µ� n�2
2 |⌘|�n R✓ ȧ2 · rQ(ỹ)

�
�
�
�
x � ⇠

µ

�
�
�
�

2

+ µ� n�2
2 |⌘|�n2


n � 2
2

Q(ỹ) + rQ(ỹ) · ỹ
� ��
�
�
x � ⇠

µ

�
�
�
�

2
a2ȧ2

= µ� n�2
2

⇢
�2 (ȧ2 · y)


n � 2
2

Q (y) + rQ (y) · y
�

+ ȧ2 · rQ (y) |y|2
�

⇥
�
1+ (y · a) F22(µ, ⇠, a, ✓, y)

�

= µ� n�2
2 zn+3(y)ȧ2

�
1+ (y · a) F22(µ, ⇠, a, ✓, y)

�
.

Here we identify the component a1 of a with the vector
0

B
B
B
@

a1
0
0
· · ·
0

1

C
C
C
A

2 Rn,

the component a2 with the vector
0

B
B
B
@

0
a2
0
· · ·
0

1

C
C
C
A

2 Rn,

f are generic smooth bounded functions of the tuple (µ, ⇠, a, ✓, y) which may
different from one place to another, F21(µ, ⇠, a, ✓, y) and F22(µ, ⇠, a, ✓, y) are
smooth bounded functions depending on (µ, ⇠, a, ✓, y). Finally, E3 = E3,12 +Pn

j=3 E3,1 j +
Pn

j=3 E3,2 j , where

E3,12 = µ� n�2
2 |⌘|2�nrQ(ỹ) · (i ỹ)✓̇12

= µ� n�2
2 zn+1(y)✓̇12

�
1+ (y · R✓a) F3,21(µ, ⇠, a, ✓, y)

�

and similarly, for j = 3, · · · , n,

E3,1 j = µ� n�2
2 zn+ j+1(y)✓̇1 j

�
1+ (y · R✓a) F3,1 j (µ, ⇠, a, ✓, y)

�
,

E3,2 j = µ� n�2
2 z2n+l�1(y)✓̇2 j

�
1+ (y · R✓a) F3,2 j (µ, ⇠, a, ✓, y)

�
,
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where i is the rotation matrix with angle ⇡2 around the axes x1, x2 in E3,12, around
the axes x1, x j in E3,1 j and around the axes x2, x j in E3,2 j respectively, F3,12(µ,
⇠ , a, ✓ , y), F3,1 j (µ, ⇠, a, ✓, y) and F3,2 j (µ, ⇠, a, ✓, y), j = 3, · · · , n, are smooth
bounded functions depending on (µ, ⇠, a, ✓, y).

To perform the gluing method, the terms µ� n�2
2 �1µ̇z0(y), µ� n�2

2 �1⇠̇ · rQ(y)
andµ� n�2

2 �1rQ(y)·(i R✓ ⇠) ✓̇ do not have enough decay, inspired by [3], we should
add nonlocal terms to cancel them out at main order. By the detailed construction
of Q (see [9]) and (1.6) we know that the main order of z0(y) is

Dn,k(2� |y|2)
�
1+ |y|2

� n
2

with Dn,k = �n�2
2

h
4

n(n�2)

i n�2
4 2

n�2
2 (1+ dk). Therefore, we consider the follow-

ing heat equation

�'t +1' +
µ̇

µ
µ�(n�2)

Dn,k
✓
2�

�
�
� x�⇠µ

�
�
�
2
◆

✓
1+

�
�
� x�⇠µ

�
�
�
2
◆ n
2

= 0 in Rn ⇥ (t0,+1). (2.14)

By the Duhamel principle, we known

80(x, t)=�
Z t

t0

Z

Rn
p(t�s̃, x�y)

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)
Dn,k

✓
2�

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
◆

✓
1+

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
◆ n
2

dyds̃ (2.15)

provides a bounded solution for (2.14). Here p(t, x) = 1
(4⇡ t)

n
2
e

�|x |2
4t is the stan-

dard heat kernel for the heat operator � @
@t + 1 on Rn ⇥ (t0,+1). By the super-

sub solution argument, 80(x, t) satisfies the estimate 80(x, t) ⇠ µ̇
µ

µ�n+4

1+|y|n�4 (see
Lemma 4.3).

To cancel the main order µ� n�2
2 �1⇠̇ · En,k y

(1+|y|2)
n
2
of µ� n�2

2 �1⇠̇ · rQ(y) where

En,k is a constant depending on n and k, for y = x�⇠
µ , we consider the following

heat equation

�'t +1' + En,kµ�(n�2) 1
�
1+ |y|2

� n
2

⇠̇

µ
· y = 0 in Rn ⇥ (t0,+1). (2.16)
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The solution defined from the Duhamel principle

81(x, t) = �En,k
Z t

t0

Z

Rn
p(t � s̃, x � y)µ�(n�2)(s̃)

⇠̇(s̃) · y�⇠(s̃)
µ(s̃)

µ(s̃)

⇥
1

✓
1+

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
◆ n
2
dyds̃

satisfies the estimate 81(x, t) ⇠ |⇠̇ |
µ

µ�n+4

1+|y|n�3 .
Similarly, for i = 1, 2, we consider the heat equation

�'t+1'+µ�(n�2) En,k |y|
2�2Dn,k

�
2� |y|2

�

�
1+ |y|2

� n
2

ȧi yi = 0 in Rn⇥(t0,+1), (2.17)

which has a bounded solution given by

82,i (x, t) = �
Z t

t0

Z

Rn
p(t � s̃, x � y)µ�(n�2)(s̃)ȧi (s̃)

✓
y � ⇠(s̃)

µ(s̃)

◆

i

⇥
En,k

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
� 2Dn,k

✓
2�

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
◆

✓
1+

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
◆ n
2

dyds̃

satisfies the estimate 82,i (x, t) ⇠ |ȧi | µ�n+4

1+|y|n�5 .

Now we define 8⇤(x, t) = 80(x, t) +81(x, t) +
P2

i=18
2,i (x, t). Since the

final solution must sasify u = 0 in @�, a better approximation than QA(x, t) should
be

uA(x, t) = QA(x, t) + µ
n�2
2 8⇤(x, t) � µ

n�2
2 H(x, q). (2.18)

The error of uA can be computed as follows,

S(uA) = �@t u A + |uA|p�1uA � |QA|
p�1QA + µ

n�2
2 18⇤(x, t). (2.19)

2.3. The error S(uA)

Near the given point q, the following expansion holds.

Lemma 2.1. Consider the region |x � q|  " for " small enough, we have

S(uA) = µ� n+2
2 (µE0 + µE1 + µE2 + µE3 +R)
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with

E0= p|Q|p�1
h
�µn�3H(q, q)+µn�380(q, t)

i
+µ̇(t)

 

z0(y)�
Dn,k(2�|y|2)
�
1+ |y|2

� n
2

!

,

E1= p|Q|p�1
h
�µn�2rH(q, q)

i
· y + p|Q|p�1

h
µn�381(q, t)

i

+

 

rQ(y) �
En,k y

�
1+ |y|2

� n
2

!

· ⇠̇ ,

E2= p|Q|p�1
h
µn�382,1(q, t) + µn�382,2(q, t)

i

+µ(t)ȧ1

 

�2y1

 

z0(y)�
Dn,k(2�|y|2)
�
1+ |y|2

� n
2

!

+|y|2
 
@

@y1
Q(y)�

En,k y1
�
1+|y|2

� n
2

!!

+µ(t)ȧ2

 

�2y2

 

z0(y)�
Dn,k(2�|y|2)
�
1+ |y|2

� n
2

!

+|y|2
 
@

@y2
Q(y)�

En,k y2
�
1+ |y|2

� n
2

!!

,

E3 = zn+1(y)µ✓̇12 +
nX

j=3

�
zn+ j+1(y)µ✓̇1 j + z2n+ j�1(y)µ✓̇2 j

�
,

R =
⇣
µn+2
0 + µn�1

0 µ̇
⌘
f +

µn�1
0

Ef
1+ |y|2

· a +
µn�2
0 Eg

1+ |y|4
· (⇠ � q) + µn

0 ⇠̇ · Eh,

where f , Ef , Eg and Eh are smooth and bounded functions depending on the tuple of
variables (µ�1

0 µ, ⇠, a, ✓, x � ⇠).

Proof. Set

ỹ =
R✓

✓
x�⇠(t)
µ(t) � a

�
�
� x�⇠(t)µ(t)

�
�
�
2
◆

|⌘|2
,

we have

uA(x, t) = µ(t)�
n�2
2 |⌘|2�n Q (ỹ) + µ

n�2
2 8⇤(x, t) � µ

n�2
2 H(x, q)

and
S(uA) = S1 + S2,
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where

S1 := E0 + E1 + E2 + E3 +
n � 2
2

µ
n�4
2 µ̇H(x, q)

�
n � 2
2

µ
n�4
2 µ̇8⇤(x, t) � µ

n�2
2 @t8

⇤(x, t),

S2 :=
�
�
�µ(t)�

n�2
2 |⌘|2�n Q (ỹ) + µ

n�2
2 8⇤(x, t) � µ

n�2
2 H(x, q)

�
�
�
p�1

⇥
⇣
µ(t)�

n�2
2 |⌘|2�n Q (ỹ) + µ

n�2
2 8⇤(x, t) � µ

n�2
2 H(x, q)

⌘

� µ(t)�
n+2
2 |⌘|�2�n |Q (ỹ)|p�1 Q (ỹ) + µ

n�2
2 18⇤(x, t).

Let

S2 =µ� n+2
2 |⌘|�2�n

h
|Q(ỹ) +2|p�1 (Q(ỹ) +2) � |Q(ỹ)|p�1 Q(ỹ)

i
,

and
2 =µn�2|⌘|n�28⇤(x, t) � µn�2|⌘|n�2H(x, q). (2.20)

Observe that |2| . µn�2
0 when " is small enough, we may assume Q(y)�1|2| < 1

2
in the considered region |x � q| < ". Using Taylor’s expansion, we obtain the
following

S2=µ� n+2
2 |⌘|�2�n

"

p |Q(ỹ)|p�12+ p(p � 1)
Z 1

0
(1�s) |Q(ỹ) + s2|p�2 ds22

#

.

Hence we have

2 = µn�2|⌘|n�28⇤��|⌘|2R�✓ ỹ + a|y|2
�
µ + ⇠, t

�

� µn�2|⌘|n�2H
��

|⌘|2R�✓ ỹ + a|y|2
�
µ + ⇠, q

�
.

We further expand as

2 = �µn�2|⌘|n�2
�
H(q, q) �8⇤(q, t)

�

+
��

|⌘|2R�✓ ỹ + a|y|2
�
µ + ⇠ � q

�
·
h
�µn�2|⌘|n�2r

�
H(q, q) �8⇤(q, t)

�i

+
Z 1

0

n
� µn�2|⌘|n�2D2x H

�
q + s

��
|⌘|2R�✓ ỹ + a|y|2

�
µ + ⇠ � q

�
, q

�o

⇥
h�

|⌘|2R�✓ ỹ + a|y|2
�
µ + ⇠ � q

i2
(1� s)ds

+
Z 1

0

n
µn�2|⌘|n�2D2x8

⇤�q + s
��

|⌘|2R�✓ ỹ + a|y|2
�
µ + ⇠ � q

�
, t
�o

⇥
h�

|⌘|2R�✓ ỹ + a|y|2
�
µ + ⇠ � q

i2
(1� s)ds.
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Therefore, we have
2 = �µn�2|⌘|n�2H(q, q) � µn�1|⌘|nrH(q, q) · R�✓ ỹ

� µn�2|⌘|n�2rH(q, q) · (⇠ � q) � µn�1|⌘|n�2rH(q, q) · a|y|2

+ µn�2|⌘|n�28⇤(q, t) + µn�1|⌘|nr8⇤(q, t) · R�✓ ỹ

+ µn�2|⌘|n�2r8⇤(q, t) · (⇠ � q) � µn�1|⌘|n�2r8⇤(q, t) · a|y|2

+ µn0F(µ�1
0 µ, ⇠, a, ✓, x � ⇠)

= �µn�2
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n�2
2

H(q, q)

� µn�1
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n
2

rH(q, q) · R�✓ ỹ

� µn�2
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n�2
2

rH(q, q) · (⇠ � q)

� µn�1
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n�2
2

rH(q, q) · a|y|2

+ µn�2
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n�2
2

8⇤(q, t)

+ µn�1
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n
2

r8⇤(q, t) · R�✓ ỹ

+ µn�2
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n�2
2

r8⇤(q, t) · (⇠ � q)

+ µn�1
 

1� 2a ·
x � ⇠

µ(t)
+ |a|2

|x � ⇠ |2

µ2(t)

! n�2
2

r8⇤(q, t) · a|y|2

+ µn0F(µ�1
0 µ, ⇠, a, ✓, x � ⇠)

= �µn�2 (1+ O(|a||y|)) H(q, q)

� µn�1 (1+ O(|a||y|))rH(q, q) · y (1+ O(|a||y|))

� µn�2 (1+ O(|a||y|))rH(q, q) · (⇠ � q) � µn�1 (1+ O(|a||y|))rH(q, q) · a|y|2

+ µn�2 (1+ O(|a||y|))8⇤(q, t) + µn�1 (1+ O(|a||y|))r8⇤(q, t) · y (1+ O(|a||y|))

+ µn�2 (1+ O(|a||y|))r8⇤(q, t) · (⇠ � q)

+ µn�1 (1+ O(|a||y|))r8⇤(q, t) · a|y|2 + µn0F(µ�1
0 µ, ⇠, a, ✓, x � ⇠)

= �µn�2H(q, q) � µn�1rH(q, q) · y � µn�2rH(q, q) · (⇠ � q)

� µn�1rH(q, q) · a|y|2 + µn�28⇤(q, t)

+ µn�1r8⇤(q, t) · y + µn�2r8⇤(q, t) · (⇠ � q) + µn�1r8⇤(q, t) · a|y|2

+ µn0F(µ�1
0 µ, ⇠, a, ✓, x � ⇠) + µn�20 |a||y|F(µ�1

0 µ, ⇠, a, ✓, x � ⇠)
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and

p |Q(ỹ)|p�12

= p
�
�
�Q

⇣
R✓ y + a |y|2 + O

⇣
|a|2|y|3

⌘⌘��
�
p�1

2

= p
�
�
�Q(y) + rQ(y) ·

⇣
a |y|2 + (R✓ y � y)

⌘
+ O(|a|2|y|2)

�
�
�
p�1

2

= p
⇣
|Q|p�1 (y) + O(|a||y|)

⌘
2

= p
⇣
|Q|p�1 (y) + O(|a||y|)

⌘✓
� µn�2H(q, q) � µn�1rH(q, q) · y

� µn�2rH(q, q) · (⇠ � q) � µn�1rH(q, q) · a|y|2

+ µn�28⇤(q, t) + µn�1r8⇤(q, t) · y + µn�2r8⇤(q, t) · (⇠ � q)

+ µn�1r8⇤(q, t) · a|y|2 + µn
0F(µ�1

0 µ, ⇠, a, ✓, x � ⇠)

+ µn�2
0 |a||y|F(µ�1

0 µ, ⇠, a, ✓, x � ⇠)

◆

= p |Q|p�1 (y)
✓

� µn�2H(q, q) � µn�1rH(q, q) · y

� µn�2rH(q, q) · (⇠ � q) � µn�1rH(q, q) · a|y|2

+ µn�28⇤(q, t) + µn�1r8⇤(q, t) · y + µn�2r8⇤(q, t) · (⇠ � q)

+ µn�1r8⇤(q, t) · a|y|2
◆

+
µn�2
0 |a||y|
1+ |y|4

F(µ�1
0 µ, ⇠, a, ✓, x � ⇠),

where the smooth functions F are bounded in its arguments which may different
from line to line.

Decompose S1 as S1 = S11 + S12, where

S11 := E0 + E1 + E2 + E3 � µ
n�2
2 @t8

⇤(x, t),

S12 :=
n � 2
2

µ
n�4
2 µ̇H(x, q) �

n � 2
2

µ
n�4
2 µ̇8⇤(x, t).

Observe that
S12 = µ

n�2
2 �1
0 µ̇F(µ�1

0 µ, ⇠, a, ✓, x � ⇠)

holds for a function F smooth and bounded in their arguments. This proves the
lemma.

Recall that we are trying to find a solution with form

u(x, t) = uA(x, t) + �̃(x, t),
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where �̃ is a small term compared with uA(x, t). By the relation S(uA + �̃) = 0,
the main equation can be written as

�@t �̃ +1�̃ + p |uA|p�1 �̃ + S(uA) + ÑA(�̃), (2.21)

where

ÑA(�̃) =
�
�
�uA + �̃

�
�
�
p�1

(uA + �̃) � |uA|p�1 (uA + �̃) � p |uA|p�1 �̃. (2.22)

Note that around q it is more convenient to use the self-similar form, so we write
�̃(x, t) as

�̃(x, t) = µ(t)�
n�2
2 �

✓
x � ⇠(t)

µ(t)

◆
. (2.23)

2.4. Improvement of the approximation

The largest term in the expansion for µ
n+2
2 S(uA) is µE0. To improve the approxi-

mation error near the point q, �(y, t) should be the solution of the elliptic equation
(at main order)
1y�0+ p|Q|p�1(y)�0 = �µ0E0 in Rn, �0(y, t) ! 0 as |y| ! 1. (2.24)

Equation (2.24) is an elliptic equation of the form
L[ ] :=1y + p|Q|p�1(y) =h(y) in Rn,  (y) ! 0 as |y|!1. (2.25)

By the nondegeneracy of the basic cell Q (see [33]), we know that each bounded
solution of L[ ] = 0 in Rn is contained in the space

span{z0, · · · , z3n�1}.

Standard elliptic theory tells us that problem (2.25) is solvable for h(y)=O(|y|�m),
m > 2, if and only if the L2 orthogonal identities

Z

Rn
h(y)zi (y)dy = 0 for all i = 0, · · · , 3n � 1

hold.
For (2.24), we first consider the following condition,

Z

Rn
µ

n+2
2 S(uA)(y, t)z0(y)dy = 0. (2.26)

We claim that, for suitable positive constant b and a positive constant cn depending
only on n, choosing µ = bµ0(t) , µ0(t) = cnt�

1
n�4 , (2.26) can be achieved at main

order. Observe that µ̇0(t) = � 1
(n�4)cn�4n

µn�3
0 (t) and the main contribution to the

left of (2.26) comes from the following term

E0 j = p|Q|p�1
h
µn�3

⇣
80(q, t) � H(q, q)

⌘i
+ µ̇(t)

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

.
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Now let us compute the term 80(q, t) which is given by (2.15). Note that the heat

kernel function p(t, x) = 1
(4⇡ t)

n
2
e

�|x |2
4t satisfies the following transformation law

p(t � s̃, q � y) = (t � s̃)�
n
2 p

 

1,
|q � y|

(t � s̃)
1
2

!

,

therefore we have

80(q, t)

= �
Z t

t0

Z

Rn
p(t � s̃, q � y)

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)Dn,k
✓
2�

�
�
� y�⇠(s̃)µ(s̃)

�
�
�
2
◆

✓
1+

�
�
�
y�R✓(s̃)⇠(s̃)

µ(s̃)

�
�
�
2
◆ n
2

dyds̃

= �(1+ o(1))
Z t

t0

Z

Rn
p(t�s̃, q�y)

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)Dn,k
✓
2�

�
�
� y�qµ(s̃)

�
�
�
2
◆

✓
1+

�
�
� y�qµ(s̃)

�
�
�
2
◆ n
2

dyds̃

= �(1+ o(1))
Z t

t0

1
(t � s̃)

n
2
ds̃

Z

Rn
p

 

1,
q � y

(t � s̃)
1
2

!
µ̇(s̃)
µ(s̃)

⇥

µ�(n�2)(s̃) (t � s̃)
n
2 Dn,k

 

2�

�
�
�
�
(t�s̃)

1
2

µ(s̃)
q�y

(t�s̃)
1
2

�
�
�
�

2
!

 

1+

�
�
�
�
(t�s̃)

1
2

µ(s̃)
q�y

(t�s̃)
1
2

�
�
�
�

2
! n
2

d
y � q j

(t � s̃)
1
2

= �(1+ o(1))
Z t

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)ds̃
Z

Rn
p

 

1,
q � y

(t � s̃)
1
2

!

⇥

Dn,k

 

2�

�
�
�
�
(t�s̃)

1
2

µ(s̃)
q�y

(t�s̃)
1
2

�
�
�
�

2
!

 

1+

�
�
�
�
(t�s̃)

1
2

µ(s̃)
q�y

(t�s̃)
1
2

�
�
�
�

2
! n
2

d
y � q

(t � s̃)
1
2

= �(1+ o(1))
Z t

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃,

with

F(a) =
Z

Rn
p (1, x)

Dn,k
�
2� a2|x |2

�

�
1+ a2|x |2

� n
2

dx .
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We claim that, for a suitable positive constant c depending on n and b, it holds that

80(q, t)=�(1+o(1))
Z t

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃ = c(1+o(1)). (2.27)

Indeed, for a small positive constant �, decompose the integral
Z t

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃

as
Z t

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃ =
Z t��

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃

+
Z t

t��

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃

=: I1 + I2.

For I1, we have t � s̃ > �, therefore

0  �I1 
b4�n

(n � 4)cn�4n

Z t��

t0
µ�2(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃

 C
b4�n

(n � 4)cn�4n

Z t��

t0
µ�2(s̃)

�
�
�
�
�
(t � s̃)

1
2

µ(s̃)

�
�
�
�
�

�(n�2)

ds̃

=
C

n � 4

Z t��

t0

1
s̃

1

(t � s̃)
n�2
2
ds̃ 

C
(n � 4)t0

2
n � 4

1

�
n�4
2

.

Note that we have used the definition µ0 = bcnt�
1

n�4 and the fact |a|n�2F(a)  C .
For

I2 =
Z t

t��

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃,

after the change of variables (t�s̃)
1
2

µ(s̃) = ŝ, we have

ds̃ = �
µ(s̃)

1
2 (t � s̃)�

1
2 + µ̇(s̃)ŝ

dŝ,

I2 =
Z t

t��

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃

=
Z �

1
2

µ(t��)

0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F
�
ŝ
� µ(s̃)
1
2 (t � s̃)�

1
2 + µ̇(s̃)ŝ

dŝ.
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Observe that for small �, 12 (t � s̃)�
1
2 + µ̇(s̃)ŝ = 1

2 (t � s̃)�
1
2 (1� 2

(n�4)s̃ (t � s̃)) >

1
2 (t � s̃)�

1
2 (1� 2

(n�4)s̃ �), ds̃ = µ(s̃)
1
2 (t�s̃)

� 12
(1+ O(�))dŝ, hence

I2 = �
2b4�n

(n � 4)cn�4n

0

B
@
Z �

1
2

µ(t��)

0
ŝ F

�
ŝ
�
dŝ + o(1)

1

C
A = �

2b4�n

(n � 4)cn�4n
A + o(1)

when �
1
2

µ(t��) is large enough. Here the constant A =
R 1
0 s̃ F(s̃)ds̃ < +1 since the

dimension of the space satisfies n > 4. Hence we have

80(q, t) = �(1+ o(1))
Z t

t0

µ̇(s̃)
µ(s̃)

µ�(n�2)(s̃)F

 
(t � s̃)

1
2

µ(s̃)

!

ds̃

=
2b4�n

(n � 4)cn�4n
A + o(1) := Bb4�n + o(1)

(2.28)

when t0 is sufficiently large. Here the constant B is B = Bn := 2
(n�4)cn�4n

A. This is
(2.27).

Direct computations yield that

µ
�(n�3)
0 (t)

Z

Rn
E0(y, t)z0(y)dy ⇡ c1bn�3H(q, q) �

2c1A + c2
(n � 4)cn�4n

b (2.29)

with
c1 = �p

Z

Rn
|Q|p�1(y)z0(y)dy 2 (0,+1),

c2 =
Z

Rn

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

z0(y)dy 2 (0,+1).

Note that c1 < +1 and c2 < +1 are due to the assumption n > 4. We will prove
this

c1 > 0, c2 > 0 (2.30)

in the Appendix. Write

µ(t) = bµ0(t) = bcnt�
1

n�4 .

Then (2.26) can be satisfied at main order if the following holds

bn�2H(q, q) �
2c1A + c2

(n � 4)cn�4n c1
b2 = 0. (2.31)
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Imposing 2c1A+c2
(n�4)cn�4n c1

= 2
n�2 , i.e.,

cn =


(2c1A + c2)(n � 2)

2(n � 4)c1

� 1
n�4

,

we get

µ̇0(t) = �
2c1

(2c1A + c2)(n � 2)
µn�3
0 (t). (2.32)

By (2.31) and (2.32), the constants b should satisfy the relation

H(q, q)bn�3 =
2b

n � 2
. (2.33)

It is clear that (2.33) can be uniquely solved if and only if

H(q, q) > 0, (2.34)

which holds from the maximum principle. Under the assumption (2.34),

b =

✓
2

(n � 2)H(q, q)

◆ 1
n�4

. (2.35)

Similarly, the relations
Z

Rn
µ

n+2
2 S(uA)(y, t)zi (y)dy = 0, i = 1, · · · , 3n � 1 (2.36)

can be achieved at main order by choosing ⇠0 = q, a0 = (0, 0) and ✓0 = (0, · · · , 0).
Now fix µ0(t) and the constant b satisfying (2.35), denote

µ̄0 = bµ0(t).

Let 8 be the solution for (2.24) for µ = µ̄0 which is unique, then we have the
following

1y8+ p|Q|p�1(y)8 = �µ0E0[µ0, µ̇0] in Rn, 8(y, t) ! 0 as |y| ! 1.

From the definitions for µ0 and b, we obtain

µ0E0 = ��µn�2
0 q0(y),

where � is positive,

q0(y) :=
p|Q|p�1(y)c2b2

(n � 4)cn�4n c1
+

b2

(n � 4)cn�4n

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

(2.37)

and
R
Rn q0(y)z0dy = 0.
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Let p0 = p0(|y|) be the solution for L(p0) = q0. Then p0(y) = O(|y|�2) as
|y| ! 1 since (2.37) holds. Therefore,

8(y, t) = �µn�2
0 p0(y). (2.38)

Thus the corrected approximation should be

u⇤
A(x, t) = uA(x, t) + 8̃(x, t) (2.39)

with
8̃(x, t) = µ(t)�

n�2
2 8

✓
x � ⇠(t)

µ(t)

◆
.

2.5. Estimating the error S(u⇤
A)

In the region |x � q| > �, S(u⇤
A) can be described as

S(u⇤
A)(x, t) = µ

n�2
2 �1
0 µ̇ f1 + µ

n+2
2
0 f2 + µ

n�2
2
0 ⇠̇ · Ef1 + µ

n
2
0 ȧ · Ef2 + µ

n
2
0 ✓̇ · Ef3, (2.40)

where f1, f2, Ef1, Ef2 and Ef3 are smooth bounded functions depending on the tuple
(x, µ�1

0 µ, ⇠, a, ✓).
In the region near the point q, direct computations yields that

S(u⇤
A)= S(uA) � µ� n+2

2 µ0E0[µ̄0, µ̇0]

+µ� n+2
2

⇢
�µ2@t8(y,t)+µµ̇


n�2
2
8(y, t)+y · ry8

�
+ry8(y,t) · µ⇠̇

�

+
�
�
�uA + 8̃

�
�
�
p�1

(uA + 8̃) � |uA|p�1 uA � pµ� n+2
2 |Q(y)|p�18(y, t),

(2.41)
where y = x�⇠

µ . If |x � q|  �,

µ
n+2
2 S(u⇤

A) = µ
n+2
2 S(uA) � µ0E0[µ̄0, µ̇0] + A(y), (2.42)

where

A=µn+4
0 f (µ�1

0 µ,⇠,a,✓,µy)+
µ2n�40
1+|y|2

g(µ�1
0 µ, ⇠, a, ✓, µy), y=

x�⇠

µ
(2.43)

for smooth and bounded functions f and g.
Now we write µ(t) as

µ(t) = µ̄0 + �(t).



SIGN-CHANGING BLOW-UP SOLUTIONS FOR THE CRITICAL HEAT EQUATION 593

From (2.42),

S(u⇤
A)=µ� n+2

2
�
µ0

�
E0[µ, µ̇] � E0[µ̄0, µ̇0]

�
+�E0[µ, µ̇]+µE1[µ, ⇠̇ ]+R+A

 
.

Observe that 80 is a nonlocal term depending on µ, µ̇ and we have

µn�380[µ̄0 + �, bµ̇0 + �̇](q, t) � µn�380[µ̄0, bµ̇0](q, t)

=�2A�̇� µn�4
0 (n � 3)B�

which can be deduced by similar arguments as (2.28), one gets

E0[µ̄0 + �, bµ̇0 + �̇] � E0[µ̄0, bµ̇0]

= �̇

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

� µn�4
0 p|Q|p�1(y)

h
(n � 3)bn�4H(q, q)�

i

+ µn�4
0 p|Q|p�1(y)(n � 3)B�� p|Q|p�1(y)2A�̇

� µn�4
0 p|Q|p�1(y)(n � 3)B�,

As for �E0[µ, µ̇], we have

�E0[µ, µ̇] = ��̇

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

+ �b

µ̇0

✓
z0(y) �

Dn,k(2� |y|2)
�
1+ |y|2

� n
2

◆

+ p|Q|p�1(y)µn�3
0

�
� bn�4H(q, q)

�
�

+ p|Q|p�1(y)bµn�3
0 B�

� µn�4
0 p|Q|p�1(y) f (µ�1

0 �)�
2,

where f is smooth and bounded in its arguments.
Combining all the estimates above, we get the expansion for S(u⇤

A).

Lemma 2.2. In the region |x � q|  � for a fixed small � > 0, set µ = µ̄0 + �
with |�(t)|  µ0(t)1+� for some positive number � 2 (0, n � 4). When t is large
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enough, we have the expansion of S(u⇤
A) as

S(u⇤
A)

= µ� n+2
2

⇢
µ0�̇

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

� 2Ap|Q|p�1(y)

!

� µ0µ
n�4
0 p|Q|p�1(y)

h
(n � 3)bn�4H(q, q)�

i

+

 

rQ(y) �
En,k y

�
1+ |y|2

� n
2

!

· ⇠̇ + p|Q|p�1
h
�µn�2rH(q, q)

i
· y

+ µ2(t)ȧ1

 

�2y1

 

z0(y) �
Dn,k(2�|y|2)
�
1+ |y|2

� n
2

!

+|y|2
 
@

@y1
Q(y) �

En,k y1
�
1+|y|2

� n
2

!!

+ µ2(t)ȧ2

 

�2y2

 

z0(y) �
Dn,k(2�|y|2)
�
1+|y|2

� n
2

!

+|y|2
 
@

@y2
Q(y) �

En,k y2
�
1+|y|2

� n
2

!!

+ µ2(t)✓̇12zn+1(y) +
nX

j=3

⇣
µ2(t)✓̇1 j zn+ j+1(y) + µ2(t)✓̇2 j z2n+ j�1(y)

⌘�

+ µ� n+2
2 �b


µ̇0

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

+ p|Q|p�1(y)µn�3
0

✓
� bn�4H(q, q) + B

◆�

+ µ
� n+2

2
0


µn�4
0 p|Q|p�1(y) f1�2 +

f2
1+ |y|n�2

��̇+ µn+2
0 f3 + µn�1

0 µ̇ f4
�

+ µ
� n+2

2
0

h
⇠̇ Ef1 + ⇠̇ Ef2 + ⇠̇ Ef3

i

+ µ
� n+2

2
0

"
µn
0g1

1+|y|2
+

µ2n�40 g2
1+|y|2

+
µn�2
0 g3
1+|y|4

�+
µn�1
0 Eg1

1+ |y|2
· a+

µn�2
0 Eg2
1+|y|4

· (⇠�q)

#

,

where x = ⇠ + µy, f1, f2, f3, f4, Ef1, Ef2, Ef3, g1, g2, g3 and Eg1, Eg2 are smooth
bounded (vector) functions depending on the tuple of variables (µ�1

0 µ, ⇠, a, ✓, x).

3. The inner-outer gluing procedure

We will find a solution for (2.11) with form

u = u⇤
A + �̃

when t0 is large enough, the function �̃(x, t) is small compared to u⇤
A. To this aim,

we use the inner-outer gluing procedure.
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Write

�̃(x, t) =  (x, t) + �in(x, t) where �in(x, t) := ⌘R(x, t)�̃(x, t)

with
�̃(x, t) := µ

� n�2
2

0 �

✓
x � ⇠

µ0
, t
◆

, µ0(t) = bµ0(t)

and
⌘R(x, t) = ⌘

✓
|x � ⇠ |

Rµ0

◆
.

In above, ⌘(⌧ ) is a (smooth) cut-off function defined on the interval [0,+1),
⌘(⌧ ) = 1 for 0  ⌧ < 1 and ⌘(⌧ ) = 0 for ⌧ > 2. R is a fixed number defined as

R = t⇢0 with 0 < ⇢ ⌧ 1. (3.1)

Under this ansatz, problem (2.11) can be written as
(
@t �̃ = 1�̃ + p(u⇤

A)
p�1�̃ + Ñ (�̃) + S(u⇤

A) in �⇥ (t0,1)

�̃ = �u⇤
A in @�⇥ (t0,1)

(3.2)

where ÑA(�̃) = |u⇤
A+�̃|p�1(u⇤

A+�̃)�p|u⇤
A|
p�1�̃�|u⇤

A|
p�1u⇤

A, S(u
⇤
A) = �@tµ⇤

A+
1u⇤

A + |u⇤
A|
p�1u⇤

A. Let us write S(u
⇤
A) as

S(u⇤
A) = SA + S(2)

A ,

where
SA

= µ� n+2
2

⇢
µ0�̇

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

� 2Ap|Q|p�1(y)

!

� µ0µ
n�4
0 p|Q|p�1(y)

h
(n � 3)bn�4H(q, q)�

i

+ �b

"

µ̇0

 

z0(y) �
Dn,k(2�|y|2)
(1+ |y|2)

n
2

!

+ p|Q|p�1(y)µn�3
0 (�bn�4H(q, q)+B)

#

+

✓
rQ(y) �

En,k y
(1+ |y|2)

n
2

◆
· ⇠̇ + p|Q|p�1

h
� µn�2rH(q, q)

i
· y

+ µ2(t)ȧ1

 

�2y1

 

z0(y)�
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

+|y|2
 
@

@y1
Q(y) �

En,k y1
�
1+|y|2

� n
2

!!

+ µ2(t)ȧ2

 

�2y2

 

z0(y)�
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

+|y|2
 
@

@y2
Q(y) �

En,k y2
�
1+|y|2

� n
2

!!

+ µ2(t)✓̇12zn+1(y) +
nX

j=3

⇣
µ2(t)✓̇1 j zn+ j+1(y) + µ2(t)✓̇2 j z2n+ j�1(y)

⌘�
.



596 M. DEL PINO, M. MUSSO, J. WEI AND Y. ZHENG

Define

VA = p

 

|u⇤
A|
p�1 �

�
�
�
�µ

� n�2
2 Q

✓
x � ⇠

µ

◆��
�
�

p�1
!

⌘R + p(1� ⌘R)|u⇤
A|
p�1, (3.3)

then �̃ satisfies problem (3.2) if
(1)  solves the outer problem

8
><

>:

@t = 1 + VA + 2r⌘Rr�̃
+�̃

�
1� @t

�
⌘R + ÑA(�̃) + Sout in �⇥ (t0,1)

 = �u⇤
A on @�⇥ (t0,1),

(3.4)

with
Sout = S(2)

A + (1� ⌘R)SA. (3.5)

(2) �̃ solves

⌘R@t �̃ = ⌘R

h
1�̃ + p|Qµ,⇠,✓ |

p�1�̃ + p|Qµ,⇠ |
p�1 + SA

i

in B2Rµ(⇠) ⇥ (t0,1),
(3.6)

for Qµ,⇠ := µ� n�2
2 Q

⇣
x�⇠
µ

⌘
. In the self-similar form, (3.6) becomes the so-called

inner problem

µ20@t� = 1y� + p|Q|p�1(y)� + µ
n+2
2
0 SA(⇠ + µ0y, t)

+ pµ
n�2
2
0

µ20
µ2

|Q|p�1(
µ0
µ
y) (⇠ + µ0y, t) + B[�] + B0[�]

in B2R(0) ⇥ (t0,1),

(3.7)

where
B[�] := µ0µ̇0

✓
n � 2
2

� + y · ry�

◆
+ µ0r� · ⇠̇ (3.8)

and
B0[�] := p


|Q|p�1

✓
µ0
µ
y
◆

� |Q|p�1(y)
�
�

+ p

µ20|u

⇤
A|
p�1 � |Q|p�1

✓
µ0
µ
y
◆�
�.

(3.9)

4. Scheme of the proof

To find a solution (�, ) satisfying (3.4) and (3.7), we proceed with the following
steps.
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4.1. Linear theory for (3.7)

Let us rewrite problem (3.7) as

µ20@t� = 1y� + p|Q|p�1(y)�
+ H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t), y 2 B2R(0),

(4.1)

for t � t0, where

H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ] := µ
n+2
2
0 SA(⇠ + µ0y, t) + B[�] + B0[�]

+ pµ
n�2
2
0

µ20
µ2

|Q|p�1
✓

µ0
µ
y
◆
 (⇠ + µ0y, t),

(4.2)

the terms B[�], B0[�] are defined in (3.8), (3.9) respectively. Using change of
variables

t = t (⌧ ),
dt
d⌧

= µ20(t),

(4.1) becomes

@⌧� = 1y� + p|Q|p�1(y)� + H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ )) (4.3)

for y 2 B2R(0), ⌧ � ⌧0. Here ⌧0 the (unique) positive number such that t (⌧0) = t0.
We try to find a solution � to the following equation:

8
>>><

>>>:

@⌧� = 1y� + p|Q|p�1(y)�
+H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ )) y 2 B2R(0), ⌧ � ⌧0

�(y, ⌧0) =
KX

l=1
el Zl(y) y 2 B2R(0),

(4.4)

for suitable constants el , l = 1, · · · , K . Here Zl are eigenfunctions associated to
negative eigenvalues of the problem

L(�) + �� = 0, � 2 L1(Rn).

It was proved in [15] that K is finite and Zl satisfies

Zl(x) ⇠
e�

p
��|x |

|x |
N�1
2

as |x | ! 1.

Next, we prove that (4.4) is solvable for �, provided is in suitable weighted spaces
and the parameter functions �, ⇠ , a, ✓ are chosen so that the term H [�, ⇠, a, ✓, �̇, ⇠̇ ,
ȧ, ✓̇,�, ](y, t (⌧ )) in the right-hand side of (4.4) satisfies the following L2 orthog-
onality conditions

Z

B2R
H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))zl(y)dy = 0, (4.5)
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for all ⌧ � ⌧0, l = 0, 1, 2, · · · , 3n � 1. These conditions will impose highly
nonlinearity to (4.4), to get a solution �, we apply the Schauder fixed-point theorem.
We first need a linear theory for (4.4).

For R > 0 large but fixed, consider the following initial value problem
8
><

>:

@⌧� = 1� + p|Q|p�1(y)� + h(y, ⌧ ) y 2 B2R(0) ⌧ � ⌧0

�(y, ⌧0) =
KX

l=1
el Zl(y), y 2 B2R(0).

(4.6)

Set
⌫ = 1+

�

n � 2
,

then we have µn�2+�
0 ⇠ ⌧�⌫ . Define the weighted norm for h as

khk↵,⌫ := sup
⌧>⌧0

sup
y2B2R

⌧⌫(1+ |y|↵)|h(y, ⌧ )|.

Then the following estimates for (4.6) hold.

Proposition 4.1. Suppose ↵ 2 (2, n � 2), ⌫ > 0, khk2+↵,⌫ < +1 and
Z

B2R
h(y, ⌧ )z j (y)dy = 0 for all ⌧ 2 (⌧0,1), j = 0, 1, · · · , 3n � 1.

Then there exist functions � = �[h](y, ⌧ ) and (e1, · · · , eK ) = (e1[h](⌧ ), · · ·
· · · , eK [h](⌧ )) satisfying (4.6). Furthermore, for ⌧ 2 (⌧0,+1), y 2 B2R(0),
there hold

(1+ |y|)|ry�(y, ⌧ )| + |�(y, ⌧ )| . ⌧�⌫(1+ |y|)�↵khk2+↵,⌫ (4.7)

and
|el [h]| . khk2+↵,⌫ for l = 1, · · · , K . (4.8)

Here and in the following of this paper, the symbol a . b means a  Cb for some
positive constant C which is independent of t and t0. The proof of Proposition 4.1
is given in Section 5.

4.2. The orthogonality conditions (4.5)

To apply Proposition 4.1, we should choose the parameter functions �, ⇠ , a and ✓
such that (4.5) hold.

Let us fix a � 2 (0, n�4). Given h(t) : (t0,1) ! Rk and � > 0, the weighted
L1 norm is defined as

khk� := kµ0(t)��h(t)kL1(t0,1).
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In what follows, ↵ is always a positive constant such that ↵ > 2 and ↵ � 2 is small
enough. Also assume the parameter functions �, ⇠ , a, ✓ , �̇, ⇠̇ , ȧ and ✓̇ satisfy the
following constraints,

k�̇(t)kn�3+� + k⇠̇(t)kn�3+� + kȧ(t)kn�4+� + k✓̇(t)kn�4+� 
c

R↵�2 , (4.9)

k�(t)k1+� + k⇠(t) � qk1+� + ka(t)k� + k✓(t)k� 
c

R↵�2 , (4.10)

here c is a positive constant which is independent of R, t and t0. Let us define the
norm k�kn�2+�,↵ of � as the least number M > 0 such that

(1+ |y|)|ry�(y, t)| + |�(y, t)|  M
µn�2+�
0

1+ |y|↵
(4.11)

and k k⇤⇤,�,↵ is the least M > 0 such that

| (x, t)|  M
t��

1+ |y|↵�2 , y =
|x � ⇠ |

µ
(4.12)

holds. Here � = n�2
2(n�4) + �

n�4 . We suppose � and  satisfy

k�kn�2+�,↵  ct�"0 (4.13)

and

k k⇤⇤,�,↵ 
ct�"0
R↵�2

for some small " > 0, respectively.
Then we have the following result.

Proposition 4.2. (4.5) is equivalent to
8
>>>>>>>>>><

>>>>>>>>>>:

�̇+ 1+(n�4)
(n�4)t � = 50[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

⇠̇l = 5l [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t), l = 1, · · · , n,
✓̇12 = µ�1

0 5n+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),
ȧ1 = µ�1

0 5n+2[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),
ȧ2 = µ�1

0 5n+3[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),
✓̇1l = µ�1

0 5n+l+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t), l = 3, · · · , n
✓̇2l = µ�1

0 52n+l�1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t), l = 3, · · · , n.

(4.14)

The terms in the right-hand side of (4.14) can be written as

50[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

=
t�"0
R↵�2µ

n�3+�
0 (t) f0(t) +

t�"0
R↵�2

⇥20


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t)
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and for l = 1, · · · , 3n � 1,

5l [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2
0 cl

h
bn�2rH(q, q)

i
+ µn�2+�

0 (t) fl(t) +
t�"0
R↵�2

⇥2l


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),

where cl are suitable constants, fl(t) and2l [· · · ](t) (l = 0, ·, 3n� 1) are bounded
smooth functions for t 2 [t0,1).

The proof of Proposition 4.2 is given in Section 6.

4.3. The outer problem

Let us consider the out problem (3.4),
8
><

>:

@t = 1 + VA + 2r⌘Rr�̃ + �̃
�
1� @t

�
⌘R

+ÑA(�̃) + Sout, in �⇥ (t0,1),

 = �u⇤
A on @�⇥ (t0,1),  (t0, ·) =  0 in �,

(4.15)

with a smooth and small initial datum  0.
To apply the Schauder fixed-point theorem to (4.15) and get a solution  , we

first consider the corresponding linear problem
8
><

>:

@t = 1 + VA + f (x, t) in �⇥ (t0,1),

 = g on @�⇥ (t0,1),

 (t0, ·) = h in �,

(4.16)

where f (x, t), g(x, t) and h(x) are smooth functions, Vµ,⇠ is defined in (3.3). We
denote k f k⇤,� ,2+↵ as the least M > 0 such that

| f (x, t)|  M
µ�2t��

1+ |y|2+&
, y =

x � ⇠

µ
(4.17)

for given & , � > 0. Then the following a priori estimate holds for problem (4.16).

Proposition 4.3. Suppose k f k⇤,� ,2+& < +1 for some constants & , � > 0, 0 <
& ⌧ 1, khkL1(�) < +1 and k⌧� g(x, ⌧ )kL1(@�⇥(t0,1)) < +1. Let � =
 [ f, g, h] be the unique solution of (4.16), then there exists � = �(�) > 0 small
such that, for all (x, t), one has

| (x, t)| . k f k⇤,� ,2+&
t��

1+ |y|&
+ e��(t�t0)khkL1(�)

+ t�� k⌧� g(x, ⌧ )kL1(@�⇥(t0,1)), y =
x � ⇠

µ

(4.18)
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and

|r (x, t)| . k f k⇤,� ,2+&
µ�1t��

1+ |y|&+1 for |y|  R. (4.19)

The proof is the same as Lemma 4.1 in [2], so we omit it. This result will be applied
to problem (4.15), as a first step, we establish the following estimates for

f [ ](x, t) = 2r⌘Rr�̃ + �̃
�
1� @t

�
⌘R + ÑA(�̃) + Sout.

Proposition 4.4. We have

(1)

|Sout(x, t)| .
t�"0
R↵�2

µ�2µ
n�2
2 +�
0 (t)

1+ |y|↵
, (4.20)

(2)

�
�
�2r⌘Rr�̃ + �̃

�
1� @t

�
⌘R

�
�
� .

1
R↵�2 k�kn�2+�,↵

µ�2µ
n�2
2 +�
0 (t)

1+ |y|↵
, (4.21)

(3)

ÑA(�̃)

.

8
>>><

>>>:

t�"0
�
k�k2n�2+�,↵ + k k2⇤⇤,�,↵

� 1
R↵�2

µ�2µ
n�2
2 +�

0 (t)
1+|y|↵ , when 6 � n,

t�"0
�
k�kpn�2+�,↵ + k kp⇤⇤,�,↵

� 1
R↵�2

µ�2
j µ

n�2
2 +�

0 (t)
1+|y|↵ , when 6 < n.

(4.22)

The proof of Proposition 4.4 is given in Section 7.

4.4. Proof of Theorem 1.1: solving the inner-outer gluing system

Let us formulate the whole problem into a fixed point problem.

Fact 1. Let h be a function satisfying khkn�3+� . 1
R↵�2 . The solution for

�̇+
1+ (n � 4)

(n � 4)t
� = h(t) (4.23)

can be expressed as follows

�(t) = t�
1+(n�4)
(n�4)


d +

Z t

t0
⌧
1+(n�4)
(n�4) h(⌧ )d⌧

�
, (4.24)
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with d be an arbitrary constant. Therefore, it holds that

kt
1+�
n�4 �(t)kL1(t0,1) . t

� (n�4)��
n�4

0 d + khkn�3+�
and

k�̇(t)kn�3+� . t
� (n�4)��

n�4
0 d + khkn�3+� .

Set 3(t) = �̇(t), then we have

3+
1
t
1+ (n � 4)

(n � 4)

Z 1

t
3(s)ds = h(t), (4.25)

which defines a bounded linear operator L1 : h ! 3 associating the solution
3 of (4.25) to any h satisfying khkn�3+� < +1. Moreover, the operator L1 is
continuous between the space L1(t0,1) endowed with the k · kn�3+� -topology.

For any h : [t0,1) ! Rn with khkn�3+� < +1, the solution of

⇠̇ = µn�2
0 c

h
bn�2rH(q, q)

i
+ h(t) (4.26)

can be written as
⇠(t) = ⇠0(t) +

Z 1

t
h(s)ds, (4.27)

where
⇠0(t) = q + c

h
�bn�2rH(q, q)

i Z 1

t
µn�2
0 (s)ds.

Thus
|⇠(t) � q| . t�

2
n�4 + t�

1+�
n�4 khkn�3+�

and
k⇠̇ � ⇠̇0kn�3+� . khkn�3+� .

Define4(t) = ⇠̇(t)� ⇠̇0, then (4.27) defines a continuous linear operator L2 : h !
4 in the k · kn�3+� -topology.

Similarly, from Proposition 4.2, we can define L3 : h ! 0 := ȧ(t) and
L4 : h ! 7 := ✓̇(t) which are continuous linear operators in the k · kn�4+� -
topology.

Note that (�, ⇠ , a, ✓) is a solution of (4.14) if (3 = �̇(t), 4 = ⇠̇(t) � ⇠̇0(t),
0 := ȧ(t), 7 := ✓̇(t)) is a fixed point of the following problem

(3,4,0,7) = T0(3,4,0,7), (4.28)

where

T0 : =
⇣
L1(5̂1[3,4,0,7,�, ],L2(5̂2[3,4,0,7,�, ]),

L3(5̂3[3,4,0,7,�, ],L4(5̂4[3,4,0,7,�, ]
⌘

:=
�
Ā1(3,4,0,7,�, ), Ā2(3,4,0,7,�, ), Ā3(3,4,0,7,�, ),

Ā4(3,4,0,7,�, )
�
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with

5̂l [3,4,0,7,�, ]

:= 5l

Z 1

t
3, q +

Z 1

t
4, µ0

Z 1

t
0,

Z 1

t
7,3,4, µ00,7,�, 

�

for l = 0, 1, · · · , 3n � 1.

Fact 2. Proposition 4.1 tells us that there exists a linear operator T1 associating
to the solution of (4.6) for any function h(y, ⌧ ) with khk2+↵,⌫-bounded. Thus the
solution of problem (4.3) is a fixed point of the problem

� = T1(H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))). (4.29)

Fact 3. Proposition 4.3 defines a linear operator T2 which associates any given
functions f (x, t), g(x, t) and h(x) to the corresponding solution  = T2( f, g, h)
for problem (4.16). Denote  1(x, t) := T2(0,�u⇤

A, 0). From (2.39), (2.18) and
(2.38), 8x 2 @�, one has

|u⇤
A(x, t)| . µ

n+2
2
0 (t).

From Lemma 4.3,

| 1| . e��(t�t0)k 0kL1(Rn) + t��µ0(t0)2�� where � =
n � 2
2(n � 4)

+
�

n � 4
.

Therefore,  +  1 is a solution to (4.15) if  is a fixed point of the following
operator

A( ) := T2( f [ ], 0, 0),

with
f [ ] = 2r⌘Rr�̃ + �̃

�
1� @t

�
⌘R + ÑA(�̃) + Sout. (4.30)

That is to say, we have to solve the fixed point problem

 = T2( f [ ], 0, 0). (4.31)

From Fact 1-3, to prove Theorem 1.1, we should solve the following fixed point
problem with unknowns (�, , �, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇),

8
><

>:

(3,4,0,7) = T0(3,4,0,7),

� = T1(H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))),
 = T2( f ( ), 0, 0),

(4.32)

where
f ( ) = 2r⌘Rr�̃ + �̃

�
1� @t

�
⌘R + ÑA(�̃) + Sout.
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To find a fixed point, we will use the Schauder fixed-point theorem in the set

B =

⇢
(�, , �, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇) : R↵�2k�̇(t)kn�3+� + R↵�2k⇠̇(t)kn�3+�

+ R↵�2kȧ(t)kn�4+� + R↵�2k✓̇(t)kn�4+� + R↵�2k�(t)k1+�
+ R↵�2k⇠(t) � qk1+� + R↵�2kak� + R↵�2k✓k� + t"0 R

↵�2k k⇤⇤,�,↵

+ t"0k�kn�2+�,↵  c
�

for some large but fixed positive constant c.
Let

K := max{k f0kn�3+� , k f1kn�3+� , · · · , k f3n�1kn�3+� }

where f0, f1, · · · , f3n�1 are the functions defined in Lemma 4.2. Then we have
�
�
�t

n�3+�
n�4 Āi (3,4,0,7,�, )

�
�
�

. t
� (n�4)��

n�4
0 d +

1
R↵�2 k�kn�2+�,a +

1
R↵�2 k k⇤⇤,�,↵ +

K
R↵�2

+
1

R↵�2 k3kn�3+� +
1

R↵�2 k4kn�3+� .

Thus, for d satisfying t
� (n�4)��

n�4
0 d < K

R↵�2 , T0(B) ⇢ B (choose the constant ⇢ in
(3.1) sufficiently small).

On the set B, it is clear that

�
�H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))

�
� . t�"0

µn�2+�
0

1+ |y|2+↵
.

From Proposition 4.1, T1(B) ⇢ B holds.
Similarly, Proposition 4.4 ensures that T2(B) ⇢ B. Therefore the operator T

defined in (4.32) maps the setB into itself. Since �, ⇠ , a, ✓ , �̇, ⇠̇ , ȧ, ✓̇ , � and decay
uniformly when t ! +1, this fact combines with the standard parabolic estimate
ensures that T is compact. By the Schauder fixed-point theorem, we conclude that
(4.32) has a fixed point in B. That is to say, we find a solution to the system of outer
problem (3.4) and inner problem (3.7), which provides a solution to (1.1). This
completes the proof of Theorem 1.1.

5. Proof of Proposition 4.1

In the following, we assume that h = h(y, ⌧ ) is a function defined on Rn which is
zero outside the ball B2R(0) for all ⌧ > ⌧0. As a first step to the proof of proposition
4.1, we have the following:
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Lemma 5.1. Suppose ↵ 2 (2, n � 2), ⌫ > 0, khk2+↵,⌫ < +1 and
Z

Rn
h(y, ⌧ )z j (y)dy = 0 for all ⌧ 2 (⌧0,1), j = 0, 1, · · · , 3n � 1.

Then for any ⌧1 > ⌧0 large enough, the solution (�(y, ⌧ ), c1(⌧ ), · · · , cK (⌧ )) to the
following problem
8
>>>>>><

>>>>>>:

@⌧� = 1� + p|Q|p�1(y)� + h(y, ⌧ ) �
KX

l=1
cl(⌧ )Zl(y), y 2 Rn, ⌧ � ⌧0,

Z

Rn
�(y, ⌧ )Zl(y)dy = 0 for all ⌧ 2 (⌧0,+1), l = 1, · · · , K ,

�(y, ⌧0) = 0, y 2 Rn,

(5.1)

satisfies
k�(y, ⌧ )k↵,⌧1 . khk2+↵,⌧1 (5.2)

and 8l = 1, · · · , K ,

|cl(⌧ )| . ⌧�⌫R↵khk2+↵,⌧1 for ⌧ 2 (⌧0, ⌧1).

Here khkb,⌧1 := sup⌧2(⌧0,⌧1) ⌧
⌫k(1+ |y|b)hkL1(Rn).

Proof. (5.1) is equivalent to
8
><

>:

@⌧� = 1� + p|Q|p�1(y)� + h(y, ⌧ ) �
KX

l=1
cl(⌧ )Zl(y), y 2 Rn, ⌧ � ⌧0,

�(y, ⌧0) = 0, y 2 Rn
(5.3)

with cl(⌧ ) given by the following relation

cl(⌧ )
Z

Rn
|Zl(y)|2dy =

Z

Rn
h(y, ⌧ )Zl(y)dy, l = 1, · · · , K .

Then
|cl(⌧ )| . ⌧�⌫R↵khk2+↵,⌧1 (5.4)

holds for ⌧ 2 (⌧0, ⌧1). Therefore we are left with the proof of (5.2) for the solution
� of equation (5.3). Inspired by Lemma 4.5 of [3], the linear theory of [32] and [42],
we use the blowing-up argument.

First, we have Claim: given ⌧1 > ⌧0, k�k↵,⌧1 < +1 holds. Indeed, given
R0 > 0, the standard parabolic theory ensures that there is a constant K1 =
K1(R0, ⌧1) such that

|�(y, ⌧ )|  K1 in BR0(0) ⇥ (⌧0, ⌧1].



606 M. DEL PINO, M. MUSSO, J. WEI AND Y. ZHENG

Let us fix R0 > 0 large enough and take K2 > 0 large enough, then K2⇢�↵ is a
super-solution of (5.3) when ⇢ > R0. Therefore, for any ⌧1 > 0, |�|  2K2⇢�↵

and k�k↵,⌧1 < +1. Next, we prove the following identities,
Z

Rn
�(y, ⌧ )z j (y)dy = 0 for all ⌧ 2 (⌧0, ⌧1), j = 0, 1, · · · , 3n � 1 (5.5)

and Z

Rn
�(y, ⌧ )Zl(y)dy = 0 for all ⌧ 2 (⌧0, ⌧1), l = 1, · · · , K . (5.6)

Indeed, (5.6) follows from the definition of cl(⌧ ). Let us test (5.3) with z j⌘, where
⌘(y) = ⌘0(|y|/R̃), j = 0, 1, · · · , 3n � 1, R̃ is a positive constant and ⌘0 is a
smooth cut-off function defined by

⌘0(r) =

⇢
1, for r < 1
0, for r > 2.

Then we have

Z

Rn
�(·, ⌧ )z j⌘ =

Z ⌧

0
ds

Z

Rn
(�(·, s)L0[⌘z j ] + hz j⌘ �

KX

l=1
cl(s)Zl z j⌘).

Furthermore,

Z

Rn

✓
�L0[⌘z j ] + hz j⌘ �

KX

l=1
cl(s)Zl z j⌘

◆

=
Z

Rn
�

✓
z j1⌘ + 2r⌘rz j

◆

� hz j (1� ⌘) +
KX

l=1
cl(s)Zl z j (1� ⌘)

= O(R̃�")

holds uniformly on ⌧ 2 (⌧0, ⌧1) for a small positive number ". Letting R̃ ! +1,
we get (5.5). Finally, we claim that when ⌧1 > ⌧0 is large enough, for any solution
� of (5.3) satisfying k�k↵,⌧1 < +1, (5.5) and (5.6), there holds

k�k↵,⌧1 . khk2+↵,⌧1 . (5.7)

This proves (5.2).
To prove estimate (5.7), we use the contradiction arguments. Suppose there

are sequences ⌧ k1 ! +1 and �k , hk , ckl (l = 1, · · · , K ) satisfying the following
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parabolic problem
8
>>>>>>>>>><

>>>>>>>>>>:

@⌧�k = 1�k + p|Q|p�1(y)�k + hk �
KX

l=1
ckl (s)Zl(y), y 2 Rn, ⌧ � ⌧0,

Z

Rn
�k(y, ⌧ )z j (y)dy = 0 for all ⌧ 2 (⌧0, ⌧

k
1 ), j = 0, 1, · · · , 3n � 1,

Z

Rn
�k(y, ⌧ )Zl(y)dy = 0 for all ⌧ 2 (⌧0, ⌧1), l = 1, · · · , K ,

�k(y, ⌧0) = 0, y 2 Rn

and
k�kk↵,⌧ k1

= 1, khkk2+↵,⌧ k1 ! 0. (5.8)

By (5.4), we obtain sup⌧2(⌧0,⌧
k
1 ) ⌧

⌫ckl (⌧ ) ! 0, l = 1, . . . , K . First, we claim that
the following holds

sup
⌧0<⌧<⌧

k
1

⌧⌫ |�k(y, ⌧ )| ! 0 (5.9)

uniformly on compact subsets of Rn . Indeed, if for some |yk |  M , ⌧0 < ⌧ k2 < ⌧ k1 ,

(⌧ k2 )
⌫ |�k(yk, ⌧ k2 )| �

1
2
,

then we have ⌧ k2 ! +1. Now, define

�̃n(y, ⌧ ) = (⌧ k2 )
⌫�n(y, ⌧ k2 + ⌧ ).

Then

@⌧ �̃k = L[�̃k] + h̃k �
KX

l=1
c̃kl (⌧ )Zl(y) in Rn ⇥ (⌧0 � ⌧ k2 , 0],

with h̃k ! 0, c̃kl ! 0 (l = 1, · · · , K ) uniformly on compact subsets in Rn ⇥
(�1, 0], moreover, we have

|�̃k(y, ⌧ )| 
1

1+ |y|↵
in Rn ⇥ (⌧0 � ⌧ k2 , 0].

Using the dominant convergence theorem and the fact that ↵ 2 (2, n � 2), �̃k ! �̃
uniformly on compact subsets in Rn ⇥ (�1, 0] for a function �̃ 6= 0 satisfying
8
>>>>>>>>>>><

>>>>>>>>>>>:

@⌧ �̃=1�̃ + p|Q|p�1(y)�̃ in Rn ⇥ (�1, 0]
Z

Rn
�̃(y, ⌧ )z j (y)dy=0 for all ⌧ 2(�1, 0], j = 0, 1, · · · , 3n � 1

Z

Rn
�̃(y, ⌧ )Zl(y)dy=0 for all ⌧ 2(�1, 0], l = 1, · · · , K

|�̃(y, ⌧ )|
1

1+ |y|↵
in Rn ⇥ (�1, 0]

�̃(y, ⌧0)=0 y 2 Rn.

(5.10)
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Nowwe claim that �̃ = 0, which contradicts the fact that �̃ 6= 0. Standard parabolic
regularity tells us that �̃(y, ⌧ ) is C2,% for some % 2 (0, 1). Then a scaling argument
shows that

(1+ |y|)|r�̃| + |�̃⌧ | + |1�̃| . (1+ |y|)�2�↵.

Differentiating (5.10) with respect to ⌧ , we have @⌧ �̃⌧ = 1�̃⌧ + p|Q|p�1(y)�̃⌧ and

(1+ |y|)|r�̃⌧ | + |�̃⌧⌧ | + |1�̃⌧ | . (1+ |y|)�4�↵.

Furthermore, it holds that

1
2
@⌧

Z

Rn
|�̃⌧ |

2 + B(�̃⌧ , �̃⌧ ) = 0,

where
B(�̃, �̃) =

Z

Rn

h
|r�̃|2 � p|Q|p�1(y)|�̃|2

i
dy.

Since
R
Rn �̃(y, ⌧ )z j (y)dy = 0 and

R
Rn �̃(y, ⌧ )Zl(y)dy = 0 hold 8⌧ 2 (�1, 0],

j = 0, 1, · · · , 3n � 1, l = 1, · · · , K , we have B(�̃, �̃) � 0. Note that
Z

Rn
|�̃⌧ |

2 = �
1
2
@⌧ B(�̃, �̃).

Combine the above facts, we get

@⌧

Z

Rn
|�̃⌧ |

2  0,
Z 0

�1
d⌧

Z

Rn
|�̃⌧ |

2 < +1.

Hence �̃⌧ = 0. Thus �̃ is independent of ⌧ , L[�̃] = 0. Since �̃ is bounded,
from the nondegeneracy of L , �̃ is a linear combination of the kernel functions z j ,
j = 0, 1, · · · , 3n � 1. But

R
Rn �̃z j = 0, j = 0, 1, · · · , 3n � 1, we get �̃ = 0, a

contradiction. Therefore (5.9) holds.
From (5.8), there exists a sequence yk with |yk | ! +1 such that

(⌧ k2 )
⌫(1+ |yk |↵)|�k(yk, ⌧ k2 )| �

1
2
.

Let
�̃k(z, ⌧ ) := (⌧ k2 )

⌫ |yk |↵�k(yk + |yk |z, |yk |2⌧ + ⌧ k2 ).

Then
@⌧ �̃k = 1�̃k + ak �̃k + h̃k(z, ⌧ ),

with
h̃k(z, ⌧ ) = (⌧ k2 )

⌫ |yk |2+↵hk(yk + |yk |z, |yk |2⌧ + ⌧ k2 ).
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From the assumptions on hk , one gets

|h̃k(z, ⌧ )| . o(1)|ŷk + z|�2�↵((⌧ k2 )
�1|yk |2⌧ + 1)�⌫

with
ŷk =

yk
|yk |

! �ê

and |ê| = 1. Hence h̃k(z, ⌧ ) ! 0 uniformly on compact subsets in Rn \ {ê} ⇥
(�1, 0]. ak has the same property as h̃k(z, ⌧ ). Furthermore, |�̃k(0, ⌧0)| � 1

2 and

|�̃k(z, ⌧ )| . |ŷk + z|�↵
⇣
(⌧ k2 )

�1|yk |2⌧ + 1
⌘�⌫

.

Hence one may assume �̃k ! �̃ 6= 0 uniformly on compact subsets in Rn \ {ê} ⇥
(�1, 0] for �̃ satisfying

�̃⌧ = 1�̃ in Rn \ {ê} ⇥ (�1, 0] (5.11)

and
|�̃(z, ⌧ )|  |z � ê|�↵ in Rn \ {ê} ⇥ (�1, 0]. (5.12)

Similar to Lemma 5.2 of [42], functions �̃ satisfying (5.11) and (5.12) is zero, which
is a contradiction to the fact that �̃ 6= 0. This concludes the validity of (5.7). Indeed,
set

u(⇢, t) = (⇢2 + Ct)�↵/2 +
"

⇢n�2
.

Then

�ut +1u < (⇢2 + Ct)�↵/2�1[↵(↵ + 2� n) +
C
2
↵] < 0, if ↵ < n � 2�

C
2

.

For any ↵ < n � 2, we can always find a fixed C > 0 such that ↵ < n � 2 � C
2 .

Hence u(|z� ê|, ⌧ +M) is a positive super-solution of (5.12) in (0,1)⇥ [�M, 0].
Via the comparison principle, |�̃(z, ⌧ )|  2u(|z � ê|, ⌧ + M). Letting M ! +1
we get

|�̃(z, ⌧ )| 
2"

|z � ê|n�2
.

Since " > 0 is arbitrary, we conclude that �̃ = 0. The proof is complete.

Proof of Proposition 4.1. First let us consider the following problem
8
><

>:

@⌧� = 1� + p|Q|p�1(y)� + h(y, ⌧ ) �
KX

l=1
cl(⌧ )Zl , y 2 Rn, ⌧ � ⌧0,

�(y, ⌧0) = 0, y 2 Rn.
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Let (�(y, ⌧ ), c1(⌧ ), · · · , cK (⌧ )) be the unique solution to problem (5.1). By Lem-
ma 5.1, for ⌧1 > ⌧0 large enough, there hold

|�(y, ⌧ )| . ⌧�⌫(1+ |y|)�↵khk2+↵,⌧1 for all ⌧ 2 (⌧0, ⌧1), y 2 Rn

and
|cl(⌧ )|  ⌧�⌫R↵khk2+↵,⌧1 for all ⌧ 2 (⌧0, ⌧1), l = 1, · · · , K .

From the assumptions of the proposition, for an arbitrary ⌧1, khk2+↵,⌫ < +1 and
khk2+↵,⌧1  khk2+↵,⌫ hold. Therefore, one has

|�(y, ⌧ )| . ⌧�⌫(1+ |y|)�↵khk2+↵,⌫ for all ⌧ 2 (⌧0, ⌧1), y 2 Rn

and
|cl(⌧ )|  ⌧�⌫R↵khk2+↵,⌫ for all ⌧ 2 (⌧0, ⌧1), l = 1 · · · , K .

From the arbitrariness of ⌧1, we have

|�(y, ⌧ )| . ⌧�⌫(1+ |y|)�↵khk2+↵,⌫ for all ⌧ 2 (⌧0,+1), y 2 Rn

and
|cl(⌧ )|  ⌧�⌫R↵khk2+↵,⌫ for all ⌧ 2 (⌧0,+1), l = 1 · · · , K .

Using the parabolic regularity results and a scaling argument, we get (4.7) and
(4.8).

6. Proof of Proposition 4.2

The following integral identities will be useful in the computation of this section.

Lemma 6.1. As k ! +1, for j = 0, · · · , 3n � 1, we have
Z

Rn

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

z j (y)dy=

(
a0,0 + O(k�1) if j = 0
O(k�1) if j 6= 0

Z

Rn

 
@

@y1
Q(y) �

En,k y1
�
1+ |y|2

� n
2

!

z j (y)dy=

8
><

>:

a1,1 + O(k�1) if j = 1
a1,n+2 + O(k�1) if j = n + 2
O(k�1) if j 6= 1, n + 2

Z

Rn

 
@

@y2
Q(y) �

En,k y2
�
1+ |y|2

� n
2

!

z j (y)dy=

8
><

>:

a2,2 + O(k�1) if j = 2
a2,n+3 + O(k�1) if j = n + 3
O(k�1) if j 6= 2, n + 3.

For i = 3, · · · , n, j = 0, · · · , 3n � 1, we have
Z

Rn

 
@

@yi
Q(y) �

En,k yi
�
1+ |y|2

� n
2

!

z j (y)dy =

(
ai,i + O(k�1) if j = i
O(k�1) if j 6= i.
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Furthermore,
Z

Rn
zn+1(y)z j (y)dy =

(
an+1,n+1 + O(k�1) if j = n + 1
O(k�1) if j 6= n + 1,

Z

Rn

 

�2y1

 

z0(y) �
Dn,k(2�|y|2)
�
1+|y|2

� n
2

!

+ |y|2
 
@

@y1
Q(y) �

En,k y1
�
1+|y|2

� n
2

!!

z j (y)dy

=

8
><

>:

an+2,1 + O(k�1) if j = 1
an+2,n+2 + O(k�1) if j = n + 2
O(k�1) if j 6= 1, n + 2,

Z

Rn

 

�2y2

 

z0(y)�
Dn,k(2�|y|2)
�
1+ |y|2

� n
2

!

+ |y|2
 
@

@y2
Q(y) �

En,k y2
�
1+|y|2

� n
2

!!

z j (y)dy

=

8
><

>:

an+3,2 + O(k�1) if j = 2
an+3,n+3 + O(k�1) if j = n + 3
O(k�1) if j 6= 2, n + 3.

For i = 3, · · · , n,
Z

Rn
zn+i+1(y)z j (y)dy =

(
an+i+1,n+i+1 + O(k�1) if j = n + i + 1
O(k�1) if j 6= n + i + 1

Z

Rn
z2n+i�1(y)z j (y)dy =

(
a2n+i�1,2n+i�1 + O(k�1) if j = 2n + i � 1
O(k�1) if j 6= 2n + i � 1.

In the above, ai, j are positive constants depending on n and k, the matrices
✓
a1,1 a1,n+2
an+2,1 an+2,n+2

◆
,

✓
a2,2 a2,n+3
an+3,2 an+3,n+3

◆

are invertible.

The proof of this lemma is given in the Appendix.

6.1. The equation for �

We consider (4.5) for l = 0.

Lemma 6.2. When l = 0, (4.5) is equivalent to

�̇+
1+ (n � 4)

(n � 4)t
�+ O

✓
1
k

◆
⇠̇ + O

✓
1
k

◆
µ0 (ȧ1 + ȧ2)

+ O
✓
1
k

◆
µ0

 

✓̇12 +
nX

j=3
(✓̇1 j + ✓̇2 j )

!

=50[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t).
(6.1)
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The right-hand side term of (6.1) can be expressed as

50[�, ⇠, a, ✓, �̇,⇠̇ ,ȧ,✓̇,�, ](t)=
t�"0
R↵�2µ

n�3+�
0 (t) f0(t) +

t�"0
R↵�2

⇥20


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t)

where f0(t) and 20[· · · ](t) are bounded smooth functions for t 2 [t0,1).

Proof. We compute

Z

B2R
H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))z0(y)dy,

where H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ )) is defined in (4.2). Write

µ
n+2
2
0 SA(⇠ + µ0y, t)

=

✓
µ0
µ

◆ n+2
2 h

µ0S1(z, t) + �bS2(z, t) + µS3(z, t) + µ2S4(z, t)

+ µ2S5(z, t)
i

z=⇠+µy

+

✓
µ0
µ

◆ n+2
2

µ0[S1(⇠ + µ0y, t) � S1(⇠ + µy, t)]

+

✓
µ0
µ

◆ n+2
2
�b[S2(⇠ + µ0y, t) � S2(⇠ + µy, t)]

+

✓
µ0
µ

◆ n+2
2

µ[S3(⇠ + µ0y, t) � S3(⇠ + µy, t)]

+

✓
µ0
µ

◆ n+2
2

µ2[S4(⇠ + µ0y, t) � S4(⇠ + µy, t)]

+

✓
µ0
µ

◆ n+2
2

µ2[S5(⇠ + µ0y, t) � S5(⇠ + µy, t)],

(6.2)
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where

S1(z) = �̇

0

B
@z0

⇣ z � ⇠

µ

⌘
�
Dn,k

⇣
2�

�
�
� z�⇠µ

�
�
�
2 ⌘

⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2
� 2Ap|Q|p�1

⇣ z � ⇠

µ

⌘
1

C
A

� µn�4
0 p|Q|p�1

⇣ z � ⇠

µ

⌘h
(n � 3)bn�4H(q, q)�

i
,

S2(z) = µ̇0

0

B
@z0

⇣ z � ⇠

µ

⌘
�
Dn,k

⇣
2�

�
�
� z�⇠µ

�
�
�
2 ⌘

⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2

1

C
A

+ p|Q|p�1
⇣ z � ⇠

µ

⌘
µn�3
0

⇣
� bn�4H(q, q) + B

⌘
,

S3(z) =

0

B
@rQ

⇣ z � ⇠

µ

⌘
�

En,k z�⇠µ
⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2

1

C
A · ⇠̇

+ p|Q|p�1
⇣ z � ⇠

µ

⌘h
� µn�2rH(q, q)

i
·
⇣ z � ⇠

µ

⌘
,

S4(z) = ȧ1

0

B
@�2

⇣ z � ⇠

µ

⌘

1

0

B
@z0

⇣ z � ⇠

µ

⌘
�
Dn,k

⇣
2�

�
�
� z�⇠µ

�
�
�
2 ⌘

⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2

1

C
A

+

�
�
�
�
z � ⇠

µ

�
�
�
�

2
0

B
@
@

@y1
Q
⇣ z � ⇠

µ

⌘
�

En,k
⇣
z�⇠
µ

⌘

1
⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2

1

C
A

1

C
A

+ ȧ2

0

B
@�2

⇣ z � ⇠

µ

⌘

2

0

B
@z0

⇣ z � ⇠

µ

⌘
�
Dn,k

⇣
2�

�
�
� z�⇠µ

�
�
�
2 ⌘

⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2

1

C
A

+

�
�
�
�
z � ⇠

µ

�
�
�
�

2
0

B
@
@

@y2
Q
⇣ z � ⇠

µ

⌘
�

En,k
⇣
z�⇠
µ

⌘

2
⇣
1+

�
�
� z�⇠µ

�
�
�
2 ⌘ n

2

1

C
A

1

C
A ,

S5(z) = zn+1
⇣ z � ⇠

µ

⌘
✓̇12 +

nX

j=3

✓
zn+ j+1

⇣ z � ⇠

µ

⌘
✓̇1 j + z2n+ j�1

⇣ z � ⇠

µ

⌘
✓̇2 j

◆
.
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Direct computations yield that
Z

B2R
S1(⇠ + µy)z0(y)dy = (2Ac1 + c2)(1+ O(R2�n) + O(R�2))�̇

+ c1(1+ O(R�2))µn�4
0

h
(n � 3)bn�4H(q, q)�

i
,Z

B2R
S2(⇠ + µy)z0(y)dy = O(R2�n + R�2)µn�3

0 ,

Z

B2R
S3(⇠ + µy)z0(y)dy = O

✓
1
k

◆
⇠̇ + O(1+ R�2)µn�2

0 ,

Z

B2R
S4(⇠ + µy)z0(y)dy = O

✓
1
k

◆
(ȧ1 + ȧ2) ,

Z

B2R
S5(⇠ + µy)z0(y)dy = O

✓
1
k

◆ 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

.

Since µ0
µ = (1+ �

µ0
)�1, for l = 1, 2, 3, 4, 5, we have the following estimates

Z

B2R
[Sl(⇠ + µ0y, t) � Sl(⇠ + µy, t)]z0(y)dy

= g
✓
t,
�

µ0

◆
�̇+ g

✓
t,
�

µ0

◆
⇠̇ + g

✓
t,
�

µ0

◆
(ȧ1 + ȧ2)

+ g
✓
t,
�

µ0

◆ 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g
✓
t,
�

µ0

◆
µn�4
0

 

�+(⇠�q)+a1+a2+✓12+
nX

j=3

�
✓1 j+✓2 j

�
!

+µn�3+�
0 f (t),

where f and g are smooth, bounded functions satisfying g(·, s) ⇠ s as s ! 0.
Thus

c
⇣ µ

µ0

⌘ n+2
2

µ�1
0

Z

B2R
µ

n+2
2
0 SA(⇠ + µ0y, t)z0(y)dy

=


�̇+

1+ (n � 4)
(n � 4)t

�

�
+

✓
O
⇣1
k

⌘
+ t�"0 g

⇣
t,
�

µ0

⌘◆
⇠̇

+

✓
O
⇣1
k

⌘
+ t�"0 g

⇣
t,
�

µ0

⌘◆
µ
⇣
ȧ1 + ȧ2

⌘

+

✓
O
⇣1
k

⌘
+ t�"0 g

⇣
t,
�

µ0

⌘◆
µ

 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g
⇣
t,
�

µ0

⌘
µn�4
0

 

�+ (⇠ � q) + µa1 + µa2 + µ✓12 + µ
nX

j=3

�
✓1 j + ✓2 j

�
!

for smooth bounded functions g satisfying g(·, s) ⇠ s as s ! 0.
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Let us compute the term

pµ
n�2
2
0

✓
1+

�

µ0

◆�2 Z

B2R
|Q|p�1

✓
µ0
µ
y
◆
 (⇠ + µ0y, t)z0(y)dy.

Its principal part is I :=
R
B2R |Q|p�1(y) (⇠ + µ0y, t)z0(y)dy. From (4.12), we

have I =
t�"0
R↵�2µ

n�2
2 +�
0 f (t) for a smooth bounded function f .

Furthermore, we have

Z

B2R
B[�](y, t)z0(y)dy =

t�"0
R↵�2

h
µn�3+�
0 (t)`[�](t) + ⇠̇ `[�](t)

i

and
Z

B2R
B0[�](y, t)z0(y)dy =

t�"0
R↵�2µ

n�2+�
0 g

✓
�

µ0

◆
[�](t)

for smooth bouned function g(s) with g(s) ⇠ s (s ! 0) and `[�](t) is bounded
smooth in t .

Combine the above estimations, we have the validity of the lemma.

6.2. The equation for ⇠

Now we compute (4.5) for l = 1, · · · , n.

Lemma 6.3. For l = 1, (4.5) is equivalent to

a1,1⇠̇1 + an+2,1µ0ȧ1 + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
µ0ȧ2

+ O
✓
1
k

◆
µ0

 

✓̇12 +
nX

j=3
(✓̇1 j + ✓̇2 j )

!

= 51[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t).

(6.3)

For l = 2, (4.5) is equivalent to

a2,2⇠̇2 + an+3,2µ0ȧ2 + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
µ0ȧ1

+ O
✓
1
k

◆
µ0

 

✓̇12 +
nX

j=3
(✓̇1 j + ✓̇2 j )

!

= 52[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t).

(6.4)
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For l = 3, · · · , n, (4.5) is equivalent to

⇠̇l + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
µ0 (ȧ1 + ȧ2)

+ O
✓
1
k

◆
µ0

 

✓̇12 +
nX

j=3
(✓̇1 j + ✓̇2 j )

!

= 5l [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t).

(6.5)

For l = 1, · · · , n,

5l [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2
0 cl

h
bn�2rH(q, q)

i
+ µn�2+�

0 (t) f (t) +
t�"0
R↵�22l

⇥


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),

where cl is a positive constant, f (t) and 2l are smooth bounded for t 2 [t0,1).

Proof. We compute
Z

B2R
H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))zl(y)dy,

where H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇, �,  ](y, t (⌧ )) is defined in (4.2). Expanding

µ
n+2
2
0 SA(⇠ + µ0y, t) as (6.2), by direct computations, we have

Z

B2R
S1(⇠ + µy)zl(y)dy = O

✓
1
k

◆⇣
�̇+ µn�4

0 �
⌘

,

Z

B2R
S2(⇠ + µy)zl(y)dy = O

✓
1
k

◆⇣
µ̇0 + µn�3

0

⌘
,

Z

B2R
S3(⇠ + µy)zl(y)dy = (1+ O(R�n))al,l ⇠̇l

� (1+O(R�2))p
Z

Rn
|Q|p�1yl zl(y)dyµn�2rH(q,q),

Z

B2R
S4(⇠ + µy)zl(y)dy =

8
>>>>>>><

>>>>>>>:

an+2,1(1+ O(R4�n))ȧ1
+O

⇣
1
k

⌘
(1+ O(R4�n))ȧ2 if l = 1 ,

an+2,2(1+ O(R4�n))ȧ2
+O

⇣
1
k

⌘
(1+ O(R4�n))ȧ1 if l = 2 ,

O
⇣
1
k

⌘
(1+ O(R4�n)) (ȧ1 + ȧ2) if l=3, · · · , n
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and Z

B2R
S5(⇠ + µy)zl(y)dy = O

✓
1
k

◆ 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

.

Since µ0
µ = (1+ �

µ0
)�1, for j = 1, 2, 3, 4, 5, we have

Z

B2R
[S j (⇠ + µ0y, t) � S j (⇠ + µy, t)]zl(y)dy

= g(t,
�

µ0
)�̇+ g(t,

�

µ0
)⇠̇ + g(t,

�

µ0
) (ȧ1 + ȧ2)

+ g(t,
�

µ0
)

 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g(t,
�

µ0
)µn�4
0

 

�+ (⇠ � q) + a1 + a2 + ✓12 +
nX

j=3

�
✓1 j + ✓2 j

�
!

+ µn�3+�
0 f (t),

where f and g are smooth, bounded functions satisfying g(·, s) ⇠ s as s ! 0.
Thus

c
✓

µ

µ0

◆ n+2
2

µ�1
0

Z

B2R
µ

n+2
2
0 SA(⇠ + µ0y, t)zl(y)dy

=

"

⇠̇ +
�p

R
Rn |Q|p�1yl zl(y)dyR

Rn |zl |2dy
bn�2µn�2

0

#

+

✓
O

✓
1
k

◆
+ t�"0 g

✓
t,
�

µ0

◆◆
⇠̇

+

✓
O

✓
1
k

◆
+ t�"0 g

✓
t,
�

µ0

◆◆
µ0 (ȧ1 + ȧ2)

+

✓
O

✓
1
k

◆
+ t�"0 g

✓
t,
�

µ0

◆◆
µ0

 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g
✓
t,
�

µ0

◆
µn�4
0

 

�+ (⇠ � q)+ µ0a1+ µ0a2+ µ0✓12 + µ0

nX

j=3

�
✓1 j+ ✓2 j

�
!

,

for smooth bounded functions g satisfying g(·, s) ⇠ s as s ! 0.
The computations for the term

pµ
n�2
2
0

✓
1+

�

µ0

◆�2 Z

B2R
|Q|p�1(

µ0
µ
y) (⇠ + µ0y, t)zl(y)dy,

B[�] and B0[�] are similar to that of Lemma 6.2.
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6.3. The equation for ✓12

Now we compute (4.5) for l = n + 1.

Lemma 6.4. For l = n + 1, (4.5) is equivalent to

µ0✓̇12 + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
⇠̇ + O

✓
1
k

◆
µ0 (ȧ1 + ȧ2)

+ O
✓
1
k

◆
µ0

 
nX

j=3
✓̇1 j + ✓̇2 j

!

= 5n+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

(6.6)

5n+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2+�
0 (t) f (t) +

t�"0
R↵�22n+1

⇥


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),

where f (t) and 2n+1 are smooth bounded for t 2 [t0,1).

Proof. We compute
Z

B2R
H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))zn+1(y)dy,

where H [�,⇠, a,✓, �̇,⇠̇ ,ȧ, ✓̇,�, ](y,t (⌧ )) is defined in (4.2). Expand µ
n+2
2
0 SA(⇠+

µ0y, t) as (6.2), by direct computations, we have
Z

B2R
S1(⇠ + µy)zn+1(y)dy = O

✓
1
k

◆⇣
�̇+ µn�4

0 �
⌘

,

Z

B2R
S2(⇠ + µy)zn+1(y)dy = O

✓
1
k

◆⇣
µ̇0 + µn�3

0

⌘
,

Z

B2R
S3(⇠ + µy)zn+1(y)dy = O

✓
1
k

◆
⇠̇ + O(1+ R�1)µn�2

0 ,

Z

B2R
S4(⇠ + µy)zn+1(y)dy = O

✓
1
k

◆
(1+ O(R�2)) (ȧ1 + ȧ2)

and
Z

B2R
S5(⇠+µy)zn+1(y)dy=an+1,n+1(1+ O(R2�n))✓̇12+O

✓
1
k

◆ nX

j=3

�
✓̇1 j + ✓̇2 j

�
.
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Since µ0
µ = (1+ �

µ0
)�1, for j = 1, 2, 3, 4, 5, we have

Z

B2R
[Sl(⇠ + µ0y, t) � Sl(⇠ + µy, t)]zn+1(y)dy

= g(t,
�

µ0
)�̇+ g(t,

�

µ0
)⇠̇ + g(t,

�

µ0
) (ȧ1 + ȧ2)

+ g
✓
t,
�

µ0

◆ 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g
✓
t,
�

µ0

◆
µn�4
0

 

�+ (⇠ � q) + a1 + a2 + ✓12 +
nX

j=3

�
✓1 j + ✓2 j

�
!

+ µn�3+�
0 f (t),

where f and g are smooth, bounded functions satisfying g(·, s) ⇠ s as s ! 0.
Thus

c
✓

µ

µ0

◆ n+2
2

µ�1
0

Z

B2R
µ

n+2
2
0 SA(⇠ + µ0y, t)zn+1(y)dy

= µ0✓̇12 +

✓
O

✓
1
k

◆
+ t�"0 g(t,

�

µ0
)

◆
⇠̇

+

✓
O

✓
1
k

◆
+ t�"0 g(t,

�

µ0
)

◆
µ0 (ȧ1 + ȧ2)

+

✓
O

✓
1
k

◆
+ t�"0 g(t,

�

µ0
)

◆
µ0

nX

j=3

�
✓̇1 j + ✓̇2 j

�

+ g
✓
t,
�

µ0

◆
µn�4
0

 

�+(⇠�q) + µ0a1 + µ0a2 + µ0✓12 + µ0

nX

j=3

�
✓1 j+✓2 j

�
!

,

for smooth bounded functions g satisfying g(·, s) ⇠ s as s ! 0.
The computations for the term

pµ
n�2
2
0 (1+

�

µ0
)�2

Z

B2R
|Q|p�1(

µ0
µ
y) (⇠ + µ0y, t)zn+1(y)dy,

B[�] and B0[�] are similar to that of Lemma 6.2.

6.4. The equation for a1 and a2

Now we compute (4.5) for l = n + 2, n + 3.
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Lemma 6.5. For l = n + 2, n + 3, (4.5) is equivalent to

a1,n+2⇠̇1 + an+2,n+2µ0ȧ1 + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
⇠̇ + O

✓
1
k

◆
µ0ȧ2

+ O
✓
1
k

◆
µ0

 

✓̇12 +
nX

j=3
(✓̇1 j + ✓̇2 j )

!

= 5n+2[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

(6.7)

a2,n+3⇠̇2 + an+3,n+3µ0ȧ2 + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
⇠̇ + O

✓
1
k

◆
µ0ȧ1

+ O
✓
1
k

◆
µ0

 

✓̇12 +
nX

j=3
(✓̇1 j + ✓̇2 j )

!

= 5n+3[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

(6.8)

5n+2[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2+�
0 (t) f (t) +

t�"0
R↵�22n+2

⇥


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),

5n+3[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2+�
0 (t) f (t) +

t�"0
R↵�22n+3

⇥


�̇,⇠̇ , µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓, µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),

where f (t) and 2n+2, 2n+3 are smooth bounded functions for t 2 [t0,1).

Proof. We compute

Z

B2R
H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](y, t (⌧ ))zn+2(y)dy,

where H [�,⇠,a,✓,�̇,⇠̇ ,ȧ,✓̇,�, ](y, t (⌧ )) is defined in (4.2). Expand µ
n+2
2
0 SA(⇠ +
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µ0y, t) as (6.2), by direct computations, we have
Z

B2R
S1(⇠ + µy)zn+2(y)dy = O

✓
1
k

◆⇣
�̇+ µn�4

0 �
⌘

,

Z

B2R
S2(⇠ + µy)zn+2(y)dy = O

✓
1
k

◆⇣
µ̇0 + µn�3

0

⌘
,

Z

B2R
S3(⇠ + µy)zn+2(y)dy = a2,n+2⇠̇ + O(1+ log R)µn�2

0 ,

Z

B2R
S4(⇠ + µy)zn+2(y)dy = an+2,n+2ȧ1 + O

✓
1
k

◆
(1+ O(R�2))ȧ2,

Z

B2R
S5(⇠ + µy)zn+2(y)dy = O

✓
1
k

◆ 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

.

Since µ0
µ = (1+ �

µ0
)�1, for l = 1, 2, 3, 4, 5, we have

Z

B2R
[Sl(⇠ + µ0y, t) � Sl(⇠ + µy, t)]zn+2(y)dy

= g(t,
�

µ0
)�̇+ g(t,

�

µ0
)⇠̇ + g(t,

�

µ0
) (ȧ1 + ȧ2)

+ g(t,
�

µ0
)

 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g(t,
�

µ0
)µn�4
0

 

�+ (R✓ ⇠ � q) + a1 + a2 + ✓12 +
nX

j=3

�
✓1 j + ✓2 j

�
!

+ µn�3+�
0 f (t),

where f and g are smooth, bounded functions satisfying g(·, s) ⇠ s as s ! 0.
Thus

c
✓

µ

µ0

◆ n+2
2

µ�2
0

Z

B2R
µ

n+2
2
0 SA(⇠ + µ0y, t)zn+2(y)dy

= a2,n+3⇠̇ + an+2,n+2µ0ȧ1

+

✓
O

✓
1
k

◆
+ t�"0 g(t,

�

µ0
)

◆
⇠̇ +

✓
O

✓
1
k

◆
+ t�"0 g(t,

�

µ0
)

◆
µ0ȧ2

+

✓
O

✓
1
k

◆
+ t�"0 g(t,

�

µ0
)

◆
µ0

 

✓̇12 +
nX

j=3

�
✓̇1 j + ✓̇2 j

�
!

+ g
✓
t,
�

µ0

◆
µn�4
0

 

�+(⇠�q)+µ0a1+µ0a2+ µ0✓12+ µ0

nX

j=3

�
✓1 j + ✓2 j

�
!

,

for smooth bounded functions g satisfying g(·, s) ⇠ s as s ! 0.
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The computations for the term

pµ
n�2
2
0

✓
1+

�

µ0

◆�2 Z

B2R
|Q|p�1

✓
µ0
µ
y
◆
 (⇠ + µ0y, t)zn+2(y)dy,

B[�] and B0[�] are similar to that of Lemma 6.2. This proves (6.7). The proof of
(6.8) is similar.

6.5. The equation for ✓1l and ✓2l , l = 3, · · · , n

Now we compute (4.5) for l = n + 4, · · · , 3n � 1.

Lemma 6.6. For l = 3, · · · , n, (4.5) is equivalent to

µ0✓̇1l + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
⇠̇ + O

✓
1
k

◆
µ0 (ȧ1 + ȧ2)

+ O
✓
1
k

◆
µ0

 

✓̇12 +
X

j 6=l
✓̇1 j +

nX

j=3
✓̇2 j

!

= 5n+l+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

(6.9)

µ0✓̇2l + O
✓
1
k

◆
�̇+ O

✓
1
k

◆
⇠̇ + O

✓
1
k

◆
µ0 (ȧ1 + ȧ2)

+ O
✓
1
k

◆
µ0

 

✓̇12 +
X

j 6=l
✓̇2 j +

nX

j=3
✓̇1 j

!

= 52n+l�1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

(6.10)

5n+l+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2+�
0 (t) f (t) +

t�"0
R↵�22n+l+1

⇥


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �, µ
n�2
2 +�
0  

�
(t),

52n+l�1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2+�
0 (t) f (t) +

t�"0
R↵�222n+l�1

⇥


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),

where f (t) and 2n+l+1, 22n+l�1 are smooth bounded for t 2 [t0,1).
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The proof is similar to Lemma 6.4. Since the matrices

✓
a1,1 a1,n+2
an+2,1 an+2,n+2

◆
,

✓
a2,2 a2,n+3
an+3,2 an+3,n+3

◆

are invertible, equations (6.3), (6.4), (6.7) and (6.8) can be decoupled by inverting
the coefficient matrices. Combine Lemmas 6.3, 6.4, 6.5, 6.6 and 6.1, we get the
result of Proposition 4.2.

7. Proof of Proposition 4.4

Proof of (4.20). Let us recall from (3.5) that

Sout = S(2)
A + (1� ⌘R)SA.

From (2.40) and Lemma 2.2, in the region |x � q| > � with � > 0, we have the
following estimate for Sout,

|Sout(x, t)| . µ
n�2
2
0 (µ20 + µn�4

0 ) . µ
min(n�4,2)�(↵�2)��
0 (t0)

µ�2µ
n�2
2 +�
0

1+ |y|↵
. (7.1)

In the region |x � q|  � with � > 0 sufficiently small, Lemma 2.2 tells us that

�
�
�S(2)

A (x, t)
�
�
� . µ

� n+2
2

0
µn
0

1+ |y|2
. µ

2�(↵�2)��
0 (t0)

µ�2µ
n�2
2 +�
0

1+ |y|↵
. (7.2)

By the definition of ⌘R , if |x � ⇠ | > µ0R, (1� ⌘R) 6= 0. Therefore we have

|(1� ⌘R)SA| .
✓

1
Rn�2�↵

+
1

R4�↵

◆
1

Ra�2
µ�2µ

n�2
2 +�
0

1+ |y|↵
. (7.3)

Here the decaying assumptions (4.9) and (4.10) are used, respectively. This proves
the validity of (4.20).

Proof of (4.21). For the term 2r⌘Rr�̃, recalling that

�̃(x, t) := µ
� n�2

2
0 �

✓
x � ⇠

µ0
, t
◆
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and the assumptions (4.11) and (4.13), we have
�
�
�
⇣
r⌘R · r�̃

⌘
(x, t)

�
�
�

.
⌘0

⇣��
� x�⇠Rµ0

�
�
�
⌘

Rµ0
µ

� n�2
2

0
|ry�|

µ0

.
⌘0

⇣��
� x�⇠Rµ0

�
�
�
⌘

Rµ20

µ
n�2
2 +�
0

(1+ |y|1+↵)
k�kn�2+�,↵

.
1

Ra�2
k�kn�2+�,↵

µ�2µ
n�2
2 +�
0

(1+ |y|↵)
,

(7.4)

where, in the region ⌘0
��� x�⇠
Rµ0

�
�� 6= 0, (1 + |y|) ⇠ R, y = x�⇠

µ0
. As for the second

term �̃
�
1� @t

�
⌘R , by direct computations, we have

�
�
��̃

�
1� @t

�
⌘R

�
�
� .

�
�
�1⌘

⇣��
� x�⇠Rµ0

�
�
�
⌘��
�

R2µ20
µ

� n�2
2

0 |�|

+

�
�
�
�
�
⌘0

✓��
�
�
x � ⇠

Rµ0

�
�
�
�

◆ 
|x � ⇠ |

Rµ20
µ̇0 +

1
Rµ0

⇠̇

!��
�
�
�
µ

� n�2
2

0 |�|.

(7.5)

From the definition of �̃, we have the following estimate for the first term in the
right-hand side of (7.5),

�
�
�1⌘

⇣��
� x�⇠Rµ0

�
�
�
⌘��
�

R2µ20
µ

� n�2
2

0 |�| .

�
�
�1⌘

⇣��
� x�⇠Rµ0

�
�
�
⌘��
�

R2µ20

µ
n�2
2 +�
0

(1+ |y|↵)
k�kn�2s+�,↵

.
1

Ra�2
k�kn�2+�,↵

µ�2µ
n�2
2 +�
0 (t)

1+ |y|↵
,

(7.6)

here the fact that
�
�1⌘

��� x�⇠
Rµ0

�
��
�
� ⇠ 1

1+| yR |2
was used. From (4.9), we estimate the

second term in the right-hand side of (7.5) as
�
�
�
�
�
⌘0

✓��
�
�
x � ⇠

Rµ0

�
�
�
�

◆ 
|x � ⇠ |µ̇0 + µ0⇠̇

Rµ20

!��
�
�
�
µ

� n�2
2

0 |�|

.

�
�
�⌘0

⇣��
� x�⇠Rµ0

�
�
�
⌘��
�

R2µ20
(µn�2
0 R2 + µn�2+�

0 R)µ
� n�2

2
0 |�|

.
1

R↵�2 k�kn�2+�,↵
µ�2µ

n�2
2 +�
0 (t)

1+ |y|↵
.

(7.7)

From (7.4)-(7.7), we obtain (4.21).
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Proof of (4.22). Since p � 2 � 0 when n  6, we have the following

ÑA( +  1 + ⌘R�̃)

.

(
|u⇤
A|
p�2

h
| |2 + | 1|2 + |⌘R�̃|2

i
when 6 � n

| |p + | 1|p + |⌘R�̃|p when 6 < n.

(7.8)

When 6 � n, there hold

�
�
�(u⇤

A)
p�2(⌘R�̃)2

�
�
� .

µ
3n
2 �5+2�
0
1+ |y|2↵

k�k2n�2+�,↵

. µn�2+�
0 R↵�2k�k2n�2+�,↵

1
R↵�2

µ�2µ
n�2
2 +�
0

1+ |y|↵

and �
�
�(u⇤

A)
p�2 2

�
�
� . µ

� 6�n
2

0
t�2�

1+ |y|2(↵�2) k k2⇤⇤,�,↵

. R↵�2µn�4+�+↵�2
0 k k2⇤⇤,�,↵

1
R↵�2

µ�2
j t��

1+ |y|↵
.

When 6 < n, one has

�
�
�⌘R�̃

�
�
�
p

.
µ

( n�22 +� )p
0
1+ |y|↵p

k�kpn�2+�,↵

. µ
2+(p�1)�
0 R↵�2µ20k�kpn�2+�,↵

1
R↵�2

µ�2µ
n�2
2 +�
0

1+ |y|↵

and

| |p .
t�p�

1+ |y|p(↵�2) k kp⇤⇤,�,↵

. µ4(1+
�
n�2 )+p(↵�2)�↵R↵�2k kp⇤⇤,�,↵

1
R↵�2

µ�2
j µ

n�2
2 +�
0

1+ |y|↵
.

The estimate for  1 is similar. This proves (4.22).

8. Stability result in dimension 5 and 6

In dimension 5 and 6, we have p � 1 = 4
n�2 � 1. In this case, all the equations

can be solved by the Contraction Mapping Theorem since the operators T0, T1 and
T2 are Lipschitz continuous with respect to the parameter functions. Therefore,
Theorem 1.1 can be proved by the Contraction Mapping Theorem arguments in
dimension 5 and 6, moreover, we have the following stability result.
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Theorem 8.1. Assume k0 is a sufficiently large integer, n = 5, 6 and q is a point
in �, then the conclusion of Theorem 1.1 holds when k � k0. Furthermore, there
exists a sub-manifoldM with codimension K in C1(�) containing uq(x, 0) such
that, if u0 2M and is sufficiently close to uq(x, 0), the solution u(x, t) to (1.1) still
has the form

u(x, t) = �̃(t)�
n�2
2

 

Qk

 
x � ⇠̃(t)
�̃(t)

!

+ '̃(x, t)

!

,

where q̃ = limt!+1 ⇠̃(t) is close to q.

Recalling that K is the dimension of the space V := { f 2 Ḣ1(Rn)|hL f, f i < 0}
and L is defined in (1.10). The proof is similar to [2] and [32], so we give a sketch
here. We divide the whole process into three steps.

Step 1. Solving the outer problem (4.15)

Proposition 8.2. Assume �, ⇠ , a, ✓ , �̇, ⇠̇ , ȧ and ✓̇ satisfy (4.9) and (4.10), � satisfies
(4.13),  0 2 C2(�) and

k 0kL1(�) + kr 0kL1(�) 
t�"0
R↵�2 .

Then (4.15) has a unique solution  = 9[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�], for y = x�⇠
µ0

,
there exist small constants � > 0 and " > 0 such that

| (x, t)| .
t�"0
R↵�2

µ
n�2
2 +�
0 (t)
1+ |y|↵�2 + e��(t�t0)k 0kL1(�)

|r (x, t)| .
t�"0
R↵�2

µ�1µ
n�2
2 +�
0 (t)

1+ |y|↵�1 for |y|  R

hold. Here R is defined in (3.1).

Proposition 8.2 is a direct consequence of Proposition 4.3, Proposition 4.4 and the
Contraction Mapping Theorem, whose proof we omit here. This result indicates
that for any small initial datum 0, (4.15) has a solution . Moreover, the following
proposition clarifies the dependence of 9[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�] on the parameter
functions �, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,� which is proved by estimating, for instance,

@�9[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�][�̄] = @s9[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,� + s�̄]|s=0

as a bounded linear operator between weighted parameter spaces. For simplicity,
the above operator is denoted by @�9[�̄]. Similarly, we define @�9[�̄], @⇠9[⇠̄ ],
@a9[ā], @✓9[✓̄], @�̇9[ ˙̄�], @⇠̇9[ ˙̄⇠ ], @ȧ9[ ˙̄a] and @✓̇9[ ˙̄✓].
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Proposition 8.3. Under the assumptions of Proposition 8.2, 9 depends smoothly
on the parameter functions �, ⇠ , a, ✓ , �̇, ⇠̇ , ȧ, ✓̇ , � and, for y = x�⇠

µ0
, the following

hold:

�
�@�9[�̄]

�
� .

t�"0
R↵�2 k�̄k1+�

µ
n�2
2 �1
0 (t)

1+ |y|↵�2 ,

�
�@⇠9[⇠̄ ]

�
� .

t�"0
R↵�2

0

@k⇠̄k1+�
µ

n�2
2 �1
0 (t)

1+ |y|↵�2

1

A ,

|@a9[ā]| .
t�"0
R↵�2

0

@kāk�
µ

n�2
2 �2
0 (t)

1+ |y|↵�2

1

A ,

�
�@✓9[✓̄]

�
� .

t�"0
R↵�2

0

@k✓̄k�
µ

n�2
2 �2
0 (t)

1+ |y|↵�2

1

A ,

�
�@⇠̇9[ ˙̄⇠ ](x, t)

�
� .

t�"0
R↵�2 k

˙̄⇠(t)kn�3+�

0

@µ
� n�6

2 �1+�
0 (t)
1+ |y|↵�2

1

A ,

�
�@�̇9[ ˙̄�](x, t)

�
� .

t�"0
R↵�2 k

˙̄�(t)kn�3+�

0

@µ
� n�6

2 �1+�
0 (t)
1+ |y|↵�2

1

A ,

�
�@ȧ9[ ˙̄a](x, t)

�
� .

t�"0
R↵�2 k

˙̄a(t)kn�4+�

0

@µ
� n�6

2 �2+�
0 (t)
1+ |y|↵�2

1

A ,

�
�@✓̇9[ ˙̄✓](x, t)

�
� .

t�"0
R↵�2 k

˙̄✓(t)kn�4+�

0

@µ
� n�6

2 �2+�
0 (t)
1+ |y|↵�2

1

A ,

�
�@�9[�̄](x, t)

�
� .

1
R↵�2 k�̄(t)kn�2+�,↵

0

@µ
n�2
2 +�
0 (t)
1+ |y|↵�2

1

A .

(8.1)

Proof. We prove (8.1). Decompose the term @�9[�̄](x, t) = Z1 + Z with Z1 =
T2(0,�@�u⇤

A[�̄], 0), where T2 is defined by Proposition 4.3. Then Z is a solution
of the following problem

8
>>><

>>>:

@t Z = 1Z + VAZ + @�VA[�̄] 
+@� ÑA

�
 + �in

�
[�̄] + @�Sout[�̄] in �⇥ (t0,1)

Z = 0 in @�⇥ (t0,1)

Z(·, t0) = 0 in �.

(8.2)
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For any x 2 @�,

�
�@�u⇤

A[�̄](x, t)
�
� . µ

n
2�1+�
0 (t)|�̄(t)|

. µ
n
2+2�
0 (t)k�̄(t)k1+� .

(8.3)

From (8.3) and Proposition 4.3, we obtain

|Z1(x, t)| .
t�"0
R↵�2

0

@k�̄(t)k1+�
µ

n�2
2 �1
0 (t)

1+ |y|↵�2

1

A .

To prove the estimation for Z , which can be viewed as a fixed point for the operator

A(Z) = T2 (g, 0, 0) (8.4)

with
g = @�VA[�̄] + @� ÑA

⇣
 + �in

⌘
[�̄] + @�Sout[�̄],

we estimate @�Sout[�̄] first. In the region |x � q| > �, from (2.40), (4.9) and (4.10),
we have

�
�@�Sout[�̄](x, t)

�
� . µ

n�2
2 �1
0 f (x, µ�1

0 µ, ⇠, a, ✓)|�̄(t)|

.
t�"0
R↵�2

0

@k�̄(t)k1+�
µ

n�2
2 �1
0 (t)

1+ |y|↵�2

1

A ,

where the function f is smooth and bounded depending on (x, µ�1
0 µ, ⇠, a, ✓). In

the region |x � q|  �, from (2.42), we have

@�S(u⇤
A)[�̄](x, t) = @�S(uA)[�̄](x, t)(1+ µ0 f (x, µ�1

0 µ, ⇠, a, ✓)),

where the function f is smooth and bounded depending on (x, µ�1
0 µ, ⇠, a, ✓). Dif-

ferentiating (2.19) with respect to �, easy but long computations yield that

�
�@�S(uA)[�̄]

�
� .

t�"0
R↵�2

0

@k�̄(t)k1+�
µ

n�2
2 �1
0 (t)

1+ |y|↵�2

1

A . (8.5)

By the definition of Sout together with (8.5), we obtain

�
�@�Sout[�̄](x, t)

�
� .

t�"0
R↵�2

0

@k�̄(t)k1+�
µ

n�2
2 �1
0 (t)

1+ |y|↵�2

1

A .
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Now we estimate the other terms of g. When n = 5, 6, we have

@�VA[�̄](x, t) =p(p � 1)

|u⇤
A|
p�3u⇤

A@�u
⇤
A[�̄]

� ⌘R

�
�
�µ� n�2

2 Q(y)
�
�
�
p�3

µ� n�2
2 Q(y)@�

�
µ� n�2

2 Q(y)
�
[�̄]

�
.

Since
�
�
�@�

�
µ� n�2

2 Q(y)
���
� . µ�1

0

�
�
�µ� n�2

2 Q (y)
�
�
� and � = n�2

2(n�4) + �
n�4 , we obtain

�
�@�VA[�̄] (x, t)

�
� . k k⇤⇤,�,↵

t�"0
R↵�2 k�̄(t)k1+�

µ�2µ
n�2
2 �1+�
0

1+ |y|↵
.

Similarly, we estimate the term p(p � 1)|u⇤
A|
p�3u⇤

A( + �in)@�u⇤
A[�̄] as

�
�
�p(p � 1)|u⇤

A|
p�3u⇤

A( + �in)@�u⇤
A[�̄]

�
�
� .

t�"0
R↵�2 k�̄k1+�

µ�2µ
n�2
2 �1+�
0

1+ |y|↵

when n = 5, 6. The last term p
h�
�u⇤

A +  + �in
�
�p�1 u⇤

A �
�
�u⇤

A
�
�p�1 u⇤

A

i
can be

estimated analogously.
In the set of functions satisfying

|Z(x, t)|  M
t�"0
R↵�2 k�̄k1+�

µ
n�2
2 �1
0

1+ |y|↵�2

for a fixed large constant M , the operator A defined in (8.4) has a fixed point.
Indeed, A is a contraction map when R is large in terms of t0. Hence (8.1) holds.
The proof of the other estimates are similar, we omit them.

Substituting the solution  = 9[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�] of (4.15) given by
Proposition 8.2 into (3.7), the full problem becomes

µ20@t� = 1y� + p|Q|p�1(y)�
+ H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�](y, t), y 2 B2R(0).

(8.6)

Similar to Section 4.1, using change of variables

t = t (⌧ ),
dt
d⌧

= µ20(t),

(8.6) reduces to

@⌧� = 1y� + p|Q|p�1(y)� + H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�](y, t (⌧ ))
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for y 2 B2R(0), ⌧ � ⌧0, ⌧0 is the unique positive number such that t (⌧0) = t0. We
try to find a solution � to the equation

8
>>><

>>>:

@⌧� = 1y� + p|Q|p�1(y)�
+H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�](y, t (⌧ )) y 2 B2R(0), ⌧ � ⌧0

�(y, ⌧0) =
KX

l=1
e0l Zl(y) y 2 B2R(0),

(8.7)

for some suitable constants e0l , l = 1, · · · , K . To apply the linear theory Propo-
sition 4.1, the parameter functions �, ⇠, a, ✓ need to satisfy the following orthogo-
nality conditions
Z

B2R
H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�](y, t (⌧ ))zl(y)dy=0, l=0, 1, · · · , 3n�1. (8.8)

Step 2. Choosing the parameter functions
By the Lipschitz properties for 9 = 9[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�] given by Proposi-
tion 8.3, Proposition 4.2 can be strengthened as

Proposition 8.4. (8.8) is equivalent to
8
>>>>>>>>>><

>>>>>>>>>>:

�̇+ 1+(n�4)
(n�4)t � = 50[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),

⇠̇l = 5l [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t), l = 1, · · · , n,
✓̇12 = µ�1

0 5n+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),
ȧ1 = µ�1

0 5n+2[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),
ȧ2 = µ�1

0 5n+3[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t),
✓̇1l = µ�1

0 5n+l+1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t), l = 3, · · · , n,
✓̇2l = µ�1

0 52n+l�1[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t), l = 3, · · · , n.

(8.9)

The terms in the right-hand side of the above system can be expressed as

50[�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t) =
t�"0
R↵�2µ

n�3+�
0 (t) f0(t) +

t�"0
R↵�2

⇥20


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t)

and for j = 1, · · · , 3n � 1,

5 j [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�, ](t)

= µn�2
0 c j

h
bn�2rH(q, q)

i
+ µn�2+�

0 (t) f j (t) +
t�"0
R↵�2

⇥2 j


�̇,⇠̇ ,µ0ȧ,µ0✓̇,µn�4

0 (t)�,µn�4
0 (⇠�q),µn�3

0 a,µn�3
0 ✓,µn�3+�

0 �,µ
n�2
2 +�
0  

�
(t),
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where f j (t) and2 j [· · · ](t) ( j = 0, · · · , 3n� 1) are bounded smooth functions for
t 2 [t0,1), c j ( j = 0, · · · , 3n � 1) are suitable constants. Moreover, we have

�
�2 j [�̇1](t) �2 j [�̇2](t)

�
� .

t�"0
R↵�2 |�̇1(t) � �̇2(t)|

�
�2 j [⇠̇1](t) �2 j [⇠̇2](t)

�
� .

t�"0
R↵�2 |⇠̇1(t) � ⇠̇2(t)|,

�
�
�2 j [µ0ȧ(1)

1 ](t) �2 j [µ0ȧ(2)
1 ](t)

�
�
� .

t�"0
R↵�2µ0|ȧ

(1)
1 (t) � ȧ(2)

1 (t)|,
�
�
�2 j [µ0ȧ(1)

2 ](t) �2 j [µ0ȧ(2)
2 ](t)

�
�
� .

t�"0
R↵�2µ0|ȧ

(1)
2 (t) � ȧ(2)

2 (t)|,

�
�2 j [µ0✓̇1](t) �2 j [µ0✓̇2](t)

�
� .

t�"0
R↵�2µ0|✓̇1(t) � ✓̇2(t)|,

�
�
�2 j [µ

n�4
0 �1](t) �2 j [µ

n�4
0 �2](t)

�
�
� .

t�"0
R↵�2 |�1(t) � �2(t)|,

�
�
�2 j [µ

n�4
0 (⇠1 � q)](t) �2 j [µ

n�4
0 (⇠2 � q)](t)

�
�
� .

t�"0
R↵�2 |⇠1(t) � ⇠2(t)|,

�
�
�2 j [µ

n�3
0 a(1)

1 ](t) �2 j [µ
n�3
0 a(2)

1 ](t)
�
�
� .

t�"0
R↵�2µ0|a

(1)
1 (t) � a(2)

1 (t)|,
�
�
�2 j [µ

n�3
0 a(1)

2 ](t) �2 j [µ
n�3
0 a(2)

2 ](t)
�
�
� .

t�"0
R↵�2µ0|a

(1)
2 (t) � a(2)

2 (t)|,
�
�
�2 j [µ

n�3
0 ✓1](t) �2 j [µ

n�3
0 ✓2](t)

�
�
� .

t�"0
R↵�2µ0|✓1(t) � ✓2(t)|,

�
�
�2[µn�3+�

0 �1](t) �2[µn�3+�
0 �2](t)

�
�
� .

t�"0
R↵�2 k�1(t) � �2(t)kn�2+�,↵.

System (8.9) is solvable for �, ⇠ , a, ✓ satisfying (4.9) and (4.10). Indeed, we have:
Proposition 8.5. (8.9) has a solution � = �[�](t), ⇠ = ⇠ [�](t), a = a[�](t) and
✓ = ✓[�](t) satisfying estimates (4.9) and (4.10). Moreover, for t 2 (t0,1), there
hold

µ
�(1+� )
0 (t)

�
��[�1](t) � �[�2](t)

�
� .

t�"0
R↵�2 k�1 � �2kn�2+�,↵,

µ
�(1+� )
0 (t)

�
�⇠ [�1](t) � ⇠ [�2](t)

�
� .

t�"0
R↵�2 k�1 � �2kn�2+�,↵,

µ��
0 (t)

�
�a[�1](t) � a[�2](t)

�
� .

t�"0
R↵�2 k�1 � �2kn�2+�,↵,

µ��
0 (t)

�
�✓[�1](t) � ✓[�2](t)

�
� .

t�"0
R↵�2 k�1 � �2kn�2+�,↵.

Using Proposition 8.3, the proof of Proposition 8.4 and 8.5 is similar to that of [2]
and [32], we omit it.
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Step 3. Gluing: the inner problem
After choosing parameter functions � = �[�](t), ⇠ = ⇠ [�](t), a = a[�](t) and
✓ = ✓[�](t) such that (8.8) hold, we solve problem (8.7) in the class of functions
with k�kn�2+�,↵ bounded. Problem (8.7) is a fixed point of

� = A1(�) := T2(H [�, ⇠, a, ✓, �̇, ⇠̇ , ȧ, ✓̇,�]).

It is easy to see that
�
�H [�, ⇠, �̇, ⇠̇ ,�](y, t)

�
� . t�"0

µn�2+�
0

1+ |y|2+↵
(8.10)

and �
�
�H [�(1)] � H [�(2)]

�
�
� (y, t) . t�"0 k�(1) � �(2)kn�2+�,↵ (8.11)

hold. From (8.10) and (8.11), A1 has a fixed point � in the set of functions
k�kn�2s+�,↵  ct�"0 for suitable large constant c > 0. From the Contraction
Mapping Theorem, we obtain a solution to (2.11). Then the rest argument to the
stability part of Theorem 8.1 is the same as [2], we omit it.

9. Appendix
9.1. Proof of Lemma 6.1

Let us recall from [9] and [33] that

Qk(x) = U(x) �
kX

j=1
Uj (x) + �̃(x) with U(x) =

✓
2

1+ |x |2

◆ n�2
2

and
Uj (x) = ⇣

� n�2
2

k U(⇣�1
k (x � ⇠ j )).

Here ⇣k is a positive constant satisfying ⇣k ⇠ k�2, ⇠ j =
q
1� ⇣ 2k (n j , 0), n j =

(cos ✓ j , sin ✓ j , 0), ✓ j = 2⇡
k ( j � 1) and �̃ is a small term than U(x) �

Pk
j=1Uj (x).

Let us introduce the functions

Z0(x) =
n � 2
2

U(x) + rU(x) · x, ⇡0(x) =
n � 2
2

�̃(x) + r�̃(x) · x

and
Z↵(x) =

@

@x↵
U(x), ⇡↵(x) =

@

@x↵
�̃(x) for ↵ = 1, . . . , n.

For l = 1, . . . , k, define

Z0l(x) =
n � 2
2

Ul(x) + rUl(x) · (x � ⇠l).

From (1.11) and (1.12),

z0(x)= Z0(x)�
kX

l=1


Z0l(x)+

q
1�⇣ 2k cos ✓l

@

@x1
Ul(x)+

q
1�⇣ 2k sin ✓l

@

@x2
Ul(x)

�
+⇡0(x).
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For l = 1, . . . , k, define

Z1l(x) =
q
1� ⇣ 2k


cos ✓l

@

@x1
Ul(x) + sin ✓l

@

@x2
Ul(x)

�
,

Z2l(x) =
q
1� ⇣ 2k


� sin ✓l

@

@x1
Ul(x) + cos ✓l

@

@x2
Ul(x)

�
,

Z↵l(x) =
@

@x↵
Ul(x), for ↵ = 3, . . . , n.

Then we have

z0(x) = Z0(x) �
kX

l=1
[Z0l(x) + Z1l(x)]+ ⇡0(x), (9.1)

z1(x) = Z1(x) �
kX

l=1

@

@x1
Ul(x) + ⇡1(x)

= Z1(x) �
kX

l=1

[cos ✓l Z1l(x) � sin ✓l Z2l(x)]q
1� ⇣ 2k

+ ⇡1(x),
(9.2)

z2(x) = Z2(x) �
kX

l=1

@

@x2
U2(x) + ⇡2(x)

= Z2(x) �
kX

l=1

[sin ✓l Z1l(x) + cos ✓l Z2l(x)]q
1� ⇣ 2k

+ ⇡2(x),
(9.3)

z↵(x) = Z↵(x) �
kX

l=1
Z↵l + ⇡↵(x) for ↵ = 3, · · · , n. (9.4)

Moreover, the following identities hold,

zn+1(x) =
kX

l=1
Z2l(x) + x2⇡1(x) � x1⇡2(x), (9.5)

zn+2(x) =
kX

l=1

q
1� ⇣ 2k cos ✓l Z0l(x) �

kX

l=1

q
1� ⇣ 2k cos ✓l Z1l(x)

� 2x1⇡0(x) + |x |2⇡1(x), (9.6)

zn+3(x) =
kX

l=1

q
1� ⇣ 2k sin ✓l Z0l(x) �

kX

l=1

q
1� ⇣ 2k sin ✓l Z1l(x)

� 2x2⇡0(x) + |x |2⇡2(x), (9.7)

zn+↵+1(x) =
q
1� ⇣ 2k

kX

l=1
cos ✓l Z↵l(x) + x1⇡↵(x), for ↵ = 3, . . . , n, (9.8)

z2n+↵�1(x) =
q
1� ⇣ 2k

kX

l=1
sin ✓l Z↵l(x) + x2⇡↵(x), for ↵ = 3, . . . , n. (9.9)
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Then we have the following estimations:

Lemma 9.1.
Z

Rn
Z↵l(x)Z0(x)dx (9.10)

=

8
<

:

Z

Rn
Z20(x)dx + O(k�1) if ↵ = 0, l = 0

O(k�1) otherwise,

Z

Rn
Z↵l(x)Z�(x)dx (9.11)

=

8
<

:

Z

Rn
Z21(x)dx + O(k�1) if ↵ = � 2 {1, · · · , n}, l = 0

O(k�1) otherwise,

Z

Rn
Z↵l(x)Z0 j (x)dx (9.12)

=

8
<

:

Z

Rn
Z20(x)dx + O(k�1) if ↵ = 0, l = j

O(k�1) otherwise,

Z

Rn
Z↵l(x)Z� j (x)dx (9.13)

=

8
<

:

Z

Rn
Z21(x)dx + O(k�1) if ↵ = � 2 {1, · · · , n}, l = j

O(k�1) otherwise,

Z

Rn

|x |2 � 2
�
1+ |x |2

� n�2
2 +1

Z� j (x)dx (9.14)

=

8
><

>:

Z

Rn

(|x |2 � 2)
�
1+ |x |2

� n�2
2 +1

Z0(x)dx + O(k�1) if � = 0, j = 0

O(k�1) otherwise,

Z

Rn

xi
�
1+ |x |2

� n�2
2 +1

Z� j (x)dx (9.15)

=

8
><

>:

Z

Rn

xi
�
1+ |x |2

� n�2
2 +1

Zi (x)dx + O(k�1) if � = 0, j = i 2 {1, · · · , n}

O(k�1) otherwise.
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Proof. We prove (9.12). Let ⌘ > 0 be a small fixed real number independent of k.
Then
Z

Rn
Z↵l(x)Z0 j (x)dx =

Z

B(⇠l ,
⌘
k )
Z↵l(x)Z0l(x)dx +

Z

Rn\B(⇠l ,
⌘
k )
Z↵l(x)Z0 j (x)dx .

:= i1 + i2.

Changing the variable via x = ⇠l + ⇣k y, we obtain

i1 =
Z

B(0, ⌘
k⇣k

)
Z↵(x)Z0(x)dx =

8
<

:

✓Z

Rn
Z20(x)dx + O((⇣kk)n)

◆
if ↵ = 0

0 if ↵ 6= 0.

As for the term i2, decompose

i2 =
Z

Rn\[kj=1B(⇠ j ,
⌘
k )
Z↵l(x)Z0 j (x)dx +

X

j 6=l

Z

B(⇠ j ,
⌘
k )
Z↵l(x)Z0 j (x)dx = i21 + i22.

i21 can be estimated as

|i21|  C⇣ n�2k

Z 1

{|x |� ⌘
k }

1
|x |2n�4

dx = C⇣ n�2k

Z 1

⌘
k

rn�1

r2n�4
dr

 C⇣ n�2k kn�4 = O
✓
1
k

◆
.

And

|i22|  C
X

j 6=l

Z

B(⇠ j ,
⌘
k )

⇣
n�2
2

k
|x � ⇠l |n�2

Z0 j (x)dx  C⇣
n�2
2

k kn�2
Z ⌘

k

0

rn�1

rn�2
dr

 C⇣
n�2
2

k kn�4  C⇣k = O
✓
1
k

◆
,

where C are generic positive constants independent of k. Hence we have (9.12).
The proofs of (9.10), (9.11), (9.13), (9.14) and (9.15) are similar, we omit them.
This concludes the proof.

Then Lemma 6.1 follows from Lemma 9.1, (9.1)-(9.9) and Proposition 2.1 of [33]
by long but easy estimates.

9.2. Proof of (2.30)

First, we claim that
Z

Rn
|Q|p�1(y)Z0(y)dy =

Z

Rn
U p�1(y)Z0(y)dy + O

✓
1
ks

◆
(9.16)
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for some small s > 0. Indeed, we have
Z

Rn
|Q|p�1(y)Z0(y)dy

=
Z

Rn

�
�
�
�
�
U(y) �

kX

j=1
Uj (y) + �̃(y)

�
�
�
�
�

p�1

Z0(y)dy

=
Z

Rn
U p�1(y)Z0(y)dy + (p � 1)

Z

Rn
U p�2(y)

�
�
�
�
�
�

kX

j=1
Uj (y) + �̃(y)

�
�
�
�
�
Z0(y)dy

+ O

 
kX

j=l

Z

Rn
|Uj |

p�1(y)Z0(y)dy

!

+ O
✓Z

Rn
|�̃(y)|p�1(y)Z0(y)dy

◆

=
Z

Rn
U p�1(y)Z0(y)dy + O

 
kX

j=1

Z

Rn
U p�2(y)Uj (y)Z0(y)dy

!

+ O

 
kX

j=l

Z

Rn
|Uj |

p�1(y)Z0(y)dy

!

+ O
✓Z

Rn
|�̃(y)|p�1(y)Z0(y)dy

◆

+ O
✓Z

Rn
U p�2(y)

�
�
��̃(y)

�
�
� Z0(y)dy

◆

and Z

Rn
|Uj |

p�1(y)Z0(y)dy = 4
Z

Rn

⇣ 2k
(⇣ 2k + |y � ⇠ j |2)2

Z0(y)dy

= 4⇣ n�2k

Z

Rn

1
(1+ |z|2)2

Z0(⇣k z + ⇠ j )dy

 C⇣ n�2k

Z

Rn

1
(1+ |z|2)2

1
�
�⇣k z + ⇠ j

�
�n�2

dy

= C⇣ n�2k

Z

|z| 1
2⇣k

1
(1+ |z|2)2

1
�
�⇣k z + ⇠ j

�
�n�2

dy

+ C⇣ n�2k

Z

|z|� 1
2⇣k

1
(1+ |z|2)2

1
�
�⇣k z + ⇠ j

�
�n�2

dy

= C⇣ n�2k

Z

|z| 1
2⇣k

1
(1+ |z|2)2

1
�
�⇠ j

�
�n�2

✓
1+ O

✓
⇣k z
|⇠ j |

◆◆
dy

+ C⇣ n�2k

Z

|z|� 1
2⇣k

1
(1+ |z|2)2

1
|⇣k z|n�2

✓
1+ O

✓
|⇠ j |

⇣k z

◆◆
dy

= O
⇣
⇣ 2k

⌘
= O

✓
1
k4

◆
,
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Z

Rn
U p�2(y)Uj (y)Z0(y)dy  C

Z

Rn

⇣
n�2
2

k

(⇣ 2k + |y � ⇠ j |2)
n�2
2

1
(1+ |y|)4

dy

= C⇣
n
2+1
k

Z

Rn

1

(1+ |z|2)
n�2
2

1
(1+

�
�⇣k z + ⇠ j

�
�)4

dy

 C⇣
n
2+1
k

Z

Rn

1

(1+ |z|2)
n�2
2

1
�
�⇣k z + ⇠ j

�
�4
dy

= C⇣
n
2+1
k

Z

|z| 1
2⇣k

1

(1+ |z|2)
n�2
2

1
�
�⇣k z + ⇠ j

�
�4
dy

+ C⇣
n
2+1
k

Z

|z|� 1
2⇣k

1

(1+ |z|2)
n�2
2

1
�
�⇣k z + ⇠ j

�
�4
dy

= C⇣
n
2+1
k

Z

|z| 1
2⇣k

1

(1+ |z|2)
n�2
2

1
�
�⇠ j

�
�4

✓
1+ O

✓
⇣k z
|⇠ j |

◆◆
dy

+ C⇣
n
2+1
k

Z

|z|� 1
2⇣k

1

(1+ |z|2)
n�2
2

1
|⇣k z|4

✓
1+ O

✓
|⇠ j |

⇣k z

◆◆
dy

= O
⇣
⇣
n
2�1
k

⌘
,

Z

Rn
|�̃(y)|p�1(y)Z0(y)dy=O

✓
k� n

q
4

n�2

Z

Rn

1
(1+ |y|)n+2

dy
◆

=O
⇣
k� n

q
4

n�2
⌘

,

Z

Rn
U p�2(y)

�
�
��̃(y)

�
�
� Z0(y)dy = O

✓
k� n

q

Z

Rn

1
(1+ |y|)n+2

dy
◆

= O
⇣
k� n

q
⌘

hold. Now (9.16) follows from the above estimates. Similarly, we have
Z

Rn
|Q|p�1(y)Z0l(y)dy =

Z

Rn
|Ul |p�1(y)Z0l(y)dy + O

✓
1

k1+s

◆

and
Z

Rn
|Q|p�1(y)Z1l(y)dy =

Z

Rn
|Ul |p�1(y)Z1l(y)dy + O

✓
1

k1+s

◆
.

Moreover,

�p
Z

Rn
U p�1(y)Z0(y)dy =

n � 2
2

Z

Rn
U p(y)dy > 0,

�p
Z

Rn
|Ul |p�1(y)Z0l(y)dy = ⇣

n
2�1
k

✓
�p

Z

Rn
U p�1(y)Z0(y)dy

◆

= ⇣
n
2�1
k

n � 2
2

Z

Rn
U p(y)dy,

Z

Rn
|Ul |p�1(y)Z1l(y)dy = 0.
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Then from (9.1),

� p
Z

Rn
|Q|p�1(y)z0(y)dy

= �p
Z

Rn
|Q|p�1(y)Z0(y)dy + p

kX

l=1

Z

Rn
|Q|p�1(y)Z0l(y)dy

+ p
kX

l=1

Z

Rn
|Q|p�1(y)Z1l(y)dy � p

Z

Rn
⇡0(y)Z0l(y)dy

= �p
Z

Rn
U p�1(y)Z0(y)dy + p

kX

l=1

Z

Rn
|Ul |p�1(y)Z0l(y)dy

+ p
kX

l=1

Z

Rn
|Ul |p�1(y)Z1l(y)dy � p

Z

Rn
⇡0(y)Z0l(y)dy + O

✓
1
ks

◆

= (1+ k⇣
n
2�1
k )

n � 2
2

Z

Rn
U p(y)dy + O

✓
1
ks

◆

which is positive when k is large. This proves c1 > 0 when k0 is large enough.
Finally, we prove c2 > 0. From (9.1), z0(y) � Dn,k(2�|y|2)

(1+|y|2)
n
2
can be written as

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

=

 

Z0(y) �
n � 2
2

↵n(2� |y|2)
�
1+ |y|2

� n
2

!

�
kX

l=1

 

Z0l(y) � ⇣
n�2
2

k fn
(2� |y|2)
�
1+ |y|2

� n
2

!

�
kX

l=1
Z1l(y) + ⇡0(y) � o(1)hn

(2� |y|2)
�
1+ |y|2

� n
2
, (k ! +1).

A direct computation yields that
Z

Rn

 

Z0(y) �
n � 2
2

↵n(2� |y|2)
�
1+ |y|2

� n
2

!

z0(y)dy

=
Z

Rn

 

Z0(y) �
n � 2
2

↵n(2� |y|2)
�
1+ |y|2

� n
2

!

Z0(y)dy + O
✓
1
k

◆

= ↵n
n � 2
2

p
⇡2�n0

�n
2 � 1

�

0
⇣
n+1
2

⌘ + O
✓
1
k

◆
,
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kX

l=1

Z

Rn

 

Z0l(y) � ⇣
n�2
2

k fn
(2� |y|2)
�
1+ |y|2

� n
2

!

z0(y)dy = O
✓
1
k

◆
,

kX

l=1

Z

Rn
Z1l(y)z0(y)dy = O

✓
1
k

◆
,

kX

l=1

Z

Rn

 

⇡0(y) � o(1)hn
(2� |y|2)
�
1+ |y|2

� n
2

!

z0(y)dy = O
✓
1
k

◆
.

Therefore,

Z

Rn

 

z0(y) �
Dn,k(2� |y|2)
�
1+ |y|2

� n
2

!

z0(y)dy = ↵n
n � 2
2

p
⇡2�n0

�n
2 � 1

�

0
⇣
n+1
2

⌘ + O
✓
1
k

◆

which is positive when k is large enough. Hence c2 > 0 if k0 is sufficiently large.
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[1] C. COLLOT, F. MERLE and P. RAPHAËL, Dynamics near the ground state for the energy
critical nonlinear heat equation in large dimensions, Comm. Math. Phys. 352 (2017), 215–
285.

[2] C. CORTAZAR, M. DEL PINO and M. MUSSO, Green’s function and infinite-time bubbling
in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear.
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[36] P. POLÁCIK, P. QUITTNER and P. SOUPLET, Singularity and decay estimates in super-
linear problems via Liouville-type theorems, Part II: Parabolic equations, Indiana Univ.
Math. J. 56 (2007), 879–908.
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