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Global weighted Lorentz estimates for parabolic equations with
measure via strong fractional maximal functions

THE ANH BUI

Abstract. In this paper, we prove a weighted norm inequality for the gradient of
solutions to nonlinear parabolic equations with measure data via strong fractional
maximal functions. It is worth noticing that our paper is the first one which studies
the gradient estimates of solutions to such equations via strong fractional maximal
functions.
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1. Introduction

Let � be a bounded open domain in Rn , n � 2. For p > 2� 1
n+1 , we consider the

following parabolic equation with measure data
(
ut � div a(Du, x, t) = µ in �T
u = 0 on @p�T ,

(1.1)

where T > 0 is a given positive constant, �T = � ⇥ (0, T ), @p�T = (@� ⇥
(0, T ))[(�̄⇥{0}), andµ is a signed Borel measure with finite total mass. Through-
out the paper, we denote ut = @u

@t and Du = Dxu := (Dx1, . . . , Dxn ).
In this paper, we assume that the nonlinearity a(⇠, x, t) = (a1, . . . , an) : Rn ⇥

Rn ⇥ R ! Rn in (1.1) is measurable in (x, t) for every ⇠ , differentiable in ⇠ for
a.e. (x, t), and satisfies the following conditions: there exist 31,32 > 0 so that

|a(⇠, x, t)| + |⇠ | · |D⇠a(⇠, x, t)|  31|⇠ |p�1, (1.2)
and

ha(⇠, x, t) � a(⌘, x, t), ⇠ � ⌘i

� 32

(
|⇠ � ⌘|p, p � 2,
(|⇠ | + |⌘|)p�2|⇠ � ⌘|2, 2� 1

n+1 < p < 2.
(1.3)

for a.e (⇠, ⌘) 2 Rn ⇥ Rn and a.e. (x, t) 2 Rn ⇥ R.
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The nonlinearity a(⇠, x, t) satisfying these conditions is modelled on the proto-
type of p-Laplacian 1pu = div(|Du|p�2Du) with respect to a(⇠, x, t) = |⇠ |p�2⇠ .

Definition 1.1. A function u 2 C(0, T ; L2(�)) \ L p(0, T ;W 1,p
0 (�)) is said to be

a weak solution to equation (1.1) if the following holds true

�
Z

�T

u't dz +
Z

�T

ha(Du, x, t), D'idz =
Z

�T

'dµ, (1.4)

for every ' 2 C1
c (�T ).

In general, if µ is a signed Borel measure with finite total mass, it is not clear
whether the weak solution to equation (1.1) exists. However, this guarantees the
existence of a particular type of solution so called SOLA (Solution Obtained as
Limits of Approximation). For the sake of convenience, we sketch the ideas about
the SOLA in [9, 10]. For each k 2 N, we consider the regularized problem

(
(uk)t � div a(Duk, x, t) = µk in �T
uk = 0 on @p�T ,

(1.5)

where µk 2 C1(�T ) converges to µ in the weak sense of measure and

|µk |(QR \ �T )  |µ|(QR \ �T ), k � 1, R > 0.

As a classical result, equation (1.5) admits a weak solution uk 2C(0,T ;L2(�)) \
L p(0, T ;W 1,p

0 (�)) for each k. Moreover, it was proved in [11] that there exists u so
that uk ! u in Lq(0, T ;W 1,q

0 (�)) for any q 2 [1, p�1+ 1
n+1 ). By this reason, the

limit of approximation solution u is refered to SOLA (Solution Obtained as Limits
of Approximation). In the general case, the SOLA may not be unique. However,
the uniqueness of SOLA is guaranteed if µ 2 L1(�T ). See for example [18]. For
this reason, for the sake of simplicity we assume that µ 2 L1(�T ) and we will state
the main result (see Theorem 1.5) for weak solutions instead of SOLAs; however,
needless to say, our resutls still hold for SOLAs.

The nonlinear elliptic and parabolic equations with measure data have received
a great deal of attention by many mathematicians. See for example [8–11, 22, 23,
30, 38–41] and the references therein. One of the most interesting problems con-
cerning the SOLAs to equation (1.1) is the gradient estimate for its solutions. More
precisely, we look for the conditions on the measure µ, the nonlinearity a and the
domain � so that the gradient Du of the solutions to (1.1) lies in some function
spaces. Recently, there have been a number of research which investigates this
problem under the condition that the measure µ belongs to certain Morrey spaces.
Recall that for 0 < ✓  n + 2, we say that the measure µ is in the Morrey space
L1,✓ (�T ) if the following holds true:

sup
z2�T

sup
0<rdiam�T

|µ|(Qr (z) \ �T )

|Qr (z) \ �T |1�
✓

n+2
< 1,
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where Qr (z) = Br (x) ⇥ (t � r2, t + r2) with z = (x, t) and Br (x) = {y 2 Rn :
|x � y| < r}. We would like to give a shortlist of research in this direction.

(i) The local Marcinkiewicz type estimates were obtained for the elliptic equa-
tions in [39]:

µ 2 L1,✓ (�), 2  ✓  n =) |Du| 2 L
✓(p�1)

✓�1 ,1
loc (�)

where Lm,1(�T ) is the weak-Lebesgue space, or the Marcinkiewicz space,
defined by the set of all measurable functions f on �T satisfying

k f kLm,1(�T ) := sup
�>0

�|{z 2 �T : | f (z)| > �}|
1
m < +1.

It is easy to see that when ✓ = n, this estimate turns out to be:

µ 2 L1,n(�) =) |Du|p�1 2M
n

n�1
loc (�), p < n.

See for example [9,11]. The borderline case p = n is much more difficult and
was obtained in [21].

(ii) For the parabolic equation, the local version of Marcinkiewicz type estimates
for p = 2 was obtained in [7] by making use of the maximal function tech-
nique.

(iii) The case p � 2 was proved in [4]. It was proved in [4] that there exists
✓̃ 2 (1, 2) so that

µ 2 L1,✓ (�T ), ✓ 2 (✓̃, n+2] =) |Du| 2Mm
loc(�T ), m = p�1+

1
✓ � 1

.

The number ✓̃ 2 (1, 2) is a threshold and has a connection with the exponent in
higher integrability estimates of the associated homogeneous equation. Later,
the authors in [13] extended to study the global estimates with a more general
nonlinearity a(⇠, x, t). Recently, the case 2� 1

n+1 < p < 2 has been obtained
in [5].

Before coming to our main results, we will clarify the assumptions which will be
considered in the paper. Apart from (1.2) and (1.3), the nonlinearity a will be
asssumed to satisfy the small BMO norm condition (1.6) below. We set

2(a, Br (y))(x, t) = sup
⇠2Rn\{0}

|a(⇠, x, t) � aBr (y)(⇠, t)|
|⇠ |p�1

,

where
aBr (y)(⇠, t) =

Z

Br (y)
a(⇠, x, t)dx .
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Definition 1.2. Let R0, � > 0. The nonlinearity a is said to satisfy the small
(�, R0)-BMO condition if

[a]2,R0 := sup
(y,s)2Rn+1

sup
0<rR0,⌧>0

Z

Q(r,⌧ )(y,s)
|2(a, Br (y))(x, t)|2dz  �2, (1.6)

where Q(r,⌧ )(y, s) = Br (y) ⇥ (s � ⌧, s + ⌧ ).
Note that the small (�, R0)-BMO condition is satisfied even when a(⇠, x, t) is

discontinuous with respect to x and t .
Concerning the underlying domain �, we do not assume any smoothness con-

dition on �, but the following flatness condition.
Definition 1.3. Let �, R0 > 0. The domain� is said to be a (�, R0) Reifenberg flat
domain if for every x 2 @� and 0 < r  R0, then there exists a coordinate system
depending on x and r , whose variables are denoted by y = (y1, . . . , yn) such that
in this new coordinate system x is the origin and

Br \ {y : yn > �r} ⇢ Br \ � ⇢ {y : yn > ��r}. (1.7)

The condition of (�, R0)-Reifenberg flatness was first introduced in [47]. This con-
dition does not require any smoothness on the boundary of�, but sufficient flatness
in the Reifenberg’s sense. The Reifenberg flat domains include domains with rough
boundaries of fractal nature, and Lipschitz domains with small Lipschitz constants.
For further discussion about the Reifenberg domain, we refer to [19,43,47,51] and
the references therein.

Throughout the paper, we always assume that the domain� is a (�, R0) Reifen-
berg flat domain, and the nonlinearity a satisfies (1.2), (1.3) and the small (�, R0)-
BMO condition (1.6).

We set

Q = {Q : Q = Br (x) ⇥ (t1, t2), x 2 Rn, r > 0; t1, t2 2 R}.

Let 1  q < 1. A nonnegative locally integrable function w belongs to the class
A⇤
q , say w 2 A⇤

q , if there exists a positive constant C so that

[w]A⇤
q := sup

Q2Q

⇣Z

Q
w(z)dz

⌘⇣Z

Q
w�1/(q�1)(z)dz

⌘q�1
C, if 1<q<1, (1.8)

and Z

Q
w(z)dz  C ess-inf

z2Q
w(z), if q = 1, (1.9)

for all Q 2 Q. We say that w 2 A⇤
1 if w 2 A⇤

q for some q 2 [1,1). We will
denote w(E) :=

R
E w(z)dz for any measurable set E ⇢ Rn+1.

We note that if we replace the familyQ by the family of parabolic cylinders of
the form Qr (z) = Br (x)⇥(t�r2, t+r2)with z = (x, t) 2 Rn+1 in (1.8) and (1.9),
then we have the Muckenhoupt weights Ap. Hence, it is clearly that A⇤

p ⇢ Ap for
all 1  p < 1.

Some similar results to the Muckenhoupt weights follow due to [3].
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Lemma 1.4. Let w 2 A⇤
q for some 1  q < 1. There exist ⌧ = ⌧ ([w]A⇤

q ), and
a constant C = C([w]A⇤

q ) such that for any Q 2 Q, and any measurable subset
E ⇢ Q,

C�1
✓

|E |

|Q|

◆q


w(E)

w(Q)
 C

✓
|E |

|Q|

◆⌧

.

Let w 2 A⇤
1, 0 < q < 1, 0 < r  1 and let E be a subset of Rn+1. The

weighted Lorentz space Lq,r
w (E) is defined as the set of all measurable functions f

on E such that

k f kLq,r
w (E) :=

⇢
q
Z 1

0

⇥
tqw ({z 2 E : | f (z)| > t})

⇤r/q dt
t

�1/r
< 1 .

In the particular case q = r , the weighted Lorentz space Lq,q
w (E) coincides with the

weighted Lebesgue space Lqw(E) which is defined as the space of all measurable
functions f on E such that

k f kLqw(E) =

✓Z

E
| f (z)|qw(z)dz

◆1/q
< 1 .

In order to state our main result, we first recall the concept of the strong fractional
maximal function:

Ms
1(µ)(z) = sup

r,⌧>0

|µ|(Qr,⌧ (z))

|Qr,⌧ (z))|
n+1
n+2

(1.10)

where the supremum is taken over all cylinders Qr,⌧ (z) = Br (x) ⇥ (t � ⌧ 2, t + ⌧ 2)
with z = (x, t) 2 Rn+1.

We note that the strong fractional maximal function defined in (1.10) is a nat-
ural variant version of strong maximal functions introduced in [17]. This kind
of strong fractional maximal functions was introduced in [50] to study the multi-
parameter of Riezs type potentials.

The main aim of this paper is to establish the gradient estimate for solutions
to (1.1) in terms of the strong maximal function defined in (1.10). This is contrast
with those in [5, 7, 13, 21, 30, 39] where the gradient esitmates were obtained with
Morrey data conditions for µ. Our main result is the following theorem.

Theorem 1.5. Let w 2 A⇤
1, 0 < q < 1 and 0 < r  1. Then there exists a

positive constant � such that the following holds. If u is a weak solution to (1.1)
with µ 2 L1(�T ), the domain � is a (�, R0)-Reifenberg flat domain, and the non-
linearity a satisfies (1.2), (1.3) and the small (�, R0)-BMO condition (1.6), then we
have

kDukLq,r
w (�T )  C

✓�
�
�
⇥
Ms

1(µ)
⇤ n+2
p+(p�1)n

�
�
�
Lq,r

w (�T )
+ 1

◆ 2
2�n(2�p)

,

2�
1

n � 1
< p < 2,

(1.11)
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and

kDukLq,r
w (�T )  C

✓�
�
�[Ms

1(µ)]
(p�1)(n+2)
p+(p�1)n

�
�
�
Lq,r

w (�T )
+ 1

◆
, p � 2, (1.12)

where C is a constant depending on n, w,31,32, �, R0,�T .

Needless to say, as mentioned earlier the results in Theorem 1.5 still hold true for
SOLAs to (1.1).

Although there have been a number of research dedicated to the improvement
of integrability for the gradient of solutions to (1.1), our paper is the first one where
investigates the gradient estimates for the solutions to (1.1) via strong maximal
functionMs

1. This result is even new for unweighted estimate.
Note that in the particular case p = 2, it was proved in [42] that

kDukLq,r
w (�T )  C

�
�
�M1(µ)

�
�
�
Lq,r

w (�T )
(1.13)

for all 0 < q < 1, 0 < r  1 and w 2 A1, where A1 is a class of Muckenhoupt
weights, andM1 is a fractional maximal function defined by

M1(µ)(z) = sup
r>0

|µ|(Qr (z))

|Qr (z))|
n+1
n+2

, (1.14)

where the supremum is taken over all parabolic cylinders Qr (z) = Br (x) ⇥ (t �
r2, t + r2) with z = (x, t) 2 Rn+1. This estimate is clearly sharper than the
estimates in Theorem 1.5, sinceM1  Ms

1 and A
⇤
1 ⇢ A1. The reason for this

lies in the fact that in our setting we have to work with intrinsic cylinder in the form
B

�
p�2
2 r

(x)⇥(t�r2, t+r2) as 2� 1
2 < p < 2, and Br (x)⇥(t��2�pr2, t+�2�pr2)

as p � 2. Hence, the strong fractional maximal functionMs
1 and the new class of

weights A⇤
1 are natural and reasonable. Meanwhile, as p = 2, we only deal with

parabolic cylinders of the form Br (x) ⇥ (t � r2, t + r2). This explains why in the
particular case p = 2 we can replaceMs

1 and the class A
⇤
1 byM1 and the class

A1, respectively. However, it is worth noticing that our approach still works well
in the case p = 2 to deduce the estimate (1.13).

Some comments on the techniques used in the paper are in order. In the particu-
lar case p = 2, the gradient estimate via maximal functions can be otained by using
Hardy-Littlewood maximal function techniques. See for example [42]. However,
this harmonic analysis tool does not work well for the case p 6= 2 for the following
reasons. Firstly, the homogeneity of the parabolic equations is no longer true as
p 6= 2, even when µ ⌘ 0. Secondly, as mentioned earlier, in our setting we work
with intrinsic cylinder in the form B

�
p�2
2 r

(x) ⇥ (t � r2, t + r2) as 2� 1
2 < p < 2,

and Br (x)⇥ (t ��2�pr2, t +�2�pr2) as p � 2 instead of parabolic cylinders. Our
approach is based on a covering arguments which is an effective tool in studying
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the general nonlinear parabolic equations. See for example [1, 2, 4, 12, 13, 15]. Al-
though, this technique is more or less standard in the parabolic setting, a number of
non-trivial improvements would be required. See Section 3 and Section 5.

The organization of the paper is as follows. Part 1 will treat problem for the
case 2� 1

n+1 < p < 2. Section 2 gives some comparison estimates in both interior
and boundary cases. The proof of Theorem 1.5 corresponding to 2� 1

n+1 < p < 2
will be represented in Section 3. The case p > 2 will be considered in Part 2.
Section 4 gives briefly some comparison estimates. The proof of Theorem 1.5 with
respect to p � 2 will be given in Section 5.

Throughout the paper, we always use C and c to denote positive constants that
are independent of the main parameters involved but whose values may differ from
line to line. We will write A . B if there is a universal constant C so that A  CB
and A ⇠ B if A . B and B . A.

Part 1
Global weighted estimates for the gradient of solutions:

the case 2� 1
n+1 < p < 2

In this part we employ the following notations. For z = (x, t) with x 2 Rn, t > 0
and � � 1, we denote:
• B�

r (x) = B
�
p�2
2 r

(x), Ir (t) = (t � r2, t + r2), ��
r (x) = B�

r (x) \ �, Q�
r (z) =

B�
r (x) ⇥ Ir (t);

• K �
r (z)=Q�

r (z)\�T , @wK �
r (z)=Q�

r (z)\(@�⇥R), @pK �
r (z)=@K �

r (z)\(�̄�
r (x)⇥

{t + r2});
• (Q�

r )
+(z)= (B�

r )+(x)⇥(t�r2, t+r2)where (B�
r )+(x) = {y : y 2 B�

r (x), yn >
xn}.

2. Comparison estimates

2.1. Interior estimates

For z0 = (x0, t0) 2 �T , 0 < R < R0/4 and � � 1 satisfying B�
4R ⌘ B�

4R(x0) ⇢ �,
we set

Q�
4R ⌘ Q�

4R(z0) = B�
4R ⇥ I4R(t0). (2.1)

For the sake of simplicity, we may assume that I4R(t0) ⇢ (0, T ), or equivalently,
Q�
4R ⇢ �T . The case I �4R(t0) \ (0, T )c 6= ; can be done in the same manner with

minor modifications.
Assume that u is a weak solution to (1.1). It is well-known that there exists a

unique weak solutionw 2 C(I4R(t0); L2(B�
4R(x0)))\L p(I4R(t0);W 1,p(B�

4R(x0)))
to the following equation

(
wt � div a(Dw, x, t) = 0 in Q�

4R
w = u on @pQ�

4R .
(2.2)
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We begin with the following comparison result:

Lemma 2.1. Let w be a weak solution to problem (2.2). Then for every 1  q <
p � 1+ 1

n+1 , there exists C so that

 Z

Q�
4R

|D(u � w)|qdz

!1/q

 C

"
|µ|(Q�

4R)

|Q�
4R|

n+1
n+2

# n+2
p+(p�1)n

+ C
|µ|(Q�

4R)

|Q�
4R|

n+1
n+2

 Z

Q�
4R

|D(u � w)|qdz

! 2�p
q

n+1
n+2

.

(2.3)

Proof. The proof of this lemma can be found in [28, Lemma 4.1] (see also [5,
Lemma 4.1]).

The result below shows that the estimate for L p-norm of the gradient Dw can
be inherited from its L1-norm estimate. We have:

Lemma 2.2. Let w be a weak solution to problem (2.2). If
Z

Q�
4R

|Dw|dz  �,  � 1,

then Z

Q�
2R

|Dw|pdz  c�p

where c = c(n, p,31,32, ).

Proof. We refer to [5, Proposition 3.5] for the proof.

The next estimate is known as a reverse-Hölder’s inequality for the solution to
(2.2).

Proposition 2.3. Let w be a weak solution to problem (2.2). Assume that

�p .
Z

Q�
2R

|Dw|pdz and
Z

Q�
4R

|Dw|pdz . �p. (2.4)

Then there exists ✏0 > 0 such that

 Z

Q�
2R

|Dw|p+✏0dz

! 1
p+✏0

 C
Z

Q�
4R

|Dw|dz,

where C depends on n, p,31,32 and  .

Proof. The proof of this proposition is quite standard. See for example [26].
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Let w be a weak solution to (2.2) under the condition (2.4). We now consider
the following problem

(
vt � div aBR (Dv, t) = 0 in Q�

R
v = w on @pQ�

R .
(2.5)

We then obtain the following estimate.

Lemma 2.4. Let v be a weak solution to (2.5) under the condition (2.4). Then for
any ✏ > 0 there exists � > 0 so that

Z

Q�
R

|D(w � v)|pdz  ✏�p. (2.6)

Proof. The proof is similar to that of Lemma 2.3 in [13] using Proposition 2.3.

The following approximation result will play an important role in the proof of
the main result.

Proposition 2.5. For each ✏ > 0 there exists � > 0 so that the following holds true.
If u is a weak solution to problem (1.1) satisfying

� 
Z

Q�
R

|Du|dz and
Z

Q�
4R

|Du|dz  �, (2.7)

and "
|µ|(K �

4R)

|K �
4R|(n+1)/(n+2)

# n+2
p+(p�1)n

 ��, (2.8)

then the weak solution v to problem (2.5) satisfies

kDvkL1(Q�
R/2)

. �, (2.9)

and Z

Q�
R

|D(u � v)|dz  ✏�. (2.10)

Proof. From (2.3) and (2.8), we have

Z

Q�
4R

|D(u � w)|dz  C

"
|µ|(Q�

4R)

|Q�
4R|

n+1
n+2

# n+2
p+(p�1)n

+ C
|µ|(Q�

4R)

|Q�
4R|

n+1
n+2

⇣Z

Q�
4R

|D(u � w)|dz
⌘ (2�p)(n+1)

n+2

 C�� + [��]
p+(p�1)n

n+2
⇣Z

Q�
4R

|D(u � w)|dz
⌘ (2�p)(n+1)

n+2
.
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This implies that Z

Q�
4R

|D(u � w)|dz  C��.

Taking � to be sufficiently small, from the above inequality and (2.7) we infer that

� .
Z

Q�
R

|Dw|dz,
Z

Q�
4R

|Dw|dz . �.

We now apply Hölder’s inequality and Lemma 2.2 to deduce that

�p .
Z

Q�
R

|Dw|pdz,
Z

Q�
2R

|Dw|pdz . �p. (2.11)

Then by Lemma 2.4, we have that for any ✏̃ there exists � > 0 so that
Z

Q�
R

|D(w � v)|pdz  ✏̃�p.

Therefore,

kDvkpL1(Q�
R/2)

.
Z

Q�
R

|Dv|pdz

.
Z

Q�
R

|Dw|pdz +
Z

Q�
R

|D(w � v)|pdz

. �p,

which proves (2.9), where in the first inequality we used Hölder estimates for Du.
See for example [20, Chapter VIII].

Then the inequality (2.10) can be obtained via the following estimates:
Z

Q�
R

|D(u � v)|dz .
Z

Q�
R

|D(u � w)|dz +
Z

Q�
R

|D(w � v)|dz

. C(� + ✏̃)�p.

By taking � and ✏̃ to be sufficiently small, we obtain (2.10). This completes our
proof.

2.2. Boundary estimates

Fix t0 2 (0, T ) and x0 2 @�, we set z0 = (x0, t0). Let 0 < R < R0/4 and � � 1.
For the sake of simplicity, we restrict ourself to consider the lateral boundary case
with respect to

I4R(t0) ⇢ (0, T ),

since the initial boundary case can be done in the same manner.
Before coming to the main comparison estimates, we shall establish some

boundary estimates on weak solutions to the homogeneous equations associated
to (1.1).
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2.2.1. Some boundary estimates for homogeneous equations

We now consider the weak solution

w 2 C(I4R(t0); L2(��
4R(x0))) \ L p(I4R(t0);W 1,p(��

4R(x0)))

to the following equation
(

wt � div a(Dw, x, t) = 0 in K �
4R(z0)

w = 0 on @wK �
4R(z0).

(2.12)

Lemma 2.6. Letw be a weak solution to problem (2.12). Let K �
⇢1(z̄) ⇢ K �

⇢2(z̄) ⇢
K �
4R(z0) with z̄ = (x̄, t̄) and ⇢2 > ⇢1 > 0. Then there exists c = c(n, p,31,32)

so that
Z

K �
⇢1 (z̄)

|Dw|pdz + sup
t2I⇢1 (t̄)

Z

B�
⇢1 (x̄)

|w|2dx


1

(⇢22 � ⇢21)

Z

K �
⇢2 (z̄)

|w|2dz +
c

�
p(p�2)
2 (⇢2 � ⇢1)p

Z

K �
⇢2 (z̄)

|w|pdz.

Proof. The proof of this lemma is quite standard. See for example [26]. Hence, we
omit details.

We now give a useful result which will be used in the sequel.

Lemma 2.7. Let w be a weak solution to equation (2.12). Then for ✓ 2 (0, 1) and
K �
r (z0) ⇢ K �

4R(z0) with r, � > 0 we have

sup
K �
3r (z0)

|w|  c(r� p/2)
n(p�2)

n(p�2)+p
⇣Z

K �
4r (z0)

|w|dz
⌘ p
n(p�2)+p

+ cr� p/2. (2.13)

Proof. Recall that a sub-solution is a function such that the left-hand side of the
weak formula of (2.12) is negative, for all positive test functions.

Note that since w is a weak solution to (2.12), |w| is a nonnegative subsolution
to equation (2.12). See for example Lemma 1.1 in [20].

The estimate (2.13) can be found in Theorem 5.1 in [20, Chapter V] for the
interior case. This argument still works well in our situation with a minor modifi-
cation. Hence, we omit details and leave it to interested readers.

We now recall a Sobolev-Poincaré’s inequality near the Reifenberg domain
which is a particular case of that in [25,37].

In the particular case when � is a Reifenberg flat domain, we have the follow-
ing result.
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Lemma 2.8. Let � be a (�, R0) Reifenberg domain. Suppose that 1 < q < 1
and that u is a q-quasicontinuous function in W 1,q(�r (x0)), where x0 2 @� and
0 < r < R0. Then

✓Z

�r (x0)
|u|qdx

◆ 1
q

 cr
✓Z

�r (x0)
|ru|qdx

◆1/q
, (2.14)

where c = c(n, q) > 0 and  = n/(n � q) if 1 < q < n and  = 2 if q � n.
In particularly, we have

✓Z

�r (x0)
|u|qdx

◆ 1
q

 cr
✓Z

Br (x0)
|rū|qdx

◆1/q
. (2.15)

Note that in the interior case, the L p-norm estimate for Dw can be obtained from
the its L1-norm estimate. However, it is not clear if this might be true in the bound-
ary case, due to a techical reason which the Sobolev-Poincaré inequality near the
boundary (2.14) may not be true as q = 1. Hence, in the boundary case, we have a
slightly different estimate:

Proposition 2.9. Let w be a weak solution to problem (2.12) satisfying the esti-
mates

�1+�0 .
Z

K �
R(z0)

|Dw|1+�0dz and
Z

K �
4R(z0)

|Dw|1+�0dz . �1+�0, (2.16)

for � > 1 and some 0 < �0 < p � 1. Then we have

�p .
Z

K �
R(z0)

|Dw|pdz and
Z

K �
2R(z0)

|Dw|pdz . �p. (2.17)

Proof. By Hölder’s inequality, we have
Z

K �
R(z0)

|Dw|pdz � C�p.

It remains to prove the second inequality in (2.17). Indeed, from Lemma 2.6 we
have
Z

K �
2R(z0)

|Dw|pdz 
c
R2

Z

K �
3R(z0)

|w|2dz +
c

�
p(p�2)
2 Rp

Z

K �
3R(z0)

|w|pdz. (2.18)

To do this, by Lemma 2.7 with � = �, r = 4R we find that

sup
K �
3R(z0)

|w| . (R�p/2)
n(p�2)

n(p�2)+p

 Z

K �
4R(z0)

|w|dz

! p
n(p�2)+p

+ cR�p/2.
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This along with Sobolev-Poincaré’s inequality (2.15), Hölder’s inequality and
(2.16) implies that

sup
K �
3R(z0)

|w|.(R�p/2)
n(p�2)

n(p�2)+p (�
p�2
2 R)

p
n(p�2)+p

 Z

K �
4R(z0)

|Dw|1+�0dz

! p
(1+�0)[n(p�2)+p]

+ cR�p/2

. (R�p/2)
n(p�2)

n(p�2)+p (�
p�2
2 R)

p
n(p�2)+p �

p
n(p�2)+p + cR�p/2

. R�p/2.

Inserting this into (2.18) we obtain
Z

K �
2R(z0)

|Dw|pdz . �p.

This completes our proof.

Similarly to the interior case, a reverse-Hölder’s inequality still holds true for
the solution to problem (2.12) near the boundary.

Proposition 2.10. Let w be a weak solution to problem (2.12). Assume that

�p .
Z

K �
R(z0)

|Dw|pdz and
Z

K �
2R(z0)

|Dw|pdz . �p. (2.19)

Then there exists ✏0 > 0 so that

 Z

K �
R(z0)

|Dw|p+✏0dz

! 1
p+✏0

 C
Z

K �
2R(z0)

|Dw|dz.

Proof. For the proof we refer to [43, Lemma 4.1].

We now give some comparison estimates for the weak solutions to (1.1).

2.2.2. Comparision estimates near boundary

Assume that u is a weak solution to problem (1.1). We consider the following
equation (

wt � div a(Dw, x, t) = 0 in K �
4R(z0)

w = u on @pK �
4R(z0).

(2.20)

Arguing similarly to the proof of [28, Lemma 4.1] (see also [5, Lemma 4.1]), we
can prove the similar estimate to that in Lemma 2.2 for the boundary case.
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Lemma 2.11. Let w be a weak solution to problem (2.20). Then for every 1  q <
p � 1+ 1

n+1 , there exists C so that

 Z

K �
4R(z0)

|D(u�w)|qdz

!1/q
 C

"
|µ|(K �

4R(z0))
|K �
4R(z0)|(n+1)/(n+2)

# n+2
p+(p�1)n

+ C
|µ|(K �

4R)

|K �
4R|

n+1
n+2

 Z

K �
4R

|D(u�w)|qdz

!2�p
q

n+1
n+2

.

(2.21)

We now assume that 0 < � < 1/50. Since x0 2 @�, there exists a new coordinate
system whose variables are still denoted by (x1, . . . , xn) such that in this coordinate
system the origin is some interior point of �, x0 = (0, . . . , 0,� �R

2(1��) ) and

B+
R/2 ⇢ BR/2 \ � ⇢ BR/2 \ {x : xn > �3�R}. (2.22)

Note that due to � 2 (0, 1/50), we further obtain

BR/8(x0) ⇢ B3R/8 ⇢ BR/4(x0) ⇢ BR/2 ⇢ BR(x0). (2.23)

Let w be a weak solution to (2.20) satisfying

�p .
Z

K �
R(z0)

|Dw|pdz and
Z

K �
2R(z0)

|Dw|pdz . �p. (2.24)

We now consider the following problem (in the new coordinate system)
(
ht � div aB�

R/2
(Dh, t) = 0 in K �

R/2(0, t0)
h = w on @pK �

R/2(0, t0).
(2.25)

Using Proposition 2.10 as a main vehicle and arguing similarly to the proof of [13,
Lemma 2.3], we can prove:

Lemma 2.12. Let h be a weak solution to (2.25) under the condition (2.24). Then
for any ✏ > 0 there exists � > 0 so that

Z

K �
R/2(0,t0)

|D(w � h)|pdz  ✏�p. (2.26)

The main different from the interior case is that due to the lack of smoothness
condition on the boundary of �, we can not expect that the L1-norm of Dh is
finite near the boundary. To handle this trouble, we consider its associated problem.
(

vt � div aBR/2(Dv, t)=0 in (Q�
R/2)

+(0, t0),
v = 0 on Q�

R/2(0, t0) \ {z=(x 0, xn, t) : xn=0}.
(2.27)
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Proposition 2.13. For each ✏ > 0 there exists � > 0 so that the following holds
true. If u is a weak solution to problem (1.1) satisfying

�1+�0 .
Z

K �
R(z0)

|Du|1+�0dz,
Z

K �
4R(z0)

|Du|1+�0dz . �1+�0,

for some 0 < �0 < p � 2+
1

n + 1
,

(2.28)

and "
|µ|(K �

4R(z0))
|K �
4R(z0)|(n+1)/(n+2)

# n+2
p+(p�1)n

 ��, (2.29)

then there exists a weak solution v to problem (2.27) satisfying

kDv̂kL1(Q�
R/8(z0))

. �, (2.30)

and Z

K �
R/4(z0)

|D(u � v̂)|1+�0dz  (✏�)1+�0 (2.31)

where v̂ is the zero extension of v to Q�
R/2(0, t0) � Q�

R/4(z0).

Proof. Since �0 2 (0, p � 2 + 1
n+1 ), we have 1 + �0 < p � 1 + 1

n+1 . Hence,
applying (2.21) and (2.29), we have

 Z

K �
4R(z0)

|D(u � w)|1+�0dz

! 1
1+�0

 C�� + [��]
p+(p�1)n

n+2
⇣Z

K �
4R(z0)

|D(u � w)|1+�0dz
⌘ 2�p
1+�0

n+1
n+2

.

As a consequence,
Z

K �
4R(z0)

|D(u � w)|1+�0dz  C[��]1+�0 . (2.32)

This, along with (2.28), implies that

�1+�0 .
Z

K �
R(z0)

|Dw|1+�0dz,
Z

K �
4R(z0)

|Dw|1+�0dz . �1+�0

as long as � being sufficiently small.
We now apply Proposition 2.9 to find that

�p .
Z

K �
R(z0)

|Dw|pdz,
Z

K �
2R(z0)

|Dw|pdz . �p. (2.33)
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Let h be a solution to (2.25). Then from Lemma 2.12 and the fact that K �
R/2(0, t0) ⇢

K �
R(z0) we have
Z

K �
R/2(0,t0)

|Dh|pdz .
Z

K �
R/2(0,t0)

|D(h � w)|pdz +
Z

K �
R/2(0,t0)

|Dw|pdz

.
Z

K �
R/2(0,t0)

|D(h � w)|pdz +
Z

K �
R(z0)

|Dw|pdz

. �p.

At this stage, using the similar argument in the proof of [12, Proposition 4.10] we
can show that there exists a weak solution v to problem (2.27) such that

kDv̂kL1(Q�
R/4(0,t0))

. �, (2.34)

and Z

K �
3R/8(0,t0)

|D(h � v)|pdz  (✏�)p (2.35)

where v̂ is the zero extension of v to Q�
R/2(0, t0).

With these two estimates in hand, by the fact that K �
R/4(z0) ⇢ K �

R/2(0, t0) ⇢

K �
R(z0), we have

Z

K �
R/4(z0)

|D(u � v)|1+�0dz .
Z

K �
R/4(z0)

|D(u � w)|1+�0dz

+
Z

K �
R/4(z0)

|D(w � h)|1+�0dz

+
Z

K �
R/4(z0)

|D(h � v)|1+�0dz

.
Z

K �
R/4(z0)

|D(u � w)|1+�0dz

+
Z

K �
R/2(0,t0)

|D(w � h)|1+�0dz

+
Z

K �
R/2(0,t0)

|D(h � v)|1+�0dz.

At this stage, applying (2.32), (2.26) and (2.35), we implies (2.31).
The estimate (2.30) follows immediately from (2.34) and the Hölder estimates

for Dv near the flat boundary

kDv̂kL1(Q�
R/8(z0))

 kDv̂kL1(Q�
R/4(0,t0))

(due to (2.23)).

This completes our proof.
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3. Proof of Theorem 1.5: the case 2� 1
n+1 < p < 2

This section is devoted to the proof of Theorem 1.5 for the case 2� 1
n+1 < p < 2.

We assume that 0 < � < 1
50 which will be fixed later. Fix �0 2 (0, p�2+ 1

n+1 ]

so that 1+ �0 2 (1, p � 1+ 1
n+1 ). We set

�
1/dp
0 :=

Z

�T

|Du|1+�0dz
� 1
1+�0

+
1
�

"
|µ|(�T )

|�T |
n+1
n+2

# n+2
p+(p�1)n

+ 1, (3.1)

where dp = 2
2�n(2�p) .

For � > 0 the level set E(�) is defined by

E(�) = {z 2 �T : |Du(z)| > �}.

We now fix w 2 A⇤
⌫ for some ⌫ 2 [1,1) and take ⌧ > 0 so that

� = ⌫⌧ < q. (3.2)

Setting

A0 =
⇣ 4n Rn+20
106(n+2)|�T |

⌘dp
, (3.3)

then we have the following estimate concerning the level set whose proof will be
given after the proof of Theorem 1.5.
Proposition 3.1. There exists N0 > 1 so that the following holds true. For any
✏ > 0 there exists � > 0 such that

w(E(N0�))

 ✏w(E(�/4)) +
C

���

Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t})dt (3.4)

for any � > A0�0, where �w = cn[w]�1A⇤
⌫
�� with cn being a constant depending on

n only.
We now give the proof of Theorem 1.5 assuming Proposition 3.1.

Proof of Theorem 1.5. We only give the proof for the case 0 < r < 1. The re-
maining case r = 1 can be done in the same manner.

We will prove the theorem under the assumption |Du| 2 Lq,r
w (�T ). This

condition will be removed later. We first have

k|Du|krLq,r
w (�T )

= Nr
0

Z 1

0

⇥
�qw({z 2 �T : |Du| > N0�})

⇤r/q d�

�

= Nr
0

Z A0�0

0

⇥
�qw({z 2 �T : |Du| > N0�})

⇤r/q d�

�

+ Nr
0

Z 1

A0�0

⇥
�qw({z 2 �T : |Du| > N0�})

⇤r/q d�

�
=: E1 + E2.
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For the first term E1 we have

E1  [N0A0]rw(�T )r/q�r0

.

(Z

�T

|Du|1+�0dz
� 1
1+�0

+


1
�

Z

�T

[Ms
1(µ)(z)]

⌧ (n+2)
p+(p�1)n dz

�1/⌧)rdp
.
(3.5)

Arguing similarly to the proof of [28, Lemma 4.1], we have

Z

�T

|Du|1+�0dz
� 1
1+�0

.

"
|µ|(�T )

|�T |
n+1
n+2

# n+2
p+(p�1)n

.

Moreover,
|µ|(�T )

|�T |
n+1
n+2

. inf
z2�T

Ms
1(µ)(z).

Therefore, we have

hZ

�T

|Du|1+�0dz
i 1
1+�0 .

hZ

�T

[Ms
1(µ)(z)]

⌧ (n+2)
p+(p�1)n dz

i1/⌧
.

Inserting this into (3.5) we obtain

E1 .
hZ

�T

[Ms
1(µ)(z)]

⌧ (n+2)
p+(p�1)n dz

i⌧rdp
.

This, along with the embedding L⌧ (�T ) ,! Lq,r
w (�T ) as w 2 A⇤

⌫ and ⌫⌧ < q,
implies that

E1 .
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

. (3.6)

In order to deal with the second term I2, applying Proposition 3.1 we get that

E2 C✏r/q
Z 1

A0�0

⇥
�qw({z 2 �T : |Du| > �/4})

⇤r/q d�

�

+
C

�r/q

Z 1

A0�0
�(q�� )r/q

"Z 1

�
1/�
w �
4

t��1w({z2�T : [Ms
1(µ)]

n+2
p+(p�1)n > t})dt

#r/q
d�

�

 C1✏r/qk|Du|krLq,r
w (�T )

+
C

�r/q

Z 1

A0�0
�(q�� )r/q

"Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})dt

#r/q
d�

�
.

(3.7)
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If q < r < 1, we then apply Hardy’s inequality to conclude that

Z 1

A0�0
�(q�� )r/q

"Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})dt

#r/q
d�

�

 C(�, w)✏r/q
Z 1

0
�(q�� )r/q�� r/qw({z 2 �T : [Ms

1(µ)]
n+2

p+(p�1)n > �})r/q
d�

�

= C
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

.

Hence,
E2  C

�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

.

From the estimates of E1 and E2 we have

k|Du|krLq,r
w (�T )

 C1✏r/qk|Du|krLq,r
w (�T )

+ C
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

+
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

 C1✏r/qk|Du|krLq,r
w (�T )

+ C
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

.

By choosing ✏ so that C1✏r/q < 1, we then obtain

k|Du|krLq,r
w (�T )

.
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

+ 1

as desired.
We now consider the case 0 < r  q. To do this we recall a variant of reverse-

Hölder’s inequality in [6, Lemma 3.5].

Lemma 3.2. Let h : [0,1) ! [0,1) be a non-decreasing, measurable functions
and let 1  ↵ < 1 and r > 0. Then there exists C > 0 so that for any � > 0 we
have h Z 1

�

�
tr h(t)

�↵ dt
t

i1/↵
 �r h(�) + C

Z 1

�
tr h(t)

dt
t

.

We now turn to the proof for the case 0 < r  q. By Lemma 3.2 we have
"Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})dt

#r/q

 C�� r/qw({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > �1/�w �/4})r/q

+ C
Z 1

�
1/�
w �
4

t� r/qw({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})r/q

dt
t

.
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As a consequence, we have

Z 1

A0�0
�(q�� )r/q

"Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})dt

#r/q
d�

�

 C(�)

Z 1

0
�(q�� )r/q�� r/qw({z 2 �T : [Ms

1(µ)]
n+2

p+(p�1)n > �})r/q
d�

�

+ C
Z 1

0
�(q�� )r/q

Z 1

�
1/�
w �
4

t� r/qw({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})r/q

dt
t
d�

�

:= F1 + F2.

It is easy to see that

F1 ⇠
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

.

Using Fubini’s theorem, it is not difficult to show that

F2 .
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

.

Therefore,

Z 1

A0�0
�(q�� )r/q

"Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)]

n+2
p+(p�1)n > t})dt

#r/q
d�

�

.
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

.

Inserting this into (3.7) we obtain

E2  C
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
r

Lq,r
w (�T )

.

Arguing similarly to the case q < r < 1 one has

k|Du|krLq,r
w (�T )

.
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

+ 1.

To remove the assumption |Du| 2 Lq,r
w (�T ) we define

|Du|k = min{k, |Du|}

and
Ek(�) = {z 2 �T : |Du|k > �}

for every k > 0 and � > 0.
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Then we have |Du|k 2 Lq,r
w (�T ) and Ek(·) satisfies (3.4) in Proposition 3.1.

Therefore, the argument above yields that

k|Du|kkrLq,r
w (�T )

.
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

+ 1.

Then letting k ! 1 we obtain

k|Du|krLq,r
w (�T )

.
�
�
�[Ms

1(µ)]
n+2

p+(p�1)n
�
�
�
rdp

Lq,r
w (�T )

+ 1.

This completes our proof.

We now prove Proposition 3.1. To do this we need some following technical
material.

For z̃ 2 E(�), we define

Gz̃(r) =

"Z

K �
r (z̃)

|Du|1+�0dz

# 1
1+�0

+
1
�

"
|µ|(K �

r (z̃)

|K �
r (z̃)|

n+1
n+2

# n+2
p+(p�1)n

.

By Lebesgue’s differentiation theorem, we have

lim
r!0

Gz̃(r) = |Du(z̃)| > �. (3.8)

Hence, we have, for 10�6⇥R0 < r  R0,

Gz̃(r) =

"Z

K �
r (z̃)

|Du|1+�0dz

# 1
1+�0

+
1
�

"
|µ|(K �

r (z̃)

|K �
r (z̃)|

n+1
n+2

# n+2
p+(p�1)n




|�T |

|K �
r (z̃)|

Z

�T

|Du|1+�0dz
� 1
1+�0

+
1
�


|�T |

|K �
r (z̃)|

� n+1
p+(p�1)n

"
|µ|(�T )

|�T |
n+1
n+2

# n+2
p+(p�1)n

.

Since 1
1+�0

, n+1
p+(p�1)n < 1, we have

Gz̃(r) 
|�T |

|K �
r (z̃)|

�
1/dp
0 .

On the other hand, from the fact that � is a (�, R0) Reifenberg domain, we have

|K �
r (z̃)| � 4�nrn+2�

n(p�2)
2 .

Hence,

Gz̃(r) 
106(n+2)|�T |

4n Rn+20 �
n(p�2)
2

�
1/dp
0 . (3.9)
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Then from (3.9), we obtain, for � > A0�0 with A0 as in (3.3),

Gz̃(r) < � for all r 2 [10�6⇥R0, R0].

This together with (3.8) implies that for each z 2 E(�) there exists 0 < rz <
10�6R0 so that

Gz(rz) = �, and Gz(r) < � for all r 2 (rz, 10�6⇥R0).

We now apply Vitali’s covering lemma to obtain the following result directly.

Lemma 3.3. There exists a countable disjoint family {K �
ri (zi )}i2I with ri <10

�6R0
and zi = (xi , ti ) 2 E(�) such that:

(a) E(�) ⇢
S

i K
�
5ri (zi );

(b) Gzi (ri ) = �, and Gzi (r) < � for all r 2 (ri , 10�6R0).

For each i , from Lemma 3.3 we have

� =

"Z

K �
ri (zi )

|Du|1+�0dz

# 1
1+�0

+
1
�

2

4
|µ|(K �

ri (zi ))

|K �
ri (zi )|

n+1
n+2

3

5

n+2
p+(p�1)n

.

This implies that Z

K �
ri (zi )

|Du|1+�0dz �
�1+�0

21+�0
(3.10)

or

1
�

2

4
|µ|(K �

ri (zi ))

|K �
ri (zi )|

n+1
n+2

3

5

n+2
p+(p�1)n

�
�

2
. (3.11)

We now set

I = {i : (3.10) holds true}, J = {i : (3.11) holds true}.

We have the following estimate.

Proposition 3.4. Let w 2 A⇤
1. For each i 2 I we have

w(K �
ri (zi )) . w(K �

ri (zi ) \ E(�/4)). (3.12)

Proof. We first have

|K �
ri (zi )| 

21+�0

�1+�0

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz +
21+�0

�1+�0

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz


|K �

ri (zi )|
41+�0

+
21+�0

�1+�0

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz.
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This implies

|K �
ri (zi )| .

1
�1+�0

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz. (3.13)

Note that from the definitions of ri and the index set I we have

�1+�0

21+ �0

Z

K �
ri (zi )

|Du|1+�0dz,
Z

K �
4ri

(zi )
|Du|1+�0dz < 3�1+�0, (3.14)

and
2

4
|µ|(K �

4ri (zi ))

|K �
4ri (zi )|

n+1
n+2

3

5

n+2
p+(p�1)n

 ��. (3.15)

By Holder’s inequality, for a fixed ✓ > 1 so that ✓(1+ �0) 2
�
1, p � 1+ 1

n+1
�
we

have
 

1
|K �

ri (zi )|

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz

! 1
1+�0



 
1

|K �
ri |

Z

K �
ri (zi )\E(�/4)

|Du|✓(1+�0)dz

! 1
✓(1+�0)

 
|K �

ri (zi ) \ E(�/4)|
|K �

ri (zi )|

! ✓�1
✓(1+�0)

.

(3.16)

For each i , consider the following equation
(

(wi )t � div a(Dwi , x, t) = 0 in K �
4ri (zi )

wi = u on @pK �
4ri (zi ).

Then by Lemma 2.11 we have

 Z

K �
4ri

(zi )
|D(u � wi )|1+�0dz

! 1
1+�0

 C

"
|µ|(K �

4R(zi ))
|K �
4ri (zi )|

(n+1)/(n+2)

# n+2
p+(p�1)n

+ C
|µ|(K �

4R(zi ))

|K �
4ri (zi )|

n+1
n+2

 Z

K �
4ri

(zi )
|D(u � w)|1+�0dz

! 2�p
1+�0

n+1
n+2

 C�� + C[��]
p+(p�1)n

n+2

 Z

K �
4ri

(zi )
|D(u � wi )|1+�0dz

! 2�p
1+�0

n+1
n+2

.
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This implies that

 Z

K �
4ri

(zi )
|D(u � wi )|1+�0dz

! 1
1+�0

 C��.

This along with (3.14) yields that

�1+�0 .
Z

K �
ri (zi )

|Dwi |1+�0dz,
Z

K �
4ri

(zi )
|Dwi |1+�0dz . �1+�0, (3.17)

provided that � is sufficiently small.
At this stage, we apply Propositions 2.9 and 2.3 to find that

Z

K �
ri (zi )

|Dwi |✓(1+�0)dz . �✓(1+�0),

provided that � is sufficiently small.
Repeating the above argument,

 Z

K �
4ri

(zi )
|D(u � wi )|✓(1+�0)dz

! ✓
1+�0

. ��.

The last two inequalities yield
Z

K �
ri (zi )

|Du|✓(1+�0)dz . �✓(1+�0),

provided that � is sufficiently small.
Inserting this into (3.16), we get that

 
1

|K �
ri (zi )|

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz

! 1
1+�0

. �

 
|K �

ri (zi ) \ E(�/4)|
|K �

ri (zi )|

! ✓�1
✓(1+�0)

.

Therefore,

Z

K �
ri (zi )\E(�/4)

|Du|1+�0dz . �1+�0 |K �
ri (zi )|

 
|K �

ri (zi ) \ E(�/4)|
|K �

ri (zi )|

! ✓�1
✓

. (3.18)

This, in combination with (3.13), gives that

|K �
ri (z)| . |K �

ri (zi )|

 
|K �

ri (zi ) \ E(�/4)|
|K �

ri (zi )|

! ✓�1
✓

.
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As a consequence,
|K �

ri (zi )| . |K �
ri (zi ) \ E(�/4)|.

This, along with Lemma 1.4, implies

w(K �
ri (zi )) . w(K �

ri (zi ) \ E(�/4)).

Proposition 3.5. For each i 2 J we have

w(K �
ri (zi )).

1
�w��

Z 1

�
1/�
w �
4

t��1w
⇣n
z2K �

ri (zi ) : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t

o⌘
dt, (3.19)

where � is defined by (3.2) and �w = cn[w]�1A⇤
⌫
�� with cn being a constant depending

on n only.

Proof. For i 2 J , by Hölder’s inequality we have
"Z

K �
ri (zi )

[Ms
1(µ)(z)]

⌧ (n+2)
p+(p�1)n dz

#1/⌧



"
1

w(K �
ri (zi ))

Z

K �
ri (zi )

[Ms
1(µ)(z)]

⌫⌧ (n+2)
p+(p�1)n w(z)dz

# 1
⌫⌧

⇥

 Z

K �
ri (zi )

w(z)dz

! 1
⌫⌧
 Z

K �
ri (zi )

w(z)�⌫0/⌫dz

! 1
⌫0⌧

.

By the definition of [w]A⇤
⌫
and � = ⌫⌧ we have

"Z

K �
ri (zi )

[Ms
1(µ)(z)]

⌧ (n+2)
p+(p�1)n dz

#1/⌧

 [w]
1
�

A⇤
⌫

"
1

w(K �
ri (zi ))

Z

K �
ri (zi )

[Ms
1(µ)(z)]

� (n+2)
p+(p�1)n w(z)dz

# 1
�

.

(3.20)

On the other hand, from the definition ofMs
1 it easy to see that

|µ|(K �
ri (zi ))

|K �
ri (zi )|

n+1
n+2

 cn inf
z2K �

ri (zi )
Ms

1(µ)(z).

Therefore, for each i 2 J we have

"Z

K �
ri (zi )

[Ms
1(µ)(z)]

⌧ (n+2)
p+(p�1)n dz

#1/⌧
� cn

2

4
|µ|(K �

ri (zi ))

|K �
ri (zi )|

n+1
n+2

3

5

n+2
p+(p�1)n

�
cn��
2

.
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This, along with (3.20), implies that

1
w(K �

ri (zi ))

Z

K �
ri (zi )

[Ms
1(µ)(z)]

� (n+2)
p+(p�1)n w(z)dz �

cn[w]�1A⇤
⌫
�� ��

2�
=:

�w��

2�
. (3.21)

Therefore,

w(K �
ri (zi )) 

2�

�w��

Z

K �
ri (zi )

[Ms
1(µ)(z)]

� (n+2)
p+(p�1)n w(z)dz

=
� 2�

�w��

Z 1

0
t��1w

⇣
{z 2 K �

ri (zi ) : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t}

⌘
dt

=
2�

�w��

Z �
1/�
w �
4

0
t��1w

⇣
{z 2 K �

ri (zi ) : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t}

⌘
dt

+
� 2�

�w��

Z 1

�
1/�
w �
4

t��1w
⇣
{z 2 K �

ri (zi ) : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t}

⌘
dt.

This implies that

w(K �
ri (zi )) 

1
2�

|K �
ri (zi )|

+
� 2�

�w��

Z 1

�
1/�
w �
4

t��1w
⇣
{z 2 K �

ri (zi ) : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t}

⌘
dt.

This proves (3.19).

We are now ready to give the proof of Proposition 3.1.

Proof of Proposition 3.1. We have, by Lemma 3.3,

|E(N0�)| = |{z 2 E(�) : |Du| > N0�}|


X

i2I
|{z 2 K �

5ri (zi ) : |Du| > N0�}|

+
X

i2J
|{z 2 K �

5ri (zi ) : |Du| > N0�}| =: I1 + I2.

By Proposition 3.5 we have

I2 
X

i2J
|K �
5ri (zi )| .

X

i2J
|K �

ri (zi )|

.
X

i2J

1
�w��

Z 1

�
1/�
w �
4

t��1|{z 2 K �
ri (zi ) : [Ms

1(µ)(z)]
n+2

p+(p�1)n > t}|dt

.
1

�w��

Z 1

�
1/�
w �
4

t��1|{z 2 �T : [Ms
1(µ)(z)]

n+2
p+(p�1)n > t}|dt.
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For the term I1, we consider the following two cases.

Case 1: B�
40ri (xi ) ⇢ �. In this situation, by Lemma 3.3 and the definition of the

index set I, we have

�1+�0 .
Z

K �
10ri

(zi )
|Du|1+�0dz,

Z

K �
40ri

(zi )
|Du|1+�0dz . �1+�0

and
2

4
|µ|(K �

40ri (zi ))

|K �
40ri (zi )|

n+1
n+2

3

5

n+2
p+(p�1)n

 ��.

Then we apply Proposition 2.5 to find that for any ✏̃ there exist � > 0 and vi

satisfying
kDvikL1(K �

5ri
)(zi )  a1�, (3.22)

and Z

K �
5ri

)(zi )
|D(u � vi )|dz  ✏̃�. (3.23)

Therefore, for N0 > 2a1 we have, by (3.23),

|{z 2 K �
5ri (zi ) : |Du| > N0/2�}|  |{z 2 K �

5ri (zi ) : |D(u � vi )| > N0/2�}|

+ |{z 2 K �
5ri (zi ) : |Dvi | > N0/2�}|

 |{z 2 K �
5ri (zi ) : |D(u � vi )| > N0/2�}|


2�
N0

Z

K �
5ri

(zi )
|D(u � vi )|dz

 C ✏̃|K �
5ri (zi )|  C ✏̃|K �

ri (zi )|

 C ✏̃|K �
ri (zi ) \ E(�/4)|,

where in the last inequality we used Proposition 3.4.

Case 2: B�
40ri (xi ) \ �c 6= ;. Then there exists x0i 2 B�

40ri (xi ) \ �c. In this case,
we have

K �
5ri (zi ) ⇢ K �

45ri (x
0
i , ti ) ⇢ K �

1440ri (x
i
0, ti ) ⇢ K �

1500ri (zi ).

This, along with Lemma 3.3 and the definition of the index set I, implies that

�1+�0 .
Z

K �
1440ri

(xi0,ti )
|Du|1+�0dz,

Z

K �
1440ri

(xi0,ti )
|Du|1+�0dz . �1+�0,
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and 2

4
|µ|(K �

1440ri (x
i
0, ti ))

|K �
1440ri (x

i
0, ti )|

n+1
n+2

3

5

n+2
p+(p�1)n

 ��.

Hence, applying Proposition 2.13 we deduce that for any ✏̃ we can find � > 0 and
vi so that

kDvikL1(K �
45ri

(xi0,ti ))
. �,

and Z

K �
1440ri

(xi0,ti )
|D(u � vi )|1+�0dz . (✏�)1+�0 .

Since K �
5ri (zi ) ⇢ K �

1440ri (x
i
0, ti ), we have

kDvikL1(K �
5ri

(zi )) . a2�, (3.24)

and Z

K �
5ri

(zi )
|D(u � vi )|1+�0dz  C(✏̃�)1+�0 . (3.25)

Therefore, for N0 > 2a2 we have, by (3.23),

|{z 2 K �
5ri (zi ) : |Du| > N0/2�}|  |{z 2 K �

5ri (zi ) : |D(u � vi )| > N0/2�}|

+ |{z 2 K �
5ri (zi ) : |Dvi | > N0/2�}|

 |{z 2 K �
5ri (zi ) : |D(u � vi )| > N0/2�}|



✓
2�
N0

◆1+�0 Z

K �
5ri

(zi )
|D(u � vi )|1+�0dz.

At this stage, arguing similarly to Case 1, we come up with

|{z 2 K �
5ri (zi ) : |Du| > N0/2�}|  C ✏̃|K �

ri (zi ) \ E(�/4)|.

Therefore, from the estiates in Cases 1 and 2, taking N = 2(a1+a2)+1 and taking
✏̃ to be sufficiently small, we have

I1 
X

i2I
✏|K �

ri (zi ) \ E(�/4)|  ✏|E(�/4)|

where in the lase inequality we used the fact that K �
ri (zi ) are pairwise disjoint.

This completes our proof.
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Part 2
Global weighted estimates for the gradient of solutions: the case p � 2

For z = (x, t) with x 2 Rn, t > 0 and � � 1, in this part we use the following
notation:

• I �r (t) = (t ��2�pr2, t +�2�pr2), �r (x) = Br (x)\�, Q�
r (z) = Br (x)⇥ I �r (t).

• K �
r (z)=Q�

r (z)\�T , @wK �
r (z)=Q�

r (z)\(@�⇥R), @pK �
r (z)=@K �

r (z)\(�̄�
r (x)⇥

{t + r2}).

We note that the main difference with the case 2� 1
n+1 < p < 2 is that we use the

intrinsic cylinder of the form Q�
r (z) = Br (x) ⇥ (t � �2�pr2, t + �2�pr2) instead

of Q�
r (z) = B

�
p�2
2 r

(x) ⇥ (t � r2, t + r2).

4. Comparison estimates

4.1. Interior estimates

For z0 = (x0, t0) 2 �T , 0 < R < R0/4 and � � 1 satisfying B4R ⌘ B4R(x0) ⇢ �,
we set

Q�
4R ⌘ Q�

4R(z0) = B4R(x0) ⇥ I �4R(t0). (4.1)

For the sake of simplicity, we may assume that I �4R(t0) ⇢ (0, T ), or equivalently,
Q�
4R ⇢ �T .
Arguing similarly to the proof of Proposition 3.5 in [13] and Proposition 2.5

with some minor modifications, we obtain:

Proposition 4.1. For each ✏ > 0 there exists � > 0 so that the following holds true.
If u is a weak solution to problem (1.1) satisfying

�p�1 
Z

Q�
R

|Du|p�1dxdt and
Z

Q�
4R

|Du|p�1dxdt  �p�1 (4.2)

and "
|µ|(Q�

4R)

|Q�
4R|(n+1)/(n+2)

# n+2
p+(p�1)n

 ��, (4.3)

then there exists v satisfying

kDvkL1(Q�
R/2)

. �, (4.4)

and Z

Q�
R

|D(u � v)|p�1dxdt  (✏�)p�1. (4.5)
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4.2. Boundary estimates

Fix t0 2 (0, T ) and x0 2 @�, we set z0 = (x0, t0). Let 0 < R < R0/4 and � � 1.
For the sake of simplicity, we restrict ourself to consider the lateral boundary case
with respect to

I �4R(t0) ⇢ (0, T ),

since the initial boundary case can be done in the same manner.
Then by an argument used in the proof of [13, Proposition 4.10] and Proposi-

tion 2.13 with a minor modification we also have:

Proposition 4.2. For each ✏ > 0 there exists � > 0 so that the following holds true.
If that u is a weak solution to problem (1.1) satisfying

�p�1 
Z

K �
R(z0)

|Du|p�1dxdt,
Z

K �
4R(z0)

|Du|p�1dxdt  �p�1 (4.6)

and "
|µ|(K �

4R(z0))
|K �
4R(z0)|(n+1)/(n+2)

# n+2
p+(p�1)n

, (4.7)

then there exists v satisfying

kDvkL1(K �
R/8(z0))

. �, (4.8)

and Z

K �
R/4(z0)

|D(u � v)|p�1dxdt  (✏�)p�1. (4.9)

5. Proof of Theorem 1.5: the case p � 2

Since the proof in this case is similar to that of the case 2� 1
n+1 < p < 2, we just

sketch it.
We now fix w 2 A⇤

⌫ for some ⌫ 2 [1,1) and take ⌧ > 0 so that

� = ⌫⌧ < q. (5.1)

We assume that 0 < � < 1
50 . We set

�0 :=
Z

�T

|Du|p�1dz +
1
�

"
|µ|(�T )

|�T |
n+1
n+2

# (p�1)(n+2)
p+(p�1)n

+ 1. (5.2)

For � > 0 the level set E(�) is defined by

E(�) = {z 2 �T : |Du(z)| > �}.
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For z̃ 2 E(�), we define

Gz̃(r) =
Z

K �
r (z̃)

|Du|p�1dz +
1
�

"
|µ|(K �

r (z̃)

|K �
r (z̃)|

n+1
n+2

# (p�1)(n+2)
p+(p�1)n

.

By Lebesgue’s differentiation theorem, we have

lim
r!0

Gz̃(r) = |Du(z̃)|p�1 > �p�1. (5.3)

Note that (p�1)(n+1)
p+(p�1)n <1. Arguing similarly to (3.9) we have, for 10�6⇥R0<rR0,

Gz̃(r) 
106(n+2)|�T |

4n Rn+20 �2�p
�0. (5.4)

Set

B0 =
4n Rn+20

106(n+2)|�T |
. (5.5)

Then for � > B0�0 we have

Gz̃(r) < �p�1, for all r 2 [10�6⇥R0, R0].

This together with (5.3)

Gz(rz) = �p�1, and Gz(r) < �p�1 for all r 2 (rz, 10�6⇥R0).

At this stage, arguing similarly to the proof of Proposition 3.1, we have:

Proposition 5.1. There exists N0 > 1 so that the following holds true. For any
✏ > 0 there exists � > 0 such that

w(E(N0�))  ✏w(E(�/4))

+
C

���

Z 1

�
1/�
w �
4

t��1w({z 2 �T : [Ms
1(µ)(z)]

(p�1)(n+2)
p+(p�1)n > t})dt

for all � > B0�0, where �w = cn[w]�1A⇤
⌫
�� with cn being a constant depending on n

only.

Now the proof of Theorem 1.5 for the case p � 2 follows immediately by using the
similar argument to that of the case 2 � 1

n+1 < p < 2. Hence, we would like to
leave to the interested reader. This completes the proof.
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[9] L. BOCCARDO and T. GALLOUËT, Nonlinear elliptic and parabolic equations involving
measure data, J. Funct. Anal. 87 (1989), 149–169.
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