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Quantitative error term in the counting problem
on Veech wind-tree models

ANGEL PARDO

Abstract. We study periodic wind-tree models, billiards in the plane endowed
with Zz-periodically located identical connected symmetric right-angled obsta-
cles. We exhibit effective asymptotic formulas for the number of periodic billiard
trajectories (up to isotopy and 7Z2-translations) on Veech wind-tree billiards, that
is, wind-tree billiards whose underlying compact translation surfaces are Veech
surfaces. This is the case, for example, when the side-lengths of the obstacles are
rational. We show that the error term depends on spectral properties of the Veech
group and give explicit estimates in the case when obstacles are squares of side
length 1/2.
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1. Introduction

The classical wind-tree model corresponds to a billiard in the plane endowed with
Z2-periodic obstacles of rectangular shape aligned along the lattice, as in Figure 1.1.

Figure 1.1. Original wind-tree model.
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The wind-tree model (in a slightly different version) was introduced by
P. Ehrenfest and T. Ehrenfest [12] in 1912. J. Hardy and J. Weber [23] studied
the periodic version. All these studies had physical motivations.

Several advances on the dynamical properties of the billiard flow in the wind-
tree model were obtained recently using geometric and dynamical properties on
moduli space of (compact) flat surfaces; billiard trajectories can be described by the
linear flow on a flat surface.

A. Avila and P. Hubert [3] showed that for all parameters of the obstacle and
for almost all directions, the trajectories are recurrent. There are examples of diver-
gent trajectories constructed by V. Delecroix [9]. The non-ergodicity was proved
by K. Fracek and C. Ulcigrai [20]. It was proved by V. Delecroix, P. Hubert and
S. Lelievre [10] that the diffusion rate is independent either on the concrete values of
parameters of the obstacle or on almost any direction and almost any starting point
and is equals to 2/3. A generalization of this last result was shown by V. Delecroix
and A. Zorich [11] for more complicated obstacles. In the present work we study
this last variant, corresponding to a billiard in the plane endowed with Z?-periodic
obstacles of right-angled polygonal shape, aligned along the lattice and horizontally
and vertically symmetric. See Figure 1.2 for an example.
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Figure 1.2. Delecroix—Zorich variant.

We are concerned with asymptotic formulas for the number of (isotopy classes of)
periodic trajectories on the wind-tree model. This question has been widely studied
in the context of (finite area) rational billiards and compact flat surfaces, and it is
related to many other questions such as the calculation of the volumes of normalized
strata [15] or the sum of Lyapunov exponents of the Teichmiiller geodesic flow [13]
on strata of flat surfaces (Abelian or quadratic differentials).

H. Masur [30,31] proved that for every flat surface (resp. rational billiard) X,
there exist positive constants ¢(X) and C (X) such that the number N (X, L) of max-
imal cylinders of closed geodesics (resp. isotopy classes of periodic trajectories) of
length at most L satisfies

c(X)L? < N(X,L) < C(X)L?

for L large enough. W. Veech, in his seminal work [44], proved that for Veech
surfaces (resp. billiards) there are in fact exact quadratic asymptotics:

N(X, L) = c(X)L? + o(L?).
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Veech surfaces are translation surfaces with a rich group of affine symmetries. They
form a dense family on strata, including billiards in regular polygons and square-
tiled surfaces.

In this work we study the error term in this kind of asymptotic formulas. In
the compact case, the methods used by W. Veech [44] give the following result
(see [45,Remark 1.12]).

Theorem (Veech). Let X be a Veech surface. Then, there exists ¢(X) > 0 and
8(X) € [1/2, 1) such that

N(X, L) =c(X)L? + O(L®X) + o(L*?)
as L — oo.

Furthermore, the number §(X) has a specific interpretation in terms of spectral
properties of the Veech group, the group of derivatives of affine symmetries.

1.1. Asymptotic formulas for wind-tree models

In [37], we proved asymptotic formulas for generic wind-tree models with respect
to a natural Lebesgue-type measure on the parameters of the wind-tree billiards,
that is, the side lengths of the obstacles (cf. [1,11]) and gave the exact value of the
quadratic coefficient, which depends only in the number of corners of the obstacle
(see [37] for more details on the counting problem on wind-tree models). Asymp-
totic formulas were also given in the case of Veech wind-tree billiards, that is, wind-
tree billiards such that the underlying compact translation surface is a Veech sur-
face! (see Section 2.3 for precise definitions). A concrete set of exemples is when
all parameters (the side lengths of the obstacles) are rational. In particular, Veech
wind-tree billiards form a dense family.

In the present work, we present an effective version of this result, that is, the
analogue of Veech’s Theorem, for Veech wind-tree billiards.

Theorem 1.1. Let I1 be a Veech wind-tree billiard. Then, there exists c¢(IT) > 0
and §(IT) € (1/2, 1) such that

NI, L) = c(IHL? + 0(L¥M) + o(L*?)
as L. — o0.

This result relies, on one hand, on the adaptation of Veech methods to our context,
which allows to keep track of the well behaved part of periodic trajectories on wind-
tree billiards (good cylinders, see Section 2.4). On the other hand, there is a family
of badly behaved trajectories (bad cylinders, see Section 2.4) which we attack using
tools from hyperbolic geometry. Thanks to ideas of F. Dal’Bo [8], we are able
to relate the error term for this family with the critical exponent of an associated
subgroup of the Veech group. We prove then that this critical exponents is strictly
less than 1 using results of R. Brooks [4] (see also [42]).

1 We stress that this notion of “Veech wind-tree billiard” is not standard.
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1.2. Explicit estimates

In the simplest case, when IT is the wind-tree billiard with square obstacles of side
length 1/2, the Veech group of IT can be easily described and most of the objects
involved, such as the contribution to the error term of the well behaved part of the
periodic trajectories, can be explicitly computed. Using results of T. Roblin and
S. Tapie [42], we explicitly estimate the contribution of the badly behaved family
of periodic trajectories. More precisely, we prove the following.

Theorem 1.2. Let I1 be the Veech wind-tree billiard with square obstacles of side
length 1/2, and let § = 5(I1) € (1/2, 1) be as in the conclusion of Theorem 1.1.
Then,

5 < 0.993.

1.3. Strategy of the proof

W. Veech [44] proved that for Veech surfaces there are exact quadratic asymptotics
by relating the Dirichlet series of their length spectrum to Eisenstein series associ-
ated to the cusps of their (lattice) Veech group. An application of Ikehara’s taube-
rian theorem then allows him to conclude. An effective version of this last tool
allows to quantify the error term in terms of spectral properties of the Veech group
(see [45,Remark 1.12]).

In [37], we showed that the counting problem on wind-tree models can be
reduced to the study of two families of cylinders in the associated translation sur-
face, these are called good and bad cylinders (see Section 2.4.1, for the precise
definition). The notion of good cylinders was first introduced by A. Avila and
P. Hubert [3] in order to give a geometric criterion for recurrence of Z“-periodic
translation surfaces.

Applying Veech’s method to the counting problem on Veech wind-tree models,
we are able to prove the analogous result in the case of good cylinders, that is, to
give the order of the error term in terms of ad-hoc spectral properties of the Veech
group of the underlying surface. This is possible because the collection of good
cylinders is SL(2, R)-equivariant and then there is a simple description of good
cylinders in terms of some particular cusps of the Veech group, which allows to
connect the counting problem to the corresponding Eisenstein series as Veech did.

In the case of bad cylinders, this approach does not work anymore since this
family is not SL(2, R)-equivariant and there is no simple description of bad cylin-
ders in terms of (cusps of) the Veech group of the underlying surface. However, bad
cylinders can be described in terms of some intricate but well described subgroup
['paa of the Veech group. Using tools from hyperbolic geometry, thanks to ideas of
F. Dal’Bo [8], we prove that the leading term on the counting of bad cylinders is
related to the critical exponent of this subgroup I'pyg.

Using results of R. Brooks [4], we prove that this critical exponent is strictly
less than 1. For this, we use the representation of the Veech group given by the
restriction of the Kontsevich—Zorich cocycle to a corresponding equivariant sub-
bundle of the real Hodge bundle. The kernel of this representation is a subgroup of
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['paq. One first application of Brooks results allows us to show that the critical ex-
ponents of these two groups coincide. A second application shows that the critical
exponent of the kernel is strictly less than that of the Veech group, which equals 1.

The number §(IT) in the statement of Theorem 1.1, giving the order of the er-
ror term, is completely defined by spectral properties of the groups involved. More
precisely, it is the maximum between the critical exponent of the group I'p,4, asso-
ciated to bad cylinders, and the second largest pole of the meromorphic continuation
of (linear combination of) Eisenstein series, associated to good cylinders. The 4/3
in the conclusion of Theorem 1.1 appears because of technicalities in the effective
version of the tauberian theorem for Eisenstein series [45, Remark 1.12].

In the case when I1 is the wind-tree billiard with square obstacles of side length
1/2,the Veech group of IT is a congruence subgroup of level 2. Thanks to a result of
M. Huxley [25], we know that low level congruence groups satisfies the Selberg’s
1/4 conjecture. To our proposes, this means that the Eisenstein series has no poles
in (1/2, 1). The critical exponent of [';,4 requires much more attention and we are
not able to give the exact value. Using results of T. Roblin and S. Tapie [42], we
estimate the critical exponent of I',,4. These estimates are far away from being
optimal, but up to our knowledge, this is the only existing tool.

In order to apply this method to estimate the critical exponent of "5, we have
first to give energy estimates on a Dirichlet fundamental domain of the Veech group
and to estimate the bottom of the spectrum of the combinatorial Laplace operator
associated to the quotient of the Veech group by the above-mentioned kernel.

1.4. Structure of the paper

In Section 2 we briefly recall all the background necessary to formulate and prove
the results. In Section 3 we study the counting problem on Veech surfaces associ-
ated to collections of cylinders described by a subgroup of the Veech group. We
restate Veech’s theorem in the case when the subgroup is a lattice and we relate
the growth rate to the critical exponent for general subgroups of the Veech group.
In Section 4 we apply this results to the counting problem on Veech wind-tree bil-
liards. Veech’s theorem is applied to good cylinders, giving the quadratic asymp-
totic growth rate with the error term depending in the spectrum of the Veech group.
We show that bad cylinders are described by an infinitely generated Fuchsian group
of the first kind and prove that its critical exponent is strictly less than one, showing
thus the subquadratic asymptotic growth rate of bad cylinders in an effective way.

Finally, in Section 5 we study the case of the wind-tree billiard with square ob-
stacles of side length 1/2. We estimate the critical exponent of the group associated
to bad cylinders. In order to perform this, we give energy estimates in Appendix A
and we estimate the combinatorial specrum in Appendix B. Both appendices are
self contained and can be read independently of the rest of the paper.
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2. Background

2.1. Rational billiards and translation surfaces

For an introduction and general references to this subject, we refer the reader to the
surveys of Masur—Tabachnikov [32], Zorich [47], Forni-Matheus [18], Wright [46].

2.1.1. Rational billiards

Given a polygon whose angles are rational multiples of i, consider the trajectories
of an ideal point mass that moves at a constant speed without friction in the interior
of the polygon and enjoys elastic collisions with the boundary (angles of incidence
and reflection are equal). Such an object is called a rational billiard. There is a
classical construction of a translation surface from a rational billiard (see [19,28]).

2.1.2. Translation surfaces

Letg > 1,n = {ny, ..., ng} be a partition of 2g — 2 and H(n) denote a stratum of
Abelian differentials, that is, holomorphic 1-forms on Riemann surfaces of genus
g, with zeros of degrees ny, ..., ny € N. There is a one to one correspondence be-
tween Abelian differentials and translation surfaces, surfaces which can be obtained
by edge-to-edge gluing of polygons in R? using translations only. Thus, we refer to
elements of H(N) as translation surfaces.

A translation surface has a canonical flat metric, the one obtained form RZ2,
with conical singularities of angle 27 (n + 1) at zeros of degree n of the Abelian
differential.

Remark 2.1. A stratum of Abelian differentials 7{(n) has a natural structure of
an orbifold. However, using a marking (of horizontal separatrices) we can avoid
symmetries which create the orbifold singularities, ensuring a manifold structure
on H(n). For technical reasons, in this work we consider H(n) as a manifold,
pointing when the orbifold structure could cause problems.
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2.1.3. SL(2, R)-action

There is a natural action of SL(2, R) on strata of translation surfaces, coming from
the linear action of SL(2, R) on R?, which generalizes the action of SL(2, R) on

the space GL(2, R) / SL(2, Z) of flat tori. Let g; = (%’ 69, ); the action of (g;)seRr

is called the Teichmiiller geodesic flow.

2.1.4. Affine invariant measures and manifolds

Let H;(n) C H(n) denote the subspace of surfaces of (flat) area 1. An affine in-
variant manifold is an SL(2, R)-invariant closed subset of 71 (n) which looks like
an affine subspace in period coordinates (see, e.g., [47, Section 3]). Each affine
invariant manifold M is the support of an ergodic SL(2, R)-invariant probability
measure V4. Locally, in period coordinates, this measure is (up to normalization)
the restriction of Lebesgue measure to the subspace M (see [16] for the precise
definitions). Eskin—-Mirzakhani-Mohammadi [17] proved that every SL(2, R)-orbit
closure is an affine invariant manifold. The most important case of an affine invari-
ant manifold is a connected component of a stratum H (ny, ..., ng). Masur [29] and
Veech [43] independently proved that in this case, the total mass of this measure is
finite and ergodic with respect to the Teichmiiller geodesic flow. The associated
affine measure is known as the Masur—Veech measure.

2.1.5. Hodge bundle and the Kontsevich—Zorich cocycle

The (real) Hodge bundle H'! is the real vector bundle of dimension 2g over an
affine invariant manifold M, where the fiber over X is the real conomology H) =
H'(X,R). Each fiber H}( has a natural lattice H}((Z) = HY(X,Z) which al-
lows identification of nearby fibers and definition of the Gauss—Manin (flat) con-
nection. The monodromy of the Gauss—Manin connection restricted to SL(2, R)-
orbits provides a cocycle called the Kontsevich—Zorich cocycle, which we denote
by KZ(A, X), for A € SL(2,R) and X € M. The Kontsevich—Zorich cocy-
cle is a symplectic cocycle preserving the symplectic intersection form ( f1, f2) =

[x fin fron HY(X,R).
2.1.6. Lyapunov exponents

Given any affine invariant manifold M, we know from Oseledets theorem that
there are real numbers A{(M) > -+ > Ay, (M), the Lyapunov exponents of the
Kontsevich—Zorich cocycle over the Teichmiiller flow on M and a measurable g;-
equivariant filtration of the Hodge bundle H 'X,R)y=Vi(X)D---D Vg (X) =
{0} at v -almost every X € M such that

1
lim —log [IKZ(g:, X) fllg = Ai
t—oo t

forevery f € V; \ Viq1.
The fact that the Kontsevich—Zorich cocycle is symplectic implies that the Lya-
punov spectrum is symmetric, A; = —Aze—j, j =0,..., g.
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2.1.7. Equivariant subbundles of the Hodge bundle

Let M be an affine invariant submanifold and F a subbundle of the Hodge bundle
over M. We say that F is equivariant if it is invariant under the Kontsevich—Zorich
cocycle. Since M is SL(2, R)-invariant, by the definition of the Kontsevich—Zorich
cocycle, a flat (locally constant) subbundle is always equivariant.

We say that F' admit an almost invariant splitting if there exists n > 1 and
for v -almost every X € M there exist proper subspaces Wi (X), ..., W,(X) C
Fx such that W;(X) N W;(X) = {0} for 1 <i < j =< n, such that, for every
i € {l,...,n} and almost every A € SL(2, R), KZ(A, X)W;(X) = W;(AX) for
some j € {1,...,n}, and such that the map X — {Wi(X), ..., Wy(X)} is vagy-
measurable. We say that F' is strongly irreducible if is does not admit an almost
invariant splitting.
Remark 2.2. Without avoiding symmetries which causes orbifold points on H(n)
(see Remark 2.1), the Hodge bundle would not be an actual vector bundle (we would
have to consider the cohomology group up to symmetries) and the Kontsevich—
Zorich cocycle would not be an actual linear cocycle. In this work we consider
some invariant splittings of the Hodge bundle which would not be invariant by the
whole action of SL(2, R) if we do not consider the marking.

Previous discussion about Lyapunov exponents applies in this context as well
and we have that, as before, for almost every X € M, there is a measurable g;-
equivariant filtration Fy = Uj(X) D --- D U, (X) = {0}, where r = rank F =
dim Fx and, for every f € U; \ Uj41,

1
lim —log [[KZ(g:, X) f g0 = Ai (M, F).
t—oo t

We denote by Fx(Z) = FxNH )1( (Z) the set of integer cocycles in Fy. We say that
F is defined over Z if it is generated by integer cocycles, that is, if Fx = (Fx (Z))R.
When F is defined over Z, Fx(Z) is a lattice in Fy.

2.1.8. Veech group and Veech surfaces

We denote the stabilizer of a translation surface X under the action of SL(2, R)
by SL(X). The group SL(X) is also the group of derivatives of affine orientation-
preserving diffeomorphisms of X. Affine diffeomorphisms are those diffeomor-
phisms on a translations surface with constant differential.

Recall that SL(2, R) does not act faithfully on the upper half-plane H; it is
the projective group PSL(2, R) that does so. If G is a subgroup of SL(2, R), we
denote by PG its image in PSL(2, R). In a slight abuse of notation we sometimes
shall omit P whenever it is clear from the context that we see G as a subgroup of
SL(2, R) or PSL(2, R). We define the Veech Group of X to be PSL(X), that is, the
image of SL(X) in PSL(2, R).

A translation surface X is called a Veech surface if its Veech group PSL(X)
is a lattice, that is, if H / PSL(X) has finite volume. Veech surfaces correspond to
closed SL(2, R)-orbits. Such a closed orbits is called a Teichmiiller curve. In this



QUANTITATIVE ERROR TERM ON VEECH WIND-TREE MODELS 503

work we are devoted to Veech surfaces. For an introduction and general references
to Veech surfaces, we refer the reader to the survey of Hubert—Shcmidt [27].

Remark 2.3. Since we are considering markings on translation surfaces in order
to avoid orbifold points on strata (see Remark 2.1), elliptic elements (that is, finite
order elements) are never in PSL(X).

2.1.9. Veech group representation

When A € SL(X), the Kontsevich—Zorich cocycle defines a symplectic map
KZ(A, X) H)l( — H}( which preserves H}( (Z). This defines thus a represen-

tation pg1 of SL(X) on the symplectic group Sp(H )1(, 7Z),

omt 2 SL(X) — Sp(H),7Z),
A — KZ(A, X).

If F is an equivariant subbundle, then the restriction of the Kontsevich—Zorich co-
cycle to F gives another representation which, in general, is not faithful and we
denote it by pr : SL(X) — SL(Fx). Note that, in general, this representation is
neither symplectic nor defined over Z. However, if the subbundle is symplectic or
defined over Z, so the representation is.

Since, by our convention, finite order elements are not allowed in SL(X), in
particular —id ¢ SL(X) and hence every representation pr descends to a represen-
tation of PSL(X) on PSL(FY).

2.2. Counting problem

We are interested in the counting of closed geodesics of bounded length on transla-
tion surfaces.

2.2.1. Cylinders

Together with every closed regular geodesic in a translation surface X we have
a bunch of parallel closed regular geodesics. A cylinder on a translation surface
is a maximal open annulus filled by isotopic simple closed regular geodesics. A
cylinder C is isometric to the product of an open interval and a circle, and its core
curve yc is the geodesic projecting to the middle of the interval.

2.2.2. Holonomy

Integrating the corresponding Abelian differential along the core curve of a cylinder
or, more generally, any homology class y € H;(X, Z), we get a complex number.
Considered as a planar vector, it represents the affine holonomy along y and we
denote this holonomy vector by hol(y). In particular, the Euclidean length of a
cylinder corresponds to the modulus of its holonomy vector.

A relevant equivariant subbundle is given by ker hol which in turn is the sym-
plectic complement of the so called tautological (sub)bundle.
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2.2.3. Counting problem

Consider the collection of all cylinders on a translation surface X and consider its
image V (X) C R? under the holonomy map, V (X)={hol y¢: C is a cylinder in X}.
This is a discrete set of R, We are concerned with the asymptotic behavior of the
number N(X, L) = #V(X) N B(L) of cylinders in X of length at most L, when
L — oc.

More generally, we can consider any collection of cylinders C C A, and
study the asymptotic behavior of the number of cylinders in C of length at most
L,Ne(X,L) =#Ve(X)NB(L),as L — oo, where Vg (X) = {holyc : C € C}.

2.3. Wind-tree model

The wind-tree model corresponds to a billiard IT in the plane endowed with Z2-
periodic horizontally and vertically symmetric right-angled obstacles, where the
sides of the obstacles are aligned along the lattice as in Figure 1.1 and Figure 1.2.

Recall that in the classical case of a billiard in a rectangle we can glue a flat
torus out of four copies of the billiard table and unfold billiard trajectories to flat
geodesics of the same length on the resulting flat torus. In the case of the wind-tree
model we also start from gluing a translation surface out of four copies of the infinite
billiard table IT. The resulting surface Xoo = Xoo(IT) is Z2-periodic with respect
to translations by vectors of the original lattice. Passing to the Z2-quotient we get
a compact translation surface X = X (IT). For the case of the original wind-tree
billiard, with rectangular obstacles, the resulting translation surface is represented
at Figure 2.1 (see [10, Section 3] for more details).

i
jj

—

Figure 2.1. The translation surface X obtained as quotient over Z> of an unfolded
wind-tree billiard table (cf. [11, Figure 5]).

Similarly, when the obstacle has 4m corners with the angle /2 (and therefore, 4m —
4 with angle 37/2), the same construction gives a translation surface consisting
of four flat tori with holes —four copies of a Z>-fundamental domain of I, the
holes corresponding to the obstacles— with corresponding identifications, as in the
classical setting (m = 1, see Figure 2.1).
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2.3.1. Description of the 7*-covering and relevant subbundles

There are two cohomology classes i, v € H!(X, Z) defining the Z>-covering X 5
of X. Informally, X, is obtained by pasting infinitely many copies of X, horizon-
tally along (a cycle Poincaré dual to) # and vertically, along v.

Let M be the SL(2, R)-orbit closure of X. Then, thanks to the symmetries of
X, there are two equivariant subbundles F M) and F® of H! defined over M, such
that h € F® and v € F® (see [37] for more details). Furthermore, we have the
following (see [37, Corollary 5]).

Theorem 2.4. Let I1 be a wind-tree billiard, X = X (I1). Then, the subbundles
F® and F®™ defined over the SL(2, R)-orbit closure of X are 2-dimensional flat
subbundles defined over 7. and have non-zero Lyapunov exponents.

As consequence, these subbundles are strongly irreducible and symplectic. Indeed,
by [2, Theorem 1.4] and [16, Theorem A.9], any measurable equivariant subbun-
dle with at least one non-zero Lyapunov exponent is symplectic and, in particular,
even dimensional. Thus, a two-dimensional subbundle is automatically strongly
irreducible provided it has non-zero Lyapunov exponents. Furthermore, these sub-
bundles are subbundles of ker hol.

2.3.2. The (1/2,1/2) wind-tree model

We give a little more details in the case of the wind-tree billiard with square obsta-
cles of side length 1/2, IT = T1(1/2, 1/2).

ho1 ha
Vo1 V11
C1
Co
Voo V10
hoo hio

Figure 2.2. The surface X = X(I1(1/2, 1/2)) and the cycles A;;, v;j and ¢, 1, j €
{0, 1} (cf. [10, Figure 4]).

The surface X = X (I1) is a covering of a genus 2 surface L which is a so called
L-shaped surface that belongs to the stratum H(2) (see for example [10]). In par-
ticular, SL(X) is a finite index subgroup of SL(L). In this particular case, L is a
square-tiled surface, tiled by 3 squares, as in Figure 2.3.
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It is elementary to see that the stabilizer of L is generated by r = (91 (1)) and
u? = ((1) %) (see for example [47, Section 9.5]). However, with our convention
on markings, elliptic elements are forbidden (see Remark 2.3) and thus, SL(L) =
(u?, 'w?), where g is the transpose of g. Moreover, it is not difficult to verify that
SL(X) = SL(L). In particular, PSL(X) is a level two congruence group.

Figure 2.3. The surface X = X(I1(1/2, 1/2)) seen as a cover of the square-tiled L-
shaped surface L.

For i, j € {0, 1}, let h;;, v;; and c; be as in Figure 2.2. Let ET be the subspace
of H'(X, R) with symplectic integer basis {47, v*~}, where 2~ is the Poincaré
dual of the cycle koo +ho1 —h10—hi11 and v, of voo + vo1 — V1o — v11. Similarly,
define E~T, with basis {h~+, v=F}, where h=+ = (hgo — ho1 + k10 — h11)* and
vt = (voo — vo1 + vio — vin)*.

In Jcr)ur notation, we have that F}((h) = Et—,h = ht", F}((v) = E~t and
v=ov"T.

The action of u? € SL(X) on the hij, vij,i, j € {0, 1} is shown in Figure 2.4
and is described by

25 . * *
* * * *
v > vl.j+h,-j+cj.

Denoting ¢t~ := 2¢o —2c; we have that ¢~ = 22"~ . Letting ¢~ := 0 we obtain
that, for o € {+—, —+1},

ppe W) 1 h® > h°
2= v? +h% +c°.

Thus, with the choice of basis as above, we get pg+- u?) = u? and pg—+ W?) = u.
Similarly, we can see that pg+- (u?) = 'u and pg—+ (u?) = 'u>. In particular, the
two representations are isomorphic ppu) (SL(X)) = ppw (SL(X)).
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Figure 2.4. The action of u? on h;;, vij, i, j € {0, 1}.

24. Counting problem on wind-tree models

In this work, we are concerned with counting periodic trajectories in the wind-tree
billiard. Obviously, any periodic trajectory can be translated by an element in Z?
to obtain a new (non-isotopic) periodic trajectory. Then, we shall count (isotopy
classes of) periodic trajectories of bounded length in the wind-tree billiard, up to
Z>-translations.

There is a one to one correspondence between billiard trajectories in IT and
geodesics in X,. But X is the Zz—covering of X given by h,v € H (X, 7),
which means that closed curves y in X lift to closed curves in X, if and only if
h(yc) = v(yc) = 0. In fact, by definition of the covering, the monodromy of
a closed curve y in X is the translation by (h(y), v(y)) € Z?*. The cylinders in
the cover X, are exactly the lift of those cylinders C in X whose core curve yc
has trivial monodromy. In particular, cylinders in X, are always isometric to their
projection on X. When a cylinder C does not satisfy this condition, it lifts to X
as a strip, isometric to the product of an open interval and a straight line.

24.1. Good and bad cylinders

Let f = horv,and F = F(Y). Note that cylinders C in X such that f(yc) = 0,
split naturally into two families: (a) the family of cylinders such that f (yc) =0
for all f € Fy, that is, yc € Ann(FY), which we call F-good cylinders, and
(b) the family of cylinders that are not F-good, but f(yc) = 0. These later are
called (F, f)-bad cylinders. The notion of F-good cylinders was first introduced
by Avila—Hubert [3] in order to give a geometric criterion for recurrence of Z-
periodic flat surfaces. Good cylinders are favorable to our purposes. In fact, since
the Kontsevich—Zorich cocycle preserves the intersection form and F is equivari-
ant, they define an SL(2, R)-equivariant family of cylinders, which is much more
tractable than arbitrary collections of cylinders.

For a wind-tree billiard IT, we denote by N(I1, L), the number of (isotopy
classes of) periodic trajectories (up to Z>-translations) of length at most L, by
Ngooa(X, L) the number of F M @ F®_good cylinders in X = X (II) of length
at most L and Ny_pqq(X, L), of (F, f)-bad cylinders in X of length at most L, for
f=horvand F = FW,
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Note that
Ngood(Xa L)< N(L,L) =< Ngood(X’ L) + Np—paa(X, L) + Ny—paa(X, L).

Therefore, it is enough to understand the asymptotic behavior of Ngpoq(X, L),
Np—pad (X, L) and Ny_paa(X, L) separately.

The author [37] used this to reduce the counting problem on wind-tree models
to the counting of good cylinders. In fact, we have the following (see [37, Theo-
rem 1.3]).

Theorem. Let I1 be a wind-tree billiard, X = X (I1) the associated compact flat
surface, let f = h or vand F = F'Y) be one of the associated subbundles F™ or
FW _ Then, the number Ny _paa(X, L), of (F, f)-bad cylinders in X of length at

most L, has subquadratic asymptotic growth rate, that is, N f_pqq(X, L) = o(L?).

Thus, the counting problem on wind-tree models may be reduced to count
F"M g F®_good cylinders, which has quadratic asymptotic growth rate thanks to a
result of Eskin—Masur [14]. However, in this work, we are interested in an effective
version and therefore bad cylinders have to be taken into account.

Remark 2.5. An useful characterization in our case is that a cylinder C is (F, f)-
bad if and only if prp, [yc]® # 0 is colinear to f. This is because Fx is two
dimensional and symplectic (see [37, Remark 3.1]).

2.4.2. Veech wind-tree billiards

Let IT be a wind-tree billiard. We define the Veech group of Il to be PSL(IT) =
PSL(X (IT)) and we say that I is a Veech wind-tree billiard if PSL(II) is a lattice.
We stress that these definitions are not standard as it does not correspond to the
(projection to PSL(2, R) of the) derivatives of affine orientation-preserving diffeo-
morphisms of the unfolded billiard X, (IT), but to those of X (IT), the Zz—quotient
of the unfolded billiard.

In the classical case, of rectangular obstacles, we denote I1(a, b) the wind-tree
billiard with rectangular obstacles of side lengths a, b € (0, 1). Thank to results of
Calta [5] and McMullen [34,35], it is possible to classify completely Veech wind-
tree models in the classical case (see [10, Theorem 3]).

Theorem (Calta, McMullen). The wind-tree model T1(a, b) is a Veech wind-tree
billiard if and only if either a,b € Q or there exist x,y € Q and a square-free
integer D > 1 such that 1/(1 —a) = x + y~/D and 1/(1 — b) = (1 — x) + yv/D.

In this work we are concerned only with Veech wind-tree billiards. Most of the
tools we use to deal with bad cylinders comes from geometric considerations of the
action (on the upper half-plane H) of the lattice Veech group PSL(IT) and, more
precisely, of some particular subgroups of PSL(IT). These groups are Fuchsian
groups. In the following, we present a brief recall of the objects we need and some
of their properties.
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2.5. Fuchsian groups

A Fuchsian group is a discrete subgroup of PSL(2, R). A Fuchsian group I" acts
properly discontinuously on H. In particular, the orbit Iz of any point z € H under
the action of I" has no accumulation points in H. There may, however, be limit
points on the real axis. Let A(I") be the limit set of I, that is, the set of limits
points for the action of I on H, A(I") C R. The limit set may be empty, or may
contain one or two points, or may contain an infinite number of points. A Fuchsian
group is of the first type if its limit set is the closed real line R = R U {oo}. This
happens in the case of lattices, but there are Fuchsian groups of the first kind of
infinite covolume. The latter are always infinitely generated.

When the limit set is finite, we say that I' is elementary. In such case, I' is
cyclic.

In this work we shall mainly handle two type of Fuchsian groups. The first
are Veech groups of Veech surfaces, which are lattices by definition and the other
are the subgroups of the Veech group given by Pker pr, for equivariant subbundles
F C H'. Recall that pr : SL(X) — SL(Fy). Thus, ker pr is a subgroup of
SL(X), Pker pF is the image of ker pr in PSL(X).

The following result allows us to better understand these groups when F is a
2-dimensional subbundle of ker hol.

Theorem 2.6 ( [24, Theorem 5.6]). Let X be a Veech surface and F an integral
(defined over 7.) 2-dimensional subbundle of ker hol over the SL(2, R)-orbit of X .
Then, Pker pf is a Fuchsian group of the first kind.

In particular, in the case of Veech wind-tree billiards, the hypothesis are satisfied by
the subbundles F and F®) and therefore, Pker pF is a Fuchsian group of the first
kind for F = F F).

2.5.1. Critical exponent

Another concept which is of major relevance in this work is that of the critical
exponent of a Fuchsian group. For an introduction to the subject, we refer the
reader to the survey of Peigné [39].

Let I" be a Fuchsian group. The orbital function nr : Ry — N is defined by
nr(R) =#{g € I' : du(i, gi) < R}. The exponent

3(I") = limsup

1
—Innp(R)
R—o00 R

is the critical exponent of I'. It corresponds to the critical exponent (the abscissa of
convergence in R,) of the Poincaré series defined by

Pr(s) = Z e sduligi)

gel

That is, Pr(s) diverges for s < §(I") and converges for s > §(I").
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Note that in the definition of the critical exponent §(I"), it is innocuous if we
change dp (i, gi) for dp(x, gy), for some x, y € H or, in particular, if we change I'
for some conjugate of I', either in the definition of the orbital function nr or in the
Poincaré series Pr.

A result of Roblin [40,41] relates in a sharper way the asymptotic behavior of
the orbital function and the critical exponent.

Theorem 2.7 (Roblin). Let I" be a non-elementary Fuchsian group. Then
nr(r) = 0(e"),

asr — oo.

Consider now the following subgroups of PSL(2, R):

cosf sind

o K = < ):96[0,71)};

—sinf cosf

t
° Az{ ¢ 69,): teR},and

cw={(1) s er)

Every element g € PSL(2, R) \ {id} is conjugated to some element in K, A or N.
In fact, we have the following:

e |tr(g)| < 2 if and only if g is conjugated to some element of K. In this case g
is called elliptic and it fixes exactly one point in H, which belongs to H;

e |tr(g)| > 2 if and only if g is conjugated to some element of A. In this case
g is called hyperbolic and it fixes exactly two points in H, which belongs to
oH = @;

e |tr(g)| = 2 if and only if g is conjugated to some (and therefore, to every)
element of N. In this case g is called parabolic and it fixes exactly one point in
H, which belongs to dH.

If T is a non-elementary Fuchsian group, it has positive critical exponent §(I") > 0
and if it contains a parabolic element, then §(I") > 1/2.

One of the main ingredients we use to prove our results is the following result
of Brooks [4] (see also [42]).

Theorem 2.8 (Brooks). Let Iy be a Fuchsian group and I be a non-elementary
normal subgroup of T'g such that §(I") > 1/2.

(1) IfTo /T is amenable, then §(T') = 8(I'o).
(2) If Ty is a lattice and Fo/l" is non-amenable, then §(I') < §([Tp) = 1.
This last result is based on the fact that the critical exponent §(I') is related to

20(I), the bottom of the spectrum of the Laplace operator on [H / I'. In fact, when
8(I") > 1/2, we have that Lo(I") = 6(I")(1 — §(I")) (see for example [42]).
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3. Counting problems on Veech surfaces

Let X be a Veech surface, that is, X is a translation surface whose Veech group
PSL(X) is a (non-uniform) lattice. In particular, H / PSL(X) has a finite number
of cusps. It is well known (since Veech [44]) that, for Veech surfaces, cylinders
correspond to the cusps of the Veech group and, in particular, the family of all
cylinders can be written as the union of a finite number of SL(X)-orbit of cylinders.
That is, there are finitely many cylinders Ay, ..., A, in X such that

A = {all cylinders in X} = SL(X) - {A;}]_;.

In particular, any collection C C A of cylinders is contained in a finite union of
cusps, in the sense that it satisfies C C SL(X) - C, for some finite collection C C C.

3.1. Finitely saturated collections of cylinders

Let I be a subgroup of SL(X). A collection C of cylinders in X is said to be finitely
saturated by I (or I'-finitely saturated) if it can be expressed as a finite union of I'-
orbits of cylinders and I" contains every cusp. More precisely, C is finitely saturated
by I'if C = T - C, for some finite collection C C C and stabsy (x)(C) C I for
every C € C. Equivalently, we can ask stabsy(x)(C) C I" only for C € C.

Thus, as already said in different terms, the collection .4 of all cylinders in X
is SL(X)-finitely saturated.

Remark 3.1. In the definition of finitely saturated collections of cylinders, the finite
part is fundamental. Consider, for example, the group I" generated by all parabolics
in SL(X). Then, when the Teichmiiller curve defined by X has positive genus?, A
is saturated by I", but it is not finitely saturated by I".

In general, any SL(2, R)-equivariant collection of cylinders (defined in the
SL(2, R)-orbit of X) is SL(X)-finitely saturated. In particular, configurations of
cylinders, in the sense of Eskin—-Masur—Zorich [15], define SL(X)-finitely saturated
collections of cylinders. However, in this work, we have to deal with collections of
cylinders which are finitely saturated by groups which are not lattices as SL(X) is.
In fact, we have to deal with groups which are not even finitely generated.

Remark 3.2. If I is a Fuchsian group such that a (non-empty) collection of cylin-
ders C is finitely saturated by I', then, by definition, stabsy (x)(C) C T for every
C e C. But Pstabsy (x)(C) is cyclic parabolic. Thus, I contains parabolics and
therefore §(I') > 1/2, with equality if and only if " is elementary (and C is a finite
collection of parallel cylinders).

3.2. Counting problem

We are interested in counting cylinders in some particular collections. Let C be a
collection of cylinders in X and let N¢(X, L) be the number of cylinders in C of

2 See [26] for examples of Teichmiiller curves with arbitrary large genus in a fixed stratum.
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length at most L. We are able to study the asymptotic behavior in the case of finitely
saturated collections.

In the case of A, the collection of all cylinders in X, Veech proved the quadratic
asymptotic behavior in [44] and gave then an effective version in [45, Remark 1.12].
In the case of collections of cylinders saturated by lattice groups, Veech’s approach
can be applied exactly the same. In fact, we have the following.

Theorem 3.3 (Veech). Ler X be a Veech surface and C a T-finitely saturated col-
lection of cylinders on X with I being a lattice. Then

k
Ne(X, L) = c©L* + ) ¢;OL® + 0L,
j=1

as L — oo, for some c¢(C), c1(C), ..., ck(C) > 0, where {§;(1 — 5j)}];:1 is the

discrete spectrum of the Laplace operator on H / I" on (0, 1/4). In particular, §; €
(1/2,1),for j =1,...,k. Possibly k = 0.

Proof. For C = A, the collection of all cylinders in X (which is finitely saturated
by I' = SL(X)), Veech proved in [44] the principal term ¢(C)L?. The remainder
was observed in [45, Remark 1.12], by an application of [21, Theorem 4]. The
proof relies only in the fact that A is finitely saturated by a lattice group, namely
SL(X). Thus, in the case of collections finitely saturated by a lattice group, the
proof follows exactly the same. O

In the case of infinite covolume groups this method cannot be adapted properly.
However, following ideas of Dal’Bo [8], we are able to prove the following.

Theorem 3.4. Let X be a Veech surface and C, a U-finitely saturated collection of
cylinders on X with I" non-elementary. Let § = 6(I') be the critical exponent of T".
In particular, § > 1/2. Then,

Ne(X, L) = O(L*),
as L. — oo.

Proof. Without loss of generality, we can assume that C = I" - C, for some cylinder
CinX.Letp=(}1),P = (p)andx = (7). Up to conjugation, we can suppose
that hol(yc) = x and stabsy (x)(C) = P. Note that § is invariant by conjugation, so
there is no loss of generality. Denote Ny (L) := Nr.c(X, L). The idea is to relate
Nr to nr in order to apply Theorem 2.7.

It is clear that

Nr(L) =#{gx :[gx| < L, g €T’}
=#{gP €T /P :|gx| < L)
=#{Pg e P\F g x| < L)
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A simple computation shows that |g~ x| = Im(gi)~!/2. In addition, for each coset
in P\F, there is exactly one representative g € I such that Re(gi) € [0, 1). Thus,

Nr(L) = #{Pg € P\T : |g7'x| < L}
=#{g e T :Re(gi) € [0,1), Im(gi)~"? < L}.

Moreover, there exists c¢(I") > 0 such that if g € T satisfies Re(gi) € [0, 1), then
du(i, gi) < —InIm(gi)+c(I"). Infact,let g € I". Note first that Im(gi) is bounded
above. This is the case because P is a parabolic subgroup of I" fixing oo and I' is
discrete. Thus, we have a cusp at infinity and therefore Im(gz) < Im(z) for any
z € Hand g € T (in fact, Im(gz) < Im(z) for g € I' — P). In addition, we have
that

2 B 2
du(i, gi) = acosh <1 + Re(gi)” + (1 — Im(gi)) )

2Im(gi)
and therefore, if g € I and Re(gi) € [0, 1), then

. ( c(Ih) )
du(i, gi) <acosh( 1+ — ],
Im(gi)

for some ¢(I") > 0. Once again, since Im(gi) is bounded above, we get that

du(i, gi) < ln( ) +c(I),

Im(gi)
for some ¢(I") > 0.
It follows that

Nr(L) = #{g € T : Re(gi) € [0, 1), Im(gi)~"/? < L}
<#{geTl :du(,gi) <2InL +c)}
=nrInL + c)).

Finally, by Theorem 2.7, nr(r) = 0 (e*T)7) and thus

Nr(L) < nr@2InL +c(I)) = 0D L)y — o220, O

4. Veech wind-tree billiards

In [37], we proved asymptotic formulas for generic wind-tree models. To prove
such result, we had to split the associated collection of cylinders into two. The
collection of good cylinders and the collection of bad cylinders (see Section 2.4.1).
We proved then that good cylinders have quadratic asymptotic growth rate (and
gave the associated coefficient in the generic case) and that bad cylinders have sub-
quadratic asymptotic growth rate.

In this work we exhibit a quantitative version of these results in the case of
Veech wind-tree billiards.
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4.1. Good cylinders

Being a good cylinder is an SL(2, R)-invariant condition, then, in particular, for
Veech wind-tree billiards IT, with Veech group PSL(IT) (see Section 2.4.2), the
collection of good cylinders is SL(IT)-finitely saturated (see Section 3.1) and thus,
as a corollary of Veech’s theorem (Theorem 3.3), we obtain the following.

Corollary 4.1. Let T1 be a Veech wind-tree billiard. Then, there exists c(I1) > 0
and 8g00q(I1) € [1/2, 1) such that

2

L 28 4p0a (I 4/3
N ML) =c(Tl) - ————— + O(L*s00d@y 1 o4
good( ) = c(IT) Arca (H/ZZ) + O( )+ O( )

as L — 00, where § = 8g00q(I1) is such that 5(1 — 8) is the second smallest
eigenvalue of the Laplace operator on H/PSL(H), 8(1 —06) € (0, 1/4].

Remark 4.2. In Theorem 3.3 we have several §; and thus, we have a finer error
term result. However, in the case of bad cylinders, below, we only have a big-O
estimate on the error term, and therefore we only keep track of the dominant term.

4.2. Bad cylinders

In the case of bad cylinders, Veech’s approach is no longer possible since collection
of bad cylinders is not SL(2, R)-equivariant and, in particular, bad cylinders are not
SL(IT)-finitely saturated. However, it is finitely saturated by a subgroup I'p,q of
SL(IT), so we can use the approach on Theorem 3.4.

Remark 4.3. We shall see that I'j,4 is quite intricate. It is a not normal subgroup
of SL(IT) and it is an infinitely generated Fuchsian group of the first kind.

By this means, we prove that bad cylinders have sub-quadratic asymptotic
growth rate in an effective way. More precisely, we prove the following.

Theorem 4.4. Let T1 be a Veech wind-tree billiard. Then, there exists Spqq(I1) €
(1/2, 1) such that
Npad(T1, L) = O (L)

as L — oo.

Proof. Let f = h,vand F = F/). Henceforth, by bad cylinder we mean (F, f)-
bad cylinder. Recall that a cylinder C in X = X (II) is a bad cylinder if and only if
pre,[ycl® = Af, for some A # O (see Remark 2.5).

Let B be the collection of all bad cylinders in X. Then, since the collection of
all cylinders can be written as a finite union of SL(X)-orbits of cylinders, then there
is a finite collection of bad cylinders B such that B ¢ SL(X) - B.

Now, given a bad cylinder B in X, define

Ipaq(B) = {g € SL(X) : g - B is a bad cylinder},
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so that
B= | baa(B)-B.
BeB

By the characterization of bad cylinders (Remark 2.5), g € I'pqq(B) if and only if
pre,[ve-B1" = £Af, where A # 0 is such that prg, [yp]* = Af. This is because
the Kontzevich—Zorich cocycle acts by invertible integer matrices and Fy is two
dimensional and symplectic.

Now, prp, [vg.81* = prp, o (@lyel* = pr(g)pre, lvel* = pr(g)(Af),
where pr denotes the representation of SL(X) on Sp(Fyx, Z) (see Section 2.1.9 and
Section 2.3.1). It follows then that

Cpad(B) = Upad = {g € SL(X) : pr(g) f = £ f},

which is a group and does not depend on B € B. Thus, B = I'p,4 - B. Moreover, if
B € Band p € stabsy(x)(B), then p - B = B, which is a bad cylinder. Therefore,
P € Tpaa(B) = Tpaq and B is finitely saturated by I'peg (see Section 3.1).

We can apply then Theorem 3.4 to obtain 8,4 (IT) = §(I'paq). To conclude,
we have to prove that §(I'p4q) < 1. In fact, we have the following result, whose
proof is postponed to Section 4.2.1.

Proposition 4.5. The critical exponent of T'pqq is strictly less than one.

Thus, by Proposition 4.5 and Theorem 3.4, Np,q(I1, L) = O(L%aa(M)y a5 1, —
00, where 8pqq(IT) = §(Tpaq) € (1/2, 1). This proves Theorem 4 4. O

To conclude, we have to prove now Proposition 4.5.

4.2.1. Proof of Proposition 4.5

Consider the normal subgroup of SL(X) given by ker pr and note that it is also a
subgroup of ['pyg.
Since the action on homology is via (symplectic) integer matrices, then

PF(Tpaq) C stab (£ f) :={g € Sp(Fx,Z) : §f = £f}.

Since Fx is two-dimensional, Sp(Fx,Z) = SL(2,Z) and stab(£ f) =
stabsy (2,7 (& ((1))), which is virtually cyclic parabolic. Thus, the quotient group
Ipaa / ker pr = pr(Tpaq) is amenable (as it is isomorphic to a subgroup of an
amenable group).

In a slight abuse of notation we will refer in the following to (discrete) sub-
groups of SL(2,R) as if they were Fuchsian groups (discrete subgroups of
PSL(2, R)).

By Theorem 2.6, ker pF is of the first kind and, in particular, non-elementary.
Thus, we can apply Theorem 2.8 to obtain that § (I'p,q) = d(ker pr).

Consider now the quotient group SL(X) / ker pr = pr(SL(X)). The aim is
to prove that pr(SL(X)) is not amenable. We first note that, since F has positive
Lyapunov exponents (Theorem 2.4), pr (SL(X)) has at least one hyperbolic element
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and then, a maximal cyclic hyperbolic subgroup H. Suppose pr (SL(X)) is elemen-
tary and, in particular, virtually H. But then, F would admit an almost invariant
splitting (see Section 2.1.7). But F is two dimensional and has no zero Lyapunov
exponents, in particular, it is strongly irreducible and do not admit almost invariant
splittings. Thus pr(SL(X)) is non-elementary and, in particular, non-amenable (it
contains Schottky groups as subgroups, which is free). Thus, SL(X) / ker pf i8 not
amenable, and then, by Theorem 2.8, we have that §(ker pr) < §(SL(X)). We
conclude that

8(Thaa) = S(ker pr) < 8(SL(X)) = 1. O

Proof of Remark 4.3. We have to show that ',y is an infinitely generated group
of the first kind. Since Ker pf is of the first kind and ker pr C T'paq, 50 iS I'paq-
Moreover, §(I'pqq) < 1, so it cannot be a lattice and therefore, it has to be infinitely
generated, since finitely generated groups of the first kind are always lattices.  [J

5. Explicit estimates for the (1/2, 1/2) wind-tree model

In the case of the wind-tree billiard with square obstacles of side length 1/2, [T =
[1(1/2, 1/2), the Veech group can be easily computed (see Section 2.3.2). Indeed,
SL(IT) = (u?,'u?), where u = (). In particular, PSL(IT) is a congruence sub-
group of level 2.

5.1. Good cylinders

A result of Huxley [25] shows that congruence groups I' of low level satisfies the
Selberg’s 1/4 conjecture, that is, that the spectral gap of the Laplace operator on
H/F equals 1/4. That means (see Section 5.2.1) that we have §;004(IT) = 1/2 in
Corollary 4.1.

5.2. Bad cylinders

We have now to estimate 844 (IT) from Theorem 4 .4.

Recall that for a non-elementary Fuchsian group with critical exponent §(I") >
1/2, the critical exponent §(I") is related to Ag(I"), the bottom of the spectrum of
the Laplace operator on H/F, by Ao(I") =8I — (")) € (0, 1/4).

In order to estimate &p,q(IT), we use a version of Brook’s theorem (Theo-
rem 2.8) in terms of Ao by Roblin—Tapie [42], formulated in a much more general
context, which we adapt to ours.

Theorem 5.1 (Roblin-Tapie). Let I'y be a lattice and T be a non-elementary nor-
mal subgroup of T'g such that §(I') > 1/2. Let D be a Dirichlet domain for Ty
and Sy the associated symmetric system of generators (see Section 5.2.2). Consider
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G=1TI) / and S = So / " the corresponding systems of generators of G. Then,

n(To) Epuo(G, )
1(To) + Eppo(G, S)’

A7) =

where 1(Io) is the spectral gap associated to I'y (see Section 5.2.1), Ep is any
lower bound for the energy on D (see Section 5.2.3) and uo(G, S) is the bottom
of the combinatorial spectrum of G associated to S (see Section 5.2.4), as defined
below.

In the following we define shortly the objects involved in the previous statement.
For more details we refer the reader to the appendices (see also [42]). Precisely,
Appendix A for energy related details and Appendix B for the combinatorial spec-
trum. We do not delve into these points here in order to keep the exposition simpler
and the appendices self-contained.

5.2.1. Spectral gap

When TI' is finitely generated, the bottom of the spectrum Ao(I") is an isolated
eigenvalue. We consider then the spectral gap of the Laplace operator on H / r,
n() = x(I") — A9(I") > 0, where A1 (") is the second smallest eigenvalue of the
Laplace operator on H /T

5.2.2. Dirichlet domains and transition zones

Let I be a finitely generated Fuchsian group and consider a Dirichlet domain D C
H for the action of I". Its boundary D is piecewise geodesic, with finitely many
pieces. To D, we can associate a finite symmetric system of generators S of T.
Each such generator s € § is associated to one geodesic piece of D. Namely,
Bs = DN sD. And every geodesic piece of 9D has an associated generator in this
way.

We say that L, R > 0 are admissible (for D) if for each s € §, there exists a
geodesic segment oy C B of length L such that oy = sor,—1 and such that oy admits
a tubular neighborhood of radius R which are pairwise disjoint (see Appendix A
for more details). These tubular neighborhoods are transition zones of length L and
radius R (cf. [42, page 72]).

5.2.3. Energy on transition zones

Roblin-Tapie [42] considered the volume and capacity of transition zones (in a
much more general context). In our context, for a transition zone of length L
and radius R, its area is A(L, R) := L - sinh(R) and its capacity is C(L, R) =
L/ arctan(sinh(R)). We say that Ep € Ry is a lower bound for the energy on D if
there are admissible L, R > 0 such that

_ I n(M-AL,R)-CL,R)




518 ANGEL PARDO

In Appendix A, we present in more depth all these objects and estimate Ep in the
case of the Dirichlet domain of the Veech group of I1, namely

D={zeH:|z£1/2] > 1/2, |[Re(z)] < 1},

with associated system of generators Sy = {u?, 'u?}.

5.2.4. Combinatorial spectrum

Let G be a finitely generated group and S C G be a symmetric finite system of
generators of G.
Let £2(G) be the space of square-summable sequences on G with the inner

product
(h h'y =" hghy,
geCG

for h, h' € ¢2(G), and define Ag : ¢2(G) — ¢%(G), the combinatorial Laplace
operator associated to S on £2(G), by

(Ash)g =Y (hg — hgs).

seS

Then, we define uo(G, S), the bottom of the combinatorial spectrum of G associ-
ated to S to be the bottom of the spectrum of Ag, that is,

. | (Ash, h) 2
wo(G, S) = 1nf{7<h’ o het (G)} .

We present in more details these objects and estimate po(G, S) in the case of G <
PSL(2, Z) generated by {u, 'u®} in Appendix B.

Remark 5.2. In a previous version, we computed the bottom of the combinato-
rial spectrum of PSL(2, Z) associated to the canonical system of generators {r, u},
where r = (_01 (1)) and u = ((1) %) Thanks to E. Lanneau, who pointed out an
error in that previous version, some adjustments in the arguments changed the ob-
ject of study to G = (u, "43). The estimates for PSL(2, Z) were transcribed into a

note [38], the techniques being the same, however.

Estimates for 5,4 (IT)

An application of Theorem 5.1 allows us to estimate 85,44 (I1) in the present case.
More precisely, we have the following.

Theorem 5.3. Let I1 be the Veech wind-tree billiard with square obstacles of side
length 1/2, and let § = Spaq(I1) € (1/2, 1) be as in the conclusion of Theorem 4 4.
Then,

5 < 0.9929.
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Proof. Following Section 4.2, we have that § = §p44(I1) corresponds to the critical
exponent of the group Tpad>. Moreover, 8(Tpaq) = 8(ker pr). Let then § =
d(ker pr). As we have already seen, §(1 — 8) = Ag(ker pF).

The idea is to apply Theorem 5.1 to I'g = PSL(IT) and I = Pker pf. Thus, it
is enough to estimate

n(To) Epuo(G, S)
n(Co) + Epuo(G, S)

from below.
Note that the function x /(1 + x) is an increasing function in (0, co0) and there-
fore, the problem can be reduced to find lower bounds for n(I'g), Ep and po(G, S).

e I'o = (u?,w?) is a level two congruence group and, as already seen in Sec-
tion 5.1, its spectral gap is

n(To) = 1/4;

e We consider D = {z e H:|z4+1/2| = 1/2, |Re(z)| < 1}, the Dirichlet do-
main for I'g. We estimate Ep in Appendix A. By Theorem A.1, we have that

Ep > 0.01569;

e Recall that SL(IT) = («?, ‘u?) and that, px (SL(IT)), ppw (SL(IT)) are conju-
gated to (i, ‘u3) (see Section 2.3.2).
Moreover, pr descends to a representation pr of PSL(X) on PSL(Fx, Z) (see
Section 2.1.9), where X = X (IT). Furthermore, by definition, the kernel of this
latter representation coincides with Pker o, the image of ker pr in PSL(2, R).
Analogously, for the image of the representation we have pr(PSL(X)) =
Ppr(SL(X)). In summary, we have

o = PSL(IT) = (u?, u?);

I' = Pker pr = ker pr;

— To/T = PSL(I) /ker pr = pr(PSL(X)) = Por(SL(X));
pr(SL(X)) = (u, 'w®) = Hs.

The combinatorial spectrum is invariant under isomorphisms of groups (with
generators). But I'g / " is isomorphic to Ppor(SL(X)) which in turn is isomor-
phic to PH3. In addition, the system of generators associated to the Dirichlet
domain D is Sy = {u™2, ‘u®?}, and the corresponding image into G = PHj is
S = {u:l:l’ tui3}.

We estimate 1o(G, S) in Appendix B. By Theorem B.1, we have that

no(G, S) > 0.4647.

3 Here, in a slight abuse of notation, we are referring to a (discrete) subgroup of SL(2, R) as if it
were a Fuchsian group (discrete subgroups of PSL(2, R), in our notation).
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Putting all together, we get that

To)E
ro(r) > TIEDIG. S) 57064

n(Fo) + Eppo(G, S)

and we conclude that

1 + VT =dho(M)
5(I) = 5 0@ _ 9.9929, 0

Appendix
A. Energy estimates

In this appendix we give lower bounds for the energy (see Section A.2 for precise
definition) on the Dirichlet domain D = {z e H : |z £ 1/2]| > 1/2, |Re(z)| < 1}
of the Fuchsian group ' = (u?, 'u?), where u = (} 1) and 'u is its transpose. More
precisely, we prove the following.

Theorem A.1. Let D = {z e H : |z £ 1/2| = 1/2, |Re(z)| < 1} be the Dirichlet
domain of T' = (u?,w?). Then, there is a lower bound for the energy on D which
satisfies

Ep > 0.01569.

In the following we recall the definition of the objects involved (see [42] for a much
more general and detailed discussion).

A.l. Dirichlet domains and transition zones

Let I' be a finitely generated Fuchsian group and consider a Dirichlet domain D C
H for the action of I". Its boundary D is piecewise geodesic, with finitely many
pieces. To D, we can associate a finite symmetric system of generators S of I'. To
each such generator s € S we can associate one geodesic piece of 3D. Namely,
Bs = D NsD. And every such piece has an associated generator in this way.
Moreover, it is clear from the definition that 8y = sB,-1. In Figure A.1, we show
the case of the elementary group (u).

Let z € ﬂos, for some s € S, and let p > O sufficiently small such that there
is a point by(z, p) € D satisfying dy(bs(z, p), Bs) = du(bs(z, p),z) = p. In
particular, such point bs(z, p) is unique. See Figure A.2 for an example of b, (z, p),
in the case of (u),fors = u~'.

We say that L, R > 0 are admissible (for D) if for each s € §, there exists
a geodesic segment oy C B of length L such that oy = s -1, bs(z, R) is well
defined and the sets

A =1{bs(z,p) €D: z€a;, 0<p <R}

are pairwise disjoint (see Figure A.3). We call these sets transition zones of length
L and radius R (cf. [42, page 72]).
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uwID D uD

/311,*1 JB'U‘

-1 0 1 2

Figure A.1. Dirichlet domain for the elementary (cyclic parabolic) group (u), D =
{0 < Rez < 1}. The associated symmetric systems of generators is S = {u, u‘l} and
the corresponding geodesic boundaries 8, = {Rez = 1}, B,-1 = {Rez = 0}.

oo
hi k== \bufl (hlv P)
\.\
P .
L1 .
0 1 h

Figure A.2. The point bs(z, p). It corresponds to the point in D which lie on the
geodesic passing through hi perpendicularly to 8,-1, in the case of the elementary group
(u), fors = ul z=nhi

A.2. Energy on transition zones

Roblin—Tapie [42] considered the volume and capacity of transition zones (in a
much more general context). In our context, for a transition zone of length L
and radius R, its area is A(L, R) := L - sinh(R) and its capacity is C(L, R) =
L/ arctan(sinh(R)).

We say that Ep € Ry is a lower bound for the energy on D if there are
admissible L, R > 0 such that

1 (") - A(L, R)-C(L, R)
E’D — N 2
2Area(D)  ((/nT)-A(L, R) + /C(L, R))

where n(') is the spectral gap of the Laplace operator on I / ', which is well
defined and positive, since I' is finitely generated.
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Q-1
h(ﬂ:

Byt

Figure A.3. Transition zones, in the case of the elementary group (u).

We can now start the discussion in our particular case, that is, the Dirichlet domain
of ' = (u?,u?),D=1{zeH:|z+1/2| > 1/2, |Re(z)| < 1}.

A.3. Proof of Theorem A.1

The following result, whose proof is postponed to Section A .4, provides a sufficient
condition for L, R > 0 to be admissible (see Section A.1).

Proposition A.2. Let L, R > 0. If 2eL tanhz(R) < 1, then L, R are admissible.

We want now to estimate Ep (see Section A.2).

We first note that I' = (12, ‘u?) is a congruence group of level two and there-
fore, by a result of Huxley [25], we have that n(I") = 1/2. Moreover, the Dirichlet
domain D is an ideal quadrilateral, with vertices 1, —1, 0 and oo (see Figure A 4).
In particular, Area(D) = 2.

00
D
ﬂu*z ﬁuz
Btu—z j/))zuz
-1 0 1
Figure A 4. Dirichlet domain for I' = (12, ‘u®). The associated symmetric systems of
generators is S = {u?, u~2,'u?,'u=?} and the corresponding geodesic boundaries are

B2 = {Rez = %1}, B2 = {|z £ 1/2] = 1/2}.
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By Proposition A2, L, R > 0 are admissible if 2eL tanhz(R) < 1. It suffices
then to find the largest possible lower bound for the energy in this region. That
is, we want to find E* = max{Ep(L, R) : 2¢l tanh? R < 1}. This can be done
numerically: we get L* ~ 2.5464, R* ~ 0.2006 and

E* = Ep(L*, R*) ~ 0.01569262 > 0.01569. O

A 4. Proof of Proposition A.2

In this section we prove Proposition A.2, thus providing a sufficient condition for
L, R > 0 to be admissible.

Fora, b € R,let y(a, b) denote the (bi-infinite) geodesic in H which goes from
atob. Andfor x, y, z € H,let T (x, y, z) denote the geodesic triangle with vertices
x, v, z. Thus, the Dirichlet domain D = {z e H: |z +1/2| > 1/2, |Re(z)| < 1}
coincides with 7'(—1,1,00)UT (—1, 1,0) and 0D = y(—1,0)Uy (0, HUy (1, co)U
y (00, —1) (see Figure A.4). Note that the symmetric system of generators associ-
atedtoDis § = {uiz, ’uiz} and, following the notation on Section A.l, we have

B2 ={z e : Re(z) = x1} = y (%1, 00),
B2 = {lz £ 1/2 = 1/2} = y (&1, 0).

It follows that, in particular, any geodesic segment o, +> C f,+2 (see §A.1) is of the
form {z € H : Re(z) = *1, hg < Im(z) < hy}, for some hy > hg > 0, with the
same | and hy for both a2 and a,,— since a2 = u’a,—>. In such case, the length
of the geodesic segment o+ is equals to L = log(h1/ ho).

For simplicity, we shall consider a “symmetric” partition of D as in Figure A.5,
given by a homography g, defined by the elliptic element g = ((1) *01 ), which is an
isometry of order 2 fixing i and such that permutes —1 with 1 and 0 with co. In
particular, it divides D in four isometric triangular regions. Namely, T (—1, i, 0),
T@,i,1),T(1,i,00)and T (o0, i, —1). Moreover, it is clear that

g: T(1,i,0) «T(1,i,00),
T(o0,i,—1) < T(0,i,1).
In particular, if we consider the transition zones to be contained in these triangular
regions, it is direct that they are pairwise disjoint. And since these regions are
isometric, we can consider the transition zones to be isometric and interchanged by
the isometry g. That is, we impose
8+ 02 Oy,
Q-2 <> Q2 = uza”_z.

We have now to study the points b, (z, R),s € S,z € ay, in order to give conditions
to L, R to be admissible (see Section A.1). Moreover, by the imposed symmetries,
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-1 0 1
Figure A.5. Symmetric partition of D

it is enough to find conditions for bo(h, R) := b,2(1 4 hi, R), to be contained in
To =T(,i,00),forh > 0.
Now, by definition, by(%, R) is the only point in D such that

du(bo(h, R), B,2) = du(bo(h, R), 1 + hi) = R,

for R > 0 small enough. By the leftmost equality, such points correspond to points
in D which lie on the geodesic passing through 1 + Ai perpendicularly to 8,2 (see
Figure A.6, cf. Figure A.2). That is, by(h, R) = 1 4+ he!?®; for some 6(R) > 0.
Moreover,

dg(1 + he'?i, 1 + hi) = du(e'?i, i) = acosh(sec(d)).
Thus, cos(f(R)) = sech(R) and therefore, sin(6(R)) = tanh(R). It follows that
b2 (14 hi, R) = bo(h, R) = 1 + he'®®i = 1 — htanh(R) + ih sech(R).

Then, the condition by (h, R) € Ty is equivalent to 2 tanh(R) < i < coth(R). Thus,
L =log(h1/ho) and R are admissible if 2 tanh(R) < hg < h; < coth(R). That is,
if £ < coth(R) /2 tanh(R) or, equivalently, if

2¢L tanh?(R) < 1. O

B. Estimates for the combinatorial spectrum

In this appendix we estimate from below the bottom of the combinatorial spectrum
uo(G, S), for the group G < PSL(2, R) associated to the system of generators
S = {u,"w?}, where u = (| ]) and 'u is its transpose. By combinatorial spectrum,
we refer to the spectrum of the combinatorial Laplace operator on the Cayley graph.

We estimate uo(G, S) from below following ideas of Nagnibeda [36] and

prove the following.
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1 —+ hli

g2

1+ h()’i

-1 0 1
Figure A.6. Transition zone A, and by(h1, R) € Tp.

Theorem B.1. Let G be the subgroup of PSL(2,R) generated by S = {u,u?}.
Then, the bottom of the combinatorial spectrum of G associated to S satisfies

no(G, S) > 0.4647.

Remark B.2. It can be proved that the bottom of the combinatorial spectrum as-
sociated to a symmetric finite system of k > 1 generators, is bounded from above
by k — 24/k — 1 (which corresponds to the bottom of the combinatorial spectrum
of a regular tree of degree k). In our case, this means that po(G, S) < 4 — 23
or, numerically, uo(G, S) < 0.5359. In particular, this shows that the error in our
estimate is less than 16%.

In the following, we recall some aspects of combinatorial group theory we
need and, in particular, we recall the definition of the bottom of the combinatorial
spectrum o (G, S). The following discussion is completely general.

B.1. Combinatorial group theory

Let G be any group, and let S be a subset of G. A word in § is any expression of
the form
w=s]"s5" s

where s1,...,s, € Sand g; € {+1,—1},i = 1,...,n. The number /[(w) = n is
the length of the word.

Each word in S represents an element of G, namely the product of the expres-
sion. The identity element can be represented by the empty word, which is the
unique word of length zero.

Notation

We use an overline to denote inverses, thus 5 stands for s 1.
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In these terms, a subset S of a group G is a system of generators if and only if
every element of G can be represented by a word in S. Henceforth, let S be a fixed
system of generators of G and a word is assumed to be a word in S.

Any word in which a generator appears next to its own inverse (s§ or §s) can
be simplified by omitting the redundant pair. We say that a word is reduced if
it contains no such redundant pairs. A relator is a non-empty reduced word that
represents the identity element of G.

Let v, w be two words. We say that v is a subword of w if w = v'vv”, for
some words v’, v”. If v’ is the empty word we say that v is a prefix of w. If v is
the empty word we say that v is a suffix of w.

We say that a word is reduced in G if it has no non-empty relators as subword.
In particular, if a word is reduced in G, any of its subwords is also reduced in G.

Note that being “reduced in G” is a stronger condition than being just “re-
duced”. This last does not depend on the group G and both coincides when and
only when G is the free group generated by S, that is, if there are no relators.

For an element g € G, we consider the word norm |g| to be the least length
of a word which is equals to g when considered as a product in G, and every such
word is called a geodesic path or, simply, a path. In other words, a path is a word
which represents an element in G whose word norm coincides with the length of
that word. In particular, a path is always reduced in G. Moreover, any subword of a
path is also a path. We say that two words are equivalent if they represent the same
elementin G.

For a relator, we call a subword that is a relator a subrelator. We say that a
relator is primitive if every proper subword is reduced in G, that is, if it does not
contain proper subrelators. In particular, a word is reduced in G if and only if it
contains no primitive relators as subword. Note that, if P is the set of all primitive
relators, then (S | P) is a presentation of G.

The following elementary results (see Figure B.1) will be useful in Section B.3.

Lemma B.3. Let v, w be two different equivalent paths. Then, there are paths
Vo, V1, Wo, w1 and x such that v = vgvix and w = wow X, and viw is a primitive
relator (of even length).

Proof. Let x be the largest common suffix of v and w (possibly x is empty). Write
v = vx and w = w'x. Let w; and v; be the smallest non-empty suffixes of w’
and v’ respectively such that v; and w; are equivalent. Such v; and w; exist since
v and w are different words. Moreover, they have the same length since they are
equivalent, that is, they are paths that evaluate to the same element in G. Write
v’ = vov; and w’ = wow; (possibly vy and wg are empty). In particular vy and wq
are equivalent, since the same holds for v/, w’ and vy, wy.

It remains to prove that vyw; is primitive. Suppose z is a subrelator of viw;.
Since v; and w; are paths, they are in particular reduced in G and also their sub-
words. Then z = wvwy for some non-empty suffixes vy and wy of vy and wy
respectively. In particular, vy and w, are non-empty suffixes of w’ and v’ respec-
tively and v, wy are equivalent. But, by definition, v; and w; are the smallest such
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ba

V1 4 b W1

Vo 4 + Wo

Figure B.1. Decomposition of two equivalent paths.

suffixes and therefore vy = vy and wo = w;. Thus, vyw; has no proper subrelators
and therefore, v w is primitive. O
As a direct consequence of the previous lemma, we have the following.

Corollary B4. Let v = v'yx and w = w'zx be two equivalent paths such that yz
is reduced in G. Then, yZ is a subword of some primitive relator (of even length).

Proof. Consider the decomposition given by the previous lemma. It is clear that
y is a subword of vy and z of wy. Then yz is a subword of the primitive relator
viw]. O

B.2. Combinatorial spectrum

Let G be a finitely generated group and S C G be a finite system of generators
of G. Let £?(G) be the space of square-summable sequences on G with the inner

product
(h,h'y =" hghl,
geG

for h, h' € ¢%(G), and define Ag : ¢2(G) — ¢%(G), the combinatorial Laplace
operator on G associated to S, by

(Ash)g =Y (hg — hgs),

seSUS

for h € £2(G). Then, we define 11o(G, S), the bottom of the combinatorial spectrum
of G associated to S to be the bottom of the spectrum of Ag, that is,

(Ash, h)
(h, h)

Remark B.5. The subjacent object in this discussion is the Laplace operator on the
Cayley graph of G associated to S. However we do not explain this here.

wo(G, S) == inf{ , he EZ(G)}.
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B.2.1. Nagnibeda’s ideas

In order to give estimates from below to the combinatorial spectrum we follow
ideas of Nagnibeda [36], which are based in the following result, whose proof is
elementary (see, for example, [7, Section 7.1]).

Proposition B.6 (Gabber—Galil’s lemma). Let G be a finitely generated group
and S a finite symmetric system of generators of G. Suppose there exists a function
L:G x S — Ry such that, for every g € G and s € S,

1
L 5 = T i~ d L ) =< kv
©9= 1oy o ; (g, 5)

for some k > 0. Then,
no(G, S) = #S — k.

Let S be a symmetric finite system of generators of G. For g € G, denote by |g|
the word norm with respect to S and define ST(g) ={s e S: |gs| =|gl£1}.
For g € G and s € S, we say that gs is a successor of g if s € ST(g) and that gs is
a predecessor of g if s € S~ (g). Henceforth we assume S*(g) U S (g) = S, for
every g € G. Note that this is equivalent to say that every relator has even length.

A function r : G — N is called a type function on G and its value 7(g) at
g € G is called the rype of g. We say that a type function ¢ is compatible with S,
or simply that ¢ is a compatible type function, if the following two conditions are
equivalent:

(1) t(g) = 1(g");
(2) #{s € ST(g): t(gs) =k} =#{s" € ST(g'): t(g's’) =k}, forevery k € N.

Equivalently, ¢ is a compatible type function if the (multiset of) types of successors
of an element g € G (is/)are completely defined by its type #(g).

For any type function # : G — N and positive valuation ¢ : N — R, we can
consider a function L. : G x S — Ry defined by

Ck ifs € ST(g), k =t(gs)

L 9 = .
&=V ifse S (2). k=1(g).
It is clear then, by the definition, that any L, : G x § — R, defined as above
satisfies L(g,s) = 1/L.(gs,s™ "), since s € S*(g) if and only if s~! € S~ (gs),
and S = ST(g) U S (g),forevery g € G.
Moreover, for a compatible type function 7, we define for k = 7(g) € N,
g €G,

#S—
fi@) =) Le(g )= Y cugn+ @

seS seST(g) Ck

Note that this is well defined since ¢ is compatible with S and therefore the sum
depends only on k, the type of g.
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As a direct consequence of Gabber—Galil’s lemma (Proposition B.6), we get
the following (cf. [36, Section 2]).

Corollary B.7. Lett : G — {0, ..., K} be a compatible type function. Then,
G,S)=>#S — a ,
po(G, S) = Jpax fi(c)

.....

foreveryc:{0,..., K} — Ry, where f; is defined as above.

Then, every compatible (finite) type function gives lower bounds for the combina-
torial spectrum.

B.3. Compatible type functions in our particular case

Until now, the discussion was completely general. We now specialize to the case of
G < PSL(2, Z) with generators u = ((1) %) and v = ‘u?. The aim in the following
is to give a compatible finite type function in this case, in order to give estimates for
the bottom of the combinatorial spectrum with the aid of Corollary B.7. For this,
we define a suffix type function and prove that it is compatible with § = {u, v}.

It is not difficult to see that (u, v | (u)3) is a presentation of G and the set of
primitive relators is given by

{D)?, (@), (vir)?, (bu)’}.

In particular, every relator has even length and we can apply previous discussion.

Let S(g) be the set of all suffixes of paths for g € G. Then, by the description
of the primitive relators, as a direct consequence of Corollary B.4, we have the
following.

Corollary B.8. Lets € Sandr € S\ {s, 5}. The following cases cannot happen:

5,5 € 8(g);
sr,5r € 8(g);
s,r> € 8(g);
sr,s € S(g);
u,v € S(g);
i, v e S(g).

Proof. Neither s2, srs,uv nor vu are subwords of a primitive relator. O

Let S, (g) be the set of all suffixes of length n € N of paths for g € G and
define, by recurrence, S7(g) = S1(g) and

S,+1(g) ifS,41(g) #0

Sn+1(8) = s;kl(g) if S,41(g) = 9.

Note that any injective function j : §(G) — N defines a (finite) type function
t = joS!:G — N,which we call suffix type function of level n.
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Lemma B.9. Lett : G — N be a suffix type function of level 2. Then, it is compat-
ible with S.

Proof. Being compatible with S means that the type #(g) of g € G completely
defines the types of its successors. Then, it is enough to show that S3(g) defines
completely the multiset {S3(gs) : s € ST(g)}.

From the previous corollary, we can deduce that S’f (g) =0, {u}, {u}, {v}, {v},
{u, v} or {u, v}, and that

Sk(g) € (D) U {{s}, (s*), st} ses.res\is.) U ({ab, bal, {a®, ba}a.petiu.v).(7.5))-

Moreover, it is clear that s € S (g) if and only if 5 ¢ S;(g).
Lets € S,r € S\ {s, 5} and {a, b} € {{u, v}, {u, v}}.

If $5(g) =¥, ¢ = id and evidently S5(gf) = {f}.for f € § = St(g):

If $%(g) = {s} or {s?}, then S}(gf) = {sf} for f € S\ {5} = S7(g).

If S3(g) = {ab}. then 85(gf) = (b}, for € S\ {B} = S*(g):

IfS5(g) = iab},then St(g) = S\ (b}, S}(ga) = {ba, ab} and S}(gq) = {bq},
for g € {a, b} = ST(g) \ {a}:

If S;(g) = {ab, ba}, then S;(gf) = {af,bf},for f € {a, b} = S+(g);

o IfS5(g) = {a?, ba}, then Si(gf) ={af},fore e S\ {a} = St(g).

Thus, given only the value of S3(g) we can tell the corresponding value of S3(gs)
for each s € S*(g) and therefore, suffix type functions are compatible with §. [J

We summarize the proof of the previous lemma by the following diagram
which shows each possible 85(g), ¢ € G with its respective multiset of S3(gf),
feste:

Si(g) = Si(gf). f € St(®)

B — {u}, {u}, {v}, {v}
{s} — {s7), {sr}, {s7)
{57} = {s7}, {sr}, {s7)
{ab} — {b*}, {ba}, {ba)
{ab}) — {b*}, {ba, ab}, {ba}
{ba,ab} — {a®, ba}, {ab, b*}
{a?, ba} — {a®}, {ab}, {ab},
where s € S,r € S\ {s, s} and {a, b} € {{u, v}, {u, v}}.

It is not difficult to see in the previous diagram that there are different suffix
types which share the types of the successors. Namely {a}, {a?}, {ba} and {ba, a?}.
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This allows us to reduce the number of types. Furthermore, it is clear that distin-
guishing a and a or a and b in the previous description has no major benefit. This
motivates the definition of the following type function. Let 7 : G — {0, ..., 3} be
the type function defined as follows:

0 ifSi(g)=9¢

1 ifSi(g) = {a}, {a*}, {ba} or {ba,da?}
2 if S3(g) = {ba}

3 if 8%(g) = {ab, ba},

T(g) =

for {a, b} € {{u, v}, {u, v}}.
From the previous discussion, we deduce the following.

Theorem B.10. The type function T : G — {0, ..., 3} is compatible with S. More-
over,

Type O elements have four type 1 successors;
Type 1 elements have two type 1 and one type 2 successor;
Type 2 elements have two type 1 and one type 3 successor;
Type 3 elements have two type 1 successors.

Thus, we have a compatible type function with a full description of the types of
the successors for each type. We can then finally apply Nagnibeda’s ideas (Corol-
lary B.7) to give estimates for the bottom of the combinatorial spectrum.

B 4. Estimates for the bottom of the combinatorial spectrum

By Theorem B.10, the f; of Corollary B.7 are given by:

o fo(c) =4cy;

e fi(c)=2c1+c2+ 1/cy;
o falc) =2c1+c3+1/c2;
e f3(c) =2c1 + 1/c3.

It follows that uo(G, S) > #S — maxg fi(c), for every ¢ = (c1,¢2,¢3) € Ri.
Thus, the problem can be reduced to find the optimal such bound. This can be
solved numerically: we get that ¢ € Ri with

c1 = 0.5680; ¢ =~ 0.6387; c3 ~ 0.8336,

is a (local) minimun for maxy fx(c), and maxy fi(c) = 3.5353.
Finally, since #S = 4, it follows that

no(G, S) > 0.4647.

This concludes the proof of Theorem B.1 O
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