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Motivic spectral sequence for relative homotopy K -theory

AMALENDU KRISHNA AND PABLO PELAEZ

Abstract. We construct a motivic spectral sequence for the relative homotopy
invariant K-theory of a closed immersion of schemes D C X. The E,-terms of
this spectral sequence are the cdh-hypercohomology of a complex of equidimen-
sional cycles.

Using this spectral sequence, we obtain a cycle class map from the rela-
tive motivic cohomology group of O-cycles to the relative homotopy invariant
K -theory. For a smooth scheme X and a divisor D C X, we construct a canon-
ical homomorphism from the Chow groups with modulus CH' (X|D) to the rel-

ative motivic cohomology groups H 2L(X\D, Z(i)) appearing in the above spec-
tral sequence. This map is shown to be an isomorphism when X is affine and
i = dim(X).

Mathematics Subject Classification (2010): 14C25 (primary); 14F42, 19E15
(secondary).

1. Introduction

In this text, we construct an Atiyah-Hirzebruch type spectral sequence for the rel-
ative algebraic K-theory of a closed immersion of smooth schemes, and relate the
E>-terms of this spectral sequence with the known Chow groups with modulus in
various cases. This section provides the background of the problem, a summary of
main results, their statements and outline of proofs.

1.1. The background

Since the advent of higher algebraic K-theory of rings and schemes by Quillen,
the goal has been to search for tools for computing these higher K-groups. In his
seminal work [4], Bloch introduced the theory of higher Chow groups of schemes.
He showed that these higher Chow groups rationally coincide with the algebraic
K -groups of schemes. It was later shown by Bloch-Lichtenbaum [7], Friedlander-
Suslin [11] and Levine [26] that there exists an Atiyah-Hirzebruch type spectral
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sequence whose Ej-terms are Bloch’s higher Chow groups and which abuts to the
algebraic K -theory of a smooth scheme.

After the introduction of motivic homotopy theory by Voevodsky and his coau-
thors, it was subsequently observed by Voevodsky that the motivic T-spectra in the
motivic stable homotopy category over a field (e.g., the algebraic K-theory spec-
trum KGL) could be understood well via their slice filtration. Voevodsky [28, Chap-
ter 19] also showed that the motivic cohomology groups appearing in the spectral
sequence resulting from the slice filtration for the algebraic K -theory spectrum co-
incide with Bloch’s higher Chow groups. Since then, Voevodsky’s slice filtration
has become a very powerful tool to compute algebraic K -theory of smooth schemes.

One immediate question that arises out of the works of Friedlander-Suslin and
Voevodsky is if it is possible to construct a convergent spectral sequence which
computes the relative algebraic K-theory K (X, D) for a closed immersion of
smooth schemes D C X, and which reduces to the earlier spectral sequence when
D = (. The first problem that one faces in order to answer this question is to define
a relative motivic cohomology theory which would constitute the E>-terms of such
a spectral sequence. Based on the theories of additive higher Chow groups by Bloch
and Esnault [6] and Chow groups with modulus by Kerz and Saito [19], a theory of
higher Chow groups with modulus was introduced by Binda and Saito in [3]. It is
expected that these higher Chow groups with modulus (or some refined version of
them) constitute the E»-terms of a spectral sequence which would converge to the
relative algebraic K-theory K (X, D) whenever D is an effective Cartier divisor in
a smooth scheme X over a field.

1.2. Summary of main results

Despite the introduction of higher Chow groups with modulus, connecting these
groups to relative algebraic K-theory, and in particular, constructing the desired
spectral sequence, remains one of the challenging current problems in algebraic K -
theory. This paper is an attempt in this direction. Here, we do not construct a spec-
tral sequence whose E»-terms are the higher Chow groups with modulus. What we
do instead is to expand and feed the machinery of Voevodsky’s slice filtration into
the setting of relative K-theory. What results is a strongly convergent spectral se-
quence abutting to the relative algebraic K-theory of a closed immersion of smooth
schemes D C X. More generally, we show that such a spectral sequence exists for
the relative homotopy invariant K -theory K H (X, D) for any closed immersion of
schemes D C X.

Given a closed immersion of a divisor D inside a smooth scheme X, we
show that the E,-terms of our spectral sequence can be described as the cdh-
hypercohomology of a subcomplex of the complex of equidimensional cycles of
Friedlander-Suslin-Voevodsky on a scheme Sx. This scheme is obtained from glu-
ing two copies of X along D. If X is projective, these E>-terms are shown to coin-
cide with the motivic cohomology with compact support [12] of the complement of
Din X.
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Another aspect of our spectral sequence is its degeneration with rational coef-
ficients. An important consequence of this is that it allows us to provide a complete
description of the rational relative K -theory of projective schemes in terms of the
motivic cohomology with compact support. Furthermore, it allows us to prove
the Grothendieck Riemann-Roch theorem for relative K -theory of smooth schemes
(see Theorem 5.6). Prior to this work, it was not known if the relative K -theory of
a smooth pair of projective schemes could be described in terms of motivic coho-
mology with compact support.

Having this spectral sequence in hand, what remains to connect Chow groups
with modulus with relative K -theory of a smooth divisor D inside a smooth scheme
X is to show the agreement between the E>-terms of our spectral sequence and the
Chow groups with modulus. In an attempt in this direction, we construct a canonical
homomorphism from the Chow groups with modulus to the E>-terms of our spectral
sequence. We then show that for 0-cycles, this map is in fact an isomorphism when
X is affine. This provides some evidence that the spectral sequence constructed
in this paper might be the answer to the question of relating Chow groups with
modulus with relative algebraic K-theory of smooth pairs.

1.3. Statements of main results

The results we prove can be summarized as follows. The exact hypothesis of each
statement, notation and terms used in these results will be explained and made pre-
cise at appropriate places in this text.

Let k be a perfect field and let A denote the ring Z if k admits resolution of
singularities or, Z[%] if k has characteristic p > 0. For an Abelian group A, let
Ap = A ®gz A. Given a morphism of schemes f : D — X over k, let K H(X, D)
denote the homotopy fiber of the map of Weibel’s homotopy K -theory spectra f* :
KH(X) - KH(D). Note that K H(X, D) coincides with the relative algebraic
K -theory spectrum K (X, D) if X and D are smooth.

Recall from [28, Lecture 16] that the presheaf of Abelian groups zequi (AZ, 0)
on the category of smooth schemes over k is defined by letting z¢qui (AZ, 0)(U) be
the free Abelian group generated by the closed and irreducible subschemes Z C
U x AZ which are dominant and equidimensional of relative dimension zero over
a component of U. Let CyZequi (AZ, 0) denote the chain complex of presheaves
of Abelian groups associated, via the Dold-Kan correspondence, to the simplicial
presheaf given by C,zequi (AZ, 0OW) = zequi (A?,0)(U x A}). Given a smooth
scheme X over k and an effective Cartier divisor D C X, let Sy denote the scheme
obtained by gluing two copies of X along D and let V : Sy — X be the fold map.
We let Ax|p(q)[2q] denote the complex of sheaves on the cdh-site of X given by
Axp(@)12g] = Ker((Vi(Cizequi (AL, 0)(Sy)ean)) = CoZequi (A, 0)|xo1)-

The relative motivic cohomology H%(X|D, A(b)) where D C X is a closed
subscheme, is defined in the motivic stable homotopy category in terms of maps
from the mapping cone of D — X into the Eilenberg-MacLane H A spectrum
representing motivic cohomology, see Subsection 4.2.1, Propositions 4.3, 4.7.
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Theorem 1.1. Let X be a separated scheme of finite type over k and let D C X be
a closed subscheme. Then the following hold:

(1) There exists a strongly convergent spectral sequence
ES" = HP(X|D, A(=b)) = KH_4p(X, D)4.

This spectral sequence degenerates with rational coefficients;

(2) The spectral sequence exists with integral coefficients if X and Y are regular;

(3) If X is regular and D C X is a Cartier divisor, then H*(X|D, A(b)) =
Hy (X, Axip(B)[2b]);

4) If X is projective over k, then H*(X|D, A(b)) = HI (X \ D, A(b)) is the
Friedlander-Voevodsky motivic cohomology with compact support of X \ D.

Theorem 1.2. If X has dimension d, then:

(1) There exists a cycle class map
cyei : H¥P(X|D, A(d + 1)) — KH;(X, D)x;

(2) If k admits resolution of singularities, X is regular and D C X is an effective
Cartier divisor, there exist Chern class maps

cx|D.ab : KHa(X, D)y — H*“(X|D, A(9))
which are functorial in the pair (X, D).

Theorem 1.3. If X is regular, D C X an effective Cartier divisor and i > 0 an
integer, there exists a homomorphism

Axip : CH'(X|D)x — H?(X|D, A(i)).

If k is furthermore algebraically closed, X is affine of dimension d and D is regular,
then there is an isomorphism Lx|p : CHd(X|D) > sz(XlD, 7.(d)).

1.4. Outline of proofs

We end this section with a brief outline of our proofs. The idea of the construction
of the spectral sequence for relative K -theory came from our previous work [25],
where such a spectral sequence was constructed for the K H-theory of singular
schemes. Extending our techniques, we feed the machinery of the slice filtration
into the relative setting. By mapping the mapping cone of a closed immersion of
schemes into the slice filtration of KGL and generalizing some results of [25] to the
relative case, we obtain the desired spectral sequence and its rational degeneration.

In order to get a tower for the relative K -theory spectrum leading to the spectral
sequence, we need to use [26] which compares Voevodsky’s slice filtration with
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Levine’s homotopy coniveau tower. This yields a tower for relative K -theory whose
layers are identified with the relative motivic cohomology.

The remaining part of this text is devoted to showing a direct relation between
the E>-terms of the spectral sequence with the Chow groups with modulus. In Sec-
tion 7, we construct a homomorphism from the higher Chow groups with modulus
to the Ep-terms by again using the comparison between the slice and the homotopy
coniveau tower for K-theory. We show in the final section that these maps are iso-
morphisms in the O-cycle range for affine schemes. This critically uses the affine
Roitman torsion theorem of [21] as the main input.

2. Review of motivic spaces and algebraic cycles

In this section we fix our notation and provide a limited recollection of some defini-
tions and known results related to the stable homotopy category of smooth schemes
over a base scheme. We recall the definitions of cycles with modulus on smooth
schemes and Levine-Weibel Chow groups of singular schemes. This Chow group
of singular schemes will play a crucial role in our comparison between Chow group
of 0-cycles with modulus and relative motivic cohomology.

2.1. Definitions and notation

We will write k for a perfect field of exponential characteristic p (in some cases we
will assume that the field & admits resolution of singularities [12, Definition 3.4]).
Let Schy be the category of separated schemes of finite type over k and Smy be
the full subcategory of Schy consisting of smooth schemes over k. If X € Schg,
we will write Smy for the full subcategory of Schy consisting of smooth schemes
over X. Let (Smy) y;s (respectively (Smy)yis, (Schi)can, (Schy)yis) denote Smy
equipped with the Nisnevich topology (respectively Smy equipped with the Nis-
nevich topology, Schy equipped with the cdh-topology, Schy equipped with the
Nisnevich topology). To simplify the notation we will write X x ¥ for X X spec () Y -

Let M (respectively Mx, M qn) be the category of pointed simplicial
presheaves on Smy (respectively Smy, Schy) equipped with the motivic model
structure described in [16] considering the Nisnevich topology on Smy (respec-
tively Nisnevich topology on Smy, cdh-topology on Schy) and the affine line A}c
as an interval. A simplicial presheaf will often be called a motivic space.

Let T in M (respectively My, M qpn) be the pointed simplicial presheaf rep-
resented by S! A S!, where S!is Al \ {0} (respectively AL \ {0}, Al \ {0}) pointed
by 1, and S! denotes the simplicial circle. Given an arbitrary integer r > 1, let
St (respectively S ) denote the iterated smash product of Ss1 (respectively Stl) with
r-factors: S! A --- A S} (respectively S! A - -+ A S1); SO = S will be by definition
equal to the pointed simplicial presheaf represented by the base scheme Spec (k)
(respectively X, Spec (k)).

Let Spt(M) (respectively Spt(Mx), Spt(M.an)) denote the category of
symmetric T-spectra on M (respectively My, M q1) equipped with the motivic
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model structure defined in [15, 8.7]. We will write SH (respectively SHx, SHcan)
for the homotopy category of Spt (M) (respectively Spt (Mx), Spt (M qn)) which
is a tensor triangulated category. For any two integers m, n € 7, let ™" denote
the automorphism X" o £ : SH — SH (this also makes sense in SHx and
SHean). We will write x4 for »2nn and E A F for the smash product of E,
F € S'H (respectively SHx, SHean).

Given a simplicial presheaf A, we will write A4 for the pointed simplicial
presheaf obtained by adding a disjoint base point (isomorphic to the base scheme)
to A. For any B € M, let X9°(B) denote the object (B,T A B, ---) € Spt(M).
This functor makes sense for objects in M4, and M x as well.

If F: A — B is a functor with right adjoint G : B — A, we shall say that
(F,G) : A — B is an adjunction. We will use the following notation in all the
categories under consideration: * will denote the terminal object, and = will denote
that a map (respectively functor) is an isomorphism (respectively equivalence of
categories).

Throughout this paper, A will denote the ring Z if k admits resolution of
singularities, or the ring Z[%] otherwise. For any Abelian group M, we shall let
Myx=M %A.

2.2. Some known results in motivic homotopy theory

Let X € Schy and let v : X — Spec (k) denote the structure map. Let & :
(Schy)cqn — (Smy)yis be the canonical continuous map of sites. We will write
(@*, ) M —> Mean, 05, v) : M — My for the adjunctions induced by
7, v respectively. We will also consider the morphism of sites wx : (Schg)cqn —
(Smy)y;s and the corresponding adjunction (7y, wx.) : My — Mecan. The
following result can be found in [25,2.4 and 2.9].

Proposition 2.1. The adjunctions (7*, ) : M — Mcap, (0%, vy) : M — My,
(%, wxs) : Mx — Mecap are Quillen adjunctions.

We further conclude from Proposition 2.1 and [15, Theorem 9.3] the following:

Proposition 2.2. The pairs (n*, m,), (v*, vy) and (7%, wx4) are Quillen adjunc-
tions between stable model categories.

We deduce from Proposition 2.2 that there are pairs of adjoint functors (L™, R) :
SH — SHean, Lv*,Rvy) : SH — SHx and (Lry, Ry, : SHx — SHean
between the various stable homotopy categories of motivic T-spectra. We observe
that fora > b > 0, the suspension functor £%? in SH (respectively SHx , SHean)
is the derived functor of the left Quillen functor E > S¢~2 A S? A E in Spt(M)
(respectively Spt(Myx), Spt(Mean)). Since the functors 7*, v*, 7% are simpli-
cial and symmetric monoidal, we deduce that they commute with the suspension
functors X", i.e., for every m, n € Z: La* o ¥™"(—) £ ™" o Ln*(—),
Lv* o 2" (=) = ™" o Lv*(—) and Lt} o ™" (=) = ™" o Lo (—).
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2.3. Higher Chow groups with modulus

For n > 1, let J" denote the scheme AZ = (IP’}c \ {oo})". Let (y1, -+, ¥,) denote
the coordinate of a point on [1". We shall denote the scheme (Pi)” by 0". For
1 <i < n,let F,f‘i denote the closed subscheme of (" given by the equation

n
{yi = oo}. We shall denote the divisor ) F; by F°.
i=1

Let X be a smooth quasi-projective scheme of dimension d > 0 over k and let
D C X be an effective Cartier divisor. Forr € Z and n > 0, let z,(X|D, n) be the
free Abelian group on integral closed subschemes V of X x [1" of dimension r + n
satisfying the following conditions.
(1) (Face condition) For each face F of [1", V intersects X x F properly:

dimg (VN (X x F)) <r + dimg(F), and
(2) (Modulus condition) V is a cycle with modulus D relative to F°:
V(D x O < v (X x F®),

where V is the closure of V in X x " and v : V"' — V — XxJ" is the composite
map from the normalization of V. We let 2,(X|D, n)gegn denote the subgroup of
Z,(X|D, n) generated by cycles which are pull-back of some cycles under various
projections X x [1" — X x " withm < n.

Definition 2.3. The cycle complex with modulus (z,(X|D, e), d) of X in dimension
r and with modulus D is the non-degenerate complex associated to the cubical
Abelian group n +— z,(X|D, n),ie.,

z,(X|D, n)
2. (X|D, n)degn.

The homology CH, (X |D, n) := H,(z,(X|D, e)) is called a higher Chow group of
X with modulus D. Sometimes, we also write it as the Chow group of the modulus
pair (X, D). If X has dimension d, we write CH (X|D, n) = CHy_,(X|D, n). We
shall often write CH" (X| D, 0) as CH" (X| D). We refer to [24] for further details on
this definition. The reader should note that CH, (X |D, n) coincides with the usual
higher Chow group of Bloch CH, (X, n) if D = .

zr(X|D,n) :=

2.4. Levine-Weibel Chow group of singular schemes

We recall the definition of the cohomological Chow group of 0-cycles for singular
schemes from [2] and [27]. Let X be a reduced quasi-projective scheme of dimen-
siond > 1 over k. Let Xjne and Xy respectively denote the loci of the singular
and the regular points of X. We let X"V denote the normalization of X. Given a
nowhere dense closed subscheme Y C X such that X, € Y and no component of
X is contained in Y, we let Zy(X, Y) denote the free Abelian group on the closed
points of X \ Y. We write Zo(X, Xing) in short as Z(X).
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Definition 2.4. Let C be a pure dimension one reduced scheme in Schy. We shall
say that a pair (C, Z) is a good curve relative to X if there exists a finite morphism
v: C — X and a closed proper subscheme Z C C such that the following hold.

(1) No component of C is contained in Z;
(2) V_I(Xsing) U Csing cZ.
(3) v is local complete intersection at every point x € C such that v(x) € Xing.

Let (C, Z) be a good curve relative to X and let {ny, - -- , .} be the set of generic
points of C. Let O¢,z denote the semilocal ring of C at S = Z U {ny,---, n,}.
Let k(C) denote the ring of total quotients of C and write (’)é’ , for the group of
units in O¢,z. Notice that O¢ z coincides with k(C) if |Z| = #. As C is Cohen-
Macaulay, (’)é’ - is the subgroup of k(C)* consisting of those f which are regular
and invertible in the local rings O¢ , for every x € Z.

Givenany f € (952 — k(C)*,we denote by dive (f) (or div( f) in short) the
divisor of zeros and poles of f on C, which is defined as follows. If Cy, ..., C, are
the irreducible components of C, and f; is the factor of f in k(C;), we setdiv(f) to
be the 0-cycle Y _;_, div(f;), where div(f;) is the usual divisor of a rational function
on an integral curve in the classical sense. As f is an invertible regular function on
C along Z,div(f) € Z0(C, Z).

By definition, given any good curve (C, Z) relative to X, we have a push-
forward map Zy(C, Z) 2 Zo(X). We shall write Ro(C, Z, X) for the subgroup
of Zy(X) generated by the set {v,.(div(f))|f € Oé’z}. Let Ro(X) denote the
subgroup of Zy(X) generated by the image of the map Ro(C, Z, X) — Zy(X),

where (C, Z) runs through all good curves relative to X. We let CHy(X) = 7‘%‘(’)(())?) .

If we let RéW(X ) denote the subgroup of Z((X) generated by the divisors of
rational functions on good curves as above, where we further assume that the map
v : C — X is aclosed immersion, then the resulting quotient group Zo(X)/ Ré W(X)

is denoted by CHéW(X ). Such curves on X are called the Cartier curves. There
is a canonical surjection CH(% W(X) = CHy(X). The Chow group CHé W(X) was
discovered by Levine and Weibel [27] in an attempt to describe the Grothendieck

group of a singular scheme in terms of algebraic cycles. The modified version
CHp(X) was introduced in [2].

2.5. The double and its Chow group

Let X be a smooth quasi-projective scheme of dimension d over k and let D C X
be an effective Cartier divisor. Recall from [2, Section 2.1] that the double of X
along D is a quasi-projective scheme S(X, D) = X LIp X so that

L

D X

. Vit 2.1
X — S(X, D)

L
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is a co-Cartesian square in Schy. In particular, the identity map of X induces a
finite map V : S(X, D) - X suchthat Vo(y =Idyand7w = ¢ U : X I
X — S(X, D) is the normalization map. We let X1 = 11.(X) C S(X, D) denote
the two irreducible components of S(X, D). We shall often write S(X, D) as Sx
when the divisor D is understood. Sy is a reduced quasi-projective scheme whose
singular locus is Dyeg C Syx. It is projective whenever X is so. It follows from [22,
Lemma 2.2] that (2.1) is also a Cartesian square.

(5.5)

It is clear that the map Z(Sx, D) = Z0(X+,D)® Zy(X —, D) is an isomor-
phism. Notice also that there are push-forward inclusion maps pi,: Zo(X,D) —
Z0(Sx, D) such that i} o py, =1Id and (} o p_, = 0. The fundamental result that
connects the 0-cycles with modulus on X and O-cycles on S is the following.

Theorem 2.5 ([2, Theorem 1.12]). Let X be a smooth quasi-projective scheme
over k and let D C X be an effective Cartier divisor. Then there is a split short
exact sequence

*
P+

0 — CHo(X|D) — CHo(Sx) 5 CHyp(X) — O.

3. Relative homotopy invariant K -theory

Let Sptq be the category of Bousfield-Friedlander S'-spectra equipped with the
stable model structure [26, Section 1.2], and (S") its homotopy category. We will
write Sptgi (Schy) for the category of presheaves on Schy with values in Spzgi. We
let K € Sptgi(Schy) denote the Thomason-Trobaugh algebraic K B_theory spec-
trum, and let KH € Sptq (Schy) denote Weibel’s homotopy invariant K -theory
spectrum [39], [8, 2.8]. Let K, (X), n € Z be the n-th homotopy group of the
spectrum K (X). We use similar notation for the homotopy groups of K H (X).

Definition 3.1. Let f : Y — X be a map in Schy.

1. [(1)] We will write K (f) (respectively K H (f)) for the homotopy fiber of the
map f* : K(X) — K(Y) (respectively f* : KH(X) — KH(Y)) induced
by f in Sptgi. If f is a closed (respectively open) immersion, we will write
K (X, Y) (respectively K X\Y (X)) for K ( f). Analogous notation will be used
for KH(f) too. We will write K, (f) (respectively K H,(f)) for the n-th
homotopy group of the spectrum K (f) (respectively K H(f));

2. [(2)] We will write My for the mapping cone of f in M qj,. Namely, let X,
Y4 denote the simplicial presheaves represented by X, Y with a disjoint base
point. We then factor f in Mgp:

YJ’_LXJ'_

PN
Ay



420 AMALENDU KRISHNA AND PABLO PELAEZ

where ¢ (respectively wy) is a cofibration (respectively trivial fibration) in

M qp and let M ¢ be the pushout in M4, of the diagram: * < Y, 2Loa o If
is a closed immersion, M ¢ is canonically identified with the quotient X/Y
I

in Mcap.

Since the cofibrant replacement functor is functorial in M4, , we deduce that every
commutative diagram in Schy:

4 f/ /
Y —X
gw ; ¢g 3.1

Yy —X

induces a commutative diagram in M g4, which is natural in g and g’ (3.1):

|y P
g . V&ea | @eHm (3.2)
Yy = Af —= My

where the rows are cofiber sequences in M4y, .

3.1. Voevodsky’s KGL spectrum

For any Noetherian separated scheme X of finite Krull dimension, the motivic T -
spectrum KGLy € Spt (M x) was defined by Voevodsky (see [36, Section 6.2]). It
represents algebraic K -theory of objects in Smy if X is regular. It was later shown
by Cisinski [8] that for X not necessarily regular, KGLy represents Weibel’s homo-
topy invariant K -theory K H,(Y) for Y € Smy. We will write KGL € Spr (M qn)
for L *KGL.

We will write Spt g1 (Mqp) for the category of symmetric § I -spectra on M q4p,
equipped with the motivic model structure defined in [15, 8.7], and SHf;h for its
homotopy category which is a tensor triangulated category. We shall denote the

homotopy category of Sptgi (M) by SH,S,;S- There is a Quillen adjunction [35, §2]:

(Z7°, Q%) = Sptgi (Mean) — Spt(Mean)- (3.3)
Consider the functor of global sections on X € Schy, I'x : Sptgi (Mcan) — Sptgi,
which admits a left adjoint X4 ® — : Sptg1 — Sptgi (Mecan), (E% E',..) >
(X4 ANEY, Xy AE',..). Since X; ® — is a left Quillen functor, we obtain a
Quillen adjunction:

X+ ®—,Tx) : Sptgi — Spl‘Sl(Mcdh). 34
We will write R['y : Schl,h — H(S!) (respectively RQX® : SHean — S’Hf;h)
for the right derived functor of Iy (respectively £27°), RHom for the internal Hom-

functor in SHLS.;M and Eg? : Mean — Sptgi(Mean), A — (A, S' A A, ..) for
the infinite suspension functor. When X = Spec (k), we will simply write RI;.
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Remark 3.2. Since X ® — is naturally isomorphic to the composition Eg‘l’X + A
(Spec (k)+ ® —), we deduce that RI"y is naturally isomorphic to

Rl o RHOm(E§?X+, -).

By construction and Definition 3.1(2), there is a commutative diagram in Sptg
(Mean):
E;’?YJF - E;’?Af - E;’?Mf
N e

XX,

where the top row is a cofiber sequence and wyisa § I_stable weak equivalence. So
this induces a commutative diagram where the solid arrows form a fiber sequence

in SHf;,h (recall that KGL is by definition L *KGLx) and w? is an isomorphism
(see the last paragraph of [36, page 592]): '

RHom(S% My, R2XKGL) — > RHom (2% A, R2°KGL)
w"} -7 il

RHom(S% X, RQPKGL) — > RHom(X%Y,, RQCKGL).

Thus, applying RI'x, we obtain the commutative diagram

RI o RHom(Eg?Mf, RQXKGL) — RT} o RHom(Zg?Af, RQKGL)

Y- | (3.5)
RT; o RHom(E ¥ X, RQKGL) ya RT; o RHom(E Y, RQKGL).

where the solid arrows form a fiber sequence and w}i is an isomorphism in H(S').

Lemma 3.3. The composition of uf; with the right vertical arrow in (3.5) is canon-
ically identified with the pull-back map f* : K H(X) — KH(Y) in H(S").

Proof. The lemma follows immediately by combining [8, Section 2.16] (see
page 438, line 9) and [8, Proposition 2.19], which together imply that there is a

canonical isomorphism RQ*KGL = K H in S’Hf;ih. O

Corollary 34. RI'; oRHom(Z?? My, RQXKGL) = KH(f)in H(S") and there-
fore K H,(f) = Homgy,,, (27°M¢[n], KGL). In particular, for a closed immer-
sion f : Y — X, we have

K H,(X,Y) = Homgyy,, (S3°(X/Y) [n], KGL). (3.6)
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Proof. The corollary follows directly from (3.5), Lemma 3.3, Quillen adjunctions
(3.3) and (3.4), representability result [8, Théoreme 2.20], and Definition 3.1(1).
O

In this paper we shall write K H(f) and RI'; o RHom(X% M s, RQP°KGL)
interchangeably hereafter. It follows from (3.5), Lemma 3.3 and Corollary 3.4 that
the commutative diagram (3.2), associated to (3.1), induces (g, g")* : KH(f) —
K H(f') in H(S") which fits in a morphism of distinguished triangles in H(S'):

KH(f) —> KH(X) ——~ KH(Y)
(€.8")* Je* o Ve G.7)
KH(f)) —= KH(X') —— KH(Y").

Remark 3.5. By construction, the diagram (3.7) is natural in (g, g’) in (3.1).

4. Relative motivic cohomology

We continue to assume that k is a perfect field of exponential characteristic p. In
this section, we define our relative motivic cohomology for a closed immersion of
schemes Y C X in Schy. We shall then show that this relative motivic cohomol-
ogy can be described as the cdh-hypercohomology of a presheaf of complexes of
equidimensional cycles. These relative cohomology groups will later constitute the
E>-terms of our spectral sequence for relative K H -theory.

4.1. Motivic cohomology of singular schemes

Recall from [28, Lecture 16] that given 7' € Schy, and an integer » > 0, the presheaf
Zequi (T, r) on Smy, is defined by letting z.4,; (T, r)(U) be the free Abelian group
generated by the closed and irreducible subschemes Z C U x T which are dominant
and equidimensional of relative dimension r (any fiber is either empty or all its
components have dimension r) over a component of U'. It is known that z,4,; (T, )
is a sheaf on the big étale site of Smy.

Let Cyzegui (T, r) denote the chain complex of presheaves of Abelian groups
associated, via the Dold-Kan correspondence, to the simplicial presheaf on Smy
given by Cyzequi (T, 7)(U) = Zzequi(T,r)(U x A}). The simplicial structure on
CsZequi (T, r) is induced by the cosimplicial scheme A7. Recall the following defi-
nition of motivic cohomology of singular schemes from [12, Definition 9.2].

Definition 4.1. The motivic cohomology groups of X € Schy are defined as the
hypercohomology

H™(X, Z(n)) = Hszzn (X, Ln*(c*zequi (A%, 0)))
= HzndZZH (X, C*Zequi (A}];lv 0)can)-
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We will also need to consider Z[%]-coefﬁcients. In this case, we will write:
H™ (X, ZI31(1)) = g, 2" (X, L™ (Cazequi (A, O[5 1).

Forn < 0, we set H" (X, Z(n)) = H™(X, Z[%](”)) =0.

4.2. Motivic cohomology via SH .45,

In order to represent the motivic cohomology of a singular scheme X in SH 4, let
us recall the Eilenberg-MacLane spectrum

HZ =(K(0,0),K1,2),---,K(@n,2n),---)

in Spt (M), where K (n, 2n) is the presheaf of simplicial Abelian groups on Smy

MW) via the Dold-Kan
Zequi (Pk ,0)

correspondence. The assembly maps of this spectrum are induced by the canonical
map g : ]P’,i — CiZequi (IP’,](, 0). This map assigns to any map U — ]P’,i its graph in

U x }P’}(. This in turn descends to maps T A K (n, 2n) ﬂ K(1,2) AK(n,2n) =5
K(n +1,2n + 2), where the latter is the obvious external product map. Using the
localization theorem, it follows that K (n, 2n) is weak equivalent to CyZequi (AZ, 0).
We shall not distinguish between a simplicial Abelian group and the associated
chain complex of Abelian groups from now on in this text and will use them inter-
changeably.

By [25, Theorem 3.10] motivic cohomology can be defined via SH 4y, so this
leads naturally to the following definition of relative motivic cohomology. Recall
our notation that A denotes the ring Z if k admits resolution of singularities, or the
ring Z[%] otherwise.

associated to the presheaf of chain complexes C*(

4.2.1. Relative motivic cohomology

Let f : Y — X be any morphism in Schy. For any commutative ring R, we define
the relative motivic cohomology of the pair (X, Y) with coefficients in R by

H™(X|Y, R(n)) = Homgp,, (S°M s, S""La*HR). (4.1)

For n < 0, we set H™(X|Y, R(n)) = 0. Notice that by [25, 3.10] this definition
reduces to 4.1 whenY =@ and R = A.

Proposition 4.2. Let k be a perfect field of exponential characteristic p. For any
closed immersion f : Y — X in Smy, and integers m, n € 7, there is a natural
isomorphism

Ox)y : H"(X|Y, Z(n)) = Homsn(S°M s, S""HT). 4.2)

Proof. Follows from the definition of relative motivic cohomology (4.1) and [25,
Corollary 2.17]. O
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4.3. Motivic cohomology via DM,

Let MS"™, MSY,, denote the category of presheaves with transfers on Smy, Schy,
respectively; equipped with the model structure induced by the adjunction (¢tr, U) :
M — MS", (tr, U) : Mcan — MSY,,, where U is the functor that forgets trans-
fers,i.e.,amap f in MS", MStCrd ,, 1s @ weak equivalence (respectively a fibration) if
and only if U(f) is a weak equivalence (respectively a fibration) in M and M. 4p,.

We will write Spt (MS™), Spr (MS,,) for the category of symmetric T-spectra
on MS", MStCrdh, respectively; equipped with the stable model structure [15, 8.7],

(el
where T is identified with C, <M). Let DMy (respectively DM¢qh) denote

Zequi (P(;( ,0)
the homotopy category of Spt(MS™), Spt(MS!,,). Notice that DMy is Voevod-
sky’s triangulated category of motives.

There is a T-suspension functor £° : MS" — Spr(MS™), £° : MS",, —
Spt(MStCrdh), and the forgetful functor induces levelwise Quillen adjunctions:

(tr,U) : Spt(M) — SptMS"),  (tr,U) : Spt(Mcan) — Spt(MSY,,), (4.3)

which fit in a commutative diagram of left Quillen functors:

Spt(M) == Spt (Mean)
tr\l/ \Ltr (44)
Spt(MS™) > Spt (MS™,).

For X € Schy, we will write M (X) € DM, for tr (£3°X) and Z(n)[m] € DMcap,

m,n € Z for tr(Em’”E%OS?). Given E € DM,y , we will write E (n) for EQZ(n).
Notice that by construction the spectrum HZ € SH 4, representing motivic

cohomology has transfers. Furthermore, for every m,n € Z [9,5.10-5.11]:

U(A(n)[m]) = "™ "La*HA. 4.5)

Since tr(X9°(X4)) = M(X) for any X € Schy, it follows that M (Y) — M(X) —
tr (27°(My)) is a distinguished triangle in DM.4), for any closed immersion ¥ <
X. Welet M(X/Y) :=tr(Z7°(My)).

Let DM(k, A) and DM_gj, (k, A) denote Voevodsky’s big categories of motives
over k with coefficients in A with respect to the Nisnevich and cdh-topologies,
respectively. Note that DM(k, Z) = DM;. It follows from [9, Proposition 8.1(c)]
that the functor Lz* : DM(k, A) — DMy (k, A) is an equivalence of tensor
triangulated categories. As a consequence of (4.3)-(4.5) and (4.1)-Proposition 4.2,
we get:

Proposition 4.3. Let k be a perfect field of exponential characteristic p. For any
closed immersion f : Y — X in Schy and integers m, n € 7Z, there is a natural
isomorphism

11

H"(X]Y, A(n)) — Hompwm,a)(M(X/Y), A(n)[m]).
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If X, Y € Smy, there is a natural isomorphism
H™(X|Y, Z(n)) = Hompm, (M(X/Y), Z(n)[m)).

4.4. Motivic cohomology with (compact) supports

Let X € Schy, j : U — X an open immersion and Z = X\U its closed comple-
ment equipped with the reduced scheme structure. We will write M(X) € DM.q,,
Mz(X) € DM_4p, respectively for the motive of X with compact supports [37, Sec-
tion 4.1] and the motive of X with supports on Z, where the latter is defined in

terms of a distinguished triangle M (U) M (X) > Mz(X) in DM g4y .
Definition 4.4. With the notation of (4.5) and Subsection 4.4, let m, n € Z. The
motivic cohomology of X with compact supports of degree m and weight »n is given
as:

H" (X, Z(n)) := Hompwm,,, (M (X), Z(m)[n]).
Similarly, the motivic cohomology of X with supports on Z of degree m and weight
n is given by H} (X, Z(n)) := Hompwm,,, (Mz(X), Z(n)[m]). The motivic coho-
mology groups H" (X, Z[%](n)) and H' (X, Z[%](n)) are defined analogously.

Proposition 4.5. With the notation of Definition 3.1, assume that f is a closed
(respectively open) immersion, and let U = X\Y (respectively Z = X\Y). If f is
closed, assume in addition that X is proper. Then there are natural isomorphisms:

Homchdh(E%OMf,Zm’”Ln'*HA) = HZ,"(U, A(n))
respectively Homgyy,, (S M, Z™"Lr*HA) = HJ (X, A(n)).

If X, Y € Smy, these isomorphisms hold integrally.

Proof. We will give the argument for the first isomorphism since the other one
is parallel. By construction (see Definition 3.1), there is a distinguished triangle
(cs) = Yy — XX, — XMy in SHqp,. Combining the Quillen adjunc-
tions (4.3) with (4.5), we are reduced to show that tr (2° M) = M(U) in DM_gp,
in general and in DMy if X, Y € Smy. But this follows from [37, Proposition 4.1.5]
and [9, Proposition 8.1(c)] since applying 7 to (cs), we obtain a distinguished tri-
angle M(Y) — M(X) — tr(37°My) in DM¢g, (in DMy if X, Y € Smy). U

4.5. Relative motivic cohomology in terms of hypercohomology of sheaves of
equidimensional cycles

Let X € Smy and let Y C X be an effective Cartier divisor. In this case, we can
describe the relative motivic cohomology group in terms of the hypercohomology
of a complex of equidimensional cycles. Let Sy denote the double of X along Y
and let V : Sx — X denote the fold map (see Section 2.5). We let V also denote
the morphism of sites (Sx)can — Xcan. For any Z € Schy, let Sh(Z)qq5 denote
the category of sheaves of Abelian groups on the cdh-site Z .
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Lemma 4.6. The direct image functor Vy : Sh(Sx)can — Sh(X)cqn is exact.

Proof. 1t suffices to show that V : Sx — X is a cdh-covering. But this follows
immediately from [32, Lemma 5.8] because V is finite and it admits a section (see
Section 2.5). ]

For any Z € Schy and an integer n > 0, we let Zz(n)[2n] denote the complex
of sheaves CyxZequi (A}, 0)z,,, on Zcgp. It follows from Lemma 4.6 that

H™(Sx, A(n) = HIL, 2 (X, Va(Asy (m)[2n))). (4.6)

For any morphism of schemes ¥ — X, we obtain maps Y = Sx xx Y —
Y whose composite is identity. Pulling back cycles along (_, we obtain a map
F 1 Ve(Asy (n)[2n]) — Ax(n)[2n] which admits a section V* : Ax(n)[2n] —
V.(Asy (n)[2n]). We let A x|y (n)[2n] := Ker(:*) so that there is a split short exact
sequence on X .qp:

0 — Axjy(n)[2n] — Vi(Asy(m)[2n]) — Ax(n)[2n] — 0. 4.7
Since (2.1) is a cdh-square (see Section 2.5), the map (% : H" (Sx|X_, A(n)) —
H™(X|Y, A(n)) is an isomorphism. We conclude from (4.6) and (4.7), the fol-

lowing description of the relative motivic cohomology of the pair (X, Y) in terms
of equidimensional cycles.

Proposition 4.7. For any integers m, n € 7, there is a natural isomorphism
H™(X|Y, An)) = Hy™ (X, Axjy (0)[2n]).
If X is furthermore projective, we have

H™(X|Y, A(n)) ZH" 2" (X \ Y, (Cszequi (AT, 0) A)can)-

5. Slice spectral sequence for relative K H-theory

Let k be a perfect field of exponential characteristic p. Given X € Schy, recall that
Voevodsky’s slice filtration of SHy is given as follows. For an integer ¢ € Z, let
Z?SHgfff denote the smallest full triangulated subcategory of SH x which contains
Cgff and is closed under arbitrary coproducts, where

Cgff ={E""EXY; :m€Z,n>q,Y € Smy}. (5.1

In particular, S’H‘}(ff is the smallest full triangulated subcategory of SHx which is
closed under infinite direct sums and contains all spectra of the type X°Y, with
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Y € Smy. The slice filtration of SHx (see [38]) is the sequence of full triangulated
subcategories

ST SHE C RISHY C 2T ISHS C -

It is known [30] that the inclusion i : E?SHS’(H — SHyx admits a right adjoint

rq : SHx — E?SH?XE and that the functors f,,s-4,5; : SHx — SHy are
triangulated; where r4 o i, is the identity, f, = iy ory and s—4, 54 are characterized
by the existence of the following distinguished triangles in SHx:

JqF ——=E ——>s4,E and Jqr E fqE sq E 52

forevery E € SHy.

Definition 5.1. Let a, b, n € Z and Y € Smy. Let F"E*Y(Y) be the im-
age of the map induced by f,E — E (5.2): Homgy, (X774, @b fE) —
Homgy, (27°Y 4, Y4PE). This determines a decreasing filtration F* on E4?(Y) =
Homgyy (B7°Y, >4l E), and we will write gr" F* for the associated graded pieces
{FnEa’b(Y)/Fn+1Ea’b(Y)}.

5.1. The slice spectral sequence

Let Y € Smy be a smooth X-scheme and G € SHx. Since SHy is a triangulated
category, the collection of distinguished triangles { f;+1G — f4G — 5,G}4ez de-
termines a (slice) spectral sequence of the form £ f’ “'—Homgy (&Y T P tag »G)
with G™"(Y) = Homgy, (£7°Y4, ™" G) as its abutment and differentials d; :
EPY — EpTOL

In order to study the convergence of this spectral sequence, recall from [38,
page 22] that G € SHy is called bounded with respect to the slice filtration if for
every m,n € Z and every Y € Smy, there exists ¢ € Z such that:

Homsz, (X" "E7°Yy, f4+iG) =0 (5.3)

for every i > 0. Clearly the slice spectral sequence is strongly convergent when G
is bounded.

5.2. The slice spectral sequence for KGL

Let k be a perfect field of exponential characteristic p, and let f : ¥ — X be a
morphism in Sch. Let v : X — Spec (k) be the structure map. Recall that KGL
is by definition Lz *KGLy, and the map Lv*(KGL;) — KGLy is an isomorphism
by [8, Proposition 3.8].

By [31, 6.2.3.10, 5.3.18 and 5.3.10] we have the Chern character isomor-

phism ch : (KGLy)q i eaqezE?HQ, and by [31,5.3.17 and 5.3.10] E?HQ =
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(KGLk)g ) where (KGLk)((é{ ) is the gth Adams eigen-spectrum constructed in [31,

5.3.9]. In addition, one knows that ¢, : s, KGL; — X HZ forr € 7 [26, The-
orem 6.4.2], which implies s; (. HZ) = 0 fori # r and s,(X HZ) = X HZ.
Now, since the effective categories E;S H° are closed under arbitrary coproducts
it follows that the slices s; commute with arbitrary coproducts. Hence, we obtain
the following isomorphism:

si(ch) : 5;(KGLi)g = si (®gezTF HQ) = @gezsi F HQ= T HQ= (KGLy){ .

Thus, we conclude that the Chern character isomorphism splits the slice filtration:

I

ch : (KGLy)g = ®gezsq(KGLi)g. (5.4)
in SH. For g € Z, we let
Za(My,q) : = R[y o RHom(ZX M ¢, RQYST HZ) € H(Sh). (5.5)

If f is a closed (respectively open) immersion, we write Zg (M ¢, q) as Zg (XY, q)
(respectively Zg(X ,q)).
Now, by construction (see Definition 3.1(2) and equation (3.2)), there is a com-
mutative diagram in Spt(Mq4p):
XY, — = XPAy — > XMy

N (5.6)

TXX,

where the top row is a cofiber sequence. Since wy : Ay — X is a weak equiva-
lence of motivic spaces, the map wy : Z°Ay — X7°X, is a stable weak equiv-
alence in Spt (M.ap) (e.g., see [36, page 592]). Hence, mapping in SHcqp (5.6)
into the slice tower of KGL:

oo = L * (fy+1KGLy) — L *(f;KGLy) — --- - Lz *(KGLy) = KGL

and splicing together Lemma 3.3 and Corollary 3.4, we obtain the following result:

Theorem 5.2. Let k be a perfect field, and let f : Y — X be a morphism in Schy.
Then there exists in H(S"), a tower, natural in (X, Y):

> KH(f) > ¢ KH(f) == ¢oKH(f) = ¢_1KH(f)

. KH(f) (5-7)

and an isomorphism for each q € 7.:
¢q/Pgr 1 KH(f)A = Aa(My, q). (5.8)

where ¢g/$q+1 KH (f) is the cofiber in H(SY) of the map b1 KH(f)— s KH(f).
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Proof. 1f we let ¢, KH(f) = RI; o RHom(Eg‘l’Mf, RQ>Lr*(f,KGLy)), we
only need to verify that the cofiber of the map ¢, 1 KH(f)n — ¢qKH(f)a
is isomorphic to Ag(My, g). But this follows from the fact that there is an iso-
morphism £ HZ = f,KGLy/ f;+1KGLy in SH (e.g., see [26, Section 11.3, Re-
mark 11.3.4]). Moreover, the same holds for KGL in SH .45, with A-coefficients in
positive characteristic by [25, Lemma 4.8]. O

Using Theorem 5.2 together with the Quillen adjunctions of (3.3) and (3.4), we
get our final result:

Theorem 5.3. Let k be a perfect field and let f : Y — X be a morphism in Schy.
Then there is a commutative diagram of strongly convergent spectral sequences:

i |

ESY = HP(My, A(—b)) =——=> KH_q_(f)a

/ l

ESY = HO P (X, A(=b)) === KH_4_(X)s

b if*

E;,b — Ha_b(Y, A(=b) =—=KH_4_p(Y)

/ |

ESTN — gab (M, A(—b)) == KH_q_p_1(f)a

| :

with exact columns, where the differentials of the spectral sequence are given by
d, : EX — potrbor+l, and for every a, b € 7, there exists N > 0 such
that E®Y = E&P for r > N, where E%? is the associated graded gr="F* with
respect to the descending filtration Definition 5.1 on the groups in the right column.
Furthermore, these spectral sequences degenerate with rational coefficients.

Proof. Except for the strong convergence, all the claims follow from Theorem 5.2,
(3.3) and (34) and an elementary reindexing to convert the resulting E;-spectral
sequence into an E,-spectral sequence (see the proof of [26, Theorem 11.3.2]).
Alternatively, one can use Lemma 3.3 and Corollary 3.4 and the method of [25,
4.27]) to prove the existence of the spectral sequences.

To prove the strong convergence, we recall from [25, 4.7 and 4.10] that
KGL[%] is bounded with respect to the slice filtration (5.3). Let m, n € Z be
arbitrary integers, and q;, g2 € Z such that the vanishing condition (5.3) holds for
(m, n) and (m + 1, n) respectively. Then, if ¢ is the maximum of g1, g;, we deduce
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by [25, Theorem 2.14] and (5.3) that for every i > 0, there is an exact sequence:

Homspe,, (=" SV, f1KGL [%])
— Homspe,,, (™" S5 My, f1KGL [%])

Homspe,, (™" S X, fy+iKGL [%D ,

where the terms on the top and bottom vanish, so the term in the middle also van-
ishes. This implies the desired convergence abutting to K Hy(f)A - O

Remark 5.4. With the notation of Definition 3.1, we have the following:

(1) If f is an open immersion, then Corollary 3.4 and Proposition 4.5 together
imply that the top row of Theorem 5.3 is same as (where Z = X\Y):

ESY = HS (X, A(=b)) = KHZ,_,(X)a; (5.9)

(2) If f is a closed immersion, then Corollary 3.4 and (4.1)-Proposition 4.2 to-
gether imply that the top row of Theorem 5.3 is the same as

ES" = HO7P(X|Y, A(=b)) = KH_q_p(X. Y)a.

If in addition X is assumed to be proper, Corollary 3.4 and Proposition 4.5
together imply that the top row of Theorem 5.3 is the same as

ESY = H7P (X \ Y, A(=b)) = KH_q—p(X, Y)a. (5.10)

As a combination of Theorem 5.3 and [34, Theorem 9.5, 9.6], we obtain the follow-
ing result for the Thomason-Trobaugh relative algebraic K -theory K (—) of singular
schemes [34].

Corollary 5.5. Let k be a perfect field of exponential characteristic p. Let £ # p
be a prime and m > 0 any integer. Given any f : Y — X in Schy, there exists a
strongly convergent spectral sequence

ES" = H(My, Z/0" (=b)) = K /€ _a_p(f). (5.11)

If p > 0, there exists a strongly convergent spectral sequence

By = ™ (M 2 1] 0) = Kan(D 1] (5.12)
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5.3. Relative K -theory of smooth closed pair

Our main example of interest is the relative algebraic K-theory of the pair (X, Y)
where ¥ C X is a codimension one closed immersion of smooth schemes. We
now show that Theorems 5.2 and Theorem 5.3 can be much simplified to give a
more precise description of the tower of the relative K-theory and of the motivic
cohomology in this case.

In any case, it follows from the definition of the tower (5.7) that there is a
distinguished triangle in H(S"):

¢ KH(f) = ¢gKH(X) AN ¢ KH(Y) — ¢gKH(f)[1].

Let us now assume that f is a closed immersion of smooth schemes over k. In this
case, we know that K(f) — K H(f) is a weak equivalence. On the other hand, it
follows from [26, Theorem 9.0.3] that the slice tower ¢4 K (X) coincides with the
homotopy coniveau tower ¥, K (X), where v, K (X) is the diagonal of the simpli-
cial spectrum K @ (X, —), defined in [26, 2.1.2]. In particular, we get ¢, K (f) =
$sK(X,Y) = K(X,Y) for ¢ < 0. Furthermore, it follows from Theorem 5.2
and [26, Theorem 6.4.2] that Zg (X, q) = ¢¢/¢q+1K(X) = ¥g/Vg11 K(X) =
Zg‘l’zq (X, o), where z9(X, o) is Bloch’s cycle complex of X [4]. The same holds
for Y as well.

We let sz (XY, ®) = Cone(f*)[—1], where Cone(f*) denotes the cone of
the restriction map of cycle complexes f* : z?,(X ,e) — z9(Y,e). Recall here
that z({,(X ,®) Cz7(X, o) is the subcomplex generated by irreducible cycles which
intersect all faces of ¥ x A® properly. By [23, Theorem 1.10] (which relies on
Bloch’s moving [5] lemma) this inclusion is a weak equivalence of simplicial
Abelian groups. Letting CHY((X|Y,i) = H;(z%((X|Y,)) and CH} ((X|Y, i) =
Dy eZCH‘j\A (XY, i), we conclude that Theorem 5.2 reduces to the following:
Theorem 5.6. Let k be a perfect field and let f : Y — X be a closed immersion
inSmy. Let (g,g) : (X', Y') — (X,Y) be a projective morphism of closed pairs
in Smy such that Y' =Y xx X'. Let T, € Ko(Y') be the virtual relative tangent
bundle for g : X' — X. Then there is a tower in H(S"):

> P K(XY) > ¢gK(X,Y) = - > ¢oK(X,Y) = K(X,Y)
and isomorphisms for each q,i > 0:

(1) ¢q/¢Pq+1K(X,Y) = EX75(X[Y, 0);
(2) CHY (XY, i) = HX~(X|Y, Z(g));
(3) There exists a strongly convergent spectral sequence

ES" = CHY(X|Y, —a — b) = KH_q_p(X, Y);
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(4) Grothendieck Riemann-Roch theorem: there is a commutative diagram

Td(T,)ch
Ki(X', Y)g — N cmy (XY, i)g (5.13)

Ki(X,Y)g — = CH}(X|Y. i)g.

such that the horizontal arrows are isomorphisms.

Proof. The existence of the tower and (1) are already explained above. The item
(3) follows from (1) and (2). For (2), we note from what is explained above and the
Quillen adjunctions (3.3) and (3.4) that we do have natural maps

CHY,(X|Y,i) - H (X, 2%, (- |V, ®)|x.,,) = H¥* ' (X|Y, Z(g)). (5.14)

To show that the composite map is an isomorphism, we only have to observe that
this is indeed the case if ¥ = (J. We conclude using the 5-lemma. In the Riemann-
Roch theorem (4), the commutativity of the diagram follows from the item (2) and
[29, Theorem 3.15], if we note that a projective morphism of smooth schemes is
a local complete intersection. Finally c/ is an isomorphism by (5.4), which also
implies that Td(7)ch is an isomorphism since Td(Ty) is a unit in C H}; , (X', %)
and CH}(X'|Y’, %)@ has the structure of C H} (X', *)g-module. O

6. The cycle class and Chern class maps

As an application of Theorem 5.3, we shall now construct a cycle class map from
the relative motivic cohomology in the O-cycle range to relative K H-theory. We
shall then apply the double construction to construct the Chern class maps.

6.1. The cycle class map

We continue with our assumption on the field k and the coefficient ring A. In order
to construct the cycle class map, we shall use the connective version of the spectrum
KGL.

Let X € Schi. Recall that the connective K -theory spectrum KGL())( is the
motivic T-spectrum fyKGLy in SHx (see (5.2)). In particular, there is a canonical
map uy : KGL())( — KGLx which is universal for morphisms from objects of
SH‘}ff to KGLy. With the notation of Definition 3.1, we let CKHP9(My) =
Homspy,,, (2 My, SP9La*KGL).

Apart from the connective cover of KGL, we also need the following vanishing
result for the motivic cohomology with support.

Lemma 6.1. Let X € Schy be of dimension d and let Y C X be a closed sub-
scheme. Then HX* (X, A(a)) = H>~*(X, A(a)) = 0 whenever a > d + b.
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Proof. We first show that H)%”_b(X, A(a)) = 0 whenevera > d + b. If (X,Y)
is a smooth pair, then the purity theorem for motivic cohomology (see [32, Theo-
rem 4.10]) implies that H}%“_b(X, Aa)) = H2@ Dby A(a — q)), where Y has
codimension ¢ in X. But it is shown in [25, Theorem 5.1] that the latter group is
zerosincea —q >d —q + b =dim(Y) + b.

We shall now prove the lemma by induction on the dimensions of X and Y. We
first keep our assumption that X is smooth but allow Y to be singular. If dim(Y) =
0, then we can assume that Y is smooth and reduce to the previous case. We can
therefore assume that dim(Y) > 1. Let Z be the singular locus of Y with reduced
induced closed subscheme structure. Since k is perfect, we have dim(Z) < dim(Y).
There is a commutative diagram

MX\Y) —= M(X) = My(X)
| I |
M(X\ Z) — M(X) = Mz(X) (6.1)

|

My\z(X \ Z)

in DMy so that we get a distinguished triangle My\z(X\Z) — My(X) — Mz(X).
This yields an exact sequence

HY (X, Aa)) > HP*P(X, A@)) - HY 7 (X \ Z, A)).

The first term vanishes by induction on dim(Y’) and the third term vanishes because
(X \ Z, Y\ Z) is a smooth pair. Hence the middle term vanishes.

We now allow X to be singular and work by induction on dim(X). If dim(X) =
0, then we can assume X to be smooth. So we assume dim(X) > 1. Let us first
assume that there is a resolution of singularities f : X — X andletY = f ().
Let Z denote the singular locus of X and let E C X be the exceptional divisor. If
welet U = X\ Y and U = f~1(U), we get a commutative diagram where the
rows are distinguished triangles in DM:

MUNZ)® M) = MU) - M(END)[1]

J | | (6.2)

M(2Z) ® M(X) —= M(X) —= M(E)[1]
and this gives a distinguished triangle
Mynz(Z) & My(X) > My(X) — My g(E)1].
The associated long exact sequence of motivic cohomology groups is of the form

2 P71E, Aa) — Hy* (X, Aa) > Hpl (Z, Aa) @ Hé“"’(?, Aa)).
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The end terms vanish either by induction on dim(X) or by the case of smooth am-
bient scheme. It follows that the middle term vanishes, as desired.

If X is not smooth and & has positive characteristic, we argue as follows. By a
theorem of Gabber [18] and its strengthening by Temkin [33, Theorem 1.2.9], there
exists W € Smy and a surjective proper map 7 : W — X, which is generically
étale of degree p”,r > 1. By a theorem of Raynaud-Gruson [13, Theorem 5.2.2],
there exists a blow-up f : X — X with nowhere dense center Z C X such that the
following diagram commutes, where 4’ is finite flat surjective of degree p” and f’
is the blow-up of W with center h=1(2):

X
I 63)
X

Using the cdh-excision corresponding to the cdh-cover {)N( U Z — X} of X and
arguing as above, we get an exact sequence:

HE PN E. A@)) — Hy' ™ (X, Aa) — HE ™" (X, A@) @ Hyfi/ (Z. A@)).

where we set E = X’ x x Z and Y = f_1 (Y). Since dim(FE) and dim(Z) are smaller
than dim(X), it follows by induction on dim(X) that H%‘rl];b - (E, A(a)) = 0 and
HXP(Z, A(a)) = 0, thus the map f* : H* *(X, A(a)) — Hé"—b(}?, Aa)) is
injective. -

We now let Z/ = h=1(Y), Z = f'~1(Z’) and consider the commutative dia-
gram resulting from (6.3):

HE (X, A@)) —— HE (X, A@))

| e (6.4)
HE P (W, Ad@) — = HE P (W, Aa).

Since W € Smy, we know that H¢*(W, A(a)) = 0. Using (6.4), it suffices
therefore to show that 2’* is injective. But this follows from Lemma 6.2. The proof
of the first vanishing assertion is now complete.

To prove that HE“"’(X, A(a)) = 0 whenever a > d + b, we choose an open

immersion j : X < X with dense image such that X is projective over k. Letting
Z = X\ X, it follows from [37] and [18, Chapter 5] that there is a distinguished
triangle in DM(k, A):

MS(Z) - M°(X) = M°(X) — M(Z)[1]. (6.5)
In particular, there is an exact sequence

H2a7b71(Z’ A(d)) — chafb(X, Aa)) — Hzafb(Y, A(a)),
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where we have replaced the cohomology with compact support by the usual motivic
cohomology on the two end terms because X and Z are projective over k. It follows
from the first part of the lemma that the two end terms vanish. The desired assertion
now follows. O

Lemma 6.2. Let f : W — X be a finite and flat morphism of degree p" in Schy,
with dim(X) = d. Let Y C X be a closed subscheme and Z =Y xx W. Then the
pull-back map f* : H%“_b(X, Aa)) — H%”_b(W, A(a)) is injective whenever
a>d+b.

Proof. When Y (and hence Z) is empty, both sides are zero by [25, Theorem 5.1]
and so the lemma holds. Otherwise, welet U = X \ Y and V = f~1(U). Let
v: X — Spec (k) and u : W — Spec (k) denote the structure maps.

By [18, Definition 4.3.1, Corollary 5.2.4], the spectrum HA € SH has the
structure of traces. In particular, for any m,n € Z, there exists a trace map Tr :
Rf.Lf*Lov*(Z™"HA) — Lv*(Z™"HA) in SHy such that its composition with
the unit of adjunction (L f*, R fy):

T
Lo*(S™"HA) — RELF LY (S™HA) —5 Lv*(S™"HA)

is multiplication by p”. In particular, the composite map

Homsy, (Ly, Lv*(S7" HA)) > Homsye, (1, RELF*Lo*(S™"HA))  (6.6)

TR

Homgy, (1x, Lo*(S™"HA))

is multiplication by p”, where we let f, denote the maps on the cohomology groups
induced by Tr. It follows that this composite map is an isomorphism.

On the other hand, we have Homgy, (1x, Lv*(X™"HA)) = H™(X, A(n))
by [25, Corollary 3.6]. Moreover,

Homgsyy, (1x, R f L f*Lu* (S " HA)) = Homgyy,, (L f*(1x), L f*Lo* (™" HA))
= Homs3, (Aw, L(v o £)*(Z™"HA))
= Homgsy, (1w, Lu®(2™"HA))
=2HM(W, A(n)),

where 2! is a consequence of adjointness of the pair (L f*, R f,) and = follows
from [25, Corollary 3.6]. Using these isomorphisms in (6.6), we get the maps

H™(X. A)) L H™(W. A(n)) L5 H™(X. A(n))

whose composite is an isomorphism.
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We now consider the commutative diagram

H2*=b=1(X, A(a)) = H*~71(U, A()) = Hy* (X, A(@) =0 (6.7)

f*l l i l -

H2=P=Y(W, A(@)) = H*= "=V, A(a)) = H}* P(W, A(@)) =0

S

H2=b=1(X, A(a)) = H¥ P =1 (U, Aa)) = HZ (X, Ala)) =0,

whose rows are exact because H¥?(X, A(a)) = H* P(W,A(a)) = 0, as
we saw in the beginning of the proof. It follows that there exists an arrow
S o H%“_b(W, A(a)) — H%a_b(X, A(a)) such that all squares in this diagram
commute. Since the left and the middle composite vertical arrows are isomor-
phisms, as we just observed above, it follows that the right composite vertical
arrow must also be an isomorphism. In particular, f* : H)%“_b(X , A(a) —

H ;"_b(W, A(a)) is injective. This finishes the proof. L

Theorem 6.3. With the notation of Definition 3.1, assume that f is either a closed
immersion such that dim(Y) < dim(X) = d, or an open immersion. Then the
map KGL())([%] — soKGLX[%] = HZ[%] induces for every integer i > 0, an
isomorphism

CK HMHd4i (31 ) o 2 g+ (Mg, A(d +i)). (6.8)

In particular, the canonical map KGL(})( — KGLy induces a natural cycle class
map _
eyei : H¥ (Mg, A(d +i)) — KH;i(f)a. (6.9)

Proof. By [25,5.12-5.13], the argument in Theorem 5.3 also applies to Lz *KGL.
In particular, there is a strongly convergent spectral sequence:

ESY = H P (Mg, Ap<o(n — b)) = CKH 0" (M), (6.10)

where Ap<g = A if b < 0 and is zero otherwise. Furthermore, this spectral se-
quence degenerates with rational coefficients.

Combining the spectral sequence (6.10) with Lemma 6.1, we conclude that
the edge map CK H>¥+H4+ (M) — H? (M, A(d + i)) is an isomorphism
for every i > 0. Finally, we compose the inverse of this isomorphism with the
canonical map CK H¥*:4+ (M )y — K H; (M) to get the desired cycle class
map. O

Note that the proofs of Lemma 6.1 and Theorem 6.3 show that they remain
valid without inverting p and without assuming resolution of singularities if f is a
closed immersion of smooth schemes. We thus get the following:
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Corollary 6.4. Let k be a perfect field and let f : Y — X be a closed immersion
in Smy. Then there exists a cycle class map for i > 0:

cyci - H¥Y(X|Y, Z(d + i) — Ki(X,Y)

whose kernel is a torsion group.

6.2. The Chern class map to relative motivic cohomology

The Chern class maps from the homotopy invariant K -theory of singular schemes to
their motivic cohomology was constructed in characteristic zero in [25, Section 6].
Using the recent result of Kerz, Strunk and Tamme [20] and the double construction
of [2], we can generalize the construction of [25] to the relative setting and positive
characteristic as follows.

Theorem 6.5. Let k be a perfect field. Let X be a smooth scheme over k and let
f Y — X be the inclusion of an effective Cartier divisor. Assume that k admits
resolution of singularities. Then there are Chern class maps

cxvb: KHa(X,Y) — HP “(X|Y, Z(b))
which are functorial in the pair (X, Y).

Proof. To prove the theorem, we shall use the doubling trick of [2]. We let Sy =
S(X, Y) denote the double of X along Y (see Section 2.5). Using the cdh-descent
for the motivic cohomology and K H-theory, it suffices to construct the Chern class
map from K H,(Sx, X_) to H?b=a(Sx|X_, Z(b)) (see the proof of Lemma 4.6).

After this reduction, the proof is now identical to that of [25, Theorem 6.9] with
very minor modifications that we explain. We follow the notation of [25, Section 6].
We only have to show that [25, Lemma 6.4] is valid in the present case too. But
this is immediate from our assumption that k admits resolution of singularities and
the recent result of [20] that the canonical map K H(Z) — K.q4n(Z) (induced by
the cdh-descent for K H, shown in [8]) is a weak equivalence of spectra for any
Z € Schy.

Following the rest of the argument of [25, Theorem 6.9] verbatim, we obtain a
commutative diagram of Chern class maps

C _ X~
K Hy(Sx) == H_% (Sx, Cuzequi (AL, 0)can) — H?=4(Sx, Z(b))  (6.11)

* * *
L+l l+l ll+

C _ =
KH,(X-) = Hcdah (X—, C*Zequi (AZ, 0)can) = H?b—a (X_, Z(b)).

Since ¢y : X_ < Sy is naturally splitby V : Sx — X, we get the desired natural
map

cxyp s KHy(Sx, X2) — H?=%(Sx|X_, Z(b)). (6.12)
The functoriality of cx v is clear from its construction. We refer to the proof
of [25, Theorem 6.9] for further detail. O
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7. Chow group with modulus and relative motivic cohomology

We keep the assumption on the ground field k and the coefficient ring A as before.
In this section, we shall construct a natural map from the Chow groups with modu-
lus to the relative motivic cohomology groups. We shall later show that this map is
an isomorphism for O-cycles on affine schemes.

7.1. Higher Chow groups and motivic cohomology with support

Consider a Cartesian square of quasi-projective schemes

7z 7
v | (7.1)
X 5> x/

where (X', X) is a smooth pair with dim(X’) = d > 1, and X is a divisor. We
assume that the vertical arrows are closed immersions of codimension ¢ > 1 such
that Z’ is integral and is not contained in X. In particular, (7.1) is a transverse
square. Let £ be the line bundle on X’ associated to X. For any locally closed
subscheme U’ C X', let zg((U ', ®) be the subcomplex of Bloch’s cycle complex
Z/(U’, o) generated by integral cycles which intersect X properly. Given any open
subset U’ € X' and U = X N U’, there is a commutative diagram

H(Z' NV &) =W, o) =W\ 7', 0)

| | | 12

Z(Z'NU, e) =7 TI(U', 0) =TI\ Z', 9).

The localization theorem for Bloch’s complex says that the bottom row is a distin-
guished triangle in the derived category of chain complexes of Abelian groups.
Since X N (X' \ Z') # @ and X C X’ is a divisor, the proof of Bloch’s lo-
calization theorem shows easily that the top row is also a distinguished triangle.
By [23, Theorem 1.10] it follow that the middle and the right vertical arrows are
quasi-isomorphisms. So the left vertical arrow is also a quasi-isomorphism.

On the other hand, there is a commutative diagram of cycle complexes

B (Z'NU &) =W, o) =W\ 7', 0)
u*\L \Lv* \Lv* (7.3)
Z(ZNU, o) —=7TI(U, o) =TI \ Z, o).

In particular, there is a pull-back map u* : CH! (7', j) — CH!(Z, ) which is
induced by capping with the first Chern class ¢ (L£). Furthermore, it is immediate
that (7.2) and (7.3) are compatible with respect to the inclusions of open subsets
U; C U; in X'. By varying the open U’ C X, it follows that (7.2) and (7.3) form
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commutative diagrams of complexes of presheaves of Abelian groups on the small
Zariski site of X’.

It is shown in [37, Proposition 4.2.9] that there is a monomorphism of chain
complexes Yy @ CyZequi (U "i) — zd_i(U ’, ®) which is functorial with respect to
flat pull-back and proper push-forward. In particular, this induces a monomorphism
of complexes of presheaves of Abelian groups on the small Zariski site of X’. Note
here that by Cyzequi (U’ i), we mean Cyzequi (U, i) (Spec (k)). For any complex C
of presheaves of Abelian groups on the small Zariski site of X', we let C,,r denote
the sheafification of C.

We get a sequence of morphisms of complexes of Zariski sheaves

C*Zequi(_’ i) —_— Zd_i(—, 0)zar < - Z()i(_i(—, .)zar
ynx (74)
C*Zequi(_a i—Dlx - Zd_i(_’ ®)zar|X -

Note that Cyzequi (—, i) is already a complex of Zariski sheaves. All arrows except
the vertical one in this diagram are quasi-isomorphisms of complexes of Zariski
sheaves (see [37, Proposition 4.2.9]). It follows that there is a morphism v* :
CiZequi(—, 1) — CiZegui(—,i — 1)|x in the derived category of complexes of
Zariski sheaves and a commutative diagram

C*Zequi(_a Dz —— C*Zequi(_, Dlx —— C*Zequi(_’ i)lX’\Z/
o o (7.5)

C*Zequi(_s i— 1z _>C*Zequi(_, i —Dlx = C*Zequi(_vi - l)lX\Z'

It follows from (7.3) and (7.4) that the two rows in (7.5) are distinguished
triangles in the derived category of complexes of Zariski sheaves and the right
square commutes. We therefore obtain a morphism u* : CyzZegui(—, )|z —
CiZequi(—, 1 — 1)|z such that (7.5) commutes. Moreover, (7.4) implies that

C*Zeqm’(_» Dz — Zd_i_q(_, ®)zarlz/
) e (7.6)

CizZequi(— i — Dz = z9779(—, @) url 7

commutes.

It follows from [37, Proposition 4.2.9, Theorem 4.3.7] (see also [28, Theo-
rem 19.11]) that for any W € Smy, the Zariski hypercohomology of Cyzegui (—, i)|w
are the motivic cohomology groups of W. In particular, the commutative square of
hypercohomology groups induced by the right square in (7.5) is isomorphic to the
one induced on the motivic cohomology by the commutative diagram of motives

M(X\ Z) — M(X)

o) | (7.7)
MX'\ Z') = M(X').
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We conclude from (7.5) that the hypercohomology of Cizegui(—,i)lz and
CiZequi(—, 1)|z are the motivic cohomology groups of Mz (X") and Mz(X), re-
spectively. Moreover, the left vertical arrow in (7.6) is the one induced by the
canonical map u : Mz(X) — Mz (X"). We have thus shown the following.
Lemma 7.1. Given the commutative diagram (7.1), there are induced maps of
motives v : Mz(X) — Mz /(X') and cycle complexes u* : z'(Z', ¢) — z/(Z, ),
and a commutative diagram of associated hypercohomology groups

Hompw, (M7 (X'), Z(DIj1) —2> CHI=4(Z',2i — j)
| b (7.8)
Hompy, (Mz(X), Z(i)[j1) — 2= CHI~9(Z, 2i — j)

in which the horizontal arrows are isomorphisms.

7.2. Relation between Chow group and motivic cohomology

Let X be a smooth quasi-projective scheme of dimension d > 0 over k and let D C

X be an effective Cartier divisor. We let U = X \ D. We let Sy denote the double

of X along D (see Section 2.5). We have the inclusions U = Uy C X4 C Sy.
Letg > 1 be an integer and let Z C X be an integral cycle in z7(X|D, 0). The

modulus condition implies that Z C U. We consider the embeddings Z LN Uy =

Sx \ X— EAs Sx, where the composite map is a closed immersion. We therefore
have a sequence of maps

Hompm, a)(Mz(Uy), A(g)[2q]) = Hompwmk, a)(Mz(Sx), Al@)[2q])  (7.9)

. |

H?1(Sx, A(q)) — Hompwmk, a) (M (Sx), Alg)[29]).

We let Az : CHO(Z) A — H¥(Sx, A(q)) denote the composite of all arrows in
(7.9) and set Ax|p([Z]) = Az(1). We extend it linearly to define a group homo-

morphism Ax|p : z9(X|D,0) — H?(Sx, A(q)).
Lemma 7.2. The map Lx|p induces a group homomorphism
Jxip : CHY(X|D)n — H*(Sx, A(@))-

Proof. To prove the lemma, we consider the diagram

2(X|D, D z/(Ak A}, 0) — H1(Sy1 . A@))

1 1
= fxtp a4 (7.10)
29(X|D, 0) H%(Sx, Aq)).

AX|D




MOTIVIC SPECTRAL SEQUENCE FOR RELATIVE HOMOTOPY K-THEORY 441

To show that Ax|p kills the subgroup of cycles rationally equivalent to zero is
equivalent to showing that Ax|p o (8;‘ — 8(’)" ) = 0. It follows from [2, Proposition 2.3]
that S Al is canonically isomorphic to A}QX and the right vertical arrow in (7.10) is
induced by the inclusion ¢; : Sy — A_lgx fort =0, 1. It follows from the homotopy
invariance of the motivic cohomology that the right vertical arrow in (7.10) is zero.
Our assertion will therefore follow if we show that (7.10) commutes.

Let W € z9(X|D, 1) be an integral cycle which intersects the faces of A}(

properly and whose closure in IP% satisfies the modulus D. To show the commuta-
tivity of (7.10), it suffices to show that the diagram

& CH(Z)

1=

. |=
CH®(W)a CH(Wy)a
) . l;
Homp. a) (Mw (Al ), A@)[2g]) -~ Hompyie, o) (M, (U+). A(q)[2q))
) * iz (7.11)

Hompwi, o) (Mw (Ag, ), A(@)[2¢]) =~ Hompwma, a) (Mw, (Sx), A(g)[24])

} !

Hompige, o) (M (AL ), A@)[241) —-= Hompie,a) (M (Sx). A(@)[24])

=4 . l;

H*(Ag, . A(g) - H(Sx. A(g))

commutes for t = 0, 1, where {Z;, ---, Z,,} are the irreducible components of
W; = (W). Note that ] (1) is the cycle class of W; =9;([W]) in CH (W) A Z A",
The bottom three squares commute by the commutativity of the diagram

M(Sx) —= My, (Sx) <— My, (Uy)

ul o Ju (7.12)
M(AY ) = M (A ) < Mw(Aj ).

The top square commutes by Lemma 7.1. We conclude that (7.11) commutes and
this completes the proof. ]

Our main result on the relation between cycles with modulus and relative mo-
tivic cohomology is the following.

Theorem 7.3. Let k be a perfect field. Let X be a smooth quasi-projective scheme
of dimension d > 0 over k and let D C X be an effective Cartier divisor. Then the
following hold for every integer g > 0.
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(1) The map ,x|\p : z4(X|D,0) — H?1(Sx, A(q)) induces a map
dxp : CHY(X|D)x — H*(X|D, A()); (7.13)

(2) If D € Smy, then the inclusion z9(X|D, o) < z9(X, e) induces, for all i > 0,
a map _
Axip : CHY(X|D, i) — H*~(X|D, Z(q)). (7.14)

Proof. We have a commutative diagram with exact bottom row (see equation (4.7)
and Proposition 4.7):

CHY(X|D)

e l/\xw (7.15)
0> HX(X|D, A(q)) = H(Sx, A(q)) = HX (X, A(g)) = 0.

It is therefore enough to show that «* o Ax;p = 0. But this is clear from the
construction of Ax|p in (7.9) because M7z (X_) = 0 and the diagram

M(X_) = M(Sx) ~— M(U,)
I P (7.16)
Mz(X_) = Mz(Sx) < Mz(Uy)

commutes for any integral cycle Z € z9(X|D, 0). This proves (1).
We now prove (2). Using Theorem 5.6, it is enough to construct a map
CHY(X|D,i) — CHiVI (X|D, i). But this follows from the observation that

A, (XID, o) — 24 (X, 8) > (D, ) = 24,(X|D, o)[1]

is a distinguished triangle in the derived category of Abelian groups and the com-
posite map z9(X|D, e) — z%(X, o) — z9(D, e) is zero. Hence, the inclusion
29(X|D, o) z%,(X, o) factors through a map Ax|p : 24(X|D, ¢) — 24 (X|D, e)
in the derived category. In particular, it induces the desired map between the ho-
mology groups. O

7.3. Cycle class map for Chow groups with modulus

If the relative K-theory is to be described by higher Chow groups with modulus,
as conjectured, then there must exist a cycle class map from the higher O-cycles
with modulus to the relative higher K-groups. As a consequence of Corollary 6.4,
Theorem 7.3, and the weak equivalence of spectra K(X, D) — KH(X, D), it
follows immediately that this is indeed the case if D C X is a smooth divisor.

Corollary 7.4. Let k be a perfect field and let D C X be an inclusion of a smooth
divisor in Smy. Then there exists a cycle class map fori > 0:

cyci : CHYY (X|D, i) - K;(X, D).
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A cycle class map of the kind given in Corollary 7.4 was constructed in [1]. In that
construction, Binda uses a different definition for the Chow groups with modulus
compared to the ones described in Section 2.3. His modulus condition is stronger
and this allows him to prove the result when D is a simple normal crossing divi-
sor. A very general cycle class map for our definition of the Chow groups with
modulus is constructed in [14] (where D is allowed to be any Cartier divisor).
However, this construction exists only in the pro-setting where we need to con-
sider the pro-Abelian groups (CHY (X |mD, i )}m>1. The main point of the new
result Corollary 7.4 is that it shows that for smooth pairs, we do not need to go to
the pro-setting.

8. The isomorphism theorem

The goal of this section is to show that the comparison map Ax|p of Theorem 7.3 is
an isomorphism for 0-cycles on affine schemes. Our strategy for showing this is to
use the doubling trick once again and combine this with Theorem 2.5. Other crucial
ingredient is the Roitman torsion theorem of [21].

Throughout this section, we fix an algebraically closed field k. We also fix
a smooth quasi-projective scheme X of dimension d over k. We let D C X be
a smooth divisor. Let Sy = S(X, D) denote the double of X along D. We let
U=X\Dand Sy =V ' (U)=U,; UU_,where V : Sy — X is the fold map.

We first construct a comparison map for Sx. Let x € Sy be a closed point. We
let S = Spec (k(x)). Since t5 : § <> Sy is a local complete intersection (Ici), it
follows from [29, Definition 2.32, Theorem 2.33] that there is a push-forward map

tsx: 2 3 HY(S, A0)) — H?*A(Sx, Z(d)). Since (Sy, S) is a smooth pair, the
map t, is induced by the maps of motives

1

M(Sx) — Ms(Sx) < Ms(Sy) = M(S)(@)[2d]. (8.1)

We let ys, ([x]) = ts5+(1) € H 2d Sy, 7.(d)) and extend this construction linearly
to get a map

sy © 20(Sx) — H*(Sx, Z(a)). (8.2)

Lemma 8.1. The map ys, descends to a group homomorphism ys, : CHyo(Sx) —
H*(Sx, Z(d)) such that the diagram

cycsy
CHo(Sx) — Ko(Sx)
VSX\L y \LKSX (8'3)
cycs
H?4(Sy, 7(d)) — K Ho(Sx)

is commutative.
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Proof. By the moving lemma, we can write CHo(X) = Zo(U)/Ro(X/U), where
Ro(X/U) = Z9(U) N Ro(X) € Zop(X). We then have a diagram of split exact
sequences

*

P+x

0 ——> Zo(X|D) Z(Sx) ——> Zo(U) 0 (8.4)
0 — CHy(X| D) —2* > CHy(Sx) —— CHo(X) —0
|
)\.XlDl | YSx l)»x
Y o

P+

0= H*(X|D, Z(d)) = H*(Sx, Z(d)) = H* (X, Z(d)) = 0.

It is immediate from the definition of A x|p in (7.9) and ys, in (8.2) that all squares
in the outer diagram (ignoring the middle row) in (8.4) commute. Let o € Zy(Sx)
be such that it dies in CHg(Sx). We can uniquely write ¢ = pi4(a1) + V*(a2).
Since t* o V* is identity, we must have that &y € Ro(X|D) and ap € Ro(X/U) C
Zy(U). But then oy must die in H>¢(X|D, Z(d)) by Theorem 7.3(2), and hence it
must die in H%4(Sx, Z(d)). Similarly, o must die in H?*(X,7Z(d)). In particular,
we must have ys, (V*(a2)) = 0 in H?*(Sx, Z(d)). We conclude that ysy (@) =
Ysx (P+x(a1)) + Y54 (V*(ar2)) = 0. This proves the first part.

To show that (8.3) commutes, we choose a closed point x € Sy, set § =
Spec (k(x)) and consider the diagram

7 —> CHy(S) HO(S, Z(0)) (8.5)
Ko(S) t K Hy(S)
VSx
CHy(Sx) H?* (Sx, Z(d))
Ko(Sx) K Hy(Sx).

To show that the bottom face of this cube commutes, it suffices to show that its all
other faces commute. Now, the top and front face clearly commute and the left face
commutes by the definition of the cycle class map (see [2, Lemma 3.12]). The back
face commutes by definition of ys, . To show that the right face commutes, we can
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break it into a diagram

HO(S, Z(0)) = H3"(Sx, Z(d)) — H*(Sx, Z(d)) (8.6)

| | |

K Ho(S) —— K Hgj (Sx) — K Ho(Sx).

The left square clearly commutes and the right square commutes by Theorem 5.2
and Theorem 5.6. The lemma is now proven. O

The final result of this paper is the following comparison theorem for O-cycles.

Theorem 8.2. Let X be a smooth affine scheme of dimension d > 1 over an alge-
braically closed field k and let D C X be a smooth divisor. Then the map

Ax|p : CHo(X|D) — H*(X|D, Z(d))
is an isomorphism.

Proof. Since (X, D) is a smooth pair, the double Sy is a simple normal crossing
variety in the sense of [10, Section 2.1]. In particular, it follows from [10, Proposi-
tion 6.4] that ys, is surjective. We remark here that the surjectivity of yy is proven
in the above cited work for an arbitrary simple normal crossing variety V if we
work with A-coefficients (see the end of Section 2). However, it is an elementary
checking that the proof yields this surjectivity with integral coefficients if we let
V = Sx. We conclude from (8.4) that L x|p is surjective.

To show that Ax|p is injective, it suffices to show using (8.4) that ys, is injec-
tive. Using (8.3), it suffices to show that «g, o cycs, is injective. By [21, Corol-
lary 6.8], it suffices to show that kg, is injective.

Since excision holds for the K-theory of affine schemes in degrees up to zero
(see [2, Proposition 11.3]), and since it holds for K H-theory in all degrees [8], there
is a commutative diagram of exact sequences

K1(SY) —= K1(D) — Ko(Sx) — Ko(S¥) — Ko(D) (8.7)

oo

K H(SY) = K H((D) = K Hy(Sx) - K Ho(S}) = K Ho(D).

Since X and D are regular, all vertical arrows except possibly the middle one are
isomorphisms. It follows that middle vertical arrow is also an isomorphism. In
other words, ks, is in fact an isomorphism. This finishes the proof. O

Remark 8.3. The proof of Theorem 8.2 shows that A x|p is surjective even if X is
not affine.
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