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Level curve portraits of rational inner functions

KELLY BICKEL, JAMES ELDRED PASCOE AND ALAN SOLA

Abstract. We analyze the behavior of rational inner functions on the unit bidisk
near singularities on the distinguished boundary T2 using level sets. We show
that the unimodular level sets of a rational inner function ¢ can be parametrized
with analytic curves and connect the behavior of these analytic curves to that of

the zero set of ¢. We apply these results to obtain a detailed description of the fine

numerical stability of ¢: for instance, we show that g% and % always possess

the same LP-integrability on T2, and we obtain combinatorial relations between
intersection multiplicities at singularities and vanishing orders for branches of
level sets. We also present several new methods of constructing rational inner
functions that allow us to prescribe properties of their zero sets, unimodular level
sets, and singularities.

Mathematics Subject Classification (2010): 14H45 (primary); 14M99, 32A20,
32A40 (secondary).

1. Introduction and overview

1.1. Introduction

A rational function of a complex variable can be described in terms of its zeros
and poles, and the behavior of the function near these points is in principle easy to
capture in terms of their integer orders. The exact location and nature of the zeros
and poles of a one-variable rational function are decisive in many applications: for
instance, critical points and poles determine much of the dynamical properties of
a rational function in iteration theory, and the zeros and poles of rational functions
in one variable govern the stability of associated systems in control theory. This
latter fact, that the qualitative nature of a system is determined by the location of
zeros of polynomials defining an associated rational function, leads to the important

Research the first author is supported in part by National Science Foundation DMS grant
#1448846. The research of second author is supported by National Science Foundation Math-
ematical Science Postdoctoral Research Fellowship DMS 1606260.

Received April 25, 2018; accepted in revised form February 20, 2019.
Published online December 2020.



450 KELLY BICKEL, JAMES ELDRED PASCOE AND ALAN SOLA

notion of a stable polynomial, one that has all roots outside the unit disk (or the left
half-plane, depending on context).

When studying a rational function of several variables in a mathematical or
engineering context, one is again led to consider points where numerator and de-
nominator vanish, but now a new and subtle phenomenon manifests itself: simul-
taneous vanishing at a point does not necessarily lead to algebraic cancellation.
Nevertheless, it may still happen that the rational function retains some smoothness
and boundedness properties near a common zero of numerator and denominator,
and this then leads to a rich geometric structure at this point.

This paper is devoted to a detailed study of singularities of a certain important
class of rational functions in two variables. We work on the unit bidisk

D? ={(z1,22) € C*: |z1| < 1, |z2] < 1}

and are interested in zeros and singularities on the distinguished boundary of the
bidisk, which we identify with the two-torus T? = T x T, the Cartesian product of
two copies of the unit circle T = {z € C: |z| = 1}. The distinguished boundary
T? supports the maximum modulus principle for the bidisk, and is determining for
most of the function-theoretic questions we will address in this paper. A rational
inner function (RIF) on the bidisk is a rational function ¢ : D?> — C that is analytic
and bounded in D? and has |¢(¢)| = 1 for almost every ¢ € T2. Examples of such
functions are

3zim—zu1—22 22120 — 21 — 22

and —
3—z1—22 2—-71—22

the first one is smooth on the closed bidisk D2, but the second example exhibits what
is known as a “non-essential singularity of the second kind” at (1, 1): the function
has a non-tangential limit at (1, 1) but the vanishing polynomials 2z1z> — z1 — 22
and 2 — z1 — z do not share a common factor.

The numerators and denominators in these examples can be obtained from each
other by reflection in the unit circle. In fact, W. Rudin and E.L. Stout showed, [30]
and [28, Chapter 5], that all RIFs on the bidisk are of the form

; p(z1,22)
P (z1,22) = ¥z g ==,
p(z1,22)

where « is a real number, M and N are non-negative integers, p is a semi-stable
polynomial, and the polynomial

o 1 1
p(z1,22) =2\'25p (5 _—>

<2

is the reflection of p. The pair of integers (m, n) € N is referred to as the bidegree
of p and is given by the largest powers of z; and z; that appear in p. A polynomial
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p € Clz1, z2] is said to be semi-stable if it has no zeros in D?; it is stable (or
strictly stable) if it is non-vanishing on the closed bidisk. For simplicity, we usually
consider rational inner functions of the form ¢ = % in this paper; monomial factors
do not materially affect our conclusions.

The study of rational inner functions and semi-stable polynomials has a rich
tradition in complex analysis [5, 20, 22,24], operator theory [1,9-11, 16], alge-
braic geometry and combinatorics [3,4,31], and systems theory and engineer-
ing [7,17,23]. We refer the reader to references provided in these papers for
further work on these topics. Recently, Knese [21] initiated the study of L2(T?)-
integrability of rational functions of the form ¢/ p, where p is assumed semi-stable
but not necessarily strictly stable. In [12], the authors derived a concrete relation-
ship between the numerical stability of a rational inner function ¢, as measured by
the LP(T?)-integrability of a¢l and az , and “fine semi-stability” of its zero set,
captured by contact orders at a singularity. These measure how fast the zero set of
p approaches T? in relation to how the fast the zero set approaches the singularity,

if one variable is restricted to T. Informally, contact order can be defined for ¢ = £

as follows. Setting
Z;=|{ze€ C?: p(z) = 0},

we define the facial varieties
2y=2;n(DxT) and 22=2;n(TxD).

The z;-contact order of ¢ is given by the largest number K; such that there exists
a sequence {wy} C Z’ converging to a singular point T € ”]I‘2 of ¢ and a positive

constant C such that
dist(wg, T?) < C dist(wy, 7)™ Vk e N

(The precise definition of contact order is given in [12, Section 3] and Section 2
below.)

In this paper, we study the numerical stability of an RIF and the geometry of its
zero set via level curves of the RIF restricted to the two-torus. This approach allows
us to “visualize” the geometry of singularities of an RIF on T? in a concrete and
appealing way. More precisely, one of our main goals is to show how to divine “fine
semi-stability”, that is, compute contact orders and related quantities by examining
unimodular level curves

C.={ceT*: ¢@)=1}, for reT,

and how they come together at singularities of ¢ on the two-torus. We show that
such level curves are in fact smooth, in the sense that they can be parametrized by
analytic functions. From this fact we are able to derive many properties of ¢ at
its singularities, including for instance that its first partials enjoy the same LP(T?)-
integrability properties. Using smoothness of level curves together with certain
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embedding constructions, we are further able to apply our results concerning ratio-
nal inner functions to draw conclusions about how special varieties in C? intersect
the two-torus.

1.2. Overview

We proceed with an overview of the results contained in this paper: in what follows,
these results are stated in a non-technical way, with references to precise versions in
the body of the paper. Several of our theorems, which are valid for general rational
inner functions, can be illustrated by examining the simple rational inner function

22122 — 21 — 22
$(z1,2)=——F"""". (1.1)

2—-z1—22

The RIF ¢ has a single singularity at (1, 1) and a computation shows that ¢ (1, 1) =
1, in the sense of non-tangential limits. By solving —(2z1z20—z1—22) =2—21—22
we find that the level curve of ¢ corresponding to this value coincides with the union
of coordinate axes,

Ci(1, 1) = {(". Dyu {1, ™)},

and thus consists of smooth components with a transversal intersection. For A €
T\ {1}, the associated level curves of ¢ are smooth and are described by
1 - ﬂm
Co={@ v @):z1 €T}  where y*(z1) = —A——-,
1T
the reciprocal of a Mobius transformation of the disk. A plot of level curves, includ-
ing the value curve, is provided in Figure 1.1. Here, and throughout, we identify
the two-torus with (—m, w] x (—m, ] for computational purposes. Thus the point
(1,1) e T? corresponds to (0, 0) in our plots.
We now observe that all level curves pass through the singularity at (1, 1) in
the second and fourth quadrants, and any pair of level curves with the exception of
Cy(1, 1) touch to order 2 at the origin: that is, for any pair A, u € T \ {1},

[yt @) — v @) =< 11—z as z1— 1.

The first fact illustrates what was called a Horn Lemma in [12]: level curves of an
RIF are highly constrained in the way they pass through singularities. A precise
formulation is given in Lemma 2.12. We use the Horn Lemma to prove one of the
main results of our paper, namely that smoothness of unimodular level curves holds
for any RIF.

Theorem (2.8). The components of each unimodular level curve C,, of a rational
inner function ¢ can be parametrized by analytic functions.
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(a) A family of level curves (black), (b) Level curve C]“(l,l), corresponding
with value curve (grey). to the nontangential value ¢ (1, 1)=1.
Figure 1.1. Level curves for ¢ (z1, z2) = —(2z122 — 21 — 22)/(2 — 21 — 22).

The fact that we may have to resolve a level curve into components is illustrated
above by the splitting of C{ (1, 1) into horizontal and vertical axes.

In [12], the contact orders of the rational inner function (1.1) with respect to
both variables were computed, and were both found to be equal to 2. In this paper,
we show that contact order for a general RIF can be computed from unimodular
level curves.

Theorem (3.1). The zi-contact order of ¢ at a singularity T € T? is determined
by the maximal order of vanishing of 1//1-A - 1//? at t, where 71 = «pi" (z2) i =
l,....,m)andz; = tlf}’ (z2) (j = 1,..., n) are parametrizations of the branches of
unimodular level curves of ¢ for two generic values of u, v € T.

The precise meaning of “generic” in this context will be discussed later in the paper.

The rational inner function (1.1) is symmetric in z; and z,, and hence its z;-
and zp-contact orders have to be equal. Using the fact that contact order is witnessed
by unimodular level curves, we are able to prove that this, perhaps somewhat sur-
prisingly, is true for any RIF.

Theorem (4.1). The z1- and zp-contact orders of a rational inner function are
equal at each singularity.

This means that we can speak of the contact order /C; of an RIF at a singularity 7 €
T?. The global contact order K of ¢ is the maximum of K, over all singularities

t € T? of ¢. This, together with work in [12], then implies that the first partials %

and % of a rational inner function have the same LP-integrability properties.



454 KELLY BICKEL, JAMES ELDRED PASCOE AND ALAN SOLA

Theorem (2.6 and 4.3). For a rational inner function ¢ and for 1 < p < oo, we

have 5 . 9
_7 (T2 - had p (2
E)ZleL(‘]I‘)<:>K<p_1<:>8Z26L(’JI“).

In fact, we also establish a local LP-integrability version of this result.

1.3. Refined results for complicated singularities

The full strength of some of our results are best illustrated by considering more

complicated examples of RIFs. In fact, a secondary objective of our work is to

provide examples of RIFs ¢ = p/p that allow for detailed analysis while going

beyond the deg p = (n, 1) case, which is frequently easier to handle [11,12,27].
Consider the bidegree (2, 1) rational inner function

A3 -2 -3unm -+

$(z1,22) =

(12)
4-3zn-—n-u2+7z

which appears in [5] as an example of a function having a C-point at its singular-
ity at (1, 1); this entails ¢ having higher-order non-tangential regularity. We have

¢(1,1) = —1, and in [12, Section 4], it was shown that ¢ has contact orders equal
to 4 at its singularity.
These facts can again be seen by examining level sets. Setting p = — p yields

the equation
4z1z2 = D1 =1 =0

and thus, the level curve associated with the non-tangential value, which we call the

value curve, is
Cil(l’ 1) — {(1,6”2)} @] {(el'tl’e*l‘tl)}

again a union of smooth curves. By solving p = Ap for A € T for z;, we obtain a
parametrization of level lines by

4r=3rzi+ Azt + i+ 2

A
2=9"1) =
473 +Az1 —3z1+ A +1

, z1€T.

These smooth level curves are shown in Figure 1.2 and one can again check by hand
that generic level curves meet to order 4, as guaranteed by Theorem 3.1. Note that
the slanted cross also appears as the value curve for the rational inner function

22—z — 1
@(ZI»ZZ) = _—2,
2—-z122 — 2722

which was studied in [12, Section 12]. There, it was computed that this ¢ has
contact order K(1,1) = 2 and hence, a level curve alone does not determine contact
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(a) A family of level curves (black), (b) Value curve consisting of vertical
with value curve (grey). axis and anti-diagonal.

Figure 1.2. Level curves for the RIF in (1.2), exhibiting contact order equal to 4.

order of an RIF: we need at least two level curves. In fact, Theorem 3.1 allows
for one omitted value o € T, and we call the level curve corresponding to this
value the exceptional level curve. As we have seen in our examples, the value
curve associated to the non-tangential value at a singularity exhibits some special
features: frequently, the value curve coincides with the exceptional curve, but this
is not always the case, as we show by example in Section 7. Level curves that are
neither value curves nor exceptional curves will be called generic.

The two examples we have discussed so far have the special property that there
is only one branch of Z; coming in to the singularity. In general, however, several
branches of the zero set may come together, and these branches may individually
exhibit different contact orders. Similarly, level curves may consist of several com-
ponents. In Section 5, we analyze relations between branches of the zero set Z;
and branches of unimodular level curves.

Theorem (5.1). For a generic . € T, suppose C,,_ is parametrized by finitely many
functions 71 = 1,01}”, ces 21 = WI{ and Z5 has Lo branches coming into a singularity
on T?. Then L > Lg. Given two generic A, u € T, and possibly after reordering,
the contact order of a branch of Zj is at most the order of contact between two
matching level curves 71 = wi)‘(zg) and 71 = 1/fl-“ (22).

We conjecture that the converse statement is also true, so that we have a genuine
bijection between contact order of individual branches of Z; and components of
level curves.
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To illustrate this bijection, we consider the bidegree (4, 2) polynomial

P21, 22) =—32+382— 102343421 — 3221 20 +22125 — 3023 + 362722

(1.3)
—21122+1011 82112 6z112 6Zl+14ZIZ2 82112

and its reflection

P(z1,22) =—8+ 1425 — 623 — 621 — 82122 + 102123 — 227 + 362122

1 4 (14)

—3OZ122+2Z1 322122+34Z1Z2 1021 +38Z122 32Z1Z2
and set ¢ = p/p. This example can be obtained using a construction devised by
the second author in [27]; we provide a more detailed overview of this method in
Section 7.

The rational inner function ¢ has two singularities, at (1, 1) and (—1, 1) respec-
tively. Taking radial limits reveals that ¢ (1, 1) = 1 and ¢(—1, 1) = —1. A compu-
tation using computer algebra shows that the associated intersection multiplicities
(see Section 2 for a definition) are N1,1)(p, p) = 14 and N1 1)(p, p) = 2, so
that

16 = N(p, p) = Np2(p, p) = 14+ 2,

and hence p and p have no further common zeros in C x Co, by Bézout’s theorem.

At the level of zero sets, a single branch of Z5 comes in to (—1, 1) with contact
order 2. At (1, 1), on the other hand, two branches of Z; meet: one branch makes
contact with the torus to order 4, while the other has contact order 8. This can
be seen by solving p(z1,z2) = 0 for z; and z», respectively, and displaying the
moduli of the resulting roots as functions on the unit circle: the rate at which these
quantities approach 1 is how contact order was originally defined in [12]. There are
four branches on the left in Figure 1.3: one of these does not meet the torus. One
of them has 1 — —1 and corresponds to the point (—1, 1) where contact order is
2. The remaining two functions correspond to the branches meeting at (1, 1), one

Iz| 17,

302 1 1 2 3 2 3 2 1 1 2 3!
() Moduli of roots of p(z) = 0 as (b) Moduli of roots of j(z) = 0 as
functions of z; = ¢'? € T. functions of z; = ¢/l € T.

Figure 1.3. Solutions to p(z;, z2) = 0 on the unit circle for p in (1.4) .
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reaching 1 with order 4 and the other one with order 8. On the right, there are two
branches: one function takes on modulus 1 once only, to order 8, and the other takes
on modulus 1 twice, with order 4 and 2 respectively. Since global contact order is
defined as a maximum over branches, we have overall contact order 8 at (1, 1).

The same arrangement is visible in Figure 1.4, illustrating a bijection that ex-
ists between branches of zero sets and level curves of ¢, now consisting of multiple
components. Level curves trapped in the left-most horn at (1, 1) have order of con-
tact equal to 8, while level curves contained in the horn bounded by the vertical axis
have order of contact 4. We thus again obtain global contact order by maximizing
over orders of contact.

31
2L
10
R | I 2 3
1t
21
3t
(a) Level curves. (b) Value curves Ci“(], 1) (light grey)

and Cil (—1, 1) (grey).

Figure 1.4. Level curves for ¢ = p/p constructed from (1.3) and (1.4), an RIF with
two singularities and multiple zero set branches.

As is to be expected, intersection multiplicity and contact order at a singularity
are related, even if they are in general different, as the example above shows. For
instance, we prove the following result.

Proposition (4.5). The intersection multiplicity of Z, and Zj at a singularity T €

T2 of ¢ = p/p is bounded by the sum over pairwise minima of contact orders of
branches of Zj coming together at t.

In terms of applications, our results have ramifications for codistinguished varieties.
These varieties meet the closed bidisk along an infinite set in T2 and they arise as
zero sets of polynomials r with r = A7 for a constant A € T; Knese calls such
polynomials essentially T2-symmetric [19]. Codistinguished varieties and their dis-
tinguished relatives appear in connection with Riemann surfaces [29], multivariable
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operator theory and determinantal representations [2,19,25], interpolation [18], as
well as cyclicity problems for shift operators [8]. Note that the value curves of the
examples above can be seen to arise as Z, N T? for a codistinguished variety Z,.
We observe in Lemma 6.1 (as has Knese, viz. [19, Theorem 2.9]) that any curve
in T? of this form can be embedded as a level curve of an RIF, and since all such
curves are smooth, we then obtain

Corollary (6.2). For any codistinguished variety Z,, the set Z, N T? consists of
smooth components.

In the same section we also present a characterization of when two zero sets 2, and
Z, can be embedded as two different level curves of the same RIF.

1.4. Structure of the paper

We begin Section 2 by stating some preliminary results and collecting background
material including Puiseux series expansions, intersection multiplicities, the defini-
tion of contact order, and the Horn lemma, which describes approach regions for
unimodular level curves of an RIF near singularities. Then, we prove that unimod-
ular level curves of rational inner functions are made up of smooth components.
Section 3 is dedicated to proving that facial contact order at a singularity can be
read off by examining order of touching of generic unimodular level lines, a quan-
tity we call order of contact. This requires a careful analysis of Blaschke products
arising from fixing one variable and viewing an RIF as a one-variable inner function
in D, together with a variational argument. In Section 4, we prove that z;- and z;-
contact orders of an RIF ¢ = p/p at a singular point are always equal, and we relate
contact order to intersection multiplicity of Z, and Zj at a singularity. Section 5
is devoted to a finer analysis of contact orders and order of contact. We exhibit a
sophisticated generic mapping between branches of the zero set of the numerator
of an RIF and the components of level curves of the associated RIF. In Section 6
we present several different methods of constructing RIFs that allow us to prescribe
properties of their zero sets, level lines, and singularities. Further examples that
require more technical analysis or constructions from Section 6, or are related to
finer points of our proofs, are discussed in Section 7.
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2. Level sets near singularities

2.1. Preliminaries

Let ¢ be an RIF on D?. As was mentioned in the Introduction, by [28, Theorem
5.2.5],

p(z1, 22)
b (21, 22) = nz) 2y =22
p(z1, 22)

where p is a polynomial of bidegree (m, n) with no zeros in the bidisk, M and N

are non-negative integers, p(z1, 22) := 2|z} p(% é) is the reflection of p, and 5
is a unimodular constant. Without loss of generality, we can take p to be atoral,
so p has at most finitely many zeros on T2, see [3]. As shown in [21], p also has

no zeros on (D x T) U (T x D). As ¢ only has singularities at the zeros of p, it

can have at most finitely many singularities on ID? and these must all occur on T2.
A monomial term will have little impact on the behavior of ¢ near a singular point
and so, henceforth we will usually assume ¢ = % except in situations where the
full characterization of RIFs is needed.

Assume ¢ has a singularity at 7 = (71, 72) € T2. We will study the local
behavior of ¢ near such a singularity via two main objects:

1. The zero set of ¢. As |¢(z)] < 1 on D?, it follows that p(r1, ) =0 =
p(t1, 12). Thus,

Z5:={(z1,22) € C?: p(z1, 22) =0}

must have components passing through 7. In the first half of this preliminary
section, we will parametrize such components of Z; and precisely characterize
the ways in which they can approach t.

2. The unimodular level curves of ¢. For each A € T, define

L(¢) = {(z1.22) € C*: p(z1.22) = Ap(z1. ) }.

Then one can show (see Lemma 2.7) that the level curve Cy := L;(¢) N T?
contains t in its closure. In the second half of this preliminary section, we
obtain nice parametrizations of unimodular level curves and study how they pass
through 7.

There is a special level curve associated with a singularity T € T? of ¢. In [21,
Corollary 14.6] gives a specific Ao € T so that whenever (z,) € D? approaches
(11, T2) nontangentially, ¢ (z,) approaches Ag: this number Ay will be referred
to as the non-tangential value of ¢ at the singularity 7. We will call the level set
C;"O (1) the value curve of ¢ at T = (11, 10).

In what follows, we will study the local behavior of ¢ near a given singularity.
Thus, without loss of generality, we will often make the following assumption:

(Al) Letop= % be an RIF on D? with a singularity at (1, 1) and associated Ag=1.
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It should be noted that if ¢ has multiple singularities on the two-torus, then each
singularity has its own associated value curve. Away from its own singularity, a
value curve usually exhibits the same features as any other level curve. We shall
frequently denote the value curve by Ci"o when there is a unique singularity, or
when it is clear from the context which singularity we are considering.

2.2. Local zero set behavior

2.2.1. Parametrization

As in [12], we use Puiseux series to give local descriptions of Z;. To do this
rigorously, we will need to transfer the problem to the upper half plane IT via the
following conformal map and its inverse:

141 1—
B> D, fw) = —2 and D>, g2 =i |—2|. @)
1 —iw 1+z
Now let ¢ satisfy (A1) with deg p = (m, n) and define the polynomial
q(wi, wz) == (1 —iw)" (1 —iw2)" p (B(wr), B(w2)) . (22)

Then ¢(0,0) = p(1, 1) = 0. Moreover, as p and p possess no common factors, it
follows that ¢ (0, w») is not identically 0.

In [12, Remark 3] gives an open set i/ € C? containing (0, 0) where Z, can be
parameterized using Puiseux series. Specifically, all (wy, wp) € Z, NU are given

by the curves
€1 1
w1=\IJ?<w2Nl>,...,w1=\Ilg(w2NL>, (2.3)

where \If(l), ey \112 are power series that converge in a neighborhood of 0 each
having lIQ?(O) = 0, the L, Ny, ..., N are positive integers, and for wy # 0, each
1

term sz ¢ assumes N, separate values. Moreover, for wy sufficiently small, each
0(,,1/Ne
(W (wy" ™). wa) € 2. o
Now set each z; = B(w;). Then on an open set V 2 D2, we have p(z1, 22) =

0 if and only if g (wy, wy) = 0. Define V = g(U) N V. Then V € C2%is an open set
containing (1, 1) and all (z1, z2) in Z5 N} are of the form

=8 (\IJ? (ﬂ*(zz)fv*)) ez =B (\vﬁ (ﬂ—lmﬁ)) : (2.4)

1
By fixing the standard branches of each 8! (z2) ¥ with discontinuities on (—oo, 0],
we can alternately write Z; NV using Lo := Ni + --- + Ny formulas,

2 =90@)s ooes 2 =YY (22),
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1

where each ¥ (z2) = B(¥)(B7!(z2)™)) for some k. Then each v only has
discontinuities when zo = B(w;) with wy € (—o00, 0]. Note also that the branches
of Z; can only intersect a finite number of times near z, = 1 as the 1//5.) in (2.5) are
algebraic functions.

In summary, we have obtained the following: there is an open set V C C?
containing (1, 1) and a positive integer Lo such that the components of Z; NV can
be described by the formulas

2 =90@). oz = YR (), 2.5)

where the 1//? are obtained from convergent Puiseux series and have discontinuities
only when zo = B(wy) for wy € (—o0, 0], that is, on the lower half of the unit
circle.

Remark 2.1. It is worth pointing out that the discontinuity mentioned above is
somewhat artificial. It is a consequence of the fact that later we will need separate

formulas for each piece or curve of Zj. If instead, we studied the components of
Zj using the formulas in (2.4), everything would appear continuous.

2.2.2. Intersection multiplicity

If ¢ has a singularity at (1, 1), then both p and p must vanish at (1, 1), so (1, 1) is
an intersection point of Z, and Z;. The “amount” of intersection at a common zero
T of two polynomials p and ¢ is called the intersection multiplicity and is denoted

N(p.q).
In this situation, N1 1y(p, p) can be computed using the Puiseux series repre-

sentations of Z,, as detailed in [21, Appendix C], where g is the polynomial from

(2.2). In particular, transfer to I1 and factor ¢ = aq - - - g1, where « is a unit and
each gy is an irreducible Weierstrass polynomial in w; of degree Ny. Then define
q(wi, wy) = g(wy, wp), S0 ¢ = aq;---qr is a Weierstrass factorization of g.
Then the intersection multiplicity is:

L

Nay(p, §) = Nooy(@ D =YY Nooaj q,
i=1lk=1

where each N(,0)(q;, gk) is the order of vanishing of the resultant
Nj Ng L _ 1
fifj () -(6),
i=1¢=1

where ‘lf? and \IJ,? are from (2.3) and ¢ and 7 are primitive N;h and N,ﬁh roots

of unity respectively. The arguments in [21] also show that N 1)(p, p) is even.
Moreover if deg p = (m, n), then Bézout’s theorem for Co, x Coo implies

N(p,p):= Y Ne(p,p)=2mn,
‘EEZ!,QZI;
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and so in particular, the sum of the intersection multiplicities of common zeros of p
and p on T? is at most 2mn. See [13,15] for background and methods for computing
intersection multiplicity.

2.2.3. Local contact order

To see how Zﬁ approaches (1, 1), we require the following lemma. Here, and
throughout, we write f(x) &~ g(x) if C1g(x) < f(x) < Crg(x) for some constants
0 < Cq, Cy < oo when x tends to a limit.

Lemma 2.2. Assume ¢ satisfies (A1) in Section 2.1 and has branches of Zj given
by (2.5). Then for each branch z; = 1//? (z2), there is an even number IC; so that

1= 90| ~ 11— o, 2.6)

for all & € T sufficiently close to 1. The number /Cé is called the z1-contact order
of the branch z; = W?(Zz)' Furthermore if, 71 = 1//?(@) and 71 = 1//?(@) are
different branches of Z corresponding to the same \IJ,? from (2.4), then lCé = IC}.

Proof. Assume ¢ satisfies (Al) and let 71 = 1//? (z2) be abranch of Z5 from Section
2.2.1. We can find IQ as in (2.6) using the proof of [12, Theorem 3.3 ]. The basic
idea is to switch to I1% and define g as in (2.2). Then near (0, 0), Z, is described by
the power series formulas in (2.3). Let \IJ,? denote the power series that gives rise to
the specific branch z; = x/f? (z2) via (2.4) and a choice of branch. Then, as \IJ,? isa
convergent power series around 0 with \1119 (0) = 0, we can write

oo

W) = Zaikti,

i=l1

for 7 in a neighborhood E C C of 0. By [12, Theorem 3.2], ¢ +—> (\Il,g(t), tNk) 18
injective into C% \ C2 near (0, 0). Then Lemma C.3 in [21] implies that there is an

M > 0 and constants by, ..., byy—1 € R and byy € C with J(bapyy) > 0 so that
2M—1 ) [ee) )
‘-I’,?(t) = Z bithk +b2Ml‘2MNk + Z airt'.
i=1 i=2MN;+1

Then, following the arguments in the proof of [12, Theorem 3.3], one can show that
/Cé = 2M. This implies that IC; is even. Furthermore, this argument only depends

on 11119. Thus, it shows that if z; = w?(zz) and z; = w?(zz) are branches of Z;

1
corresponding to the same \Illg (but different branches of (B(z2) ™')™ ), then their
z1-contact orders are equal. O
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Remark 2.3. In Section 2.2.1, we could have instead described Z; by writing z»
in terms of z; like: . .
2=9G), ..., 2= 1ﬂ(}o(m)-

Then the z3-contact order of each branch zo = 1%) (z1) 1s an even number IC? SO
that

A~ ICZ
L= @ ~ 11 —al™,
for all ¢; € T sufficiently close to 1.

In [12], we studied a global notion of z;-contact order and used it to characterize
the integrability of RIF derivatives. This global quantity can be recovered from the
local quantities defined in Lemma 2.2.

Definition 2.4. Let ¢ = % be a rational inner function on D? with singularities

(7:11, 121), ...,.(rlj, 'czj) on T2, Foreach 1 < Jj < J, one can apply Lemma 2.2

to d)(rlj 21, tzj 72) to compute the contact order of the branches of Z; near each

(rlj , rzj ). Thenfor1 < j < J,let IC; ; ;. be the maximum z;-contact order of the
SR

branches of Zj; near (rlj , r2j ). Then IC(Ir is called the z1-contact order of ¢ at

JoJ
lsfz)

(rlj , tzj ) and the global z1-contact order of ¢ is given by

— | ;

K = max{lC(T{,sz) l=j= J}.
The quantity K agrees with the definition in [12]. We also define analogous z;-
contact orders.

In [12, Theorem 4.1], we used global contact order to characterize integrability
of derivatives of RIFs as follows:
Theorem 2.5. Let ¢ = % be an RIF on D?. Then for 1 < p < oo, % e H?(D?) if
and only if the z;-contact order of ¢ satisfies K; < ﬁ
A modification of the arguments in [12] connects local derivative integrability with
local contact order to yield the following:

Theorem 2.6. Let ¢ satisfy (A1) in Section 2.1. Then there is an open set Eq C T2
containing (1, 1) so that for 1 < p < oo, and for all open E C Eq containing

(1, 1), the integral
a9
// ‘8_@1’ $2)
E | 0%

. i 1
if and only lflcl(l,l) <1

p
ldglldga| < oo

Proof. As the proof is basically the same as that in [12], with a restricted set of
integration, we omit the details. O
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2.3. Unimodular level sets

Let¢p = % be an RIF on D?. Recall that for each » € T,

L) = {(m, 22) € C2: pz1. 22) = Ap(ar, zz)}

and Cy, := L, (¢) N T?. The connection between the singularities of ¢ and its uni-
modular level sets comes from a Hartogs principle via the Edge-of-the-Wedge The-
orem in [26]. Specifically, the following is an immediate corollary of [26, Corollary
1.7]:

Lemma 2.7. Assume ¢ = % is an RIF on D? with a singularity at (71, 12) € T2.
Then for each A € T, the set Cy, \ {(t1, 12)} contains (11, 12) in its closure.

In what follows, we examine the way that components of a given C, approach the
singular point (1, 1).
2.3.1. Smoothness

Near the singular point (1, 1), each level set £, (¢) is comprised of a union of
smooth curves. The precise result is:

Theorem 2.8. Let ¢ satisfy (Al) in Section 2.1 and fix p € T. Then there is a
positive integer L, power series W{l Yoy WILLM that converge in a neighborhood of

1, and an open set V < C? of (1, 1) such that the components of L w(@)NYV consists
of sets described by the formulas

2 =Y. =Y (), 2.7)

where w;f(l) =1forj=1,...,L, and, for at most one value of w, possibly a
straight line {7z, = 1}.

Remark 2.9. For A ¢ T, an RIF level set £, (¢) need not be smooth throughout
C?. The rational inner function

2282 -2 -2
P21, 72) = 22512
2—-21—-25

furnishes an example. We note that we have p(0,0) = 3—2(0, 0) = 87132(0, 0) =0.

The Puiseux parametrizations centered at O in this case are of the form
3/2

1/2 ) . 3/2 2
i1 = f(Zz ) = W =1z, +O(Zz>,

and thus, (0, 0) € Lo(¢) is a singular point that is not just a multiple point.
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As in the previous section, we will use Puiseux series to parametrize the compo-
nents of £, (¢) N V. This step is encoded in the following lemma:

Lemma 2.10. Let r be a polynomial in Clwy, wa] with r(0,0) = 0 and r(wy, 0)
not identically zero. Assume there is some neighborhood of U C C? of (0, 0) such
that Z, N (1'[2 U (—I1) ) NU = §. Then there are power series Wy, ...,V that
converge in a neighborhood of 0 and an open set U < C? containing (0, 0) such
that Z, NU is described by the formulas

= WVi(w2), ..., w1 = VL (w). (2.8)
Proof. In [12, Remark 3] gives positive integers L, N1, ..., N € N, power series
Wy, .. lIfL that converge near 0 and satisfy W,(0) = 0, and an open neighborhood

Uuc (C2 of (0, 0) such that Z, N is described by the formulas

€L L
wlz\l’l(szl),.. lIJL< L),

where each wz/ Nt is multi-valued. Fix ¢ with 1 < £ < L. To simplify notation,
define ¥ := \I’g and N := Ny. Then, there are a; € C so that for w € C near 0,

@(w) = iakwk.

We shall prove that a; can only be nonzero if & is a multiple of N. Fix a branch of
w% so that if ¢+ > 0, then t% = §n|t|% , where ¢, is a fixed N root of unity and
|t|% > (0. Then for ¢t > 0 near 0, we have

o0

00 o0

-~ 1 k k k

() =D argkul® =300 (agh) 0¥+ 305 (angh) 117
k=1 k=1 k=1

We claim that ‘Ts(akg,f) = 0 for each k € N. By way of contradiction, assume not

and let k be the smallest integer with S(a]; ;,f ) # 0. Then for ¢ > 0 but near 0, we
have

o~

S(B(V)) ~ 5 (agek) 1.
~, L
By continuity, we can certainly find a fp > 0 with S(\IJ (tON )) # 0. Without loss
1

~, L ~ L
of generality, assume i‘s(\l-' (tON )) > 0. As \IJ(wZN ) is continuous near fy, there must

_~ 1
exist a wy € C near o with I(wz2) > 0 and I(¥(w, )) > 0. By choosing 7

sufficiently close to 0, we can conclude that 7 has a zero in T2 N Z/{ a contradiction.
Thus, 3 (akgn) = 0 for each k € N and for all N roots of unity ¢1, ..., {x.

Next, we let 1, be a fixed N root of —1 and employ a similar argument to above,
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this time considering ¢ < 0, to conclude that also (aknﬁ) = 0 for each k and for
all N'" roots of —1.

These two facts together imply that each a; € R and if a; # 0, then k must be
a multiple of N. First, considering ¢, = 1, we obtain that J(ax) = 0. If a; # 0,
then we must have

s(;,f):s(#,;):o for n=0,...,N—1. 2.9)

Suppose N € N does not divide k, so that k = jN + r for some j € N and an
integer 0 < r < N — 1. Writing ¢, = ezn% and n, = e%JFZ”Tm, we obtain that for
n=0,...,N—1,

2minr

ck=e"w (2.10)

and

2minr

cs o wir | 2minr wir
Nk =T NN —de N TN (2.11)

Finally, we note that enTir is not real, and hence, one of (2.10) and (2.11) must have
a non-trivial imaginary part, which in turn contradicts (2.9).
In summary, whenever a; # 0, we can write k = jN for some j € N. This

implies
00 ) )
)=Zakw =Zal,-Nwé.
k=1 j=1

0
™ 2

B (w

Recalling the ¢-indices and defining Wy (w2) = Ziozl ajn, wg gives the formulas
in (2.8) and finishes the proof. O

Lemma 2.10 has implications about the Weierstrass factorizations of such poly-
nomials:

Lemma 2.11. Let r € Clw;, wz] be as in Lemma 2.10. Then each irreducible
Weierstrass polynomial in w in the Weierstrass factorization of v is linear in w.

Proof. As discussed in [12, Remark 3], one can factor r = Bry---rp, where 8 is a
unit and each r; is an irreducible Weierstrass polynomial in w1 . Then as in the proof
of [12, Theorem 3.2], each Puiseux series describing Z, originates as a description
of the zero set of an ry, and moreover, the denominator appearing in the fractional
power of the Puiseux series gives the degree of , in w;. In the case of Lemma 2.10,
the zero set components are given by analytic curves w; = W, (w2), which implies
that each degry, = 1 in w;. So, the polynomials in the Weierstrass factorization of
r are all linear in w. O

An application of Lemma 2.10 yields Theorem 2.8:
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Proof. Set p,(z) := p(z) — up(z). Then describing £, (¢) near (1, 1) is equivalent
to describing Zpﬂ near (1, ). Since ¢ is analytic and |¢| < 1 on D2, it is easy to

see that p,, has no zeros on D?UE?, where E = C \ﬁ is the exterior disk. Assume
deg p,, = (m, n) and define

gu(w) == (1 —iw)" (1 —iw2)" pu(B(w1), B(w2)). (2.12)

Since B(0) = 1, we have g, (0, 0) = 0 and since p and p share no common factors,
qu (w1, 0) # 0O for all but at most one u € T.

Suppose then that g, (wy, 0) # 0. iU c C?is an open set containing (0, 0)
that omits wy = —i and wy = —i, then Z,, N (H2 U (—1'[)2) NU = @. This means
Lemma 2.10 gives a positive integer L,,, power series W', ..., lIJ’L‘M that converge

in a neighborhood of 0, and an open set U C U of (0, 0) such that un NU is
described by the formulas

wi = Wi (w), ..., wy =V (w). (2.13)
To describe £, (¢), recall that
24, NU = {1, w2) € €2 py(Bwi). pwr) =0} 1.

Setting V = BU) and each ¥}’ = B o W) o 7!, we can switch variables via
z1 = B(wy) and zo = B(wy) to describe the components of £, (¢) NV with

21 =Y (22),....21 = lﬁfu(m),

as needed.
If g, (w1, 0) vanishes identically, then g, (w1, 0) is divisible by w», and then
tracing back we get a vertical component {zo = 1} in £, (). 0

2.3.2. Horn lemma

Assume ¢ satisfies (A1) and let & € T. Then Theorem 2.8 says the components
of L£,,(¢) near (1, 1) are smooth curves, given by (2.7), and at most one vertical
component. If we restrict attention to T? and consider C,, := £, (¢) N T2, these
smooth curves from (2.7) approach (1, 1) within specific geometric regions.

To simplify the geometry, we again perform our analysis on the upper half
plane IT and define

G = [ (x1,22) € B2 p(BGx1), Bx2)) = mp(B(), Bx) .

Then near (0, 0), we have 5M =Z; N R2, where qu is from (2.12). Near (0, 0),
we also know Z, is described by (2.13) and each \IJ(’; is a convergent power series
with real coefficients. Thus near (0, 0), C,, is similarly described by the equations

X1 = \I-'{L(xz), e, X1 = \Ilfu(xz). (2.14)
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We can slightly modify some ideas from [12] to show that the curves in (2.14)
approach (0, 0) in a specific way:

Lemma 2.12 (A Horn lemma). Let ¢ satisfy (Al) in Section 2.1 and fix u € T
with u # 1. Then for each \IJ; in (2.14), there is an my < 0 and by > 0 so that

X2 X2

pH I S 2.15
me + bexp = (x2) < mg — byxy ( )

for x3 € R sufficiently close to 0.
Proof. Fix £ and consider the curve z; = 1//21 (z0) restricted to T? from (2.7).

Change variables to I1? by defining each Xj = a(zj), where a(z) = z({%ﬁ) is
a conformal map from ID to IT. This gives a new curve

X = (O{ o I/Iél OO[_1> (X2)

in R? that approaches (00, 00). As i # 1, the arguments in [12, Proposition 5.4]
can be used to show that this curve approaches (co, co) within a “spoke region”
associated to a Pick function f defined using ¢.

Change variables again by defining each x; = y(x;), where y(w) = —
conformally maps IT to I1. This gives the curve of interest:

1
w

x1=(voaoyl oa oy ) () = (B oyl 0 B) (x2) = W (),

as in (2.14). Then the arguments in [12, Lemma 5.5] imply that this curve ap-
proaches (0, 0) within a “horn region” as shown below in Figure 2.1. This means

z1
z2
m—bxg

2

z2
m+bxa

1 =

Figure 2.1. A Horn Region near (0, 0).
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that there are constants my < 0 and by > 0 so that (2.15) holds for x, near 0. To
avoid a lengthy discussion of Pick functions and spoke regions, we omit further
details and refer the reader to [6,12]. ]

The Horn lemma has implications about the power series representations for
each function 1//5 from Theorem 2.8. Specifically:

Lemma 2.13. Let ¢ satisfy (Al). Then for . # 1, the power series representation
of each wf from (2.7) centered at 1 has a nonzero linear term.

Proof. Fix any w; from (2.7). Then w;‘ satisfies 1//5 =pBo \Ilé‘ o B!, for some
W, from (2.13). Denote the power series of W, centered at 0 by:

o0
I k
W, (w2) = E Arews.
k=1

Then Lemma 2.12 immediately implies that for x, € R near 0, we have |\Ilé‘ (x)| &~
|x2] and so a1p # 0. Equivalently, (\II;)/ (0) #0. As xﬁf = ,80\1150,6_1 , it follows

that (1//5 )/ (1) # 0. Thus, the power series representation of 1//5 centered at 1 has a
nonzero linear term. ]

2.3.3. Order of contact

Let ¢ satisfy (A1) in Section 2.1 and fix A, u € T. Excepting at most one yu, there
are components of £, (¢) and L, (¢), given by the analytic curves in (2.7), which
approach (1, 1). To analyze the relationship between the branches of £, (¢) and
L,.(¢) near (1, 1), we define the following:

Definition 2.14. Assume z; = v/ (z2) and z; = V2(z3) are analytic curves defined
in a neighborhood of z; = d with Y1 (d) = ¢ = yY»(d). Then, the order of contact
of 71 = ¥1(z2) and z1 = Y2 (z2) at the point (c, d) is the smallest positive integer
K with

¥1(z2) = ¥2(z2)| ~ |d — 22|",

for 75 near d. Equivalently, by examining the power series representations centered
at d, one can show that K is the smallest positive integer satisfying the derivative
condition:

@) # i @).

In particular, we will study the order of contact at (1, 1) between branches z; =
1/;1.)‘ (z2) and z; = wj*.‘ (z2) of L;(¢) and L, (¢) respectively. We further define

Definition 2.15. Let ¢ satisfy (Al) and fix A, u € T with A # . Then the z;-

order of contact between L, (¢) and L, (¢), denoted IC?{,MU’ is the maximum order

of contact at (1, 1) between any two branches z; = 1//1.A (z2) and 71 = w;‘ (z2) of
L) (¢) and L, (¢) from (2.7).



470 KELLY BICKEL, JAMES ELDRED PASCOE AND ALAN SOLA

Finally, we observe that order of contact is invariant under our typical change of
variables. Specifically, recall that each w; from Theorem 2.8 satisfies 1//2‘ =pfo

\Ilé‘ o ,8_1, where w; = \Df(wz) is a component of un from (2.13). Then the
order of contact at (0, 0) between each w; = \Ifik(wz) and w; = \117 (wy) must

equal the order of contact at (1, 1) between the associated curves z| = wik (z2) and
2=y ().

3. Contact order vs order of contact

In this section, we assume ¢ satisfies (A1) from Section 2.1 and then reconcile our
two competing notions of contact order. Specifically, we consider the the z;-contact
order of ¢ at (1, 1), which measures how the zero set of ¢ approaches (1, 1) and
the z1-order of contact between unimodular level curves of ¢, which measures the
amount of similarity between unimodular level curves of ¢ near (1, 1). Here is the
precise result:

Theorem 3.1. Let ¢ satisfy (Al). Then for every pair A, u € T, excluding at most
one o, the z1-contact order of ¢ at (1, 1) equals the z1-order of contact between
the unimodular level curves Ly (¢) and L, (¢) at (1, 1).

Definition 3.2. Let o denote the excluded value from Theorem 3.1. Then the level
set C,’fg is called the exceptional level curve at (1, 1). Level curves that are neither
value curves nor exceptional curves are called generic.

In many cases, we have o = Ag, so that the value curve and the exceptional curve
are one and the same. However, this is not always the case. In Example 7.3 we use
our methods for constructing RIFs with prescribed properties to exhibit an RIF with
an exceptional curve that does not coincide with the value curve.

To prove Theorem 3.1, we will require preliminary information about finite
Blaschke products and their behavior on arcs A C T.

3.1. Movements of Blaschke products

First, recall [12, Lemma 4.2]:

Lemma 3.3. Consider a finite Blaschke product b(z) := ]_['}:1 by;(2), with by ;(z) =
% for aj € D. Then the modulus of the derivative of b satisfies

: @), _\
b = — =
b©O1= 358 ;

b, (g)( forc €. G.1)

Given Lemma 3.3, the following definition makes sense:
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Definition 3.4. Let b(2) := [}_, bo,; (2). With be, () = 7=5 for@; € . Then
the movement of b is the measure up on T defined by

b'(C) / ,
A) = dc| = b d
11y (A) /Ab@)a | A| ©)|1d¢|

where |d¢| denotes Lebesgue measure on T.

(32)

b, (;)‘ ld¢|, for measurable A C T,

In what follows, we will need two ways to denote the length of arcs in T. First,
given a standard arc A C T, we let | A| denote the length, or Lebesgue measure, of
A. Similarly given an arc A that winds around T, we let |A]yy denote the length
of the curve taking the winding (or multiplicity) into account. For example, if b is
a finite Blaschke product with degb = n, then b(T) is a curve winding around the
torus n times, so |b(T)|yy = 27 n.

The following lemma details the needed properties of 1p:

Lemma 3.5. For each finite Blaschke product b, define iy as in (3.2). Then these
measures satisfy the following properties:

A. If by and by are finite Blaschke products and if A C T, then ppp,(A) =
Wb, (A) + pp, (A);

B. If Ais an arc in T, then up(A) = |b(A)|w. Specifically, if degb = n, then
wp(T) = 2mn;

C. For eacha € D and € > 0, there is an arc A¢ o C T centered at |Z—| such that

1. pp, (Aeq) > 2m —€;
ii. |A€,a| < ce(1 — |a|), where ce > 0 is a constant independent of «.

Proof. Property A follows immediately from the fact (implied by Lemma 3.3) that
|d%(b1b2)| = |b’1| + |b’2| on T. Property B follows from the Argument Principle.
To prove Property C, fix € > 0. Choose k > 0 large enough so that

k
4tan”! (5) > 2w — €.

Set ¢ = 4k. Choose a € D and without loss of generality, assume o = ¢ > 0.
Then we have two cases.

Case 1: If k(1 — 1) > %,then choose A¢; = T. This immediately gives:

Wp, (Acs) =2m > 2m — € and |A€J\ =21 <4k(l —1t) =ce(1 —1),

as needed.
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Case 2: If k(1 — 1) < %, then choose A, to be the arc in T with points et?
corresponding to 8 € [—(1 — t)k, (1 — t)k]. Then A, is centered at |§—| = 1 and
with ¢, as above,

|Act| =2kl —1) <cc(1—1).
Similarly, we can compute

k(1—1) 1 -2

A ) = by (O)||de| = T rr e 4 22
Hb,( e,t) /Ae,,| z(g)” §| /—k(l—t) 1—2tCOS@+t2

k k
ot ((z + 1)?12(1 —t))) R (tan(?(it—t)))

[k
> 4tan > > 2w — €,

where we used the fact that tan_l(x) is increasing and tanx > x for 0 < x <
z O
7

3.2. Proof of Theorem 3.1

To prove Theorem 3.1, we first show that for all A, u € T, excepting one g, there
is some pair of branches of £, (¢) and £, (¢) whose zj-order of contact at (1, 1) is
at least the z;-contact order of ¢ at (1, 1), denoted IC(IM). Specifically:

Theorem 3.6. Let ¢ satisfy (Al) in Section 2.1. Then, given any pair A, u € T,
excluding at most one g, there are branches of L, (¢) and L, (¢) whose zi-order
of contact at (1, 1) is at least IC(II -

Proof. By definition, there is at least one branch of Z; near (1, 1) whose z;-contact
order is IC(IM). Fix such a branch and call it z; = vo(z2), and fix any ¢ € T \ {1}
near 1. Then ¢¢ (z1) := ¢(z1, ¢) is a finite Blaschke product and ¢ (y0(¢), ¢) = 0.
Thus, the Blaschke factor by, () is a factor of ¢ .

Let (¢,) € T be a sequence converging to 1, with each ¢, # 1. Fix € > 0 and
for each n, let A7 := A¢ y,(¢,) denote the arc obtained from Lemma 3.5 applied to
¢¢, . Define the image multiset

1! :={¢p(r,5) : T € AL},

where points are counted according to multiplicity. Then as ¢, is continuous on T,
we know [ is an arc winding around T and by Lemma 3.5,

n

12|y = e, (AL) =ty ) (A > 2 — €,
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where ||y indicates the length of an arc winding around T Then each I/ contains
an arc, call it 7', composed of distinct points in T with length 27 —e. Let ¢, denote
the center of 7. By passing to a subsequence, we can assume that the sequence
(cu) converges to some ¢ € T. Let B denote the arc contained in T with center ¢
and length |B.| = 2w — 2¢. Then if we choose N sufficiently large, we will have
B C T forn> N.

Now, fix any A, u € B¢. We claim there are branches from (2.7) of the level
sets £, (¢) and L, (¢) whose order of contact at (1, 1) is at least IC(I1 .1)- By Theorem
2.8, the branches of £, (¢) (and similarly of £, (¢)) near (1, 1) are given by smooth
curves:

2 =91 (@), ... 21 = Y7 (22),

and possibly the straight line {zo = 1}. Then for n sufficiently large, A, u € T/
and so, there must be points t,, n, € A? with ¢ (1, &) = A and ¢(a, &) = K.
Since ¢, # 1, as long as n is large enough, there will also be indices i,, j, so
that 7, = 7 (¢n) and n, = Y4 (&), 50 Y (L), Yl (L) € A By passing to
a subsequence, we can assume that the points wl.); (&) and w;z (&) all come from

the same branches of £; (¢) and £, (¢) respectively, say from z; = wi’\ (z2) and
z1 = ¥} (z2). Then Lemma 3.5 implies

wlk(é.n) - W;L((n) =t — Ml < |AZ| <ce (1 = 1YoG)) = 1 — §n|lc(ll'l) ,

for n sufficiently large. Then, the smoothness of z; = 1//1.A (z2) and z; = wj*.‘ (z2)

implies that their z;-order of contact at (1, 1) is at least IC(lL 1y

Finally, we claim that for all u, A € T, except for possibly one wg € T, there
is an € > 0 so that u, A € Bc. First if for every u, A € T, there is a B¢ containing
i, A, we are done. So, assume there is some pair g, Ao € T with no common
B.. We will show that this cannot happen for any other . By assumption, each B,
must omit a small arc containing 1o or a small arc containing Ag. By switching pg
and Ao if necessary, we can find a sequence €,, — 0 such that each B, omits only
an interval of length 2¢,, containing wo. Then for every other pair p, A € T with
neither equal to o, there will be some €,, > 0 with u, A € B, as needed.

Thus, for each A, u € T, except possibly one 1, we can apply our earlier
arguments and obtain branches of £;(¢) and £, (¢) whose z;-order of contact at
(1, 1) is at least IC(IM). O

Now we show the converse:

Theorem 3.7. Let ¢ satisfy (Al). Then, given any pair A, u € T, the z1-order of

contact of L, (¢) and L,,(¢) at (1, 1) cannot exceed IC(ll’l).

Proof. By way of contradiction, assume there are branches z; = 1/fi)‘ (z2) and z; =
llff(zz) of £, (¢) and L, (¢) from (2.7) with order of contact K > ’Cél,l)' By
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Theorem 2.6, there is a neighborhood E C T2 of (1, 1) such that

P p
// ‘—¢(§1,§2)
E 021

if and only if p > —— + 1.
K
Define ® := ¢ o 8 and let w; = \Ill.’\(wz) and w; = \D?(wz) denote the
corresponding smooth level curves of ® near (0, 0), as given in (2.13). Then they
also have order of contact K at (0, 0). For x, sufficiently small and positive, say
0 < xp < a, we know that \IJI.A (x2) — \Ilj.‘ (x2) does not change sign. Then without

lde1lldga| = oo (3.3)

loss of generality, we can assume \IJl.A (xp) < \117 (x2) on [0, a]. Define

Q= {1, x2) : x2 € [0, and 3y € [W} (), W (x)] |

If we choose a sufficiently small, then arguments identical to those in the proof
of [12, Lemma 5.6] imply that if

dX1d)C2 = 00, then (4“1, $2) |d§1 [ld¢z| = o0

(xl , X2)

for 0 < p < co. Now we use variational arguments analogous to those in the proof
of [12, Proposition 5.7]. Specifically, fix x, € [0, a]. Then the Euler-Lagrange
equations can be used to show

p
V) | 50 b (W) (), x2) = DU} (1), 32)
! 9= J ! A~ 1vq [K(=D)
(x1,x2)| dxi = - m — ~ x| :
Wi(xy) | 0X1 W% (x2) — W (x2)[P
From this, we have
(xl x2) dxldXZ / I M 1P dxy = 00

if (1 —p) < —1 or equivalently p > % + 1. But, this implies (3.3) = oo for

p> % + 1, which is a strictly larger class of p than those satisfying p > ﬁ +1,
a contradiction. 4'

4. Equal contact orders

Throughout [12] and in Section 2 of this paper, we discussed both the z1- and z»-
contact orders of an RIF at a singularity. Perhaps surprisingly, the results of Section
3 show that these two quantities are equal.
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Theorem 4.1. Assume ¢ satisfies (Al). Then IC(IM) = ’C%l,l)‘

Proof. We first show IC%1 h = IC(ll - By Theorem 3.1, there are A, u € T and
branches z; = 1//,-A (z2) and z1 = w;f (z2) of the level sets £, (¢) and £, (¢) so that

1
@) — vl )| ~ fa — 150,

for zo near 1. By Theorem 2.8, wi’\ and W;L have power series expansions at 1 as
follows:

V@) =) arz— D and yl(z2) =) bz — D
k=1 k=1

By Lemma 2.13, we have aj, by # 0. Then by the Lagrange inversion formula, we
can write

- e — Dk
o= =Y am
k=1 :

k
N W = 1 dk! w— 1
where gi = lim
w1\ dw* =1\ Y w) — /(1)

as a convergent power series around z; = 1. A similar formula holds for z, =
-1 . .

(Iﬁj-l ) (z1), and so we obtain two alternate representations of these branches of

L;(¢) and L, (¢). Moreover, the Lagrange inversion formula implies that z, =

(wi}‘)_l(m) and zp = (l/f;-‘)_l(zl) have order of contact at (1, 1) at least ]Cél,l)‘

Then Theorem 3.1 implies that IC(lLl) < IC%M). A symmetric argument gives the

1

(1.1)2 38 needed. O

other inequality, so we have IC%U) =K
As the local and global z;- and z>-contact orders are always equal, we can

refine our previous definitions of contact order:

Definition 4.2. Let ¢ = g be an RIF on D? with a singularity at (t1, 72) on T2,

Define the contact order of ¢ at (z1, 12) to be

Kam) = K = K¢

(t1,72) (T1,72)°

where ! and K2 are defined in Definition 2.4 and shown to be equal in
(t1,72) (t1,72)

Theorem 4.1. Similarly, we can define the global contact order of ¢ to be:
K=K 1= K2

where K| and K> are the global z1- and z;-contact orders from Definition 2.4, which
are equal by Theorem 4.1.
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One surprising corollary of Theorem 4.1 is that the two partial derivatives of an RIF
always possess the same integrability near a singular point:

Corollary 4.3. Let ¢ satisfy (A1) from Section 2.1. Then there is an open set Ey C
T? containing (1, 1) so that for 1 < p < oo, and all open sets E C Eq containing

(1, 1), we have
0
// ‘—¢(§1,§2)
E 021

d
ifandonlyif// ‘a—d)((l,{z)
E | 022

p
|dgi1ldE| < oo

p
|d11dgz| < oo.

Proof. The proof follows immediately from Theorem 4.1 paired with Theo-
rem 2.6. u

We now have several natural numbers associated with a common zero of p and
p, namely contact orders of branches and intersection multiplicity. As we already
observed by example in the Introduction, the contact order X; is in general different
from intersection multiplicity N (p, p) at a singularity € T2.

We proceed to give a more precise description of the relationship between these
quantities, as well as the order of vanishing associated with branches of unimodular
level curves.

Lemma 44. Let generic v, u € T be distinct, assume ¢ satisfies (A1), and sup-
pose L, (¢) is parametrized by Yy, ..., %’ while L,(¢) is parametrized by
/2 1//ZV as in (2.7). Then

LM Lv

Nanp, p) =)y «l

i=1 j=1

where Kl-M }v denotes the order of contact of l/flfu and 1//1‘-’ at (1, 1) in the sense of
Definition 2.14.

Proof. As in the proof of Theorem 2.8, we consider
pu=p—pp and p,=p—vp

and g, and g, from (2.12). As we require that £, (¢) and £, (¢) be parametrized
as in (2.7), qu(w1,0) # 0 and g,(w1,0) # 0, and so satisfy the conditions of
Lemma 2.11. Then they each have a complete Weierstrass factorization, so that
modulo units
L“' LV
gu(wi,wy) = [T (wr =9 'w2)  and gy, wp) =[] (w1 — ) wo))

i=1 j=I

for some convergent power series \Ifl.” and \IJ; ,asin (2.13).
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Note that Ny (r,s) = N.(r,s + tr) for r,s,t € C[z], z2]. Using this, and
computing intersection multiplicity by switching to the upper half-plane, we obtain

Na,n(p, p) = Na,1(p — up, p — vp)
= Nw©,0)(qu, qv)
L# L,

=33 Noo (w1 Wty — \11]”.) .
1

i=1 j=

Each N ) (wi — ¥/, wj — W) is given by the order of vanishing of the resultant,
or in other words, by the order of vanishing of lIfl.“ — \Il‘;. Since order of contact is
invariant under our typical change of variables, the needed statement follows. [

Here is our main result concerning intersection multiplicity and contact order.

Proposition 4.5. Let ¢ satisfy (A1) and suppose V is an open set containing (1, 1)
such that Z5 NV is described by 71 = W?(Zz), A 1#20(12), as in Sec-
tion 2.2.1. Then

Lo Lo
Nan(p p) =y > min{K! K}

i=1 j=1
where the ICil ’s are the local contact orders of the branches 1//? ,i=1,..., Lo, at
(1, D).
Proof. As in Section 2.2.1 and the beginning of Section 2.2.2, we switch to the bi-
upper half-plane to obtain polynomials g and g, and functions wo qu that gen-
erate w?, e, wgo . As was explained in Section 2 and [21, Appendix C], the desired

intersection multiplicity can be computed from No,0)(¢. q) = Y _ 1.7 N©,0) qr1.97),
where each g; is an irreducible Weierstrass polynomial of degree N;, and each
N©,0)(q1, g ) is given by the order of vanishing of

i () 9(),

i=1¢=1
where ¢ and 7 are primitive roots of unity. Moreover, recall that Lo = N1+ --+Np.
Hence it suffices to establish that, for any fixed pair of indices (I, J) and choice of
.1 - e
i and ¢, the vanishing order of W0 (¢/¢¥) — W9(y‘t¥7) is at most min{KC}, KL }.
Without loss of generality, suppose IC} < ICb. As in Section 2, we have

2M—1 00
Wity =Y btN b MN N gl
Py k=2MN;+1



478 KELLY BICKEL, JAMES ELDRED PASCOE AND ALAN SOLA

where Nj is a positive integer, b{, e, béM—l are real, and X! = 2M. From [21,
Appendix C] we moreover know that J(b2y) > 0. A similar expansion, with
coefficients denoted by b7 , holds for \I-'g.

If, for some k < 2M — 1, we have b,ﬁ — b,{ # 0, it follows that the order of
L - €L
vanishing of W9 (¢t7) — W9 (»*+™7) is strictly smaller than K}, so that the de-
S
sired inequality holds. Suppose then that the real-coefficient terms in \II(I) ({’ t N1 ) —

- €L
\119 (nzt Ny ) cancel; we need to argue that we cannot have additional cancellation in
front of <1V ! and thus higher order of vanishing. But this now follows from the
definition of \D(J) and the fact that i‘s(bé ) 18 positive and ‘Ts(sz ) 18 non-negative:
either by, is real (if K} > K1), or else 3(b3,,) > 0 (if K} = K).

The proof is now complete. O

5. Fine contact order vs fine order of contact

In this section, we further examine the relationship between the contact order and
order of contact of an RIF at a singular point. In Section 3, we examined these
quantities at a fixed singularity. Now, we consider these quantities at the level of
branches or curves. Specifically, we will connect the contact order associated with
a specific branch of Z; with the order of contact between two particular branches
of the unimodular curves £, (¢) and L, (¢).

Assume ¢ satisfies (A1) from Section 2.1. To make sense of the main result,
recall that near (1, 1), the zero set Z; has L branches

2 =90@). oz =YY (),

as given in (2.5). Similarly, for i € T, the unimodular level curve £, (¢) is com-
prised of L, smooth curves

21 =Y (z2), ....21 = Wfﬂ(m),

as given by (2.7), and possibly a vertical component. Then here is the precise result:

Theorem 5.1. Let ¢ satisfy (Al). Then for almost every pair 1, u € T, we have
Ly, L, > Lo. Furthermore, after a reordering of the components of L;(¢) and
L, (¢) near (1, 1), the zi-contact order of z; = w?(m) at (1, 1) is at most the
order of contact between 71 = w; (z2) and 71 = 1//2A (zp)at (1, 1) for 1 <€ < Ly.

Proof. The proof is a more technical version of the proof of Theorem 3.6. As in
that proof, fix ¢ € T \ {1} near 1. Then ¢;(z1) := ¢(z1,¢) is a finite Blaschke

product and qb(w(?(g“), ) =0for1 < ¢ < Lg. For ¢ close enough to 1, the product
L ..
[1,2, byo (g divides ¢
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Fix € > 0 and let (¢,) < T be a sequence converging to 1 with each ¢, # 1.
Foreachn € Nand £ with 1 < £ < Ly, let AZG = Ae,l//?(g“n) denote the arc from
Lemma 3.5. Note that the sets AZ‘ £ =1,..., Loneed not be disjoint. By initially

reordering the components of Z; near (1, 1) and then passing to a subsequence, we
can assume

|Ar1l,e| = ‘ALOG

(5.1)

foralln € N. Define Cy/ . = Uz 1A} . and let Dy _ denote the connected component
of C” that contains A” Moreover let Ny ¢ denote the number of A" contained
in D" While techmcally, Ny ¢ depends on n, by passing to another subsequence

we can assume each Ny . is independent of n. Moreover, \DE é| <Ze- |A£ e| in view
of (5.1). Now define the image set

I = {p(x.tn) T € DZ’G}.

As ¢, is continuous on T, we know I _ is an arc that winds around T and by
Lemma 3.5,

l
|[Z€|W = Wy, (’D@,e) > Zﬂbwo(zn)(DZ,e) > Nﬁ,e - (2m —¢€).
i=1 !

Then each I}/ yields an arc 7. € T of distinct points with |7} | > 27 — Ny e -
so that for each A € T, E” o there are Ny occurrences of A in I, i . Using the same
arguments as in the proof of Theorem 3.6, we can pass to a subsequence and obtain
for each ¢ an arc By so that the length }Bg,€| = 2w — 2Ny - € and for all n
sufficiently large, By C Tg’f . Let Bc = NBy . Then B is a union of arcs in T
with

|Be| > 2w — 2(N1e + -+ -+ Npge)e.

Indeed, B can be obtained from T by omitting at most L intervals of length at
most 2(Ny ¢ + -+ N €.

Then for each A € B, n sufficiently large, and £ with 1 < ¢ < L, this
construction gives Ny ¢ distinct elements from £, (¢) in each D’g. To be specific,
the process is as follows:

1. AsX € TI”G,
large, we can choose 771 = w;‘l (;‘,1) for some j; with 1 < j; < Ly;
2. As A € Tz’fe, there is a 112 € D'z’e with gb(‘L’lz, Zn) = A. We can further choose

r12 # tll. Indeed, if ‘L’l IS Dg .» then A’f’ . C Dg’ . and so by construction,

there is a ‘[1 € D” with ¢(t11, Zn) = A. Aslong as n is sufficiently

there are two occurrences of A € I, ” 2 e Thus, we can choose 112 * rll. Then as
long as n is sufficiently large, we can choose 112 = 1//?2 (&) for some jp with
1 < j» < Ljyand ji # jo;

3. We can continue in this manner. For each £ with 1 < £ < Ly, we can identify a
point xﬁk (¢n) € Dy o, where jo # ji, ..., je-1.
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Now assume A, € Be. By reordering the components of £;(¢) and L, (¢)
and passing to a subsequence, we can further assume that our arguments give
wz‘({n), wg‘(g,,) € D’Z,e for each £ with 1 < £ < L and all n sufficiently large.
This immediately implies that Ly, L, > Lo.

Then we have 1//?({,1), 1//6“ (¢n) € Dy, for n sufficiently large. Fix ¢ with

1 < < Lgand let lCé denote the zj-contact order of z; = 1//?(@) at (1, 1). Then

[l Gn) — vl @) < |Dp | <€ |A7| Sce (1 — |w,9(;n>|) ~ce |l = &lF

for large enough n. By the smoothness of the branches, we know that the z;-order
of contact between z1 = M\({,,) and 7] = Wf(g) at (1, 1) is at least IC%.

Finally, we claim that for almost every pair p, A € T, there is an € > 0 so
that w, A € Be. In particular, proceeding towards a contradiction, let L = Lo + 1
and assume there are pairs Ay, i1, ..., AL, UL, such that each pair X;, u; is not in
a common B, and every A; # A; and u; # 1. Fix a sequence (e,) of positive
numbers converging to 0. By passing to a subsequence and switching any A; with
w; if necessary, we can assume that each B, omits every u, ..., ir. Recall that
each B, can be obtained from T by omitting at most Lo intervals of length at
most 2(N1,e,, + -+ + Nrg.e,)€m- Thus, as every u; # uj,if we choose €, > 0
sufficiently small, B,, can omit at most Lo of i1, ..., i1, a contradiction.

Thus, for almost every pair u, A € T, there is an € > 0 so that u, A € Be.
Then our previous arguments imply that, up to reordering, the z;-order of contact
between z; = 1//@A (z2) and z; = w;“ (z2) at (1, 1) is at least the zj-contact order of

21 =¥Q(z2) at (1, 1) for 1 < £ < Ly. O

We conjecture that the following refined result is also true:
Conjecture 5.2. Let ¢ satisfy (Al) in Section 2.1. Then for almost every pair
A,u € T, wehave Ly = Lo = L. Furthermore, after a reordering of the compo-
nents of £, (¢) and L, (¢) near (1, 1), the contact order of z; = W?(zz) at (1, 1)

will equal the order of contact between z; = ¥} (z2) and z; = ¥} (z2) at (1, 1) for
1<¢<Ly.

6. Constructions of rational inner functions

We now present several methods of constructing RIFs with desired level set behav-
ior.

6.1. One prescribed level set

For our initial construction, we consider functions similar to those studied in [19]
and use them to construct RIFs with one prescribed unimodular level set. A poly-
nomial r € C[z, z2] is called essentially Tz-symmetric if 7 = Ar for some uni-
modular constant A (cf. [19, page 5638]).
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As was mentioned in the Introduction, the following result is essentially con-
tained in [19, Theorem 2.9].

Theorem 6.1. Letr € C[zy, z2] be non-constant and essentially ']Tz-symmetric, say
F = Ar, with no zeros on D?. Then there is an RIF ¢ on D? such that L (¢p) = Z,.

Proof. Fix such an r and define the polynomial

- or ar
p(z1,22) = 21— (21, 22) + 22—2(21, 22).

311 9z
Define p = p: Then we claim ¢ := —% is an RIF on D? and £;(¢) = Z,. By

construction, it is immediate that |¢| = 1 on T? and ¢ is rational. To see that ¢ has
no singularities in D2, fix t with0 < ¢ < 1 and set r¢+(z1, 22) := r(zit, zot). Then

r does not vanish on D? and so each f; := :—: is a non-constant RIF continuous on

D2. This means that for each t, we can also define another RIF on D? by

fi(z1,z2) — f1(0,0)

¢1(z1,22) == ] — £,(0,0) fi(z1, 22)

A simple application of L’Hopital’s Rule implies that for each (z1, z2) € D?,

¢ (z1,22) Z}i/rr}qﬁz(m,zz).

This implies ¢ cannot have any singularities in D?. Thus, ¢ is an RIF. Lastly if
deg p = (m,n), then a simple computation gives Ap + p = r(m + n). Thus
L, (¢p) = Z,, as needed. O

We call a zero variety Z, associated to an essentially T2-symmetric polynomial
r € C[z1, z2] that does not vanish in the bidisk a codistinguished variety. Theorem
2.8 now immediately yields:

Corollary 6.2. Codistinguished varieties intersect T? along smooth curves.

This observation can be used to simplify the proof of [8, Theorem 5.2].

6.2. Gluing two level sets

Given an RIF, we can also construct a new RIF with a unimodular level set obtained
by “gluing” together two unimodular level sets from the original RIF. Specifically:

Corollary 6.3. Let ¢ = % be a non-constant RIF on D?. Then there is an RIF ®
on D? such that L1(®) = Li(¢) U L_; ().
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Proof. Let ¢ = % be an RIF on D? and define

r(z1,22) i= (p(z1, 22))* + (P(z1, 22))°. (6.1)

Then r satisfies the conditions of Theorem 6.1. Thus, if we set

~ ar or
P(z1,22) = 21— (21, 22) + 22— (21, 22),
071 9072

and reflect to obtain P, the RIF & = —%; satisfies £1(®) = Z,. Finally, the identity
(p+ip)(p —ip) = p* + p? shows that Z, = L;(¢) U L_;(¢), as needed. O

6.3. Interlacing constructions

In Theorem 6.1, we showed that if » = 7 is non-constant and Z, N D? = ¢,
then there is an RIF ¢ with £;(¢) = Z,. In this section, we obtain necessary and
sufficient conditions to specify two unimodular level curves of an RIF. In particular,
we will answer the following question:

Given r,q € C[z1,22], when is there an RIF ¢ with £1(¢)=2Z, and L_;(¢)=Z,?

To simplify the problem, we will switch to the bi-upper half plane IT%. In particular,
recall the conformal map g : I1 — D from (2.1) that satisfies f(0) = 1 and
B(co) = —1. The needed formulas are S(w) = {fﬁ and B~ 1(2) = zﬁ Further
recall that & is a rational real Pick function (RRPF) on IT? if & : 1> — II is
a rational function with no poles on I1? satisfying Im(®(x)) = O for ae. x =
(x 1, xz) € Rz.

Given r,q € Clz1, z2] with degr = (m,n) = deggq, define the following
polynomials:

R(w) := (1 —iwy)"(1 —iw2)"r(B(w)) and
O(w) := (1 —iw)™" (1 —iwp)"q(B(w)).

Here, r(B(w)) is shorthand for r(8(w;), B(w>)), and this notation will be used
throughout the following proof. Then we have the following lemma:

(6.2)

Lemma 6.4. Let r,q € C[z1, z2] with no common factors and degr = (m,n) =
deg g. Then there is an RIF ¢ on D?* with deg ¢ = (m, n) so that L(¢) = 2, and
L_1(p) = Z, if and only if there is a nonzero constant ¢ such that ® := cg isa

RRPF on 2.

Proof. (=) Assume there exists a rational inner ¢ with deg¢p = (m, n) so that
Li(¢) = Z, and L_1(¢p) = Z,. We can write ¢ (z) = b(z)g(z) for b(z) a mono-
mial and p, p with no common factors. This implies that there are nonzero con-
stants ¢y, ¢ such that

r(z) =c1 (p(z) = b(2)p(z)) and q(z) = c2 (p(z) +b(2)p(2)) .
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Define the rational real Pick function ® := 87! 0 ¢ o 8. Then

L (1-¢ ;2 R(w)
<1>(w>—z(—1 N ¢>(ﬁ(w)) (ﬁ( ) =iy

as needed.
(<) Similarly, assume that there is a nonzero constant ¢ so that ® := cg isa

RRPF on IT12. Setting ¢ = B o ® o ! and working through the definitions gives

P(2) = (Q—iCR) ('3 (z )) q(z) —lC?’(Z)

Then £(¢) = Z, and L_1(¢) = Z,. Since g and r have no common factors and

satisfy degr = (m, n) = degq, we can conclude deg ¢ = (m, n) as well. O
By Lemma 6.4, we only need to characterize when a rational function ® := cg

is a RRPF on I12. First, we consider the one-variable situation. The following result
is likely well known but we include its proof for completeness.

Lemma 6.5. Let R, QO € C[z] be nontrivial wzth no common zeros and let C be
the ratio of their leading coefficients. Then ® := Q is a rational real Pick function
on T if and only if R and Q have only real zeros, say ai,..., a, and by, ..., by
respectively satisfying n — 1 < m < n + 1 so that if the zeros were listed in
increasing order, then:

G) Ifm=n—1,thenC <0and by <a; <by <--- <ap—1 <by;
(i1) If m = n, then either

(@) C <0anda; <by <---<ay < by;
(b) C>0andb; <a; < - < by, <ay;

(i) Ifm =n—+ 1, then C > 0 and a; <b1 <ay <---<by, <aptr.

Proof. Recall [14, page 19] that ® = 1s a rational real Pick function if and only
if

CID(w)_Sw—i-y—i—Zw o (6.3)

for some § > 0, y € R and each r; < 0. As part of this formula, the poles
b1, ..., b, are real and distinct. Observe that if ® satisfies (6.3), then the number of
zeros m < n + 1. We will find necessary and sufficient conditions for ® to satisfy
(6.3).

(=) Assume & satisfies (6.3). By assumption we can write

ﬁ (w—aj)
=1

d(w) =C2 (6.4)

n

[Tw—b)

i=1
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Looking at (6.3),we can conclude that the coefficients of the numerator C ]_[';1: 1 (w—

a ;) must be real. This means that its zeros must be real or occur in complex conju-

gate pairs. Since none of the zeros can occur in IT, all of the zeros must be real.
Now observe that each ry = (®(w)(w — b)) y=p, and so

sgn(re) = sgn(C) [ [ senbx —aj) [ [ — bo). 65)
j=1 i#k

To ensure the ry all have the same sign (negative), we need an odd number of zeros
between each two consecutive poles. This implies that ® has at least n — 1 zeros.
Thus, we can conclude that n — 1 < m < n + 1. Consider each case:

Case 1: Assume m = n — 1. Then by our previous observation, there is one zero
between each pair of consecutive poles. This implies that b; < a; < by < -+ <
a,—1 < b,. Then (6.5) becomes

sgn(ry) = sgn(C)(—1)"*(=1)"* = sgn(C) <0,

andso C < 0.

Case 2: Assume m = n. If m = n it is not possible to have three zeros between
any two consecutive poles. Thus, there must be exactly one zero between each pair
of consecutive poles, which implies the zero and pole configuration must be either

ag<bi<a<---<a,<b, or by <ay <by<---<b, <ay.

If the first configuration occurs, then each ry = sgn(C)(—l)”*k(—l)"*k = sgn(C)
and so, we must have C < 0. Similarly, if the second configuration occurs, then
each r; = sgn(C)(—1)""K(—=1)""%*1 = —sgn(C), and so we must have C > 0.

Case 3: Assume m = n + 1. Observe that in this case, § = C. Since § > 0,
we automatically get C > 0. Let M denote the number of zeros larger than b;.
Because we need an odd number of zeros between consecutive poles, we know
n—1<M<n+1.Then

sgn(ry) = [ [ sentbr —a)) [ [b1 — bi) = (=DM (=1)"".

j=1 i#1

As r; < 0, we must have M = n. This immediately implies that the zeros must
satisfy
ay <by <---<ay, <b, <apt.

Thus, a rational real Pick function must satisfy the given conditions.

(<) Assume © = g,where R and Q have only real zeros, say ay,.. ., a, and
b1, ..., by, respectively, satisfying n — 1 < m < n + 1 and either (i), (ii), or (iii).
We must show that @ satisfies (6.3). Using its partial fraction decomposition, we
can write @ in the form (6.3); thus, we just need to verify that § > 0, y € R, and
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each r; < 0. First, observe that in cases (i) and (ii), 6 is automatically zero, since
deg R < deg Q. Similarly, in case (iii), § = C > 0. Similarly, in each case, (6.5)
paired with the appropriate zero configuration and sgn(C) implies that each r; < 0.
Finally, given the other coefficients, if y ¢ R, then for x € R with x # b;, we have
®(x) € R. But formula (6.4) implies that such ®(x) € R, a contradiction. O

Remark 6.6. It was pointed out to us by an anonymous referee that Lemma 6.5 is
closely related to the Hermite-Biehler theorem, see for instance [31, page 57], and
that it should be possible to give a shorter proof Lemma 6.5 using that result.

We can use this result to classify when a ratio of polynomials yields a rational
real Pick function in two variables. First for any two-variable R € Clw;, ws],
we will define one variable polynomials as follows. Fix x = (x1,x2) € R? and
y=1,»m) € R%r. Then R, y denotes the one-variable polynomial

Ry y(w) := P(x1 + y1w, x2 + yw). (6.6)
Given these slices, we have the following result:

Theorem 6.7. Let R, Q € Clwy, w;] be nontrivial with no common factors. For
eachx € R?and y € ]R%L, let Ry y and Qy y denote the associated one-variable
polynomials as in (6.6), and let Cy , denote the ratio of their leading coefficients.
Then ® = % is a two-variable rational real Pick function if and only if, after
canceling common factors, Ry y, Ox.y, and Cy y satisfy one of (1), (ii), or (iii) from

2 2
Lemma 6.5 for all x € R” and y € R%..

Proof. (=) Assume & is a two-variable rational real Pick function. Fix any x € R?
. Rey - .
and y € R%r. Then after canceling common real zeros, ®, , = f is rational,
X,y

maps IT — TII and except at the zeros of Q, y, maps R to R. Thus, &, , is a
one variable rational real Pick function and so after canceling common real zeros,
Lemma 6.5 implies that Ry y, Oy y,and Cy y satisfy one of (i), (ii), or (iii).

(<) Clearly ® = 5 is rational. Fix any (wp, wp) € I12. Then there is some

x € R?,y e R2,and w € IT so that

(w1, wz) = (X1 + y1w, x2 + y2w).

Py y

By assumption, after canceling common real factors, is a one-variable rational

X,y

real Pick function. This implies that Q(w, w») is non-zero and moreover,

R(wy, w) . Rx,y(w)

= e IT,
O(wi, w2)  Qxy(w)

P (wy, wo) =

as needed. Thus, ® is analytic and maps I1% into I1. Now fix any x € R? that is not
a zero of Q. Then, for any y € R2,

Ry,y(0)

CD y =
(x1, x2) 0,0

€ R,
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by assumption. This implies that ® sends R? to R almost everywhere and so, is a
rational real Pick function of two variables. O

Returning to the original question, let r, ¢ € C[z], z2] with no common factors
and degr = (m, n) = degq and define R and Q as in (6.2). Then by Lemma 6 .4,
there is an RIF ¢ on D? with deg ¢ = (m, n) so that £ (¢) = Z, and L_;(¢) = Z,
if and only if there is a nonzero constant ¢ such that ¢ := cg satisfies the conditions
of Theorem 6.7.

Intuitively speaking, Theorem 6.7 asserts that if along every conformal line we
have an interlacing of zeros, then there is an RIF having the desired level curves.

7. A zoo of rational inner functions

We further illustrate the findings in this paper by examining several examples in
detail.

7.1. Contact order and intersection multiplicity are different

We give a minimal example showing that contact order and intersection multiplic-
ity are different in general. This example is obtained by applying the embedding
construction described in Theorem 6.1.

Consider the polynomial 7 (z;, z2) = (1 — z1)(1 — z2)(1 — z1z2) and set

ar ar

p(z1, 22) = 21— (21, 22) + 22— (21, 22)-
071 022

Forming p from p by reflecting, and setting ¢ = —p/p, we obtain the RIF

22+2z1 — 3Z%Zl - 3zzzﬁ + 4z%z%
4—-3z1 =322+ z%zl + 222%

$(z1,22) = — (7.1)

which has bidegree (2, 2), and a singularity at (1, 1) with non-tangential value
¢o(1,1) =—1.

A careful analysis shows that p and p have a common zero at (1, 1) and ad-
ditional common zeros at (0, co) and (0o, 0). We now compute intersection mul-
tiplicities as in Bézout’s theorem, using that we only have one singularity on T2.
This yields

8=N(p, p)=Np(p, p) + N©,00)(P> P) + N(co,0)(P, P)=N,1)(p, p)+1+1,

and we therefore have intersection multiplicity N 1)(p, p) = 6.

Level lines of ¢ are displayed in Figure 7.1. By Theorem 6.1, the fact that
the function in (7.1) was obtained from the embedding construction implies that its
value curve is given by

ey = (. D} U (1)) U (e ),
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(a) Level curves (black) with value (b) Value curve bisecting second and
curve (grey). fourth quadrants.

Figure 7.1. Level curves for (7.1), an RIF witnessing that contact order and intersection
multiplicity are different.

We now have two branches of the zero set of p coming together at (1, 1), each with
contact order equal to 2 as can be verified directly by parametrizing the zero set
p(z) = 0 in terms of

1 =32 — (z — /14221 + 927

0
2=y (z1) =
Vit 2321 — 422)
and
. 1 =3z + (z — y/1 4221 + 927
2=Y,(z1) =

2(3z1 — 4z3)
and examining these functions as T 3 z; — 1, see Figure 7.2. Thus
6 = Nu,1y(p, p) # K1) =2,

as claimed, and N(1,1)(p, p) <2+2-242 = 8, as guaranteed by Proposition 4.5.

Since we must have intersection multiplicity at least 6 in order for N, (p, p)
and C;(¢) to differ at a point € T?, this example is minimal in the sense of
having lowest degree possible.

7.2. Value curves with tangential contact

The next example shows that value curves need not meet transversally at a singular-
ity; we obtain it using the gluing construction in Section 6, starting with the function
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Iz,

1 1 1‘]
-3 -2 -1 1 2 3

Figure 7.2. Moduli of roots of p(z) = 0, where p is the numerator in (7.1), as functions
of 71 = €' e T.

(2z1z2 — 21 — 22)/(2 — z1 — z2). To this end, set p(z1, z2) = 2 — 21 — 22, consider
r(z1,22) = (p(z1, 22))* + (p(z1, 22))?, and let

- or or
P(z1,22) = 21— (21, 22) -I-zza 2(21, 22).

021 022
Reflecting to obtain P, we arrive at the RIF

47323 = 32125 =3+ 2un+ B +d —u -2

4 —3z1 425 — 322+ 22122 — 2322 + 25 — 2123

¢(z1,22) = (7.2)

This RIF has a singularity at (1, 1) and we compute that ¢ (1, 1) = 1.

This is illustrated in Figure 7.3. By construction, the value curve of ¢ has two
components, parametrized by reciprocals of two Mobius transformations, namely
we have

1+i

— 521 1—EZ1

. ) 1 » . .

2= wl(ZI) =l—1 and zp =1 l(Zl) = _1714_1.'
=7z 1=

These two curves now exhibit order 2 tangential contact at (1, 1), as is guaranteed
by Corollary 6.3 and the discussion of level curves of (22122 —21—22)/(2—21—22)
in Section 1.

A computation using computer algebra reveals that the intersection multiplicity
of p and p at (1, 1) is equal to 4, and hence the contact order is equal to 4 also. We
note that p and p have four further common zeros off TZ, as has to be the case in
view of Bézout’s theorem.

Another fact illustrated by this example is that while every unimodular level
curve C; passes through every singularity of ¢ on T2, it is not necessarily the case
that every component of a level curve does: there is a pair of components in Figure
7.3 (marked with “x”’) that do not.
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3L
2L
1L
3 2 1 12 3
1L
20
30
(a) Level curves (black) with value curve (b) Value curve having two compo-
(grey). nents making contact at the origin.

Figure 7.3. Level curves for (7.2), an RIF whose value curve exhibit tangential touch-
ing.

7.3. Exceptional curves that are not value curves

We now exhibit an RIF whose exceptional level curve C;z does not coincide with a
value curve.
Consider the RIF ¢ = p/p with

p(z1,22) =8 — 1022 + 523 — Z2 1021 + 102122 — 52123 73)

+an+528 —530n+285 -3+ 8
and

p(z1,22) =23 — 25 + 22122 — 5212% + 52125 + 23 — 52322 74)
=+ 102122 IOZIZZ Z] + 52112 — 10Z122 + SZ]ZZ. ’

This RIF is obtained by multiplying the function in (7.2) by (22122 —z1 —22)/(2 —
71— 22)-

One can check that p and p have a common zero at (1,1) € T?, and eight
further common zeros off T2. Moreover, N(1.1)(p, p) = 10, as can be verified
using computer algebra or by observing that all the common zeros off the two-torus
have multiplicity 1 and using Bézout’s theorem. We note that there are two branches
of the zero set of p coming together at (1, 1).

Level lines of ¢ are displayed in Figure 7.4. For this example, we have ¢ (1,1) =
1, and the value curve contains the component {(eitl, el ny: 4 € (—m, ]}, the an-
tidiagonal in the torus. There are two further components, which we assign indices
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(a) Level curves (black) with value curve (b) Value curve (grey) and exceptional
(grey) and exceptional curve (dark grey). curve (dark grey).

Figure 7.4. Level curves for ¢ = p/p with numerator (7.4) and denominator (7.3), an
RIF whose exceptional curve differs from the value curve.

2 and 3, that are symmetric with respect to the antidiagonal, and all three compo-
nents meet at (1, 1).

The exceptional curve in this example is C* = {z € T2: ¢(z) = —1}. As
can be seen in Figure 7.4, the level set C** has three components; note that the
interlacing condition of Section 6 is satisfied by C{ and C*,. One component of
C* omits (1, 1) altogether, and the two remaining components make symmetric
contact with the antidiagonal. Using Lemma (4.4), we deduce that the order of
contact arising from C** and C7 is equal to 3. Indeed, exploiting the symmetry of
—1-level curves along with the fact that they intersect two of the components of the

1-level curve transversally, we obtain Kl_ll’l = 3 from

10 = Nan(p, 5) = 26 1 +2(k 3" + 11

=2 +2-(1+ D) =2 +4.

The true contact orders of individual branches of Z; at (1, 1) are actually equal
to 2 and 4, respectively. This can be seen as follows. Consider the level curve
Ci={te T2: ¢ (¢) = i}: one of the components of this level line is parametrized
by

21— (1 +1i)

(I =iz =1

as can be checked by direct substitution into ¢, and this component (visible in
black in the lower horn at (1, 1) in Figure 7.4) makes contact to order 2 with the

vi(z1) =
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antidiagonal. Finally, the combinatorial formula in Lemma (4.4) yields

0= M. 2 =l et e+
=2+4k5+ 1+ 1+ 1+ 1=k, +6,

and hence Ki12 =4.

7.4. Multiple singularities

The next example is constructed using the method described by the second author
in [27, Section 4]. It shows that functions arising from that construction may have
multiple singularities with different contact orders.

In the notation of [27], set H = ¢2(Z4) and define 7: Za — B(t2(Z4)) by
taking 7w (j)[ex] = ejqi fore; =841 € Zy. Set

0001 0100 0101

1000 0010 1010
A=aD+rE=D=10100] % {0001 [T |o101
0001 1000 1010

and consider the diagonal matrices

1000 z10 00
(0100 . 10z 00

Y = 0010 and zy=Yz1+ (1 —-Y)zp = 00z 0
0000 000z

‘We now obtain a Pick function via

2+ 2-Bn

fz1,22) = ((A—zy) " 'eo, e0) = .
21(z}z2 — 221 — 22)

After composing with our usual Mobius transformations 8 and f~!, we obtain the
RIF
A3z 47—t +3z1+ 1

. (7.5)
4+ —un+38n+730

$(z1,22) = —

This function has singularities at (1, —1) and (—1, —1) with non-tangential values
¢(1,—1) = —1 and ¢(—1, —1) = 1. Moreover, one verifies that K(; _1)(¢) = 2
and KC(—1,—1)(¢) = 4. The latter contact order is essentially guaranteed by [12, The-
orem 7.1] and the construction, which places the Pick function f in the intermediate
Lowner class £2~, but the singularity at (1, —1) is in some sense extraneous.
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NN
WD

3l
(a) Level curves, showing higher con- (b) Value curves Cfl (1, —1) (light
tact order at (—1, —1). grey) and C{ (—1, —1) (grey).

—_

(3]

o)

Figure 7.5. Level curves for (7.5), an RIF with two singularities, one with contact order
2 and one with contact order 4.

The level curves of the function in (7.5) are parametrized by

4—n—3rz +A22 -2z
MW -3 =32+ -1

Y (z1) =

and are displayed in Figure 7.5 (shifted down by m for better visibility). Note that
the value curves at (1, —1) and (—1, —1) contain vertical lines; the other compo-
nents can be obtained by picking A appropriately in the parametrization C;.

In fact, value curves of degree (n, 1) rational inner functions with real coeffi-
cients always contain vertical lines. Assuming (A1) is satisfied, we note that p(1, -)
and p(1, -) are linear polynomials, and then p(1, z2) — p(1, z2) vanishes identically
for zo € T. Hence p — p is divisible by z; — 1, and the claim follows.
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