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The maximal operator of a normal Ornstein-Uhlenbeck semigroup
is of weak type (1, 1)

VALENTINA CASARINO, PAOLO CIATTI AND PETER SJÖGREN

Abstract. Consider a normal Ornstein-Uhlenbeck semigroup in Euclidean space,
whose covariance is given by a positive definite matrix. The drift matrix is as-
sumed to have eigenvalues only in the left half-plane. We prove that the associ-
ated maximal operator is of weak type (1, 1)with respect to the invariant measure.
This extends earlier work by G. Mauceri and L. Noselli. The proof goes via the
special case where the matrix defining the covariance is I and the drift matrix is
diagonal.

Mathematics Subject Classification (2010): 47D03 (primary); 42B25 (sec-
ondary).

1. Introduction

Let Q be a real, symmetric and positive definite n ⇥ n matrix, and B a real n ⇥ n
matrix whose eigenvalues have negative real parts; here n � 1. One defines the
covariance matrices

Qt =
Z t

0
esB Q esB

⇤
ds , t 2 (0,+1],

and the family of Gaussian measures in Rn

d�t (x) = (2⇡)�
n
2 (det Qt )

� 1
2 e�

1
2 hQ

�1
t x,xidx , t 2 (0,+1].

Here d�1 is the unique invariant measure.
On the space Cb(Rn) of bounded continuous functions, we consider the Orn-

stein-Uhlenbeck semigroup
�
HQ,B
t

�
t>0 , explicitly given by the Kolmogorov for-

mula
HQ,B
t f (x) =

Z
f
�
et Bx � y

�
d�t (y) , x 2 Rn ,
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(see [7]). Its infinitesimal generator is given by

LQ,B f =
1
2
tr
�
Qr2 f

�
+ hBx,r f i , f 2 S(Rn),

and S(Rn) is a core ofLQ,B . Here Qr2 f denotes the product of Q and the Hessian
matrix of f .

The relevance of this semigroup is also due to the fact that
�
HQ,B
t

�
t>0 is the

transition semigroup of the Ornstein-Uhlenbeck process

X (t, x) = et Bx +
Z t

0
e(t�s)BdW (s)

on Rn , where W denotes an n-dimensional Brownian motion with covariance ma-
trix Q. This process describes the random motion of a particle subject to friction;
cf. [15] or [4].

Among its various properties, we only recall here that
�
HQ,B
t

�
t>0 is strongly

continuous in C0(Rn) and in L p(Rn) for all 1  p < 1 [2, 3, 8], while strong
continuity fails to hold in the space of bounded, uniformly continuous functions in
Rn endowed with the supremum norm [3, Lemma 3.2], [19]. For some relevant
results about differentiability and analyticity of

�
HQ,B
t

�
t>0 in the L

p spaces, we
refer the reader to [2, 12].

We consider the maximal operator

HQ,B
⇤ f (x) = sup

t>0

�
�HQ,B

t f (x)
�
� , t > 0, (1.1)

which is an essential tool in the study of the almost everywhere convergence of
HQ,B
t f as t ! 0 for f 2 L p(�1), 1  p < 1.
The boundedness properties ofHQ,B

⇤ are essentially known when
�
HQ,B
t

�
t>0

is symmetric, i.e., when HQ,B
t is self-adjoint on L2(�1) for all t > 0. Indeed,

for 1 < p  1, the boundedness of HQ,B
⇤ on L p(�1) then follows from the

general Littlewood-Paley-Stein theory for symmetric semigroups of contractions
on Lebesgue spaces [18].

G. Mauceri and L. Noselli [9] addressed the nonsymmetric case, assuming only
that

�
HQ,B
t

�
t>0 is normal, i.e., that H

Q,B
t is for each t > 0 a normal operator on

L2(�1). Then, by generalizing Stein’s results to a semigroup of normal contrac-
tions whose infinitesimal generator is a sectorial operator of angle less than ⇡/2,
they were able to prove thatHQ,B

⇤ is bounded on L p(�1), for all 1 < p  1.
Since the operatorHQ,B

⇤ is always unbounded on L1(�1), one is led to analyze
the weak type (1, 1) of the maximal operator. This means seeking an estimate of
the form

�1

n
x 2 Rn : HQ,B

⇤ f (x) > ↵
o

.
k f k1
↵

,
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holding for all ↵ > 0 and all f 2 L1(�1). In the special case Q = I and B = �I ,
which is symmetric, this was proved by B. Muckenhoupt in the one-dimensional
case [14] and by the third author in higher dimension [17]; the proof in [17] was
then simplified by T. Menárguez, S. Pérez and F. Soria [11] (see also [10, 16]).
Another simple argument is given in [6]. For a nice discussion of the different
techniques we refer the reader to [1].

In [9] Mauceri and Noselli applied a factorization known from [13], saying that
an arbitrary normal Ornstein-Uhlenbeck semigroup

�
HQ,B
t

�
t>0 can be written as

the product of more elementary semigroups, called building blocks. Each building
block is an Ornstein-Uhlenbeck semigroup with Q = I and B = �(R � I ), for
some positive � and a real skew-adjoint matrix R. Mauceri and Noselli were able
to prove that for such a building block the truncated maximal operator, defined by
taking the supremum in (1.1) only over 0 < t  T < 1, is of weak type (1, 1). If,
in addition, R generates a periodic group, they proved that the full maximal operator
HQ,B

⇤ is of weak type (1, 1). The case when the semigroup involves several building
blocks seems not to have been considered as yet. Indeed, Mauceri and Noselli
write “already the case where B is a diagonal matrix with at least two different
eigenvalues seems to require new ideas”.

In this paper, we give the complete solution of the problem studied in [9], as
follows.

Theorem 1.1. The maximal operator HQ,B
⇤ of an arbitrary normal Ornstein-

Uhlenbeck semigroup
�
HQ,B
t

�
t>0 is of weak type (1, 1) with respect to the invariant

measure d�1.

We first consider the special case when Q = I and B = diag(��1,��2, . . . ,��n),
with � j > 0 for j = 1, . . . , n, and state in Theorem 2.1 the weak type (1, 1) of
HQ,B

⇤ . The proof of this result involves some geometry and occupies most of this
paper. Theorem 2.1 already extends the results in [9], and forms the basis of the
proof of Theorem 1.1.

The paper is organized as follows. In Section 2 we introduce the notation, in
particular for the relevant Mehler kernel Kt (x, u), and state the intermediate result
Theorem 2.1. Sections 3, 4, 5, and 6 are devoted to the proof of Theorem 2.1. More
precisely, in Section 3 we introduce a localization procedure for those coordinates
in which the variables x and u are close to each other. In Section 4, we consider the
remaining variables, and reduce the problem to an ellipsoidal annulus. A system of
polar-like coordinates is also introduced. Then we prove in Section 5 the weak type
(1, 1) for that part of the maximal operator given by large t . Section 6 is devoted to
the more delicate part corresponding to small t . Finally, in Section 7 we consider the
building blocks of an arbitrary normal Ornstein-Uhlenbeck semigroup, and deduce
Theorem 1.1 from Theorem 6.3, which is a slight generalization of Theorem 2.1.

In the following, we shall use the symbols c and C with 0 < c , C < 1
to denote constants which are not necessarily equal at different occurrences. They
depend only on the dimension and the parameters of the semigroup considered. The
symbol' between two positive expressions means that their ratio is bounded above
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and below by such constants. For two positive quantities a and b, we write a . b
instead of a  Cb and a & b for b . a. The symbol |E | will denote the Lebesgue
measure of a measurable set E . By N we mean the set of all nonnegative integers.
Finally, we write bxc to denote the greatest integer smaller than or equal to x 2 R.

ACKNOWLEDGEMENTS. This research was carried out while the third author was
visiting the University of Padova, Italy. He would like to thank the Department of
Mathematics for the hospitality.

2. Restriction to a special case

In this and the following four sections, we consider the case when Q = I and

B = diag
�
� �1,��2, . . . ,��n

�
, (2.1)

with � j > 0 for j = 1, . . . , n. We set �max = max � j and �min = min � j .
Then the covariance matrices and the Gaussian measures are given by

Qt = diag
✓
1
2�1

�
1� e�2�1t

�
,
1
2�2

�
1� e�2�2t

�
, . . . ,

1
2�n

�
1� e�2�nt

�
◆

and

d�t (x) = ⇡� n
2

q
5n

j=1� j
q
5n

j=1(1� e�2� j t )
exp

 

�
nX

j=1

� j

1� e�2� j t
x2j

!

dx1 . . . dxn.

The invariant measure is

d�1(x) = ⇡� n
2
q
5n

j=1� j exp

 

�
nX

j=1
� j x2j

!

dx1 . . . dxn. (2.2)

We denote the Ornstein-Uhlenbeck semigroup simply by Ht , suppressing the in-
dices Q, B. It may be written as

Ht f (x) = ⇡� n
2

q
5n

j=1� j
q
5n

j=1(1� e�2� j t )

Z
f
�
e�t�1x1 � y1, . . . , e�t�n xn � yn

�

⇥ exp

 

�
nX

j=1

� j

1� e�2� j t
y2j

!

dy1 . . . dyn.
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A straightforward computation leads to

Ht f (x)=

exp

 
nP

j=1
� j x2j

!

q
5n

j=1(1� e�2� j t )

⇥
Z
f (u1, . . . , un) exp

 

�
nX

j=1

� j

1� e�2� j t
�
x j � e�� j t u j

�2
!

⇥ d�1(u1, . . . , un).

We write this as

Ht f (x) =
Z
Kt (x, u) f (u) d�1(u) ,

where Kt denotes the Mehler kernel, given by

Kt (x, u) =

exp

 
nP

j=1
� j x2j

!

q
5n

j=1(1� e�2� j t )
exp

 

�
nX

j=1

� j

1� e�2� j t
�
x j � e�� j t u j

�2
!

for x, u 2 Rn . It is clearly the tensor product of the one-dimensional kernels

Kt, j (x j , u j ) =
exp(� j x2j )p
1� e�2� j t

exp
✓

�
� j

1� e�2� j t
�
x j � e�� j t u j

�2
◆

. (2.3)

The maximal operator is

H⇤ f (x) = sup
t>0

�
�Ht f (x)

�
�.

We will prove the following special case of Theorem 1.1.

Theorem 2.1. If Q = I and B is diagonal and given by (2.1), thenH⇤ = HI,B
⇤ is

of weak type (1, 1) with respect to the invariant measure d�1.

In the proof of this theorem, we distinguish between global and local variables. For
k 2 {0, . . . , n} we define

Mk =

⇢
(x, u) 2 Rn ⇥ Rn : |x j � u j | >

1
1+ |x j |

, j = 1, . . . , k ,

and |x j � u j | 
1

1+ |x j |
, j = k + 1, . . . , n

�
.
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If k = 0 or k = n, this means that the second or the first inequality, respectively,
applies to all j . We call the inequalities |x j�u j | > 1

1+|x j | and |x j�u j |  1
1+|x j | the

global and the local condition, respectively. If (x, u) 2 Mk for some k 2 {0, . . . , n},
we write

x = (⇠, xloc), with ⇠ = (x1, . . . , xk) and xloc = (xk+1, . . . , xn).

Thus x = xloc for k = 0 and x = ⇠ for k = n. We use similar notation for u and
write

u = (⌘, uloc), with ⌘ = (u1, . . . , uk) and uloc = (uk+1, . . . , un).

Then let

Hk
⇤ f (x) = sup

t>0

�
�
�
�

Z
Kt (x, u)�Mk (x, u) f (u) d�1(u)

�
�
�
� ,

where k 2 {0, . . . , n}.
Observe thatH0

⇤ is the local part ofH⇤. To prove Theorem 2.1, it is for obvious
symmetry reasons enough to show that each Hk

⇤, k = 0, . . . , n, is of weak type
(1, 1) with respect to the invariant measure d�1. The proof is quite long and will
be divided in several steps.

3. The localization procedure

We start by proving a simple estimate for the local coordinates.
Lemma 3.1. If for some j 2 {1, . . . , n} the point (x j , u j ) 2 R ⇥ R satisfies the
local condition |x j � u j |  1/(1+ |x j |), then

�
�Kt, j

�
x j , u j

��� .
exp

⇣
� j x2j

⌘

�
min(1, t)

�1/2 exp

 

�c
(x j � u j )2

min(1, t)

!

, t > 0.

Proof. The following argument is well known, see, e.g., [9, proof of Lemma 5.3].
We have

(x j � e�� j t u j )2

1� e�2� j t
=

(x j � u j + u j � e�� j t u j )2

1� e�2� j t

�
(x j � u j )2 � 2|u j | |x j � u j |(1� e�� j t )

1� e�2� j t

�
(x j � u j )2

1� e�2� j t
�
2|x j | |x j � u j |
1+ e�� j t

�
2(u j � x j )2

1+ e�� j t

�
(x j � u j )2

1� e�2� j t
�

2|x j |
1+ |x j |

�
2

(1+ |x j |)2

�
(x j � u j )2

1� e�2� j t
� 4.

(3.1)
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Inserting this in (2.3), one obtains the desired conclusion.

Next, we simplify the problem by means of a localization process for the local
variables, covering Rn�k with suitable rectangles. Assume 0  k < n. First we
split the real line into pairwise disjoint intervals of the type

Is =

✓
s �

1
1+ |s|

, s +
1

1+ |s|

�
.

Clearly, this can be done with values of s in an increasing sequence
�
s(⌫)

�
⌫2Z. We

claim that for each s

s0 2 Is, |s00 � s0| 
1

1+ |s0|
) s00 2 3Is, (3.2)

where 3Is denotes the concentric scaling of Is by a factor 3. Indeed, since |s0 �s| 
1/(1+ |s|),

1+ |s|  1+ |s0| +
1

1+ |s|
 2(1+ |s0|) ,

and it follows that

|s00 � s|  |s00 � s0| + |s0 � s| 
1

1+ |s0|
+

1
1+ |s|


3

1+ |s|
.

Observe also that the scaled intervals 3Is(⌫) , ⌫ 2 Z, have bounded overlap. A similar
splitting was used in [5].

Next, we apply this in each variable in Rn�k , assuming k < n. Denoting by
⌫ = (⌫k+1, ..., ⌫n) 2 Zn�k a multiindex, we split Rn�k into closed rectangles

C⌫ =
nY

j=k+1


s(⌫ j ) �

1
1+ |s(⌫ j )|

, s(⌫ j ) +
1

1+ |s(⌫ j )|

�
, ⌫ 2 Zn�k,

with centers s⌫ = (s(⌫ j ))nj=k+1. A consequence of (3.2) is that

(x, u) 2 Mk, xloc 2 C⌫ ) uloc 2 C̃⌫,

where C̃⌫ = 3C⌫ is the concentric scaling. This implication assures that the values
of Hk

⇤ f in Rk ⇥ C⌫ only depend on the restriction of f to Rk ⇥ C̃⌫ . Further, the
rectangles C⌫ are pairwise disjoint except for boundaries, and the C̃⌫ have bounded
overlap.

In each setRk⇥C̃⌫ the Gaussian density varies little with the local coordinates,
in the following way.
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Lemma 3.2. Let ⌫ 2 Zn�k , k 2 {0, . . . , n � 1}. Then for any uloc 2 C̃⌫ ,

exp

 
nX

j=k+1
� j u2j

!

⇠ exp(D⌫),

where D⌫ =
Pn

j=k+1 � j (s(⌫ j ))2.

Proof. This is a well-known and simple fact (see, for example, [17, page 74]).

To prove Theorem 2.1, it suffices to show for each k 2 {0, 1, . . . , n} and each
⌫ 2 Zn�k thatHk

⇤ maps L1(Rk ⇥ C̃⌫; d�1) boundedly into L1,1(Rk ⇥ C⌫; d�1),
uniformly in ⌫. Indeed, the bounded overlap of the C̃⌫ will then allow summing in
⌫. In the case k = n, there is no need for the C⌫ and C̃⌫ .

With ⌫ fixed, Lemma 3.2 then makes it natural to replace d�1 by the measure

d� k1(x) = ⇡� k
2

q
5k

j=1� j exp

 

�
kX

j=1
� j x2j

!

dx1 . . . dxk dxloc,

where dxloc = dxk+1 . . . dxn . Observe that d� n1 = d�1.
We are now led to the kernel

Kk,⌫
t (x, u)=

exp

 
kP

j=1
� j x2j

!

q
5n

j=1(1� e�2� j t )

⇥exp

 

�
nX

j=1

� j

1�e�2� j t
�
x j�e�� j t u j

�2
!

�Mk (x, u)�C⌫ (xloc),

(3.3)

which vanishes for uloc 62 C̃⌫ , and to the operator

Hk,⌫
⇤ f (x) = sup

t>0

�
�
�
�

Z
Kk,⌫
t (x, u) f (u) d� k1(u)

�
�
�
� . (3.4)

As easily verified by means of a small computation, Theorem 2.1 can be rephrased
as follows.

Theorem 3.3. Let k 2 {0, . . . , n}. For all functions f 2 L1(� k1)

� k1
�
x : Hk,⌫

⇤ f (x) > ↵
 

.
1
↵

k f kL1(� k1), ↵ > 0, (3.5)

uniformly in ⌫ 2 Zn�k .

We first show that Theorem 3.3 holds in the (entirely local) case k = 0.
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Proposition 3.4. The maximal operatorH0,⌫
⇤ is of weak type (1, 1), uniformly in ⌫.

Proof. Lemma 3.1 implies that for (x, u) 2 M0, x 2 C⌫ and u 2 C̃⌫
�
�
�K 0,⌫t (x, u)

�
�
� .

1
�
min(1, t)

�n/2 exp

 

�c
|x � u|2

min(1, t)

!

, t > 0.

Standard methods now allow us to estimateH0,⌫
⇤ f in L1,1(C⌫) in terms of the norm

of f in L1(C̃⌫). For further details, see for example [6, Section 3].

When proving Theorem 3.3 for k > 0, we can assume that f is nonnegative,
supported in Rk ⇥ C̃⌫ and normalized in the sense that

k f kL1(� k1) = 1.

The level set in (3.5) is contained in Rk ⇥ C⌫ , and � k1(Rk ⇥ C⌫) . 1. We may
assume that ↵ is large, since (3.5) is trivial in the opposite case. The meaning of
“large” here will be specified later and will depend only on the dimension and the
parameters of the semigroup.

4. Some elliptic geometry

4.1. Reduction to an ellipsoidal annulus

We simplify the proof of Theorem 3.3 by restricting the global variables to an ellip-
soidal annulus, defined in terms of the quadratic form

R(⇠) =
kX

j=1
� j x2j , (4.1)

where ⇠ = (x1, . . . , xk). Fixing a large ↵, we shall see that it is not restrictive to
assume that x = (⇠, xloc) in (3.5) is such that ⇠ is in the set

E =

⇢
⇠ 2 Rk :

1
2
log↵  R(⇠)  2 log↵

�
. (4.2)

We first consider the set of points not verifying the inequality R(⇠)  2 log↵, which
satisfies

� k1
�
(⇠, xloc) 2 Rk ⇥ C⌫ : R(⇠) > 2 log↵

 

.
�
�C⌫

�
�
Z

R(⇠)>2 log↵
exp(�R(⇠))d⇠

. (2 log↵)(k�2)/2 exp(�2 log↵)

.
1
↵

;

(4.3)
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to get the second inequality here, one uses polar coordinates after the change of
variables x 0

j = x j
p
� j .

Further, we claim that for any (x, u) 2 Mk ,

R(⇠) <
1
2
log↵ ) Kk,⌫

t (x, u) . ↵. (4.4)

This requires a lemma which will also be useful later; recall that x = (⇠, xloc).

Lemma 4.1. If (x, u) 2 Mk and 0 < t  1, then

1
(1+ |⇠ |)2

. t2|⇠ |2 +
kX

1

�
x j � e�� j t u j

�2
.

Proof. From the definition of Mk we have

1
1+ |⇠ |


kX

1

�
�x j � u j

�
� =

kX

1

�
�
�
�
1� e� j t

�
x j + e� j t x j � u j

�
�
�

. t
kX

1

�
�x j

�
� +

kX

1
e� j t

�
�
�x j � e�� j t u j

�
�
� . t

�
�
�⇠ | +

kX

1
|x j � e�� j t u j

�
�
�.

The lemma follows.

To verify (4.4), we first assume that t > 1. Then because of (3.3)

Kk,⌫
t (x, u) . eR(⇠) <

p
↵  ↵,

since ↵ is large. In the case when t  1, we have

Kk,⌫
t (x, u) .

eR(⇠)

tn/2
exp

 

�c
kX

j=1

(x j � e�� j t u j )2

t

!

.

It follows from Lemma 4.1 that

t2 &
1

(1+ |⇠ |)4
or

kX

j=1

(x j � e�� j t u j )2

t
&

1
(1+ |⇠ |)2t

.

The first inequality here implies that

Kk,⌫
t (x, u) . eR(⇠) (1+ |⇠ |)n . e2R(⇠) < ↵.

If the second inequality holds, we have

Kk,⌫
t (x, u) .

eR(⇠)

tn/2
exp

✓
�

c
(1+ |⇠ |)2t

◆
. eR(⇠) (1+ |⇠ |)n,

and the same estimate follows. Thus (4.4) is verified.
Replacing ↵ byC↵ for someC , we see from (4.3) and (4.4) that we can assume

⇠ 2 E in the proof of Theorem 3.3.
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4.2. Polar-like coordinates in Rk

Fix � > 0 and consider the ellipsoid

E� =
�
⇠ 2 Rk : R(⇠) = �

 
.

We introduce the anisotropic dilations

e�s ⇠ =
�
e� j s x j

�k
j=1.

Then each ⇠ 2 Rk \ {0} may be written in a unique way as ⇠ = e�s ⇠̃ with s 2 R
and ⇠̃ = (⇠̃ j )

k
j=1 2 E� . Thus x = (⇠, xloc) 2 Rn is given by

x =
�
e�s ⇠̃ , xloc

�
. (4.5)

The Lebesgue measure d⇠ in Rk satisfies

d⇠ '
�
�e�s ⇠̃

�
� ds dS

�
⇠̃
�
, (4.6)

where dS is the area measure of the ellipsoid E� . Indeed, we will see in the next
subsection that the curve s 7! e�s ⇠̃ is transverse to the family of ellipsoids defined
by R(⇠).

In the following result, we estimate the distance between two points in terms
of the coordinates s, ⇠̃ .

Lemma 4.2. Let ⇠ (0), ⇠ (1) 2 Rk \ {0} and assume R(⇠ (0)) > �/2. Write ⇠ (0) =
e�s(0) ⇠̃ (0) and ⇠ (1) = e�s(1) ⇠̃ (1) with s(0), s(1) 2 R and ⇠̃ (0), ⇠̃ (1) 2 E� .

(a) Then �
�⇠ (0) � ⇠ (1)�� � c

�
�⇠̃ (0) � ⇠̃ (1)��; (4.7)

(b) If also s(1) � 0, then
�
�⇠ (0) � ⇠ (1)�� � c

p
�
�
�s(0) � s(1)

�
�. (4.8)

Proof. Let 0 : [0, 1] ! Rk be a differentiable curve with 0(0) = ⇠ (0) and 0(1) =
⇠ (1). It is clearly enough to bound the length of any such curve from below by the
right-hand sides of (4.7) and (4.8).

For each ⌧ 2 [0, 1], we write 0(⌧ ) = e�s(⌧ ) ⇠̃(⌧ ) with ⇠̃(⌧ ) = (⇠̃ j (⌧ ))
k
1 2 E� ,

so that s(0) = s(0) and s(1) = s(1). The tangent vector is

00(⌧ ) =
⇣
s0(⌧ ) � j e� j s(⌧ ) ⇠̃ j (⌧ ) + e� j s(⌧ ) ⇠̃ 0

j (⌧ )
⌘k

j=1
,
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and

|00(⌧ )|2 =
kX

1
e2� j s(⌧ )

⇣
s0(⌧ ) � j ⇠̃ j (⌧ ) + ⇠̃ 0

j (⌧ )
⌘2

� min
j
e2� j s(⌧ )

�
�s0(⌧ ) � ⇠̃(⌧ ) + ⇠̃ 0(⌧ )

�
�2,

where � ⇠̃(⌧ ) denotes the vector (� j ⇠̃ j (⌧ ))kj=1. This vector is normal to E� at ⇠̃(⌧ )
and so orthogonal to the tangent vector ⇠̃ 0(⌧ ), and we conclude that

|00(⌧ )|2 � min
j
e2� j s(⌧ )

⇣
s0(⌧ )2

�
�� ⇠̃(⌧ )

�
�2 +

�
�⇠̃ 0(⌧ )

�
�2
⌘

. (4.9)

We need a lower estimate of s(0). If s(0) < 0, the assumption R(⇠ (0)) > �/2
implies that

�/2 <
X

j
� j e2� j s(0)

⇣
⇠̃

(0)
j

⌘2
 e2�min s(0) R

⇣
⇠̃ (0)

⌘
= e2�min s(0) � .

Thus we always have
s(0) > �s̃,

where s̃ = log 2/(2�min).
Assume now that s(⌧ ) > �2s̃ for all ⌧ 2 [0, 1]. Then the minimum in (4.9)

stays away from 0 and we get

|00(⌧ )| & |s0(⌧ )|
�
�� ⇠̃(⌧ )

�
� &

p
� |s0(⌧ )|

and
|00(⌧ )| &

�
�⇠̃ 0(⌧ )

�
�.

Integrating each of these two estimates with respect to ⌧ in [0, 1], we see that the
length of 0 is bounded below by the right-hand sides of (4.8) and (4.7).

If instead s(⌧ )  �2s̃ for some ⌧ 2 [0, 1], the image s([0, 1]) contains the
interval [�2s̃,max(s(0), s(1))]. Then we can find a closed subinterval I ⇢ [0, 1]
such that for ⌧ 2 I

�2s̃  s(⌧ )  max(s(0), s(1))
and, moreover, equality holds in the left-hand inequality here at one endpoint of I
and in the right-hand inequality at the other endpoint. For the length of 0, we now
have, in view of (4.9),
Z 1

0
|00(⌧ )| d⌧ �

Z

I
|00(⌧ )| d⌧ &

p
�

Z

I
|s0(⌧ )| d⌧ �

p
�
�
max (s(0), s(1)) + 2s̃

�
.

Since s(0) > �s̃, the last quantity here is larger than
p
� |s̃| &

p
� ⇠ diam E� .

Thus the length of the curve is bounded below by the right-hand side of (4.7). If we
also assume s(1) � 0, the same is true with (4.7) replaced by (4.8), since then

max(s(0), s(1)) + 2s̃ � |s(0) � s(1)|.
The proof of the lemma is complete.
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4.3. The Gaussian measure of a tube

We will need a geometric, k-dimensional lemma. In Rk we write points as ⇠ =
(x j )kj=1 and use the measure

dµR(⇠) = e�R(⇠) d⇠ ,

where R(⇠) was defined in (4.1). Recall that e�t ⇠ = (e� j t x j )kj=1 and that ↵ > 0 is
large.

We fix � with 1
2 log↵  �  2 log↵ and consider a spherical cap of the

ellipsoid E� , centered at some point ⇠ (1) 2 E� . Explicitly, we define

� =
n
⇠ 2 Rk : R(⇠) = �,

�
�⇠ � ⇠ (1)�� < a

o

with a > 0. Observe that |⇠ | '
p
� for ⇠ 2 �. Then we define the tube

Z =
�
e�s ⇠ : s > 0, ⇠ 2 �

 
. (4.10)

Lemma 4.3. The dµR measure of Z satisfies

µR(Z) .
ak�1
p
�
e�� .

Proof. For s � 0 the set
�s =

�
e�s ⇠ : ⇠ 2 �

 

is a slice of Z . The selfadjoint linear map

Fs : ⇠ 7! e�s⇠

is a bijection between � and �s . To estimate µR(Z), we need an estimate of the
area

�
��s

�
� of the (k � 1)-dimensional surface �s .

A normal vector to �0 = � at the point ⇠ 2 � is v = (� j x j )kj=1, and the
tangent hyperplane at ⇠ is v?. For s > 0 the tangent hyperplane of �s at the
point Fs(⇠) is Fs(v?). Thus a normal to �s at the same point is w = F�1

s (v) =
(e�� j s� j x j )kj=1. The angle (s, ⇠) betweenw and Fs(v) = (e� j s� j x j )kj=1 is given
by

cos (s, ⇠) =
w · Fs(v)

kwk kFs(v)k
=

kP

1
�2j x

2
j

s
kP

1
e�2� j s�2j x

2
j

s
kP

1
e2� j s�2j x

2
j

.

We remark that this shows that cos (s, ⇠) stays away from zero; this yields the
transversality mentioned in the preceding subsection.
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Since Fs(v) = @Fs(⇠)/@s, the distance from a point Fs(⇠) 2 �s to �s+h in
the normal direction is, for small h > 0, essentially

h|Fs(v)| cos (s, ⇠).

Thus the Lebesgue measure in Z is given by |Fs(v)| cos (s, ⇠) dSs ds, where dSs
denotes the (k � 1)-dimensional area measure of �s . It follows that

µR(Z) =
Z 1

0

Z

�s

|Fs(v)| cos (s, ⇠) e�R(e�s⇠) dSs ds. (4.11)

To evaluate this, we must first estimate the area |�s |. The area of � can be approx-
imated by that of a union of small (k � 1)-dimensional simplices, i.e. small convex
k-gons, tangent to �. Similarly, that of �s is approximated by the images under
Fs of these simplices. Let S be such a simplex, situated in the tangent hyperplane
of � at the point ⇠ 2 � and containing ⇠ . We shall compare its area |S| with the
area |Fs(S)| of its image. With v as before and " > 0, the convex hull of S and
the point ⇠ + "v is a k-dimensional simplex S". Its volume is |S"| = k�1 "|S| |v|.
Its image Fs(S") is spanned by Fs(S) and Fs(⇠) + "Fs(v), and so has volume
|Fs(S")| = k�1 "|Fs(S)| |Fs(v)| cos (s, ⇠).

On the other hand, the quotient |Fs(S")|/|S"| equals the Jacobian of Fs , which
is exp(

Pk
1 �⌫s). Combining, one finds that

|Fs(S)|
|S|

=

exp
✓ kP

1
�⌫s

◆
|v|

|Fs(v)| cos (s, ⇠)
= exp

 
kX

1
�⌫s

!

s
kP

1
e�2� j s�2j x

2
j

s
kP

1
�2j x

2
j

=

s
Pk

j=1 exp

2
✓ kP

⌫=1
�⌫ � � j

◆
s
�
�2j x

2
j

s
kP

1
�2j x

2
j

.

It follows that
1 

|Fs(S)|
|S|

 e(k�1)�max s .

Summing over small simplices, we conclude that also

1 
|�s |

|�|
 e(k�1)�max s, (4.12)

for any s > 0.
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Next, we estimate the factors in (4.11), still assuming s > 0. First, |Fs(v)| 
e�max s |v| and |v| ' |⇠ | '

p
�, so that

|Fs(v)| . e�max s
p
�.

Further,

R(e�s⇠) =
X

j
� j e2� j s x2j �

X

j
� j (1+ 2�min s) x2j

= (1+ 2�min s) R(⇠) = (1+ 2�min s)�,

since R(⇠) = �.
Inserted in (4.11), these two estimates lead to

µR(Z) .
p
� e��

Z 1

0
e�max s�2�min �s

Z

�s

dSs ds.

The inner integral here is |�s |, so we can use (4.12) and observe that |�| . ak�1,
to get

µR(Z) .
p
� e�� ak�1

Z 1

0
e(k�max�2�min �)s ds.

We can assume that ↵ is so large that �min � > k�max, and then the last integral
will be less than 1/(�min �) ⇠ 1/�, which proves the assertion.

5. The case of large t

We prove part of Theorem 3.3, considering the supremum in (3.4) taken only over
t > 1.

Proposition 5.1. Let k 2 {1, . . . , n}. Then the maximal operator

sup
t>1

�
�
�
�

Z

Rn
K k,⌫
t (x, u) f (u) d� k1(u)

�
�
�
�

is of weak type (1, 1) with respect to the invariant measure d� k1, uniformly in ⌫ 2
Zn�k .

Proof. As before, f is nonnegative, supported inRk⇥C̃⌫ and normalized in L1(� k1).
We need only consider points x = (⇠, xloc) 2 E ⇥ C⌫ and u = (⌘, uloc) 2 Rk ⇥ C̃⌫ .
Moreover, we shall use for both x and u the coordinates introduced in (4.5) with
� = log↵, that is,

⇠ = e�s ⇠̃ , ⌘ = e�s
0
⌘̃,
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where ⇠̃ , ⌘̃ 2 Elog↵ and s, s0 2 R. Observe here that |s| < C , since ⇠ 2 E . Then
(3.3) and the fact that t > 1 imply

Kk,⌫
t (x, u) . exp(R(⇠)) exp

 

�
kX

j=1
� j

�
x j � e�� j t u j

�2
!

.

Since ⇠ 2 E and e��t⌘ = e�(s0�t)⌘̃, we can apply Lemma 4.2 (a) getting

kX

j=1
� j

�
x j � e�� j t u j

�2
� �min

�
�⇠ � e��t⌘

�
�2 &

�
�⇠̃ � ⌘̃

�
�2,

so that

Kk,⌫
t (x, u) . exp(R(⇠)) exp

⇣
� c

�
�⇠̃ � ⌘̃

�
�2
⌘
.

By integrating we obtain
Z
Kk,⌫
t (x, u) f (u) d� k1(u) . exp

⇣
R
�
e�s ⇠̃

�⌘Z
exp

⇣
� c

�
�⇠̃ � ⌘̃

�
�2
⌘
f (u) d� k1(u).

The right-hand side here is increasing in s, and therefore the inequality

exp
⇣
R
�
e�s ⇠̃

�⌘ Z
exp

⇣
� c

�
�⇠̃ � ⌘̃

�
�2
⌘
f (u) d� k1(u) > ↵ (5.1)

holds if and only if s > s↵(⇠̃) for some s↵(⇠̃), with equality for s = s↵(⇠̃). Since
↵ > 1 and the last integral is less than k f kL1(� k1) = 1, it follows that s↵(⇠̃) > 0.

We see that the set of x where the supremum in the statement of Proposition 5.1
is larger than C↵ for some C is contained in the set Ak,⌫(↵) of points (⇠, xloc) 2
E ⇥ C⌫ satisfying (5.1).

Applying (4.6), where now
�
�e�s ⇠̃

�
� '

p
log↵ and � = log↵, and observing

that
�
�C̃⌫

�
� . 1, we conclude that

� k1
�
Ak,⌫(↵)

�
.

p
log↵

Z

Elog↵

Z

s↵(⇠̃)<s<C
exp

 

�
kX

j=1
� j e2� j s ⇠̃2j

!

ds dS
�
⇠̃
�
.

To estimate the integrand here, we observe that for s↵(⇠̃) < s < C the inequality

e2� j s = e2� j s↵(⇠̃) e2� j (s�s↵(⇠̃)) � e2� j s↵(⇠̃)
⇣
1+ 2� j

�
s � s↵

�
⇠̃
��⌘
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implies that

exp

 

�
kX

j=1
� j e2� j s ⇠̃2j

!

 exp

 

�
kX

j=1
� j e2� j s↵(⇠̃)⇠̃2j

!

exp

 

�2
kX

j=1
�2j e

2� j s↵(⇠̃)
�
s � s↵

�
⇠̃
��
⇠̃2j

!

 exp
⇣

� R
�
e� s↵(⇠̃) ⇠̃

�⌘
exp

⇣
� 2�min

�
s � s↵

�
⇠̃
��
R
�
e� s↵(⇠̃) ⇠̃

�⌘

 exp
⇣

� R
�
e� s↵(⇠̃) ⇠̃

�⌘
exp

⇣
� c

�
s � s↵

�
⇠̃
��
log↵

⌘
,

because R(e� s↵(⇠̃) ⇠̃) ' log↵ here. Thus

� k1
�
Ak,⌫(↵)

�

.
p
log↵

Z

Elog↵

Z

s>s↵(⇠̃)
exp

⇣
� R

�
e� s↵(⇠̃) ⇠̃

�⌘
exp

⇣
� c

�
s � s↵(⇠̃)

�
log↵

⌘
ds dS

�
⇠̃
�

.
1

p
log↵

Z

Elog↵
exp

⇣
� R

�
e� s↵(⇠̃) ⇠̃

�⌘
dS

�
⇠̃
�
.

Next we combine this estimate with the case of equality in (5.1). Changing then the
order of integration, we finally get

� k1
�
Ak,⌫(↵)

�
.

1
↵
p
log↵

Z

Elog↵

Z
exp

⇣
� c

�
�⇠̃ � ⌘̃

�
�2
⌘
f (u) d� k1(u)dS

�
⇠̃
�

.
1

↵
p
log↵

Z Z

Elog↵
exp

⇣
� c

�
�⇠̃ � ⌘̃

�
�2
⌘
dS

�
⇠̃
�
f (u) d� k1(u)

.
1

↵
p
log↵

Z
f (u) d� k1(u) ,

proving Proposition 5.1.

6. The case of small t

The following proposition, combined with Proposition 5.1, will complete the proof
of Theorem 3.3.

Proposition 6.1. Let k 2 {1, . . . , n}. Then the maximal operator

sup
t1

�
�
�
�

Z

Rn
K k,⌫
t (x, u) f (u) d� k1(u)

�
�
�
�

is of weak type (1, 1) with respect to the invariant measure d� k1, uniformly in ⌫ 2
Zn�k .
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Proof. We fix the multiindex ⌫ 2 Zn�k . As before, f 2 L1(� k1) is nonnegative,
supported in Rk ⇥ C̃⌫ and normalized, and we write ⌘ = (u j )kj=1 and e

��t⌘ =
�
e�� j t u j

�k
j=1. For m1,m2 2 N and 0 < t  1, we introduce regions Sm1,m2t ,

depending also on ⌫. If m1, m2 > 0, let

Sm1,m2t =
�
(x, u) 2 Mk : 2m1�1

p
t < |⇠ � e��t⌘|  2m1

p
t ,

2m2�1
p
t < |xloc � uloc|  2m2

p
t , xloc 2 C⌫ , uloc 2 C̃⌫

 
.

If m1 = 0, we replace the condition 2m1�1
p
t < |⇠ � e��t⌘|  2m1

p
t by |⇠ �

e��t⌘| 
p
t . Analogously, if m2 = 0, the inequalities 2m2�1

p
t < |xloc � uloc| 

2m2
p
t are replaced by |xloc � uloc| 

p
t . Observe that for any fixed t these sets

form a partition of (Rk ⇥ C⌫) ⇥ (Rk ⇥ C̃⌫) \ Mk .
In the set Sm1,m2t we can apply (3.3), and also (3.1) for the local coordinates,

to get

Kk,⌫
t (x, u) .

exp(R(⇠))

tn/2
exp

⇣
�c22m1 � c22m2

⌘
.

Thus for all (x, u) 2 Rn ⇥ Rn and t > 0,

Kk,⌫
t (x, u) .

X

m1,m2
Km1,m2
t (x, u) ,

where we define

Km1,m2
t (x, u) =

exp(R(⇠))

tn/2
exp

⇣
�c22m1 � c22m2

⌘
�Sm1,m2t

(x, u), (6.1)

omitting the indices ⌫ and k.
Therefore, we need only show that

� k1

(

x 2 Rn : sup
t1

Z
Km1,m2
t (x, u) f (u)d� k1(u)> ↵

)

.
1
↵
exp

⇣
�c22m1� c22m2

⌘
,

(6.2)

since this will allow summing in m1, m2 in the space L1,1.
Observe thatKm1,m2

t (x, u) 6= 0 implies (x, u) 2 Mk and |⇠�e��t⌘|  2m1
p
t ,

and then Lemma 4.1 yields

1 . (1+ |⇠ |)4t2 + (1+ |⇠ |)222m1 t 
�
(1+ |⇠ |)222m1 t

�2
+ (1+ |⇠ |)222m1 t.

From this it follows that
(1+ |⇠ |)2 22m1 t & 1 (6.3)
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as soon as there exists a point u withKm1,m2
t (x, u) 6= 0. Then t � " for some " > 0

which may depend on m1, m2 and ↵. We conclude that the supremum in (6.2) can
as well be taken over "  t  1, and that this supremum is a continuous function
of x 2 E ⇥ C⌫ .

To verify (6.2), our idea is to construct a finite sequence of pairwise disjoint
sets

�
B(`)

�`0
`=1 inRn and a sequence of sets

�
Z(`)

�`0
`=1 inRn , called forbidden zones,

which will contain the level set in (6.2). We will show that
(

x=(⇠, xloc)2E⇥C⌫ : sup
"t1

Z
Km1,m2
t (x, u) f (u) d� k1(u) �↵

)

⇢
`0[

`=1
Z(`), (6.4)

and that for each `

� k1(Z(`)) .
1
↵
exp

⇣
�c22m1 � c22m2

⌘ Z

B(`)
f (u) d� k1(u). (6.5)

Since the B(`) will be pairwise disjoint, we will then be able to conclude

� k1

 
`0[

`=1
Z(`)

!

.
1
↵
exp

⇣
�c22m1 � c22m2

⌘ `0X

`=1

Z

B(`)
f (u) d� k1(u)

.
1
↵
exp

⇣
�c22m1 � c22m2

⌘
k f kL1(� k1).

This will imply (6.2) and finish the proof of Proposition 6.1.
The sets B(`) and Z(`) will be defined recursively, by means of points x (`),

` = 1, . . . , `0. To find the first point x (1), we consider the minimum of the quadratic
form R(⇠) in the compact set

A0 =

(

x 2 E ⇥ C⌫ : sup
"t1

Z
Km1,m2
t (x, u) f (u) d� k1 � ↵

)

.

(Should this set be empty, (6.2) is immediate.)
By continuity this minimum is attained at some point x (1) =

�
⇠ (1) , x (1)

loc
�
of

A0. Moreover, there is some t , called t1, in [", 1] for which the supremum is at-
tained, so that Z

Km1,m2
t1

⇣
x (1), u

⌘
f (u) d� k1(u) � ↵.

Because of the expression (6.1) for the kernel Km1,m2
t and the definition of Sm1,m2t ,

this implies

↵  R
�
⇠ (1)� t�n/21 exp

⇣
�c22m1 � c22m2

⌘ Z

B(1)
f (u) d� k1(u), (6.6)
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where the set B(1) is defined by

B(1) =
n�
⌘, uloc

�
2Rk⇥C̃⌫ :

�
�
�⇠ (1) � e��t1⌘

�
�
�  2m1

p
t1 ,

�
�
�x (1)
loc � uloc

�
�
�  2m2

p
t1

o
.

Next we introduce the first forbidden zone (the terminology is taken from [17])

Z(1) =
n�
e�s⌘, uloc

�
2 Rk ⇥ C̃⌫ : s � 0, R(⌘) = R

�
⇠ (1)�,

�
�⌘ � ⇠ (1)�� < A23m1

p
t1 ,

�
�
�uloc � x (1)

loc

�
�
� < B22m1+m2

p
t1
o
,

for some A, B > 0 to be determined, depending only on the dimension and the
parameters of the semigroup.

The construction now proceeds by recursion. Assume that we have selected
x (h),B(h) andZ(h) for h = 1, . . . , `�1. The definition of the point x (`) is analogous
to that of x (1) above, except that the forbidden zones Z(h), h = 1, . . . , ` � 1, are
now excluded. More precisely, if the set

A`=
(

x 2(E ⇥ C⌫) \
`�1[

h=1
Z(h) : sup

"t1

Z
Km1,m2
t (x, u) f (u) d� k1(u) � ↵

)

(6.7)

is nonempty, we choose x (`) =
�
⇠ (`), x (`)

loc
�
as a point minimizing R(⇠) in A`. But

if A` = ;, the process stops at `0 = ` � 1. We shall soon see that this actually
occurs for some finite `0, which will depend on m1, m2 and ↵.

Assume now that A` 6= ;. We verify below that A` is compact, so that x (`)

can be chosen. Then there is some t` 2 [", 1] for which
Z
Km1,m2
t`

�
x (`), u

�
f (u) d� k1(u) � ↵.

We observe that (6.3) applies to t` and x (`), so that

�
1+

�
�⇠ (`)

�
��2 22m1 t` & 1. (6.8)

Further, we define

B(`) =
n�
⌘, uloc

�
2Rk⇥ C̃⌫ :

�
�⇠ (`) � e��t`⌘

�
�  2m1

p
t` ,

�
�x (`)
loc � uloc

�
�  2m2

p
t`
o

,

and the associated forbidden region is

Z(`) =
n�
e�s⌘, uloc

�
2 Rk ⇥ C̃⌫ : s � 0, R(⌘) = R

�
⇠ (`)

�
,
�
�⌘ � ⇠ (`)

�
�

< A23m1
p
t`,

�
�uloc � x (`)

loc
�
� < B22m1+m2

p
t`
o
.
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To see that A` is closed and thus compact, observe that for 1  h  ` � 1 the
minimum property of x (h) implies that A` ⇢ Ah ⇢ {x = (⇠, xloc) : R(⇠) �
R(⇠ (h))}. Thus

A` = A` \
�
x = (⇠, xloc) : R(⇠) � R(⇠ (h)), 1  h  `� 1

 

=
`�1\

h=1

⇢
x 2 (E ⇥ C⌫) \Z(h) : R(⇠) � R

�
⇠ (h)�,

sup
"t1

Z
Km1,m2
t (x, u) f (u) d� k1(u) � ↵

�
.

The sets in this intersection are all closed because of the definition of Z(h), and so
A` is closed. This completes the description of the recursive procedure.

In analogy with (6.6) we have

↵  exp
⇣
R
�
⇠ (`)

�⌘
t�n/2` exp

�
�c22m1 � c22m2

� Z

B(`)
f (u) d� k1(u). (6.9)

We now verify that the sets B(`) and Z(`) have the required properties.

Lemma 6.2. The collection of sets B(`) is pairwise disjoint.

Proof. We prove that any two sets B(`) and B(`0) with ` < `0 are disjoint. Since
�
�⇠ (`) � e��t`⌘

�
� =

�
�e��t`

�
e�t`⇠ (`) � ⌘

��� � e��maxt`
�
�e�t`⇠ (`) � ⌘

�
�

for t  1, the projection of B(`) in Rk is contained in a ball with center e�t`⇠ (`)

and radius 2m1e�max
p
t`. Moreover, the projection of B(`) in Rn�k is contained in

a ball with center x (`)
loc and radius 2

m2pt`. The projections of B(`0) have analogous
properties.

Thus it is enough to prove that the centers of these balls in Rk and Rn�k are
far from each other; more precisely, that

�
�
�e�t`⇠ (`) � e�t`0 ⇠ (`0)

�
�
� � 2m1e�max

�p
t` +

p
t`0
�
, (6.10)

or �
�
�x (`)
loc � x (`0)

loc

�
�
� � 2m2

�p
t` +

p
t`0
�
. (6.11)

Using the coordinates from Subsection 4.2 with � = R(⇠ (`)), we write

⇠ (`0) = e�s ⇠̃ (`0)

for some ⇠̃ (`0) with R(⇠̃ (`0)) = R(⇠ (`)) and some s 2 R. Here s � 0, because
R(⇠ (`0)) � R(⇠ (`)). Since x (`0) is not in the forbidden zone Z(`), we must have

�
�
�⇠̃ (`0) � ⇠ (`)

�
�
� � A23m1

p
t` (6.12)
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or �
�
�x (`0)
loc � x (`)

loc

�
�
� � B22m1+m2

p
t`. (6.13)

Assume first that t`0 � M24m1 t`, for some M � 2 to be chosen. Together with
Lemma 4.2 (b), this assumption implies
�
�e�t`⇠ (`) � e�t`0 ⇠ (`0)

�
� =

�
�e�t`⇠ (`) � e�(t`0+s)⇠̃ (`0)

�
�&

�
�⇠ (`)

�
� (t`0 + s � t`) &

�
�⇠ (`)

�
� t`0 .

We now apply the assumption again and then (6.8), observing that |⇠ (`)| ' log↵ >
1 because ⇠ (`) 2 E . This gives

�
�e�t`⇠ (`) � e�t`0 ⇠ (`0)

�
� &

�
�⇠ (`)

�
�
p
M 22m1

p
t`

p
t`0

&
p
M 2m1

p
t`0

&
p
M 2m1

�p
t`0 +

p
t`
�
.

Fixing M conveniently, depending on the implicit constants, we obtain (6.10).
In the remaining case t`0 < M24m1 t`, we have

p
t` >

2�2m1�1
p
M

�p
t`0 +

p
t`
�
.

Applying this to (6.12) or (6.13), we arrive at (6.10) or (6.11) by choosing A =
2e�max

p
M and B = 2

p
M .

We next verify that the sequence (x (`)) is finite. For ` < `0, we have as in the
preceding proof (6.12) or (6.13). In the case of (6.12), Lemma 4.2 (a) implies

�
�⇠ (`0) � ⇠ (`)

�
� & A23m1

p
t`.

Since t` � ", we see that in both cases the distance
�
�x (`0) � x (`)

�
� is bounded below

by a positive constant. But all the x (`) are contained in the bounded set E ⇥ C⌫ , so
they are finite in number. Thus the set considered in (6.7) must be empty for some
`� 1 = `0. This implies (6.4).

We now prove (6.5) . Observe that the global component of the forbidden zone
Z(`) corresponds to some region Z , as defined in (4.10), where a = A23m1

p
t` and

� = R(⇠ (`)). By applying Lemma 4.3 and taking also the local component into
account, we get

� k1(Z(`)) .

�
A23m1

p
t`
�k�1

p
R(⇠ (`))

exp
⇣
�R

�
⇠ (`)

�⌘ �
B22m1+m2

p
t`
�n�k

.
1

p
log↵

�
A23m1

�k�1 �B22m1+m2
�n�k t (n�1)/2` exp

⇣
�R

�
⇠ (`)

�⌘
,
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since |⇠ (`)| '
p
log↵. Estimating the exponential here by means of (6.9), we obtain

� k1
�
Z(`)

�
.

1
↵
p
t` log↵

�
A23m1

�k�1�B22m1+m2
�n�ke�c2

2m1�c22m2
Z

B(`)
f (u)d� k1(u).

Applying also (6.8), we finally conclude

� k1(Z(`))

.
2m1
↵

�
A23m1

�k�1 �B22m1+m2
�n�k exp

�
�c22m1 � c22m2

� Z

B(`)
f (u) d� k1(u)

.
1
↵
exp

�
�c22m1 � c22m2

� Z

B(`)
f (u) d� k1(u).

This proves (6.5) and ends the proof of Proposition 6.1.

Finally, combining Proposition 3.4, Proposition 5.1, and Proposition 6.1, we
complete the proof of Theorem 3.3, and therefore also that of Theorem 2.1.

In the next section, we will need a variant of Theorem 2.1, where the Mehler
kernel is slightly modified. The proof of Theorem 2.1 also yields the following
result.

Theorem 6.3. Let  > 0. The maximal operator associated with the kernel

exp

 
nP

j=1
� j x2j

!

q
5n

j=1(1� e�2� j t )
exp

 

�
nX

j=1

� j

1� e�2� j t
�
x j � e�� j t u j

�2
!

, t > 0, (6.14)

is of weak type (1, 1) with respect to the invariant measure d�1.

7. The general case

We go back to the setting of Section 1 and prove Theorem 1.1. Thus we assume
that the semigroup

�
HQ,B
t

�
t>0 is normal.

Metafune, Prüss, Rhandi and Schnaubelt found in [13] a decomposition of Rn

into subspaces invariant under Ht called building blocks. The restriction of Ht to
each building block has covariance Q = I and drift B = �(R� I ), where � > 0 and
R is a real skew-symmetric matrix. In [9] Mauceri and Noselli then decomposed
each building block into invariant subspaces of dimensions 1 and 2, in which the
kernel ofHt has an explicit and rather simple form.

Combining the decompositions in [13] and [9], the result is that after a change
of coordinates we will have covariance matrix Q = I and a drift matrix of the
form

B = diag
�
B2, B4, . . . , B2m,��2m+1, . . . ,��n

�
.
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Here B2 j , j = 1, . . . ,m, is a 2⇥ 2 block matrix of the form

B2 j =

✓
��2 j q j
�q j ��2 j

◆
,

with �2 j > 0 and q j 2 R \ {0}. Also �i > 0 for 2m < i  n.
With Q and B of this form, we will determine the kernel ofHt ; as before the in-

tegration iswith respect to the invariantmeasure d�1. To beginwith, we consider the
semigroup inR2 with covariancematrix I whose driftmatrix is B2 j . The correspond-
ing invariant measure is independent of q j and has density ⇡�1�2 j exp

�
��2 j |x |2

�
.

For this see [9, page 185], where our �2 j corresponds to 1/(2↵). As verified in [9,
(3.6) and (3.7)], the kernel of this two-dimensional semigroup is

K 2 jt (x, u)=
exp

⇣
�2 j |x |2

⌘

1� e�2�2 j t
exp

⇣
�

�2 j

1� e�2�2 j t
�
�x � e��2 j t u

�
�2
⌘

⇥exp

��2 j

e��2 j t

1�e�2�2 j t
⇣
(1�cos(q j t)

�
hx, ui+sin(q j t)x^u

⌘�
,

(7.1)

where x, u 2 R2 and x ^ u = x1u2 � x2u1. In [9], q j = ✓ and �2 j = 1; the
simple transformation needed to pass to any �2 j > 0 is indicated in [9, page 185].
We shall use the following estimate of K 2 jt ; notice that the bound is independent
of q j .

Proposition 7.1. For x, u 2 R2 and t > 0, one has

K 2 jt (x, u) 
exp

�
�2 j |x |2

�

1� e�2�2 j t
exp

✓
�
1
2

�2 j

1� e�2�2 j t
�
�x � e��2 j t u

�
�2
◆

.

Proof. Let z = x � e��2 j t u, so that x can be replaced by z + e��2 j t u. We then
rewrite (7.1) as

K 2 jt (x, u) =
exp

�
�2 j |x |2

�

1� e�2�2 j t
exp

✓
�

�2 j

1� e�2�2 j t
F
◆

, (7.2)

with

F = |z|2 + e��2 j t
h
(1� cos(q j t))(e��2 j t |u|2 + hz, ui) + sin(q j t) z ^ u

i
.

Let � 2 (�⇡,⇡] be the angle between the vectors z and u, with the sign chosen so
that z ^ u = |z||u| sin�. Then

F = |z|2 + e�2�2 j t (1� cos(q j t))|u|2

+ e��2 j t |z||u|
⇥
(1� cos(q j t)) cos� + sin(q j t) sin�

⇤
.
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But

(1� cos(q j t)) cos� + sin(q j t) sin� = cos� � cos(q j t + �)

= 2 sin(q j t/2) sin(� + q j t/2).

Thus

F � |z|2 + e�2�2 j t (1� cos(q j t))|u|2 � 2e��2 j t |z||u| | sin(q j t/2)|.

Applying the inequality between the geometric and arithmetic means to the last
term here, we conclude

F� |z|2 + e�2�2 j t (1� cos(q j t))|u|2�2e�2�2 j t |u|2 sin2(q j t/2)�|z|2/2=|z|2/2.

Because of (7.2), this implies the proposition.

Consider now the semigroup Ht . The block diagonal structure of the drift
matrix B implies thatHt is the product of commuting semigroups acting in R2 and
R. Those in R2 are as just described, and those in R are like the ones considered
in Section 2, with kernels given by (2.3). This implies a tensor product structure
both for the invariant measure and for the kernel of Ht . Let �2 j�1 = �2 j for
j = 1, . . . ,m. Then the invariant measure of Ht will be given by the expression
(2.2). Further, Proposition 7.1 implies that the kernel ofHt satisfies

Kt (x, u) 

exp
✓ nP

i=1
�i |xi |2

◆

q
5n
i=1(1� e�2�i t )

exp

 

�
1
2

nX

i=1

�i

1� e�2�i t
�
�xi � e��i t ui

�
�2
!

,

for all t > 0 and x, u 2 Rn . Observing now that the last expression coincides with
the kernel given by (6.14) with  = 1/2 , we conclude the proof of Theorem 1.1
using Theorem 6.3.
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Università degli Studi di Padova
Via Marzolo 9
I-35100 Padova, Italia
paolo.ciatti@unipd.it

Mathematical Sciences
University of Gothenburg
Mathematical Sciences Chalmers
University of Technology
SE - 412 96 Göteborg, Sweden
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