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Moduli of non-standard Nikulin surfaces in low genus

ANDREAS LEOPOLD KNUTSEN, MARGHERITA LELLI-CHIESA
AND ALESSANDRO VERRA

Abstract. Primitively polarized genus g Nikulin surfaces (S,M, H) are of two
types, that we call standard and non-standard depending on whether the lattice
embedding Z[H ] �? N ⇢ Pic S is primitive. Here H is the genus g polarization
and N is the Nikulin lattice. We concentrate on the non-standard case, which
only occurs in odd genus. In particular, we study the birational geometry of the
moduli space of non-standard Nikulin surfaces of genus g and prove its rationality
for g = 7, 11 and the existence of a rational double cover of it when g = 9.
Furthermore, if (S,M, H) is general in the above moduli space and (C,M|C ) is
a general Prym curve in |H |, we determine the dimension of the family of non-
standard Nikulin surfaces of genus g containing (C,M|C ) for 3  g  11; this
completes the study of the Prym-Nikulin map initiated in [11].

Mathematics Subject Classification (2010): 14H10 (primary); 14E08, 14E25,
14H51, 14J28, 14J50, 14M99, 14N05 (secondary).

1. Introduction

ANikulin surface is a K3 surface endowed with a non-trivial double cover branched
along eight disjoint rational curves. Nikulin surfaces have attracted a lot of atten-
tion in recent time because of their relevance in the study of both the moduli [8]
and the syzygies [6, 7] of Prym canonical curves. It is imperative to recall the lat-
tice theoretical proof by Sarti and van Geemen [18] of the existence of exactly two
types of polarized Nikulin surfaces, that we call standard and non-standard (cf.
Section 2), the latter occurring only in odd genera. There are coarse moduli spaces
FN,s
g and FN,ns

g parametrizing genus g primitively polarized Nikulin surfaces of
standard and non-standard type, respectively; more precisely, a point of FN,s

g (re-
spectively,FN,ns

g ) represents a triple (S,M, H), where S is a standard (respectively,

The first author has been partially supported by grant n. 261756 of the Research Council of
Norway. The second and third named authors were supported by the Italian PRIN-2015 project
“Geometry of Algebraic varieties” and the third by GNSAGA.
Received February 25, 2018; accepted in revised form January 24, 2019.
Published online December 2020.



362 A. L. KNUTSEN, M. LELLI-CHIESA AND A. VERRA

non-standard) Nikulin surface, H 2 Pic S is a genus g primitive polarization and
the line bundle M 2 Pic S defines the double cover branched along eight disjoint
rational curves. Both FN,s

g and FN,ns
g are irreducible of dimension 11, cf. [4, Sec-

tion 3], [18, Proposition 2.3].
Up to now, only the moduli spaces FN,s

g have been extensively studied, while
non-standard Nikulin surfaces have not been adequately considered. This paper
aims to (partially) fill this gap. We concentrate on the Pg-bundle over FN,ns

g par-
ametrizing pairs ((S,M, H),C) such that (S,M, H) 2 FN,ns

g and C 2 |H |. Let
PN,ns
g be the open set of pairs such that C is smooth and letRg be the moduli space

of Prym curves; we look at the diagram

PN,ns
g

qN,ns
g

||x

x

x

x

x

x

x

x

�nsg
✏✏

mN,ns
g

""

E

E

E

E

E

E

E

E

E

FN,ns
g Rg // Mg ,

(1.1)

whose arrows can be described as follows: qN,ns
g andmN,ns

g are the obvious forgetful
maps. Moreover, the Prym-Nikulin map �ns

g sends ((S,M, H),C) to the Prym
curve (C,M ⌦ OC). In particular, mN,ns

g is just the composition of �ns
g and the

forgetful mapRg !Mg.
The main difference between the standard and non-standard case is that a gen-

eral hyperplane section of a general polarized Nikulin surface of standard type is
Brill-Noether general, while curves lying on non-standard Nikulin surfaces carry
two unexpected theta-characteristics (cf. Proposition 2.3) that make them special in
moduli. A first consequence is that the maps mN,ns

g and �ns
g can never be dominant.

Furthermore, a heuristic count suggests that they cannot be generically finite for
g  11, cf. Remark 2.11. In [11] we proved that the map �ns

g is birational onto
its image for (odd) genus g � 13, and the behaviour of the analogous map in the
standard case was completely described. In this paper, we complete the picture by
showing that:

Theorem 1.1. The map �ns
g has generically:

• 9-dimensional fibers for g = 3;
• 6-dimensional fibers for g = 5;
• 4-dimensional fibers for g = 7;
• 2-dimensional fibers for g = 9;
• 1-dimensional fibers for g = 11.

As already mentioned, hyperplane sections of non-standard Nikulin surfaces have
some peculiar and compelling properties, that we now describe in more detail. A
general genus g polarized non-standard Nikulin surface (S,M, H) carries two line
bundles R, R0 such that H(�M) ' R ⌦ R0. The restrictions of R and R0 to a
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general hyperplane section C 2 |H | are two theta-characteristics with positive di-
mensional spaces of global sections. For (odd) genus g � 5 both h0(OC(R)) � 2
and h0(OC(R0)) � 2 and hence the theta divisor of the Jacobian of C has two sin-
gular points of given multiplicity. We precisely describe the images of mN,ns

g for
g = 3 and 5, cf. Theorems 2.9 and 2.10:

– The image of mN,ns
3 is the hyperelliptic locus inM3;

– The image of mN,ns
5 coincides with the locus of curves inM5 possessing two

autoresidual g14; in particular, this locus is irreducible.

For g � 7 the situation becomes more intricate and the birational geometry of the
moduli space FN,ns

g is worth investigating. We prove:

Theorem 1.2. The moduli space FN,ns
g of non-standard Nikulin surfaces of genus

g is:

• Rational for g = 7 and g = 11;
• Unirational with a rational double cover for g = 9.

The proof of both Theorems 1.2 and 1.1 for g � 7 is given in Section 3-5 and
relies on the description of nice projective models of non-standard Nikulin surfaces
(S,M, H) in low genus. Set r := h0(R) � 1 and r 0 := h0(R0) � 1. As already
remarked by Garbagnati and Sarti in [9], the line bundles R and R0 enable to realize
S as a subvariety of the intersection of the Segre variety Pr 0

⇥ Pr ⇢ Prr 0+r+r 0 with
a linear space of dimension g � 2, namely, P(H0(S, H(�M))_). We are able to
detect some geometric conditions that are also sufficient for such a subvariety of
(Pr 0

⇥ Pr ) \ Pg�2 to be a Nikulin surface of non-standard type.
For instance, a general non-standard Nikulin surface of genus 7 is a divisor

of bidegree (2, 3) in P1 ⇥ P2, cf. [9, Section 4.8]. Furthermore, a K3 surface in
|OP1⇥P2(2, 3)| is a Nikulin surface of non-standard type if and only if it contains
two conics A1 and A2 that are contracted by the first projection P1 ⇥ P2 ! P1 and
are mapped to the same plane conic by the second projection P1 ⇥ P2 ! P2.

Analogously, a general surface in FN,ns
9 is a quadratic section of a Del Pezzo

threefold T := (P2 ⇥ P2) \ P7 ⇢ P8, cf. [9, Section 4.9]. Moreover, an element
in |OT (2, 2)| is a non-standard Nikulin surface if and only if it contains two sets of
four lines that are contracted by the first and second projection, respectively.

As regards genus 11, a general surface S in FN,ns
11 defines a divisor of type

(1, 2) in the threefold T 0 := (P2 ⇥ P3) \ P9 ⇢ P11. The projection T 0 ! P3
realizes T 0 as the blow-up of P3 along a rational normal cubic curve � and we
denote by P� the exceptional divisor. The surface S intersects P� along a rational
quintic curve 0 ⇢ T 0 ⇢ P9 and in fact we show that the containment of 0 is a
necessary and sufficient condition for a surface in |OT 0(1, 2)| to be a non-standard
Nikulin surface of genus 11. The rationality results in Theorem 1.2 will follow from
these characterizations.
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Concerning the fibers of the moduli map �ns
g , the case of genus 7 has some spe-

cial features. Let C ⇢ (Pr ⇥Pr 0
)\Pg�2 be a general genus g Nikulin section in the

non-standard case. In genus 9 a general quadratic section of the threefold T contain-
ing C is a non-standard Nikulin surface; the same holds in genus 11 if one considers
in the threefold T 0 a general divisor of type (1, 2) through C . The situation in genus
7 is divergent: a general K3 surface in the linear system |IC/P1⇥P2(2, 3)| is not a
Nikulin surface. This difference depends on the fact that, contrary to what happens
for g = 9, 11, in genus 7 the embedded curve C ⇢ Pg�2 is not quadratically nor-
mal. As a relevant consequence, the image of �ns

7 lies in the ramification locus of
the Prym map R7 ! A6, cf. Remark 3.5 and [2]. This suggests an interesting
behaviour of Nikulin sections with respect to their Prym varieties. In the standard
case this phenomenon was already pointed out in [8], where the image of �N,s

6 is
identified with the ramification locus of the Prym map R6 ! A5, but was still
unknown in the non-standard case.

2. Nikulin surfaces of non-standard type and Segre varieties

We recall some basic definitions and properties.
Definition 2.1. A polarized Nikulin surface of genus g � 2 is a triple (S,M, H)
such that S is a smooth K3 surface, OS(M), H 2 Pic S and the following condi-
tions are satisfied:

• S contains 8 mutually disjoint rational curves N1, . . . , N8 such that

N1 + · · · + N8 ⇠ 2M;

• H is nef, H2 = 2(g � 1) and H · M = 0.

We say that (S,M, H) is primitively polarized if in addition H is primitive in
Pic S.
Definition 2.2. Let (S,M, H) be a Nikulin surface of genus g. Its Nikulin lattice
N = N(S,M) is the rank 8 sublattice of Pic S generated by N1, . . . , N8 and M .

One also defines the rank 9 lattice

3 = 3(S,M, H) := Z[H ] �? N ⇢ Pic S.

If the embedding 3 ⇢ Pic S is primitive, we call (S,M, H) a Nikulin surface of
standard type, else we call it a Nikulin surface of non-standard type.

There are coarse moduli spaces FN,s
g (respectively, FN,ns

g ) parametrizing polarized
Nikulin surfaces of genus g of standard (respectively, non-standard) type. Both
FN,s
g and FN,ns

g are irreducible of dimension 11 and their very general members
have Picard number nine, cf. [4, Section 3], [18, Proposition 2.3]. By [18, Propo-
sition 2.2], if (S,M, H) is a non-standard Nikulin surface of genus g, then g is
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odd and the embedding 3 ⇢ Pic S has index two. More precisely (cf. [9, Propo-
sition 2.1 and Corollary 2.1]), possibly after renumbering the curves Ni , there are
R, R0 2 Pic S such that:

• H � N1 � N2 � N3 � N4 ⇠ 2R and H � N5 � N6 � N7 � N8 ⇠ 2R0 if
g ⌘ 1 mod 4;

• H � N1 � N2 ⇠ 2R and H � N3 � · · · � N8 ⇠ 2R0 if g ⌘ 3 mod 4.

Moreover, when rk Pic S = 9, then Pic S ' Z[R] � N by [9, Proposition 2.1 and
Corollary 2.1]. We also need to define the line bundle L := H �M , which satisfies
L2 = 2(g � 3) and L · Ni = 1 for i = 1, . . . , 8.

We henceforth concentrate on Nikulin surfaces of non-standard type.
First of all we show that hyperplane sections of non-standard Nikulin surfaces

are rather special.

Proposition 2.3. Let (S,M,H) be a general non-standard Nikulin surface of genus
g ⌘ 1 mod 4 (respectively, g ⌘ 3 mod 4) and let L , R and R0 be as above. Then:

(i) R and R0 are globally generated with h1(R) = h1(R0) = 0 if g � 5;
(ii) h0(L) = g � 1 and L is very ample if g � 7 and is ample and globally

generated defining a degree two morphism onto P1 ⇥ P1 ⇢ P3 if g = 5;
(iii) If g � 5, then for any smooth curve C in |H |, the line bundles OC(R) and

OC(R0) are theta-characteristics satisfying h0(S, R) = h0(C,OC(R)) = (g+
3)/4 (respectively, (g + 5)/4) and h0(S, R0) = h0(C,OC(R0)) = (g + 3)/4
(respectively, (g + 1)/4).

Proof. Since all properties are open in the moduli space, one may prove them for a
non-standard Nikulin surface with rk Pic S = 9. Then (i) is proved in [9, Proposition
3.5(2)] (recalling that a linear system on a K3 surface without base components is
base point free) and (ii) in [9, Proposition 3.2 and Lemma 3.1], using the classical
numerical criteria of Saint-Donat [16]. As L2 = 2(g � 3) > 0, we have h1(L) =
h2(L) = 0, whence h0(L) = g � 1 by Riemann-Roch.

To prove (iii) we note that R�H ⇠ �(R+N1+N2+N3+N4) (respectively,
�(R+ N1+ N2)). Thus, h0(R�H) = 0. Moreover, the linear system |R| contains
irreducible members thanks to (i), and hence |H � R| contains a divisor D that
is the union of an irreducible element in |R| and four rational irreducible tails. In
particular, one has h0(OD) = 1 and thus h1(R � H) = 0. The standard restriction
sequence yields h0(S, R) = h0(C,OC(R)) = 1

2 R
2 + 2 by Riemann-Roch and (i).

The rest then follows from an easy computation and the same argument applies
to R0.

Remark 2.4. In the embedding S ⇢ Pg�2 defined by |L|, any smooth C in |H | is
mapped to a Prym-canonical curve, as L|C ' !C ⌦OC(M) satisfies L|⌦2C ' !⌦2

C ,
and all N1, . . . , N8 are mapped to lines.
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From now on, we will set r := h0(S, R)�1 and r 0 := h0(S, R0)�1. By Proposition
2.3, as soon as g � 7, the two linear systems |R0| and |R| (and their restrictions to
C) define an embedding

C ⇢ S ⇢ Pr 0
⇥ Pr ⇢ Prr 0+r+r 0

, (2.1)

where the second inclusion is the Segre embedding.

Notation 2.5. We let p : Pr 0
⇥ Pr ! Pr and p0 : Pr 0

⇥ Pr ! Pr 0 be the two
projection maps. For any subvariety X ⇢ Pr 0

⇥ Pr , we denote by p0
X and pX the

restrictions to X of p0 and p, respectively. In particular, p0
S and pS are the maps

defined by |R0| and |R|, respectively.
We use the standard notation OPr 0⇥Pr (a, b) := p0⇤OPr 0 (a) ⌦ p⇤OPr (b), and

for any subvariety X ⇢ Pr 0
⇥ Pr , we set OX (a, b) ' OPr 0⇥Pr (a, b)|X and refer to

elements in the corresponding linear systems as divisors of bidegree (a, b) on X .

Definition 2.6. We say that a curve in Pr 0
⇥ Pr is vertical if it is contracted by p0

and horizontal if it is contracted by p.

Any line ` in Pr 0
⇥ Pr is either vertical or horizontal. If g ⌘ 1 mod 4, then:

• N1, . . . , N4 are vertical, as N1 · R0 = · · · = N4 · R0 = 0;
• N5, . . . , N8 are horizontal, as N5 · R = · · · = N8 · R = 0.

If instead g ⌘ 3 mod 4, then:

• N1, N2 are vertical, as N1 · R0 = N2 · R0 = 0;
• N3, . . . , N8 are horizontal, as N3 · R = · · · = N8 · R = 0.

We will make use of the following:

Lemma 2.7. Let (S,M, H) be a general non-standard Nikulin surface of genus g
with 5  g  15 and let L , R and R0 be as above. Then the multiplication map

µR,R0 : H0(S, R) ⌦ H0(S, R0) �! H0(S, L)

is surjective. Furthermore, it is isomorphic to the multiplication map

µ⌘,⌘0 : H0(C, ⌘) ⌦ H0(C, ⌘0) �! H0(C, ⌘ ⌦ ⌘0),

where C is any smooth irreducible curve in |H | and ⌘ and ⌘0 are the restrictions to
C of the line bundles R and R0, respectively.

Proof. The properties are open in the moduli space, so we may assume that
rk Pic S = 9. The surjectivity of µR,R0 follows from the generalization by Mum-
ford of a theorem of Castelnuovo, cf. [13, Theorem 2, page 41] (recalling that the
assumption on ampleness is unnecessary) once we check that h1(R � R0) = 0 and
h2(R � 2R0) = 0.
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We have 2(R� R0) ⇠ �N1� · · · � N4+ N5+ · · · + N8 (respectively, �N1�
N2 + N3 + · · · + N8) if g ⌘ 1 mod 4 (respectively, g ⌘ 3 mod 4). Hence,
h0(R � R0) = h0(R0 � R) = 0. As (R � R0)2 = �4, one has h1(R � R0) = 0.

We next prove that h2(R � 2R0) = h0(2R0 � R) = 0. We treat the case
g ⌘ 1 mod 4, leaving the other case to the reader, as it is very similar.

We have 2R0�R ⇠ R+N1+· · ·+N4�N5�· · ·�N8. Since Ni ·(2R0�R) = �1
for i 2 {1, 2, 3, 4}, we have h0(2R0�R) = h0(R�N5� · · ·�N8). The assumption
on g implies that (R � N5 � · · · � N8)2  �4. Hence, if R � N5 � · · · � N8 is
effective, it has nonvanishing h1, which by Ramanujam’s vanishing theorem [14,
Lemma 3] implies that it is not 1-connected. Hence, there is an effective nontrivial
decomposition R � N5 � · · · � N8 ⇠ A + B such that A · B  0. Since Pic S '
Z[R] � N by [9, Proposition 2.1 and Corollary 2.1], we may write

A ⇠ ↵R +
1
2

8X

i=1
↵i Ni and B ⇠ �R +

1
2

8X

i=1
�i Ni ,

for integers ↵,�,↵i ,�i satisfying

↵+� =1, ↵i +�i =0 if i 2 {1, 2, 3, 4} and ↵i +�i = �2 if i 2 {5, 6, 7, 8}. (2.2)

Effectivity requires that ↵ � 0 and � � 0, so that we can without loss of generality
assume ↵ = 1 and � = 0. Therefore, B ⇠ 1

2
P8

i=1 �i Ni and effectivity requires
that all �i � 0 and all �i are even. Write �i = 2�i for integers �i � 0. Then
↵i = �2�i if i 2 {1, 2, 3, 4} and ↵i = �2(�i + 1) if i 2 {5, 6, 7, 8}, so that
A ⇠ R �

P4
i=1 �i Ni �

P8
i=5(�i + 1)Ni . Therefore,

A · B =

 

R �
4X

i=1
�i Ni �

8X

i=5
(�i + 1)Ni

!

·
8X

i=1
�i Ni

=
4X

i=1
�i (2�i + 1) + 2

8X

i=5
�i (�i + 1).

Since at least one of the �i is strictly positive, we see that we get A · B � 3, a
contradiction.

As concerns the second statement, it is enough to remark that the line bundles
L � H , R � H and R0 � H all have vanishing h0 and h1, which can be proved as
in the last part of the proof of Proposition 2.3.

As a consequence, for g � 7 the embeddings C ⇢ S ⇢ Prr 0+r+r 0 in (2.1)
factor through the embedding S ⇢ Pg�2 defined by |L|, and hence:

C ⇢ S ⇢
�
Pr 0

⇥ Pr
�
\ Pg�2 ⇢ Prr 0+r+r 0

. (2.3)
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Remark 2.8. It is not a priori obvious that the intersection (Pr 0
⇥ Pr ) \ Pg�2 is

transversal. However, sinceFN,ns
g is irreducible, as soon as one shows the existence

of a non-standard Nikulin surface of genus g in some transversal intersection (Pr 0
⇥

Pr ) \ Pg�2, one gets the transversality statement for a general Nikulin surface in
FN,ns
g .

The next two results prove Theorem 1.1 in genera 3 and 5.

Theorem 2.9. The image of mN,ns
3 coincides with the hyperelliptic locus inM3. In

particular, a general fiber of mN,ns
3 has dimension 9.

Proof. Let (S,M, H) 2 FN,ns
3 and C 2 |H | be general. The restriction of the line

bundle R 2 Pic S to C is a g12; in particular, the canonical map of C is a double
cover of a plane conic CK branched along 8 points. Furthermore, the linear system
|H | on S defines a double cover 'H : S ! X ⇢ P3 of a cone X in P3 branched
along a plane conic C2 that is the image of the unique curve in |R0|, and a sextic C6
that is the image of an irreducible curve in the linear system |H + R0| (cf. [9, 4.3]).
Note that C2 ·CK = 2, C6 ·CK = 6 and that C2 and C6 meet at the six points in X
that are images of the curves N3, . . . , N8. Furthermore, 'H factors through

S c
�! S ⇡

�! F2
�

�! X, (2.4)

where F2 is the second Hirzebruch surface (with a section C0 such that C20 = �2
and class fiber denoted by f ), the map � is induced by the linear system |C0 + 2 f |
on F2, the map ⇡ is a double cover branched along the inverse image of C2 and C6,
while c is the contraction of N3, . . . , N8. Note that (⇡ � c)�1(C0) = N1 [ N2, and
�⇤C2 2 |C0 + 2 f | while �⇤C6 2 |3C0 + 6 f |.

It is not difficult to show that the desingularization S of any double cover S of
F2 branched along the union of a smooth irreducible curve C2 2 |C0 + 2 f | and a
smooth irreducible curve C6 2 |3C0 + 6 f | is a Nikulin surface. Indeed, S is a K3
surface by, e.g., [15, Theorem 2.2]; furthermore, S has eight disjoint rational curves,
two of which mapping to the section C0 (call them N1 and N2) and six arising as
exceptional divisors of the desingularization of S (call them N3, . . . , N8), which
has six double points at the inverse images of C2 \ C6. The line bundle H 2 Pic S
obtained as pullback of C0 + 2 f is a genus 3 polarization. We denote by R 2 Pic S
the pullback of f , and by R0 2 Pic S the line bundle with a section vanishing at the
strict transform in S of the ramification curve ⇡�1(C2) ⇢ S. In particular, we have

H � N1 � N2 ⇠ (⇡ � c)⇤(C0 + 2 f ) � (⇡ � c)⇤C0 ⇠ 2R. (2.5)

Setting M := H � R � R0, one easily checks that N1 + · · · + N8 ⇠ 2M and hence
(S,M, H) is a genus 3 Nikulin surface of non-standard type by (2.5); it depends on
dim |C0 + 2 f | + dim |3C0 + 6 f | � dimAut(F2) = 3+ 15� 7 = 11 moduli.

We use this in order to prove that a general hyperelliptic curve of genus 3 lies
on a Nikulin surface of non-standard type. Let C be a general hyperelliptic curve
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of genus 3 and let CK ⇢ P2 be the canonical image of C , which is a smooth plane
conic. We denote by x1, . . . , x8 the image in CK of the eight Weierstrass points on
C and by X the cone in P3 over CK . The desingularization of X is then isomorphic
to F2. By abuse of notation, we still denote by the same name the inverse images
in F2 of the curve CK and the points x1, . . . , x8. It is then enough to remark that
both the linear systems |(C0 + 2 f ) ⌦ Ix1+x2 | and |(3C0 + 6 f ) ⌦ Ix3+···+x8 | are
nonempty and contain smooth members.

Theorem 2.10. The map mN,ns
5 has generically 6-dimensional fibers and its im-

age coincides with the locus of curves inM5 possessing two autoresidual g14 . In
particular, this locus is irreducible of dimension 10.

Proof. By [9, 4.6(b)], the nodal model of a Nikulin surface S of non-standard type
and genus 5 is the complete intersection in P5 of three quadrics Q1, Q2, Q3 such
that Q3 is smooth, while Q1 and Q2 have rank 3 and disjoint singular loci.

Vice versa, we are going to show that the minimal desingularization of any
complete intersection S = Q1 \ Q2 \ Q3 of three quadrics in P5 with the above
properties is automatically a Nikulin surface of non-standard type and genus 5. For
i = 1, 2, let ⇡i be the plane vertex of Qi . The plane ⇡1 (respectively, ⇡2) intersects
S at four nodes P1, . . . , P4 (respectively, P5, . . . P8). Let q : S ! S be the minimal
desingularization of S and let Ni := q�1(Pi ) for 1  i  8. The line bundle
H := q⇤(OS(1)) is a genus 5 polarization on S. Up to a change of coordinates,
the quadrics Q1 and Q2 have defining equations z0z1 � z22 = 0 and z3z4 � z25 = 0,
respectively; hence, ⇡1 : z0 = z1 = z2 = 0 and ⇡2 : z3 = z4 = z5 = 0. The
hyperplanes z0 = 0 and z1 = 0 generate a pencil of hyperplanes in P5 all passing
through the points P1, . . . , P4 and cutting out on S a curve with multiplicity two;
therefore, there exists a line bundle R 2 Pic S such that 2R ⇠ H � N1 � N2 �
N3 � N4. Analogously, one shows the existence of a line bundle R0 2 Pic S such
that 2R0 ⇠ H � N5� N6� N7� N8. Hence, S is a Nikulin surface of non-standard
type.

We are now ready to detect the image ofmN,ns
5 . First of all, it is straightforward

that the line bundles R and R0 on a genus 5 Nikulin surface of non-standard type
cut out two autoresidual g14 on a general hyperplane section. The other way around,
let us consider a genus 5 curve C possessing two autoresidual g14; these determine
two rank-3 quadrics q1 and q2 in P4 containing the canonical image of C , cf. [1,
page 208]. Since any component of the locus inM5 of curves with two autoresidual
g14 has dimension at least 10, we can assume C not to be bielliptic; this ensures
that the singular lines of q1 and q2 do not intersect, cf. [1, Chapter VI, F]. Fix an
embedding P4 ⇢ P5 and let Q1 (respectively, Q2) be the cone over q1 (respectively
q2) with vertex a point P1 (respectively, P2) in P5 \ P4; then, both Q1 and Q2 are
quadrics of rank 3 and one can choose the points P1 and P2 so that their singular
loci are disjoint. It is easy to check that h0(P5,IC/P5(2)) = 9 and a general quadric
Q3 containing C is smooth since C cannot be trigonal (cf. [1, Chapter VI, F]);
therefore, the surface S = Q1 \ Q2 \ Q3 is the nodal model of a Nikulin surface
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of non-standard type. Furthermore, the fiber of mN,ns
5 over [C] is parametrized by

P(H0(P5,IC/P5(2))/hQ1, Q2i) = P6.

The rest of the paper will focus on the cases g = 7, 9, 11.
Remark 2.11. The following heuristic count shows that the expected dimension of
a general fiber of �ns

g for g = 7, 9, 11 is the one obtained in Theorem 1.1.
When g = 7, a general hyperplane section C carries two theta-characteristics

with a space of global sections of dimension 3 and 2, respectively, by Proposi-
tion 2.3. The moduli spaces of such curves have codimensions 3 and 1, respec-
tively, inMg orRg, by [17], thus one expects the target of �ns

7 to have dimension
18� 3� 1 = 14 and the fibers to have dimension 11+ 7� 14 = 4.

When g = 9, a general hyperplane section C carries two theta-characteristics
with a 3-dimensional space of global sections, by Proposition 2.3. The moduli
spaces of such curves have codimension 3 inMg orRg, by [17], thus one expects
the target of �ns

9 to have dimension 24�3�3 = 18 and the fibers to have dimension
11+ 9� 18 = 2.

When g = 11, a general hyperplane section C carries two theta-characteristics
with 4 and 3 sections, respectively, by Proposition 2.3. The moduli spaces of such
curves have codimensions 6 and 3, respectively, inMg or Rg, by [17], thus one
expects the target of �ns

11 to have dimension 30� 6� 3 = 21 and the fibers to have
dimension 11+ 11� 21 = 1.

3. The case of genus 7

Let (S,M, H) be a general primitively polarized Nikulin surface of non-standard
type of genus 7. Let L = H � M and

R ⇠
1
2

(H � N1 � N2) and R0 ⇠ L � R ⇠
1
2

(H � N3 � · · · � N8)

be as in Section 2. By Proposition 2.3, the line bundle L defines an embedding
S ⇢ P5 and the embeddings in (2.3) are as follows:

S ⇢ P1 ⇥ P2 ⇢ P5.

Here |R| = |OS(0, 1)| is a net of genus 2 curves of degree R · L = 5 and |R0| =
|OS(1, 0)| is a pencil of elliptic curves of degree R0 · L = 3. By the adjunction
formula, S 2 |OP1⇥P2(2, 3)|, cf. [9, Section 4.8]. We want to identify the locus
in |OP1⇥P2(2, 3)| parametrizing Nikulin surfaces of non-standard type. Since R0 ·
N1 = R0 · N2 = 0, two elements of |R0| split as N1+ A1 and N2+ A2. In particular
A1, A2 are two disjoint conics in the embedding S ⇢ P5, mapped into conics in
P2 by p, as R · A1 = R · A2 = 2. Furthermore, one can prove that A1 and A2
are irreducible by specializing to the case where rk Pic S = 9 and proceeding as
in [9, proof of Proposition 3.5(2)].
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Lemma 3.1. We have p(A1) = p(A2).

Proof. Since N j · R0 = 1 and N j · N1 = N j · N2 = 0 for j � 3, we have
N j · A1 = N j · A2 = 1 for j � 3. It is then enough to note that the six points
z j := p(N j ), j = 3, . . . , 8, are distinct and belong to both the conics p(A1) and
p(A2).

We call A1 and A2 the vertical conics of S.
Using the fact that R0 ⇠ N1 + A1 ⇠ N2 + A2 ⇠ 1

2 (H � N3 � · · · � N8), we
obtain 2R0 ⇠ (N1 + A1) + (N2 + A2) ⇠ H � N3 � · · · � N8, whence

H ⇠ N1 + · · · + N8 + A1 + A2. (3.1)

3.1. Rationality ofFN,ns
7

Fix any smooth conic A ⇢ P2 and two disjoint vertical conics A1, A2 ⇢ P1 ⇥ P2
such that p(A1) = p(A2) = A. The surface P1⇥ A is of bidegree (0, 2) in P1⇥P2.
Consider the inclusion

�
�IP1⇥A/P1⇥P2(2, 3)

�
� ⇢

�
�IA1[A2/P1⇥P2(2, 3)

�
�.

Proposition 3.2. A general member of |IA1[A2/P1⇥P2(2, 3)| is smooth and every
smooth S 2 |IA1[A2/P1⇥P2(2, 3)| is a non-standard Nikulin surface of genus 7
polarized byOS(2, 2)(�A1 � A2).

Moreover, dim |IA1[A2/P1⇥P2(2, 3)| = 15 and dim |IP1⇥A/P1⇥P2(2, 3)| = 8.

Proof. The standard exact sequence

0 //IP1⇥A/P1⇥P2(2, 3) //IA1[A2/P1⇥P2(2, 3) //IA1[A2/P1⇥A(2, 3) // 0

along with the isomorphisms IP1⇥A/P1⇥P2 ' OP1⇥P2(0,�2) and

IA1[A2/P1⇥A(2, 3) ' OP1⇥P1(�2, 0) ⌦OP1⇥P1(2, 6) ' OP1⇥P1(0, 6)

proves the dimensional statements, the global generation of IA1[A2/P1⇥P2(2, 3) and
the surjectivity of the restriction map of linear systems

⇢ :
�
�IA1[A2/P1⇥P2(2, 3)

�
� �! (A1 [ A2) +

�
�OP1⇥P1(0, 6)

�
�.

Hence, a general S 2 |IA1[A2/P1⇥P2(2, 3)| is smooth and

S ·
�
P1 ⇥ A

�
= A1 + A2 + N3 + · · · + N8 2 |OS(0, 2)|,

with N3, . . . , N8 disjoint horizontal lines. At the same time, |OS(1, 0)| is a pencil
of elliptic curves of degree 3 on S such that OS(1, 0) · Ai = 0 for i = 1, 2, and
hence contains two elements of the form Ni + Ai with Ni a line for i = 1, 2.
Furthermore, N1 and N2 are mutually disjoint, as well as disjoint from the other N j
for j = 3, . . . , 8. Note that the divisor N1 + · · · + N8 2 |OS(2, 2)(�2A1 � 2A2)|
and thus is 2-divisible in Pic S. It is now straightforward that S satisfies the desired
properties; in particular, (3.1) implies that S is of non-standard type.
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Two smooth elements in |IA1[A2/P1⇥P2(2, 3)| are isomorphic if and only if
they are in the same orbit under the action of the stabilizer G of A1[A2 in Aut(P1⇥
A). The group G is 4-dimensional, since it is the product of the stabilizer of two
points in P1 and of the group Aut A. Hence the quotient |IA1[A2/P1⇥P2(2, 3)|/G is
11-dimensional and we have a birational map

�
�IA1[A2/P1⇥P2(2, 3)

�
�/G //___ FN,ns

7 .

Theorem 3.3. The moduli space FN,ns
7 is rational.

Proof. The blow-up of P15 :=|IA1[A2/P1⇥P2(2,3)| along P8 :=|IP1⇥A/P1⇥P2(2, 3)|
is a P9-bundle ⇡ : P ! P6. Let o 2 P6, then ⇡�1(o) is a 9-dimensional linear
system generated by P8 and by an element S 2 P15 not containing P1 ⇥ A. It is
useful to remark that then the base locus of ⇡�1(o) is S · (P1 ⇥ A) = A1 + A2 +
No1+· · ·+No6, where the last six summands are the ’horizontal’ lines in the surface
S. Let p0

A : P1⇥ A ! A be the projection map. Since No1+ · · ·+ No6 2 |OA(3)|,
this yields an immediate identification

P6 := |OA(3)| =
�
�OP1(6)

�
�,

under the linear isomorphism sending o to n := (p0
A)⇤(No1 + · · · + No6). Now it is

clear that G acts linearly on P and on P6. Furthermore, by Castelnuovo’s criterion,
P6/G is a unirational surface, hence it is rational. To complete the proof it suffices
to show that P/G is a P9-bundle over a nonempty open set of P/G. Let U ⇢ P6
be the open set of the degree six divisors n 2 |OA(3)| such that the stabilizer of n
in Aut A is trivial; this is nonempty since there are no non-trivial automorphisms
of P1 mapping a set of 6 general points to itself. This immediately implies that,
whenever o 2 U , the stabilizer of ⇡�1(o) in G is trivial: otherwise n would be
invariant under the action of some non-trivial � 2 G. Let PU be the restriction of
P to U . Since the stabilizer of ⇡�1(o) is trivial along U , it follows from Kempf’s
descent lemma, cf. [5], that PU descends to a P9-bundle PU/G over U/G. This
implies the statement.

3.2. The fibre of the Prym-Nikulin map �ns7

We start with a general point (S,M, H) in FN,ns
7 and a general smooth C 2 |H |.

We still denote by A1 and A2 the two vertical conics of S.

Lemma 3.4. We have:

(i) h0(IC/P1⇥P2(2, 2)) = h1(IC/P1⇥P2(2, 2)) = 1;
(ii) C is not quadratically normal in P5;
(iii) h0(IC/P1⇥P2(2, 3)) = 6;
(iv) h0(IC[A1[A2/P1⇥P2(2, 3)) = 4.
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Proof. Item (i) follows from the exact sequence

0�! IS/P1⇥P2 ' OP1⇥P2(�2,�3) �! IC/P1⇥P2 �! IC/S ' OS(�H) �! 0

tensored byOP1⇥P2(2, 2) and the isomorphisms

OS(2L � H) ' OS(H � 2M) ' OS(A1 + A2),

cf. (3.1). Item (ii) is an immediate consequence of (i).
Item (iii) follows from the above sequence tensored by OP1⇥P2(2, 3) and the

equality h0(S, R + A1 + A2) = 5. Item (iv) follows similarly.

Remark 3.5. Lemma 3.4(ii) is of particular interest. Indeed, it implies that the
image of the moduli map �ns

7 : PN,ns
7 ! R7 lies in the ramification locus of the

Prym mapR7 ! A6, cf. [2].
Theorem 1.1 in genus 7 follows by detecting the locus DC in |IC/P1⇥P2(2, 3)| that
parametrizes Nikulin surfaces of non-standard type.

Theorem 3.6. The fibre of �ns
7 : FN,ns

7 ! R7 over C is 4-dimensional.

Proof. We consider the 5-dimensional linear system |IC/P1⇥P2(2, 3)|, cf. Lemma
3.4(iii), along with its linear subsystem |IC[A1[A2/P1⇥P2(2, 3)|⇢ |IC/P1⇥P2(2, 3)|,
which has dimension 3 and parametrizes Nikulin surfaces of non-standard type by
Lemma 3.4(iv) and Proposition 3.2.

We are going to show the existence of a one-dimensional family of such linear
subsystems, the union of which is a hypersurfaceDC in|IC/P1⇥P2(2,3)| parametriz-
ing Nikulin surfaces of non-standard type.

Lemma 3.4(i) yields that C ⇢ Y ⇢ P1 ⇥ P2, where Y is integral of bidegree
(2, 2). The linear system |OY (1, 0)| is a ruling of conics on Y , and A1, A2 are in
this ruling, since C ⇢ Y and A j · C = 6. For each x 2 P1 we denote by Ax the
conic over the point x . Consider the map

p⇤ :
�
�OY (1, 0)

�
� �!

�
�OP2(2)

�
�,

sending Ax to p⇤Ax . Since pY : Y ! P2 has degree two, the map p⇤ has degree
one or two. As p⇤A1 = p⇤A2 = A, it has degree two. Hence there exists an
involution ◆ : P1 ! P1 such that p⇤Ax = p⇤A◆(x). Thus we have a fibration

DC �! P1,
sending a surface S to the pair of conjugated points defined by its vertical con-
ics; in other words, the base P1 is the quotient of |OY (1, 0)| by the involution ◆
and the fiber over a point hx, ◆(x)i 2 P1 is the 3-dimensional linear subsystem
|IAx[A◆(x)[C/P1⇥P2(2, 3)| ⇢ |IC/P1⇥P2(2, 3)|. Hence DC is 4-dimensional.

It remains to show that the moduli map mC : DC 99K FN,ns
7 is generically

finite. This easily follows since there are finitely many automorphism of P1 ⇥ P2
fixing C ; indeed, any of them different from the identity would induce a non-trivial
automorphism of C itself.
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4. The case of genus 9

Let (S,M, H) be a general primitively polarized Nikulin surface of non-standard
type of genus 9. Let L = H � M and

R ⇠
1
2

(H � N1 � N2 � N3 � N4)

and R0 ⇠ L � R ⇠
1
2

(H � N5 � N6 � N7 � N8)

be as in Section 2. We have R2 = R02 = 2 and R · R0 = 4. By Proposition 2.3,
the line bundle L defines an embedding S ⇢ P7 and |R| and |R0| are base point free
linear systems whose general member is a smooth, irreducible curve of genus 2. As
in (2.3), the embeddings C ⇢ S ⇢ P7 thus factor as

S ⇢
⇣
P2 ⇥ P2

⌘
\ P7 ⇢ P8.

We may assume that the intersection

T :=
⇣
P2 ⇥ P2

⌘
\ P7

is transversal (cf. Remark 2.8 and Proposition 4.3 below) and hence a sextic Del
Pezzo threefold. Since !T ' OT (�2,�2), we have, by adjunction, cf. [9, Sec-
tion 4.9]:

Lemma 4.1. The surface S is the complete intersection in P2⇥P2 of a hyperplane
section and of a quadratic section defined by a quadric Q:

S = Q \ P7 \
⇣
P2 ⇥ P2

⌘
= Q \ T ⇢ P8.

The first and second projections p0
S : S ! P2 and pS : S ! P2 are double cover-

ings of P2, contracting the set of lines {N1, . . . , N4} and {N5, . . . , N8}, respectively.
The line bundle

E := H � N1 � · · · � N8, (4.1)
plays a crucial role.

Lemma 4.2. The linear system |E | is an elliptic pencil on S. Furthermore, for any
F 2 |E |, we have:

(i) The maps p0
F : F ! P2 and pF : F ! P2 are double coverings onto smooth

conics A0 and A, respectively;
(ii) F =

�
A0 ⇥ A

�
\ P7 ⇢

�
P2 ⇥ P2

�
\ P7 = T ;

(iii) The two surfaces Y 0 := (A0 ⇥ P2) \ P7 and Y :=
�
P2 ⇥ A

�
\ P7 are minimal

sextic scrolls (isomorphic to P1 ⇥ P1) embedded in T such that F = Y 0 \ Y
and F is anticanonical in Y 0 and Y . Moreover, N1 [ · · · [ N4 ⇢ Y 0 and
N5 [ · · · [ N8 ⇢ Y .
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Proof. Using the fact that rk Pic S = 9, it is easy to check that E is nef and prim-
itive, whence an elliptic pencil. Let F 2 |E |. As pS has degree two, pF is either
birational or of degree two onto its image. In the former case the image would be a
quartic curve, as R · E = 4; however, p contracts Ni , i = 1, 2, 3, 4, and Ni · E = 2,
so the quartic would have four singular points, a contradiction. The same works for
p0
F . Hence, (i) is proved.
Letting A = p(F) and A0 = p0(F), we have

F ⇢
�
A ⇥ A0� ⇢

⇣
P2 ⇥ P2

⌘
\ P7 = T .

Moreover, A⇥A0 is the 2-Veronese embedding of P1⇥P1 defined by |OP1⇥P1(2,2)|.
Hence F is a hyperplane section of it, proving (ii). Property (iii) easily follows since
the projection p0

Y : Y 0 ! A0 realizes Y 0 as the P1-bundle P(OP1(3)�OP1(3)) over
A0 ' P1, and similarly for Y .

4.1. A rational parametrization of a double cover ofFN,ns
9

Let us fix a Del Pezzo threefold T :=
�
P2 ⇥ P2

�
\P7 ⇢ P8. Since T is smooth, the

restriction map Pic(P2⇥P2) ! Pic T is an isomorphism by the Lefschetz Theorem,
whence T contains no plane. In particular, both projections p0

T : T ! P2 and pT :
T ! P2 realize T as a P1-bundle over P2. We fix four vertical lines N1, . . . , N4
and four horizontal lines N5, . . . , N8 in T such that the points p0(N1), . . . , p0(N4)
are in general position, and the same for p(N5), . . . p(N8).

Proposition 4.3. A general member of |IN1[···[N8/T (2, 2)| is smooth and every
smooth S 2 |IN1[···[N8/T (2, 2)| is a non-standard Nikulin surface of genus 9 po-
larized byOS(2, 0)(N5 + · · · + N8).

Moreover, dim |IN1[···[N8/T (2, 2)| = 3.

Proof. Set

b0 := {p0(N1), . . . , p0(N4)} and b := {p(N5), . . . p(N8)},

and let A0 (respectively, A) be any smooth conic passing through b0 (respectively,
b). Define the following surfaces contained in T :

Y 0 :=
�
A0⇥P2

�
\P7 2

�
�OT (2, 0)

�
� and Y :=

⇣
P2 ⇥ A

⌘
\P7 2 |OT (0, 2)|, (4.2)

which are minimal sextic scrolls isomorphic to P1 ⇥ P1. One easily verifies that
F := Y 0 \ Y is anticanonical in both Y 0 and Y and that N1 [ · · · [ N4 ⇢ Y 0 and
N5 [ · · · [ N8 ⇢ Y . More precisely,

N1 + · · · + N4 2 |OY 0(2, 0)| '
�
�OP1⇥P1(4, 0)

�
�

N5 + · · · + N8 2 |OY (0, 2)| '
�
�OP1⇥P1(0, 4)

�
�.
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We have IF/Y 0[Y ' IF/Y 0 � IF/Y . Tensoring by OY[Y 0(2, 2) and using the fact
that F 2 |OY 0(0, 2)| and F 2 |OY (2, 0)| by (4.2), we get

IF/Y 0[Y (2, 2) ' OY 0(2, 0) �OY (0, 2) ' OP1⇥P1(4, 0) �OP1⇥P1(0, 4). (4.3)

We also have a short exact sequence

0 �! IY 0[Y/T (2, 2) ' OT �! IF/T (2, 2) �! IF/Y 0[Y (2, 2) �! 0, (4.4)

where the isomorphism follows as Y 0 [ Y 2 |OT (2, 2)| by (4.2). From (4.3) and
(4.4) we get that IF/T (2, 2) is globally generated and the restriction map of linear
systems �

�IF/T (2, 2)
�
� �! (F + |OY 0(2, 0)|) ⇥ (F + |OY (0, 2)|)

is surjective. Hence, there is a smooth S 2 |IF/T (2, 2)| containing N1 [ · · · [ N8,
and

S · Y 0 = N1 + · · · + N4 + F 2 |OS(2, 0)| (4.5)
S · Y = N5 + · · · + N8 + F 2 |OS(0, 2)|. (4.6)

In particular, the divisor

N1 + · · · + N8 2 |OS(2, 2)(�2F)|

is 2-divisible in Pic S. It is then easy to see that S is a non-standard Nikulin surface
of genus 9 polarized byOS(2, 0)(N5 + · · · + N8).

Finally, the sequence

0 // IS/T (2, 2)

o

// IN1[···[N8/T (2, 2) // IN1[···[N8/S(2, 2)

o

// 0

OT OS(2F)

yields h0(IN1[···[N8/T (2, 2)) = 4.

We obtain a nice parametrization of the moduli space FN,ns
9 . We fix four ver-

tical lines N1, . . . , N4 in T , and observe that in the space of the Segre embedding
one has

hN1 [ · · · [ N4i = P7

since N1, . . . , N4 are contained in a minimal sextic scroll Y 0 ' P1 ⇥ P1 ⇢ P7
defined as in the previous proof. It is clear that, up to the action of Aut T , we can
choose this set of four lines up to the ordering of its elements. Since these four
lines are spanning hT i = P7 and the automorphisms of T are the automorphisms
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of P2 ⇥ P2 fixing this P7, the stabilizer of N1 [ N2 [ N3 [ N4 in Aut T coincides
with the stabilizer in Aut(P2 ⇥ P2) of the same set. Recall that

Aut(P2 ⇥ P2) ' PGL(3) ⇥ PGL(3) ⇥ Z/2Z,

where the Z/2Z-factor is due to the involution interchanging the two factors of
P2 ⇥ P2. For i = 1, . . . , 4 we have Ni = {oi } ⇥ `i , where oi = p0(Ni ) is a
point and `i = p(Ni ) is a line. The stabilizer of N1 [ · · · [ N4 acts on the set
of pairs {(o1, `1), . . . , (o4, `4)}. Hence the stabilizer is the diagonal embedding
S4 ⇢ S4 ⇥ S4. The action is the diagonal action: ↵(oi , `i ) = (↵(oi ),↵(`i )). We
define N1...4 := {N1, . . . , N4} and choose a general set N5...8 := {N5, . . . , N8} of
four horizontal lines, or equivalently, four points in p(T ) = P2. Then the moduli
space of pairs (N1...4, N5...8) is precisely the quotient

�
P2
�4

/S4,

where S4 ⇢ Aut T is the previous group of automorphisms. Hence it acts as above:
↵(o, `) = (↵(o),↵(`)) and ↵(`, o) = (↵(`),↵(o)). Thus we have:

Theorem 4.4. The quotient (P2)4/S4 is the 4-symmetric product of P2 and hence
is rational.

For a general pair (N1234, N5678), with N1...4 fixed, the linear system
�
�IN1[...[N8/T (2, 2)

�
�

defines a P3-bundle over (P2)4. This bundle descends to (P2)4/S4, thus implying
the following:

Theorem 4.5. The moduli space of fourtuples (S,M, H, N1234) is rational and a
double cover of FN,ns

9 .

4.2. The fibre of the Prym-Nikulin map �ns9

Let both (S,M, H) 2 FN,ns
9 and C 2 |H | be general. Let E be as in (4.1) and

recall Lemma 4.2. The genus 9 case of Theorem 1.1 is a consequence of the next
two results.

Lemma 4.6. We have
dim

�
�IC/T (2, 2)

�
� = 2.

In particular, C is quadratically normal.

Proof. Fix any F 2 |E |. Since 2L ⇠ C+F and T is projectively normal, the curve
C [ F is the complete intersection in T of two quadratic sections. Therefore, we
have

h0(IC[F/T (2, 2)) = 2 and h1(IC[F/T (2, 2)) = h2(IC[F/T (2, 2)) = 0. (4.7)
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We consider the standard exact sequence

0�!IC[F/T (2, 2)�!IC/T (2, 2) � IF/T (2, 2)�!IC\F/T (2, 2)�!0. (4.8)

Taking cohomology in (4.3) and (4.4) yields

h0(IF/T (2, 2)) = 11 and h1(IF/T (2, 2)) = h2(IF/T (2, 2)) = 0. (4.9)

This, together with the sequence

0 �! IF/T (2, 2) �! IF\C/T (2, 2) �! IF\C/F (2, 2) ' OF (2L � C) �! 0,

and the fact that 2L � C ⇠ F andOF (F) ' OF , yields

h0(IF\C/T (2, 2)) = h0(IF/T (2, 2)) + h0(OF ) = 12. (4.10)

Thus, the cohomology of (4.8) together with (4.7), (4.9) and (4.10) yields
h0(IC/T (2, 2)) = 3.

The fact that C is quadratically normal is easily checked.

Proposition 4.7. A general S0 2 |IC/T (2, 2)| defines a point of FN,ns
9 , and the

moduli map |IC/T (2, 2)| 99K FN,ns
9 is generically injective.

Proof. As S · S0 ⇠ 2L on S, we have

S0 · S = F + C 2 |OS0(2, 2)| (4.11)

for some F 2 |E |. Let Y 0 and Y be as in Lemma 4.2(iii).
Using the fact that F is anticanonical on Y 0, it is not difficult to show that

S0 · Y 0 = N 0
1 + · · · + N 0

4 + F 2 |OY 0(2, 2)| ' |OP1⇥P1(6, 2)|,

with N 0
1, . . . , N

0
4 four disjoint lines in |OP1⇥P1(1, 0)|. Similarly, one shows that

S0 · Y = N 0
5 + · · · + N 0

8 + F 2 |OY (2, 2)| ' |OP1⇥P1(2, 6)|,

with N 0
5, . . . , N

0
8 four disjoint lines in |OP1⇥P1(0, 1)|. Hence S0 is a non-standard

Nikulin surface of genus 9 by Proposition 4.3.
We now show that the moduli map mC : |IC/T (2, 2)| 99K FN,ns

9 is generically
injective. Assume that mC(S0) = mC(S00), for distinct S0, S00 2 |IC/T (2, 2)|. Then
there exists ↵ 2 Aut(T ) such that ↵(S0) = S00. In particular, such an ↵ would fix C
and thus induce a non-trivial automorphism of C . This is a contradiction because
the image of mN,ns

9 has dimension at least 20� 2 = 18, while the maximal dimen-
sion of a component of the locus inM9 of curves with a non-trivial automorphism
is 2g � 1 = 17, cf. [3].
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5. The case of genus 11

Let (S,M, H) be a general primitively polarized Nikulin surface of non-standard
type of genus 11. Let L = H � M , then we have as in Section 2

R ⇠
1
2

(H � N1 � N2) and R0 ⇠ L � R ⇠
1
2

(H � N3 � · · · � N8) .

By Proposition 2.3, the line bundle L defines an embedding S ⇢ P9. Moreover |R|
and |R0| are base point free linear systems, respectively of dimensions 3 and 2, such
that R2 = 4, R02 = 2 and R · R0 = 5. The embedding S ⇢ P9 factors as follows

S ⇢
⇣
P2 ⇥ P3

⌘
\ P9 ⇢ P11,

where the inclusion P2 ⇥ P3 ⇢ P11 is the Segre embedding and P9 is linearly
embedded. We may assume (cf. Remark 2.8 and Proposition 5.5 below) that the
intersection

T :=
⇣
P2 ⇥ P3

⌘
\ P9

is transversal, so that T is a smooth threefold with KT ⇠ OT (�1,�2). Hence, by
the adjunction formula, S is a divisor of type (1, 2) in T and we can conclude as
follows.

Lemma 5.1. The surface S belongs to | � KT | and is a complete intersection in
P2 ⇥ P3 of three divisors, respectively of type (1, 1), (1, 1) and (1, 2).

Let (x, y) := (x0 : x1 : x2) ⇥ (y0 : y1 : y2 : y3) be coordinates on P2 ⇥ P3. The
equations of S in P2 ⇥ P3 can be written as

a0x0 + a1x1 + a2x2 = b0x0 + b1x1 + b2x2 = c0x0 + c1x1 + c2x2 = 0,

where for i = 0, 1, 2 the coefficients ai and bi are linear forms while the ci are
quadratic forms in (y0 : y1 : y2 : y3). The equations of T are

a0x0 + a1x1 + a2x2 = b0x0 + b1x1 + b2x2 = 0.

The morphism pT : T ! P3 is birational and its inverse is described by

(y) 7! (a1b2 � a2b1, a2b0 � a0b2, a0b1 � a1b0) ⇥ (y0 : y1 : y2 : y3).

Equivalently, pT is the blow-up of the scheme � defined by the 2⇥ 2 minors of
✓
a0 a1 a2
b0 b1 b2

◆
.

Since T is smooth, � is a smooth (rational normal cubic) curve. Let P� := p�1
T (� )

be the exceptional divisor of pT .
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Lemma 5.2. We have P� 2 |OT (�1, 2)| and P� ' P1 ⇥ P1. Under this identifi-
cation,OP� (0, 1) ' OP1⇥P1(0, 3) andOP� (1, 0) ' OP1⇥P1(1, 1).

Proof. We have

OT (P� ) ' !T ⌦ p⇤
T
�
!_

P3
�

' OT (�1,�2) ⌦OT (0, 4) ' OT (�1, 2).

As is well known, N� /P3 ' OP1(5) � OP1(5), whence P� ' P1 ⇥ P1. Since
� ⇢ P3 is a curve of degree 3, it follows that OP� (0, 1) ' OP1⇥P1(0, 3). Finally,
we have

OP1⇥P1(�2,�2) ' !P� ' OP� (KT + P� ) ' OP� (�2, 0),

whenceOP� (1, 0) ' OP1⇥P1(1, 1).

Lemma 5.3. We have

S · P� = 0 + N3 + · · · + N8,

where 0 is a smooth element of |OP� (1, 0)| = |OP1⇥P1(1, 1)|. In particular, p0
0 is

a two to one map onto a line.
Moreover, 0 has the following properties:

(i) 0 · N3 = · · · = 0 · N8 = 1 and 0 · N1 = 0 · N2 = 2;
(ii) 0 + N1 + N2 ⇠ R0.

Proof. We know that N3, . . . , N8 are contracted by pS , whence they are six dis-
joint fibres of pP� : P� ! � . On the other hand, S 2 |OT (1, 2)|, hence its
restriction to P� belongs to |OP1⇥P1(1, 7)| by Lemma 5.2. This implies that 0 2
|OP1⇥P1(1, 1)| = |OP� (1, 0)|, and it immediately follows that p0 maps 0 two to
one onto a line. If 0 is not smooth, then it contains a fibre N9 of pP� . But then
one can check (on S) that N9 is orthogonal to R, N1, . . . , N8. Hence Pic S has rank
� 10, against the generality of S. The properties (i) and (ii) are easy to check.

Consider the line ` := p0(0) and the surface

P` := p0�1(`) \ T 2 |OT (1, 0)|. (5.1)

Let l0x0 + l1x1 + l2x2 = 0 be the equation of `, with l0, l1, l2 2 C. Then P` is
defined by

l0x0 + l1x1 + l2x2 = a0x0 + a1x1 + a2x2 = b0x0 + b1x1 + b2x2 = 0.

The surface P` is a P1-bundle over ` and p(P`) ⇢ P3 is a quadric through � defined
by the equation

det

0

@
l0 l1 l2
a0 a1 a2
b0 b1 b2

1

A = 0.
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Lemma 5.4. One has
S · P` = 0 + N1 + N2.

Moreover, p(P`) is smooth and P` ' P1 ⇥ P1, withOP`(1, 1) ' OP1⇥P1(2, 1).

Proof. The first assertion follows from Lemma 5.3(ii) and (5.1). Next assume
p(P`) is singular. Then it is a rank 3 cone of vertex e = p(N1) \ p(N2), and
e 2 � . But then the curve p�1

T (e) is contained in S \ P` as a proper component of
0, against the irreducibility of 0. Finally, since p(P`) is a smooth quadric, we have
OP`(0, 1) ' OP1⇥P1(1, 1). Hence, the isomorphism OP`(1, 1) ' OP1⇥P1(2, 1)
follows.

In the considerations so far, � , T and P� are fixed and independent of S,
whereas 0 depends on S and determines the line ` ⇢ P2 and thus the surface P`.
Actually, ` alone determines both P` and 0, as P` = p0�1

T (`) and 0 = P` \ P� . In
order to parametrize all Nikulin surfaces we will indeed let ` ⇢ P2 vary.

5.1. Rationality ofFN,ns
11

Fix any smooth rational normal cubic curve � ⇢ P3 and let pT : T ! P3 be the
blow-up along � with exceptional divisor P� . Then T ⇢ P2⇥ P3 and we denote as
before by p0

T : T ! P2 the first projection. Any line ` ⇢ P2 determines a surface
P` := p0�1(`) \ T 2 |OT (1, 0)| and a curve 0` := P` \ P� 2 |OP1⇥P1(1, 1)|,
which is smooth for general `.

Proposition 5.5. Let ` be general. Then a general member of |I0`/T (1, 2)| is
smooth and every smooth S 2 |I0`/T (1, 2)| is a non-standard Nikulin surface of
genus 11 polarized byOS(1, 2)(�0`).

Moreover, dim |I0`/T (1, 2)| = 12.

Proof. Consider the exact sequences of ideal sheaves

0 // IP� /T (1, 2) // I0`/T (1, 2) // OP� (1, 2)(�0`) // 0 (5.2)

and

0 // IP`/T (1, 2) // I0`/T (1, 2) // OP`(1, 2)(�0`) // 0. (5.3)

By (5.1) and Lemma 5.2 we have

IP� /T (1, 2) ' OT (2, 0) and IP`/T (1, 2) ' OT (0, 2), (5.4)

and by Lemmas 5.2, 5.3 and 5.4 we have

OP� (1, 2)(�0`) ' OP� (0, 2) ' OP1⇥P1(0, 6) (5.5)
OP`(1, 2)(�0`) ' OP`(2, 0) ' OP1⇥P1(2, 0). (5.6)
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Thus, either of (5.2) and (5.3) shows that I0`/T (1, 2) is globally generated. In par-
ticular, a general S 2 |I0`/T (1, 2)| is smooth and hence a K3 surface by adjunction.

From (5.2)-(5.6) one obtains that h0(I0`/T (1, 2)) = 13 and that the restriction
maps

⇢� :
�
�I0`/T (1, 2)

�
� �! 0` +

�
�OP� (0, 2)

�
� = 0` +

�
�OP1⇥P1(0, 6)

�
�

⇢` :
�
�I0`/T (1, 2)

�
� �! 0` +

�
�OP`(2, 0)

�
� = 0` +

�
�OP1⇥P1(2, 0)

�
�

are surjective. A general member of |OP� (0, 2)| and of |OP`(2, 0)| consists of 6
and 2 disjoint lines, respectively. Hence a general S 2 |I0`/T (1, 2)| contains a
configuration of 8 disjoint lines, say N1, . . . , N8, such that

0` + N1 + N2 = S · P` 2 |OS(1, 0)|
and 0` + N3 + · · · + N8 = S · P� 2 |OS(�1, 2)|

(5.7)

(using (5.1) and Lemma 5.2). By (5.7), we also get

20` + N1 + · · · + N8 2 |OS(0, 2)|,

whence N1 + · · · + N8 is divisible by 2 in Pic S. One easily checks that

OS(1, 2)(�0`) ⇠ OS(0, 2) + N1 + N2 ⇠ OS(2, 0) + N3 + · · · + N8

is a genus 11 polarization having zero intersection with all N1, . . . , N8. The fact
that S is of non-standard type is an immediate consequence of (5.7).

By the considerations at the beginning of the section, any smooth genus 11
Nikulin surface of nonstandard type is an element of |OT (1, 2)| and defines a
smooth 0` mapping 2 : 1 to a line ` on P2 under p. It moreover comes equipped
with 6 horizontal rational curves N3 [ · · · [ N8, and thus determines 6 points on � .

Lemma 5.6. Fix a general line ` ⇢ P2 and six general points p3, . . . , p8 on � . Let
Ni = P� \ p�1

T (pi ), i = 3, . . . , 8. Then dim |I0`+N3+···+N8/T (1, 2)| = 6.

Proof. The statement follows from the ideal sequence

0 �! IP� /T (1, 2) �! I0`+N3+···+N8/T (1, 2)
�! I0`+N3+···+N8/P� (1, 2) �! 0,

(5.8)

along with (5.4) and the fact that I0`+N3+···+N8/P� (1, 2) ' OP� by Lem-
ma 5.3.

We consider theP6-bundleP over (P2)_⇥Sym6(� ), whose fiber over the point
(`, p3 + · · · + p8) is the linear system |I0`+N3+···+N8/T (1, 2)| with Ni = P� \
p�1
T (pi ). Our construction provides a dominant rational moduli map

f : P //___ FN,ns
11 ,
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and the fibers are orbits of the group of automorphisms of T that fix the exceptional
divisor P� , namely, of the group of automorphisms of � ⇢ P3. In particular FN,ns

11
is birational to P/Aut(� ).

Theorem 5.7. The moduli space FN,ns
11 is rational.

Proof. Since there are no non-trivial automorphisms of P1 mapping a set of 6 gen-
eral points to itself, P/Aut(� ) is birational to a P6-bundle over

�
P2
�_

⇥
⇣
Sym6(� ))/Aut(� )

⌘
.

It is then enough to recall that Sym6(P1))/Aut(P1) is birational to the moduli space
M2 of genus 2 curves, which is known to be rational, cf. [10].

5.2. The fibre of the Prym-Nikulin map �ns11

The genus 11 case of Theorem 1.1 is a consequence of the following:

Lemma 5.8. Let (S,M, H) be a general member of FN,ns
11 . For any C 2 |H |,

the linear system |IC/T (1, 2)| is a pencil of nonisomorphic non-standard Nikulin
surfaces of genus 11.

Proof. The ideal sequence of C ⇢ S ⇢ T twisted byOT (1, 2) becomes

0 �! OT �! IC/T (1, 2) �! OS(0) �! 0, (5.9)

by Proposition 5.5. As a consequence, the 1-dimensional linear system |IC/T (1, 2)|
contains C [ 0 as its base locus and thus parametrizes Nikulin surfaces again by
Proposition 5.5. Let S0, S00 2 |IC/T (1, 2)| be two distinct points parametrizing
isomorphic Nikulin surfaces. Then there exists ↵ 2 Aut(T ) such that ↵(S0) = S00,
↵(0) = 0 and ↵(C) = C . In particular, such an ↵ would induce a non-trivial
automorphism of C . Note that the image of mN,ns

11 has dimension at least 22� 1 =
21, which is an upper bound for the dimension of any component of the locus in
M11 of curves with a non-trivial automorphism, cf. [3]. However, this bound is
reached only by the hyperelliptic locus and [C] does not lie in it as its Clifford
index is 4 by [11, Proposition 2.3].
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Università degli Studi Roma Tre
Largo San Leonardo Murialdo, 1
00146 Roma, Italia
margherita.lellichiesa@uniroma3.it
verra@mat.uniroma3.it


