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Moduli of non-standard Nikulin surfaces in low genus

ANDREAS LEOPOLD KNUTSEN, MARGHERITA LELLI-CHIESA
AND ALESSANDRO VERRA

Abstract. Primitively polarized genus g Nikulin surfaces (S, M, H) are of two
types, that we call standard and non-standard depending on whether the lattice
embedding Z[H] @& N C Pic S is primitive. Here H is the genus g polarization
and N is the Nikulin lattice. We concentrate on the non-standard case, which
only occurs in odd genus. In particular, we study the birational geometry of the
moduli space of non-standard Nikulin surfaces of genus g and prove its rationality
for g = 7,11 and the existence of a rational double cover of it when g = 9.
Furthermore, if (S, M, H) is general in the above moduli space and (C, M|¢) is
a general Prym curve in |H |, we determine the dimension of the family of non-
standard Nikulin surfaces of genus g containing (C, M|¢) for 3 < g < 11; this
completes the study of the Prym-Nikulin map initiated in [11].

Mathematics Subject Classification (2010): 14H10 (primary); 14E08, 14E25,
14H51, 14128, 14J50, 14M99, 14NO05 (secondary).

1. Introduction

A Nikulin surface is a K 3 surface endowed with a non-trivial double cover branched
along eight disjoint rational curves. Nikulin surfaces have attracted a lot of atten-
tion in recent time because of their relevance in the study of both the moduli [8]
and the syzygies [6,7] of Prym canonical curves. It is imperative to recall the lat-
tice theoretical proof by Sarti and van Geemen [18] of the existence of exactly two
types of polarized Nikulin surfaces, that we call standard and non-standard (cf.
Section 2), the latter occurring only in odd genera. There are coarse moduli spaces
fg % and fg "% parametrizing genus g primitively polarized Nikulin surfaces of
standard and non-standard type, respectively; more precisely, a point of .7-"? 5 (re-

spectively, F, ? %) represents a triple (S, M, H), where S is a standard (respectively,
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non-standard) Nikulin surface, H € Pic S is a genus g primitive polarization and
the line bundle M € Pic S defines the double cover branched along eight disjoint

rational curves. Both .7-"? ¥ and .7-"? "% are irreducible of dimension 11, cf. [4, Sec-
tion 3], [18, Proposition 2.3].

Up to now, only the moduli spaces F, ? ** have been extensively studied, while
non-standard Nikulin surfaces have not been adequately considered. This paper

aims to (partially) fill this gap. We concentrate on the P$-bundle over ,7-"? % par-
ametrizing pairs ((S, M, H), C) such that (S, M, H) € .7-"?’"5 and C € |H|. Let
73? ¥ be the open set of pairs such that C is smooth and let R be the moduli space
of Prym curves; we look at the diagram

R (1.1)
N,ns N,ns
I
8
ng,nS Rg Mg )

whose arrows can be described as follows: qu’"S and m?’"s are the obvious forgetful

maps. Moreover, the Prym-Nikulin map XZ,” sends ((S, M, H), C) to the Prym

"5 is just the composition of Xg' and the

curve (C, M ® O¢). In particular, m? s
forgetful map Ry — M,.

The main difference between the standard and non-standard case is that a gen-
eral hyperplane section of a general polarized Nikulin surface of standard type is
Brill-Noether general, while curves lying on non-standard Nikulin surfaces carry
two unexpected theta-characteristics (cf. Proposition 2.3) that make them special in
moduli. A first consequence is that the maps m?"” and x,* can never be dominant.
Furthermore, a heuristic count suggests that they cannot be generically finite for
g < 11, ¢f. Remark 2.11. In [11] we proved that the map ng is birational onto
its image for (odd) genus g > 13, and the behaviour of the analogous map in the
standard case was completely described. In this paper, we complete the picture by
showing that:

Theorem 1.1. The map x,* has generically:

9-dimensional fibers for g = 3;
6-dimensional fibers for g = 5;
4-dimensional fibers for g =1;
2-dimensional fibers for g = 9;
1-dimensional fibers for g = 11.

As already mentioned, hyperplane sections of non-standard Nikulin surfaces have
some peculiar and compelling properties, that we now describe in more detail. A
general genus g polarized non-standard Nikulin surface (S, M, H) carries two line
bundles R, R’ such that H(—M) >~ R ® R’. The restrictions of R and R’ to a
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general hyperplane section C € |H| are two theta-characteristics with positive di-
mensional spaces of global sections. For (odd) genus g > 5 both ho(Oc(R)) > 2
and h°(O¢(R’)) > 2 and hence the theta divisor of the Jacobian of C has two sin-
gular points of given multiplicity. We precisely describe the images of mlg\l"” for

g =3 and5, ¢f. Theorems 2.9 and 2.10:

— The image of m?’"s is the hyperelliptic locus in M3;
— The image of mSN’"S coincides with the locus of curves in M possessing two
autoresidual g)‘; in particular, this locus is irreducible.

For g > 7 the situation becomes more intricate and the birational geometry of the
moduli space F; ? "% is worth investigating. We prove:

Theorem 1.2. The moduli space fg S of non-standard Nikulin surfaces of genus
gis:

e Rational for g =T and g = 11;
e Unirational with a rational double cover for g = 9.

The proof of both Theorems 1.2 and 1.1 for g > 7 is given in Section 3-5 and
relies on the description of nice projective models of non-standard Nikulin surfaces
(S, M, H) in low genus. Set r := h°(R) — 1 and r' := hO(R’) — 1. As already
remarked by Garbagnati and Sarti in [9], the line bundles R and R’ enable to realize
S as a subvariety of the intersection of the Segre variety P’ x P" P+ 4" with
a linear space of dimension g — 2, namely, P(H 0(S, H(—M))V). We are able to
detect some geometric conditions that are also sufficient for such a subvariety of
(P x P") N IP$~2 to be a Nikulin surface of non-standard type.

For instance, a general non-standard Nikulin surface of genus 7 is a divisor
of bidegree (2, 3) in P! x P2, ¢f. [9, Section 4.8]. Furthermore, a K3 surface in
|Op1 «p2(2, 3)| is a Nikulin surface of non-standard type if and only if it contains
two conics A1 and Aj that are contracted by the first projection P! x P? — P! and
are mapped to the same plane conic by the second projection P! x P> — P2,

Analogously, a general surface in .7:5’"5 is a quadratic section of a Del Pezzo
threefold T := (P? x P?) NP7 ¢ P8, cf. [9, Section 4.9]. Moreover, an element
in |O7 (2, 2)| is a non-standard Nikulin surface if and only if it contains two sets of
four lines that are contracted by the first and second projection, respectively.

As regards genus 11, a general surface S in F ﬁ”” defines a divisor of type
(1,2) in the threefold 7" := (P? x P3) N P® ¢ P''. The projection 7/ — P3
realizes T’ as the blow-up of P? along a rational normal cubic curve y and we
denote by P, the exceptional divisor. The surface S intersects P, along a rational
quintic curve I' ¢ T’ C P? and in fact we show that the containment of T is a
necessary and sufficient condition for a surface in |O7/(1, 2)| to be a non-standard
Nikulin surface of genus 11. The rationality results in Theorem 1.2 will follow from
these characterizations.
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Concerning the fibers of the moduli map x,*, the case of genus 7 has some spe-

cial features. Let C C (P x P"") NP8~ be a general genus g Nikulin section in the
non-standard case. In genus 9 a general quadratic section of the threefold 7' contain-
ing C is a non-standard Nikulin surface; the same holds in genus 11 if one considers
in the threefold T’ a general divisor of type (1, 2) through C. The situation in genus
7 is divergent: a general K3 surface in the linear system |Z¢ p1,p2(2, 3)| is not a
Nikulin surface. This difference depends on the fact that, contrary to what happens
for g = 9, 11, in genus 7 the embedded curve C C P4~2 is not quadratically nor-
mal. As a relevant consequence, the image of x7* lies in the ramification locus of
the Prym map R7 — Ag, ¢f. Remark 3.5 and [2]. This suggests an interesting
behaviour of Nikulin sections with respect to their Prym varieties. In the standard
case this phenomenon was already pointed out in [8], where the image of Xé\l’s is
identified with the ramification locus of the Prym map R¢ — .As, but was still
unknown in the non-standard case.

2. Nikulin surfaces of non-standard type and Segre varieties

We recall some basic definitions and properties.

Definition 2.1. A polarized Nikulin surface of genus g > 2 is a triple (S, M, H)
such that S is a smooth K3 surface, Og(M), H € Pic S and the following condi-
tions are satisfied:

e S contains 8 mutually disjoint rational curves Ny, ..., Ng such that
Ny+---+ Ng ~2M;
e Hisnef, H> =2(g—1)and H - M =0.

We say that (S, M, H) is primitively polarized if in addition H is primitive in

Pic S.

Definition 2.2. Let (S, M, H) be a Nikulin surface of genus g. Its Nikulin lattice

N = N(S, M) is the rank 8 sublattice of Pic § generated by Ny, ..., Ng and M.
One also defines the rank 9 lattice

A=A(S,M,H):=Z[H]®, N C PicS.

If the embedding A C Pic S is primitive, we call (S, M, H) a Nikulin surface of
standard type, else we call it a Nikulin surface of non-standard type.

There are coarse moduli spaces F, ? % (respectively, F, ; %) parametrizing polarized
Nikulin surfaces of genus g of standard (respectively, non-standard) type. Both
.7:? * and .7-_? "% are irreducible of dimension 11 and their very general members
have Picard number nine, cf. [4, Section 3], [18, Proposition 2.3]. By [18, Propo-
sition 2.2], if (§, M, H) is a non-standard Nikulin surface of genus g, then g is
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odd and the embedding A C Pic § has index two. More precisely (cf. [9, Propo-
sition 2.1 and Corollary 2.1]), possibly after renumbering the curves N;, there are
R, R’ € Pic S such that:

e H—-— Ny — N, — N3 — N4y ~2Rand H— Ns — N¢ — N7 — Ng ~ 2R’ if
g =1 mod4;
e H— N —Ny~2Rand H — N3 —---— Ng ~ 2R’ if g =3 mod4.

Moreover, when rtk Pic § = 9, then Pic S ~ Z[R] & N by [9, Proposition 2.1 and
Corollary 2.1]. We also need to define the line bundle L := H — M, which satisfies
L>=2(g—3)and L-N; =1fori=1,...,8.

We henceforth concentrate on Nikulin surfaces of non-standard type.

First of all we show that hyperplane sections of non-standard Nikulin surfaces
are rather special.

Proposition 2.3. Let (S,M,H) be a general non-standard Nikulin surface of genus
g =1 mod4 (respectively, g = 3 mod4) and let L, R and R’ be as above. Then:

(i) R and R’ are globally generated with h' (R) = h'(R") =0 if g > 5;

(i) h°(L) = g — 1 and L is very ample if g > 7 and is ample and globally
generated defining a degree two morphism onto P! x P! ¢ P3 ifg = 5;

(iii) If g > 5, then for any smooth curve C in |H|, the line bundles O¢c(R) and
Oc (R') are theta-characteristics satisfying h°(S, R) = h°(C, Oc(R)) = (g+
3)/4 (respectively, (g + 5)/4) and h°(S, R") = h°(C, Oc(R")) = (g + 3)/4
(respectively, (g + 1)/4).

Proof. Since all properties are open in the moduli space, one may prove them for a
non-standard Nikulin surface with rk Pic § = 9. Then (i) is proved in [9, Proposition
3.5(2)] (recalling that a linear system on a K 3 surface without base components is
base point free) and (ii) in [9, Proposition 3.2 and Lemma 3.1], using the classical
numerical criteria of Saint-Donat [16]. As L? = 2(g — 3) > 0, we have h'(L) =
h2(L) = 0, whence h°(L) = g — 1 by Riemann-Roch.

To prove (iii) we note that R — H ~ —(R + N1+ N + N3 + Ny) (respectively,
—(R+ Ny + Ny)). Thus, hi°(R — H) = 0. Moreover, the linear system | R| contains
irreducible members thanks to (i), and hence |H — R| contains a divisor D that
is the union of an irreducible element in |R| and four rational irreducible tails. In
particular, one has h%(Op) = 1 and thus k' (R — H) = 0. The standard restriction
sequence yields 1°(S, R) = h%(C, O¢(R)) = 3 R* + 2 by Riemann-Roch and (i).
The rest then follows from an easy computation and the same argument applies
to R'. O

Remark 2.4. In the embedding § C P¢~2 defined by |L|, any smooth C in |H| is

mapped to a Prym-canonical curve, as L|¢c >~ wc ® O¢ (M) satisfies L|%92 ~ a)?2,

and all Ny, ..., Ng are mapped to lines.
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From now on, we will set 7 := h%(S, R)—1 andr’ := h"(S, R")—1. By Proposition
2.3, as soon as g > 7, the two linear systems |R’| and |R| (and their restrictions to
C) define an embedding

CcScP xP cprttr @2.1)

where the second inclusion is the Segre embedding.

Notation 2.5. We let p : P"' x P" — P’ and p' : P’ x P" — P’ be the two
projection maps. For any subvariety X C P” " x P, we denote by py and px the
restrictions to X of p’ and p, respectively. In particular, p; and pg are the maps
defined by |R’| and |R|, respectively.

We use the standard notation Op,  p- (a, b) := p’ *OIP’"’ (a) ® p*Opr (b), and

for any subvariety X C P" "x P, we set Oy (a,b) = Opy pr(a, b)|x and refer to
elements in the corresponding linear systems as divisors of bidegree (a, b) on X.

Definition 2.6. We say that a curve in P’ x IP" is vertical if it is contracted by p’
and horizontal if it is contracted by p.

Any line ¢ in P” " x IP" is either vertical or horizontal. If g =1 mod4, then:

e Ni,...,Nyarevertical,as Ny - R ' =---=Ns- R =0;
e N5, ..., Ngare horizontal,as Ns- R=--- = Ng- R =0.

If instead g = 3 mod4, then:

e Ni, N, are vertical,as Ny - R' = N> - R’ = 0;
e Nj3,..., Ngare horizontal,as N3- R =--- = Ng- R =0.

We will make use of the following:

Lemma 2.7. Let (S, M, H) be a general non-standard Nikulin surface of genus g
with5 < g < 15and let L, R and R’ be as above. Then the multiplication map

urg : H'(S,R)® H°(S, R') — H°(S. L)
is surjective. Furthermore, it is isomorphic to the multiplication map
. g0 0 / 0 /
Py - H(C,m) @ H(C, ') — H'(C,n®1),

where C is any smooth irreducible curve in |H| and n and n' are the restrictions to
C of the line bundles R and R’, respectively.

Proof. The properties are open in the moduli space, so we may assume that
tkPic S = 9. The surjectivity of wg g follows from the generalization by Mum-
ford of a theorem of Castelnuovo, cf. [13, Theorem 2, page 41] (recalling that the
assumption on ampleness is unnecessary) once we check that 2! (R — R’) = 0 and
h*(R —2R') = 0.
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We have 2(R — R’) ~ =Ny —--+ — Ny + Ns + - - - + Ng (respectively, —N| —
Ny + N3+ ---+ Ng)if g = 1 mod4 (respectively, g = 3 mod4). Hence,
(R —R)=h°(R"—R) =0. As (R — R")> = —4,one has h!(R — R') = 0.

We next prove that h>(R — 2R’) = h°(2QR’ — R) = 0. We treat the case
g = 1 mod4, leaving the other case to the reader, as it is very similar.

We have 2R'—R ~ R+Ni+---+N4—N5—---—Ng. Since N;-2R'—R) = —1
fori e {1,2,3,4},wehave i’ R’ — R) = h®(R — N5 —- - - — Ng). The assumption
on g implies that (R — N5 — - - - — Ng)? < —4. Hence,if R — N5 — --- — Ny is

effective, it has nonvanishing 4!, which by Ramanujam’s vanishing theorem [14,
Lemma 3] implies that it is not 1-connected. Hence, there is an effective nontrivial
decomposition R — N5 — --- — Ng ~ A+ B such that A- B < 0. Since Pic § >~
Z[R] @ N by [9, Proposition 2.1 and Corollary 2.1], we may write

8 8
1 1
A’VOtR-i-Ei:ElO(iNi and B’\'ﬂR-i-zi:E]ﬁiNi,

for integers «, B, o, B satisfying
a+p=1, a;+pi=0ifi € {1,2,3,4}and o; +8; = —21ifi € {5,6,7,8}. (2.2)

Effectivity requires that « > 0 and 8 > 0, so that we can without loss of generality
assume ¢ = 1 and B = 0. Therefore, B ~ %Z?:] Bi N; and effectivity requires
that all 8; > 0 and all B; are even. Write 8; = 2y; for integers y; > 0. Then
o = 2y ifi € {1,2,3,4}and o; = =2(y; + 1) if i € {5,6,7, 8}, so that
A~R-— Z?:l ViN; — 21825()/1' + 1)N;. Therefore,

4 8 8
(R =D viNi= ) i+ 1)Ni) Y vl
' i=5 i=1

i=1

A-B

4 8
Y@+ D42 v+ D).
i=1

i=5

Since at least one of the y; is strictly positive, we see that we get A - B > 3, a
contradiction.

As concerns the second statement, it is enough to remark that the line bundles
L — H,R — H and R’ — H all have vanishing 4° and h', which can be proved as
in the last part of the proof of Proposition 2.3. O

As a consequence, for g > 7 the embeddings C C S C P+ +" in (2.1)
factor through the embedding S C P8~ defined by |L|, and hence:

Ccsc (P xP)nps—2 cpr, 2.3)
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Remark 2.8. It is not a priori obvious that the intersection (P" x P") N P82 is
transversal. However, since F, ? " is irreducible, as soon as one shows the existence

of a non-standard Nikulin surface of genus g in some transversal intersection (P " x
IP") NP2, one gets the transversality statement for a general Nikulin surface in

N,ns
Fg.

The next two results prove Theorem 1.1 in genera 3 and 5.

Theorem 2.9. The image of m?’m coincides with the hyperelliptic locus in M. In

particular, a general fiber of m?’m has dimension 9.

Proof. Let (S, M, H) € .7-"? " and C € |H| be general. The restriction of the line

bundle R € PicSto C is a g%; in particular, the canonical map of C is a double
cover of a plane conic Ck branched along 8 points. Furthermore, the linear system
|H| on S defines a double cover gy : S — X C IP? of a cone X in P? branched
along a plane conic C» that is the image of the unique curve in |R’|, and a sextic Cg
that is the image of an irreducible curve in the linear system |H + R’| (cf. [9, 4.3]).
Note that C> - Cx = 2,Cg - Cx = 6 and that C, and Cg meet at the six points in X

that are images of the curves N3, ..., Ng. Furthermore, ¢z factors through
§s-5S5 w0 x, 2.4)
where [, is the second Hirzebruch surface (with a section Cy such that C?=-2

and class fiber denoted by f), the map ¢ is induced by the linear system |Cq + 2 f |
on [, the map 7 is a double cover branched along the inverse image of C, and Cg,
while c¢ is the contraction of N, ..., Ng. Note that (;r o ¢) "' (Cy) = N; U N,, and
¢*Cy € |Co + 2f| while ¢p*Cg € |3Co + 6 f].

It is not difficult to show that the desingularization S of any double cover S of
[F, branched along the union of a smooth irreducible curve C, € |Co + 2f| and a
smooth irreducible curve C¢ € |3Co + 6 f| is a Nikulin surface. Indeed, S is a K3
surface by, e.g.,[15, Theorem 2.2]; furthermore, S has eight disjoint rational curves,
two of which mapping to the section C¢ (call them N; and N>) and six arising as
exceptional divisors of the desingularization of S (call them Ns, ..., Ng), which
has six double points at the inverse images of C> N Cg. The line bundle H € Pic S
obtained as pullback of Cy + 2 f is a genus 3 polarization. We denote by R € Pic §
the pullback of f, and by R’ € Pic S the line bundle with a section vanishing at the
strict transform in S of the ramification curve 7' (C») C S. In particular, we have

H— Ny — Ny~ (moc)(Co+2f)— (mroc)*Co~ 2R. (2.5)

Setting M := H — R — R’, one easily checks that N| + - - - + Ng ~ 2M and hence
(S, M, H) is a genus 3 Nikulin surface of non-standard type by (2.5); it depends on
dim [Cp + 2 f| +dim [3Cy + 6 f| — dim Aut(F,) = 3 + 15 — 7 = 11 moduli.

We use this in order to prove that a general hyperelliptic curve of genus 3 lies
on a Nikulin surface of non-standard type. Let C be a general hyperelliptic curve
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of genus 3 and let Cx C P2 be the canonical image of C, which is a smooth plane
conic. We denote by x1, ..., xg the image in Ck of the eight Weierstrass points on
C and by X the cone in P* over Cg . The desingularization of X is then isomorphic
to I',. By abuse of notation, we still denote by the same name the inverse images

in [F, of the curve Cg and the points xy, ..., xg. It is then enough to remark that
both the linear systems [(Co 4+ 2f) ® Zy,+x,| and [(3Co + 6f) @ Lys4...4xg| are
nonempty and contain smooth members. O

Theorem 2.10. The map msN’"S has generically 6-dimensional fibers and its im-

age coincides with the locus of curves in Ms possessing two autoresidual g)l. In
particular, this locus is irreducible of dimension 10.

Proof. By [9, 4.6(b)], the nodal model of a Nikulin surface S of non-standard type
and genus 5 is the complete intersection in P5 of three quadrics Q1, Q2, Q3 such
that Q3 is smooth, while Q1 and Q> have rank 3 and disjoint singular loci.

Vice versa, we are going to show that the minimal desingularization of any
complete intersection S = Q1 N Q> N Q3 of three quadrics in P3 with the above
properties is automatically a Nikulin surface of non-standard type and genus 5. For
i = 1,2, let 7; be the plane vertex of Q;. The plane 7| (respectively, ) intersects
S at four nodes Py, ..., P4 (respectively, Ps, ... Pg). Letg : § — S be the minimal
desingularization of S and let N; = q_l(P,-) for 1 < i < 8. The line bundle
H := q*(O5(1)) is a genus 5 polarization on S. Up to a change of coordinates,

the quadrics Q1 and Q; have defining equations zgz; — Z% =0and z374 — Z% =0,

respectively; hence, 1 : z0 = z1 = 22 = 0and mp : 23 = z4 = z5 = 0. The
hyperplanes zo = 0 and z; = O generate a pencil of hyperplanes in P> all passing
through the points Py, ..., P4 and cutting out on § a curve with multiplicity two;

therefore, there exists a line bundle R € Pic S such that 2R ~ H — N; — Ny —
N3 — N4. Analogously, one shows the existence of a line bundle R’ € Pic S such
that 2R’ ~ H — N5 — Ng — N7 — Ng. Hence, S is a Nikulin surface of non-standard
type.

We are now ready to detect the image of mSN’”S . First of all, it is straightforward
that the line bundles R and R’ on a genus 5 Nikulin surface of non-standard type
cut out two autoresidual g i on a general hyperplane section. The other way around,
let us consider a genus 5 curve C possessing two autoresidual gi; these determine
two rank-3 quadrics ¢; and ¢, in P* containing the canonical image of C, ¢f. [1,
page 208]. Since any component of the locus in M s of curves with two autoresidual
gj has dimension at least 10, we can assume C not to be bielliptic; this ensures
that the singular lines of ¢; and g, do not intersect, cf. [1, Chapter VI, F]. Fix an
embedding P* C IP° and let Q; (respectively, Q>) be the cone over g (respectively
¢») with vertex a point P; (respectively, P») in P> \ P4; then, both Q; and Q> are
quadrics of rank 3 and one can choose the points P; and P so that their singular
loci are disjoint. It is easy to check that ho (P>, Zc /PS (2)) = 9 and a general quadric
Q3 containing C is smooth since C cannot be trigonal (c¢f. [1, Chapter VI, F]);
therefore, the surface S = Q1 N Q> N Q3 is the nodal model of a Nikulin surface



370 A.L.KNUTSEN, M. LELLI-CHIESA AND A. VERRA

of non-standard type. Furthermore, the fiber of m?’"s over [C] is parametrized by

P(HO(B%, T ps(2))/(Q1. 02)) = PP 0

The rest of the paper will focus on the cases g = 7,9, 11.

Remark 2.11. The following heuristic count shows that the expected dimension of
a general fiber of x gs for g = 7,9, 11 is the one obtained in Theorem 1.1.

When g = 7, a general hyperplane section C carries two theta-characteristics
with a space of global sections of dimension 3 and 2, respectively, by Proposi-
tion 2.3. The moduli spaces of such curves have codimensions 3 and 1, respec-
tively, in M, or R, by [17], thus one expects the target of x7'* to have dimension
18 — 3 — 1 = 14 and the fibers to have dimension 11 + 7 — 14 = 4.

When g = 9, a general hyperplane section C carries two theta-characteristics
with a 3-dimensional space of global sections, by Proposition 2.3. The moduli
spaces of such curves have codimension 3 in M, or R, by [17], thus one expects
the target of xg* to have dimension 24 —3—3 = 18 and the fibers to have dimension
114+9-18=2.

When g = 11, a general hyperplane section C carries two theta-characteristics
with 4 and 3 sections, respectively, by Proposition 2.3. The moduli spaces of such
curves have codimensions 6 and 3, respectively, in /\/lg or Ry, by [17], thus one
expects the target of x|} to have dimension 30 — 6 — 3 = 21 and the fibers to have
dimension 11 + 11 — 21 = 1.

3. The case of genus 7

Let (S, M, H) be a general primitively polarized Nikulin surface of non-standard
type of genus 7. Let L = H — M and

1 1
R"’E(H_NI_NZ) and R/NL—RNE(H—N3_..._N8)

be as in Section 2. By Proposition 2.3, the line bundle L defines an embedding
S c P and the embeddings in (2.3) are as follows:

S c P! x P2 c P,

Here |R| = |Og(0, 1)] is a net of genus 2 curves of degree R - L = 5 and |R'| =
|Os(1,0)] is a pencil of elliptic curves of degree R’ - L = 3. By the adjunction
formula, S € |Opi,p2(2, 3)I, cf. [9, Section 4.8]. We want to identify the locus
in |Op1 p2(2, 3)| parametrizing Nikulin surfaces of non-standard type. Since R’ -
N1 = R'- N, =0, two elements of |R’| split as N| + A; and N, + A;. In particular
A1, Ay are two disjoint conics in the embedding § C s, mapped into conics in
P2 by p,as R- A; = R - A, = 2. Furthermore, one can prove that A; and A;
are irreducible by specializing to the case where rk Pic S = 9 and proceeding as
in [9, proof of Proposition 3.5(2)].
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Lemma 3.1. We have p(Ay) = p(Aj).

Proof. Since Nj - R" = 1 and Nj - Ny = N; - No = 0 for j > 3, we have
Nj- A = Nj- Ay = 1for j > 3. It is then enough to note that the six points
zj = p(Nj), j = 3,..., 8, are distinct and belong to both the conics p(A;) and

p(A2). O
We call A; and A, the vertical conics of S.
Using the fact that R ~ Ny + Ay ~ Ny + Ay ~ %(H — N3 — -+ — Ng), we
obtain 2R’ ~ (N; + A1) + (N2 + Ay) ~ H — N3 — --- — Ng, whence
H~Ni+---4+ Ng+ A1 + A». 3.1

3.1. Rationality of .7-';] ons

Fix any smooth conic A C P2 and two disjoint vertical conics A1, Ay C P! x P2
such that p(A;) = p(A2) = A. The surface P! x A is of bidegree (0, 2) in P! x P2,
Consider the inclusion

|Z[P’1 x A/P1 xP? 2, 3)| - |IA1UA2/[P1 «p2 (2, 3)|

Proposition 3.2. A general member of |L,,4,/p1 xp2(2,3)| is smooth and every
smooth S € |y ya,/pxp2(2,3)| is a non-standard Nikulin surface of genus 7
polarized by Og(2,2)(—A; — Ay).

Moreover, dim [Z 5, p1 «p2(2, 3)| = 15 and dim [ Zp1, 4 p1p2(2, 3)| = 8.

Proof. The standard exact sequence
0——>Ipi oyt xP2 (2, 3) ——T g ,up, P xP2 (2, 3) ——TL 4, U4, /P A2 3) ——0
along with the isomorphisms Zpi, 4 p1 «p2 = Opip2(0, —2) and
T a,0mP1 x4 (2. 3) = Opi,p1(=2,0) @ Opi,p1 (2, 6) = Opi,p1 (0, 6)

proves the dimensional statements, the global generation of Z 4, /p1 xp2 (2, 3) and
the surjectivity of the restriction map of linear systems

P |Za0a,m 522, 3)] — (A1 U A2) + |Opi, 1 (0, 6)|.

Hence, a general S € |Z 4,4, /p1 xp2(2, 3)| is smooth and

S-(P' x A)=A; + Ay + N3+ - + Ng € |05(0,2)],

with N3, ..., Ng disjoint horizontal lines. At the same time, |Og(1, 0)] is a pencil
of elliptic curves of degree 3 on S such that Og(1,0) - A; = 0 fori = 1,2, and
hence contains two elements of the form N; + A; with N; a line for i = 1, 2.

Furthermore, N1 and N, are mutually disjoint, as well as disjoint from the other N
for j =3, ..., 8. Note that the divisor N; + --- + Ng € |Os(2,2)(—241 — 2A3)|
and thus is 2-divisible in Pic S. It is now straightforward that § satisfies the desired
properties; in particular, (3.1) implies that S is of non-standard type. O
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Two smooth elements in |Z4,4,/p1 xp2(2, 3)| are isomorphic if and only if
they are in the same orbit under the action of the stabilizer G of AU A3 in Aut(P! x
A). The group G is 4-dimensional, since it is the product of the stabilizer of two
points in P! and of the group Aut A. Hence the quotient 1Za,ua,/p1 xp2(2,3)1/G is
11-dimensional and we have a birational map

1 Zauas/pixp2(2,3)|/G — = = FN™.

Theorem 3.3. The moduli space .7:? " is rational.

Proof. The blow-up of P2:=|Z 4, /p1 2 (2,3)] along P := Zpi, 4 p1 2 (2, 3)]
isa P%-bundle 7 : P — P°. Let o € P°, then 7' (0) is a 9-dimensional linear
system generated by P® and by an element S € P> not containing P! x A. It is
useful to remark that then the base locus of 771 (0) is S - (P! x A) = A; + Ax +
Ny1+- - -+ N6, where the last six summands are the "horizontal’ lines in the surface
S.Letp/, : P! x A — A be the projection map. Since Ny + - - - + Nog € |O4(3)],
this yields an immediate identification

P® := |04(3)| = |Opi (6)],

under the linear isomorphism sending o to n := (p/A)*(Ngl +---4 Nys). Now it is
clear that G acts linearly on P and on P®. Furthermore, by Castelnuovo’s criterion,
IP%/G is a unirational surface, hence it is rational. To complete the proof it suffices
to show that /G is a P?-bundle over a nonempty open set of P/G. Let U C P°
be the open set of the degree six divisors n € | 4(3)| such that the stabilizer of n
in Aut A is trivial; this is nonempty since there are no non-trivial automorphisms
of P! mapping a set of 6 general points to itself. This immediately implies that,
whenever 0 € U, the stabilizer of 7~ !(0) in G is trivial: otherwise n would be
invariant under the action of some non-trivial y € G. Let Py be the restriction of
P to U. Since the stabilizer of 7 ~!(0) is trivial along U, it follows from Kempf’s
descent lemma, cf. [5], that Py; descends to a P-bundle Py;/G over U/G. This
implies the statement. ]

3.2. The fibre of the Prym-Nikulin map x;*

We start with a general point (S, M, H) in }"y "% and a general smooth C € |H|.
We still denote by A; and A; the two vertical conics of S.

Lemma 3.4. We have:

() BT ppip2(2,2)) = W' T ppr,p2 (2, 2)) = 1;
(i1) C is not quadratically normal in P>;
(i) h°(Zc p1p2 (2, 3)) = 6;
(iv) hO(ICUAIUAQ/IP’IX]PZ 2,3)) =4
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Proof. Ttem (i) follows from the exact sequence
0—> Zgpiyp2 = Opiyp2(=2, =3) —> L prypr —> Zcys = Os(=H) — 0
tensored by Opi, p2(2, 2) and the isomorphisms

OsQRL — H) ~ Og(H —2M) >~ Os(A| + Ay),

cf. (3.1). Item (ii) is an immediate consequence of (i).
Item (iii) follows from the above sequence tensored by Opi, p2(2, 3) and the
equality hO(S, R + A1 + A») = 5. Ttem (iv) follows similarly. ]

Remark 3.5. Lemma 3.4(ii) is of particular interest. Indeed, it implies that the
image of the moduli map x7° : 73? "% — Ry lies in the ramification locus of the
Prym map R7 — Ag, cf. [2].

Theorem 1.1 in genus 7 follows by detecting the locus D¢ in |Z¢ i p2(2, 3)| that
parametrizes Nikulin surfaces of non-standard type.

Theorem 3.6. The fibre of x7* : .7:;1 " — R7 over C is 4-dimensional.

Proof. We consider the 5-dimensional linear system |Z, /P X2 (2,3)], ¢f. Lemma
3.4(iii), along with its linear subsystem [Z¢ 4,44, /1 <52 (2, 3 C L p1 p2 (2, 3)],
which has dimension 3 and parametrizes Nikulin surfaces of non-standard type by
Lemma 3.4(iv) and Proposition 3.2.

We are going to show the existence of a one-dimensional family of such linear
subsystems, the union of which is a hypersurface D¢ in|Z /P! X2 (2,3)| parametriz-
ing Nikulin surfaces of non-standard type.

Lemma 3.4(i) yields that C C Y C P! x P2, where Y is integral of bidegree
(2,2). The linear system |Oy (1, 0)| is a ruling of conics on Y, and A, A, are in
this ruling, since C C Y and A; - C = 6. For each x € P! we denote by A, the
conic over the point x. Consider the map

P« |0y (1,0)] — |Op(2)],

sending Ay to pyAy. Since py : ¥ — P? has degree two, the map p, has degree
one or two. As p,A; = p«Az = A, it has degree two. Hence there exists an
involution ¢ : P! — P! such that PxAx = pxA,(x). Thus we have a fibration

De — P,

sending a surface S to the pair of conjugated points defined by its vertical con-
ics; in other words, the base P! is the quotient of |Oy (1, 0)| by the involution ¢
and the fiber over a point (x, ((x)) € P! is the 3-dimensional linear subsystem
1Za,0A,ucptxp2(2: 3)| C | Zcpiyp2(2, 3)|. Hence D is 4-dimensional.

It remains to show that the moduli map m¢ : D¢ --»+ .7:;\1 "% is generically

finite. This easily follows since there are finitely many automorphism of P! x P2
fixing C; indeed, any of them different from the identity would induce a non-trivial
automorphism of C itself. O
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4. The case of genus 9

Let (S, M, H) be a general primitively polarized Nikulin surface of non-standard
type of genus 9. Let L = H — M and

1
RNE(H—Nl—Nz—N3—N4)
1
and R/NL—RNE(H—N5—N6—N7—N8)

be as in Section 2. We have R> = R’> = 2 and R - R’ = 4. By Proposition 2.3,
the line bundle L defines an embedding S C P’ and |R| and | R’| are base point free
linear systems whose general member is a smooth, irreducible curve of genus 2. As
in (2.3), the embeddings C C S C IP7 thus factor as

sc (P xP)nP P,
We may assume that the intersection
7= (P x )P

is transversal (cf. Remark 2.8 and Proposition 4.3 below) and hence a sextic Del
Pezzo threefold. Since wy ~ Or(—2, —2), we have, by adjunction, cf. [9, Sec-
tion 4.9]:

Lemma 4.1. The surface S is the complete intersection in P? x P? of a hyperplane
section and of a quadratic section defined by a quadric Q:

S:QﬂIP7ﬂ<P2xP2)=QﬂTCIP’8.

The first and second projections p : § — P2 and ps : S — P? are double cover-
ings of P2, contracting the set of lines {Ny, ..., N4} and {Ns, ..., Ng}, respectively.

The line bundle
E:=H—N;—--— N, “.1)

plays a crucial role.

Lemma 4.2. The linear system |E| is an elliptic pencil on S. Furthermore, for any
F € |E|, we have:

(i) The maps p : F — P? and pr : F — P? are double coverings onto smooth
conics A’ and A, respectively;

(i) F=(A' x A)NP" c (P2 xP) NP =T;

(iii) The two surfaces Y' := (A’ x P2)NP7 and Y = (IP’2 x A) NP7 are minimal
sextic scrolls (isomorphic to P' x P') embedded in T such that F = Y' N'Y
and F is anticanonical in Y' and Y. Moreover, Ny U --- U Ny C Y’ and
NsU---UNg CY.
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Proof. Using the fact that rk Pic S = 9, it is easy to check that E is nef and prim-
itive, whence an elliptic pencil. Let F' € |E|. As ps has degree two, pF is either
birational or of degree two onto its image. In the former case the image would be a
quartic curve, as R - E = 4; however, p contracts N;,i = 1,2,3,4,and N; - E =2,
so the quartic would have four singular points, a contradiction. The same works for
P Hence, (i) is proved.

Letting A = p(F) and A" = p/(F), we have

Fc(axA)c(PxP)nP =T

Moreover, Ax A’ is the 2-Veronese embedding of P! x P! defined by |Opi1 . p1(2,2)].
Hence F is a hyperplane section of it, proving (ii). Property (iii) easily follows since
the projection p}, : Y' — A’ realizes Y as the P!-bundle P(Op1 (3) ® Opi1 (3)) over
A’ ~ P!, and similarly for Y. O

4.1. A rational parametrization of a double cover of .7-';] s

Let us fix a Del Pezzo threefold T := (IP’2 X IP’Z) NP7 c P8. Since T is smooth, the

restriction map Pic(P? xP?) — Pic T is an isomorphism by the Lefschetz Theorem,
whence T contains no plane. In particular, both projections p7. : T — P2 and pr :

T — P2 realize T as a P!-bundle over P2. We fix four vertical lines Ny, ..., N4
and four horizontal lines Ns, ..., Ng in T such that the points p’(N1), ..., p'(Ng)
are in general position, and the same for p(Ns), ... p(Ng).

Proposition 4.3. A general member of |Iy,u..ung/T(2,2)| is smooth and every
smooth S € |In,u...ung/T(2,2)| is a non-standard Nikulin surface of genus 9 po-
larized by Og(2,0)(N5 + - - - + Ng).

Moreover, dim |Zy,u...ung/7 (2, 2)| = 3.

Proof. Set

b= {p'(N1), ..., p'(Na)} and b:={p(Ns), ... p(Ns)},

and let A’ (respectively, A) be any smooth conic passing through &’ (respectively,
b). Define the following surfaces contained in 7':

Y i= (<P € |0r@,0)] and ¥ = (P? x A)F" € |07(0,2)], (42)

which are minimal sextic scrolls isomorphic to P! x P'. One easily verifies that
F := Y’ NY is anticanonical in both Y’ and Y and that Ny U --- U N4 C Y’ and
NsU---UNg C Y. More precisely,

Ni+--+ Ny € |0y(2,0)] = |Opipi (4,0)|

Ns+ -+ Ng € |Oy(0,2)] = |Opi p1 (0, 4)|.
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We have Zr,yruy =~ Zr;y' @ Zr/y. Tensoring by Oyyy/(2,2) and using the fact
that F' € |Oy/(0,2)| and F € |Oy (2, 0)| by (4.2), we get

Ir/yuy(2,2) = Oy (2,0) @ Oy(0,2) = Opi,pi (4,0) @ Opi,p1(0,4). (4.3)
We also have a short exact sequence
0 — Zywy7(2,2) ~Or — Ip/1(2,2) — Zp/yy(2,2) — 0,  (44)

where the isomorphism follows as Y U Y € |Or(2, 2)| by (4.2). From (4.3) and
(4.4) we get that Zr,7(2, 2) is globally generated and the restriction map of linear
systems

| Zr/7(2,2)| — (F + |0y (2,0)]) x (F 4 0y(0, 2)])

is surjective. Hence, there is a smooth S € |Zr,7(2, 2)| containing N1 U - - - U Ng,
and

S-Y =Ny +--+Nyg+ F €05(2,0)] 4.5)
S-Y=Ns+-+Ng+F €|0g(0,2). (4.6)

In particular, the divisor
Ni+---+ Ng € 105(2,2)(—2F)|

is 2-divisible in Pic §. It is then easy to see that S is a non-standard Nikulin surface
of genus 9 polarized by Og(2,0)(Ns + - - - + Ng).
Finally, the sequence

0——Zs/7(2,2) — Inu.UNg /T (2, 2) — TN u..UNg/5(2,2) —0
2

Or Os(2F)

2

yields 70(Z,u..ung/7(2. 2)) = 4. -

We obtain a nice parametrization of the moduli space .7-"31 % We fix four ver-
tical lines N1, ..., N4 in T, and observe that in the space of the Segre embedding
one has

(N1 U---U Ny) =P’

since Ni, ..., N4 are contained in a minimal sextic scroll Y/ ~ P! x P! < P’
defined as in the previous proof. It is clear that, up to the action of Aut T, we can
choose this set of four lines up to the ordering of its elements. Since these four
lines are spanning (T) = P’ and the automorphisms of T are the automorphisms



MODULI OF NON-STANDARD NIKULIN SURFACES IN LOW GENUS 377

of P? x P? fixing this IP7, the stabilizer of Ny U N, U N3 U Ny in Aut T coincides
with the stabilizer in Aut(P? x P?) of the same set. Recall that

Aut(P? x P?) ~ PGL(3) x PGL(3) x Z/2Z,

where the Z/27Z-factor is due to the involution interchanging the two factors of
P2 x P2. Fori = 1,...,4 we have N; = {o;} x £;, where 0o; = p/(N;) is a
point and ¢; = p(N;) is a line. The stabilizer of Ny U --- U N4 acts on the set
of pairs {(o1,¢1), ..., (04, €4)}. Hence the stabilizer is the diagonal embedding
S4 C S4 x S4. The action is the diagonal action: «(o;, ;) = (x(0;), x(€;)). We
define Ni_4 := {Ny, ..., N4} and choose a general set N5_g := {Ns, ..., Ng} of
four horizontal lines, or equivalently, four points in p(T) = P2. Then the moduli
space of pairs (N4, Ns._g) is precisely the quotient

(P2)4/S4,

where S4 C Aut T is the previous group of automorphisms. Hence it acts as above:
a(0,f) = (a(0), a(£)) and a (£, 0) = (a(£), a(0)). Thus we have:

Theorem 4.4. The quotient (P*)*/Sy4 is the 4-symmetric product of P* and hence
is rational.

For a general pair (N1234, Nsg78), with N1 4 fixed, the linear system
| Znyu..ung7(2,2)]

defines a IP3-bundle over (P?)*. This bundle descends to (P?)*/S,, thus implying
the following:

Theorem 4.5. The moduli space of fourtuples (S, M, H, N1334) is rational and a
N, ns
double cover of Fy .

4.2. The fibre of the Prym-Nikulin map x*

Let both (S, M, H) € fg’m and C € |H| be general. Let E be as in (4.1) and
recall Lemma 4.2. The genus 9 case of Theorem 1.1 is a consequence of the next
two results.

Lemma 4.6. We have
dim|Z¢/r(2,2)| = 2.

In particular, C is quadratically normal.

Proof. Fix any F € |E|. Since 2L ~ C+ F and T is projectively normal, the curve
C U F is the complete intersection in 7" of two quadratic sections. Therefore, we
have

R (ZcurT(2,2)) =2 and h' Zcur 72, 2)) = W2 Zcur/r(2,2)) =0. (4.7)
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We consider the standard exact sequence
0—Zcur/r(2,2)—Zc/7(2,2) ®Lr/7(2,2) — ZcnF/r(2,2) —> 0. (4.8)
Taking cohomology in (4.3) and (4.4) yields
R Zr7r2,2) =11 and h' Tr/7(2,2)) = W*Tr/r(2,2) =0.  (4.9)
This, together with the sequence
0 — Zr/1(2,2) — Zrnc/7(2,2) — Zpnc/r(2,2) ~ Op(2L — C) — 0,
and the fact that 2L — C ~ F and Op(F) >~ Op, yields
W Trac/r(2.2) = h’Tr/7(2,2) +h°(Op) = 12, (4.10)
Thus, the cohomology of (4.8) together with (4.7), (4.9) and (4.10) yields

W Tc/7(2,2) = 3.
The fact that C is quadratically normal is easily checked. O

Proposition 4.7. A general S’ € |Zc;7(2,2)| defines a point of .7:;\1 " and the
moduli map |Zc7(2,2)| --» .7-"51’"3 is generically injective.

Proof. As S-S’ ~ 2L on S, we have
S S=F+C€|0s(2,2)] 4.11)

for some F € |E|. Let Y/ and Y be as in Lemma 4.2(iii).
Using the fact that F is anticanonical on Y, it is not difficult to show that

S Y =N+ +N,+F € |0p2.2)]~ |Opi,p (6, 2)].
with N{, ..., N, four disjoint lines in |Op1 i (1, 0)|. Similarly, one shows that
S Y= Ng + -+ Né +F e |0y(2,2) ~ |O]P’1><IF’1 (2, 06)],

with NZ, ..., Ng four disjoint lines in |Op1,p1(0, 1)|. Hence S’ is a non-standard
Nikulin surface of genus 9 by Proposition 4.3.

We now show that the moduli map m¢ : |Z¢c;1(2,2)| --» fé\l’"s is generically
injective. Assume that mc(S") = mc(S”), for distinct §’, S” € |Z¢/7 (2, 2)|. Then
there exists & € Aut(7") such that «(S") = S”. In particular, such an o would fix C
and thus induce a non-trivial automorphism of C. This is a contradiction because
the image of mgl’"s has dimension at least 20 — 2 = 18, while the maximal dimen-
sion of a component of the locus in Mg of curves with a non-trivial automorphism
is2g —1=17,¢f [3]. O
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5. The case of genus 11

Let (S, M, H) be a general primitively polarized Nikulin surface of non-standard
type of genus 11. Let L = H — M, then we have as in Section 2

1 1
R~ (H =Ny =Ny and R’~L—R~§(H—N3—.--—N8).

By Proposition 2.3, the line bundle L defines an embedding S C P°. Moreover |R)|
and | R’| are base point free linear systems, respectively of dimensions 3 and 2, such

that R2 = 4, R?=2andR-R =5.The embedding § C P? factors as follows
ScC (IP’Z x IP3) NP c P,

where the inclusion P? x P3 < P! is the Segre embedding and P° is linearly
embedded. We may assume (cf. Remark 2.8 and Proposition 5.5 below) that the
intersection

7= (P2 x P}) NP’

is transversal, so that T is a smooth threefold with K7 ~ Or(—1, —2). Hence, by
the adjunction formula, § is a divisor of type (1, 2) in T and we can conclude as
follows.

Lemma 5.1. The surface S belongs to | — K7| and is a complete intersection in
P2 x P of three divisors, respectively of type (1, 1), (1, 1) and (1, 2).

Let (x,y) := (x0 : x1 : x2) X (o : y1 : y2 : y3) be coordinates on P2 x P3. The
equations of S in P2 x P can be written as

apxo + arxy + axxy = boxo + b1x1 + baxa = coxp + c1x1 + c2x2 =0,

where for i = 0, 1, 2 the coefficients @; and b; are linear forms while the ¢; are
quadratic forms in (yp : y1 : ¥2 : ¥3). The equations of T are

apxo + a1xq1 + axxy = boxg + bix; + baxy = 0.
The morphism p7 : T — P3 is birational and its inverse is described by
(y) = (a1b2 — azxby, azby — apbz, apby — arbo) x (yo : y1 : y2 : y3).

Equivalently, pr is the blow-up of the scheme y defined by the 2 x 2 minors of
ap ar a2
by by by |-

Since T is smooth, y is a smooth (rational normal cubic) curve. Let P, := p, ! (v)
be the exceptional divisor of p7.
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Lemma 5.2. We have P, € |Or(—1,2)| and P, ~ P! x P'. Under this identifi-
cation, Op, (0, 1) =~ Opi,p1(0,3) and Op,(1,0) =~ Opi,pi (1, 1).

Proof. We have
Or(Py) ~ or ® pi(wp) ~ Or(—1,-2) ® Or(0,4) ~ Or(-1,2).

As is well known, Ny/Pa ~ Opi(5) @ Opi(5), whence P, ~ P! x P!. Since
y C P3is a curve of degree 3, it follows that Opy 0, 1) =~ Opi,p1(0, 3). Finally,

we have
Opiyp1 (=2, =2) @ wp, = Op (K1 + Py) = Op,(=2,0),
whence Op, (1,0) = Opi,pi (1, 1). O
Lemma 5.3. We have
S-P,=T+N3+---+Ng,

where T is a smooth element of |Opy(1, 0)| = |Opi pi (1, )|. In particular, pf. is
a two to one map onto a line.
Moreover, ' has the following properties:

() T-N3=---=T-Ng=1landT -N; =T Ny =2;
(i) T+ N;+ N, ~ R'.

Proof. We know that N3, ..., Ng are contracted by pg, whence they are six dis-
joint fibres of pp, : P, — y. On the other hand, S € |O7(1,2)], hence its
restriction to P, belongs to |Opi,pi (1, 7)| by Lemma 5.2. This implies that I" €
|Op1yp1 (1, D] = |Op, (1, 0)], and it immediately follows that p" maps T" two to
one onto a line. If I' is not smooth, then it contains a fibre Ng of p P, But then
one can check (on §) that Ny is orthogonal to R, Ny, ..., Ng. Hence Pic S has rank
> 10, against the generality of S. The properties (i) and (ii) are easy to check. [

Consider the line £ := p’(T") and the surface
Po=p ) NT €10r1,0). 5.1

Let loxo + I1x1 + bhxy = 0 be the equation of £, with Iy, l;,l, € C. Then Py is
defined by

loxo + l1x1 4+ lhxy = agxg + a1x1 4+ axxy = boxg + b1x1 + brxr = 0.

The surface P is a P!-bundle over £ and p(P;) C P3 is a quadric through y defined
by the equation
lo h I
det| ap a1 a» | =0.
bo by by
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Lemma 5.4. One has
S-Pr=T+Ni+ Nz

Moreover, p(Py) is smooth and Py ~ P! x P!, with Op,(1,1) = Op1,p1 (2, 1).
Proof. The first assertion follows from Lemma 5.3(ii) and (5.1). Next assume

p(Pyg) is singular. Then it is a rank 3 cone of vertex e = p(Np) N p(N2), and
e € y. But then the curve p, Y(e) is contained in S N Py as a proper component of
", against the irreducibility of I". Finally, since p(P;) is a smooth quadric, we have
Op,(0,1) =~ Opiypi(1,1). Hence, the isomorphism Op,(1,1) =~ Opi p1(2, 1)
follows. O

In the considerations so far, y, T and P, are fixed and independent of S,
whereas I" depends on S and determines the line £ C P2 and thus the surface P;.
Actually, £ alone determines both Py and ", as Py = p’ }l(ﬁ) andI'= P, N P,.In
order to parametrize all Nikulin surfaces we will indeed let £ C IP? vary.

5.1. Rationality of Tﬂ’"s

Fix any smooth rational normal cubic curve y C P3 and let pr : T — P> be the
blow-up along y with exceptional divisor P, . Then T C P2 x IP? and we denote as
before by p7 : T — IP? the first projection. Any line £ C P? determines a surface

Py = p’_l(ﬂ) NT e |Or(1,0)] and a curve I'y := P, N P, € |Opi,pi (1, 1)],
which is smooth for general £.

Proposition 5.5. Let ¢ be general. Then a general member of |Ir,/r(1,2)]| is
smooth and every smooth S € |Ir,;7(1,2)| is a non-standard Nikulin surface of
genus 11 polarized by Og(1, 2)(—Ty).

Moreover, dim |Zr, /7 (1,2)| = 12.

Proof. Consider the exact sequences of ideal sheaves
0—=Zp,7(1,2) —=TIr,;7(1,2) —= Op, (1,2)(-=Ty) —=0 (52
and
0—Zpyr(1,2) —=TIryr(1,2) —= Op,(1,2)(-T¢) —=0. (5.3)
By (5.1) and Lemma 5.2 we have
Zp,r(1,2) = Or(2,0) and Zp,/r(1,2) = Or(0,2), (5.4)
and by Lemmas 5.2,5.3 and 5.4 we have

Op,(1,2)(=Tp) = Op,(0,2) =~ Opi,pi(0,6) (5.5)
Op,(1,2)(=T) ~ Op,2,0) =~ Opi, p1(2,0). (5.6)
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Thus, either of (5.2) and (5.3) shows that Zr,,7(1, 2) is globally generated. In par-
ticular, a general S € |Zr,,7 (1, 2)| is smooth and hence a K 3 surface by adjunction.
From (5.2)-(5.6) one obtains that hO(Irl ;7(1,2)) = 13 and that the restriction

maps
py [ Iryr(1,2)| — Te+|0p,0,2)] = T¢+ |Opi,pi (0, 6)]
pe: | Iryr(1,2)] — Ty+]0p,2,0)| = T+ |Opip1(2,0)]

are surjective. A general member of |(’)py (0,2)| and of |Op,(2,0)| consists of 6
and 2 disjoint lines, respectively. Hence a general S € |Zr,;7(1,2)| contains a
configuration of 8 disjoint lines, say Ny, ..., Ng, such that

e+ N +Ny=S8- P e|Os(1,0)]

5.7
and Ty +N3+---+Ng=S-P, € |0s(—1,2)| oD

(using (5.1) and Lemma 5.2). By (5.7), we also get
2T¢ + N1+ -+ Ng € |05(0, 2)],
whence N + - - - + Ng is divisible by 2 in Pic S. One easily checks that
Os(1,2)(—T¢) ~ Os5(0,2) + N; + N2 ~ Os(2,0) + N3+ --- + N3

is a genus 11 polarization having zero intersection with all Ny, ..., Ng. The fact
that S is of non-standard type is an immediate consequence of (5.7). O

By the considerations at the beginning of the section, any smooth genus 11
Nikulin surface of nonstandard type is an element of |Or(1,2)| and defines a
smooth I'y mapping 2 : 1 to a line £ on P2 under p. It moreover comes equipped
with 6 horizontal rational curves N3 U - - - U Ng, and thus determines 6 points on y .

Lemma 5.6. Fix a general line £ C P? and six general points p3, ..., pgony. Let
N =P, N p}l(pi), i =3,...,8. Then dim |Zr, 4y ny4..png/T (1, 2)| = 6.

Proof. The statement follows from the ideal sequence

0 — Zp,/7(1,2) —> Ir 4 Ny+tng/T(1, 2)

(5.8)
- IF5+N3+---+N3/PV(17 2) — 0,

along with (5.4) and the fact that Zr,4ns+..+ng/p,(1,2) =~ Op, by Lem-
ma 5.3. O

We consider the PO-bundle P over (P?)¥ x Sym®(y), whose fiber over the point
(¢, p3 + -+ + pg) is the linear system |Zr, 4 ny+...4ng/7 (1, 2)| With N; = P, N
Pr (pi). Our construction provides a dominant rational moduli map

f P >]:~ﬁ,nx’
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and the fibers are orbits of the group of automorphisms of 7 that fix the exceptional

divisor P, , namely, of the group of automorphisms of y C P3. In particular F; ﬁ’"s
is birational to P/ Aut(y).

Theorem 5.7. The moduli space fﬁ’"s is rational.

Proof. Since there are no non-trivial automorphisms of P! mapping a set of 6 gen-
eral points to itself, P/ Aut(y) is birational to a P°-bundle over

(B)" x (Sym())/ Aut(y)) .

It is then enough to recall that Sym6 (P"))/ Aut(P") is birational to the moduli space
M of genus 2 curves, which is known to be rational, ¢f. [10]. L]

5.2. The fibre of the Prym-Nikulin map x

The genus 11 case of Theorem 1.1 is a consequence of the following:

Lemma 5.8. Ler (S, M, H) be a general member of f}vl’"s. For any C € |H|,
the linear system |Zc,7(1,2)| is a pencil of nonisomorphic non-standard Nikulin
surfaces of genus 11.

Proof. The ideal sequence of C C S C T twisted by Or (1, 2) becomes
0— Or — I¢/r(1,2) — Os(I') — 0, (5.9)

by Proposition 5.5. As a consequence, the 1-dimensional linear system |Z¢ /7 (1, 2)|
contains C U I" as its base locus and thus parametrizes Nikulin surfaces again by
Proposition 5.5. Let S, S” € |Z¢;r(1,2)| be two distinct points parametrizing
isomorphic Nikulin surfaces. Then there exists o € Aut(7T) such that a(S") = S”,
o) = I' and «(C) = C. In particular, such an « would induce a non-trivial

automorphism of C. Note that the image of mll\ll’”s has dimension at least 22 — 1 =
21, which is an upper bound for the dimension of any component of the locus in
M of curves with a non-trivial automorphism, cf. [3]. However, this bound is
reached only by the hyperelliptic locus and [C] does not lie in it as its Clifford
index is 4 by [11, Proposition 2.3]. O
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