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A uniqueness result for functions with zero fine gradient
on quasiconnected and finely connected sets

ANDERS BJÖRN AND JANA BJÖRN

Abstract. We show that every Sobolev function in W1,p
loc (U) on a p-quasiopen

set U ⇢ Rn with a.e.-vanishing p-fine gradient is a.e.-constant if and only if
U is p-quasiconnected. To prove this we use the theory of Newtonian Sobolev
spaces on metric measure spaces, and obtain the corresponding equivalence also
for complete metric spaces equipped with a doubling measure supporting a p-
Poincaré inequality. On unweighted Rn , we also obtain the corresponding result
for p-finely open sets in terms of p-fine connectedness, using a deep result by
Latvala.

Mathematics Subject Classification (2010): 31C40 (primary); 31C45, 31E05,
46E35, 46E36 (secondary).

1. Introduction

One of the basic properties of derivatives and gradients is that they control the os-
cillation, so that every sufficiently nice function with vanishing gradient in an open
connected set must be constant therein. This is used in many proofs and holds in
rather general situations, such as for distributions (Hörmander [11, Theorem 3.1.4])
and Sobolev functions, including those on weighted Rn with a p-admissible mea-
sure (Heinonen-Kilpeläinen-Martio [10, Lemma 1.16]).

In this note we address a similar question on quasiopen and finely open sets
in the context of the corresponding Sobolev spaces. Such sets and spaces are fun-
damental in the fine potential theory as well as for fine properties of solutions of
various partial differential equations, see, e.g., Malý-Ziemer [14] and the references
therein. In fact, our main uniqueness result (Theorem 1.1) is used in the recent paper
Fusco-Mukherjee-Zhang [9] in connection with eigenvalue problems on quasiopen
sets; and it was a question by Fusco [8] on the validity of the implication (c)) (a)
in Theorem 1.1 that triggered this note.
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294 ANDERS BJÖRN AND JANA BJÖRN

We will be able to prove our results in the setting of metric spaces, under
the usual assumptions, but this is not the primary goal of this note. This general
approach demonstrates the strength of the metric space theory, since the proofs
below turn out to be very natural. In particular, arguments using upper gradients
and curve families play a crucial role. We will also rely on several recent results
from the fine potential theory on metric spaces.

Let 1 < p < 1. A set U ⇢ Rn is p-quasiopen if for every " > 0 there is
an open set G such that G [ U is open and Cp(G) < ", where Cp is the Sobolev
p-capacity associated with the Sobolev space W 1,p(Rn). (This can equivalently
be defined using various other related capacities.) The study of Sobolev spaces
and nonlinear partial differential equations on p-quasiopen sets was initiated by
Kilpeläinen and Malý in [12]; see the introductions in [4] and [5] for more on the
history.

The p-quasiopen sets are preserved under taking finite intersections and count-
able unions, but not under arbitrary unions. (For example, since points in Rn have
zero p-capacity, 1 < p  n, and are thus p-quasiopen, every set is a union of
p-quasiopen sets, but not all sets are p-quasiopen.)

Since the p-quasiopen sets do not form a topology, it is not completely obvi-
ous how to define p-quasiconnectedness, and there seem to be at least two natural
definitions. Following Fuglede [7, page 164] we say that a p-quasiopen set U is
p-quasiconnected if the only subsets ofU , that are both p-quasiopen and relatively
p-quasiclosed (i.e. their complement within U is also p-quasiopen), are the sets
with zero p-capacity and their complements (within U ). This definition was also
used by Adams-Lewis [1] in the nonlinear potential theory. Equivalently, U is p-
quasiconnected if it cannot be written as a union of two disjoint p-quasiopen sets
with positive p-capacity.

The p-quasiopen sets are closely related to p-finely open sets, which are de-
fined using the Wiener type integral (2.3) and form the coarsest topology making all
p-superharmonic functions continuous; called the p-fine topology. More precisely,
U is p-quasiopen if and only if it can be written as a union U = V [ E , where V
is p-finely open and Cp(E) = 0. Another recent characterization of p-quasiopen
sets is that they are precisely the p-path open sets, see Björn-Björn-Malý [6, Theo-
rem 1.1] and Shanmugalingam [15, Remark 3.5].

With this connection to p-finely open sets in mind it seems natural to say that
a p-quasiopen set U is weakly p-quasiconnected if it can be written as a union
U = V [ E , where Cp(E) = 0 and V is a p-finely connected p-finely open set
(i.e. connected in the p-fine topology). A consequence is that a p-finely open set is
p-finely connected if and only if it is weakly p-quasiconnected; the nontrivial “if”
part follows from Lemma 3.4.

The following is our main result.
Theorem 1.1. Assume that U ⇢ Rn is a p-quasiopen set in unweighted Rn . Then
the following are equivalent:

(a) If u 2 W 1,p
loc (U) and ru = 0 a.e., then there is a constant c such that u = c

a.e. in U ;
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(b) U is p-quasiconnected;
(c) U is weakly p-quasiconnected;
(d) If U = V [ E , where V is p-finely open and Cp(E) = 0, then V is p-finely

connected.

Here, W 1,p
loc (U) is the local Sobolev space defined by Kilpeläinen-Malý [12] for p-

quasiopen sets U , and ru is the p-fine gradient also introduced in [12]. On open
sets, these notions coincide with the usual Sobolev space and weak (or distribu-
tional) gradient, respectively.

If U is open and u 2 W 1,p
loc (U) with ru = 0 a.e., then it follows from the

p-Poincaré inequality (2.1) that u is locally a.e.-constant, and hence necessarily
a.e.-constant if and only if U is connected, i.e. (a) is equivalent to U being con-
nected in this case. (One direction of this is [10, Lemma 1.16].) Hence an open
set is connected if and only if it is p-quasiconnected. We thus recover Corollary 1
in Adams-Lewis [1] for first-order Sobolev spaces; which is the “only if” part of
this equivalence, and which they obtain also for higher-order Sobolev spaces in
unweighted Rn . Similar facts are true also in metric spaces.

To prove Theorem 1.1 we will use the theory of Newtonian Sobolev spaces on
metric measure spaces, including several recent results in the fine potential theory
on metric spaces. In fact, in general metric spaces (assuming the rather standard
assumptions of completeness, doubling and a p-Poincaré inequality), we show that
(a) , (b) , (d) ) (c). (The statement (a) needs to be slightly reformulated, see
Theorem 3.1.) On the other hand, the implication (c) ) (d) is equivalent to a
statement about p-fine connectedness, whose truth on unweighted Rn follows from
a deep result by Latvala [13]. We do not know whether Latvala’s result can be
generalized to metric spaces, or even to weighted Rn .

For p-finely open sets, (part of) Theorem 1.1 takes the following form.

Theorem 1.2. Assume that V ⇢ Rn is a p-finely open set in unweighted Rn . Then
the following are equivalent:

(a) If u 2 W 1,p
loc (V ) and ru = 0 a.e., then there is a constant c such that u = c

a.e. in V ;
(b) V is p-quasiconnected;
(c) V is p-finely connected.

On metric spaces we know that (a), (b)) (c), but whether (c)) (b) remains an
open question.

2. Preliminaries

To keep this note short, we follow the notation from Björn-Björn-Latvala [4], with-
out repeating all the discussion here; see [4] for more references. As usual, we
assume that 1 < p < 1 and that X is a complete metric space equipped with a
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doubling measure µ which supports a p-Poincaré inequality, i.e there are constants
C, � > 0 such that for all open balls B = B(x, r), we have

µ(2B)  Cµ(B)

and, setting uB =
R
B u dµ/µ(B),

1
µ(B)

Z

B
|u � uB | dµ  Cr

✓
1

µ(B)

Z

�B
gp dµ

◆1/p
(2.1)

holds for all integrable functions u on �B := B(x, �r) and their p-weak upper
gradients g. Here, g : X ! [0,1] is a p-weak upper gradient of u : X !
[�1,1] if for Modp-almost every curve � in X ,

|u(x) � u(y)| 
Z

�
g ds, (2.2)

where x and y are the end points of � and the left-hand side is interpreted as 1
whenever at least one of the terms therein is infinite. By “holding for Modp-almost
every curve � ” we mean that there is ⇢ 2 L p(X) such that

R
� ⇢ ds = 1 for

all � , where (2.2) fails. All curves considered here are nonconstant, compact and
rectifiable, and thus can be parameterized by arc length ds.

Having defined the p-weak upper gradients, the Newtonian Sobolev space
N1,p(X) is defined as the collection of all u 2 L p(X) having a p-weak upper
gradient g 2 L p(X). Every u 2 N1,p(X) has a minimal p-weak upper gradient gu
(well-defined up to sets of measure zero) such that gu  g a.e. for every p-weak
upper gradient g 2 L p(X) of u.

The space N1,p(U) is defined similarly for p-quasiopen U ⇢ X , but in that
case (2.2) is only required for Modp-almost every curve � within U . This is possi-
ble since p-quasiopen sets are measurable, by Björn-Björn [3, Lemma 9.3]. It was
shown in [3, Proposition 3.5] that if U is p-quasiopen then p-weak upper gradients
with respect to U coincide with those taken with respect to the whole space X .

Functions in N1,p(X) (and in N1,p(U) if U is p-quasiopen) are precisely de-
fined up to sets of zero p-capacity, which in turn is defined for an arbitrary E ⇢ X
as

Cp(E) = inf
u

Z

X

�
|u|p + gpu

�
dµ,

where the infimum is taken over all u 2 N1,p(X) such that u = 1 on E .
A set V ⇢ X is p-finely open if X \V is p-thin at every x 2 V , i.e., the Wiener

type integral

Z 1

0

✓capp(B(x, r) \ V, B(x, 2r))
capp(B(x, r), B(x, 2r))

◆1/(p�1) dr
r

< 1. (2.3)
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Here, the variational p-capacity capp is for bounded open A with Cp(X \ A) > 0
defined by

capp(E, A) = inf
u

Z

X
gu dµ,

with the infimum taken over all u 2 N1,p(X) such that �E  u  �A.
Since, under our assumptions, capp and Cp have the same zero sets, it follows

that p-fine openness is preserved under removing sets of zero p-capacity, as such
sets do not influence the Wiener type integral (2.3). This also shows that the com-
plement of a set of zero p-capacity is not p-thin at any x 2 X , so nonempty p-finely
open sets must have positive p-capacity.

Adding sets of zero p-capacity to p-finely open sets does not necessarily pre-
serve p-fine openness, but it produces p-quasiopen sets: By Theorem 1.4 (a) in
Björn-Björn-Latvala [5], a set U is p-quasiopen if and only if U = V [ E , where
V is p-finely open and Cp(E) = 0. Typically, this decomposition is not unique.

The p-finely open sets define the p-fine topology, and a p-finely open set U is
p-finely connected if it is connected in this topology, i.e., it cannot be written as a
disjoint union of nonempty p-finely open sets.

For p-quasiopen sets U , it is natural to define the local Newtonian Sobolev
space N1,pfine-loc(U), which consists of all functions u : U ! [�1,1] such that
u 2 N1,p(V ) for every p-finely open p-strict subset V b U . Here, V is a p-strict
subset of U if there is v 2 N1,p(X) such that �V  v  �U , or equivalently, if
capp(V,U) < 1. The space L pfine-loc(U) is defined similarly.

Every u 2 N1,pfine-loc(U) has a minimal p-weak upper gradient gu 2 L pfine-loc(U)
(well-defined up to sets of measure zero) such that gu  g a.e. for every p-weak
upper gradient g 2 L pfine-loc(U) of u, see Björn-Björn-Latvala [4, Section 5]. (The
results in [4] are for the even larger space N1,pquasi-loc(U), but can easily be adapted
to N1,pfine-loc(U).)

For p-quasiopen U ⇢ Rn , the spaces N1,p(U) and N1,pfine-loc(U) are essentially
the Sobolev spaces W 1,p(U) and W 1,p

loc (U), defined by Kilpeläinen-Malý [12], see
the discussion after Corollary 3.2 for more details. (We remark that the space
N1,pfine-loc(U) is more natural in fine potential theory than the smaller space N1,ploc (U)
consisting of those functions u such that for every x 2 U there is r > 0 such that
u 2 N1,p(U \ B(x, r)).)

Similarly to N1,p(U), also functions in N1,pfine-loc(U) are precisely defined up to
sets of p-capacity zero, as seen in the following lemma.

Lemma 2.1. Let U be p-quasiopen and u, v 2 N1,pfine-loc(U). If u = v a.e. in U ,
then u = v p-q.e. in U , i.e. Cp({x 2 U : u(x) 6= v(x)}) = 0.

Proof. Björn-Björn-Latvala [4, Theorem 4.4 ] shows that u and v are p-quasicon-
tinuous, both with respect to Cp and CU

p , where CU
p is obtained by regarding U as

a metric space in its own right. In Björn-Björn [2, Proposition 5.23] (applied to U )
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then implies that u = v CU
p -q.e., and thus also p-q.e., since Cp and CU

p have the
same zero sets (by Björn-Björn-Malý [6, Proposition 4.2]).

3. Proofs

To prove Theorem 1.1, we first obtain the following result in general metric spaces.

Theorem 3.1. LetU ⇢ X be a p-quasiopen set. Then the following are equivalent:

(i) If u 2 N1,pfine-loc(U) and gu = 0 a.e., then there is a constant c such that u = c
a.e. in U ;

(ii) U is p-quasiconnected;
(iii) If U = V [ E , where V is p-finely open and Cp(E) = 0, then V is p-finely

connected.

Note that in (iii), the p-fine connectedness should hold for every decomposition
of U . Latvala’s result (Theorem 3.3 below) shows that in unweighted Rn , it can
equivalently be assumed only for some decomposition U = V [ E ; we do not
know if this is true in metric spaces, nor in weighted Rn .

It follows from the proof below that the space N1,pfine-loc(U) in (i) can be replaced
by the smaller space N1,ploc (U), or even the smaller space consisting of those func-
tions u such that u 2 N1,p(U \ B) for every ball B ⇢ X (since �U1 2 N1,p(U \ B)

in that case). If U is bounded, then the space N1,p(U) can be used instead, but this
is not possible in general as can be seen by considering U = {(x1, x2) 2 Rn : x1 6=
0}, which is not p-quasiconnected and yet every u 2 N1,p(U) with gu = 0 a.e.
must be a.e.-constant.

In (i) it is equivalent to require that u = c p-q.e. in U by Lemma 2.1, while
(iii) can equivalently be formulated as follows: If Cp(E) = 0 and U \ E is p-finely
open, then U \ E is p-finely connected.

If a p-weak upper gradient of u is modified on a set of measure zero it remains
a p-weak upper gradient of u. In particular, the condition gu = 0 a.e. in (i) is
equivalent to requiring that zero is a p-weak upper gradient of u. We will use this
fact in the proof below.

Proof. ¬ (ii) ) ¬ (iii) By assumption, there is a p-quasiopen set U1 ⇢ U such
that U2 = U \ U1 is also p-quasiopen and in addition Cp(Uj ) > 0, j = 1, 2.
We can write Uj = Vj [ E j , where Vj is p-finely open and Cp(E j ) = 0. Then
Cp(Vj ) = Cp(Uj ) > 0, and thus Vj is nonempty, j = 1, 2. Letting V = V1 [ V2
and E = E1 [ E2 shows that (iii) fails.

¬ (iii) ) ¬ (ii) Let U = V [ E , where Cp(E) = 0 and V is a p-finely open
set which is not p-finely connected. Then V = V1[V2 for some nonempty disjoint
p-finely open sets V1 and V2. Since V2 [ E is p-quasiopen, V1 = U \ (V2 [ E)
is relatively p-quasiclosed within U , as well as p-quasiopen. As Cp(Vj ) > 0,
j = 1, 2, it follows that U is not p-quasiconnected.
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¬ (i)) ¬ (ii) Let u 2 N1,pfine-loc(U) be a function with gu = 0 a.e. and assume
that there is m 2 R such that Cp(U±) > 0, where

U+ = {x 2 U : u(x) > m} and U� = {x 2 U : u(x)  m}.

Since zero is a p-weak upper gradient of u, there are Modp-almost no rectifiable
curves starting in U+ and ending in U�. Hence zero is a p-weak upper gradient of
v = �U+ defined on U , and thus v 2 N1,pfine-loc(U).

By Björn-Björn-Latvala [4, Theorem 4.4], v is p-quasicontinuous. Hence the
level sets

�
x 2 U : v(x) > 1

2
 

= U+ and
�
x 2 U : v(x) < 1

2
 

= U�,

which together constitute U , are p-quasiopen, by Björn-Björn-Malý [6, Proposi-
tion 3.4]. Since Cp(U±) > 0, (ii) fails.

¬ (ii) ) ¬ (i) As U is not p-quasiconnected, it can be written as a union of
two disjoint p-quasiopen sets U1 and U2 with positive p-capacity. We shall show
that the characteristic function u = �U1 has zero as a p-weak upper gradient (within
U ), and consequently belongs to N1,pfine-loc(U). Since it is not p-q.e.-constant, and
thus not a.e.-constant either (by Lemma 2.1), this violates (i).

To see that zero is a p-weak upper gradient of u, it suffices to show that there
are Modp-almost no curves within U passing from U1 to U2. As U1 and U2 are
p-quasiopen, Shanmugalingam [15, Remark 3.5] implies that they are p-path open
(within U ), i.e. for Modp-almost every curve � : [0, l� ] ! U , the preimages
� �1(Uj ), j = 1, 2, are relatively open (and nonempty and disjoint) in

[0, l� ] = � �1(U1) [ � �1(U2).

But this is impossible, so there are no such curves.

The following direct consequence of the equivalence (ii) , (iii) in Theo-
rem 3.1 motivates our terminology.

Corollary 3.2. Every p-quasiopen p-quasiconnected set U ⇢ X is weakly p-
quasiconnected.

The following result about preserving p-fine connectedness was proved by Lat-
vala [13] in unweighted Rn , while it still remains open in more general situations
(including Rn with p-admissible weights).

Theorem 3.3 (Latvala [13, Theorem 1.1]). Let V ⇢ Rn (unweighted) be p-finely
open and p-finely connected, 1 < p  n. If Cp(E) = 0 then V \ E is also p-finely
connected (and p-finely open).

(A similar statement with p > n is trivial, since in that case the p-fine topology is
just the usual Euclidean one.) The converse implication is much easier and holds in
general metric spaces satisfying our assumptions:
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Lemma 3.4. Let V ⇢ X be p-finely open and assume that V \ E is p-finely con-
nected for some E with Cp(E) = 0. Then V is also p-finely connected.

Proof. Assume that V is not p-finely connected, i.e. it can be written as V = V1 [
V2, where V1 and V2 are nonempty disjoint p-finely open sets. In particular, they
have positive p-capacity. Then Vj \ E are also p-finely open and nonempty, so
V \ E = (V1 \ E) [ (V2 \ E) cannot be p-finely connected.

As already mentioned, the Newtonian Sobolev space N1,p is more precisely
defined than the traditional Sobolev spaces W 1,p on Rn . For a p-quasiopen set U
in unweighted Rn , the space denoted W 1,p

loc (U) in Kilpeläinen-Malý [12] coincides
with the space

bN1,pfine-loc(U) =
n
u : u = v a.e. for some v 2 N1,pfine-loc(U)

o
,

see Björn-Björn-Latvala [4, Theorem 5.7]. Similarly, functions in W 1,p(U) are a.e.
equal to functions from N1,p(U). Moreover, the modulus of the p-fine gradient
ru, introduced in [12], coincides a.e. with the minimal p-weak upper gradient gv

of v, i.e. gv = |ru| a.e., see [4, Theorems 5.3 and 5.7]. The situation is similar
in weighted Rn with a p-admissible weight, provided that ru stands for the cor-
responding weighted p-fine gradient; cf. the discussion in Heinonen-Kilpeläinen-
Martio [10, page 13]. Thus on unweighted and weighted Rn (with a p-admissible
weight), (i) in Theorem 3.1 is equivalent to (a) in Theorem 1.1. We are now ready
to prove our main result.

Proof of Theorem 1.1. (a) , (b) , (d) These equivalences follow from Theo-
rem 3.1, in view of the discussion above.

(b)) (c) This follows from Corollary 3.2.
¬ (d)) ¬ (c) By assumption,U = V[E , whereCp(E) = 0 and V is p-finely

open but not p-finely connected. LetU = V 0 [E 0 be any other decomposition ofU
into a p-finely open set V 0 and a set E 0 with Cp(E 0) = 0. Lemma 3.4 then implies
that V 0 \ (E [ E 0) = V \ (E [ E 0) is not p-finely connected. An application of
Latvala’s theorem 3.3 then shows that V 0 is not p-finely connected either, i.e. (c)
fails.
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[10] J. HEINONEN, T. KILPELÄINEN and O. MARTIO, “Nonlinear Potential Theory of Degen-
erate Elliptic Equations”, 2nd ed., Dover, Mineola, NY, 2006.
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