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Equivalence between radial solutions of different parabolic
gradient-diffusion equations and applications

MIKKO PARVIAINEN AND JUAN LUIS VAZQUEZ

Abstract. We consider a general form of a parabolic equation that generalizes
both the standard parabolic p-Laplace equation and the normalized version that
has been proposed in stochastic game theory. We establish an equivalence be-
tween this equation and the standard p-parabolic equation posed in a fictitious
space dimension, valid for radially symmetric solutions. This allows us to find
suitable explicit solutions for example of Barenblatt type, and as a consequence
we settle the exact asymptotic behaviour of the Cauchy problem even for non-
radial data. We also establish the asymptotic behaviour in a bounded domain.
Moreover, we use the explicit solutions to establish the parabolic Harnack’s in-
equality.

Mathematics Subject Classification (2010): 35K55 (primary); 49L25, 35B40,
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1. Introduction

In this paper we consider the following general version of the nonlinear parabolic
equation
du = ¢ |Dul* div (|Du|P~* Du), (1.1

with real parameters p > 1 and k > 1 — p, so that the homogeneity of the right-
hand side operator is always larger than 0. The constant ¢ > 0 does not play any
role for the given equation since it can be eliminated by a time scaling, but it could
be useful to play with when the exponents vary, mainly when p — oco. Formally
(1.1) is a nonlinear parabolic equation, possibly degenerate or singular; moreover,
for k # 0 the right-hand side is not a divergence-form operator. The equation gives
the usual p-parabolic equation and also the normalized p-parabolic equation, both
will be briefly described below as a way of motivating the general problem. Note
that for p = 2 we get equation d,u = |Dul|“ Au.
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We will discuss the initial-value problem in a bounded domain @ C R”, or
in the whole space R”, n > 2. Our main technical contribution is the reduction
of the general equation to the standard p-parabolic equation by an equation trans-
formation. The equivalence applies only to radially symmetric solutions but this
will be enough to find suitable special solutions of Barenblatt type. Moreover, this
helps us to settle the long-time behaviour of all solutions with continuous, bounded
and compactly supported initial data, as well as to establish the parabolic Harnack’s
inequality.

Standard parabolic p-Laplace equation The most popular model of evolution
equation of nonlinear diffusion type with gradient-dependent diffusivity is the so-
called parabolic p-Laplace equation (also known as p-parabolic equation for short):

du = Apu :=div (|Dul”~* Du).

It has been extensively studied for all values of the parameter p € (1, 00). We use
the notation Du(x, t) to denote the spatial gradient of functions u(x, t), x € R”,
n > 1,and t € R. Note that for p = 2 we recover the classical heat equation.
For p > 2 the diffusivity | Du|?~2 vanishes for Du = 0 and therefore this is called
degenerate or slow diffusion, while for 1 < p < 2 we have |DulP~? — oo as
| Du| — 0 and this is called singular or fast diffusion.

The parabolic p-Laplace equation has a large literature covering existence and
uniqueness of weak solutions for suitable initial and boundary data, for problems
posed in the whole space or in bounded domains. Also regularity, asymptotic be-
haviour, free boundaries and other issues have been studied, see for example the
monograph [24], and more recently [63,66]. These works use the theory of weak
solutions. Since equation (1.1) is in non-divergence form except in this particu-
lar special case, the solutions in this paper are understood in the viscosity sense,
see [21,34,53]. However, in the case of p-parabolic equation the notions of weak
and viscosity solution are equivalent for all p € (1, co) [42].

The limit cases Also the limit cases p = 1 and p = oo have attracted attention,
and have posed problems that help motivate our work. The case p = 1 is a model
for the so called total variation flow

. Du
oru = Aqu = div
| Dul|

and this equation appears for example in image processing, see [2]. However, there
is another model that involves the 1-Laplace operator, namely, the mean curvature
flow

. Du
oru = |Du| Au := |Du| div| — | ,
|Dul
which is very important in differential geometry [20,29], and in a number of ap-
plications, like crystal growth. Here we find a first case of occurrence of the non-
divergence factor | Du|“, with x = 1.
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The limit as p — oo posed another problem [41] and opened up another per-
spective. For a smooth p-harmonic function with nonvanishing gradient, a short
calculation shows that

" 0
Apu = |Du|P~? (Au +(-2 Z A 3iju) =0.
ij=1

—~ | Dul | Dul

This formula suggests that the factor | Du|”~2 could be disregarded (in this particu-
lar instance), and attention could be concentrated on the operator between parenthe-
ses. This can be made rigorous, since in the viscosity formulation of the p-Laplace
equation, we can disregard the test functions with vanishing gradient [42]. Further,
formally dividing by p and passing to the limit p — oo produces the normalized
or game theoretic version of the infinity Laplace operator

n

oju dju
ANu = 3 u .
=) \Dul [Du| 7"

i j=1

Next we observe that eliminating factors of the form |Du|” is not possible in the
evolution problem because of the presence of the left-hand side d;u. Therefore, the
standard version of the p-Laplace evolution equation can be written as

du = | Du|P2 (Au +(p— 2)Ag’ou) ,
and it is not equivalent to the modified equation
du=Au+ (p—2)ANu =: Agu. (1.2)

The new p-Laplace operator Ag u, called the normalized or game theoretic p-

Laplacian, can be seen as an interpolation between the standard Laplace and Aévo,
and has been proposed in stochastic game theory as explained below.

Viscosity solutions The works of Crandall, Evans, Giga, Ishii, Lions, Souganidis
and others established the theory of viscosity solutions and their connection to the
stochastic differential games and control theory in the early 80s. Recently, a connec-
tion between the theory of stochastic tug-of-war games and normalized p-Laplace
type equations
AQ’ u=f

has been investigated. In the elliptic case 1 < p < o0, this connection was discov-
ered in the works of Peres, Schramm, Sheffield and Wilson [54,55]. For p = 1,
see [19,46]. In the parabolic case, it was shown in [51] that solutions to (1.2) can
be obtained as limits of values of tug-of-war games with noise when the parameter
that controls the length of steps goes to zero. Solutions to equations of type (1.2)
remain solutions when multiplied by a constant, which can be a useful attribute in
applications to mathematical image processing [26,27]: then the brightness of the
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original image does not affect the evolution itself. Heuristically speaking, the value
of p in (1.2) controls the strength of the diffusion to the direction of sharp changes
(gradient direction) compared to the diffusion to other directions when processing
images using this evolution.

Recently, equation (1.2) has been studied for example by Banerjee and Garo-
falo [7, 8], Juutinen [40], Jin and Silvestre [38], Attouchi and Parviainen [4],
Ubostad [62], Berti and Magnanini [14] as well as A. Bjorn, J. Bjorn and Parvi-
ainen [17]. The general equation (1.1) can be badly singular and thus requires a
modification of the definition of viscosity solutions as in [53], see also [37] and [22].
cle -regularity for (1.1) was established by Imbert, Jin and Silvestre in [36].

Outline of the paper The above considerations motivate the study of the more gen-
eral form (1.1). In Section 2 we introduce a suitable concept of viscosity solution
taken from Ohnuma and Sato [53], and recall existence, uniqueness and comparison
results.

In Section 3 we present a transformation that works for radially symmetric
solutions and allows to reduce the general case of equation (1.1) to a version of
the known p-Laplace theory or its radial counterpart. Heuristically speaking, we
show that the solutions to the original problem can be interpreted as solutions to the
divergence form p-parabolic equation, but in an fictitious space dimension d given
by

d—1=@m-n<tr=-1 (1.3)
p—1
This is inspired by the works [56,57] about evolution flows driven by the infinity
Laplacian, where p = oo and d = 1. However, since d is not necessarily integer,
the rigorous connection for p < oo requires looking at a weighted 1-dimensional
divergence form equation, Definition 4.1, for which the connection is established in
Theorem 4.2.

The equivalence result then allows us to derive important explicit radial so-
lutions to (1.1) in the examples of Subsection 3.2: the exponential solutions, the
Barenblatt type solutions; and later in Section 6 we introduce the friendly giant
type solutions.

As an application, using Aleksandrov’s reflection principle and the scaling
properties of the Barenblatt solution, we show in Theorem 5.2 that the viscosity
solution to equation (1.1) behaves asymptotically like a Barenblatt solution of the
preceding p-Laplacian type. The precise statement and the proof are given in Sec-
tion 5. The result for the p-Laplace equation was due to [43] and improved in [48].

In Section 6 we consider the problem posed in a bounded domain with zero
boundary values. Again using an explicit solution that we call a friendly giant type
solution, we show that the viscosity solution asymptotically behaves like such a
solution, see the detailed statement in Theorem 6.5.

In Section 7, we establish Harnack type estimates. We use the Barenblatt type
solution for the expansion of positivity in the proof of Theorem 7.3. Combined
with the oscillation estimate Corollary 7.2, this yields the Harnack type estimate of
Theorem 7.3. The final appendix gathers a number of technical arguments.
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Notation and comments It is sometimes convenient to re-parametrize the general
equation (1.1) in the form

du = |Dul” (Au +(p— 2)Agvou) — |Du|?? (Au +(p- 2)A§u> L (4

wherey =k +p—2>—-landg =2+ y =« + p > 1. The valuexk =0
(y = p —2,q = p) indicates the standard parabolic p-Laplace equation, while
y = 0 corresponds to the parabolic flow driven by the normalized p-Laplacian. We
can also see equation as a particular case of the general form 8,u = F(Du, D*u)
for a certain F', but we will not go far into this extra generality.

Finally, we point out that the problem becomes trivial in one space dimen-
sion. Indeed, since then A ,u = (|uy P72 u)y, equation (1.1) reduces to a standard
parabolic g-Laplace equation with the exponent g = « + p:

du = lux|* Apu = (p—1/(qg — DAgu.

There is no need for a fictitious dimension in this case.

ACKNOWLEDGEMENTS. The work was partially done while both authors visited
Institut Mittag-Leffler in the fall of 2016 in the program “Interactions between Par-
tial Differential Equations & Functional Inequalities”.

2. Viscosity solutions

Let Q2 Cc R", n > 1, be an open bounded set, and ® C R"**1 an open set. We define
the cylinder Q27 = @ x (0, T') and its parabolic boundary

0,Qr = (2 x {0h) U@L x[0,T]). (2.1)

Moreover, we will use cylinders of the form Q; ¢(xo, to) = B (xp) X (to — 6, 1),
so that in particular Q, r¢(x0, f0) = B,(x0) X (to — r?, tp). When no confusion
arises, we may drop the reference point and write Q, .. For a cylinder in one space
dimension, we denote Qé’s(xo, to) = (|xol — &, [xo| +8) x (=68 + 10, to).

The definition of suitable viscosity solutions to (1.4) requires some care be-
cause the operator may be singular. Nonetheless, a definition that fits our needs can
be found in [53]. First set

F(Du, D) := |Dul ™ (Au+ (p —2)ANu) 22)
whenever Du # 0. We define F to be a set of functions f € C 2(]0, 00)) such that

f) = f©0)= f"(0)=0, f'(r) >0forallr >0,
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and moreover we require for g(x) := f(|x|) that

lim_F(Dg(x), D*g(x)) =0.

x—0,x#

Further, let

Y= {a € Cl(]R) : oiseven, 0(0) =0'(0) =0, ando(r) > O forall r # O}.

Definition 2.1. A function ¢ € C 2(©) is admissible if for any (xop, fp) € © with
Dy(xp, tg) = 0, there are § > 0, f € F and ¢ € ¥ such that

lo(x, 1) — @(xo, t0) — @ (x0, 10)(t — t0)| < f(x —x0l) + o — 19)

for all (x,t) € Bs(xp) x (tog — 8, tg + 3).
If Dy # 0, a C>-function is automatically admissible.

Definition 2.2. We say that ¢ touches u at (xg, #p) € ® from below if:

(1) u(xo, to) = @(xo, f0);
) u(x,t) > @(x,t) forall (x,t) € ® such that (x, t) # (xg, tp).

The definition for touching from above is analogous.

Definition 2.3. A function u : ® — R U {oo} is a viscosity supersolution to (1.4)
if:

(1) u is lower semicontinuous;
(i1) u is finite in a dense subset of ®;
(iii) For all admissible ¢ € C 2(®) touching u at (xg, tp) € ® from below

@1 (x0. 10) — F(Dg(x0. 10). D¢ (x0.10)) = 0 if Dep(xo. 10) # 0

@1 (x0,0) = 0 if Do(xo, o) = 0.
The definition of a subsolution # : ® — R U {—o0} is analogous except that we
require upper semicontinuity, touching from above, and we reverse the inequalities
above: in other words if —u is a viscosity supersolution. If a continuous function is
both a viscosity super- and subsolution, it is a viscosity solution.

It is shown in [42] that if ¢ = p > 1, then the above notion coincides with
the notion of p-super/subparabolic functions, having a direct connection to the dis-
tributional weak super/subsolutions as well. Moreover, if ¢ > 2, then viscosity
solutions can be defined in a standard way by using semicontinuous extensions,
see [34, Proposition 2.2.8].

The following comparison principle is proved in [53, Theorem 3.1].
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Theorem 2.4 (Comparison). Let Q2 be a bounded domain. Suppose that u is vis-
cosity supersolution and v is a viscosity subsolution in Qr . If

oo # limsup v(y,s) < liminf  u(y,s) # —o0
Qro(y,5)—(x,1) Qra(y,s)—=>(x,1)

Sforall (x,1) € 0,Q7, thenv < u in Q7.

Actually, the result is proved for the viscosity solutions of the more general form
d;u = F(Du, D*u) where F satisfies certain regularity and degenerate ellipticity
conditions, see [53, Section 2]. They apply in our case for p > 1 and g > 1.

This then implies the existence and uniqueness for the Cauchy problem for our
problem (1.4) by the Perron method [53, Theorem 4.9]. Below BUC refers to the
space of bounded and uniformly continuous functions.

Theorem 2.5 (Cauchy problem). Let ug € BUC (R"). Then there exists a unique
viscosity solution u in the class BUC (R" x [0, T)) to the problem

u, = F(Du, D*u) inR" x (0, T)
u(x,0) = uog(x) x e R,

For a bounded open 2 C R” with suitable regularity conditions a slight modifica-
tion of the Perron method also gives the existence of a unique viscosity solution to
the Dirichlet problem with continuous boundary values g (see [34, Theorem 2.4.9]).
Another approach is to approximate the problem with a smoother one and to prove
the existence then by passing to the limit. To be more precise, combining Theo-
rem 5.2 and 5.3, Lemma 5.4, Theorem 5.5 in [36], the following theorem holds for
Or =By x (0, 7).

Theorem 2.6 (Dirichlet problem). Let g € C(9, Q7). Then there exists a unique
viscosity solution u € C(Qr) to equation (1.4) posed in Qr such that u = g on

0,0r.

These solutions satisfy the C!-¢ interior regularity for equation (1.4) established by
Imbert, Jin and Silvestre in [36]. The Holder norm depends on the L*° bound of the
solutions and the domains.

3. Radial solutions. Reduction to fictitious dimension

In this section, we derive explicit radial solutions to (1.4) by a functional trans-
formation. For more clarity, we introduce the transformation using formal com-
putations. At the end of the section a theory of radial solutions is done using this
transformation and we verify that the obtained formal solutions are indeed viscosity
solutions.
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3.1. Introducing the problem in the fictitious dimension

Let u be a smooth solution to (1.4) which is radial with respect to the space variable,
and has a non-vanishing gradient for x # 0. With a slight abuse of notation, as
usual in the literature, we also use the same notation u to denote the solution in
radial coordinates, i.e. u(x,t) becomes u(r,t). Then, denoting by u, the radial
derivative, we have |Du(x, t)| = |u,(r, t)|, and

n—1
Au = uy +

U
Thus
u, = |Dul?~2 (Au +(p— 2)A&u)

n—1
= |ur|q_2 (urr + Tur +(p— 2)urr>

_ 3.1
— 092 (p — 1) (urr + Lu)
(p—Dr
I O (n—1)g — 1)
= g—1 |1y | ((q Duyr + (p—r ur) .

On the other hand, we can write the usual g-Laplacian for the smooth radial function
with a non-vanishing gradient in space dimension d as

Adu = div (|Dul?"* Du)
— |Duj9~2 (Au +(g— 2)A§’Ou)

(3.2)
- d—1
= |ur|q 2 ((61 = Duyr + Tur> s
where we recall that AN u = ) j %—Z‘% ;ju denotes the normalized infinity

Laplacian. Note that as long as we restrict to functions u(r, ¢), equations make
sense even if n and d are not integers. Comparing both formulas, and starting from
equation (3.1), we define the equivalent fictitious dimension d(n, p, g) as

d=

(n—l)(q—1)+1:(q—1)n+p—q_

33
b1 1 (3.3)
We may then write the radial equation in the form

p—1
q—1

Ur =

d—1
Juy 1972 ((q = Ditr + — u) : (34)
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which is formally the parabolic g-Laplace equation in d dimensions with the con-
stant, an equivalence that will lead to interesting conclusions. Some remarks first:

(i) This type of transformation was used in [56,57] when p = oo, butthend = 1
which makes things much easier. This is never the case here and we getd > 1
whenever p,g > 1 and n > 1;

(i1) We have

_(n=1D(q—-p)

= —p — .

Therefore, when g > p the fictitious dimension is larger than n, if ¢ < p then
d is less than n, and if p = g there is naturally no change. Conversely, given
d,n and p we can get the needed exponent change as g — p = (p — 1)(d —
n)/(n - 1);

(iii) The fictitious dimension may or may not be an integer. If d is an integer, then
(1.4) and (3.4) formally coincide in the case of the radial solutions with the
g-parabolic equation in d space dimensions u#; = A%y as shown by the above
computations. The equivalence of (1.4) and the 1-dimensional equation (3.4)
in the case of the radial solutions is discussed in Theorem 4.2;

(iv) If d is not an integer, the transformation still implies that u(r, t) satisfies a 1-
dimensional parabolic equation. This will be used below to construct examples
that will be quite useful in the sequel.

d—n

3.2. Examples

The transformation we have introduced is useful because it produces interesting
examples that we need later in the paper to settle the long-time behaviour of general
solutions, and to prove Harnack’s inequality.

Example 3.1. We consider the simplest case ¢ = 2 where the right-hand operator
has linear homogeneity, and look for source-type solutions, i.e., solutions that start
from initial data consisting of a singularity. The fictitious dimension is now

_ptn-=2
=

d > 1,

and we see that (3.1) just becomes the heat equation in (formal) dimension d, but
with the factor p — 1 in equation, which is absorbed into the time variable. From the
explicit fundamental solution of the heat equation, we derive the formal solutions

Ulx.t) =Ct3 I C 5 I 35)
x,t) = expl — | = TDexp|—-———1 . )
P\T3p -1y P\T3p -1

These are the solutions obtained in [7] to u; = Au + (p — 2)Aévou. In case d is not
an integer this is only formal, but it can be shown that they are viscosity solutions,
see Proposition 4.4.
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Example 3.2. For the other values g # 2, we get a different source-type solu-
tion that comes from the Barenblatt-type solution [10] of the standard parabolic
g-Laplace equation in d space dimensions. We will call the obtained solution a
modified Barenblatt solution. It is convenient to consider first the case ¢ > 2 cor-
responding to slow diffusion. The standard Barenblatt solution reads then

q—1
2 4 a/q=D\ =2
B4 (x,t;C) = t~4/* (c _17 45 (%) , (3.6)
q
+

where L = d(q — 2) + g, the constant C > 0 can be chosen freely, and (-);+ means
max{-, 0}. Notice the property of compact support, and this property only depends
on the condition g > 2.

Using the value (3.3) and doing the time rescaling we arrive at a formal expres-
sion for the source type solution of (1.4) of the form

Bq’d’p(r, t;C) = B4 (rel, P— t; C) and
-1 (3.7
BI4P(x, 1;.C) := BLTP (x|, 1; C)
where e; = (1,0,...,0). Sometimes we drop C, i.e., denote B24-P(r, t) and

B4-4:P(x, t) for simplicity.
The limit p — o0 can be taken in these examples, and it leads to the results
of [56,57] withd = 1.

Example 3.3. On the other hand, for 1 < ¢ < 2 we have a fast diffusion Barenblatt
solution if A remains positive, i.e., ford(qg —2) +¢g > 0, see [66, page 192], or [25].
Because of the sign change the formula is now

—1

4
B 2—q. 1 (x| q/(g=D\ 24
B4 (x, 1) = ¢4/ <C AT <_t1/,\ :

5

which defines the time rescaled version
B&4P(x, 1: C) (3.8)

similarly as in (3.7). The outcome in (3.7) is the same, but in this example the
solutions do not have compact support, they have instead a tail with power-rate
decay as |x| — oo.

Let us examine the admissible range for p and ¢ when ¢ < 2. We have to
impose the condition

(n—D(g—-1

A=d<q—2)+q=( -

+1)(q—2)+q>0,
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ie.,

2d
> —_—
d+1
which is equivalent to (n — 1)(2 —q) < 2(p — 1), i.e.,

q

2n < qn—1)+2p. 3.9

It follows that the range condition can be written as

(3.10)

1 if p>(+n)/2
T Vom=pyJn—1) ifl<p<+n)2

Observe that 1 < (2(n — p))/(n — 1) < 2 whenever 1 < p < (1 +n)/2.

Conservation laws (i) The change of dimension when g # p does not seem im-
portant in the given formulas, but it has consequences for the physical interpretation
as we will see below. Let us point out a very important fact: the standard Barenblatt
solution in dimension d obeys the mass conservation with respect to the Lebesgue
measure dx = dS dr, so that in radial coordinates we have

oo
/ Bq’d’p(r9 t)rd_ldr = C’ (311)
0

where C > 0 is a constant independent of time. We call this integral the d-mass.
Note that this fact is a consequence of the self-similar form of the Barenblatt solu-
tions with the self-similarity exponents given below.

Equation (1.4) is invariant under a scaling transformation of the form

Tu(x,t) = Au(Bx, Ct) (3.12)

for real parameters A, B, C > 0. This formula transforms solutions into solutions
if C = A972B4. This leaves two free parameters which can be conveniently used
in the theory.

The conservation of the d-mass above is a consequence of the fact that the
Barenblatt solutions obey the above type scaling invariance with the extra d-mass
condition A = B9, so that C = BY=29%4 je u(x,t) = BYu(Bx, B*).

(i) When we try to write this conservation law for the modified Barenblatt
solution with respect to the n-dimensional measure we get

o0
/ r® BEEP (e 1y rldr = C, (3.13)
0

which means conservation of the moment taken with respect to the standard Le-
besgue measure with the weight w(r) = r® where
_(n=D(q—-p)

p—1

o=d—n
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Initial singularity In the same vein, the calculation for the n-mass gives

d—n_  (=D(p—q)
A (p—D@G—-2)+q)

o
/ BLEPr )" dr =Ct7*, u=
0

In view of the fact that the Barenblatt solution for g > 2 has a support that shrinks
to the origin as t — 0, we conclude that the initial data is a Dirac delta only if
p = ¢q. If ¢ > p the initial mass tends to infinity (infinite mass singularity), if
q < p it tends to zero (a mild singularity).

Justification of the formulas The derivation of the Barenblatt solutions is well
known for integer space dimensions, and they are weak solutions of equation. We
need to justify that such claims hold when d is not an integer.

Here are the whole details of the formal pointwise computation of the solution.
We look for a non-negative radial self-similar solution. We propose the form

v = (B0 Fw (B0 77r)

where « and § are to be suitably fixed later, r, t > 0, and we assume that all the
derivatives below exist. We get

_a_ _1 1 _a 1 _1
vt(r,t)=—%(ﬁt) pw (o) ffr)—gwr) Fpn 7w (B 7r) B

= —(ﬂtf#(aw(R) + Rw'(R)),

1
where R := (Bt)” Pr. Moreover,

a+l
B

ve(r 1) = (B 7w (R), vy (1) = (ﬂt)_aTﬁwﬁ(R)-

Inserting this into v, = |v,[7972 ((g — Dv,r + dr;lv,) we obtain

— B (@w(R) + Rw'(R))

ekl q=2 a2, d—1 _atl
=|(Bt) * w(R)‘ ((q—l)(ﬁt) £ w (R)+T(/3t) B w(R)>

(a+D(g—2)

_ai2 _ - d—1
=" F eI W[ ((g — Dw(R) + Tw’(R)).

We may eliminate the time dependence by choosing ¢+ 8 = (¢ +2)+(a+1)(g—2)
ie, B=a(g—2)+q > 0,and we get

- d—1
—(@w(R) + Rw/(R)) = [w'(R)[*~* ((q = DHw"(R) + Tw’(R)) :
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Moreover,
—R'"(R%w(R)) = (|w’(R)|"‘2 w’(R)Rd_])/R]_d, (3.14)
where ()’ denotes the derivative with respect to R and we used
(Jw' R w/R)RI) R
= (sen@/ (R (g = 2 [0/ (R~ w" (Ryw'(R)R™!

3.15
+ [ R w (RIRI 4 [ (R)] 7 w/(R)d — DRI )R e

= |w'(R)|" ((q — DHw"(R) + u/(R)d%)

assuming w'(R) # 0; the vanishing gradient will need a special treatment later.
For the later use, we also remark that if w is extended through an even reflection
w(R) := w(—R), R < 0, then the above equation takes the form

. ! - d—1
(o' R|"2 w/RY [RI) IRI™ = |/ (R 2<<q—1>w”(R>+w’<R>T).

The choice o = d in (3.14) together with an integration gives

0= Rw(R) + [w' (R)|* > w'(R). (3.16)

A solution to this reads as

qg—2 4 \42
w(R) =K — Ra-T
q

and thus

g—1

— 4\ g2
- (o= ) ),
q t +

where C = 1794 =2/0-4=D)K and we recalled the earlier notation A = S from
(3.6). Finally, letting u(x, t) := v(x, S—jt) solves, at least formally at this point,
equation (3.4).

The presence of a free boundary where the regularity is limited for ¢ > 2 im-
plies that a proof is needed to show that it is indeed a viscosity solution of equation.
In Proposition 4.4 below we show that this is the case for all values of d > 1.
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Other examples Similar procedures can be applied to other families of explicit
solutions of the standard p-Laplace equation to produce new solutions of equation
(1.4). For instance, a simple solution that is sometimes used as a barrier is
u(x,t) =clat + x1 — b)gf’_l)/(p_Z)

with p > 2, an arbitrary a > 0 and a convenient ¢ = c(a, p), and any b € R.
This is a one-dimensional traveling wave directed along the x;-axis (for any other
direction we get a solution by rotation of this one). In this case, the corresponding
solution for equation (1.4) is given by the same formula with p replaced by ¢, and
we do not need any change of dimension. We will not exploit the last example
further in this paper.

4. Equation in 1-D. Basic results

The discussion of the last section motivates the study of the 1-dimensional parabolic
equation (3.4), i.e.

—1 _ d—1
Ur = P 7K 2 ((q — Duyr + ur) . 4.1)
qg—1 r

4.1. Recapitulation of the theory for integer d

Whenever d is an integer, equation (4.1) is just the standard g-Laplace equation in
R? for radial functions. Radial viscosity solutions of the original equation transform
into radial viscosity solutions of the d-dimensional g-Laplace equation, cf. the
estimate (A.2).

The theory of the standard d-dimensional g-Laplace equation is well-esta-
blished and for example the following holds:

(i) Given data ug € L°(2), where s € [1, 00) is any exponent there is a unique
weak solution of both problems (€2 bounded or RY), the set of solutions forms
a contraction semigroup in L*(£2), see [9,13,18,24,59];

(i) For bounded initial data, the solutions u are locally C¥ in space and time for
some @ € (0,1). Moreover, Du € C?fl / 2, [24]. Continuous data produce
continuous solutions up to the boundary in regular domains [16,24,45]. For
q > 2 all L*(2)-solutions, s > 1, are bounded; this is also true for 1 < g < 2
if g is not too small, g(d + 1) > 2d. However, we emphasize that viscosity
solutions are always continuous by definition;

(iii) For g > 2 we have finite speed of propagation. We formulate it in the simplest
form: if Q = R and the initial data are non-negative, bounded and supported
in a finite ball Bg,(0), then for all # > 0 the support of the solution u(:, ¢) is
contained in a finite ball of finite radius R(¢) and R(#) — oo ast — oo. The
support of the solution increases with time;
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(iv) On the contrary, for 1 < ¢ < 2 we have infinite speed of propagation: every
non-negative, continuous and bounded weak solution of the stated problems
defined in 2 x (0, T') will be either positive everywhere or identically zero for
each0 < ¢t < T. Actually, there is a time 7, > 0 such that u(x,t) > O for
everyx € Qand0 <t < T, andu(x,t) =0x € Qand T, <t < T. When
T, < T then T, is called the extinction time. It depends on the problem and
on the initial data. Note that for the Cauchy-Dirichlet problem in a bounded
domain with zero lateral boundary data we may take 7 = oo and 7, is always
finite. On the other hand, for the Cauchy Problem in R? we may take 7 = oo
(global solutions) and finite time extinction depends on ¢ and the class of data.
Thus, if ug € L'(R?), then T, (up) is finite whenever | < ¢ < 2d/(d + 1),
while for 2 > ¢ > 2d/(d + 1) the conservation of mass holds. See more for
example [66, Chapter 11] or [24, Chapter 7].

4.2. The case of non-integer d

Here we will establish the basic facts that will allow us to work with the transfor-
mations of the viscosity solutions of equation (1.4). We will choose to present the
details for the Cauchy-Dirichlet problem with continuous initial data. Below use
the notation dz := |r|*~! dr dt, the natural parabolic measure for this problem.

Definition 4.1. Let0 < 7T <ocand 0 < R < oo. A functionu € C((—R, R) x
(0, T)) such that u, € C((—R, R) x (0,T)),u,(0,t) = 0 is a continuous weak
solution to (3.4) if

—1
/ ug;dz = p— Iurlq_2 Ur@r dz
(—=R,R)x(0,T) q— 1 J—r,R)x0,T)

for all ¢ € Cgo((—R, R) x (0,T)). To get the definition of a continuous weak
subsolution, we replace equality by > and test with ¢ > 0. The definition for a
continuous weak supersolution is analogous except the inequality is reversed.

Above we have taken the rather strong regularity assumption for convenience, since
the corresponding viscosity solutions are even in C'* and this will be the context
where we use the definition. Let us also remind that in the equivalence theorems
below we consider radial, and in the asymptotic results in the whole R”, we assume
boundedness.

Next we observe that the radial viscosity solutions of Section 2 and the 1-
dimensional continuous weak solutions we have introduced are the same. Observe
that since we assume in the next theorem that the function is radial and necessarily
ur(0, t) = 0, then we have even function with respect to r.

Theorem 4.2. Letu € C(Q7), Or = B x (0,T), B C R",0 < R < 00, be
a continuous radial function, and ¢ > 1. Then u is a viscosity solution to (1.4)
in n-dimensions if and only if v(r, t) := u(rey,t), r € (—R, R), is 1-dimensional
weak solution to (3.4) according to Definition 4.1.
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We have decided to postpone the proof of this result to the appendix, see Proposi-
tions A.3 and A 4, to give precedence to the asymptotic results in Section 5.

Remark 4.3.

@

(ii)

In case d is an integer, similarly it holds that the radial viscosity solutions in
n-dimensions to (1.4),i.e.

u, = |Du|?> (Au +(p— 2)Af§’ou>

are equivalent to the radial weak solutions to the parabolic g-Laplacian in d-
dimensions

A similar equivalence result also holds in the time independent case: Let u €
C(BR), Bk C R",0 < R < o0, be a continuous radial function, g, p > 1,
and f radial as well as continuous up to the boundary. Then u is a viscosity
solution to

|Dul12 (Au +(p— 2)Agvou) —f 42)

in n-dimensions if and only if v(r) := u(rey), r € (—R, R), is 1-dimensional
weak solution to

_ p—1 _ _
/ folrl4="dr = —“— lur 1972 up gy 127" dr,
(=R.R) q—1Jr.pr

for all ¢ € Cj°((—R, R)). If d happens to be an integer, then in the radial
case the viscosity solutions are equivalent with the weak solutions to equation

p—1 4 _
ﬁAqM—f

where AZ denotes the standard g-Laplacian in d-dimensions.

Above we require for example u € C((—R, R)), u, € C((—R, R)), u,(0,7) =0
in the weak definition. The C!“-regularity for viscosity solutions of (6.6) was
proven in [15] in the radial case; for the general case see [6].

We now state a very remarkable property of this equation, in line with what was
said for the Barenblatt solutions.
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Conservation law By Theorem 4.2 radial viscosity solutions of the original equa-
tion (1.4) coincide with the 1-dimensional solutions of the divergence form equation
with weights and thus have a conservation of mass property in the fictitious dimen-
siond,i.e.,

o0
/ u(r, t)rd*1 dr
0

is constant in time for all # > 0 under a suitable global condition. It is well known
that the conservation of mass fails even for the heat equation without a global con-
dition, e.g., exponential growth bound. Here, d need not be an integer. We do not
know of any conservation law of this type for general nonradial viscosity solutions.

The conservation law also holds in the singular range ¢ < 2 as long as the
range condition (3.10), i.e. ¢ > 2d/(d + 1) and a suitable global condition holds.
Indeed, the proof in [30] also holds for our 1-dimensional equation. For the standard
g-Laplacian g > 2, see [24, Chapter 7].

4.3. Back to the Barenblatt solutions

From Theorem 4.2 it follows that the explicit solutions given in Subsection 3.2 are
viscosity solutions.

Proposition 4.4. The function BY4P in (3.7) is a viscosity solution to (1.4) in
R" x (0, 00) for g > 2, and so is (3.8) whenever q < 2 and the range condition
(3.10) holds. If g = 2 and p > 1, then a viscosity solution is given by (3.5).

Proof. By Theorem 4.2, it suffices to show that the solutions in the statement are
weak solutions according to Definition 4.1. Also observe that the definition of vis-
cosity solutions still applies since it is of local nature, and thus the initial singularity
is not a problem.

Case q = 2: First, since (3.5) is a smooth classical solution to (3.4), then this is
immediate in the case g = 2.

Case q # 2: Set

] q—2 L q/(g—1)
A(r,t) = C—T)\. q<t17) .

If A(r, Z%}t) #0,t >0, r #0,then B24-P is a classical solutions to (3.4) by
construction and thus weak, and if » = 0 then (89°¢:P),(r,t) = 0 and one can
directly verify the weak definition at the vicinity of » = 0.

Moreover, if A(r, g—jt) =0, t > 0, then (B49:4P), and (39:4'P), are contin-
uous and one can again directly verify the definition of the weak solution.

By Theorem 4.2, it suffices to show that (3.7) or (3.5) are weak solutions ac-
cording to Definition 4.1. O
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For completeness, we also give a more direct proof using the definition of
viscosity solutions.

A second proof of Proposition 4.4. We consider (xg, o) € R" x (0, 00).
Case g > 2: Let

g-2 4 x| \¢/@—D
A()C,t) = q —ATq <m> .

If xo # 0 and A(xo, to) # 0, then B?¢P immediately satisfies the defini-
tion of a viscosity solutlon by the calculations in the examples of Subsection 3.2,
since either DBY%P(xg, 1)) # 0 or B4 is identically zero in the neighbor-
hood of the point (xg, 79). Indeed, let ¢ touch B4-4-P from below at (xo, f9) where
DB?4P(xg,19) # 0. Then observe that Dp(xo, f0) = DB?%P(xg, 1), and
D?¢(xo, 19) < D*B4%P(xo, tp). Thus

F(Dg, D*¢) < F(DB4P, D*B44P) = 3, B4 = ;0.
If xog = 0, then it holds that
lim F(DBP(x, 19),D*B1P (x,1)) = 8 3197 (0, 19)

0#£x—0
d I\ p =1
J— J— q7
=——< ) P~ ci= <o.

qg—1 qg—1

There is no admissible test function from below, cf. [53, Section 5]. Hence
the supersolution property is automatically satisfied. On the other hand, since
8, B2-4:1 (0, 1p) < 0, then any admissible test function from above satisfies the defi-

nition of a Viscosity subsolution.

If A(xo, to) = 0 (i.e. we are at the free boundary), then since Z—; -1 =

q%Z > 0, it follows that

DBYP (xo, t9) = 0 = 8,B9%P (x0, 10).

Thus for any test function ¢ touching u at (xg, fg) it holds that d;¢p(xg, #9) = 0 and
thus the definition of a viscosity solution is satisfied.

Case q < 2:First we observe that in this case A (xo, 2= = to) >0,and DB?%P (xq, 1) #

0 if xo # 0. In this case the Barenblatt solution is also classical, and the above
argument holds verbatim. Also the case xop = 0 can be treated exactly as above.

Case g = 2: The solution (3.5)

2
Ux,1) =C1~% exp (—L)
4(p—
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is smooth and has nonzero gradient whenever xo 7 0. In this case for any test
function ¢ touching U at (xg, fg) from below

g (x0, 10) = U (x0, t0) = F (DU (x0. to), D*U (x0. 1))
> F (Do (xo. to), D*p(x0. ).

The case of touching from above is similar. If xg = 0, then again

lim F(DU(x, 1), D*U(x, tg)) = 8U(0,19) <0
0#x—0

and there is no test function from below. When testing from above, we always
have 9;¢(0,17) = 9,U(0, 1) < 0, and the definition of the viscosity solution is
automatically satisfied. O

5. Asymptotic behaviour in the whole space

We will now proceed with the study of the long time behaviour. We will establish
the asymptotic behaviour of the viscosity solutions of the general equation (1.4) in
two typical situations: the initial-value problem in the whole space, and the Cauchy-
Dirichlet problem with the zero lateral boundary data posed in a bounded domain.
We point out that the techniques can be applied to other situations as well.

5.1. Size estimates

We consider first the initial-value problem to equation (1.4) posed in R” and F' is
given by (2.2)

u, = F(Du, D*u) inR" x (0, T) 5.1)

u(x,0) = up(x) x €R", 0 <uge Co(R"),ug #0, '
with bounded and continuous solutions in the viscosity sense. Co(IR") denotes the
space of continuous, compactly supported functions. By Theorem 2.5 we know that
this problem has a unique viscosity solution.

We want to obtain first a rough estimate of the size of the solutions, and also
the free boundaries when g > 2. A direct comparison with the explicit solutions
constructed in Section 3 produces a first bound on the solutions. These estimates
are correct for all large times up to constant factors in view of the sharper results to
follow.

Theorem 5.1. Let u be a viscosity solution to the Cauchy problem (5.1) and sup-
pose that the range condition (3.10) holds.

(i) There are constants C, t1 > 0 such that

ux,t) <B4P(xt+1;C) xeR" t>0; (5.2)
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(i) There are constants C1, t; > 0 such that
u(x,t) > BrP(x,t+1;C1)  xeR, t>1>0; (53)
(iii) This means that for large times

_ d 1
”l/l(‘, t)”OO ~1 Ol’ o= -

S (5.4)
Ao q—2+(q/d)

where d = (n(q — 1) + p — q)/(p — 1) is the fictitious dimension, . =
d(g —2) + q, C1 depends on the initial data, and ~ means up to a constant;

(iv) Moreover, when q > 2 the support of the solution will be contained for large
times in a ball of radius

1
0 oy L — (5.5)
d dq-2+q

while for g < 2 the solution decays as |x| — oo like
u(x, 1) < C@)lx| =170, (5.6)
where C(t) is a given function of t.

Proof.

Case g > 2: Since ug € Co(R"),0 # ug > 0, we have Barenblatt type solutions as
in (3.7) denoted by B;(x, 1) := BY4P(x — xo,t + 1; Cp), By (x, 1) := B4%P (x —
x0,t + 1; C,) (lower, upper) such that

Bi(x,0) < uo(x) = Bu(x, 0).

From the comparison principle, Theorem 2.4, it follows for (x, ) € R" x [0, c0)
that

Bi(x,t) <u(x,t) < Bu(x,1).

This step fixes the size both from above and below with estimates that are propor-
tional for large times.

Case g < 2: A modification has to be done to obtain the bounds from below since
B;(x, t) does not have compact support. Here is the argument in short. Take a ball
Br(xg) where ug is continuous and strictly positive, ug(x) > ¢ > 0. By continuity
of the solutions u(x, t) > ¢/2 forx € Bgr(xg) and 0 < ¢ < t;. We now consider the
exterior space-time domain E;, = (R" \ Bgr(xp)) x (0, ;). We take a Barenblatt
solution B (x, t) := B?%P(x —xq, t; C;) centered at x = x( with a very small mass
parameter C;. In this way we may ensure that u(x, t) > Bj(x, t) on the parabolic
boundary of E;,. Since Bj(x,t) = 0 on E; N {t = 0}, we only have to check the
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lateral boundary and this holds if C; is small enough. By the comparison principle
on exterior domain for weak or viscosity solutions

u(x,t) > Bi(x, 1) for x eR", t =1,

since by choosing small enough mass parameter, we can also guarantee that the
inequality holds on Bgr(xg) x {t = #1}. The same inequality is then true for t > ;.
The conclusion follows. O

The estimates of the previous theorem are sharp for the explicit solutions by a
direct inspection.

It is interesting to note the behaviour of the exponents o and «/d for large
values of the parameters since they serve to estimate the size of the solution and the
spread rate of the support. Thus, when ¢ is very large, while p and n remain fixed,
hence much smaller, we have

n_lq awqil gmp_lqiz
p—17 T d n-—1 ’

d'\"

which amounts to very slow diffusion rates in a fictitious high dimension. On the
other hand, when p, g — oo with ¢ = kp we get

o 1
d~m-Dk+1, - ~—w——0w——\\,
( ) d ((n =Dk +2)q

We see that the fictitious dimension tends to constant, and o ~ c(n, k)/q.

5.2. Sharp asymptotic convergence

Once the asymptotic size of the solutions is estimated in the whole space, we pro-
ceed with the statement and proof of the precise asymptotic behaviour.

Theorem 5.2. Let u be a viscosity solution to the Cauchy problem (5.1) and the
range condition (3.10) holds. Then, there is a Barenblatt type solution as in (3.7)
and (3.8) such that

lim 1 sup |u(x,t) — B&%P(x,1;C)| =0, (5.7)

11— 00 xeRn?

where o = d /). The constant C > 0 depends on the initial data in a non-explicit
way.

Proof. We will give a proof of this result using ideas from [56,57] in the first part,
and lap number properties in the final argument.

Step 1: We will also need a version of Alexandrov’s reflection principle. Its proof,
which also applies to equation (1.4), can be found in [67, Lemma 9.17, Proposition
14.27].
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Lemma 5.3 (Alexandrov’s reflection principle). Let u be a viscosity solution to
the Cauchy problem (5.1) with compactly supported initial data uy € Co(Bgr(0)),
ug > 0. Then for allt > 0 and all r > R it holds that

min u(x,t) > max u(x,t).
|x|=r |x|=r+2R

Moreover,r — u(ro,t),0 € S"_l, is nonincreasing forr > R.

The heuristic idea in the proof is to draw a hyperplane H through (R,0,...,0)
that divides R” into two half spaces Hy and H_, H' containing Bg(0). Then,
we compare in H the solution u(x, t) and u (7 (x), t) where 7 (x) is the reflection
with respect to the hyperplane. Since the corresponding initial values are ordered
and both solutions take the same values on the hyperplane, then the solutions are
ordered by the comparison principle. In particular, letting v = (1,0, ..., 0) this
gives

u(=rv) > u((2R +r)v).

Then repeating the argument with respect to the other tangent hyperplanes gives the
result.

For the nonincreasiness along rays let H be the hyperplane passing perpendic-
ularly trough the middle point of the segment [r10, r260] forry > r; > R.

Step 2: We already have the rough estimates of Theorem 5.1. In order to get sharper
approach we need almost radiality for large times in the form used in [56,57]. We
use the previous statement: If spt(ug) C Bg(0), then we have for all # > 0 and all
r > R that

min u(x,t) > max u(x,?t).
|x|=r |x|=r+2R

In order to reduce the gap 2R, we define the family of rescaled solutions
d 1
u’%x,t)::c»\u(;c”,xt) (5.8)

for variable scaling parameter « > 1, and similarly Bf, BY, where B3;, BB, are as in
the proof of Theorem 5.1. This is a particular case of transformation (3.12) where
the d-mass is conserved. These rescaled functions also solve the same equation
(1.4), and since B; and B, are invariant under this scaling, it follows that for any
compact time interval 7/2 <t < T and g > 2 there is R, > 0 such that the support
of u“ (-, ¢) is contained in B, independent of «, and that #* are uniformly bounded
as well as continuous. In the case ¢ < 2, the solutions no longer have a compact
support but uniform boundedness still holds.

Let e > 0, and « > 1 large enough so that R, := k"% R = e. Once we apply
the above inequality for the rescaled solutions, we get for r > R,

min u*(x,t) > max u“(x,1).
|x|=r |x|=r+2R;
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Next we fix ¢t = 1 and define

Uiy () = l&rln_nr u“(x, 1), Upax (1) = II)?I% u“(x, 1).

By Lemma 5.3, they are nonincreasing functions for r > ¢, compactly supported in
Bg,(0), and satisfy

ulr(nax(r) = MKmin(r) z ulr(nax(r + 2‘9)

for all r > ¢. From this, the boundedness, compact support, and uniform regularity
for solutions [36], it follows that there is a small error in d-mass:

/000 (Uhax (1) =l () ™ dr < Ce. (5.9)

We have thus arrived at a small asymptotic error in some integral norm that is propa-
gated in time. If ¢ < 2, combine the above argument with the tail estimate obtained
from (5.6) to obtain (5.9).

Step 3: Letuy . (r,t) and uy,,, (, t) be the radial solutions with the initial data given

by uy . (r) and uy,. (r) respectively at t = 1. Then by the comparison principle for
allt > 1, we have
Ui (75 1) < U (X, 1) < g (7, 1) (5.10)

where of course r = |x|.

Next we need to find asymptotics for the radial solutions u} . (7, 1), uy, (7, 1).
If d were an integer, we could use the results of [43], but since this is not necessarily
the case we derive the results for our equation in the next section. Let n > 0.
Inspecting the proof of Proposition 5.7, as we can always choose x and #y large
enough so that ¥ = #9/2 where 1y is as in the proof of Proposition 5.7, we get

urKnin(r’ 2) - Bq,d,P(r, 23 Cmin) 5 777
U<, (r,2) — BE4P(r,2, Coax) | < 1.

Going back to the original scaling similarly as in the proof of Proposition 5.7, we
get asymptotic limits for the radial upper and lower bounds in (5.10), and further
recalling (5.9) to see that Cpax — Chin 1 small, we obtain the claim. O

5.3. Convergence of radial solutions via intersection comparison

For our general equation d is not necessarily an integer, so the last item of the
above proof must be completed. We have to write down the proof of asymptotic
convergence for the 1D equation (4.1) that is satisfied by the radial solutions in the
fictitious dimension. This merits a careful consideration and explanation.



326 MIKKO PARVIAINEN AND JUAN LUIS VAZQUEZ

We could establish the result about the d-mass convergence as in the previous
proof. There are many techniques that have been used to establish the pointwise
large time asymptotic behaviour of solutions of parabolic equations. The one we
use here works in one dimension, or for radially symmetric solutions in several
dimensions, and is based on counting the evolution in time of the “number of in-
tersections of two solutions”, a rough idea that can be made precise with the names
intersection number or lap number. These concepts have been investigated in works
by Sattinger [60], Matano [52], Angenent [3] and others, and were used by Galak-
tionov and the second author in a number of papers, cf. [32]. The idea seems to go
back to Sturm, [61], so it is also called Sturmian theory, [31].

First we consider functions w(x) of the real variable x € R and look for a count
of the number of sign changes by looking for finite sequences of points x| < x7 <

- < Xg41 such that w(x;)w(x;41) < 0. This is called a sign-change sequence.
We define the counter

I (w) =sup{k € N:there exists a sign-change sequence x; <xp<---<xg+1} (5.11)

and if there is no sign change we set / (w) = 0. Hence, the counter is a non-negative
integer or plus infinity. In the case of two functions, we denote

N, ur,up) =T (1) —uz(-, 1)).

The result we will use is the following improvement of the usual Maximum Princi-
ple.

Replacing the maximum principle by the elliptic (i.e. the one stated with ellip-
tic or Euclidean boundary instead of parabolic boundary) type comparison principle
in the [60, proof of Theorem 4], we obtain the Sturmian comparison principle.

Theorem 5.4 (Sturmian Comparison Principle for parabolic equations). Let u
and uy be two viscosity solutions with possibly different initial data to the Cauchy
problem (5.1). Then the counter N(t, u, us) does not increase in time.

This explains the name intersection comparison in the name of the section. We
have to specify equations to which the Sturmian comparison principle applies. The
original applications concerned solutions of the classical heat equation in 1D or with
radial symmetry in several space dimensions. The application we use here is taken
from [64] where it is applied to the radial solutions of the porous medium equation.
It is known to apply for example to p-Laplace equations [33] and reaction-diffusion
equations [58].

Let us first note that when the initial counter is zero for the difference of two
solutions, then it is zero for all times and the two solutions being compared are
ordered at all times. This is a version of the usual comparison principle. The case
that interests us is when we consider two solutions, one of them is the solution under
investigation, the other one is the Barenblatt solution with the same d-mass, and we
have N (0, u, up) = 1, and then the counter must be 1 or zero for all later times. But
the result N (0, u, up) = 0 would imply ordering, and by virtue of the conservation
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of d-mass this means that the two solutions must be the same at that time, hence the
same for all later times, and the asymptotic behaviour is proved.

We have to examine the case where N (¢, u, up) = 1 for all times, and try to
make the asymptotic conclusion also in that case. We copy from [64, Lemma 17.2].
The lemma also holds for our equation. In particular, the fact that the support of any
non-negative # 0 solution spreads with time and occupies any fixed ball follows by
comparing with the Barenblatt type solution in the case g > 2. The case ¢ < 2 can
be completed using the ideas of Theorem 5.1.

Lemma 5.5. Let u be a radial viscosity solution to the Cauchy problem (5.1) and
the range condition (3.10) holds. Then there exist time delays 0 < t| < tp such that
ifuj(r,t) = B4-P(rt +1;; C),i = 1,2, and C is the d-mass of u, we have

N(t,u,uy) = N(t,u,uy) = 1. (5.12)

Moreover, we may choose the delays so that for all large t the list of signs of u — u;
is —+, while the list for u — uy is +—. Therefore, for all r small enough we have
for all large t

ur(r,t) <u(r,t) <up(r,t). (5.13)

For the conclusion about the convergence of the solutions we need to pay more
attention to formula (5.12) and look for the relative position of the intersections of
the three solutions. Among other things the proof utilizes the conservation of mass.
As pointed out at the end of Section 4, the conservation of mass also holds in the
singular range as long as the range condition (3.10) holds.

Proposition 5.6. Let u be as in the previous lemma. Then, there is C > 0 such that

o0
lim ‘u(r, 1) — BLEP i O r?Ydr = 0, (5.14)
—>00 0

and such that u and B?%P have the same d-mass.

Proof. Let u; and u; be as in the previous lemma so that u, u1, uy have the same
d-mass. For any t > 0 we denote by z; the intersection of u(-, ¢) and u(-, t), by
72 the intersection of u(-, ) and u;(-, t), and by z the intersection of u(-, ) and
us(-, t). By the formulas of the Barenblatt solutions we see that N (¢, uy, uz) = 1
and also observe that z is known a priori. There are three cases to consider.

First case: Suppose that z; > z. Looking at the graphs of the functions we see that
u must have gone under u,(r, t) before reaching r = z,and then z < z. This means
that u lies between the two solutions for 0 < r < z, and r > z;, and moreover,

u(r,t) <minf{ui(r, 1), uz(r, 1)} for zp <r < z.

Second case: Suppose that zp < z = z;. This is similar to the first case.
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Third case: Finally, z; < z < z5. In this case we have
ur(r,t) <u(r,t) <ui(r,t) for0O <r < z4
ui(r,t) <u(r,t) <ur(r,t)forzp <r < oo.

Moreover,
u(r,t) > max{u1(r,t), uz(r,t)} forzy <r < zo.

Asymptotic mass analysis We recall that u(r,t), ui(r,t), uz(r,t), as well as
B24-P(r, t; C), have the same d-mass for all times. We want to prove that

o0
lim [ |G, 0) = BE4P g1 0)| 4 =00
—00 O
Let us assume that we are in the third case above, other cases being similar. We
estimate the integral in the three regions /1 = [0, z1], I1 = [z21,22], and I3 =
[z2, oc]. In I and I3 we have u sandwiched between 1 and u, so that

|u(r, t) _ul(rv t)' = |u2(r, t) —Ml(r, t)|’

and moreover it can be easily seen that the d-mass of the right-hand side goes to
zero. Assume that the integrals on both intervals are less than or equal to ¢/4 for
t > t,. We now estimate the integral in the middle interval as follows:

/ lu(r,t) — u; (r, r)|rd—1dr=/(u(r, 1) —ur(r, ) rd ar
6]

I

= /oo(u(r, 1) —uy(r, ) r?dr
0

—/ u(r,t) —ui(r, ) r®'dr <0+ 2¢/4.
LU

Here, we used the order in the interval /> and the equality of the total d-mass. The
claim follows. L

Proposition 5.7. Let u be as in the previous lemma. Then, there is C > 0 such that
Tim 1/ )u(r, £y — B4 (v, 1 0)| = 0. (5.15)
—00

Proof. Let uy, and u; be as in the previous lemma, and let u, u1, u> have the same
d-mass. By scaling we may assume that # = 1 and that the d-mass of the difference
|u(r, 1) — B AP (r 1: C)| is small. To be more precise, we first choose #y large
enough so that the d-mass of the absolute value of the difference is small. Then we
consider the rescaled function u(r, t) := u*(r, t) in (5.8) with ¥ = 13. Also observe
that d-mass of the difference remains small in this rescaling.

Since we know that the solutions are uniformly bounded in L°°(R) by a com-
parison argument similar to those in Theorem 5.1, the C! regularity result, in [36,
Theorem 1.1], implies that the derivative of u(r, 1) — B4 d.p (r, 1; C) is uniformly
bounded. But then a simple argument says that u(r, 1) — B24-P(r, 1; C) is small in
L*°(R).

By returning to the original scaling, we obtain the power factor r4/*. O
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6. Asymptotic behaviour in bounded domains

In this section, we consider equation defined in a bounded domain with zero Dirich-
let boundary conditions. We consider the problem

u; = |Dul?72 (Au+ (p —2)ANu)  in Qo
u(x,0) = up(x) xeQ 6.1)
u(x, t) =0 X € 02

where Qoo = 2 x (0, 00) where Q2 is a bounded domain of R” with smooth enough
boundary. We will always take ¢ > 2 and p > 1, and ug > 0, ug #* 0 bounded
C%(Q)-function.

The study of the behaviour of non-negative solutions defined in a general
bounded domain is based on three ingredients: the existence of uniform bounds, the
study of the special solution on a ball, and a monotonicity condition that holds for
non-negative solutions. We will be specially interested in the long-time behaviour.

6.1. Properties of solutions defined in a general bounded domain

We will follow the outline of the proof of [65] for the porous medium equation
with a number of changes needed in our framework, so the proof is differently
organized. We note that some arguments are only sketched whenever they can be
easily adapted.

e Monotonicity is a key property in our proofs of long-time behaviour. It takes the
form of a derivative bound that is in fact valid for all semigroups generated by a
homogeneous operator acting on a Banach space or a convex subset thereof. We
state it as follows

Proposition 6.1. The non-negative viscosity solutions of (6.1) satisfy

O > —
(g — 2t

(6.2)

in the sense of distributions. Recall that g > 2.

Sketch of proof. The original proof is done in [12], see also [67, Lemma 8.1]. We
briefly repeat the ideas: we denote by S;ug the solution with initial data ug. Now
we recall that the rescaling implies that if u(x,¢) is a solution then ui(x,t) =
ku(x, k972¢) is again a solution for all £k > 0. This is equivalent to writing S; (kug) =
kSiq—2, (1), or putting A = k972

1 1
S, (AHMO) — A28, (o).
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Then,

1 1
Sy (uo) — Sy (uo) = AT, (x uo) — S (uo)

_ <)fqlTZ _ 1) S, (A‘IITZM()) + (S, (z\ﬁuo) ~ Sz(uo)) :

By the maximum principle the last summand is positive whenever A > 1. Now
observe that for A = 1 + & > 1 we have for ¢ > 0 small

1

__1 1
0> A 4—2—1:—(1—(1+8) q—z>~_

q—2

&

while At — ¢ ~ te. Taking the incremental quotient, (Sy;(ug) — St (ug))/ (At — t),
and passing to the limit ¢ — 0 the result holds.

Note that the proof works for the viscosity solutions: observe that multiplying
by a test function above, integrating, and moving the difference quotient on the test
function, we get the statement in the sense of distributions. O

e Another main ingredient will be rescaling and the study of a new differential
equation. We perform the following change of variables

W, ) =10, 1), T =log(t). 63)

The equation for v is

g0 = 1D (Av+ (p — 2)AN) + —v. 6.4)

q—2
It follows that v(x, ) > 0 is defined for all T > —o00. Moreover, we will see below

that v is uniformly bounded in x and 7 as a consequence of the construction of the
next subsection.

6.2. Asymptotic behaviour in a ball

We consider now in detail the problem posed in a ball 2 = Bg(0). By scaling we
may take R = 1 without loss of generality. Indeed, if u(x, ¢) is a solution with
space domain B;(0), then wug(x,7) = Au(x/R,t) is another solution defined in
Bg(0) if and only if A9=2 = R .

Separable solutions We study radial separable solutions with zero lateral bound-
ary values having a form

Ux.t) = -T2V (|x|) (6.5)

sometimes called the friendly giant, or FG-type solution. This is a particular case
of (6.3) where the second factor is time-independent.
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Theorem 6.2. The separable weak/viscosity solution (6.5) defined in By (0) exists
and is unique in the class of positive profiles V .

Proof.
Step 1: Preparation. Using equation, recalling (3.2) and (3.15), we are led to con-
sider the stationary problem for V

VO i ] =2 a1\
0= S0 L (VoI vent) . 6

fory € (—1, 1). Using symmetry we will look for a bounded solution V of equation
only in 0 < y < 1 with the conditions V > 0, V' < 0, and end point values

lim [V/(]" ¥y =0, V() =o0.
y—0+
In order to prove the existence, we write for r € [0, 1]

TVO) - -1 2 -
—/0 2y ldyzZ_l Vo)V et

q—2
ie.,
1
g—1 [T V(y) (y\4! -t
(p_1/0 q—Z(r) dy)" =V, 6.7)
and further for R € [0, 1]
1 -1 (v d—1 =
/ q—/ ﬁ@) dy)" dr=V(R). (6.8)
R\P—1Jo g—2\r

From here it follows that if we have a solution V € C ([0, 1]) for (6.8), then V €
Cc'([0, 1]) and lim, 0+ V'(r) = 0. Then reflecting V evenly to define V over the
whole interval (—1, 1), the function U given by (6.5) is a weak solution according
to Definition 4.1. Theorem 4.2 shows that we have also constructed a viscosity
solution to our problem.

Step 2: Existence. It remains to verify that (6.8) has a solution. Let
C={ueC(0,1]) : u(1) =0,u >0},
Ko={uel :llullieon = M. llull g 1)

> m, [u(r) —u() = Mlx =y, x,y € 0,11},

where the g-dependent constants M := M(q,d) and m := m(q, d) will be deter-
mined in the course of the proof. The left hand side of (6.8) defines an operator T .
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Since K is convex, closed and compact (by Arzela-Ascoli), we can use Schauder’s
fixed point theorem to find a nontrivial solution if 7 : X — K is a continuous
operator. To verify this, observe that 7V (1) = 0 and that for u € K it holds that

1
q —1 " V() RN
TV(R)| = / [0 o) @

o ST 1 gyydl \T
< M@ / (q—f —(2) dy> dr
R \p—1LJo g=2%\r

i /1 ((q_—w>—d
R \d@—=2)(p—-1)

5( Mg —1)

1
—)q_l(l —R) <M,
dig—2)(p—1)

since r < 1 and the last inequality holds for large enough M = M(q, d). This is

I 2— 2-
because g > 2, Ma-1 = MM 1 and M 1 can be made small by choosing large
enough M. Similarly, whenever R € [0, %], it holds that

Lot _ =
ITV(R)| = maT / (&> 1dr >m
1 \dg=2(p—-1

for small enough m = m(q, d) > 0, and in particular we get a nontrivial solution.
Moreover, assume without loss of generality that R < R; and observe by a similar
computation as above that whenever V is Lipschitz with a constant M we have

1

Refo_ 1 TV -1\ a7
|TV<R2)—TV(R1>|=/ ("—/ ﬂ(i) dy) dr| <M |Ro—Ry|.
p—1Jo r

R q_2
Finally,
1 1
Vag—1 ("Vi(y) ry\d=1 \TT (g—1 ["Va(y) ;y\d=1 \7T
) ) (6 )
r\P—1Jo g—2\r p—1Jo g—2\r
L°°(0,1)
1
1 r a—1 1
—1 Vi(v)— V- d—1 Y\ a1 L
< [ (5 [ T ) | <civi-valii
r\p—1Jo  ¢-2 r ©.D
L>(0,1)

and thus T is continuous.
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Step 3: Uniqueness. Note first that by scaling we can construct a separable solution
in a domain Bg(0) for any R > 0 by means of the formula

Ur(r, ) = £ 72Vr(r),  Vr()=RY4DV(/R),  0<r<R. (69)

Suppose now that U and U are two solutions with profiles V(r) and V(r) re-
spectively. First we construct the solution Uy, of the separable form for domain
B14£(0) x (0, 00) by using on U the above rescaling from radius 1 to 1+ ¢. Taking
a small enough 7y > 0 it is easy to see that U (r, 1) < Uy4.(r, t9) in B1(0). By the
parabolic comparison principle we get forevery ¢ > 0and 0 < r < 1

U, 141) < Upye(r, to+ 1),

- 147\ /@2
V) < (to +t> Vige(r) .

ie.

We pass to the limit 7 — oo to get V(r) < Vi4e(r). Now let ¢ — 0 and use the
scaling law (6.9) to get V(r) < V(r). The other inequality is obtained in the same
way, hence V(r) = V(r). ]

The next result follows from the above considerations by using the equivalence
result of Remark 4.3 (ii), or the argument of [56, Theorem 7.2] as in Step 6 of the
next section.

Corollary 6.3. The profile V > 0 is the unique non-negative viscosity solution of
the stationary problem

1
|DV|172 (AV +(p— Z)AQVOV) + mv =0, in B(0), (6.10)

with zero Dirichlet boundary conditions. We have V. € CVF(—1,1), B € (0, 1).

Remark on the fast case. If ¢ < 2, then we obtain no friendly giant type solution
but

_ 1
u(x.t) = (ty — 1) a2V(x) 0<t<t,
0 >ty

is a solution with a suitable V as shown in [53], Section 5, in 1-dimensional case.
This shows that the threshold in the bounded domain case for extinction in finite
time is ¢ = 2.

e Using the above separable solution U, we obtain the decay rate of general ra-

__1 . .
dial solutions as u(x,t) = O(t ¢-2), and much more: we also obtain the precise
asymptotic behaviour of radial solutions.
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Theorem 6.4. Suppose that uy € C>(B1), ug(x) > 0, ug # 0 for x € B1(0), ug
radial and ug(x) = 0 on x € dB1(0). Then, the solution to (6.1) satisfies

1
lim ti2u(x,t) = V(x|), (6.11)
t—00
uniformly in x € B1(0), and also

u(x,t) <U(x,t) = [—,1172 V(xl]) (6.12)

for every x € B1(0), t > 0. The positive bounded function V is the stationary
solution of Corollary 6.3.

Proof.
Step 1: Universal Boundedness. Arguing like in the comparison argument used in
the above uniqueness proof, we see that for every ¢ > 0O there is #o > 0 such that

u(x,0) <t, 1/(@=2) Vite(]x]), so that the comparison argument implies that
w(x, 1) < (0 +10)" I Vige(xl) < 7PV (X))
This is a uniform bound on all solutions of the problem.

Step 2: Rescaling and new equation. As indicated above in (6.3), we perform the

1
change of variables u(x, t) =t ¢2v(x, 7), with T = log(¢), we get equation for v

-2 N 1
9,v = | Dl (Av+(p—2)Aoov> +—v. (6.13)
q [—
It follows that v(x, t) > 0 is defined for all T > —oo. It is uniformly bounded in x
and 7 by virtue of the universal estimate for u we have just proved.

Step 3: The limit exists and is positive as well as bounded. The monotonicity con-
dition (6.2) is equivalent to d; v > 0 in distributional sense. This and boundedness
imply that there exists a limit

Jim v(x, 7) = W(x) = V(|x]) (6.14)

at least in a pointwise sense in B (0), since the limit is independent of €. We have
W(x) > 0. In fact W (x) is strictly positive in €2 by a comparison argument applied
to v(x, T) by comparing with small Barenblatt solutions used as subsolutions. The
comparison first proves that a point of positivity of the solution of v(x, 7p) stays
positive for v(x, t) with T > 79. But it also proves that the positivity set of v(x, )
expands with time to cover all points of €2, a connected set. We conclude that W (x)
must be positive everywhere.

Step 4: Identification of the limit. Now we perform the comparison of Step (i) in
the other direction. Given our solution and any ¢ > 0 we can find a large #; so that
the positivity set of u covers By_,/2(0). Then we choose t, large enough so that

ux, 1) > 6, " PVi_.(r)  on Bi_c(0).
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Taking these as initial functions, it easily follows by comparison of viscosity solu-
tions in Bj_.(0) x (#1, 00) that

(e, t+1) > (t+1)" V4PV ().
Note that the ordering also holds on d Bj_. (0). Passing in this inequality to the limit

t — 0o we get

1
Iim ta2u(x,t) > Vi_:(r).
1—00

Let now ¢ — 0 and we get the convergence result (6.11) of the theorem. The
regularity is a consequence of the existence construction, see (6.7), and thus the
proof is complete. U

The result also implies that U is the minimal universal upper bound of the class
of solutions.
6.3. Asymptotic behaviour in a general bounded domain

The study of the asymptotic behaviour in a general bounded domain, though more
difficult, is based on similar ideas.

Theorem 6.5.

(i) Let Q be a bounded domain in R" with C? boundary and q > 2. Let u be
a viscosity solution to (6.1) posed in Qs = Q x (0, 00) with zero Dirichlet
lateral boundary conditions, and initial data uy € C*(Q), ug(x) > 0 for
x € Q,and ug(x) =0 on x € 0R2. Then, we have

lim t72u(x, ) = W(x) (6.15)
=0

uniformly in x, where W is strictly positive and bounded. Moreover, u(x,t) <

Ux,t) = 1,‘_‘7+2 W (x) for every x e R", ¢t > 0;

(i) If Q1 € Q9 and Wy, W, are the respective limits, then W) < W»;

(iii) If moreover Q is starshaped then the profile W € C'“P(Q) is the unique posi-
tive viscosity solution of the stationary problem

1
DWIT2 (AW + (p - )ALW) + —W =0 nQ (616
q —_—
with zero Dirichlet boundary conditions. The expression

Ux.t) = "2 W(x) 6.17)

is a particular viscosity solution to (6.1) posed in Qo with zero Dirichlet
lateral boundary conditions. Note that U takes infinite initial data.
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Proof. The Steps 1-4 below work for general bounded domains.

Step 1: Universal Boundedness. This follows from comparison with the friendly
giant type solution of the problem posed in a larger ball, 2 C Br(xp). Let us call
the x dependent part Vz(|x — xo|). An easy comparison shows that for any solution
u of our problem we have

__1 __1
ux,t) <t 2Ve(lx —xo|) <Ct 2.
This is indeed a universal estimate.

Step 2: Rescaling and new equation. This step is identical to the previous proof.

Step 3: The limit (6.15) exists and is positive as well as bounded. From the mono-
tonicity we get the existence of the limit W and it is a non-negative, bounded func-
tion. The fact that W is strictly positive everywhere in €2 follows by a comparison
argument applied to v(x, ). It works exactly as in the radial case by comparing
with small Barenblatt solutions used as subsolutions during the period of time until
the support reaches the boundary (this is called expansion of the positivity set). We
have proven (i).

Step 4: The limit is monotone with respect to the domain. Suppose that Q1 C 2,
with a positive distance from 92 to d€2;. Let u; and u, be solutions as above
defined respectively in €21 and €2;. Repeating the comparison argument done in the
radial case we can get times fg, #; > 0 such that

ur(x,t+1t) <up(x,t) if t>to.

Then the respective limits satisfy Wi(x) < W(x). In particular, in order to get a
lower bound for W5, limit of a given solution, W may be chosen as the unique limit
of the radial case when we take as €2; a ball strictly contained in 2.

Step 5: We now introduce the extra condition on the domain in order to improve
the results. Moving the origin of coordinates to the point that serves as basis of
starshapedness, we may define the domains 2, = {Ax : x € Q} forall A > 0. It
follows that for ¢ > 0

Qe CTQC Qe

We also define the rescalings of the solution much as in the radial case. We take
Ui (x,t) = Au(x/(1 —¢), 1), A172 = (1 —¢),to get another solution defined
in Q1_,. Given two solutions u, # and any ¢ > 0 we can find a large ; so that the
positivity set of u covers 21_¢/2(0). Then we choose 7, large enough so that

u(x, 1) >ui—e(x, 11 + 1) on_.(0),

since u is positive and continuous in the closure of Q1_, and u;_, goes to zero
as t — oo. Taking these as initial functions, it easily follows by comparison of
viscosity solutions in ;_, x (¢, 00) that

ulx,t4+1) >ui—(x,t +1+ 1),
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since the ordering on d€21_, also holds. Using this inequality and passing to the
limit t — oo we easily get .
W(x) = Wi—e(x).

Let now ¢ — 0 we get comparison of the limit profile. Reversing the roles we get
uniqueness of the limit.

Step 6: W is a stationary viscosity solution. This is obtained using stability principle
for viscosity solutions in the uniform convergence, see [56, Theorem 7.3]. The
Lipschitz regularity for equation (6.13) used in [56, Theorem 7.3] follows from
similar barrier arguments as in [41, Section 4], see in particular Corollary 4.3 there,
and also [56, Section 6].

Once we have a bounded solution of the elliptic equation, regularity theory,
cf. [5,6], means that it will be C'-# up to the boundary. O

Remarks.

(1) We are not able to prove the uniqueness of positive solutions of the elliptic
problem in general domains. That would imply an asymptotic result as com-
plete as in the stated cases;

(2) Uniqueness of the positive limit profile is known in particular cases, like the
standard p-Laplacian (case ¢ = p), see [1,23] and for example [11].

7. A priori estimates

The next lemma is a counterpart of [24, Proposition III.3.1] or [63, Proposition
4.7]. However, as we already have the regularity estimates from [36], the proof is
simpler. We use the lemma in the proof of Harnack’s inequality in Theorem 7.3. In
the lemma and the following corollary, all the reference points for cylinders are the
same, and thus we drop them.

Lemma 7.1. Let u be a viscosity solution to (1.4) in Qg ra. For y € (0, 1), there

is C > 1 that can be determined a priori only depending on n, p, q, v such that the

following holds. Suppose that we are given wy > 1 such that for ag = (1/wg)? >
OSCQR,aOR‘I U < wg.

Define the sequences

R, =C7 'R, Ry =R,

w; = Yywi—1,

wherei = 1,2, .... Then for QRi,a,-Rf’ where a; = (l/a)i)q_2

<< .
QRi+1sai+1R:]+1 = QRi,aiR,q’ 08¢0 g U = Wi

R;.a; Ri
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Proof. First observe that QR1+1,ai+1Rf’+1 C Op..ag? C --- C QR re holds as long
as C and y will satisfy C9y972 > 1.
The case i = 0 holds by the assumption. Suppose then that the claim holds for
i=k,ie.
OSCQRk.akRZ u < wg.

By setting

u(Rix, agRt) — info, ot
’ k

up(x,t) = -
k

it holds that sup,, , ux < 1 by the induction assumption. Then by [36, Lemma 2.3,
Lemma 3.1]

_ ~ (-1 —(q-2) ~—qy\1/2
OSCQRk+1v“k+IRZ+| ujwg = OSCQC*I,y*(‘I*aC*‘! up <C (C + (y c™1) )

where C = C(n, p,q) is the constant in the regularity estimates cited above.

Choosing C > max{2C/y, 2C)¥1y~", y~1} we get

0SCo M§C<L+L~>wk:ya)k:wk+1,

Ri41-k+1 RZH
and Cy97% > 1. O
The standard iteration argument then implies the following corollary.
Corollary 7.2. Let u, wg, ag, and R be as in the previous lemma. Then there exist
constants C = C(n, p,q) > 1 and a« = a(n, p, q) € (0, 1) such that for 0 < r <
R it holds that
N i\«
0SCQ, ;0 U = Cw()(E) .
Proof. Let y, C, ax, Ry be as in the previous lemma. Choose an integer k such that

C * DR <y <C*R = Ry.

By this and the recursive definition of wy it follows that

log(y)

log(r/R) r\—
k —1_,k+1 -1, -1 log(C)

Wk =Y wo=Yy Y wy < Yy v log(C) wo < y <E> 1)

By using Lemma 7.1, we get

0SCQ, ,q U < 0SCQ, , ja U < OSCQRkv“kRZ u < wy.
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1

Setting C = ! and observing that

_log(y)
~ log(0)

e (0,1)

since C > y~!, the result follows from the previous estimates. O

Next we demonstrate the use of radial solutions and prove Harnack’s inequal-
ity. The standard proof utilizes the oscillation estimate and expansion of positivity
using a radial comparison function. Thus having the above results at our disposal,
the proof is the same as that of [24, Theorem 2.1, page 157]; proof is in Chapter VI,
Section 4.

Theorem 7.3. Let u > 0 be a viscosity solution to (1.4) in Q1,1 and the range
condition (3.10) holds. Fix (xo, 1) € Q1,1 and suppose that u(xo, to) > 0. Then
there exist @ = u(n, p,q) and C = C(n, p, q) such that

u(xo, to) < p inf u(-, 1o +06)
By (x0)

where

Cri
u(xo, t)4-2’

whenever By, (xp) X (to — 46,19 +46) C O1,1.

Proof. Let first ¢ > 2. We consider the rescaled function

x4 trd
u\ xo rx, o B ——
u(xp, 10)4=2

v 1) = u(xo, t)

which is a solution to

v = |Dv|97 2 (Av+ (p—2)ANv) inQ
v(0,0) =1,

where Q := B4(0) x (—4C, 4C). Observe that Q is obtained of By, (xg) X (fo —
40, to + 49) in this rescaling. Now it suffices to show that there are 6y, o > 0 so
that infy ¢ g, o) v(x, 60) > wo.

Step 1: Oscillation estimate. To this end, we consider the cylinders Q, p0 =
Qp,0(0,0) := By(0) x (—=p?,0), p € (0, 1), and

= e 20D i —a-p
1 p=0
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where B > 1 will be fixed later. Take py € [0, 1) be the largest root for equation
M (p) = N(p). Such a root exists since

M@O)=1=N(), limlM(,o) < 00, limlN(,o)zoo,
,0—) p—)

and the functions are continuous on [0, 1). In particular,

sup v < N(p), forall1l > p > pp. (7.1)

Q.04

By the continuity of v, there is within Q poupl point (x’, ') such that

v(x', 1) = sup v=N(p) =(1—pp) P

0 (7.2)

po,pg
Set R = %(1 — po) (i.e. R depends on the supv) and Qg ge(x’,t') = Br(x") X
(t' — RY,t"). It holds that Qg ga(x’, 1) C Q%(1+po).(%(l+po))‘1 (0, 0) so that
1 1 g -8
sup v=M 5(1 +p00) =N 5(1 +p0) | =21 — po) " =twp>1. (7.3)
Og ra(X',t")

Since wg > 1, it holds that agR? = Rq/a)g*2 < R so that Qg qyre C QR,re and

sup v < wp.
QR agra *'.1")

Thus the assumption of Lemma 7.1 is satisfied, and Corollary 7.2 is at our disposal.
It follows that there is C > 1, @ € (0, 1) such that

A F\o
OSCxeB, (x') v(x,1") < Cap (E) .

Letr = R, x € Bsg(x’) and observe by the previous estimate together with (7.2)
that for small enough § > 0 it holds that

vix, ) > v, 1) - C (5—R> 2601 = po)~P
R (7.4)

N _ 1 -
> (1= C82P) (A = p) P = (1 = pp) ™ = .

Observe that the choice of § > 0 only depends on n, p, q, S.

Step 2: Expansion of positivity. Next we use the radial solution (3.7) to expand the
positivity by using the comparison principle. Without loss of generality we may
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assume that (x’, ") = (0,0). We use the Barenblatt type solution from (3.7), i.e.
B4 (x, g—jt) where

RN
with b= (z;qu )47 and C varying from line to line. The scaling u(x, t/a?~?)/a
preserves the solution. Thus choosing a = bv~! we see that

B4 (x p-1 ! ) ! =: Bq’d(x, S(t))

Tg —1(bv=1a=2 ) pp-1 by-1

_usdiy (1 (TN
=vS (t)(l <Sl/x(t)) )+,

where v is to be chosen later and C was chosen in a suitable manner, is a solution.
Here
p—1 t

BRI

The solution is also preserved by a translation of the ¢ variable so that we can
consider the solution

-1

B(x, 1) :== v(S() + 10) (1 ((S(t)+fo)m> )+'

S

S

We intend to select v and 7( so that

Spt[%("o) < ESRS))’ (15)
B(-,0) < nin Bsg(0),

where 7 is as in (7.4). To guarantee the first requirement, it suffices to choose ¢ so
that

(5(0) + 10)!/* = (0 + 1) /* = 5R,
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i.e. we can choose 79 = (8R)”. Then we select v so that the second requirement in
(7.5) is satisfied. To guarantee this, it suffices to choose v so that

B(0,0) = v(S©0) + 19)"4/* = v((SR))‘)_d/)‘ <y

i.e. we can choose v = 17(5R)d.
Next we fix B = d for the B in (7.4). Then we solve for the largest time 7 with

|x| = 2 for which B(x, ) = 0 from

9
—1

2
N <<S<f> n (aRW“) =0

This gives

p—1 t

A A _ (7 —
2= OR =50 = 1 o

In other words,
= (A md —1 —1\q—2
i=(2"—-@R) )—p_l(bv )

1 -1 _
= (=R (@ =227 7) (R
—1 0 -1 (1 1 d
> (2} —1); (g —2arig1) <5<1—po>—d(65(1—po>)>
2—q
B q— % . g—1 J 1 d+1
— (=)= (-2 ) (5 <5> .

Above we recalled that R = %(1 — 00), SR < % and n = %(1 — po)_d, to see
that there is a uniform lower bound for 7. With the choices of the parameters made
above, we have

2—q

u > Bond,(Bx0) x (0,17)).

Setting 6 := 7, the comparison principle then implies that there is a uniform lower
bound pq such that infy¢p, ) u(x, ) > po > 0, so that we have found 6y, 1o as
intended at the beginning of the proof.

The case g < 2 is rather similar, see [24]. O

The above Harnack inequality implies the following corollary where 6 is pre-
scribed independently of the solution. The proofs are similar to those in [24, Theo-
rem 2.2 and Corollary 2.1 on pages 158-159].
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Corollary 7.4. Let u > 0 be a viscosity solution to (1.4) in Q1,1 and g > 2. Then
there exists C = C(n, p, q) such that for all (xo, to) € Q1,1 and for all r, 0 such
that B4y (x0) % (to — 46, 10 +460) C Q11 it holds that

c rd qITZ 0 % " g 3
7t S - - 7t 9
u(xg, to) 7 + " yegrl(x())u(y 0o+6)

where . = d(q — 2) + q. Under the same conditions, it also holds that

rNT 0\ X
][Br(xo)u(x,to)deC (;) +<r_‘7) [u(xo,t0+9)]q .

8. Below the range condition

The theory we have displayed solves a number of basic questions for the general
(g, p) equation (1.4), and at the same time leads to some open questions.
Next we discuss the role of the range condition

2n < q(n—1)+2p, (8.1)

in R". What happens for exponents below this range? Let us take ¢ = p to simplify
matters. The range condition reads then

2n
n+1°

It is well-known that for 1 < p < p., the p-Laplacian theory undergoes a large
number of differences with respect to the case p > p.. One of them is the existence
of solutions that extinguish identically in finite time, cf. [66].

The property of extinction in finite time has been studied in great detail for the
Porous Medium Equation, d;u = Au", PME-m, and many results are described
in the last reference. In particular the critical exponent is m, = (n — 2)/n for
n > 3. Many types of solutions with finite time extinction can be constructed for
0 <m < m¢, and a number of them are reported in [66].

On the other hand, there is a transformation that maps radial solutions of the
PME-m in space dimension # into radial solutions of the p-Laplacian equation in a
different dimension,

P = Pc=

=(n—2)—,
ny =@ )2m

provided that p = m 4 1. Note that both dimensions need not be integers, all
calculations are made for weighted 1-D equations. This surprising result has been
established in [35] and the solution of the p-Laplacian equation that is produced is
a function u; (r’, ) given by

dpur(r', 1) = Cr¥ ™V p), ¢ =2/t
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where u(r, t) is a solution of the PME-m, and C is an inessential constant. Using
the PME critical value m, = (n — 2)/n and working out the details of the trans-
formation, we get the corresponding critical value for the p-Laplacian equation
Pe = 2n1/(n1 + 1). In this way lots of extinguishing solutions can be obtained for
the p-Laplacian equation if 1 < p < p,.

For radial solutions the general (¢, p) equation (1.4) reduces to the standard
g-Laplacian in the fictitious dimension d, so we conclude that our range condition
(8.1) marks indeed the border with the possible occurrence of extinction.

In the case of non-radial solutions, all these equations are not equivalent and
the theory has to be carefully developed.

Appendix A. Equivalence theorem

Here we prove the equivalence of viscosity and weak solutions stated in Theo-
rem 4.2. The proof is divided into two statements, Propositions A.3 and A 4.
First, we recall uniqueness and comparison results for weak solutions.

Lemma A.1. Let u and v be two weak solutions according to Definition 4.1 with
u,v,ur, v € C([—=R,R] x [0,T)), R < 00. Ifu =vond,((—R,R) x (0,T)),
thenu =vin(—R,R) x (0,T).

Proof. Let u and v be two weak solutions. We test the weak formulations to # and
v with

G 1) = x " (O, 1) — v(r, 1))

with
0 t<h
(t —h)/h h<t<2h
Xn(0) = 1@ = 1 2Qh <t <t —2h
(—t4+t—h)/h t1—2h<i<t;—h
0 th—h<t.

By a standard approximation argument that we omit, this is admissible. We subtract
the weak formulations to obtain

—1
P— (|Ur|q_2 Ur — |Ur|q_2 Ur) “Prdz
q—1Jrrx0m
a9

(A1)
= (u —v)—dz.
./(R,R)x(O,T) ot



PARABOLIC EQUIVALENCE AND APPLICATIONS 345

We estimate

d
/ (u — v)—¢ dz
(=R, R)x(0,T) ot
8 _
_ / (U — 02 =)
(—R,R)x(0,T) ot

0 Xh d(u —v)
= (u—v) <—(M—U)+Xh7> dz
v/(.—R,R)x(O,T) ot ot
B 19(u —v)?
=/ (u—v)Zﬂdz-l—/ Xh—udz.
(—R,R)x(0,T) ot (—R,R)x(0,T) 2 0t

Then we integrate by parts and pass to the limit

d 1 0
/ (u—v)zﬂdz——f ﬂ(u—v)zdz
(—R,R)x(0,T) ot 2 J(—r,R)x(0,T) Ot

1 ad
=_/ ﬂ(u—v)zdz
(7

2 J(—R.R)x©.T) 0t
1 Zh/ ) 1 t1—h 5
- (U —v)Pdz — — / W — v dz
2h Jn J—r.R) 2h Ji—on J—R.R)
1
”200——/’ (e, 1) — v(r, )2 4" dr,
2 Ji—r,R

where in the last step we used the initial condition.
Using a well-known algebraic inequality on the right-hand side of (A.1), and
combining the estimates, we obtain with C > 0

1
Oz—/ wmnrwmnwvﬂlm+c/ [
2 J—r,R) (—=R,R)x(0,T)

Thus since the weight Ir|4~! > 0 whenever r # 0, we getu = vin (—R, R) X
0,7). O

The above proof also immediately gives L>-contraction property. Indeed, if
the initial values are ug, vo and the lateral boundary values are the same, the last
inequality in the above proof reads as

1‘/“ (o) — vo(r))? [r*" dr
(=R,R)

2
1
z—/ mmn»wmnwvﬁlm+cf v — ul? dz
2Jr.p (—R.R)x(0.T)
1
2_/, W(r. 1) — v 1)) r|4 ar.
2 Jr.p
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Moreover, if we test with ¢ (r, t) = X}?’tl @) lu(r, t) — v, O (u@r, 1) — v(r, 1)),
1 < m < oo instead, then a similar computation as above gives

1 _
— f (o (r) — vo ()™ [r|4" dr
m J(—R.R)
1
> —/ ((r,)—v(r, 7)™ r]9=! dr—l—C/ lu—v|" =2 v, —v, |9 dz
mJ(—R,R) (—R,R)x(0,T)
1
> 1L f W 1) — v(r )" P4 dr,
m J(—Rr,R)

To make this rigorous one would have to mollify in time.
A similar proof to the uniqueness also gives a comparison principle.

Lemma A.2. Let u be a weak subsolution and v a weak supersolution according
to Definition 4.1 with u, v, u;, v, € C([—R, R] x[0,T)), R < 0. Ifu < von
0p((=R, R) x (0,T)),thenu <vin(—R,R) x (0,T).

Proposition A3. Letu € C(Q7), OQr = B x (0,T), Bg C R",0 < R < o0,
be a continuous radial function, and g > 1, p > 1. If v(r,t) := u(rey,t), r €
(=R, R), is 1-dimensional weak solution to (3.4) according to Definition 4.1, then
u is a viscosity solution to (1.4) in n-dimensions.

Proof. Since the case of sub- and supersolutions is analogous, thriving for a con-
tradiction, we may assume that there is an admissible (according to Definition 2.1)
test function ¢ € C 2 touching u from below at (xg, fo) € Qr and one of the two
cases holds

@i (x0, t0) — F (D@ (x0, t0), D*¢(x0,0)) <0 if De(xo, 19) # 0
@ (x0,70) <0 if De(xg, t9) = 0.

Consider first the case D (xg, ty) # 0, x9 7 0. With the usual abuse of notation,
we keep using ¢ also when in spherical coordinates, and » > 0. Then it holds
recalling u is radial that

B n—1 1
¢ < F(Dg, D*¢) =g, |72 (‘prr + ¢+ S Agp +(p - 2)%)

_ n—1
<|pr 972 ((p — D + Tw) (A2)

p—1 S (d—-1
A (—qor +(q — 1><orr) ,
q — 1 r

where Agn—1 is the Laplace-Beltrami operator on the (n — 1)-sphere. Next set
o, t) = or2X,t). Since ¢ € C 2 it is a 1-dimensional weak subsolution ac-

lxol”
cording to Definition 4.1 in some cylinder Qé,a = Qé’a(xo, to) := (Jxo| — 8, |xo| +
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8) x (=8 + 1o, t9) by the computation (3.15) and (A.2). Then contradiction fol-
lows by a standard argument, i.e. adding a constant m > 0 small enough such that
B+£{p+m>u}c Qé,é and ¢, # 0in {¢p +m > u}. Since ¢ +m € C*isalsoa
weak subsolution and u is a weak solution, we arrive at the contradiction recalling
the comparison principle, Lemma A.2.

Consider then the case Dg(xg, t9) = 0, xo # 0, and let us assume, in the
search of a contradiction, that u,(xg, o) = ¢;(x0, %) < 0. Moreover, by [34,
Remark 2.2.7] we may assume that Dg(x, t) 7= 0 whenever x # xg, and

lim F(Dg(x,t), D? ¢(x, 1)) =0.

X0 FEX—> X0,

By this and the counter assumption, denoting Qs s = Bs(xo) X (fo — 8, o), we have
¢, < F(Dg, D*¢)

in {(x,t) € Qss : x # xo} for small enough § > 0. Since u is radial and
thus Agi-190/ r? < 0, it follows by continuity of A gn-1¢ and by combining the
calculations (3.15) and (A.2) that

—1
¢ — 2= (161724 1r1=") 11" <0
q—l r

in {(r,s) € Qé,s : r # |xo|}. Without loss of generality, we may take § > 0
small enough so that for the notational convenience r > 0. Using this with n €
C$°(Qj5). n = 0, we obtain

f | 1972 "y dr dit = 1lim 161972 ¢~y dr dt
0j 5 P=0J 0k \{(r.0) < Ixol—r|<p}

= lim { —/ (|¢r|q_2¢rrd_l> ndr dt
p—0 0} s\M(0) : |lxol—r|<p} r

fo _ 1 qlxol+p
_/ [|¢r|q 2¢)rrd ]77] dt}
to—98 [xol—p

—1 —1
< — 4-- / d)rd 1ndrdt 1 qbrd_lntdrdt,
Qb‘,ﬁ

where in the first step we used the dominated convergence theorem and the fact that
q — 1 > 0. This again implies that ¢ is a weak subsolution, and the contradiction is
obtained similarly as in the first case.

Finally, consider the case D¢(xg, fp) = 0,x0 = 0 (the weak solution has
v-(0,1) = 0 so De(xg, tp) # 0 does not occur), and observe that the argument
in the previous case only utilized equation at x # xo. Moreover, our test function
in this case can be taken to be of the form ¢(x,t) = f(|x]) + g(¢), [34, Remark
2.2.7], which is a radial C?-function in R”. Thus it holds that A ¢.—1¢ = 0 outside
the origin, and thus the computation similar to (A.2), recallingd —1 > 0, still holds.
The contradiction then follows similarly as before. O
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Next we show that a radial viscosity solution is a 1-dimensional weak solu-
tion.

Proposition Ad. Letu € C(Qr), Q7 = B x (0,T), Bk CR",0 < R < 00 be
a continuous radial function, and q > 1. Then if u is a viscosity solution to (1.4) in
n-dimensions, it follows that v(r,t) := u(rey,t), r € (—R, R), is 1-dimensional
weak solution to (3.4) according to Definition 4.1.

Proof. This is a parabolic version of the proof in [39]. Without a loss of generality,
we may assume in the proof that R < oo and work out the proof in Bg x (0, T)
even in the case R" x (0, T'). If u is a weak solution in Bg x (0, T') for all R < oo,
then it is a weak solution in R” x (0, T').

First, suppose that ¢ > 2. We will prove the weak supersolution property;
the proof of the subsolution property is similar. To be more precise, we show that
v(r,t) ;= u(rey, t) satisfies

1
/ v dz < p—f o972 v,y dz (A3)
ol q—1Jg!

where ¢ € C°(Q)), ¢ = 0, where Q. := (—R, R) x (0, T). The C'-conditions
in the definition are immediately satisfied: v(-,¢) is C !_function and v,(0,7) = 0
because u is C! by [36], and u is radial.

Step 1: Regularization. Let us continue by showing that the inf-convolution u, of

u,
|x—y|2+|r—s|2>

e (A4)

(v,$)€0T

us(x,t) := inf u(y,s)+
e Jeo < y
is a weak supersolution in

0, = {(x,t)  dist((x, 1), 807) > (2£ 05co, u)l/z}.

First, it holds that u, is a semiconcave viscosity supersolution to (1.4). The Sobolev
derivatives o;u., Du, exist and belong to Llo(i:(Qg). Moreover, 1, is semiconcave
and twice differentiable a.e. and satisfies

Du Du
due > |Dusl? 2 Aug + (p —2)D?u £ . £
g > | el < e+ (p ) 8|Dua| D |

a.e.in Q,,and u, is still radial. For the properties of parabolic infimal convolutions,
see for example [49]. Also observe that since g > 2, the interpretation of the right-
hand side is clear also if Du,(x, t) = 0. It follows that in radial coordinates it holds
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similarly as before

oiug > F(Dug, D2us)

= q-2 n- 1 iA _ -2
[(ug)r| (ue)rr + , (ue)r + 2 sn 1(ug) +(p Y(Ug)rr
—1
=[(ue) 772 ((p — D)y + <us>r) (A.5)
—1 d—1
sz |(ue)r 1972 ((q = D) + — (u;;»)
—1
= =7 (16t oy 1) 1,

a.e. in Q,. In particular, we may assume that r # 0, since {(r,?) : r = 0} is of
measure zero.

Since u, is semiconcave, i.e. the function (x, 1) — us(x, t) — 2—1‘5(|x|2 +1%)is
concave in Q. , we can approximate it by a sequence (¢;) of smooth concave radial
functions by using the standard mollification. Denoting ve ;(r,t) := ¢;(rey, t) +

21_5 (Ir|? + 1), we can integrate by parts to obtain

) _
- / (e T e i), @ dr di
. 5 (A6)
Z/ |(”8,j)r|q_ (e, j)r Ir14=1 ¢, dr dt,
0;
for any non-negative ¢ € C§°(Q;) where Q; = {(r, 1) € O : dist((.1),007) >
(2¢ 08¢o1 u)'/2}. Since Du, and thus (v;), are in L2, the dominated convergence

loc>
theorem implies

. -2 _
lim | e, e |77 e, i 17147 rdr dt
j—oo QIT

(A7)
= / |(e)r 1972 (ve), P91 pydr dt.
o)

Next, by concavity of ¢; we have (vg ) < é and thus by the local boundedness
of (vg, j)r, we get

— (e ) |72 e i P19,
hfd—1
= — | e, )r]? 2( (e, ))r +(q — 1)<vg,j)rr> |r|-!

—CT2(C@—Iri* 4 = DI ).

r

v
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Since d > 1, this is an integrable lower bound needed for Fatou’s theorem. Apply-
ing Fatou’s theorem, we obtain

. -2 _
h_mlnf/QlT —( |(vg,j)r|q (Ve, j)r | l)rqbdr dt

J—>00
(A.8)
.. -2 —
Z/ liminf — (|(ve, )r |77 (e, )r P97} ), ¢drdt.
QIT J—> 00
Since
. -2 — — —
liminf (e, e |*™7 e e IF1971), = = (1A 1972 (o) IP1971),
almost everywhere, by using (A.6), (A.7) and (A.8) we obtain
—1 _ _
P 1@ 472 o)y 117 @y dr dt
q—1Jol
—1 _ B
=P [ (1w 172 o), P19, dr (A9)
q—1Jg!

|r|d_18tv8¢drdt=/ Ir14=" ve0: dr dit,
T o

)

where the last inequality follows from (A.5). Thus we have accomplished (A.3) but
so far only for v,.

Step 2: Passing to the limit in the regularization. First choose cylindrical domains
Q" € Q' @ Ql. We start by showing that (v;), is uniformly bounded in the
weighted L9(Q"). Take a cut-off function & : Q! — [0,1], & € C§°(Q) such
that £ = 1 on Q”. Choose the test function ¢ = (M — v,)E9 in (A.9), where
M = oscg |ug|. Since the test function is Lipschitz by the properties of infimal
convolution and compactly supported, this is an admissible test function after an
approximation argument. We have

/ 1 Ir19= " v0,pdx di

T

:/1 |r|d’1v€8,((M—v8).§q)drdt

Or
=, I e e i) (A10)
T

1
= fQ 1 |r|d‘1(—581v§sq +ve(M — w)ats‘I) dr dt
T

_1(1
=/Q1 Il I(Evza,suvs(M - vg>a,s‘1) drdt<C(p.n.q. |[vell (gn)-

T
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For
/Q T 1972 (o) (M = 0)E7), dr d
= [ =it arar
o}

+ f T 1T7E 0e)r (M = ve) (§)r dr di
0

T

we use Holder’s inequality. It follows recalling (A.9)-(A.10) that

[ e arar

Or

<q / P E T o) 1172 o) & (M — ve) dr di + C (p. g el (g)

Q7

1
- f P[4 89) (w17 dr di
2 QIT

+C [ Mg dr e+ C (pong. sl )

Or
Absorbing the first term on the right into the left, it follows that

f T o |7 drde < C = C (g llullisgey) - (A
Or

Hence, (v, ), is uniformly bounded with respect to € in L9 (|r |d*l drdt, Q). It fol-
lows that there exists a subsequence such that (v ), — v, weakly in L9 (|r |d_1 dr dt,
Q). Moreover, choose a smooth test function such that spt¢p C Q’ and observe that
by the dominated convergence theorem since d > 1

T R
‘ / / o 1r19  ((ve)r — vp) dr dt
0 —R

T
/ f & 1r4 (ve), — vy dr d
0 (—R,—8)U(8,R)

T
- / / @ 1P+ o d — 1) |r1772) (ve — v) dr dt
0 (—R,—8)U(5,R)

lim
§—0

lim
§—0

T
+/ {547 @ e = v)(=8.0) = 5 (g v — ). 1)
0

T
L[ (oo v o@= i) @ - varar
0 (=R,R)

T
< llve = vllp=(0n ‘/0 /( eR) (¢r P4t od —1) Irldfz) dr dt
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Moreover the right-hand side converges to zero as ¢ — 0, so that v, = v, a.e. in
Q'. Then similarly as in [47, Theorem 5.3], see also [50], it holds that the pointwise
limit v of bounded weak supersolutions v, is a weak supersolution.

Then consider the case 1 < g < 2.

Step 1: Regularization. Again u. denotes the inf-convolution of # but now

Uug(x,t) = inf u(y,s) + I _Ay|q + It s’ , (A.12)
(y.5)€Q Ged—! 2¢

for ¢ > q/(g — 1). Then similarly as before in a.e. in Q, \ {Du, = 0}, where the

definition of Q. is modified accordlngly (see below), the function u, is a viscosity

supersolution to d;u, > F(Dug, D?u,), and we have

Du Du
due > |Dus|? %[ A —2)D? £ =
iug > |Dug| ( ug +(p ) u8|Dus| \Dus |

= 220 (e 972 e ) 1
q — 1 r
However, if Du.(x,t) = 0, the meaning of the right-hand side is no longer clear.
Therefore, we look at the regularized operator in order to integrate by parts using
semiconcavity of u, and Fatou’s theorem, and the dominated convergence theorem
with respect to j as in the previous case. We obtain

| ((|(v8>,|2+6) (o), Ir[* ‘)@drdr
o7

lim ((|(vg,)r| +6) e Il )d»drdt
0}

J—>00

(A.13)

2

q
2 T _
_/1 15r21nf((|(v€,j)r| —|—82> 2 (ve,j)r Ir]? 1) ¢ drdt
Or r

f ((|(vs)r|2+a) <v8>r|r|d—1) ¢ drdt,
0}

r

%

for ¢ € C(‘)’O(Q;), ¢ > 0. When passing to the limit § — 0, we need to justify the
convergence also on the right-hand side. Let X and x, be as in Lemma A.5. Then
by Lemma A.5

. G—2
|2 — x|
Dug (X, t) = (X — X¢) = >
gd—1
. G—2
. A x_xs| D PN 0
D2u.(%,7) < (61—1)8‘}4_11 if Dug(x,1) #

0 if Duy(x,1) =0.
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Thus denoting r; := |)E — xg{ andr := |)E| we have

S}

q—

- <(|<v5>r|2 +67) 7 () |r|f“>

q=2 _
= = (1), P+ 8% 7 ((q = Do) (W)} (o)} +87)
+ (e)rr + (vQ,?) rd—1

. i~ 1)(g—1)— o d — 1 -
—C(q,q,8)<r§‘f Dig=D-1 4 ,@-Da-D: . )Irl" r

v

Since § > q/(qg — 1) so that (§ — 1)(g — 1) — 1 > 0, and since |r|?~2 is integrable,
this gives an integrable lower bound independent of §. Thus by Fatou’s lemma

q-2
liminf/ — ((I(v,;)rl2 + 52> : (ve)r |r|d_1) ¢ dr dt
ok .

§—0

q=2
z/ liminf [ — (|(v€),|2+52) S Ir1 ) @) drar
O \{(ve),=0y 60 .

- (100,197 @ 1) pdrar
07 \{(ve)r =0} r

—1
S — B0 Ir19 @ dr d.
P = 1 Jol\{we),=0}

By Lemma A.5, it follows that —9d;v, < 0 in {(v,), = 0} so that
f —0ve IV pdrdt > / —0ve |9V pdr dt
03 \{(ve), =0} o}
=/1 ve IF14V 0, dr dt.

Q7

From this and passing to the limit with § — 0 in (A.13), we obtain
-1
P | 1@arlt™2 o)y 111 g dr dt > / ve |~ 8y dr .
q—1Jot ot

Step 2: Passing to the limit in the regularization. This follows similarly as before.
In particular, techniques similar to those in [47, Theorem 5.3] do not utilize a lower
bound for g other than ¢ > 1. O

From Propositions A.3 and A .4, Theorem 4.2 immediately follows.
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Next we state some auxiliary results used in the proof above. Let u.(x, #) be as
in (A.12). Denote r(e) := (§ed~! 0SCo; W4 and 1(¢) = (2¢ 0SCo; w)V2 1t is
well known that for (£,7) € Q = {(x,1) : By()(X) € B, (t —t(e), 1 +1(c)) €
(0, T)} there exists x; € By(¢)(X) and #, with |f — tg| < t(¢) such that

~ A ~ 2
X — xe|4 |t_ts|

ug(.x,\,?) == u(x87t€)+ quq_l 28

It holds that u; /' u uniformly. By Alexandrov’s theorem, see [28, Section 6.4],
and semiconcacity of u, it follows that u, is twice differentiable a.e. We omit the
proof of semiconcavity which is well-known, see for example [44] or [39, Lemma
A 2], and instead derive the following explicit estimates.

Lemma AS. Let1 < g <2, u. asin(A.12), and x,, t; as above. Suppose that u,
is differentiable in time and twice differentiable in space at (X, ). Then:

(1) It holds that

. G2
C oo X — xel
Dug(x,1) = (x — x¢) - ;
gd—1
. G—2
R . X —x8| ) . 0
Dzug()?,t) < (g — 1)847_11 if Dug(x,1) #
0 if Dug(x,7) =0;

(i) If Dug(%,t) = 0 it follows that d;us(X,1) > 0.

Proof of (ii). There exists ¢ € C;°(Qr) touching u; at (¥, f) from below such that
00X, 1) = due(X,1), Dp(X,t) = Dug(%,t) = 0. Further,

e —yl?  Jr—s|?
u(y,s) + ———+ -, 1) Zue(x, 1) —@(x, 1)
qed— 2e

>u(X,1) —(x,1) =0.

Choose y = x¢, s = t,, and write

= xeld =gl
w(x,t)—( e T | S,

Since
£ —x T |F—t]

go(x9t) =u(x£7t6)+ qs‘?‘l 28

’
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it follows that

—x |9 |t =12
(x,rmqo(x,z)—(')ﬂ el | 8')

ged—1 2e

has a maximum at (£, 7 ). Thus, in particular

A oA F—
alué‘(xﬁt):8l(p(x7t): s )
. (A.14)

Dug(%,1) = Do(X,1) = (% —xe)

Moreover, since Du,(%,7) = 0, it follows that x, = X and by the definition of the
inf-convolution

£ — x| |f—t|2> C e P — |
u(x, 1)+ Gei pe T Ul 1) =ul, o)+ ———.

Arranging the terms as

I N

u(x, 1) >u(X, t) +

2¢e q'\g‘?_l 2¢e
we see that
e N i
R R =

touches u at (X, t,) from below. Moreover, since u is a viscosity solution and
limg 3 F(DP(x, te), D2¢(x, t)) = O since ¢ > q/(g — 1), it follows by this,
xg = X, and (A.14) that

A f—t, .
0<0¢p(x,1)=—— =0 (x,1)
I

as claimed. O

Proof of (i). There exists ¢ € C{°(Qr) touching u, at (X, f) from below such that
Qo(X, 1) = due(%,7), DX, 1) = Duc(%,t), D*¢(%,1) < D*u.(%,7). Then
recall that the argument leading to (A.14) implies

1

Dus(E, 1) = Dl 1) = (& — xe) qx
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and also

N g—2 N ~
s % — x.|? N St -
D@(X,Z)Sgé—_l g—2) ®

MR
x—x8|

|fc—x£|

The first equality above implies that if Du.(%,7) = 0 then £ = x,, and the second
since § > 2 that D?>¢(%,7) < 0. If Du,(X,7) # 0, then the previous inequality
implies

. a2
[~ xe I. O

D*p(&, 1) <(@—1) A_1|
e4q
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