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Orbital degeneracy loci and applications
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Abstract. Degeneracy loci of morphisms between vector bundles have been used
in a wide variety of situations. We introduce a vast generalization of this notion,
based on orbit closures of algebraic groups in their linear representations. A pre-
ferred class of our orbital degeneracy loci is characterized by a certain crepancy
condition on the orbit closure, that allows to get some control on the canonical
sheaf. This condition is fulfilled for Richardson nilpotent orbits, and also for
partially decomposable skew-symmetric three-forms in six variables. In order to
illustrate the efficiency and flexibility of our methods, we construct in both situ-
ations many Calabi-Yau manifolds of dimension three and four, as well as a few
Fano varieties, including some new Fano fourfolds.

Mathematics Subject Classification (2010): 14N05 (primary); 14E15, 14J32,
14J45, 14M12 (secondary).

1. Introduction

Algebraic geometry is full of amazing abstract statements about varieties and
schemes. Sometimes one can feel a bit frustrated about the relatively small num-
ber of interesting varieties or schemes that we are able to effectively construct. As
Simpson formulates it in a slightly different context [37], we have the impression
that there is a huge mass of stuff out there, waiting to be constructed or seen, but
we have no idea how to get there.

Calabi-Yau threefolds are probably a good example: even though huge data-
bases have been constructed, which essentially compile complete intersections in
toric varieties, our feeling is that there is still a huge mass of stuff to be discovered,
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consisting of Calabi-Yau threefolds of very different types. The situation is even
more frustrating as far as compact hyperkähler manifolds are concerned: a few
beautiful constructions have been known for some time, but even if we can imagine
that there is some stuff out there, waiting to be constructed or seen, we have no idea
how to get there. In fact no new hyperkähler manifold has been constructed in this
century.

The purpose of this paper is to introduce some basic techniques that should
enrich our toolbox, and show how to effectively construct interesting varieties using
these techniques. The methods we introduce are rather flexible. The thread we
decided to follow in order to illustrate their efficiency was to construct varieties with
trivial canonical bundle in low dimension, essentially threefolds and fourfolds. Our
hope was of course to discover some new hyperkähler fourfolds, or at least some
new explicit constructions of polarized hyperkähler fourfolds. For the time being
this has not happened, but we sincerely hope that other, more astute mathematicians
will be able to use our techniques and fulfill this goal.

Our initial motivation was to generalize the very classical notion of degeneracy
loci of morphisms between vector bundles. The starting point of our project was
the observation that the universal models of degeneracy loci are just the spaces of
matrices of a given format, of rank bounded by a given integer. Those spaces are ex-
actly the orbit closures of the linear groups acting as usual on the space of matrices.
From this point of view, they are just a basic series of examples inside the world of
representations of algebraic groups with only finitely many orbits. Irreducible rep-
resentations of complex reductive groups with this property were classified by V.
Kac in a very influential paper [19, Theorem 2]. There are many interesting cases,
some of them very classical, other ones related to exceptional groups and still rather
mysterious; but we have accumulated a huge amount of information about those or-
bits, which are in themselves extremely interesting varieties.

Beyond orbit closures, we can more generally consider an invariant closed sub-
variety inside some linear representation of an algebraic group. This is the starting
point for defining our orbital degeneracy loci, which are nothing else than relative
versions of these invariant subvarieties, just as degeneracy loci of morphisms be-
tween vector bundles are relative versions of varieties of matrices with bounded
rank. In fact the construction has nothing to do with the finiteness of orbit closures,
and has a huge flexibility. But the most favorable situation happens when the sub-
variety is defined by a Kempf collapsing satisfying a particular crepancy condition:
in such a case, the relative version of the collapsing allows us to control the canon-
ical sheaf of our degeneracy loci. We will focus on two situations for which this
crepancy condition is fulfilled.

The first one is provided by skew-symmetric three-forms in six variables that
are partially decomposable. The second one corresponds to nilpotent orbit clo-
sures, more precisely the so-called Richardson ones, for which we have resolutions
(or alterations) of singularities given by a Kempf collapsing similar to the famous
Springer resolution. For both of these situations, we will use the relative version
of the collapsing to construct examples of special varieties; typically, we will need
to find, for our base variety, Fano varieties of a given dimension and a given in-
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dex endowed with a suitable vector bundle or, more generally, a suitable principal
bundle.

One of the limitations of our methods is that we have little understanding (and
only few constructions) of vector bundles on Fano manifolds of higher dimension,
but this understanding is likely to improve in the future. At present, we take advan-
tage of the well-known fact that most of the Fano varieties of large index we have
at our disposal are constructed from Grassmannians or other rational homogeneous
spaces, which have the nice property of being endowed with homogeneous vector
bundles. Using those, we are able to construct several families of Calabi-Yau three-
folds and many families of Calabi-Yau fourfolds, as well as several examples of
Fano varieties. We hope this will convince our readers that our methods are really
efficient, and that they have the potential for being applied in different contexts as
well.

The structure of the paper is the following. In Section 2, we define an orbital
degeneracy locus, explain how to use a Kempf collapsing to control its canonical
sheaf, and give a first series of relevant examples. In Section 3, we concentrate
on three-forms in six variables; we explain how they allow to construct threefolds
and fourfolds with trivial canonical bundle starting from a suitable rank six vector
bundle on a Fano manifold of dimension eight or nine and index five; we give lists of
explicit varieties and vector bundles satisfying all the required conditions. Section 4
focuses on nilpotent orbit closures; we explain how each Richardson orbit can be
used to construct threefolds and fourfolds with trivial canonical bundle, starting
from a Fano manifold of suitable dimension and index, and we provide lists of
explicit examples. In Section 5 we adapt our techniques in order to produce Fano
or almost Fano manifolds, which is also an interesting problem; we describe the
(almost) Fano threefolds we are able to construct, and we identify them explicitly
using the existing classifications.

In Appendix A we explain how we computed some of the invariants of our
degeneracy loci. Finally, in Appendix B we give a Thom-Porteous type formula for
the class of a degeneracy locus defined by partially decomposable three-forms.

ACKNOWLEDGEMENTS. The authors wish to thank S. Druel for pointing out the
proof of Lemma 2.4, as well as B. Fu and A. Garbagnati for useful references.
The second author would like to thank Ch. Okonek for stimulating discussions and
valuable advice during her stay in Zurich.

2. Geometric techniques for orbital degeneracy loci

In this section we define, for an invariant subvariety Y of a representation V and
a section s of a vector bundle on a smooth variety X having fiber V , the orbital
degeneracy locus DY (s). We show how a Kempf collapsing resolving the singu-
larities of Y can be used to construct a resolution of singularities of DY (s). If the
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collapsing satisfies an additional crepancy condition, the canonical sheaf of such a
resolution can be controlled in terms of the base variety X and the vector bundle.
Several examples are discussed.

2.1. Orbital degeneracy loci

Let G be an algebraic group acting on a variety Z . For any G-principal bundle E
over a manifold X , there is an associated bundle EZ over X with fiber Z , defined as
the quotient of E ⇥ Z by the equivalence relation (eg, z) ' (e, gz) for any g 2 G.
In particular, if V is a G-module, then EV is a vector bundle over X , with fiber V .
Definition 2.1. Suppose that V is a G-module and Y a G-stable subvariety of V .
Let s be a global section of the vector bundle EV . Then the Y -degeneracy locus of
s, denoted by DY (s), is the scheme defined by the Cartesian diagram

EY
⇤

// EV

DY (s)

OO

� �
// X.

s

OO

Its support is
{x 2 X, s(x) 2 EY ⇢ EV } = s�1(EY ).

Under some mild assumptions, e.g., the generality of the choice of s, DY (s) will
have reduced structure and will be identified with its support.

If E is a vector bundle of rank e on X , the bundle of frames of E is a GLe-
principal bundle E on X , and E = EV for V the natural representation of G = GLe.
The only proper G-stable subvariety Y of V is the origin, and if s is a global section
of E , then DY (s) is just the usual zero locus of s, which will be denoted byZ (s).

If F is another vector bundle of rank f on X , the fiber product of the bundles of
frames of E and F is a GLe ⇥ GL f -principal bundleH on X , andHom(E, F) =
HV for V the usual representation of G = GLe ⇥ GL f on the space V = M f,e of
matrices of size f ⇥ e. The only closed G-stable subvarieties of V are the varieties
of matrices Yr of rank at most r , for r  min(e, f ). If ' is a global section of
Hom(E, F), then DYr (') is the usual r-th degeneracy locus of '.

2.2. Collapsing of vector bundles

A situation we will be interested in is when Y ⇢ V is closed but singular, and can be
desingularized by the total space of a homogeneous vector bundle; this is typically
the case of the varieties of matrices of bounded rank.

Formally, suppose that P is a parabolic subgroup of G, and that W is a P-
submodule of the G-module V . Then G can be considered as a P-principal bundle
over the projective variety G/P , and we denote by W and V the vector bundles
on G/P associated to the P-modules W and V . Obviously W is a subbundle of
V . Moreover, since V is a G-module, V ' G/P ⇥ V through the isomorphism
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induced by the map (g, v) 7! (g, gv); in particular V is (canonically) a trivial
vector bundle on G/P with fiber V . The second projection V ! V restricts to
a proper morphism pW mapping W to its image Y ⇢ V ; by construction Y is
a closed G-stable subvariety of V . This situation, illustrated in the commutative
diagram (2.1), was originally described by Kempf [22] and is sometimes referred
to as a Kempf collapsing (of the vector bundleW).

V

✏✏

W? _oo

))

R

R

R

R

R

R

pW
✏✏

G/P.

V Y? _oo

(2.1)

Theorem 2.2 ([22]). If G is connected and W is completely reducible, then Y is
normal and Cohen-Macaulay. If moreover pW is birational, it is a desingulariza-
tion of Y and Y has rational singularities, i.e. pW ⇤OW = OY and Ri pW ⇤OW = 0
for any i > 0.

This construction can be globalized as follows. From the G-principal bundle E
over X we construct a variety FW as the quotient of E ⇥G⇥W by the equivalence
relation (e, h, w) ' (eg�1, ghp�1, pw), for g 2 G and p 2 P . The projection p12
over the first two factors induces a map FW ! EG/P which makes FW a vector
bundle over EG/P , with fiber W . Moreover the map (e, h, w) 7! (e, hw) induces
a proper morphism FW ! EV , whose image is EY . This gives a relative version
over X of the morphism W ! Y . In particular FW ! EY is birational when
pW : W ! Y is birational. Note moreover that FV ' ✓⇤EV , if ✓ : EG/P ! X
is the projection map. The inclusion FW ⇢ FV induces the following short exact
sequence of vector bundles on EG/P :

0 // FW // FV
⌘

// QW // 0 .

Consider now a global section s of the vector bundle EV on X . Pulling it back to
EG/P and modding out byFW , we get a global section s̃ := ⌘�✓⇤(s) of QW , whose
zero locus maps to the Y -degeneracy locus of s:

✓(Z (s̃)) = DY (s).

The relative version of (2.1) is illustrated by the following commutative diagram:

FV

✏✏

FW? _oo

p12
''

O

O

O

O

O

O

✏✏

EG/P

✓

✏✏

Z (s̃)? _oo

✓ 0

✏✏

EV EY? _oo

''

O

O

O

O

O

O

O

O

X DY (s).? _oo

(2.2)
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Proposition 2.3. Suppose that EV is globally generated and that s is a general
section. Then Sing DY (s) = DSingY (s). Moreover:

• If Y is normal (respectively, has rational singularities), then DY (s) is normal
(respectively, has rational singularities);

• If pW : W ! Y is birational, the restricted projection

✓ 0 : Z (s̃) �! DY (s) ⇢ X

is a resolution of singularities.

Proof. The pullbacks of the global sections of EV generate the quotient bundle QW
at every point of EG/P , so the last part of the statement follows from the usual
Bertini theorem whenever pW is birational.

Consider the global degeneracy locus DY (E), consisting of pairs (x, s) with
s a section of EV and x a point of X such that s(x) belongs to EY . Since EV is
generated by global sections, DY (E) is a locally trivial fiber bundle over X , with
fiber the product of Y by an affine space. In particular DY (E) is singular exactly
when Y is singular, and its singular locus is DSingY (E). Bertini’s theorem therefore
implies our first claim.

Finally, let Y be normal (respectively, with rational singularities). Since the
loci DY (s) are the fibers of the projection from DY (E) to H0(X,EV ), the normality
(respectively, the rational singularities) of DY (s) for s general will follow from the
next lemma, certainly well-known to experts.

Lemma 2.4. Let f : X ! B be a surjective morphism between irreducible vari-
eties, and suppose that X has rational singularities. Then the general fiber of f
also has rational singularities.

Proof. Let p : Y ! X be a resolution of singularities; X has rational singularities
if and only if p⇤OY = OX and Ri p⇤OY = 0 for i > 0. Let ib : Xb ,! X
be the inclusion of a general fiber of f , and jb : Yb ,! Y the inclusion of the
corresponding fiber of f � p. The restriction pb : Yb ! Xb is a resolution of
singularities. Applying the base change statement [35, Proposition 3.2], we get

Ri pb⇤OYb = Ri pb⇤ j⇤bOY = i⇤b R
i p⇤OY = 0

for i > 0, and similarly pb⇤OYb = i⇤bOX = OXb . Therefore Xb has rational
singularities.

2.3. Parabolic orbits

An interesting source of orbital degeneracy loci is provided by G-modules with
finitely many orbits. Most of them come from ✓-groups [19], which can be defined
from gradings of semisimple Lie algebras.

Let us restrict to Z-gradings of simple Lie algebras. Suppose g = �kgk is such
a grading; then g0 is a Lie subalgebra, and each gk is a g0-module. An example of
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Z-grading is the one associated to a simple root ↵i , in the following way: given a
root space decomposition

g = h �
M

↵28

g↵,

suppose that a set {↵i } of simple roots has been chosen. Consider the linear form `
on the root lattice such that `(↵i ) = 1 and `(↵ j ) = 0 for j 6= i . Then

gk =
M

`(↵)=k
g↵ � �k,0h

is a Z-grading of g; moreover, g1 is an irreducible g0-module.
As it turns out, any Z-grading of g such that g1 is irreducible is isomorphic

to a grading associated to a simple root ↵i . In such a case, the semisimple part
of g0 has a Dynkin diagram deduced from that of g just by suppressing the node
corresponding to ↵i . Moreover, ↵i is the lowest weight of g1, so this irreducible
g0-module is easy to identify. Let G0 be the subgroup of G = Aut(g) with Lie
algebra g0. By [19, Lemma 1.3], there are only finitely many G0-orbits in g1.
Definition 2.5. A parabolic orbit is aG0-orbit ing1, obtained from someZ-grading
of some simple Lie algebra g associated to a simple root ↵i .
The terminology comes from the fact that, if Pi is the maximal parabolic subgroup
of G defined by ↵i , then the cotangent bundle to the homogeneous variety G/Pi is
the homogeneous vector bundle defined by the Pi -module �k�1gk .
Fact. The singularities of a parabolic orbit closure can be resolved by a Kempf
collapsing.
This should be taken with a caveat. In fact, the claim can be checked by hand for the
classical types. The exceptional types were treated case by case in [31, 32], except
E8, whose parabolic orbits remain a bit mysterious.
Examples 2.6.

A. Consider g = sle+ f and the Z-grading defined by the simple root ↵e. Then
the action of G0 on g1 is essentially the action of GLe ⇥ GL f on the space of
matrices M f,e. In particular the parabolic orbits for this case are just the spaces
of matrices of a given rank;

B. Consider g = sp2e and the Z-grading defined by the simple root ↵e. Then
the action of G0 on g1 is essentially the action of GLe on the space Syme of
symmetric matrices of size e. In particular the parabolic orbits for this case
are just the spaces of symmetric matrices of a given rank. Similarly, from the
orthogonal Lie algebras we would get the spaces of skew symmetric matrices
of a given rank;

C. Consider g = e6 and the Z-grading defined by the simple root ↵2, correspond-
ing to the adjoint representation. Then the action of G0 on g1 is essentially the
action of GL6 on ^3C6. The orbit decomposition in this case is very simple,
since the orbit closures form a string [8]

0 = Y0 ⇢ Y1 ⇢ Y2 ⇢ Y3 ⇢ Y4 = ^3C6. (2.3)
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Here Y1 is the space of non-zero fully decomposable tensors v1^v2^v3 (a cone
over the Grassmannian Gr(3, 6)); Y3 is a degree four hypersurface, which can
be defined as the closure of the union of the tangent spaces to Y1. The closure
of Y2 is the 15-dimensional variety of partially decomposable tensors v ^ !,
where v 2 C6 and ! 2 ^2C6; it is singular along Y1, hence in codimension
5. We will focus on this special variety in Section 3, where we will construct
many varieties with trivial canonical bundle as DY 2-degeneracy loci.

2.4. The canonical sheaf

We will be interested in the canonical sheaf of orbital degeneracy loci. The follow-
ing key result will allow us to get some control on this sheaf:

Proposition 2.7. Suppose that Y has rational singularities and admits a birational
Kempf collapsing pW : W ! Y such that

KG/P = det(W). (2.4)

Then the canonical sheaf of Y is trivial. Moreover, if Ȳ ⇢ P(V ) denotes the projec-
tivization of the cone Y , then the induced resolution of singularities p̄W : P(W) !
Ȳ is crepant.

Proof. Condition 2.4 clearly implies that the canonical sheaf of the total spaceW
is trivial. Since Y has rational singularities, KY = pW⇤KW , so KY is also trivial.

If w denotes the rank of the vector bundle W , the canonical bundle of its
projectivization is

KP(W) = OP(W)(�w) = p̄⇤
WOȲ (�w).

Since Ȳ also has rational singularities, we deduce that its canonical sheaf is KȲ =
p̄W⇤KP(W) = OȲ (�w), and therefore KP(W) = p̄⇤

W KȲ .

In the relative setting, this has the following crucial consequence.

Proposition 2.8. Suppose that the Kempf collapsing pW : W ! Y satisfies condi-
tion (2.4). If EV is globally generated and s is a general section, then the canonical
sheaf ofZ (s̃) is the restriction of the pull-back of some line bundle L on X . If more-
over pW is birational and Y has rational singularities, then DY (s) is Gorenstein,
has canonical singularities and its canonical bundle is the restriction of L .

Proof. Recall thatZ (s̃) is the zero locus of a section of QW = ✓⇤EV /FW on EG/P ,
which is in general transverse to the zero section. Therefore, its canonical sheaf can
be computed as the restriction toZ (s̃) of

KEG/P ⌦ det(QW ) = KEG/P/X ⌦ det(FW )⇤ ⌦ ✓⇤(KX ⌦ det(EV )).

The restriction to each fiber of ✓ (a copy of G/P) of the line bundle KEG/P/X ⌦
det(FW )⇤ is isomorphic to KG/P ⌦ det(W)⇤, hence trivial under our hypothesis.
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Thus KEG/P/X ⌦ det(FW )⇤ must be the pullback of some line bundle from X , and
the same conclusion holds for KEG/P ⌦ det(QW ). So there is a line bundle L on X
such that

KZ (s̃) = (✓⇤L)
�
�
Z (s̃).

If pW is birational and Y has rational singularities, by Proposition 2.3 DY (s) has
rational singularities and its canonical sheaf is

KDY (s) = ✓⇤KZ (s̃) = L
�
�
DY (s).

Then DY (s) is Gorenstein and has canonical singularities (see, e.g., [25, Corollary
11.13]).

Remark 2.9. By Proposition 2.8, even if pW is not birational we can still conclude
that KZ (s̃) = (✓⇤L)|Z (s̃). For instance, for Y given by the closure of particular
Richardson orbits (see Section 4), pW has degree two. In this situation we can still
consider diagram (2.2); Z (s̃) is a variety with trivial canonical bundle, endowed
with an interesting birational involution given by the degree two map ✓ 0.

2.5. First examples

Example 2.10. Let Ve, V f be vector spaces of dimensions e, f respectively. Fix
an integer r < min(e, f ). Denote by U the tautological vector bundle on the Grass-
mannian Gr(r, V f ), and byW the vector bundle Hom(Ve,U). The total space of
this bundle is a desingularization of the variety Yr of morphisms of rank at most r
inside Hom(Ve, V f ). Moreover det(W) = det(U)e, while KGr(r,V f ) = det(U) f , so
that condition (2.4) is fulfilled if and only if e = f , and then for any r .

Note that, in a dual way, we could also have chosenW = Hom(Ve/T , V f ),
with T the tautological vector bundle on the Grassmannian Gr(e � r, Ve). This
yields another desingularization of the variety Yr satisfying condition (2.4), related
to the previous one by a Mukai flop.

Another, more symmetric choice would be the bundleW = Hom(Ve/T ,U)
on Gr(e � r, Ve) ⇥Gr(r, V f ). But then condition (2.4) is NOT satisfied.
Remark 2.11. This example explains why it is possible to construct varieties with
trivial canonical bundle as classical degeneracy loci of morphisms between vector
bundles of the same rank. In fact, a few Calabi-Yau degeneracy loci of (possibly
symmetric or skew-symmetric) morphisms between vector bundles have already
been described. Tonoli constructed Pfaffian Calabi-Yau threefolds in P6 [41]; his
construction was later generalized by Kanazawa [20], who replaced the ambient
space by weighted projective spaces. Determinantal Calabi-Yau threefolds have
been also studied from a different perspective in [14] (see also [2]), and further
examples have been explicitly described in [21].

Pfaffian orbit closures are examples of subvarieties Y such that the canonical
bundle of a Y -degeneracy locus can be controlled even if no resolution of Y satis-
fying condition (2.4) is known. This behavior, which is typical of Gorenstein orbit
closures or subvarieties, is explained and investigated in [3].
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Example 2.12. Let again U ,Q denote the tautological and quotient vector bundles
on a GrassmannianGr(r, Vd). Let k  r  d, k+`  d and letW = ^kU^^`Vd ,
a subbundle of the trivial bundle ^k+`Vd . Then the total space ofW maps to

Yk,r :=

⇢
! 2 ^k+`Vd , ! =

P
↵i ^ �i such that �i 2 ^`Vd

and ↵i 2 ^kU for some U ⇢ Vd of dimension r

�
,

the variety of (k, r)-decomposable forms inside ^k+`Vd . Beware that this collaps-
ing will in general be a desingularization, but not always.

Note thatW has a natural filtration whose quotients are the bundles ^k+iU ⌦
^`�iQ, for i  min(r � k, `). We deduce that det(W) = det(U)N for

N=
min(r�k,`)X

i=0

(r � 1)!(d � r � 1)!
(k + i)!(r � k � i)!(` � i)!(d � r � ` + i)!

((k + i)d � (k + `)r) ;

hence, condition (2.4) is satisfied when N = d, a diophantine equation with in-
finitely many solutions.

A simple solution is ` = 0, k = 3, d = 10, r = 6. The quotient bundle
QW = ✓⇤ ^3 E/ ^3 U has rank 100, soZ (s̃) has dimension and canonical sheaf

dimZ (s̃) = dim X � 76, KZ (s̃) = ✓⇤
⇣
KX ⌦ (det E)30

⌘��
�
Z (s̃)

.

So, in order to construct for example a fourfold with trivial canonical class, we
would need a Fano variety X of dimension 80, and a rank 10 vector bundle E on X
such that ^3E is globally generated and KX = (det E)�30.

Another simple solution is ` = 2, k = 1, d = 10, r = 4, which corresponds to
the hyperkähler variety described by Debarre-Voisin in [9];W is the kernel bundle
of the map ^3V10 ! ^3Q over Gr(4, V10). Therefore, QW = ^3Q. In this case
W cannot be a desingularization of Y1,4 for dimensional reasons: indeed

dimZ (s̃) = dim X + 4, KZ (s̃) = ✓⇤
⇣
KX ⌦ (det E)6

⌘��
�
Z (s̃)

.

In order to obtain a fourfold, X has to be a point, and in this way one recovers the
hyperkähler family constructed by Debarre and Voisin.

Finally, the solution ` = 2, k = 1, d = 6, r = 1 gives a desingularization of
the variety Y2 of partially decomposable forms in ^3C6 appearing in (2.3), as we
will see in the next section more in detail.
Example 2.13. More generally, choose a partition � with at most r non-zero parts.
Let us denote by S� the Schur functor associated to �, i.e., for instance, S(1k)V =
^kV . Consider on the Grassmannian G = Gr(r, Vd) the vector bundleW = S�U ,
a subbundle of the trivial bundle S�Vd . The total space ofW is a desingularization
of the rank r variety Yr inside S�Vd [36], which has rational singularities by Theo-
rem 2.2. Let r� be the rank ofW , and define d� by the identity detW = OG(�d�).
These integers are given by

d� =
|�|r�
r

, r� =

Q
x2D(�)(r + c(x))

h(�)
,
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where |�| denotes the size of � (the sum of its parts), D(�) is the diagram of �
(with �i boxes on the i-th row), where a box x = (i, j) in this diagram has content
c(x) = j � i , and h(�) is the product of the hook lengths.

Condition (2.4) is fulfilled exactly when d = d�. Note that in general the
singular locus of Yr is Yr�1, and has large codimension in Yr .

A concrete example is the following: let us consider the partition � = (2, 1).
Then we need d = r2 � 1. So let E be a vector bundle of rank d on X , such
that S(2,1)E is generated by global sections. If s is a general section, DYr (s) has
dimension

dim DYr (s) = dim X + r(d � r) +
r(r2 � 1)

3
�
d(d2 � 1)

3

and its canonical sheaf is given, with the same notation as before, by

KDYr (s) =
⇣
KX ⌦ (det E)d

2�1�r
⌘ ��
�
DYr (s)

.

Remark 2.14. Example 2.10 shows that, in general:

1. There are potentially several non-equivalent ways to desingularize a G-variety
by total spaces of homogeneous vector bundles;

2. Only some of them, if any, will satisfy condition (2.4).

It would be important to classify birational collapsings of vector bundles satisfying
(2.4). Several new examples are exhibited in [3].

3. Partially decomposable forms

In this section we consider degeneracy loci associated to the orbit of partially de-
composable three-forms in six variables. We present some general constructions
and produce several examples of threefolds and fourfolds with trivial canonical bun-
dle, all of which turn out to be Calabi-Yau varieties.

3.1. General setting

Let V6 be a six dimensional complex vector space. As mentioned in Example 2.6. C.,
the action of GL(V6) on the space of skew-symmetric three-forms ^3V6 has only
five orbits, whose closures form the chain (2.3). The orbit closure we will focus on
is Y = Y2. Its singular locus is Y1 and there are several natural ways to resolve its
(rational) singularities.

LetO(�1)denote the tautological line bundle on P(V6), and letW1=O(�1)^
(^2V6), a subbundle of the trivial vector bundle ^3V6. Then the total space ofW1
collapses to Y and provides a first desingularization. SinceW1 = O(�1) ⌦ ^2Q,
with Q the tautological quotient bundle on P(V6), we compute that detW1 =



180 V. BENEDETTI, S. A. FILIPPINI, L. MANIVEL AND F. TANTURRI

O(�6), so that condition (2.4) is satisfied. Note that this desingularization corre-
sponds to the desingularization of the variety of (1, 1)-decomposable forms inside
^3V6, see Example 2.12.

In a dual way (^3V6 is in fact self-dual), we could also have chosen W2 =
^3U , with U the tautological vector bundle on the Grassmannian Gr(5, V6) =
P(V ⇤

6 ). This yields another desingularization of the variety Y , again satisfying con-
dition (2.4), and related to the previous one by a flop.

A more symmetric choice would be the bundle W3 = L ^ ^2U on the flag
variety F(1, 5, V6), where L ⇢ U denote the rank one and rank five tautologi-
cal bundles. This desingularization dominates the previous ones (as shown in the
following diagram), but condition (2.4) is NOT satisfied:

W3
vvm

m

m

m

m

m

((

R

R

R

R

R

R

W1
((

R

R

R

R

R

R

R

//________ W2.
uul

l

l

l

l

l

l

oo_ _ _ _ _ _ _ _

Y

In the relative setting, we consider a vector bundle E of rank 6 on a variety X .
Following the notation of Section 2.1, we consider the GL6-principal bundle E of
frames of E ; then E^3V6

⇠= ^3E . If s is a section of this bundle over X , its Y -
degeneracy locus is

DY (s) =
�
x 2 X, s(x) is partially decomposable in ^3 Ex

 
.

For ^3E generated by global sections, and s general, DY (s) will be of codimension
five in X , and singular exactly at the points where s(x) is completely decompos-
able, a sublocus of codimension five in DY (s) (see Proposition 2.3). Moreover its
singularities will be resolved by the zero locusZ (s̃) inside EG/P ⇠= P(E), where s̃
is the induced section of QW . If we denote byOP(E)(�1) (respectivelyQP(E)) the
tautological subbundle (quotient bundle) over P(E), we have

QW = ✓⇤E^3V6/FW ⇠= ✓⇤� ^3 E
�
/
�
OP(E)(�1) ⌦ ^2QP(E)

� ⇠= ^3QP(E).

We compute the canonical bundle ofZ (s̃) from the adjunction formula:

KZ (s̃) = (KP(E) ⌦ det QW )|Z (s̃) = ✓⇤
⇣
KX ⌦ (det E)5

⌘��
�
Z (s̃)

.

The statement we will use in the sequel is the following:

Proposition 3.1. For d  4, let X be a projective variety of dimension d+5. Let E
be a rank six vector bundle on X , such that KX = (det E)�5 and ^3E is generated
by global sections. Let s be a general section. Then DY (s), the locus of points
where the section s becomes partially decomposable, is either empty or smooth of
dimension d, with trivial canonical bundle.

Our problem in the sequel will therefore mainly be the following:
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Problem. Find projective varieties X , of dimension eight or nine, endowed with a
non-trivial vector bundle E of rank six such that ^3E is globally generated, and

KX = (det E)�5. (3.1)

3.2. Constructions

The assumptions on the variety X and the vector bundle E are somehow restrictive.
On the one hand, det E must be semiample and non-trivial, and therefore K�1

X too.
On the other hand, the index of X has to be a multiple of 5; by the Kobayashi-Ochiai
inequality [24] (see also [17]),

index(X)  dim X + 1. (3.2)

If index(X) 6= 5, it has to be 10 and then X = P9. We are not aware of any
suitable rank six vector bundle on P9 other than O(2) � 5O or 2O(1) � 4O. We
will therefore restrict our search to varieties X with index 5.

If KX = L�5 for some (non-trivial) globally generated line bundle L , a naive
possibility would be to consider E = L� 5OX . We will rule out this case from our
study because of the following:

Proposition 3.2. If E = L � 5OX , with L a globally generated line bundle, then
the degeneracy locus DY (s) arising from a general section s of ^3E is the zero
locus of a general section of 5L .

Proof. Let us write E = V5 ⌦ OX � L , for a five dimensional vector space V5.
Then

^3E = ^3V5 ⌦OX � ^2V5 ⌦ L ,

so that a section s 2 H0(X,^3E) can be decomposed as s = � + s0, where � 2
^3V5 and s0 2 ^2V5 ⌦ H0(X, L). In general � , considered as a two-form by the
isomorphism ^3V5 ' ^2V ⇤

5 , will have rank four; dually, this exactly means that it
can be decomposed as � = v0 ^ !0, where v0 2 V5 and !0 2 ^2V5. The vector
v0 generates the kernel of � , in particular it is uniquely defined up to scalar. The
two-form !0 is unique up to a wedge product of v0 by another vector.

At a point z 2 X , let � be a generator of the fiber Lz; then

s(z) = � + s0(z) = � + ! ⌦ �

where ! 2 ^2V5. It is partially decomposable if we can factor it out as s(z) =
(v + c�) ^ (� + ✓ ⌦ �), where v, ✓ 2 V5, c 2 C, � 2 ^2V5. This is equivalent to
the two identities

� = v ^ �, ! = v ^ ✓ � c�.

The first equation implies that v = tv0 for some t 6= 0, and � = t�1!0+v0^w for
some w 2 V5. The second equation can then be solved if and only if ! belongs to
the codimension five subspaceU of ^2V5 spanned by !0 and v0^V5. We conclude
that our degeneracy locus DY (s) can be defined by the condition that the section of
(^2V5/U) ⌦ L induced by s0 vanishes, and our claim follows.
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Our problem can therefore be approached as follows:

1. Find Fano varieties X of dimension eight or nine and index 5, that is KX = L�5

for some ample line bundle L;
2. Find vector bundles E of rank six on those X , not of the form L � 5OX , such
that det E = L . Moreover ^3E must be generated by global sections.

Fano varieties of dimension eight and index five are close toMukai varieties, which
are Fano varieties of dimension n and index n � 2. Mukai varieties are (almost)
classified in [33] (see also [6]). Roughly speaking, they consist in:

1) Complete intersections;
2) Branched covers;
3) Sections of rational homogeneous varieties;
4) Blow-ups;
5) Projective bundles, including products.

This suggests that we look for varieties of similar types. For types 1), 2) and 4),
unfortunately we do not have suitable vector bundles, so we will restrict our study
to two types of varieties: subvarieties of homogeneous spaces, and projective or
Grassmannian fibrations. The possibility of constructing Calabi-Yau varieties in
homogeneous spaces has already been considered, e.g., by Hübsch [16]. Let us
briefly discuss the latter type.

3.2.1. Grassmann bundles

Consider a Grassmann bundle ⇡ : X = Gr(k, F) ! Z , where F is a bundle on Z .
In this situation, if UX/Z denotes the tautological subbundle of rank k on Gr(k, F),
we have:

KX = det(UX/Z )rank(F) ⌦ ⇡⇤�KZ ⌦ det(F⇤)k
�
.

As we want KX to be divisible by 5, we have to impose some conditions on Z and
F . For example, we can ask for the following two properties:

KZ ⌦ det(F⇤)k = OZ , rank(F) = 5. (3.3)

This implies that 1  k  4.

• k = 1. But then there is no obvious choice for E , apart from E = U⇤
X/Z � 5OX

that we have excluded;
• k = 2. The variety Z has dimension 2 or 3, i.e. it is a del Pezzo surface or a Fano
threefold. Moreover, (3.3) implies that the index of Z is divisible by 2. The only
del Pezzo surface with this property is P1⇥P1. If Z has dimension three, it must
be a del Pezzo threefold (recall that del Pezzo manifolds are Fano manifolds of
dimension n whose index is divisible by n � 1; they were classified by Fujita,
see [17] and references therein). A natural choice for E is E = U⇤

X/Z � 4OX ;
• k = 3. The variety Z has dimension 2 or 3 as before, but now the index of Z is
divisible by 3. As for del Pezzo surfaces, the only possibility is P2. If dim(Z) =
3, Z must be a quadric in P4. A natural choice for E is E = U⇤

X/Z � 3OX ;



ORBITAL DEGENERACY LOCI AND APPLICATIONS 183

• k = 4. The variety Z has dimension 4 or 5, and the index of Z must be divisible
by 4. If Z has dimension 4, it must be a quadric in P5. If dim(Z) = 5, it must be
a del Pezzo fivefold. A natural choice for E is E = U⇤

X/Z � 2OX .

We can also replace conditions (3.3) by

KZ ⌦ det(F⇤)k = L5, rank(F) = 5, (3.4)

for some line bundle L on Z . Then we need to choose E such that det(E) =
det(U⇤

X/Z ) ⌦ ⇡⇤L⇤. For example we can consider k = 1 and Z = P5; we can
then set F = OP5(�1) � 4OP5 or F = Q⇤

P5 , and L = OP5(�1), for which
E = U⇤

X/Z � ⇡⇤L⇤ � 4OX produces a Y -degeneracy locus with trivial canonical
bundle inside Gr(k, F).

We also notice that if F is a trivial bundle we get products of the form Z ⇥
Gr(k, 5). As we want E to depend on Z to avoid trivial cases, we suppose that Z
is Fano, and therefore of index 5. Then, if k = 1, we obtain P4 ⇥ P4 with different
possibilities for E (see Section 3.3.1), or Q5 ⇥ P4, where Qn is the quadric of
dimension n (see Section 3.3.2). The case k = 2, is excluded by the Kobayashi-
Ochiai inequality (3.2).

Many other choices are of course possible. Instead of considering X =
Gr(k, F), we could take X as the zero locus of a section of a vector bundle on
a suitable Grasmann bundle. A systematic study of these cases, however, falls out-
side the scope of this paper.

3.2.2. Twisted degeneracy loci

Consider a vector bundle E of rank 6 and a line bundle L on X . Then, taking a
section s 2 ^3E⌦ L , one can consider the twisted Y -degeneracy locus DY (s) ⇢ X
consisting of points x 2 X such that s(x) is in the twisted fibration EY ⌦ L ⇢
^3E⌦L . In this new situation, the canonical bundle of the resolutionZ (s̃) ⇢ P(E)
becomes

⇣
✓⇤(KX ) ⌦ KP(E)/X ⌦ det

�
^3 E ⌦ L

�
⌦ det

�
^2 QP(E)(�1) ⌦ L

�⇤⌘
�
�
�
Z (s̃)

=
⇣
✓⇤�KX ⌦ det(E)5 ⌦ L10

�⌘ ��
�
Z (s̃)

;

hence,Z (s̃) has trivial canonical bundle if

KX ⌦ det(E)5 ⌦ L10 = OX . (3.5)

It is easy to see that this condition is coherent with condition (3.1) when L = L 03,
which implies ^3E ⌦ L = ^3(E ⌦ L 0). As we require that the bundle ^3E ⌦ L
is globally generated, we have a restriction on the choice of L and E . On the one
hand we can choose the two of them to be globally generated; say L = O(1), and
det(E) = O(1), with O(1) ample and primitive. Then condition (3.5) becomes
KX =O(�15) and the Kobayashi-Ochiai inequality implies that dim(X)�14>9.
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On the other hand, let us assume L = O(�1); then, for example, we can choose
E = 4O(1) � 2OX and in this way

^3E ⌦ L = (4O(3) � 12O(2) � 4O(1)) ⌦O(�1) = 4O(2) � 12O(1) � 4OX

is globally generated. Condition (3.5) becomes KX = O(�10). The Kobayashi-
Ochiai inequality implies again that dim(X) = 9, and X = P9.

3.2.3. Simple connectedness

One natural question that arises when constructing (Calabi-Yau) varieties is whether
they are simply connected. We are able to prove the simple connectedness of our
orbital degeneracy loci in the case of partially decomposable forms when the base
variety X is a complete intersection.

Proposition 3.3. Let X be a variety of dimension at least seven which is the zero
locus of a general section of an ample line bundle L over a variety X 0. Suppose
that there exists a vector bundle E on X 0 of rank six, such that ^3E is globally
generated, and KX = det(E |X )�5. Consider the degeneracy locus DY (s) ⇢ X ,
where s is a general section of ^3E |X . Then the desingularization Z (s̃) of DY (s)
inside P(E |X ) is simply connected.

Proof. We will prove the simple connectedness of Z (s̃) when the section s is the
restriction of a general section t of ^3E over X 0. Then, a deformation argument
implies our assertion.

The idea of the proof is to use some generalizations of the Lefschetz hyperplane
theorem to prove the vanishing of relative homotopy groups (see for example [39]).
In particular, we want to apply [34, Corollary 22], which states that if Z is the zero
locus of a section of a globally generated k-ample vector bundle over Z 0, then the
relative homotopy groups ⇡i (Z 0, Z) are trivial for i  dim(Z) � k. Let us recall
the definition of k-ampleness (first introduced by Sommese in [38]): a line bundle
L on Z 0 is k-ample if Lr is globally generated for some r > 0, and the fibers of the
corresponding morphism � : Z 0 ! H0(Z 0, Lr ) have dimension at most k.

In our situation, even though L is ample (i.e. 0-ample) over X 0, this variety is
non-necessarily simply connected. We will rather consider our orbital degeneracy
locus as a subvariety of another degeneracy locus, that will be (almost) Fano and
therefore simply connected. Moreover, the fact that in higher dimensions degener-
acy loci are singular will force us to work on their desingularizations.

Denote by DY (t) ⇢ X 0 the degeneracy locus associated to the section t 2
H0(X 0,^3E), and suppose s = t |X . As X ⇢ X 0 is the zero locus of a section of L ,
DY (s) ⇢ DY (t) is as well the zero locus of a section of L|DY (t). Similarly, when
we pass to the respective desingularizations, we have thatZ (s̃) ⇢ Z(t̃) is the zero
locus of a section of ✓⇤(L)|Z (t̃). The following diagram illustrates this situation:

Z (s̃) � �
//

✏✏

Z (t̃) � �
//

✏✏

P(E)

✓
✏✏

DY (s) � �
// DY (t) � �

// X 0.
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In order to apply Okonek’s result, we have to verify that ✓⇤(L)|Z (t̃) is k-ample for
a suitable k. The value of k will depend on the dimension of the fibers of ✓ , i.e. on
the dimension of X 0.

• If dim(X 0)  9, thenZ (t̃) ⇠= DY (t) and ✓⇤(L)|Z (t̃) is ample;
• If 10  dim(X 0)  19, the singular locus of DY (t) is supported in codimension
5. Moreover, the preimage of Sing(DY (t)) inside Z (t̃) is a P2-bundle over it.
This comes from the fact that Sing(Y ) is the space of totally decomposable forms
W = !1^!2^!3; the resolution of Y has fiber overW canonically isomorphic
to P(W ), where W is seen as a vector space of dimension 3. Therefore, the
bundle ✓⇤(L)|Z (t̃) is 2-ample in this case;

• If dim(X 0) � 20, D0(t) is non-empty in general, and the fiber over it is a P5-
bundle. In this situation, the bundle ✓⇤(L)|Z (t̃) is 5-ample.

As in each case dim(Z (s̃))�k � 2, by applyingOkonek’s result we get that the rela-
tivehomotopygroup⇡2(Z (t̃),Z (s̃)) is trivial. Moreover,Z (t̃) is analmostFanova-
riety [18], i.e., its anticanonical bundle is big and nef. Almost Fano varieties are sim-
ply connected (see [40]); therefore⇡1(Z (t̃)) is trivial. Using the long exact sequence
of relative homotopy groups, we deduce that ⇡1(Z (s̃)) is trivial as well.

Recall that, for a vector bundle V , being k-ample means that OP(V )(1) is k-
ample. Therefore, the same proof remains valid if we replace L by an ample vector
bundle V , provided that dim(Z (s̃)) � 2+ k whenever ✓⇤(V )|Z (t̃) is k-ample.

3.3. Explicit examples
3.3.1. Threefolds

We collect here examples of threefolds with trivial canonical bundle which can be
constructed as orbital degeneracy loci DY (s), where s 2 H0(X,^3E) is a general
section of the globally generated vector bundle ^3E , E a rank 6 vector bundle on
a projective variety X . As in the whole section, Y is the orbit closure of partially
decomposable forms in ^3C6.

The relevant varieties X are homogeneous spaces or linear sections of homo-
geneous spaces. We present them, as well as the other varieties that we will meet
later on, as zero loci of general sections of a homogeneous vector bundle V on a
homogeneous variety X 0. Moreover the bundle E on X will be the restriction of a
homogeneous bundle E 0 on X 0.

The non-vanishing of the top Chern class of^3QP(E), which we checked using
Macaulay2 [15], ensures that the constructed degeneracy loci are non-empty.

Using the Koszul complex and the conormal sequence we recover the coho-
mology groups on Z (s̃) from those on P(E) and, since Z (s̃) ' DY (s), we obtain
Hp,q(Z (s̃)) = Hp,q(DY (s)), for 0  p, q  3. In particular, for all cases we have
h1,0(DY (s)) = h2,0(DY (s)) = 0, hence they are (possibly non-simply connected)
Calabi-Yau varieties. In Appendix A we explain more in detail the method used to
compute the Hodge diamonds. We list the aforementioned examples of Calabi-Yau
threefolds with their Hodge numbers in Table 3.1.
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Table 3.1. Some examples of Calabi-Yau 3-folds.

X 0 V E 0 h1,1 h2,1

(t.1)
(t.2) Gr(2, 7) 2O(1) U⇤ � 4O

Q�O
2
3/4?

49
36/37?

(t.3) Gr(3, 6) O(1) U⇤ � 3O 2 38
(t.4)
(t.5) P4 ⇥ P4 p⇤

1O(1) � p⇤
2O(1) � 4O

p⇤
1Q� p⇤

2O(1) �O
3
4

48
32

Notice that, by Proposition 3.3, the threefolds (t.1), (t.2), (t.3) are simply connected;
for cases (t.4), (t.5) the same proposition cannot be applied.

For the threefold (t.2) the ambiguity in the Hodge numbers cannot be resolved
by our method since we could not determine whether one of the coboundary maps
of the Koszul complexes has maximal rank. The same happens in example (t.3),
where the Picard number can be 1 or 2. However, in this case we verify that the
two line bundles L1 = OP(E)(1) and L2 = ✓⇤OX (1), where ✓ : P(E) ! X , are
non-trivial and independent by comparing their intersection numbers.

TheHodge numbers in Table 3.1 were previously found, e.g., in [4,13,23,29] as
pertaining to complete intersections in toric ambient varieties. It would be interesting
to investigate whether there exists a relation between these examples and ours.

3.3.2. Fourfolds

With the same notation as above, we list in Table 3.2 examples of Y -degeneracy loci
of dimension 4 with trivial canonical bundle constructed from a pair (X, E), where
X is the zero locus of a homogeneous vector bundle V on a classical Grassmannian
X 0. We denoted by T+ 1

2
, on an orthogonal Grassmannian OGr(k, 2n), one of the

two spin bundles of rank 2n�k�1.

Table 3.2. Calabi-Yau 4-folds in classical Grassmannians.

X 0 V E 0

(f.1) P9 – 2O(1) � 4O
(f.2)
(f.3) Gr(2, 7) O(2) U⇤ � 4O

Q�O
(f.4)
(f.5) Gr(2, 8) 3O(1) U⇤ � 4O

Q
(f.6)
(f.7) Gr(2, 8) S2U⇤ U⇤ � 4O

Q
(f.8)
(f.9) Gr(3, 7) ^2U⇤ U⇤ � 3O

Q� 2O
(f.10) OGr(2, 10) T+ 1

2
(1) U⇤ � 4O

(f.11) OGr(2, 12) T+ 1
2
(1) U⇤ � 4O
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The Y -degeneracy loci that we obtain from the data X 0, V, E 0 of Table 3.2 were
checked to be non-empty because ctop(^3QP(E)) 6= 0, and Calabi-Yau because the
Euler characteristic �(DY (s)) = 2. Note that since the dimension is even, this is
enough to ensure the simple connectedness.

In cases (f.1-f.9) we used the package Schubert2 implemented in
Macaulay2 to compute directly the Euler characteristic and the top Chern class of
^3QP(E). The samemethod does not apply for cases (f.10) and (f.11), as orthogonal
Grassmannians are not implemented in the package. Instead, we computed directly
the dimension of Hi (Z (s̃),OZ (s̃)) by means of a Koszul complex, as explained in
Appendix A. The same computations show at once the non-emptiness of these loci.

Note that if a triple (X 0, V, E 0) satisfies the conditions we require (with the
exception of P9), then the zero locus of a general section in H0(X 0, V � 5O(1)) is
a fourfold with trivial canonical bundle. Such fourfolds have been classified in [1],
and this classification guarantees that Table 3.2 is complete.

Non-classical generalized Grassmannians may also be considered. For in-
stance, on the Cayley plane XE6.1 the zero locus of seven general sections of the
positive generator of the Picard group is a Fano variety of dimension nine and in-
dex five. Unfortunately, for this case, as well as for the other cases coming from
exceptional Lie groups, we could not find any suitable rank six vector bundle E .

As discussed in Section 3.2.1, another family of examples is provided by vari-
eties X defined as Grassmann bundlesGr(k, F), for some vector bundle F on some
Fano variety Z . In this situation, a natural choice for E is U⇤

X/Z � (6� k)O, where
UX/Z denotes the tautological bundle of Gr(k, F). As already explained, for every
1  k  4 we know all the possible varieties Z which are suitable to construct de-
generacy loci with trivial canonical bundle. The problem is to find suitable bundles
on them. Table 3.3 reports the examples we were able to construct. Once again, we
did not include in the table the cases in which E decomposes as a line bundle and
five copies of the trivial bundle, which happens exactly for k = 1. For Table 3.3 we
decided to follow this notation: Z will be the zero locus of a general section of a
bundle V on a variety Z 0 (sometimes Z = Z 0). Moreover BlptP3 is the blow-up of
P3 over a point, with exceptional divisor Exc.

The varieties obtained this way are smooth fourfolds and have trivial canonical
bundle. With the package Schubert2 we can check that ^3QP(E) has non-zero
top Chern class and compute the Euler characteristic of the varieties just found: it
turns out to be always 2.

Besides the examples in Tables 3.2 and 3.3, many others can be constructed.
We might look at different kind of base varieties, or relax some hypotheses we
made. Even though a systematic study of these more general cases falls outside the
aims of this paper, let us mention here a few sporadic examples.

We can take a more general homogeneous space as X , e.g., a partial flag variety.
Let X = F(1, 5, 6); we can see it as a codimension 1 complete intersection in
P5 ⇥ P5 cut out by an equation of bidegree (1, 1). Using this description, it is easy
to see that for E we can consider the following vector bundles:

U⇤
1 � U⇤

2 � 4O, Q1 � U⇤
2 .
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Table 3.3. Calabi-Yau 4-folds in Grassmann bundles.

Z 0 V F k

(f.12) Gr(2, 5) S2U⇤ U � 3O 2
(f.13)
(f.14)
(f.15)

P3 -
^2Q⇤ � 2O

O(�1) �O(�1) � 4O
O(�2) � 4O

2

(f.16)
(f.17) P4 O(3) Q⇤ �O

O(�1) � 4O 2

(f.18)
(f.19) BlptP3 - Exc(�1) �O(�1) � 3O

Exc(�2) � 4O 2

(f.20)
(f.21)
(f.22)
(f.23)

P2 ⇥ P2 O1(1) ⌦O2(1)
Q⇤
1 �Q⇤

2 �O
Q⇤
1 � U2 � 2O
U1 � U2 � 3O
U1 ⌦ U2 � 4O

2

(f.24)
(f.25) Gr(2, 4) O(2) U � 3O

O(�1) � 4O 2

(f.26)
(f.27)
(f.28)

Gr(2, 5) 3O(1)
Q⇤ � 2O
U � 3O

O(�1) � 4O
2

(f.29)
(f.30)
(f.31)

P1 ⇥ P1 ⇥ P1 -
U1 � U2 � U3 � 2O

(U1 ⌦ U2) � U3 � 3O
(U1 ⌦ U2 ⌦ U3) � 4O

2

(f.32)
(f.33) Gr(2, 4) O(1) U � 3O

O(�1) � 4O 3

(f.34) P6 O(3) O(�1) � 4O 4
(f.35) P7 2O(2) O(�1) � 4O 4
(f.36)
(f.37)
(f.38)

Gr(2, 5) O(1)
Q⇤ � 2O
U � 3O

O(�1) � 4O
4

A computation with Schubert2 shows that the corresponding degeneracy loci
are non-empty and have characteristic two, hence they are examples of Calabi-Yau
fourfolds.

Other fourfolds with trivial canonical bundle can be obtained inside Grassmann
bundles over subvarieties of homogeneous varieties, as done above. With the same
notation, we can consider a rank 5 vector bundle F over Z such that conditions (3.4)
hold. We get the four examples listed in Table 3.4, where ⇡ : Gr(k, F |Z ) ! Z is
the map associated to the Grassmann bundle.

The last two examples correspond to degeneracy loci inside Q5 ⇥ P4, where
Q5 denotes the five-dimensional quadric. For all four examples, a computation with
Schubert2 shows that the corresponding degeneracy loci are non-empty Calabi-
Yau fourfolds.
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Table 3.4. Some other Calabi-Yau 4-folds in Grassmann bundles.

Z 0 G F k E

P5 - O(�1) � 4O
Q⇤ 1 U⇤

X/Z � ⇡⇤L⇤ � 4O

P6 O(2) 5O 1 U⇤
X/Z � ⇡⇤L⇤ � 4O
QX/Z � ⇡⇤L⇤ �O

A last example which is worth recalling here is the twisted degeneracy locus con-
structed from P9 (and mentioned in Section 3.2.2). Again, the Euler characteristic
in this case is equal to two.

4. Nilpotent orbits

In this section we study degeneracy loci associated to Richardson nilpotent orbits.
We give a list of orbits which can be used to construct low-dimensional degeneracy
loci. These loci will often have singularities in low codimension. Nonetheless, their
resolutions of singularities give rise to many examples of threefolds and fourfolds
with trivial canonical bundle.

4.1. A reminder about nilpotent orbits

Consider any projective homogeneous variety G/P and take as W the cotangent
bundle �1

G/P . Then condition (2.4) is obviously verified. Note that �1
G/P is the

homogeneous vector bundle defined by the P-module (g/p)⇤ ' p? ⇢ g⇤. If we
identify g⇤ with g using the Killing form, then p? = rad(p), the nilpotent radical of
the Lie algebra p. The image of the map

pW : W �! Y ⇢ g

is therefore contained in the nilpotent cone, so that Y = O is the closure of some
nilpotent orbitO. Such orbits are called Richardson orbits. The main example is of
course the maximal nilpotent orbit; in this case P = B is a Borel subgroup, Y is the
nilpotent cone, and pW is the famous Springer resolution. Nevertheless, pW is not
necessarily birational in general; Fu proved in [10] that this is the case exactly when
O admits a symplectic resolution (moreover this resolution must be some pW ).

Finally, a general useful fact about nilpotent orbit closures is that the singular
locus of Y = O always coincides with its boundaryO �O.

4.2. Associated degeneracy loci

In the relative setting, we start from a G-principal bundle E over some variety X ,
and we denote by adE the vector bundle Eg on X associated to the adjoint represen-
tation of G. LetO be a Richardson nilpotent orbit in g, corresponding to a parabolic
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subgroup P of G. As done in Section 3.2.2, we can consider twisted degeneracy
loci: let L be a line bundle on X such that adE ⌦L is generated by global sections.
For s such a global section, theO-degeneracy locus is

DO(s) = {x 2 X, s(x) 2 EO ⌦ L}.

If the collapsing of �1
G/P is birational and s is general, this locus will be desingu-

larized byZ (s̃), s̃ being the section of the vector bundle

Q = ✓⇤(adE)/�1
EG/P/X ⌦ ✓⇤L

induced by s. Since ad(E) is self-dual, its determinant is trivial (at least up to 2-
torsion, something we will ignore in the sequel since we will always work with
varieties whose Picard group has no torsion). On the one hand, we get the simple
formula

KZ (s̃) = ✓⇤�KX ⌦ Ldim P���
Z (s̃).

On the other hand, the dimension ofZ (s̃) is

dimZ (s̃) = dim X � `P ,

where `P denotes the dimension of the Levi part of P , which can be computed as
`P = 2 dim P � dimG.

If we require, for example, Z (s̃) to be of dimension d with trivial canonical
bundle, we need the index of X to be equal to dim P (or a multiple, if L is divisible),
while its dimension must be dim X = d + `P . This yields the relation

index(X) = dim X � d + dimG/P.

Because of (3.2), this implies that

dimG/P  d + 1. (4.1)

Moreover, in case of equality X must be a projective space, while if dimG/P = d,
then X must be a quadric.

4.3. Nilpotent orbits in type A

If g = sle, every nilpotent orbit is a Richardson orbit, and admits a symplectic
resolution. Nilpotent orbits are in bijective correspondence with partitions of e, the
parts of the partition being the sizes of the Jordan blocks. Let us denote by O�

the nilpotent orbit associated to the partition � of e. Symplectic resolutions of O�

are given by the cotangent bundles of the flag varieties Fd , where the sequence
d = (�⇤

� (1), �
⇤
� (1) + �⇤

� (2), . . .) for some permutation � , and �⇤ is the partition dual
to �, i.e. �⇤

i is the number of parts of � which are greater than or equal to i . Hence,
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a given orbit closure has in general several non-equivalent symplectic resolutions,
being Richardson with respect to different types of parabolic subgroups.

Inside sle, an orbit Oµ is contained in the closure of O� if and only if µ  �
with respect to the dominance order, which means that µ1+· · ·+µi  �1+· · ·+�i
for all i . So the irreducible components of the singular locus of O� are the orbit
closures Oµ, where µ is obtained from � by moving a corner of the diagram of �
down to the first possible lower row; the codimension is then twice the difference
of rows between the initial and final positions of the corner that has been moved.
An easy consequence is that the codimension of the singular locus is at least four
exactly when �i � �i+1 2 {0, 1} for all i .

In the relative setting, we consider a vector bundle E of rank e on X , and a line
bundle L . For a morphism ' : E �! E⌦ L , and a partition � of e, we consider the
locus D�(') of points x 2 X where the traceless part of 'x is nilpotent of Jordan
type �, or more degenerate. When End(E) ⌦ L is globally generated, and ' is
general, a birational model of D�(') is the zero-locus Z ('̃) of the corresponding
section of '̃ of ✓⇤(End(E)⌦ L)/WE on the relative flag variety Fd(E), whereWE
is the relative cotangent bundle, twisted by L . If we denote by d(�) the relative
dimension of Fd(E) (which depends only of �), we deduce that

KZ ('̃) = ✓⇤
⇣
KX ⌦ Le

2�1�d(�)
⌘ ��
�
Z ('̃)

.

Moreover the codimension of D�(') in X is equal to the dimension of the Levi part
of the parabolic, that is,

dim D�(') = dim X �
X

i

�
�⇤
i
�2

+ 1.

Consider for example the minimal orbit closure Ymin in sle. This is the closure of
the orbit of nilpotent endomorphisms of rank one, whose projectivization is the flag
variety F1,e�1(Ce). This orbit closure Ymin has two symplectic resolutions, by the
cotangent bundles of P(Ce) and its dual. In the relative setting we get the formulas

KZ ('̃) = ✓⇤
⇣
KX ⌦ Le(e�1)

⌘ ��
�
Z ('̃)

, dim D�(') = dim X � (e � 1)2.

Consider finally the maximal orbit closure Ymax in sle. This is the full nilpotent
cone, and its unique symplectic resolution is the Springer resolution by the cotan-
gent bundle of the full flag variety. In the relative setting we get the formulas

KZ ('̃) = ✓⇤
⇣
KX ⌦ Le(e+1)/2

⌘ ��
�
Z ('̃)

, dim D�(') = dim X � (e � 1).

4.4. G2-structures

Recall that G2 can be defined as the stabilizer of a generic skew-symmetric three-
form in seven variables. More precisely, there is a degree seven SL7-invariant poly-
nomial P on ^3(C7)⇤ such that a three-form on which P does not vanish has a
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stabilizer isomorphic to G2. This implies that a G2-principal bundle on X can be
defined from a rank seven bundle E on X , with a global three-form ! : ^3E ! L ,
for some line bundle L , such that the induced map P(!) : (det E)3 ! L7 is an
isomorphism.

By reduction to sl3, one way to do that would be to start with a rank three vector
bundle F with trivial determinant. Let ↵ : ^3F ! OX and ↵⇤ : ^3F⇤ ! OX be
some trivializations. Then the rank seven vector bundle E = F �OX � F⇤ defines
a G2-structure on X : indeed, there is a natural three-form ! on E defined by the
composition

^3E // ^3F � (F ⌦OX ⌦ F⇤) � ^3F⇤
µ

// OX ,

where µ = ↵ � idF �↵⇤. This three-form is everywhere non-degenerate, i.e. P(!)
does not vanish. In this setting the adjoint bundle is

adg2(E) = ad(F) � F⇤ � F.

4.5. Examples of small dimension

For the construction of varieties with trivial canonical bundle up to dimension d =
4, condition (4.1) leaves only few possibilities, which we compile in Table 4.1.
In such table Qn denotes the n-dimensional quadric, while Fd (respectively OFd )
denotes (partial) flag varieties (respectively of isotropic subspaces with respect to
a non-degenerate symmetric form). The integer � in the last column is the degree
of the map �1

G/P ! O; it is always equal to one in type A or for the Springer
resolutions (cases (6) and (9)). It is easy to check that its value is two for odd
dimensional projective spaces, considered as homogeneous varieties for symplectic
groups (cases (4) and (11)). For cases (5) and (12) see [10, Proposition 3.21]; cases
(15) and (16) for G2 are discussed in [11, Lemma 5.4 and Appendix]. The closure
of each Richardson orbit listed in Table 4.1 is normal and has rational singularities,
see [27,28].

4.5.1. Threefolds

If we want to construct threefolds with trivial canonical bundle, then we can use
cases (1) to (9). In cases (3)-(6), the base variety X must be a quadric of dimension
`P + 3, and in cases (7)-(9), a projective space of this dimension. The line bundle
L must be the generator of the Picard group and the principal bundle can always be
chosen to be the trivial one. But other choices are possible; if the structure group
is G = SLe we need a rank e vector bundle E such that ad(E) ⌦ L is generated
by global sections, and E = kO � (e � k)O(1) is always a solution (by symmetry
we may suppose that 2k  e). If the structure group is G = Sp4 or G = SO5
(recall the exceptional isomorphism Sp4 ' Spin5, by which Q3 ⇠= IGr(2, 4), the
symplectic Grassmannian of isotropic 2-planes with respect to a non-degenerate
skew-symmetric form), we need a vector bundle of rank 4 or 5 with an everywhere
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Table 4.1. Some Richardson orbits.

dimG/P G/P G `P codim(SingO) �

(1) 1 P1 SL2 1 2 1
(2) 2 P2 SL3 4 4 1
(3) 3 P3 SL4 9 6 1
(4) P3 Sp4 4 2 2
(5) Q3 SO5 4 2 1
(6) F1,2 SL3 2 2 1
(7) 4 P4 SL5 16 8 1
(8) Q4 SL4 7 2 1
(9) OF1,2 SO5 2 2 1
(10) 5 P5 SL6 25 10 1
(11) P5 Sp6 11 2 2
(12) Q5 SO7 11 2 1
(13) F1,2 SL4 5 2 1
(14) F1,3 SL4 5 2 1
(15) Q5 G2 4 2 2
(16) Gad2 G2 4 2 1

non-degenerate bilinear form, possibly with values in a line bundle. For G = Sp4
we can choose E = 2O� 2O(1), but we found no non-trivial solution for SO5. In
case (2), the base variety X must be of dimension 7 and index 6, hence a del Pezzo
manifold. For example it could be a cubic hypersurface in P8 or the intersection of
two quadrics in P9. In case (1), X must be of dimension 4 and index divisible by 2,
so essentially a Mukai variety.

4.5.2. Fourfolds

If we want to construct fourfolds with trivial canonical bundle, we can also use cases
(10)-(16), for which the base variety X must be a projective space of dimension
`P +4, and cases (7)-(9), with a quadric of this dimension. Note that cases (13) and
(14) correspond to two different desingularizations of the same nilpotent orbit. For
cases (3)-(6), we need a base variety X of coindex two.

Apart from complete intersections, for case (6) we can use X = Gr(2, 5). We
have then several additional choices for our bundle E , which can be

E = 3O, 2O �O(�1), U �O, U �O(�1), Q.

All of these fourfolds turn out to have Euler characteristic �(ODY (s)) = 2, as a
direct computation in Macaulay2 shows, hence are Calabi-Yau varieties.

For case (2) we need a variety X of dimension 8 and index 6, and apart from
complete intersections we can choose X = Gr(2, 6) and E one of the bundles

E = 3O, 2O �O(�1), U �O, U �O(�1).

In this case the orbital degeneracy locus has only isolated singularities; their reso-
lutions have characteristic two as well.
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5. Fano degeneracy loci

In this section we exhibit some Fano and almost Fano varieties obtained as orbital
degeneracy loci, or resolutions thereof. The case of threefolds is pretty interesting:
by computing their invariants (for instance, by means of Macaulay2), the existing
complete classifications (see [17]) will allow us to identify them explicitely.

In the case of the subvariety Y2 ⇢ ^3C6 of partially decomposable forms,
studied in Section 3, the equation to be satisfied in order to construct a Fano variety
is

KX = (det E)�5 ⌦ L ,

where L is a line bundle whose dual is ample. In this way, KDY (s) = L|DY (s). If
we try to find threefolds (respectively fourfolds), one possibility is to require the
variety X to be of index 6 and dimension 8 (respectively 9). As in the Calabi-Yau
case, we can look for such X among subvarieties of homogeneous spaces.

Similarly, for nilpotents orbits the restriction (4.1) on the dimension d of the
degeneracy locus given by the Kobayashi-Ochiai inequality becomes

dimG/P  d.

In all cases, the line bundle L we use to twist our nilpotent degeneracy loci will
necessarily be OX (1). Notice that for Fano varieties one more issue arises if the
degeneracy locus is singular, more precisely if the codimension of the singularities
of the corresponding orbit closure is smaller than or equal to d. Then its resolution
will not be Fano, but only almost Fano [18], in the sense that the anticanonical
bundle is nef and big.
Remark 5.1. Suppose that Y has rational singularities and that DY (s) is a Fano de-
generacy locus of dimension three. Recall that by Proposition 2.8 DY (s) is Goren-
stein and has canonical singularities: we are therefore in the hypotheses of [18, The-
orem 8.3]. The crepant resolution ✓ 0 : Z (s̃) ! DY (s) is in fact the morphism from
Z (s̃) to its anticanonical model. In addition to that, in all the cases we consider,
our orbital degeneracy loci DY (s) will be anticanonically embedded.

5.1. Fano threefolds

If we want to construct smooth threefolds, only cases (2) and (3) remain, and the
only possibilities for X are respectively the 7-dimensional quartic Q7 and P12.

In Table 5.1 we collect the examples of Fano threefolds F that we constructed
as orbital degeneracy loci, and the model they correspond to, found using the exist-
ing classifications. For each case it is sufficient to compute (�KF )3 and �(�1

F ) to
identify the variety.
Remark 5.2. As in the case of partially decomposable forms, for nilpotent orbits
some choices for E give rise to empty loci or complete intersections. A case by case
study falls outside the aims of the paper, but as an example we give the following,
arising when Y is the orbit of nilpotent matrices of rank 1 under the action of SLn .
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Table 5.1. Some Fano degeneracy loci F of dimension 3.

X E Model

Y2 ⇢ ^3C6 Gr(2, 6) U⇤
X � 4OX

Blow-up of P3 along a curve
of degree 7 and genus 5

Y2 ⇢ ^3C6 Gr(2, 6) QX � 2OX

Blow-up of F(1, 2, 3) along an
elliptic curve which is an intersection
of two divisors from | � 1

2KF(1,2,3)|

(2) P2, SL3 Q7 3OX Divisor of bidegree (2, 2) in P2 ⇥ P2

(2) P2, SL3 Q7 OX (�1) � 2OX Intersection of three quadrics in P6

(3) P3, SL4 P12 4OX
Blow-up of P3 along a curve
of degree 6 and genus 3

(3) P3, SL4 P12 OX (�1) � 3OX Intersection of three quadrics in P6

Let us suppose that E = (n � j)OX � jOX (�1), with j � 2, n � j � j , and
L = OX (1). Then a j ⇥ (n � j) block of the matrix representing the section s
is constant on the variety X . As s is general, the matrix has at least rank j , and if
j � 2 this implies that DY (s) is empty. Similarly if E = (n � 1)OX �OX (�1),
then it can be seen that DY (s) is just the zero locus of (n � 2)(n � 1) sections of
OX (1) and (n�1) sections ofOX (2). This is coherent with what we have obtained
in Table 5.1.

5.2. Almost Fano threefolds

Let us now consider the case of almost Fano threefolds, which will be constructed
from nilpotent orbit closures that are singular in codimension two. They are listed
in Table 5.2; the subscripts denote the degree of the complete intersection in the
ambient space. The relevant orbits are those labeled (1), (4), (5), (6) in Table 4.1.
The case (4) is particular, as it is the only one for which ✓ 0 : Z (s̃) ! DY (s) is finite
but not birational. In case (1) the variety X has to be a del Pezzo fourfold, which
means that the index is equal to three, and a complete classification is available (see
for instance [17, Theorem 3.3.1]). In case (4) and (5) the variety X is P7 and in case
(6) it is P5.

Notice that the orbit closures (1) and (6) are the full nilpotent cones in the
respective Lie algebras. For them the degeneracy locus is well understood, as ex-
plained in the following remark.
Remark 5.3. LetN be the nilpotent cone in the simple Lie algebra g. SinceN is a
complete intersection in g (see [26]), the degeneracy locus DN (s) is also a (possibly
singular) complete intersection of hypersurfaces defined by (non-generic) sections
of Ld , where d belongs to the set of fundamental exponents of g. In particular
for the group SLn , DN (s) is defined by the vanishing of the coefficients of the
characteristic polynomial of the matrix describing Esln ⌦ L .
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Table 5.2. Some almost Fano degeneracy loci F of dimension 3.

X E (�KF )3 Model

(1) P1, SL2 P2 ⇥ P2
2OX

OX �O(1, 1)
O(1, 0) �O(0, 1)

12 (P2 ⇥ P2)2

(1) P1, SL2 Gr(2, 5)12
2OX

OX �O(1)
U⇤
X

10 Gr(2, 5)12,2

(1) P1, SL2 P622
2OX

OX �O(1) 8 P623
[18, Proposition 8.10]

(1) P1, SL2 P53
2OX

OX �O(1) 6 P53,2
[18, Proposition 8.10]

(1) P1, SL2 P(2, 1, 1, 1, 1, 1)4
2OX

OX �O(1) 4 [18, Proposition 8.9]
[18, Proposition 8.10]

(1) P1, SL2 P(3, 2, 1, 1, 1, 1)6
2OX

OX �O(1) 2 [18, Proposition 8.9]

(5) IGr(2, 4), Sp4 P7 4OX
2OX � 2O(1)

10
8 ?

(6) F1,2, SL3 P5 3OX
2OX �O(1) 6 P53,2

[18, Proposition 8.10]

For the nilpotent cone in SL2, DN (s) is the zero locus of det(s) 2 H0(X, L2).
Similarly, for SL3, DN (s) is the intersection of the zero locus of a section of L2
and a section of L3 (again det(s)). Therefore, in both these cases, the almost Fano
threefold DY (s) is a degeneration of a smooth Fano threefold which is a complete
intersection. These varieties have already been studied, for example see [18]. The
only ambiguity among these cases is the model of the one that is constructed inside
X = P(2, 1, 1, 1, 1, 1)4, a quartic hypersurface in the weighted projective space
P(2, 1, 1, 1, 1, 1).

Proposition 5.4. Let X = P(2, 1, 1, 1, 1, 1)4. Denote by DY (s) the almost Fano
threefold constructed from a bundle E of rank two over X using the orbit closure Y
of nilpotent matrices in sl2 (orbit (1) in Table 4.1). Then:

• If E = 2OX , DY (s) is a double cover of a quadric W in P4 ramified along a its
intersection with a quartic;

• If E = OX �OX (1), DY (s) is a quartic in P4.

Proof. We can suppose that X ⇢ P(2, 1, 1, 1, 1, 1) is defined by the quartic P =
x20 + P4(x1, ..., x5), where P4 is a polynomial of degree 4. By projecting on the last
five coordinates, X is realized as a double cover of P4 ramified along the quartic
{P4 = 0}. Moreover, by Remark 5.3 and what follows, DY (s) is the zero locus of
det(s) 2 H0(X,OX (2)).
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If E = 2OX , the entries of the matrix representing s are sections of OX (1),
i.e. polynomials in the variables x1, . . . , x5. Therefore, det(s) has the form Q =
Q2(x1, ..., x5) for Q2 a polynomial of degree 2; as a consequence, DY (s) is the
double cover of W = {Q2 = 0} ⇢ P4 ramified along {P4 = 0}.

If E = OX � OX (1), one entry of the matrix representing s is a section of
OX (2). Therefore, det(s) has the form P 0 = x0 + P2(x1, ..., x5), where P2 has de-
gree 2. This implies that DY (s) is actually the quartic in P4 defined by the equation
P4 = P22 .

A little bit more involved is the case of the orbit (5). As already mentioned,
X = P7, and we have (at least) two choices for E of rank 4 (we use the isomor-
phism Sp4 ' Spin5), i.e. E = 4OX or E = 2OX � 2OX (1). In both cases we
could compute the degree of DY (s) with respect to the anticanonical bundle using
Macaulay2: it is equal to 10 and 8, respectively. We guess that DY (s) should
have an interpretation similar to the one for the other almost Fano degeneracy loci
of the same degrees that appear in Table 5.2.

The degeneracy loci DY (s) constructed from the orbit (4) are exactly the same
as those constructed from the orbit (5), as for both of them Y is the closure of the
subregular nilpotent orbit in sp4 (see, e.g., [7]); in this case however the morphism
✓ 0 : Z (s̃) ! DY (s) is of degree 2 rather than birational. When E = 4OX ,Z (s̃) is
of degree 20 = 2 · 10, and when E = 2(OX �OX (1)) it is of degree 16 = 2 · 8, as
one would expect. However, we computed �(OZ (s̃)) = 2 in the latter case, which
seems to indicate thatZ (s̃) splits into two connected components, each isomorphic
to the desingularization of DY (s) given by case (5).

Finally, we describe the morphism ✓ 0 : Z (s̃) ! DY (s).

Proposition 5.5. For all the cases considered in Table 5.2, the desingularization
✓ 0 : Z (s̃) ! DY (s) is a divisorial contraction.

Proof. Let us study ✓ 0�1(C), where C := Sing(DY (s)) = DSing(Y )(s) (see Propo-
sition 2.3). Let Y 0 := SingY . We analyze the situation case by case.

Orbit (1). Y 0 is the 0-orbit, and C = Z (s). If x 2 C , the whole fiber over
x of the morphism ✓ : P(E) ! X is contained in Z (s̃). Therefore ✓ 0�1(C) is a
P1-bundle over C , and ✓ 0 is divisorial.

Orbit (5). Y is the closure of the orbit of nilpotent matrices in so5 of rank 2,
while Y 0 is the closure of the orbit of matrices of rank 2 whose image P is isotropic.
Consider the resolution pW : �1

Q3 ! Y . Over Y \ Y 0 it is an isomorphism whose
inverse is given by

Y \ Y 0 ! �1
Q3 , y 7! (l,�)

where l 2 Im(y) is isotropic, and � 2 Hom(l?/ l, l). Moreover, p�1
W (Y 0) is a P1-

bundle over Y 0: indeed, the fiber over a point y 2 Y 0 is isomorphic to the locus of
isotropic lines in Im(y), which is P(Im(y)) ⇠= P1 since Im(y) is isotropic. There-
fore, in the relative case one gets that ✓ 0�1(C) is a P1-bundle over C , and again ✓ 0

is divisorial.
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Orbit (6). Y 0 is the closure of the orbit of nilpotent matrices of rank 1, whose
desingularization is given by the total space of the cotangent bundle of P2 and in-
duces a desingularizationZ1(s̃) ! C . But since C is one-dimensional, it is smooth
and C ⇠= Z1(s̃) ⇢ P(E). The morphism ✓ : F1,2(E) ! X factors through
✓1 : P(E) ! X , i.e. ✓ = ✓1 � p, where p : F1,2(E) ! P(E) is the natural pro-
jection. With this notation, ✓ 0�1(C) = p�1(Z1(s̃)). If (x, l) 2 Z1(s̃), its preimage
under p is given by {(x, l, P) 2 F1,2(E), l ⇢ P}. This implies again that ✓ 0�1(C)
is a P1-bundle over C , and ✓ 0 is a divisorial contraction.

Since for the orbits (1) and (6) DY (s) is a (singular) complete intersection, its
Picard number is the same as the ambient space. When it is equal to 1 (in all cases
except for X = P2 ⇥ P2),Z (s̃) is the blow-up of DY (s) along the curve C (see for
example [18, Proposition 8.11]).

5.3. Fano fourfolds

Finally, in Table 5.3, we collect a few examples of Fano fourfolds F that can be
constructed as orbital degeneracy loci. It is interesting to notice that their invariants
do not appear in the classification given in [30] for zero loci of sections of homoge-
neous vector bundles, meaning that the varieties we found are not included in that
list. As before, we restricted ourselves to the smooth case. In the case of nilpotent
orbits, i.e. cases (3) and (7) of Table 4.1, the variety X is forced to be Q13 and P20
respectively.

Table 5.3. Some Fano degeneracy loci F of dimension 4.

X E (�KF )4 �(�1
F ) �(�2

F ) h0(�KF )

Y2 ⇢ ^3C6 Gr(3, 6) U⇤
X � 3OX 63 �2 21 19

Y2 ⇢ ^3C6 IGr(2, 7) QX �OX 69 �4 26 20

Y2 ⇢ ^3C6 IGr(2, 7) U⇤
X � 4OX 47 �7 54 16

(3) P3, SL4 Q13 4OX 40 �18 114 15
(7) P4, SL5 P20 5OX 70 �6 46 21

Appendix
A. Computation of Hodge numbers

This appendix is devoted to explaining how we computed the Hodge numbers of
some of the varieties we found as degeneracy loci. In particular, we deal with the
case of smooth Y2-degeneracy loci studied in Section 3. We use standard tech-
niques, such as the Koszul complex and the Leray spectral sequence, to reduce to
the computation of cohomologies on the base variety X .

As our varieties are smooth, they are isomorphic to their resolutions Z (s̃) ⇢
P(E). This is just the zero locus of a section of the bundle QW ; hence, the Koszul
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complex
0 ! ^10

�
Q⇤
W
�

! . . . ! ^1
�
Q⇤
W
�

! OP(E) ! OZ (s̃) ! 0

gives a resolution of OZ (s̃), so it can be used to compute the cohomology of the
restriction to Z (s̃) of a vector bundle on P(E). What we need, for example for
threefolds, is the cohomology of OZ (s̃) and of �1

Z (s̃). This last bundle is not the
restriction of a bundle on P(E), but its cohomology can be recovered by using the
(co)normal sequence:

0 !
�
Q⇤
W
���

Z (s̃) !
�
�1
P(E)

���
Z (s̃) ! �1

Z (s̃) ! 0.

Therefore, we want to compute

H j
⇣
P(E),^i�Q⇤

W
�
⌦ G

⌘
for G = OP(E), Q⇤

W ,�1
P(E). (A.1)

With some chance, this will be enough to determine the desired cohomology groups.
To work directly on X , we can make use of Leray spectral sequence (see, e.g. [43]):

Theorem A.1 (Leray). Let � : Z ! X be a continuous map between two topo-
logical spaces. For every sheaf F over Z , there exists a canonical filtration on
Hq(Z ,F ) which is the limit object of a spectral sequence

E p,q
r ) Hp+q(Z ,F ).

The spectral sequence is canonically starting from E2, whose terms are
E p,q
2 = Hp �X,Rq �⇤F

�
.

Applying the theorem to ✓ : P(E) ! X , we are led to find the cohomology groups
Hp(X,Rq ✓⇤(^i (Q⇤

W ) ⌦ G)). This is not hard, as shown below. It should be noted
that it is not clear a priori if the spectral sequence degenerates at E p,q

2 . However,
by the definition of E p,q

r ,

E p,q
r ! E p+r,q�r+1

r is zero ) E p,q
r+1 = E p,q

r .

Therefore, if
E p,q
2 ! E p+r,q�r+1

2 is zero 8r � 2 , (A.2)

then E p,q
1 = E p,q

2 .
As for G = �1

P(E), it is convenient to work with ✓⇤�1
X and �1

P(E)/X instead
and consider the exact sequence

0 // ✓⇤�1
X

// �1
P(E)

// �1
P(E)/X

// 0

where the first map is the dual of d✓ . Indeed, by the projection formula for the
push-forward,

Rq ✓⇤

⇣
^i �Q⇤

W
�
⌦ ✓⇤��1

X
�⌘

= Rq ✓⇤

⇣
^i �Q⇤

W
�⌘

⌦ �1
X .
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Moreover, the relative cotangent bundle of a projective bundle is well understood,
as �1

P(E)/X
⇠= U ⌦Q⇤.

Let G̃ stand for ^i (Q⇤
W ) ⌦ G. We want to apply Rq ✓⇤(·) to it. In all the cases

needed, the bundle G̃ is the relative version of a homogeneous bundle over P(V6),
say G̃, i.e. G̃ ⇠= EG̃ . Moreover, we can compute the stalk of G̃ on every point x 2 X
by the formula

Rq ✓⇤(G̃)x = Hq
⇣
✓�1(x), G̃|✓�1(x)

⌘
⇠= Hq(P(V6), G̃) .

This is given by Bott’s theorem [5] as a Schur functor applied to V ⇤
6 , say H

q(P(V6),
G̃) ⇠= S(�1,...,�6). In the relative case, we get:

Rq ✓⇤(G̃) = Rq ✓⇤
�
EG̃

�
= EHq (P(V6),G̃)

⇠= S(�1,...,�6).

As an example, if G̃ = U⇤, R0 ✓⇤(G̃) = S(1,0,0,0,0,0)E⇤ = E⇤ and the other push-
forwards vanish.

In the end, we obtain the cohomologies on P(E) in terms of the cohomologies
of certain S(�1,...,�6) on X . For any fixed pair (i, q), the Schur functor S� associated
to Rq ✓⇤(^i (Q⇤

W ) ⌦ G) does not depend on X or E ; we collect in Tables A.1 and
A.2 the corresponding � for each choice of G.

Table A.1. Partitions associated to the push-forward of the bundles on P(E);
(�1, . . . , �6) corresponds to S(�1,...,�6).

i q Rq ✓⇤(^i Q⇤
W ) Rq ✓⇤(^i Q⇤

W ⌦ Q⇤
W )

0 0 (0, 0, 0, 0, 0, 0)
1 1 (1, 1, 1, 1, 1, 1)
2 2 (2, 2, 2, 2, 1, 0) + (2, 2, 2, 1, 1, 1)
3 2 (2, 2, 2, 1, 1, 1) (2, 2, 2, 2, 2, 2) + (3, 3, 2, 2, 1, 1) + 2⇥ (3, 2, 2, 2, 2, 1)
4 2 (3, 2, 2, 2, 2, 1) (4, 3, 2, 2, 2, 2)
4 3 (3, 3, 3, 3, 3, 0)
5 3 (4, 4, 3, 3, 3, 1) + (5, 3, 3, 3, 2, 2) + 2⇥ (4, 3, 3, 3, 3, 2)

6 3 (4, 3, 3, 3, 3, 2)
(4, 4, 4, 3, 3, 3) + (5, 4, 4, 3, 3, 2) + (5, 4, 3, 3, 3, 3)
+ (6, 3, 3, 3, 3, 3)

7 3 (4, 4, 4, 3, 3, 3) (5, 5, 5, 3, 3, 3)
7 4 (5, 4, 4, 4, 4, 3)
8 4 (5, 5, 5, 4, 4, 4) + (6, 5, 4, 4, 4, 4)
9 5 (5, 5, 5, 5, 5, 5)
10 5 (5, 5, 5, 5, 5, 5) (6, 6, 6, 5, 5, 5)
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Table A.2. Partitions associated to the push-forward of the bundles on P(E);
(�1, . . . , �6) corresponds to S(�1,...,�6).

i q Rq ✓⇤(^i Q⇤
W ⌦ (UP(E) ⌦Q⇤

P(E)))

0 1 (0, 0, 0, 0, 0, 0)

2 2 (1, 1, 1, 1, 1, 1) + (2, 1, 1, 1, 1, 0)

3 2 (3, 2, 1, 1, 1, 1)

4 3 (3, 2, 2, 2, 2, 1)

5 3 (4, 3, 2, 2, 2, 2) + (5, 2, 2, 2, 2, 2)

6 4 (4, 3, 3, 3, 3, 2)

7 4 (4, 4, 4, 3, 3, 3) + (5, 4, 3, 3, 3, 3) + (6, 3, 3, 3, 3, 3)

9 5 (5, 5, 5, 4, 4, 4) + (6, 5, 4, 4, 4, 4)

10 5 (6, 5, 5, 5, 5, 4)

Finally, Bott’s theorem yields Hp(X, S�E⇤). Notice that S�E⇤ is not irreducible
in general, so some plethysm is needed; we used the computer algebra software
LiE [42] to obtain a decomposition in irreducible homogeneous bundles. As it turns
out, in all our cases condition (A.2) is satisfied, i.e. the Leray spectral sequence
degenerates at r = 2. Therefore, these computations are enough to recover the
cohomology groups (A.1) of the terms of the Koszul complexes on P(E).

B. A Thom-Porteous type formula

In this appendix we present, for Y the subvariety of partially decomposable three-
forms in ^3C6, a Thom-Porteous type formula for the fundamental class of an
orbital degeneracy locus DY (s) of a section s 2 H0(X, E) in terms of the Chern
classes of E . A formula expressing the Todd class of a four-dimensional DY (s)
in terms of the Chern classes of E and of the tangent bundle of X is also
given.

Proposition B.1. Let s be a general section of the globally generated vector bundle
^3E on a variety X of arbitrary dimension. Let ei denote the Chern classes of E
and s� its Schur classes. Then the fundamental class of DY (s) is

[DY (s)] = e1
⇣
e41 + e22 + 2e1e3 � 4e4

⌘
= s(4) + 3s(3,1) + 3s(2,2) + 6s(2,1,1).
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Proof. The cohomology ring of P(E) is an algebra over the cohomology ring of X
and it is generated by H with the relation

H6 = �
6X

i=1
ei H6�i .

On P(E), the class of Z (s̃) is the class of a zero locus of a general section of
^3QP(E); the Chern classes of ^3QP(E) can be easily found in terms of the Chern
classes of QP(E), and a computer-aided computation yields the following expres-
sion for the top Chern class:

ctop(^3QP(E)) =H5e1
�
e41 + e22 + 2e1e3 � 4e4

�

+H4e1
�
e51+e

3
1e2+2e1e

2
2+e

2
1e3 � e2e3 � 6e1e4+2e5

�

+H3e1
�
2e41e2 + 2e21e

2
2 + e32 � e31e3 � e1e2e3

+ e23 � 4e21e4 � 4e2e4 + 4e1e5 � 4e6
�

+H2e1
�
2e31e

2
2+e1e

3
2+e

4
1e3 � 3e21e2e3+3e1e

2
3 � 3e31e4

� 3e1e2e4 � 2e3e4 + 3e21e5 + e2e5 � 8e1e6
�

+ He1
�
e21e

3
2+e

3
1e2e3�e1e

2
2e3�e

2
1e
2
3�4e

2
1e2e4+e

2
2e4

+ 5e1e3e4�4e24+e
3
1e5+e3e5�6e

2
1e6�2e2e6

�

+ e6
�
�3e41 � e22 � 4e1e3 + 4e4

�

+ e5
�
e51 � e31e2 + 3e21e3 + e2e3 � 2e1e4 � e5

�

+ e4
�
�e41e2 + e31e3 + e1e2e3 � e23 � e21e4

�

+ e3
�
e31e

2
2 � 2e21e2e3 + e1e23

�
.

(B.1)

Let ✓ : P(E) ! X be the usual projection. The push-forward ✓⇤(Hi ) is the zero
class for i < 5, hence the class of DY (s) is given by the coefficient of H5 in (B.1).
An easy computation leads to the expression in terms of the Schur classes of E (see,
e.g. [12]).

For any variety Z , the Hirzebruch-Riemann-Roch theorem yields

�(OZ ) =
Z

Z
td(Z),
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being td(Z) the Todd class of the tangent bundle to Z . With a little more effort we
are able to express the Todd class of DY (s) in terms of the Chern classes of E and
of the tangent bundle of X . In the following formula we write an explicit expression
for fourfolds.
Formula B.2. Let DY (s) have dimension four. Let ei and ti denote the Chern
classes of E and of the tangent bundle of X respectively. Then

td(DY (s)) = e1e6
⇣
601
180e

2
1 � 1

12e2 � 5
4e1t1 + 1

12 t
2
1 + 1

12 t2
⌘

+ e1e5
⇣
�101
180e

3
1+

11
360e1e2�

1
40e3+

5
24e

2
1t1�

1
72e1t

2
1� 1

72e1t2
⌘

+ e1e4
⇣
�311
36 e

4
1 + 787

360e
2
1e2 � 1

18e
2
2 � 1

72e1e3 + 145
24 e

3
1t1

� 5
6e1e2t1�

79
72e

2
1t
2
1+ 1

18e2t
2
1+ 1

180 t
4
1� 79

72e
2
1t2+

1
18e2t2

+ 5
12e1t1t2 � 1

45 t
2
1 t2 � 1

60 t
2
2 � 1

180 t1t3 + 1
180 t4 + 1

45e4
⌘

+ e1e3
⇣
81
20e

5
1 � 1

60e1e
2
2 � 35

12e
4
1t1 + 13

24e
3
1t
2
1 � 1

360e1t
4
1 + 13

24e
3
1t2

� 5
24e

2
1t1t2+

1
90e1t

2
1 t2+

1
120e1t

2
2 + 1

360e1t1t3�
1
360e1t4

� 97
120e

2
1e3 + 1

30e2e3 + 5
16e1e3t1 � 1

48e3t
2
1 � 1

48e3t2
⌘

+ e1e2
⇣
81
40e

4
1e2 � 35

24e
3
1e2t1 + 13

48e
2
1e2t

2
1 � 1

720e2t
4
1 + 13

48e
2
1e2t2

� 5
48e1e2t1t2+

1
180e2t

2
1 t2+

1
240e2t

2
2+ 1

720e2t1t3�
1
720e2t4

� 97
180e

2
1e
2
2+

5
24e1e

2
2t1�

1
72e

2
2t
2
1� 1

72e
2
2t2+

1
80e

3
2

⌘

+ e51
⇣
� 1
720 t

4
1 + 1

180 t
2
1 t2 + 1

240 t
2
2 + 1

720 t1t3 � 1
720 t4

� 5
48e1t1t2 + 5

18e
2
1t
2
1 + 5

18e
2
1t2 � 25

16e
3
1t1 + 331

144e
4
1

⌘
.

(B.2)

Proof. We can compute the Todd class of the resolution of singularities Z (s̃),
which is isomorphic to DY (s) by hypothesis. Since

td(Z (s̃)) =
td(P(E))

td (^3QP(E))
ctop

�
^3 QP(E)

�
,

we need to compute the Todd classes of the tangent bundle of P(E) and of^3QP(E),
which can be expressed in terms of the corresponding Chern classes. The Chern
polynomial of the tangent bundle of P(E) can be found as the product of the
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Chern polynomials of the relative tangent bundle QP(E)(1) and the tangent bundle
of X .

The formula above holds for a four-dimensional degeneracy locus DY (s) inside
a nine-dimensional variety X . In particular, for X a Fano variety of index 5 with
KX = (L⇤)5 and e1 := c1(E) = c1(L), formula (B.2) with t1 = 5e1 yields an
expression for the Todd class of a DY (s) with trivial canonical bundle.

Suppose that X is Fano of index i with KX = (L⇤)i , and suppose that 6 
i  10. Suppose that e1 = c1(L); then DY (s) turns out to be a Fano variety, as
discussed in Section 5. In particular (B.2), with the substitution t1 = ie1, yields
the constant value 1 by the Hirzebruch-Riemann-Roch theorem. Is there a simple
interpretation of Formula B.2 which explains this phenomenon?

PROBLEM. Find a Thom-Porteous type formula for other G-invariant subvarieties
Y inside a G-representation V .
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