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Equivariant extensions of G,-torsors over punctured surfaces

ADRIEN DUBOULOZ, ISAC HEDEN AND TAKASHI KISHIMOTO

Abstract. Motivated by the study of the structure of algebraic actions of the ad-
ditive group on affine threefolds X, we consider a special class of such varieties
whose algebraic quotient morphisms X — X//G, restrict to principal homoge-
neous bundles over the complement of a smooth point of the quotient. We estab-
lish basic general properties of these varieties and construct families of examples
illustrating their rich geometry. In particular, we give a complete classification
of a natural subclass consisting of threefolds X endowed with proper G,-actions,
whose algebraic quotient morphisms 7 : X — X//G, are surjective with only
isolated degenerate fibers, all isomorphic to the affine plane A2 when equipped
with their reduced structures.

Mathematics Subject Classification (2010): 14R20 (primary); 14R25, 14R05,
14L.30, 14D06 (secondary).

1. Introduction

Algebraic actions of the complex additive group G, = G, c on normal complex
affine surfaces S are essentially fully understood: the ring of invariants O(S )GaC is
a finitely generated algebra whose spectrum is a smooth affine curve C = S//Gy,
and the inclusion O(S)® ¢ O(S) defines a surjective morphism 7 : § — C
whose general fibers coincide with general orbits of the action, hence are isomor-
phic to the affine line A! on which G, acts by translations. The degenerate fibers
of such A!-fibrations are known to consist of finite disjoint unions of smooth affine
curves isomorphic to A! when equipped with their reduced structure. A complete
description of isomorphism classes of germs of invariant open neighborhoods of
irreducible components of such fibers was established by Fieseler [8].

In contrast, very little is known so far about the structure of G,-actions on
complex normal affine threefolds. For such a threefold X, the ring of invariants
O(X)Ca is again finitely generated [13] and the morphism = : X — § induced
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by the inclusion O(X yEa c O(X) is an Al-fibration over a normal affine surface
S. But in general,  is neither surjective nor equidimensional. Furthermore, it
can have degenerate fibers over closed subsets of pure codimension 1 as well as of
codimension 2. All of these possible degenerations are illustrated by the following
example:

The restriction of the projection pr, , to the smooth threefold X = (x2(x —
Dv + yu? — x = 0} in A% is an A'-fibration 7 : X — A? which coincides with
the algebraic quotient morphism of the G,-action on X associated to the locally
nilpotent derivation d = x?(x — 1), — 2yud, of its coordinate ring. The restriction
of 7 over the principal open subset x?(x — 1) # 0 of A? is a trivial principal G,-
bundle, but the fibers of 7 over the points (1, 0) and (0, 0) are respectively empty
and isomorphic to A2. Furthermore, for every yy # 0, the inverse images under 7 of
the points (0, yo) and (1, yo) are respectively isomorphic to A! but with multiplicity
2, and to the disjoint union of two reduced copies of A!.

Partial results concerning the structure of one-dimensional degenerate fibers
of G,-quotient A!-fibrations were obtained by Gurjar-Masuda-Miyanishi [9]. In
the present article, as a step towards the understanding of the structure of two-
dimensional degenerate fibers, we consider a particular type of non-equidimensional
surjective G,-quotient A!-fibrations 7 : X — § which have the property that they
restrict to G,-torsors! over the complement of a finite set of smooth points in S.
These are simpler than the general case illustrated in the previous example since
they do not admit additional degeneration of their fibers over curves in S passing
through the given points. The local and global study of some classes of such fibra-
tions was initiated by the second author [10]. He constructed in particular many
examples of G,-quotient A'-fibrations on smooth affine threefolds X with image
A? whose restrictions over the complement of the origin are isomorphic to the ge-
ometric quotient SL, — SL;/G, of SL, by the action of unitary upper triangular
matrices.

One of the simplest examples of this type is the smooth threefold Xo C A
defined by the equations

5
X,¥,P.q.r

xr—yq =0
Xo:3yp—x(g—1)=0
pr—q(@—-1)=0

and equipped with the G,-action associated to the locally nilpotent C[x, y]-deriva-
tion x29 p +xyd, + y29, of its coordinate ring. The equivariant open embedding
SL, = {xv — yu = 1} — Xp is given by (x,y,u,v) — (x,y,xu, xv, yv).
The G,-quotient morphism coincides with the surjective A!-fibration my = Pryy:
Xo — A2, Its restriction over AZ \ {(0, 0)} is isomorphic to the quotient morphism
SL, — SL,/G,, while its fiber over (0, 0) is the smooth quadric {pr — g(g —

1) =0} C A';’,’ q.r» isomorphic to the quotient SL; /G, of SL; by the action of its

1 Sometimes also referred to as Zariski locally trivial principal G,-bundles.
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diagonal torus (see Example 3.1). A noteworthy property of this example is that the
Gq-quotient morphism 7 : Xo — A? factors through a locally trivial A'-bundle
p: Xo — A2 over the the blow-up 7 : A2 - A2 of the origin.

It is a general fact that every irreducible component of a degenerate fiber of
pure codimension one of a G,-quotient A'-fibration 7 : X — S on a smooth affine
threefold is an A!-uniruled affine surface (see Proposition 2.3). We do not know
whether every A'-uniruled surface can be realized as an irreducible component
of the degenerate fiber of a G,-extension. But besides the smooth affine quadric
SL,/G,, appearing in the previous example, the following one confirms that the
affine plane A? can also be realized (see also Examples 2.4 and 2.5 for other types of
surfaces that can be realized): Let X; C A)SC’ y.2120,w D€ the smooth affine threefold
defined by the equations

xw—y(yz1+1)=0
Xi:3yx22—z21(z1+1) =0
Ziw — yz2 =0,

equipped with the G,-action associated to the locally nilpotent C[x, y]-derivation
X0z, +(2yz1+ 1), + y%9,, of its coordinate ring. The morphism SL, <> X given
by (x,y,u,v) — (x,y,u,uv,yv) is an equivariant open embedding. The G-
quotient morphism coincides with the surjective A'-fibration 7; = pryy : X1 —
A, whose fiber over the origin is the affine plane A> = Spec(C|[z, w]) and whose
restriction over A2 \ {(0, 0)} is again isomorphic to the quotient morphism SL; —
SL,/G,. A special additional feature is that the G,-action on X extending that on
SL;, is not only fixed point free but actually proper: its geometric quotient X; /G,
is separated. One can indeed check that X /G, is isomorphic to the complement
A2 \ {01} of a point 01 supported on the exceptional divisor E of the blow-up A? of
A?Z at the origin (see Example 4.2).

Relaxing the hypothesis that the A'-fibration 7 : X — S should arise as the
quotient of a G,-action on an affine threefold X and considering the broader prob-
lem of describing the geometry of degeneration of A!-fibrations over irreducible
closed subsets of pure codimension two of their base, we are led to the following
more general notion:

Definition. Let (S, 0) be a pair consisting of a normal separated 2-dimensional
scheme S essentially of finite type over a field k of characteristic zero and of a
closed point o contained in the smooth locus of S. A Gg-extension of a G,-torsor
p: P — S\ {o}is a G4-equivariant open embedding j : P <> X into an integral
scheme X equipped with a surjective morphism & : X — § of finite type and a
G, s-action, such that the commutative diagram

P(—]> X
T
S \ {O}C—> S
is cartesian.
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The examples X and X above provide motivation to study the following natural
classes of GG,-extensions 7 : X — S of a G,-torsor p : P — S\ {0}, which are
arguably the simplest possible types of (G,-extensions from the viewpoints of their
global geometry and of the properties of their G,-actions:

e (Type I) Extensions for which 7 factors through a locally trivial A!-bundle over
the blow-up 7 : § — § of the point o, the fiber 7 ~! (0) being then the total space
of a locally trivial A!-bundle over the exceptional divisor of 7;

e (Type II) Extensions for which 77 1H0)red 18 isomorphic to the affine plane A,%
over the residue field « of S at 0, X is smooth along 7 ! (0) and the Gy, s-action
on X is proper.

The first main result of this article, Proposition 3.3 and Theorem 3.7, is a complete
description of G4-extensions of Type I together with an effective characterization
of which among them have the additional property that the morphism 7 : X — S
is affine. Our second main result, Theorem 4.8, consists of a classification of G-
extensions of Type II, under the additional assumption that the morphism 7 : X —
S is quasi-projective. More precisely, given a G,-torsor p : P — S\ {0} and a
Gg-extension 7 : X — S with proper G, s-action and reduced fiber 77 10)red
isomorphic to A2, we establish that the possible geometric quotients §' = X/G,
belong to a very special class of surfaces isomorphic to open subsets of blow-ups of
S with centers over o which we fully describe in Section 4.1. We show conversely
that every such surface is indeed the geometric quotient of a ,-extension of p :
P — S\ {o} with the desired properties.

In a second step, we tackle the question of existence of G,-extensions 7 :
X — § of Type II for which the structure morphism 7 is not only quasi-projective
but affine. Our method to produce extensions with this property is inspired by the
observation that the threefolds Xg and X above are not only birational to each other
due to the property that they both contain SL, as open subset, but in fact that the
birational morphism

n:X1— Xo, (x,y,z21,22,w)—= (x,y,p,q,r) =(x,y,xz1,yz1 + 1, w)

expresses X as a G,-equivariant affine modification of X in the sense of Kaliman
and Zaidenberg [11]. This suggests that extensions of Type II for which X is affine
over S could be obtained as equivariant affine modification in a suitable generalized
sense from extensions of Type I with the same property. Using this technique, we
are able to show in Theorem 4.9 that for each possible geometric quotient S” above,
there exist G,-extensions 7 : X — Sof p: P — S\ {o} with geometric quotient
X /G, = §’ such that 7 is an affine morphism.

As an application towards the initial question of the structure of G,-quotient
A!-fibrations on affine threefolds, we in particular derive from this construction the
existence of uncountably many pairwise non-isomorphic smooth affine threefolds X
endowed with proper G,-actions, containing SL; as an invariant open subset with
complement A?, whose geometric quotients are smooth quasi-projective surfaces
which are not quasi-affine, and whose algebraic quotients are all isomorphic to AZ.
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The scheme of the article is the following. The Section 2 begins with a review
of general properties of G,-extensions. We then set up the basic tools which will be
used throughout the article: locally trivial A!-bundles with additive group actions
and equivariant affine birational morphisms between these. In Section 3, we study
Gg-extensions of Type I. The last section is devoted to the classification of quasi-
projective G,-extensions of Type II.

ACKNOWLEDGEMENTS. The research was done during visits of the first and sec-
ond authors at Saitama University, and during visits of the third author at the Institut
de Mathématiques de Bourgogne. The authors thank these institutions for their gen-
erous supports and the excellent working conditions offered.

2. Preliminaries

Notation 2.1. In the rest of the article, the term surface refers to a normal separated
2-dimensional scheme essentially of finite type over a field k of characteristic zero.
A punctured surface S, = S\ {0} is the complement of a closed point o contained
in the smooth locus of a surface S. We denote by « the residue field of S at o.

Remark 2.2. We do not require that the residue field « of § at o is an algebraic
extension of k. For instance, S can very well be the spectrum of the local ring
Ox.z of an arbitrary smooth k-variety X at an irreducible closed subvariety Z of
codimension two in X and o its unique closed point, in which case the residue field
k is isomorphic to the field of rational functions on Z.

In this section, we first review basic geometric properties of equivariant extensions
of G,-torsors over punctured surfaces. We then collect various technical results on
additive group actions on affine-linear bundles of rank one and their behavior under
equivariant affine modifications.

2.1. Equivariant extensions of G,-torsors

A Gg-torsor over a punctured surface S, = S \ {0} is an Sy-scheme p : P — S,
equipped with a G4-action  : G, 5, x5, P — P for which there exists a Zariski
open cover f : Y — S, of Si such that P xg, Y is equivariantly isomorphic to
G,y acting on itself by translations. In the present article, we primarily focus on
Gg-torsors p : P — S, whose restrictions P xs, U — U \ {0} over every Zariski
open neighborhood U of o in § are non-trivial. Since in this case the total space of
P is affine over S (see, e.g., [4, Proposition 1.2] whose proof carries over verbatim
to our more general situation), it follows that for every G,-extension j : P < X
the fiber 7 ! (0) C X of the surjective morphism 7 : X — S has pure codimension
one in X. Two important families of examples of non-trivial normal G,-extensions
j 1 SLy — X of the Gg-torsor p : SLy — SL,/G, ~ A?\ {(0,0)}, where
Gy acts on SLy via left multiplication by upper triangular unipotent matrices, were
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constructed in [10, Sections 5 and 6]. Various other extensions were obtained from
these by performing suitable equivariant affine modifications. One can observe that
for all of these extensions, the fiber 7 ! ({(0, 0)}) is an A!-ruled surface, a property
which is a consequence of the following more general fact:

Proposition 2.3. Let p : P — S, be a non-trivial G,-torsor over the punctured
spectrum S\ {o} of a regular local ring of dimension 2 over an algebraically closed
field k and with residue field k (0) = k, and let w : X — S be a G,-extension of P.
If X is smooth along 7o), then every irreducible component F of 771 (0)red is a
uniruled surface. Furthermore, if X is affine then F is A'-uniruled, hence A'-ruled
when it is normal.

Proof. Since ~1(0) has pure codimension one in X and X is smooth along 7~ Yo0),
every irreducible component of 7 ~!(0) is a G,-invariant Cartier divisor on X. The
complement X’ in X of all but one irreducible component of 7 ~!(0) is thus again
a G,-extension of P, and we may therefore assume without loss of generality that
F = 77 1(0)req is irreducible. Let x € F be a closed point in the regular locus
of F. Since F and X are smooth at x and X is connected, there exists a curve
C C X, smooth at x and intersecting F transversally at x. The image = (C) of C
is a curve on S passing through o, and the closure B of 7~ (7(C) N S,) in X is
a surface containing C. Since p : P — S, is a G,-torsor, the restriction of 7 to
B N P is atrivial G, -torsor over the affine curve 7(C). So 7 |p: B — 7(C) is an
A'-fibration. Let v . C — 7(C) be the normalization of 7 (C). Then 7 |p lifts to
an A!-fibration  : B — C on the normalization B of B. The fiber of 6 over every
pomt in v=!(0) is a union of rational curves. Since the normalization morphism
w:B — Bis surjective, one of the irreducible components of v~!(0) is mapped
by w onto a rational curve in F passing through x. This shows that for every smooth
closed point x of F, there exists a non-constant rational map # : P! -—5 F such
that x € h(P'). Thus F is uniruled. If X in addition is affine, then B and B are
affine surfaces, and the fibers of the A!-fibration 6 : B — C consist of the disjoint
union of curves isomorphic to A! when equipped with their reduced structure. This
implies that F is not only uniruled but actually A!-uniruled. O

Example 2.4. Let X be the smooth affine threefold in A% x A* = Spec(k[x, yl[c, d,
e, f]) defined by the equations

xd —y(c+1)=0
xc?2 —y2e =0
yf—clc+1)=0
xfZ—(c+1D%=0
de —cf =0,

equipped with the G,-action induced by the locally nilpotent k[x, y]-derivation

xy0e + y204 + xQ2c + )37 4+ 2x2f — 2xye)d,
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of its coordinate ring. The morphism j : SL, = {xv — yu = 1} — X defined by
(x,y,u,v) — (x,y, yu, yv, xu?, xuv) is an open embedding of SL, in X as the
complement of the fiber over o = (0, 0) of the projection 7 = pr, , : X — A?. So
j : SLp — X is an affine G,-extension of the G,-torsor p : SL, — SL;/G, =
A2\ {0}, for which 7~ (0) consists of the disjoint union of two copies D; = {x =
y = ¢ =0} = Spec(k[d, f]) and D> = {x =y = c+ 1 = 0} =~ Spec(k[d, e]) of
A2, Note that the induced G,-action on each of these is the trivial one.

Example 2.5. Let X be the affine G,-extension constructed in the previous exam-
ple and let C C Dj be any smooth affine curve. Let 7 : X — X be the blow-up
of X along C,leti : X' — X be the open immersion of the complement of the
proper transform of Dy U D in X andlet 7’ = m oz 0i : X' — AZ?. Since C
and D; U D, are G -invariant, the G,-action on X lifts to a G,-action on X which
restricts in turn to X’. By construction, 7’ is surjective, with fiber 7’/ - (0) isomor-
phicto C x Al and 7 oi : X’ — X restricts to an equivariant isomorphism between
X'\ 7' Y0) and X \ 7 '0) ~ SL;. So 7’ : X’ — A? is a G,-extension of the
Gg-torsor p : SLy — SLy /G, = A2\ {0}.

2.2. Recollection on affine-linear bundles

Affine-linear bundles of rank one over a scheme are natural generalizations of G-
torsors. To fix the notation, we briefly recall their basic definitions and properties.

By a line bundle on a scheme S, we mean the relative spectrum p : M =
Spec(Sym' MY) — S of the symmetric algebra of the dual of an invertible sheaf of
Og-modules M. Such a line bundle M can be viewed as a locally constant group
scheme over S for the group law m : M x§ M — M whose comorphism

m” : Sym MY — Sym M ® Sym M ~ Sym (M" & M)

is induced by the diagonal homomorphism MY — MY & MY. An M-torsor is
then an S-scheme 6 : W — § equipped with an action u : M xg W — W which
is Zariski locally over S isomorphic to M acting on itself by translations.

This is the case precisely when there exists a Zariski open cover f : ¥ — S and
an Oy-algebra isomorphism v : f*A — Sym’ f*M" such thatover Y’ =Y xgY
the automorphism p*l‘wopﬁw_l : Sym‘./\/llv,, — Sym'./\/llv,, of the symmetric algebra
of My, = p} f*M" = p} f*M is affine-linear, i.e. induced by an Oy-module
homomorphism My, — Sym' My}, of the form

p@id: My, — Oy & My, — P (M) =Sym My, Q1)

n>0
for some S € Homy (M)V,,, Oy) ~ HO(Y’, My+) which is a Cech 1-cocycle with
values in M for the Zariski open cover f : Y — S. Standard arguments show that
the isomorphism class of 6 : W — § depends only on the class of 8 in the Cech co-

homology group H! (S, M), and one eventually gets a one-to-one correspondence
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between isomorphism classes of M-torsors over S and elements of the cohomology
group HY(S, M) = H' (S, M) ~ I-VIl(S, M) with the zero element corresponding
to the trivial torsor p : M — S.

It is classical that every locally trivial A'-bundle & : W — S over a reduced
scheme S can be equipped with the additional structure of a torsor under a uniquely
determined line bundle M on S. The existence of this additional structure will be
frequently used in the sequel, and we now quickly review its construction (see also,
e.g.,[2,Section 2.3 and Section 2.4]). Letting A = 0,0y, there exists by definition
a Zariski open cover f : Y — § and a quasi-coherent Oy-algebra isomorphism
¢: f*A— Oylu]. Over Y = Y xg Y equipped with the two projections p; and
p2 to Y, the Oyr-algebra isomorphism & = pj¢ o p?(p‘1 has the form

®: Oyul = Oylul, ur— au+>b (2.2)

for some a € T'(Y’, 0},) and b € T'(Y’, Oys) whose pullbacks over Y =Y xg
Y Xs Y by the three projections pi2, p23, p13 : Y’ — Y’ satisfy the cocycle re-
lations pj;a = pj;a - pj,a and pj;b = p3sa - pi,b + ?3312 in '(Y", O},) and
C(Y”, Oynr) respectively. The first one says that a is a Cech 1-cocycle with val-
ues in (’)i‘; for the cover f : Y — §, and thus it determines, via the isomorphism
H'(S, O%) =~ Pic(S), a unique invertible sheaf M on § together with an Oy-
module isomorphism « : f*MY — Oy such that pfa opgoz_1 : Oyr — Oy is the
multiplication by a. The second one can be equivalently reinterpreted as the fact that
B=psCa)b) e’ (Y, My)isa Cech 1-cocycle with values in M for the Zariski
open cover f : Y — S. Letting Sym (&) : Sym’ f* MY — Oy[u] be the graded
Oy-algebra isomorphism induced by «, the isomorphism ¥ = Sym (a¢~') o ¢ :
f*A — Sym' f*MY has the property that p{y o p5¥ ! is affine-linear, induced
by the homomorphism g @ id : My, — Oy @ M,. So6 : W — S is a torsor
under the line bundle M = Spec(Sym' M), with isomorphism class in H (s, M)
equal to the cohomology class of the cocycle 8. Summing up, we obtain:

Proposition 2.6. Let 0 : W — S be a locally trivial A'-bundle. Then there exists
a unique pair (M, g) consisting of a line bundle M on S and a class g € H' (S, M)
such that 0 : W — S is an M-torsor with isomorphism class g.

2.3. Additive group actions on affine-linear bundles of rank one

Given a locally trivial A'-bundle 6 : W — S, which we view as an M-torsor for a
line bundle M = Spec(Sym' MY) — S on S, with corresponding action i : M x g
W — W, every non-zero group scheme homomorphism & : G, s — M induces a
non-trivial G, g-action v = po (§ x id) : G, 5 xs W — W on W. A non-zero
group scheme homomorphism & : G, s = Spec(Os[t]) — M = Spec(Sym' M)
is uniquely determined by a non-zero Og-module homomorphism MY — Oy, or
equivalently by a non-zero global section s € I'(S, M). The following proposition
asserts conversely that every non-trivial G, g-action on an M-torsor 6 : W — §
uniquely arises from such a section.
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Proposition 2.7 ([1, Chapter 3]). Let 0 : W — S be a torsor under the action
w:MxsW — W of aline bundle M = Spec(Sym MY) — S on S and let
v: Gy s xs W — W be a non-trivial G, s-action on W. Then there exists a non-
zero global section s € T'(S, M) such that v = o (§ x id) where & : G, 5 > M
is the group scheme homomorphism induced by s.

Proof. Let A = 0,Ow and let f : Y — S be a Zariski open cover such that there
exists an Oy-algebra isomorphism ¢ : f* A — Oy[u], and let

®=pipopie ! : Oplul = Oplul, uvr> au+b

be as in (2.2) above. Since 6 : W — § is an M-torsor, ¢ also determines an Oy -
module isomorphism « : f* MY — Oy such that pjo o pﬁoz_1 : Oy — Oy is
the multiplication by a. The G, s-action v on W pulls back to a G, y-action v x id
on W xg Y. The comophism 7 : Oy[u] — Oy[u] ® Oy|t] of the non-trivial G, y-
action ¢ o (v x id) o (id x ¢~ 1) on Spec(Oy[u]) has the formu > u @ 1 4+ 1 ® yt
for some non-zero y € I'(Y, Oy). Letting Z = y - Oy be the ideal sheaf generated
by y, n factors as

n=(@1d® j) o : Oylul > Oylu] ® SymZ — Oy[u] ® Oylr]

where 7 is the comorphism of an action of the line bundle Spec(Sym'Z) — Y on
A; xsY >~ W xgY and j : SymZ — Opylt] is the homomorphism induced by
the inclusion Z C Oy. Pulling back to Y’, we find that pjy = a - pjy, which
implies that ‘a(y) € (Y, f*M) is the pull-back f*s to Y of a non-zero global
section s € T'(S, M). Letting D = divy(s) be the divisors of zeros of s, we have
MY >~ Og(=D) C Og and f* MY ~ Oy(—f*D) C Oy is equal to the ideal
Z = y - Oy. The global section f*s viewed as a homomorphism f*MY — Oy
coincides via these isomorphisms with the inclusion y - Oy < Oy. We can thus
rewrite 7 in the form

n = (G{d ® Sym' f*s) o7 : Oy[u] — Oy[u] ® Sym f*M" — Oy[u] ® Oy[t].

By construction 77 = (¢ ® id) o f*u® o ¢! where f*u? is the pullback of the
comorphism u? : 4 — A ® Sym MY of the action u : M xg W — W of
M on W. It follows that the pull-back f*v¥ of the comorphism of the action v :
Gga.s X W — W factors as

P =(id @ Sym' f*s) o f*uf=f*A— f*AQ Sym f*M" - f*A® Oyl1].

This in turn implies that v* factors as (id ® Sym's) o u* : 4 - A ® Sym MY —
A ® Oy|[t] as desired. O

Remark 2.8. In the setting of Proposition 2.7, letting U C S be the complement of
the zero locus of s, the morphism & restricts to an isomorphism of group schemes
&lu : G4,y = M|y for which W|y equipped with the G, y-action v|y : G, u Xy
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Wiy — W]y is a G, y-torsor. This isomorphism class in HY'(U, Op) of this
Gg,y-torsor coincides with the image of the isomorphism class g € H 1§, M)
of W by the composition of the restriction homomorphism res : H!(S, M) —
H'(U, M|y) with the inverse of the isomorphism H' (U, Oy) — H' (U, M|y)
induced by s|y .

24. G,-equivariant affine modifications of affine-linear bundles of rank one

Recall [3] that given an integral scheme X with sheaf of rational functions Ky, an
effective Cartier divisor D on X and a closed subscheme Z C X whose ideal sheaf
I c Oy contains Ox (—D), the affine modification of X with center (L, D) is the
affine X-scheme o : X’ = Spec(Ox[Z/D]) — X where Ox[Z/D] denotes the
quotient of the Rees algebra

Ox[(Z ® Ox(D)] = EPT ® Ox(D))"+" C Kxlt]

n>0

of the fractional ideal 7 ® Ox (D) C Kx by the ideal generated by 1 — ¢. If
X = Spec(A) is affine, D = div(f) is principal and Z is defined by an ideal / C A
containing f then X’ is isomorphic to the affine modification Spec(A[Z/f]) of X
with center (1, f) in the sense of [11].

Now let S be an integral scheme and let  : W — S be a locally trivial A!-
bundle. Let C C S be an integral Cartier divisor, let D = 6~!(C) be its inverse
image in W and let Z C D be a non-empty integral closed subscheme of D on
which 6 restricts to an open embedding 6|z : Z < C. Equivalently, Z is the
closure in D of the image «o(U) of a rational section « : C — D of the locally
trivial Al-bundle 6|p : D — C defined over a non empty open subset U of C.
The complement F of 8|z(Z) in C is a closed subset of C and hence of S. Letting
i : S\ F — S be the natural open embedding, we have the following result:

Lemma 2.9. Leto : W — W be the affine modification of W with center (7, D).
Then the composition 0 o o : W' — S factors through a locally trivial A'-bundle
0’ : W — S\ F insuch a way that we have a commutative diagram

W/L>W

/| |

Proof. The question being local with respect to a Zariski open cover of S over
which 6 : W — S becomes trivial, we can assume without loss of generality that
S = Spec(A), W = Spec(A[x]), C = div(f) for some non-zero element f € A.
The integral closed subscheme Z C D is then defined by an ideal I of the form
(f, g) where g(x) € A[x] is an element whose image in (A/f)[x] is a polynomial
of degree one in ¢. So g(x) = ap + ajx + x2fR(x) where ag € A, a; € A has
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non-zero residue class in A/f and R(x) € A[x]. The condition thatf|z : Z — C
is an open embedding implies further that the residue classes ag and a; of ag and a;
in A/f generate the unit ideal. The complement F of the image of 8|z(Z) in C is
then equal to the closed subscheme of C with defining ideal (a;) C A/f, hence to
the closed subscheme of S with defining ideal (f, a;) C A. The algebra A[¢][1/f]
is isomorphic to

Alx)[ul/(g — fu) = Alx][u — x*R(x)]/(ao + a1x — f(u — t*R(x))
~ Alx][v]/(ap + aix — fv).

One deduces from this presentation that the morphism foc : W’ =Spec(A[l/f]) —
Spec(A) corresponding to the inclusion A — A[l/f] factors through a locally
trivial Al-bundle 6’ : W' — S\ F over the complement of F. Namely, since @
and a; generate the unit ideal in A/f, it follows that a; and f generate the unit ideal
in A[x][u]/(g — fu). So W' is covered by the two principal affine open subsets

W;l >~ Spec(Ag, [x]1[v]/(ao + a1x — fv)) 2 Spec(Aq [V]) > Sq X Al
W}- o Spec(A r[x][v]/(ao +arx — fv)) = Spec(As[x]) =~ Sy x Al

on which 6’ restricts to the projection onto the first factor. O

Remark 2.10. By construction, the restriction of the birational morphism o : W/ —
W constructed in Lemma 2.9 over S \ F is a morphism of locally trivial A!-bundles

over S\ F, which restricts to an isomorphism over S\ C but contracts 6’ - (C) onto
Zcol(0).

With the notation above, 6 : W — S and ¢’ : W — §\ F are torsors under the
action of line bundles M = Spec(Sym' M) and M’ = Spec(Sym' M"") for certain
uniquely determined invertible sheaves M and M’ on S and S \ F respectively.

Lemma 2.11 ([1, Section 4.3]). Let 0 : W — W be the affine modification of
W with center (Zz, D) as in Lemma 2.9. Then M' = M ®@p, Os(—C)|s\r and
the commutative diagram of Lemma 2.9 is equivariant for the group scheme homo-
morphism & : M' — M induced by the homomorphism M ®o, Os(—C) — M
obtained by tensoring the inclusion Og(—C) < Og by M.

Proof. Since M and M’ are uniquely determined, the question is again local with
respect to a Zariski open cover of S over which 8 : W — S, hence M, becomes
trivial. We can thus assume as in the proof of Lemma 2.9 that S = Spec(A4), W =
Spec(A[x]), that C = div(f) for some non-zero element f € A and that Z C D is
defined by the ideal ( f, g) for some g = ag +a1x+fx2R(x) € A[x]. Furthermore,
the action of M ~ G, s = Spec(A[¢]) on W =~ § x Al is the one by translations
X > x + t on the second factor. Let N = Spec(Sym Os(C)) =~ Spec(Sym'f_] A)
where f~' A denotes the free sub- A-module of the field of fractions Frac(A) of A
generated by f~'. As in the proof of Proposition 2.7, the inclusion Og(—C) =



144 ADRIEN DUBOULOZ, ISAC HEDEN AND TAKASHI KISHIMOTO

f - Os — Oy induces a group-scheme homomorphism & : N — M whose co-
morphism £% coincides with the inclusion A[f] C Sym'f_lA = A[(f_lt)]. The
comorphism of the corresponding action of N on W is given by

Alxl > AXI®@ A[f ], x> x®1+1@t=x®1+ f® f't.

This action lifts on W’ ~ Spec(A[x][v]/(ap + a1x — fv)) to an action v : N xg
W' — W'’ whose comorphism

Alx][v]/(ao + ar1x — fv) > Alx][v]/(ao +a1x — fv) ® A[f ']

isgivenby x = x® 1+ 1®¢tandv — v® 1 +a; ® f~'t. By construction,
the principal open subsets Wél ~ Spec(Aq, [v]) =~ Spec(A4 [v/a]) and W', =~
Spec(A ¢[x]) >~ Spec(A ¢[x/f]) of W’ equipped with the induced actions of N| Say
and Nls, respectively are equivariantly isomorphic to Nls, and N|s, acting on

themselves by translations. So 8’ : W/ — S\ F is an N |\ p-torsor, showing that
M = M ®o; Os(—C)ls\F as desired. O

3. Extensions of G,-torsors of Type I: locally trivial bundles over the
blow-up of a point

Given a surface S and a locally trivial A'-bundle § : W — S over the blow-up
7:5—> Sofa glosed point o in the smooth locus of S, the restriction of W over
the complement S\ E of the exceptional divisor E of T is a locally trivial A!'-bundle

To00:W| S\E™ S \ E =S \ {o}. This observation combined with the following

re-interpretation of an example constructed in [10] suggests that locally trivial A'-
bundles over the blow-up of a closed point o in the smooth locus of a surface S
form a natural class of schemes in which to search for non-trivial G,-extension of
Gg-bundles over punctured surfaces.

Example 3.1. Let o = V(x, y) be a global scheme-theoretic complete intersection
closed point in the smooth locus of a surface S, where x,y € I'(S, Os). Let p :
P — S\ {o}and g : Xo — S be the affine S-schemes in S x A% and § x A3 with
defining sheaves of ideals (xv—yu—1) and (xr —yq, yp—x(g—1), pr —g(g—1)) in
Ogslu, v] and Og[p, q, r] respectively. The morphism of S-schemes jy : P — Xg
defined by (x, y, u, v) — (x, y, xu, xv, yv) is an open embedding, equivariant for
the G, s-actions on P and X associated with the locally nilpotent Og-derivations
xd, + yd, and x28p + xyd, + y29, of pxOp and (0)+Ox, respectively. It is
straightforward to check that p : P — S\ {0} is a G,_g,-torsor and that 7y : Xo —
S is a (G4-extension of P whose fiber over o is isomorphic to the smooth affine
quadric Q = {pr —q(g—1) =0} C A,%. Viewing the blow-up S of o as the closed
subscheme of S x; Proj(k[ug, u1]) with equation xu; — yuo = 0, the morphism of
S-schemes 6 : Xo — S defined by

x,y,p,q,r) = ((x, ), [x :yD) =(x,y), [g:r]) =(x,y),[p:g— 1]
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is a locally trivial A'-bundle. Note that since the G, s-action on X restricts to the
trivial G, ,-action on Q,0 : Xo — Sisnota G o, §-torsor. Instead, letting £ ~ IE”,‘(
be the exceptional divisor of the blow-up, one can check that 8 : Xo — Sisa
torsor under the line bundle corresponding to the invertible sheaf O3 (2E), and that
its restriction over E is the non-trivial OFP’i (—2)-torsor Q — IP’,]{, (p,q,r)— g :
rl=I[p:q—1]

Notation 3.2. Given a surface S and a closed point o in the smooth locus of S, with
residue field «, we denote by 7 : S — S the blow-up of o, with exceptional divisor
E =~ P.. We identify S\ E and S, = S\ {0} by the isomorphism induced by .
For every £ € 7, we denote by M (£) = Spec(Sym O s(—¢E)) the line bundle on S
corresponding to the invertible sheaf O3 (¢E).

The aim of this section is to give a classification of all possible G,-equivariant
extensions of Type I of a given G,-torsor p : P — S, that is G,-extensions
7 : W — S that factor through locally trivial A'-bundles 6 : W — S.

3.1. Existence of G,-extensions of Type I

By virtue of Propositions 2.6 and 2.7, there exists a one-to-one correspondence
between G,-equivariant extensions of a G,-torsor p : P — S, that factor through
a locally trivial A'-bundle # : W — § and palrs (M, &) consisting of an M-torsor

: W — § for some line bundle M on § and a group scheme homomorphism
S G «.§ — M restricting to an isomorphism over S\ E, such that W equipped

with the G g-action deduced by composition with & restricts on Sy = S\Etoa
Ga,s,- torsor 6 ls,: W |s,— Ss isomorphic to p : P — S,. The condition that
£:G ad M restricts to an isomorphism outside E implies that M ~ M (¢) for
some £, which is necessarily non-negative, and that £ is induced by the canonical
global section of (95 (£E) with divisor £E .

Proposition 3.3. Let p : P — S, be a G, s, -torsor. Then there exists an integer
Lo > 0 depending on P only such that for every £ > £y, P admits a G-extension
to a uniquely determined M ({)-torsor 6y : W (P, L) — S equipped with the Ga,S'
action induced by the canonical global section s; € F(S’ , OS(ZE )) with divisor
LE.

Proof. The G, s, -torsor p : P — S, is determined up to isomorphism by a co-
homology class in H L(Sy, Os,), while an M (¢)-torsor is determined up to isomor-

phism by a class in H'! S,0 5(£E)). The assertion is thus equivalent to saying that
the homomorphisms

H'(S, 0;(nE)) — H'(Sy, O5(nE)ls,) ~ H'(Sy, Os,), n>0

induced by restriction are injective for all » > 0 and that their images exhaust
H'(S,, Os,). To see this, we will establish that the natural homomorphism
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H(S, O3(nE)) — H(S, Oz((n + 1)E) is injective for all n > 0 and that
H'(S,, Os,) = colim,=0H ' (S, O5(nE)).

The invertible sheaves O s(mE),n >0, form an inductive system of sub-O G
modules of the sheaf KC 5 of rational functions on S, where for each n, the injective
transition homomorphism jy 41 : O5(nE) < Og((n + 1)E) is obtained by ten-
soring the canonical section Oy — Oz (E) with divisor E with Og(nE). Let
I8 = S \ E — S be the open inclusion. Since FE is a Cartier divisor, it fol-
lows from [6, Théoreme 9.3.1] that i,,Og, ~ colim,>oO s(nE). Furthermore, since
E ~ IP’,IC is the exceptional divisor of 7 : S — S, we have OS(E)|E ~ OP}( (-1,
and the long exact sequence of cohomology for the short exact sequence

0— Oz(nE) — Oz((n+ HE) - Oz((n+ DE)|g — 0, n >0, (3.1)

combined with the vanishing of H 0P, I OP}( (—n — 1)) for every n > 0 implies
that the transition homomorphisms

H' Gpnr1) : H' S, O3(nE)) — H' (S, Os((n + DE)), n >0,

are all injective. By assumption, S whence S is noetherian, and i : S, — S is an
affine morphism as E is a Cartier divisor on S. We thus deduce from [12, Theorem
8] and [7, Corollaire 1.3.3] that the canonical homomorphism

W : colim,>oH' (S, Os(nE)) — H'(S, Os,) (3.2)
obtained as the composition of the canonical homomorphisms
colim,>0H' (S, O5(nE)) — H'(S, colim,>00z(nE)) = H'(S,i,Os,)

and H'(S, i.0s,) — H'(S4, Os,) is an isomorphism.

Let g € H'(S,, Os,) be the isomorphism class of the G, s,-torsor p : P —
S,. If g = 0, then since ¥ is an isomorphism, we have 1~ (g) = 0 and, since the
homomorphisms H I Jn.n+1) are injective, it follows that v l(g)is represented by
the zero sequence (0), € H'(S, O3(nE)), n > 0. Consequently, the only G-
extensions of P are the line bundles W (P, £) = M({), £ > 0, each equipped with
the G 4.5-action induced by its canonical global section s, € r'eS,o s(LE)).

Otherwise, if g # 0, then h = ¥~ (g) # 0, and since the homomorphisms
H'(junt1).n > 0 are injective, it follows that there exists a unique minimal integer
£o such that / is represented by the sequence

hn = H'Ga—1,2) 0+ -+ 0 H' (jeg t941) (heo) € H' (S, O5(nE)), n =ty (33)

for some non-zero hy, € H 1(5’ , OS(EOE )). It then follows from Proposition 2.7
that for every £ > {g, the M({)-torsor 6y : W(P, ) — S with isomorphism
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class hy equipped with the G g-action induced by the canonical global section
se € T'(S, Oz(LE)) isa G, -extens1on of P.

Conversely, for every G,-extension of Pinto an M (£)-torsor 6: W — S equipped
with the G g-action induced by the canonical global section s; € F(S O¢ s(ULE)),
it follows from Proposition 2.7 agam that the image of the 1som0rph1sm class
he € H(S, O3(LE)) of W in HY(S \ E, OS(EE)|S\E) ~ H'(S,, Ogs,) is equal
to g. Letting & € colim,>oH 1S, 0 5(nkE)) be the element represented by the se-
quence

hy = (H'Gamtn oo jz,z+1)(h£))nzg e H'(S,0:(nE)), n> ¢

we have 1 (h) = g and since ¥ is an isomorphism, we conclude that W >~ W (P, ¢)
as M (I)-torsors. [

3.2. G,-extensions with affine total spaces

The extensions 6 : W — § we get from Proposition 3.3 are not necessarily affine
over §. In this subsection we establish a criterion for affineness which we then use
to characterize all extensions 6 : W — S of Type I of a G,-torsor p : P — S,
whose total spaces W are affine over S.

Lemma 34. Let S = Spec(A) be an affine surface and let 0 = V(x,y) be a
global scheme-theoretic complete intersection point in the smooth locus of S. Let
T : § — § be the blow-up of o with exceptional divisor E and let 6 : W — S be
an M (£)-torsor for some £ > 0. Then the following hold:

a) H'(W, Oy) =0;
b) The scheme W is affine if and only ile w, Q*OS(ZE)) = 0 for some £ > 2.

Proof. Since o is a scheme-theoretic complete intersection, we can identify S with
the closed subvariety of S xj P,l = S xi Proj(k[tg, t;]) defined by the equation
xt; — ytg = 0. The restriction p : § — IP’,]C of the projection to the second factor
is an affine morphism. More precisely, letting Uy = P,i \ {[1 : 0]} =~ Spec(k[z])
and Uy, = IP>1 \ {[0 : 1]} ~ Spec(k[z]) be the standard affine open cover of P!,
we have p~! (Up) = Spec(A[]/(x — v2)) and p~! (Use) = Spec(Al']/(y — x2)).
The exceptional divisor E =~ IP’I of r:§ — Sisaflat quasi-section of p with local
equations y = 0 and x = 0 in the affine charts p~ N (Up) and p~ ' (Uso) respectively.
Every M (£)-torsor 6 : W — S with £ > 0 is isomorphic to the scheme obtained
by gluing Wo = p~!(Up) x Spec(k[u]) with Woo = p~!(Uso) x Spec(k[u']) over
Uo N U by an isomorphism induced by a k-algebra isomorphism of the form

A[(z/)il]/(y —x7') [u/] > (< u) (z_l, Ztu + p) € A[zil]/(x — y2)[u]

for some p € A[z%!]/(x — yz). Since H' (W, Ow)~ H (W, Ow)~ H' ({Wo, Woo},
Ow), it is enough in order to prove a) to check that every Cech 1-cocycle g with
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values in Oy for the covering of W by the affine open subsets Wy and W, is a
coboundary. Viewing g as an element g = g(zt', u) € Alz*']/(x — yz)[ul, it is
enough to show that every monomial gg = hz"u® where h € A,r € Z and s € Z>g
is a coboundary, which is the case if and only if there exist a(z, u) € A[z]/(f —
g2)[uland b(Z', u') € AlZ']/(y —x2/)[u'] such that g = b(z~ !, zu + p) — b(z, u).
Ifr > Othen g € A[z]/(x — yz)[u] is a coboundary. We thus assume from now on
that r < 0. Suppose that s > 0. Then we can write u® = 775G+ p)* — Rw)
where R € A[z*!]/(x — yz)[u] is polynomial whose degree in u is strictly less than
s. Then sincer < O,

hi'u® = hg b (zeu + p)s — hZ"R(u)
=b(z"", 2'u+ p) — hZ R),

where b(z/, u') = h(zZ) "4 W)’ € Alz']/(y — x2/)[u']. So g5 is a coboundary if
and only if —A#z" R(u) is. By induction, we only need to check that every monomial
g0 = hZ’ € Alzt']/(x — yz)[u] of degree 0 in u is a coboundary. But such a
cocycle is simply the pull-back to W of a Cech 1-cocycle ko with value in Os for
the covering of S by the affine open subsets p~!(Up) and p~!(Us). Since the
canonical homomorphism

H'(S,05) = H'(8,7,05) - H'(3.05) = H'({p™" W), p™' W=}, O5)

is an isomorphism and H 1(S,0g) = 0 as S is affine, we conclude that kg is a
coboundary, hence that gg is a coboundary too. This proves a).

Now suppose that H'(W, O*OS(EE)) =O0forsome £ > 2. Letn:V — IP’}C
be a non-trivial OPi (—2£)-torsor and consider the fiber product W x po.Pl 1 V:

w Vv

XpoG,P}(,r]

N
S, A

By virtue of [5, Proposition 3.1], V is an affine surface. Since po6 : W — IED}C
is an affine morphism, so is pry : W Xp! V — V and hence, W Xp! V is an

Vv

affine scheme. On the other hand, since p*(’)P}( (=1) = O3(E), the projection
pryy : W Xp V — W is a 6* M (£)-torsor, hence is isomorphic to the trivial one

q : 0*M() — W by hypothesis. So W is isomorphic to the zero section of
6*M (L), which is a closed subscheme of the affine scheme W Xpl V, hence an

affine scheme. O
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Corollary 3.5. With the notation of Lemma 3.4, for an M (£)-torsor 0 : W — S,
£ > 0, the following are equivalent:

1) W is an affine scheme;

2) W|g is a non-trivial M(€)|g-torsor;

3) The isomorphism class of W in H'(S, O s(LE)) does not belong to the image of
the injective homomorphism H! (S', OS((E —1E)) — H! (S’, (’)g(EE)).

Proof. Since the isomorphism class of W|g in H'(E, OS (LE)|g) is the image of
the isomorphism class of W in H I (S‘ , O s(£E)) by the restriction homomorphism
H'(S, O5(tE)) — H'(E, O5(¢E)|E), the equivalence of 2) and 3) simply follows
from the long exact sequence of cohomology of the short exact sequence (3.1).

If W|g is a trivial torsor, then it is a line bundle over E =~ IP’;. Its zero section
is then a proper curve in W|g hence in W, which prevents W from being affine. So
1) =2). Conversely, suppose that D = W|g is a non-trivial M (£)|g-torsor. Then
by virtue of [5, Proposition 3.1], D is an affine surface, and so H YD, Ow((n +
1)D)|p) = 0 for every n € Z. By a) in Lemma 3.4, H'(W,Ow) = 0, and
we deduce successively from the long exact sequence of cohomology for the short
exact sequence

0— OwmD) - Ow((n+1)D) - Ow((n+1)D) |p— 0

in the case n = 0 and then n = 1 that HY (W, Ow (D)) = HY (W, Ow(2D)) = 0.
Since Ow (2D) ~ 0*O5(2E), we conclude from b) in the same lemma that W is
affine. U

Remark 3.6. Since M({)|g =~ O]P’} (—%), we infer in particular from Corollary 3.5
that for £ = 0, 1, there is no M (£)-torsor 6 : W — S with affine total space W.

We obtain the following characterization:

Theorem 3.7. A G, s -torsor p : P — Sy, admits a Gg-extension to a locally
trivial A'-bundle whose total space is affine over S if and only if for every Zariski
open neighborhood U of o, P x5, U — Uy = U\ {0} is a non-trivial G, y,-torsor.

When it exists, the corresponding locally trivial A'-bundle 6 : W — S is
unique and is an M (£y)-torsor for some £y > 2, whose restriction to E >~ P}( isa
non-trivial OP} (—£p)-torsor.

Proof. Since by construction 7 restricts over S, to p : P — S, which is an affine
morphism, 7 is affine if and only if there exists an open neighborhood U of 0 in S
such that 7 ~!(U) is affine. Replacing S by a suitable affine open neighborhood of
o0, we can therefore assume without loss of generality that S = Spec(A) is affine and
that o is a scheme-theoretic complete intersection o = V (x, y) for some elements
X,y € A.

If there exists a Zariski open neighborhood U of o such that the restriction
of P over U, is the trivial G, y,-torsor, then the image in H L., Oy,) of the
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isomorphism class g of P is zero and so, arguing as in the proof of Proposition 3.3,
every G,-extension 0 : W — S restricts on 1~ 1(U) to the trivial M O -10y-
torsor M (£)| -1y — 7= 1(U), hence to a trivial torsor on E C 7~ 1(U). By virtue
of Corollary 3.5, W is not affine, hence is not affine over S.

Now suppose that p : P — S, is a G, g, -torsor with isomorphism class g €
H'(S,, Ogs,) such that P xs, U — U, is non-trivial for every open neighborhood
U of 0. The inverse image h = v l(g) € colimnonl(S', C’)S(nE)) of g by
the isomorphism (3.2) is represented by a sequence of non-zero elements h, €
H'(S, O:(nE)) as in (3.3) above. Since H'(S, O5) = 0 and H'(S, O3(E)) = 0
as O s(BE)|E > OP}( (—1), we deduce from Corollary 3.5 that there exists precisely
one £ > 2 with the property that an M (£o)-torsor 8¢, : We, — S with isomorphism
class hyy € H I8, Oz(€oE)) has affine total space Wy, . O

3.3. Examples

In this subsection, we consider G,-torsors of the punctured affine plane. So § =
A? = Spec(k[x, y]), 0 = (0,0) and A2 = A%\ {0}. Welet 7 : AZ — @2 be the
blow-up of o, with exceptional divisor E ~ P! and we let i : A2 < A? be the
immersion of A2 as the open subset A2 \ E. We further identify A? with the total

space f : A2 — P! of the line bundle Opi(—1) in such a way that E corresponds
to the zero section of this line bundle.

33.1. A simple case: homogeneous Gg-torsors

Following [4, Section 1.3], we say that a non-trivial G, a-torsor p @ P — A2

is homogeneous if it admits a lift of the G,,-action A - (x,y) = (Ax, Ay) on A2
which is locally linear on the fibers of p. By [4, Proposition 1.6], this is the case
if and only if the isomorphism class g of P in H'(AZ, Oy2) can be represented
on the open covering of A2 by the principal open subsets A2 and A?v by a Cech

1-cocycle of the form x ="y~ p (x, y) where m,n > 0 and p(x, y) € k[x, y]isa
homogeneous polynomial of degree r < m + n — 2. Equivalently, P is isomorphic
the G, 42-torsor

P =Dpryy: Punp= {xmv —y'u = p(x,y)} \{x=y=0} > Aﬁ,

which admits an obvious lift A - (x, y,u,v) = (kx, AY, am—dy )»"’dv), where
d = m+n —r, of the Gy-action on A2, Let g : A2 — A2/G, = P! be
the quotient morphism of the aforementioned G,-action on Aﬁ. Then it follows
from [4, Example 1.8] that the inverse image by the canonical isomorphism

P H' (P Opk)) ~ H' (P, ¢.0,2) - H' (AL Op2)
keZ
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of the isomorphism class g of such an homogeneous torsor is an element & of
H'(P', Op(—d)). Furthermore, the G,,-equivariant morphism p : P — Ai de-
scends to a locally trivial Al-bundle p : P/G, — P' = A2/G,, which is an
Op1 (—d)-torsor with isomorphism class 2 € H' (P!, Op(—d)).

Since f*Opi(—d) = O;,(dE), the fiber product W (P, d) = A2 xpt PGy
is equipped via the restriction of the first projection with the structure of an M (d)-
torsor 0 : W(P,d) — A? with isomorphism class f*h € HI(AZ, O;2(dE)). On
the other other hand, W (P, d) is a line bundle over P/G,, via the second projec-
tion, hence is an affine threefold as P/G,, is affine. By construction, we have a
commutative diagram

W(P,d)

P P/G,y,

o A2 P
Ai i IP)I

in which each square is cartesian. In other words, W (P, d) is obtained from the G, -
torsor P — P /G,, by “adding the zero section”. The open embedding j : P <
W(P,d) is equivariant for the G,-action on W (P, d) induced by the canonical
global section of O3, (d E) with divisor d E (see Proposition 2.7). By Theorem 3.7,

6 :WP,d) — AZ is the unique G, -extension of p : P — Ai with affine total
space.

In the simplest case d = 2, the unique homogeneous G, A2-torsor is the geo-
metric quotient SLy; — SL,/G, of the group SL; by the action of its subgroup of
upper triangular unipotent matrices equipped with the diagonal G,,-action, and we
recover Example 3.1.

3.3.2. General case

Here, given an arbitrary non-trivial G,-torsor p : P — Ai, we describe a pro-
cedure to explicitly determine the unique G,-extension 6 : W — A? of P with
affine total space W from a Cech 1-cocycle x™™y™"p (x,y), where m,n > 0 and
p(x,y) € k[x, y] is a non-zero polynomial of degree s < m + n — 2, representing
the isomorphism class g € H'(AZ, O a2) of P on the open covering of A2 by the

principal open subsets A2 and A%.
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Write p(x, y) = pr + pr+1 + - - - + ps where the p; € k[x, y] are the homo-
geneous components of p, and p, # 0. In the decomposition

H! (Ai, OAE) ~ H! <P1, q*o‘%) ~ @ H! <P1, O]pl (S))
SEZL

a non-zero homogeneous component x ~"y~" p; of x =" y~" p(x, y) corresponds to
a non-zero element of H!(P!, Opi(—=m — n +i)). On the other hand, since for
every £ € Z, O5o(LE) = f*Opi(—¢) and f : A? — P! is the total space of the
line bundle Op1 (—1), it follows from the projection formula that

H' (B2, 05E)) = H' (P!, £.05: ® Opi(=0)) = P H' (P, Opi 0 = 0)).
t>0

The image of x ™y~ p (x, y) in @,z H'(P', Opi (s)) belongs to B,., H' (P!,
Opi(t — ) if and only if £ > €o = m + n —r > 2. Given such an ¢, the im-
age (h;);>0 € @20 H (P!, Opi(t — £)) of x™™y™"p (x, y) then defines a unique

M (£)-torsor 6y : W(P,0) — A2 whose restriction over the complement of E is
isomorphic to p : P — Aﬁ when equipped with the action G,-action induced
by the canonical section of O&z (LE) with divisor £E. On the other hand, the
restriction of W|g — E over E is an Opi(—{)-torsor with isomorphism class
ho € H'(P!, Opi(—1¢)). By definition, hg is non-zero if and only if £ = £, and we
conclude from Theorem 3.7 that 6y, : W (P, £9) — A? is the unique G,-extension
of p : P — A2 with affine total space.

4. Quasi-projective G,-extensions of Type II

In this section we consider the following subclass of extensions of Type II of a
Gg-torsor over a punctured surface.

Definition 4.1. A G,-extension 7 : X — § of a G,-torsor p : P — S, over a
punctured surface S, = S \ {0} is said to be a quasi-projective extension of Type II
if it satisfies the following properties:

i) X is quasi-projective over S and the G, s-action on X is proper;
ii) X is smooth along 7! (0) and 77 =1 (0)req = A%.

Example 4.2. Let o = V(x, y) be a global scheme-theoretic complete intersec-
tion closed point in the smooth locus of a surface S and let p : P — S\ {0} be
the G,-torsor with defining sheaf of ideals (xv — yu — 1) C Oglu, v] as in Ex-
ample 3.1. Let m; : X; — S be the affine S-scheme with defining sheaf of ideals
xw—y(yz1+1), xz2—z1(yz1+1), ziw—yz2) C Oslz1, z2, w]. The morphism of
S-schemes j; : P — X defined by (x, y, u, v) — (x, y, u, uv, yu) is an open em-
bedding, equivariant for the G, s-action on X associated with the locally nilpotent
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Os-derivation x3;, + (2yz1 + 1)3;, + y%3, of m.Ox,. The fiber 7; ' (0) is iso-
morphic to Ag = Spec(k[z2, w]) on which the G, s-action restricts to G, . -action
by translations associated to the derivation d;, of x[zp, w]. It is straightforward to
check that X is smooth along 7~ 1(0). We claim that the geometric quotient of the
Gy, s-action on X is isomorphic to the complement of a «-rational point 0 in the
blow-up 7 : S — S of 0. Such a surface being in particular separated, the G, _s-
action on X is proper, implying that j; : P < X is a quasi-projective extension
of P of Type II.

Indeed, let us identify S with the closed subvariety of S x Proj(k[ug, u1]) with
equation xu1; — yup = 0 in such a way that t coincides with the restriction of the
first projection. The morphism f : X| — S defined by

¥,z u,0) = ((x, ), [y = ((r, y), [yzr + 1 w))

is G,-invariant and maps 7, Yo) dominantly onto the exceptional divisor £ =~
prgl(o) =~ Proj(k[ug, u1]) of . The induced morphism

Fla-1o) s 7 (0) = Spec(k[z2, w]) = E, (22, w) > [1 : w]

factors as the composition of the geometric quotient 7~ 1(0) - 1(0) [/Gax >~
Spec(x[w]) with the open immersion nl_l(o)/Ga,K — FE of nl_l(o)/Ga,K as the
complement of the «-rational point o1 = ((0, 0), [0 : 1]) € E. On the other hand,
the composition

Tofoji:P— Xi\7;(0) > S\E = S\ {0}

coincides with the geometric quotient morphism p : P — S\ {0}. So f : X| — S
factors through a surjective morphism ¢ : X; — S \ {01} whose fibers all consist
of precisely one G,-orbit. Since ¢ is a smooth morphism, ¢ is a G,-torsor which
implies that X, /G, ~ S \ {o1}.

The scheme of the classification of quasi-projective extensions of Type II of a
given G,-torsor p : P — S, which we give below is as follows: we first construct
in Section 4.1 families of such extensions, in the form of G,-torsors ¢ : X — §’
over quasi-projective S-schemes 7 : §' — S such that 77 (0)req is isomorphic to
A}(, S’ is smooth along 7~ '(0),and 7 : §'\ ! (0) — S, is an isomorphism. We
then show in Section 4.2 that for a quasi-projective G,-extension 7 : X — § of
Type II of a given G,-torsor p : P — S, the structure morphism 7 : X — S
factors through a G,-torsor ¢ : X — S’ over one of these S-schemes §’. In the
last subsection, we focus on the special case where 7 : X — S has the stronger
property of being an affine morphism.

4.1. A family of G,-extensions over quasi-projective S-schemes

Let again (S, 0) be a pair consisting of a surface and a closed point o contained
in the smooth locus of §, with residue field k. We let T} : §; — S be the blow-
up of o, with exceptional divisor E| =~ IP’,I(. Then for every n > 2, we let 7,1 :
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Sy = Su(o1,...,00—1) — S be the scheme obtained from S by performing the
following sequence of blow-ups of k-rational points:

a) The first step 7o : Sa(01) — S is the blow-up of a k-rational point 0] € E;
with exceptional divisor Ep >~ P!;

b) Thenforevery2 <i<n—2,weletT; 1§i+1(01, ey 0)) = Sk(01, ..., 0i—1)
be the blow-up of a k-rational point 0; € E;, with exceptional divisor E; | =~
IP,](;

c) Finally, we let T, ,—1 : Su(01, ..., 0n—1) = Sy_i(01, ..., 0n_2) be the blow-
up of a «-rational point 0, € E,_; which is a smooth point of the reduced
total transform of E; by Tj0--- 0T,y y—2.

We let E,, ~ IP’,% be the exceptional divisor of T, ,—1 and we let

Tn1 =T210 - 0Tpp—1:Sn(01,...,00—1) = S1.
The inverse image of o in Su (01, ..., 0n—1) by Ty o Tp,1 is a tree of x-rational
curves in which E,, intersects the reduced proper transform of £y U --- U E,—; in
S,(o1, ...,0,—1) transversally in a unique x-rational point.

E; E; E, E,
-1 o0 2 \ ) S -1 7 ") \ %4 1 =
! (%) 11 03 :2 E3 :3 =2 E4
Ey E, Ey E;

. 1 < T2 < T3 T54 <
Sﬁ;’ 52(01) — 53(01,02) — S4(01,02,03) — S5(01,02,03,04)

Figure 4.1. The successive total transforms of E in a possible construction of a surface

of the form Ss5(oy, ..., 04) over a k-rational point o. The integers indicate the self-
intersections of the corresponding curves.

Notation 4.3. For every «-rational point 01 € Eq, we let S1(01) = S \ {o1},
Ei=E NS ~ A,I( and we let 71 : S;(01) — S be the restriction of 7.

Forn > 2,welet S,(01, ..., 0n-1) = Sp(01,...,00—1)\E1U---UE,_; and
E,=S,(01,...,0,—1)NE, =~ Al. Wedenote by 7,,.| : S,(01,...,0,_1) — S the
birational morphism induced by 7,1 and we let t, =T 01,1 : S (01, . .., Op—1) = S.

The following lemma summarizes some basic properties of the so-constructed S-
schemes:

Lemma 4.4. For every n > 1, the following hold for S, = S, (01, ..., 0n-1):

a) 1, : S, — S is quasi-projective and restricts to an isomorphism over S, while
T,l_l(o)red =Ey;
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b) Sy is smooth along T, Y0);
c) 7, : I'(S, Os) = I'(Sy, Os,) is an isomorphism.

Moreover for n > 2, the morphism t, 1 : S, — S is affine.

Proof. Properties a)-c) are straightforward consequences of the construction. For

,,,,,

positive rational numbers and let m > 1 be so that m D is a Cartier divisor on En.
Then a direct computation shows that the restriction of O§n (mD) to ?;11 (01)red =
U?:z E;is an ample invertible sheaf provided that the sequence (a;);=2,....,—1 de-
creases rapidly enough with respect to the distance of E; to E; in the dual graph
of E; U---U E,_;. Concretely, it suffices to choose the sequence (a;);=2.... n—1
according to the following rule: If E; has distance d to E| and a j is known for E i

closer to E, then we pick a; € Q¢ such that aifl-z + ar > 0 where Ej is the
unique curve intersecting E; at distance d — 1 from E;, and a; = 1. Since To,l
restricts to an isomorphism 0ver_§1 \ {01}, it then follows from [7, Théoreme 4.7.1]
that Ogn (mD) is T, 1-ample on ;. Since by definition 7, is the restriction of the
projective morphism T, 1 : S, — S1t0S, =S,\E{U---UE,_1 = S, \Supp(D),
we conclude that 7, ;1 is an affine morphism. O

Remark 4.5. Blowing up the point 0;_1 in E;_j, the multiplicity of the new ex-
ceptional curve E; as an irreducible component of (T| o ?i,l)*l (o) equals the sum
of the multiplicities of E;_; and possibly E;_» (if it contains 0;_1), while the mul-
tiplicities of the previous exceptional curves remain unchanged. By construction,
rl_l(o) = E in Si(0y1), but for n > 2, we have rn_l(o) = mE, for some integer
m > 1 which depends on the sequence of «-rational points oy, ..., 0,—1 blown-
up to construct S, (o1, ..., 0,—1). For instance, it is straightforward to check that
m = 1 if and only if for every i > 1,0; € E; is a smooth point of the reduced total
transform of E in S; (o1, ..., 0i_1).

The structure morphism of a G,-torsor being affine, hence quasi-projective, the to-
tal space of any G, -torsor g : X — S,, over an S-scheme 7, : S, =S, (01, ...,0,) —
S is a quasi-projective S-scheme 7 = 7,049 : X — S equipped with a proper G, s-
action. Furthermore 7~ 1(0)red = q_l(En) ~ E, x A}C ~ A% and X is smooth
along 77 '(0) as S, is smooth along E,. On the other hand, 7 : X — § is by
construction a G,-extension of its restriction p : P — S, \ E,, ~ Sy over S, \ E,,
hence is a quasi-projective (G,-extension of P of Type II. The following proposi-
tion shows conversely that every G,-torsor p : P — S, admits a quasi-projective
Gg-extension of Type Il into a G,-torsor g : X — S,,.

Proposition 4.6. Let p : P — S, be a G,-torsor. Then for every n > 1 and every
S-scheme 1, : S,(01,...,00_1) — S as in Notation 4.3 there exist a G,-torsor
q:X — S,(01,...,04—1) and an equivariant open embedding j : P < X such
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that in the following diagram

P¢ X

d

Sn(01, ..., 0n—1) \ E,“—— Sy(01,...,0n-1)

|

S*C

q

all squares are cartesian. In particular, j : P — X is a quasi-projective G-
extension of P of Type I1.

Proof. Letting S,, = S, (01, ..., 0,—1), we have to prove that every G,-torsor p :
P — S, \ E, >~ S, is the restriction of a G,-torsor ¢ : X — §,. It is enough
to show that there exists a Zariski open neighborhood U of E, in S, and a G-
torsor g : ¥ — U such that Y [;\g,~ P |y\Eg,. Indeed, if so then a G,-torsor
q : X — S, with the desired property is obtained by gluing P and Y over U \ E, by
the isomorphism Y |\ g, >~ P |y\E, - In particular, we can replace S, by the inverse
image by 7, : S, — S of any Zariski open neighborhood of o0 in S. We can thus
assume from the very beginning that S = Spec(A) is affine and that 0o = V (f, g)
is a scheme-theoretic intersection for some f, g € A. Up to replacing f and g
by other generators of the maximal ideal of 0 in A, we can assume that the proper
transform L; inT; : S| — S of the curve L = V(f) C S intersects E;ino;. We
denote by M; C S the proper transform of the curve M = V(g) C S. By virtue
of Lemma 4.6 below, it is enough to find an affine open subset U,, of S, such that
U, \E, =U,N(S, \ Ep) is affine and S, = U, U (S, \ E,). Inthe case n = 1,
U =S \ L1 C 81 has the desired property since U; \ E; = S \?l_l(L) ~S\L
is indeed affine. In the case where n > 2, the open subset Si \ M of S is affine
and it contains o7 because M intersects E; in a point distinct from 0. Since
Tl @ Sp — S| is an affine morphism by Lemma 4.4, U, = T,:}(El \ M) is an
affine open neighborhood of E, in S, with the property that U, N (S, \ E,) =
Un \ En =1, | (51 \T] ' (M)) is affine. O

In the proof of Proposition 4.6, we used the following elementary extension
result:

Lemma 4.7. Let X = U UV be a scheme with a cover by two Zariski open subsets
U and V. Suppose that U and U NV are affine. Then every G,-torsor on V is the
restriction of a G,-torsor on X, possibly not unique.

Proof. The assertion is equivalent to the surjectivity of the restriction homomor-
phism H 1(X, Ox) - H'(V, Oy) which follows directly from the Mayer-Vietoris
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long exact sequence of cohomology of Ox for the covering of X by U and V.
Indeed, this sequence reads

0—>HYX,0x) > H'U,Ox)® H'(V,0x) > HO(UNV,Ox) —> ---
—>H'(X,0x) > H' WU, Ox)® H\(V,0y) > H{(UNV,O0x) —> ---,

and H'(U,Ox) = H{(UNV,Ox) =0as U and U N V are affine. O

4.2. Classification

The following theorem shows that every quasi-projective (G,-extension of Type II
of a given GG,-torsor p : P — S, is isomorphic to one of the schemes g : X — §,
constructed in Section 4.1.

Theorem 4.8. Let p : P — S, be a G,-torsor and let

pC_j> X

T

S*(—> S
be a quasi-projective G,-extension of P of Type II. Then there exists an integer
n > 1 and a scheme t, : S,(01,...,0n-1) — S such that X is a G,-torsor
qg:X— Sy(01,...,0n—1) =~ X/Gyand p : P — S, coincides with the restriction

of q to Sy(o1,...,0n—1) \ Ep = S.

Proof. Since the G, g-action on X is proper, the geometric quotient X /G, s exists
in the form of a separated algebraic S-space § : X/G, s — S. Furthermore, since
by definition of an extension 718, ~ P, we have 7! (S4)/Gys ~ P/Gg s ~
S, and so § restricts to an isomorphism over S,.. On the other hand, 7 o) ~ Ai is
equipped with the induced proper G, ,-action, whose geometric quotient A2 /G .
is isomorphic to Al. Tt follows from the universal property of geometric quotients
that 71 (0) = A2/G,, = AL

Since X is smooth in a neighborhood of 7! (0), X/G,_s is smooth in neigh-
borhood of 7' (0). Let T; : S — S be the blow-up of 0. Since § : X/G, — §
contracts 8! (0) to the point o, it follows from the universal property of blow-ups
for surfaces that § lifts to a morphism &1 : X/G, 5 — Si. Lettingmy : 711 : X — S
be the induced morphism, we have a commutative diagram

T _
X ——=3,;

P

X/G, 2=,
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Furthermore, since § : X/G, s — Sand 7 : S| — Sare separated, it follows that
81: X/G,s — S| is separated. By construction, the image of 7! (0)red/G.« by
81 is contained in E .

If 8 is not constant on 7 1 (0)red /G,  then §; is a separated quasi-finite bira-
tional morphism. Since S is normal, 8, is thus an open immersion by virtue of Za-
riski Main Theorem for algebraic spaces [14, Tag 05SW7]. Since 77 10)red [/Ga e =~
Al the only possibility is that S; \ 8;(X/G,.s) consists of a unique «-rational
point 01 € E; and §8; : X/Ggs — Si(oy) = S \ {01} is an isomorphism. So
71 : X — Si(01) is a G,-torsor whose restriction to Si(o1) \ E; >~ S, coincides
with p : P — S,.

Otherwise, if §; is constant on ﬂ_l(o)red/Ga,,(, then its image consists of a
unique «-rational point 0; € E;. The same argument as above implies that 77y :
X — Syand 8 : X/G, s — Sy lift to a G, g-invariant morphism 75 : X —
S>(01) and a separated morphism &, : X/G, s — S2(01) to the blow-up 721 :
S»(01) — S; of S| at o, with exceptional divisor E5. If the restriction of &,
t0 71 (0)red /Gy, is not constant then &, is an open immersion and the image of
77 (0)red/ Gaq.« is an open subset of E, isomorphic to A}(. The only possibility is
that 8, (7 ! (0)/Ga) = E2\ Ej. Indeed, otherwise S»\ 82(X /G, s) would consist
of the disjoint union of a point in E; \ (E; N E,) and of the curve E; \ (E1 N E»)
which is not closed in S, in contradiction to the fact that 8 is an open immersion.
Summing up, & : X/Gg s — S2(01) = S2(01) \ Eq is an isomorphism mapping
T 7(0)red/ Gy, isomorphically onto Ey. So s : X — S»(01) is a G,-torsor whose
restriction to $7(01) \ E2 =~ S coincides with p : P — §,.

Otherwise, if 8, is constant on n_l(o)red/Ga,,{, then 52(71_1(0)/Ga,,() is a
k-rational point 0, € Ej, and there exists a unique minimal sequence of blow-
ups Tyl k © §k+1(01, oo 08) = Sk(or, ... 0k—1). k = 2,...,m — 1 of suc-
cessive k-rational points oy € E; C Si(o1, ..., 05—1), with exceptional divisors
Eis1 C Sg41(01, ..., 0x) such that mp : X — S»(01) and 8, : X/G,.5 — Sa(01)
lift respectively to a G, s-invariant morphism 7, : X — Sm(o1,...,0m—1) and
a separated morphism 8, : X/G, s — Sm(o1, ..., 0m—1) with the property that
the restriction of §,, to n_l(o)red/(Ga,,{ is non-constant. By Zariski Main Theo-
rem [14, Tag 05W7] again, we conclude that §,, is an open immersion, mapping
71 (0)red/Gax = Al isomorphically onto an open subset of E,, ~ PL. As in
the previous case, the image of 77 10)red /Gg e in E,, must be equal to the com-
plement of the intersection of E,, with the proper transform of E{U---UEy,_
in S, (01, ...,0m_1) since otherwise S, (01, ..., Om—1) \ 6m(X/Gy4,s) would not
be closed in S, (01, ..., 0m—1). Since 7! (0)red/Gqa e = A}C, it follows that E,,
intersects the proper transform of E;{ U --- U E,,_; in a unique -rational point,
implying in turn that 0,,_| € E,,_1 is a smooth «-rational point of the reduced total
transform E{U---UE,,_j of E{in S,,_{(01, ..., O;—_2). Summing up,

Om X/Ga,S - Em(oly ey Om—1) \Fl U--- Umel
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is an isomorphism with an S-scheme of the form S, (01, ..., 0,,—1) as constructed
in Section 4.1, mapping n_l(o)red/((}a,,( isomorphically onto E,, = S, (o1,...,
om—1) N Ey. It follows in turn that 7, : X — Su(01, ..., 0m—1) is a G,-torsor
whose restriction to Sy, (01, ..., 0m—1) \ E;n = Sk coincides with p : P — S,. This
completes the proof. O

4.3. Affine G,-extensions of Type II

In this subsection, given a G -torsor p : P — S, we consider the existence of
quasi-projective G,-extensions of Type II

PC_j>X

/| l

S*(—> S

with the additional property that X is affine over S. As in the case of extension
to Al-bundles over the blow-up of o treated in Section 3.2, a necessary condition
for the existence of such extensions is that the restriction of P over every open
neighborhood of the closed point o in § is non-trivial. Indeed, if there exists an
affine open neighborhood U of o over which P is trivial, then P >~ U \ {0} x A,l is
strictly quasi-affine, hence cannot be the complement of a Cartier divisor 7 ! (0) in
any affine U-scheme X|y. The next theorem shows that this condition is actually
sufficient:

Theorem 4.9. Let p : P — Sy be a G,-torsor such that for every open neigh-
borhood U of o in S, the restriction P xs, U — U \ {0} is non-trivial. Then for
every n > 1 and every S-scheme t,, : S,(01,...,0,—1) — S as in Notation 4.3
there exists a quasi-projective G,-extension of P of Type II into the total space of a
Gg-torsor q : X — S,(01,...,0n—1) for whichm = 1,0q : X — S is an affine
morphism.

The following example illustrates the strategy of the proof given below, which con-
sists in constructing such affine extensions 7 : X — § by performing a well-chosen
equivariant affine modification of extensions of p : P — S, into locally trivial A!-
bundles 6 : W(P) — S over the blow-up 7 : S — S of the point 0.

Example 4.10. Let again X and X be the G,-extensions of p : P = {xv — yu =
1} — S\ {0} considered in Example 3.1 and 4.2. Recall that Xy and X are the
affine S-schemes in Ag defined respectively by the equations

xr—yq =0 xw—y(yz1+1)=0
Xo : yp—x(g—1)=0 and X x22—z21yz1+1) =0
pr—q(g—1)=0 ziw—yz2 =0
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equipped with the G, s-actions associated with the locally nilpotent Og-derivations
dp = xzap +xydy + y28, and 3 = x3;, + (2yz1 + 1)d,, + y?d,, respectively.
The morphism 7g : Xg — § factors through the structure morphism 6 : Xg —
S of a torsor under a line bundle on the blow-up 7 : S — S of the origin, with
the property that the restriction of X to exceptional divisor E = IP’,I( of T is a non-
trivial torsor under the total space of the line bundle (’)lp; (—2). The G, s-action on

X restricts to the trivial one on Xo|g = 7, 1(0). More precisely, dg is a global
section of the sheaf Tx, ® Ox,(—2Xo|g) of vector fields on X that vanish at
order 2 along Xo|g. One way to obtain from X( a G,-extension 7 : X — S of
p: P — S\ {o} with fiber 7710)red isomorphic to A,% and a fixed point free action
is thus to perform an equivariant affine modification which simultaneously replaces
XolE by a copy of A,% and decreases the “fixed point order of dg along Xo|g”,
typically a modification with divisor D equal to Xo|g and whose center Z C Xo|g
is supported by a curve isomorphic to Al which is mapped isomorphically onto its
image by the restriction of 6. The birational S-morphism

n:X1— Xo, x,y,z1,22,w) = (x,y,x21, 21 + 1, w)

is equivariant for the G,_s-actions on X and X and corresponds to an equivariant
affine modification of this type: it restricts to an isomorphism outside the fibers
of mp and 7y over o, and it contracts 7, ! (0) = Spec(k[z2, w]) onto the curve
{p=q—-1=0}C 710_](0) = {pr — q(q — 1) = 0}. This curve is isomorphic to
A}( = Spec(k[r]) and it is mapped by the restriction

0|ﬂ0—l(0) : no_l(o) ~{pr—q@—1)=0}— E

=P, (p.g. )= [pig—11=Ig:r]
of @ isomorphically onto the complement of the «-rational point [0 : 1] € P!

Proof of Theorem 4.9. By virtue of Theorem 3.7, there exists a unique integer £y >
2 such that p : P — S, is the restriction of a torsor ¢; : Wi — §; under the line
bundle M ({y) = Spec(Sym'(’)gI (—=€oE1)) — S whose total space W is affine
over S;. We now treat the case of S_1(01) and S, (01,...,0n-1),n > 2 s_eparately.
Given a k-rational point 01 € E, the restriction of Wj over E; = E1\ {01} =~
Al is the trivial A'-bundle E; x AL. Since on the other hand the restriction 6, Iz,
Wi |F1 — E; is a non-trivial Op1 (—£p)-torsor (see Theorem 3.7), it follows that
for every section s : £y — Wj|g, the image Z; of E| in W |E1 is a closed curve
isomorphic to E. Indeed, otherwise if Z; is not closed in W |f1 then its closure Z;
would be a section of 6; |Fl in contradiction with the fact that 9, |Fl Wy |Fl — E;
is a non-trivial Op1(—£p)-torsor. Let D = 0, 1(Fl) and let o7 : Wl’ — W be
the affine modification of W; with center (Zz,, D) . By virtue of Lemmas 2.9 and
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211,601 001 : W] — S factors through a torsor 6; : W — S\ {o1} = Si(o1)
under the line bundle

M; (Lo — 1) = Spec(Sym Oy, (o)) ((—lo + 1) E1)) — Si(01).

Now since £ >~ A,l( is affine, the restriction of 9{ over E; C Si(oy) is the trivial
Mj (Lo — 1)|g,-torsor. Letting Dy = 9{_1(E1) and Z, C D be any section of
61|p, : D2 — Ej, the affine modification o, : W) — W/ with center (Zz,, D>)
is then an M| (€ — 2)-torsor 0 : W, — Sj(o1). Iterating this construction £ — 1
times, we reach a G, g, (o,)-torsor g = %)H X = Wéo+1 — Si(o1). Since
o1 : W — Wy andeacho; : W/ — W/_,,i > 2, restricts to an isomorphism over
the complement of E1, the restriction of ¢ : X — Si(01) over S1(01) \ E1 =~ S, is
isomorphicto p : P — S,. Furthermore, since the morphisms o;,i =1, ..., {y+1

are affine and 71 0 0 : Wi — S is an affine morphism, it follows that
Tjog=T10610010 - 0Og41: X > S

is an affine morphism. So ¢ : X — Sj(0;) is a G,-extension of p : P — S, with
the desired property.

Now suppose that n > 2. It follows from the construction of the morphism
Tp1: Sy = S,(01,...,0,-1) — S1 given in subsection 4.1 that 05, (LoE)) ~
Os, (mE,) for some m > 2. The fiber product W,, = W, X3, S, is thus a torsor
0, : W, — S, under the line bundle

M, (m) = Spec(Sym Og, (—mE,)) — S,

whose restriction to S, \ E, =~ S is isomorphic to p : P — S,. Furthermore,
since 7,1 is an affine morphism by virtue of Lemma 4.4, so is the projection pryy, :
W, — Wp. Since 71 0 6y : Wi — § is an affine morphism, we conclude that
Twobh =T10T1060p =T100opry : Wy — § is an affine morphism as
well. Since E,, =~ A}(, the restriction of 6, over E, is the trivial M, (m)|E,-torsor.
The desired G, s,-torsor ¢ : X — S, extending p : P — S, is then obtained
from 6, : W,, — §, by performing a sequence of m successive affine modifications
similar to those applied in the previous case. O

Remark 4.11. In the case where S is affine, the total spaces X of the varieties
qg : X — S,(01,...,0,—1) of Theorem 4.9 are all affine. To our knowledge,
these are the first instances of smooth affine threefolds equipped with proper G-
actions whose geometric quotients are smooth quasi-projective surfaces which are
not quasi-affine.

We do not know in general if under the conditions of Theorem 4.9 every quasi-
projective G,-extensions of P of Type II into the total space of a G,-torsor g :
X — Su(o1,...,0,4—1) has the property that 71 = 7, 0¢ : X — S is an affine
morphism. In particular, we ask the following:

Question 4.12. Ts the total space X of a quasi-projective G,-extension 7 : X —
A?of p = pryy Sy ={xv—yu =1} — A2 of Type II always an affine variety?
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4.4. Examples

In the next paragraphs, we construct two countable families of quasi-projective G-
extensions of the G,-torsor SL, — SL,/G, =~ A%\ {(0, 0)} of Type II with affine
total spaces. As a consequence of [10, Section 3], for any non-trivial G,-torsor
p : P — S, over a local punctured surface Sy, these provide, by suitable base
changes, families of examples of G,-extensions of P whose total spaces are all
affine over S.

44.1. A family of Gg-extensions of SL; of “Type II-A”

Let S = A2 = Spec(k[x, yol) and let X,, C A’t" =Spec(k[x, yollz1, 22, Y1, - - -»
yal),n > 1, be the smooth threefold defined by the system of equations

Yiyj — ykye =0 i, j,k,t=0,...,n, i+ j=k+¢
22¥i —21Yi+1 =0 i=0,...,n—1

xyi+1 — Yi(yoz1 +1) =0 i=0,...,n—1

xz2 —z1(yoz1 + 1) =0.

The threefold X, can be endowed with a fixed point free G, s-action induced by
the locally nilpotent k[x, yo]-derivation

n
x0;, + (2021 + Dz, + Y ivoyi-1dy,

i=1

of its coordinate ring. The scheme-theoretic fiber over o = {(0, 0)} of the G-
invariant morphism 7, = Pryy, ° X, — § is isomorphic A? = Spec(k[z2, ynl),
on which the induced G,-action is a translation induced by the derivation 9., of
k[z2, yn]. On the other hand, the morphism j : SLy; = {xv — you = 1} — X,
defined by

(x,y,u,v) — (x,u,uv,y, yv, yvz, coyv™)

is an equivariant open embedding of SL; equipped with the G,-action induced by
the locally nilpotent derivation x d, + o9, of its coordinate ring into X,, with image
equal to 71 (A% \ {0}). So j : SLy — X, is a quasi-projective G,-extension of
SL; into the affine variety X,, with 77,71 (0) ~ AZ.

The restrictions of the projection A’;+3 — A';rz onto the first n + 2 variables
induce a sequence of G,-equivariant birational morphisms 0,41, : Xp+1 — Xj.
The threefolds X,, thus form a countable tower of G,-equivariant affine modifica-
tions of X. It follows from Example 4.2 that X is a quasi-projective extension of
SL, of Type II with geometric quotient isomorphic to a quasi-projective surface of
the form S1(01). More generally, we have the following result.

Proposition 4.13. For every n > 2, the morphism j : SLy — X, is a quasi-
projective Gg-extension of Type II. The geometric quotient X,, /G, is isomorphic
to a quasi-projective surface S, = Sy(01,...,0,) as in Section 4.1 for which
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Sn(01, ..., 0n—1) \ Sp consists of a chain of n — 1 smooth rational curves with
self-intersection —2, i.e. the exceptional set of the minimal resolution of a surface

singularity of type A, —1.

Proof To see this, we consider the following sequence of blow-ups: the first one

: §1 — Uy = A? is the blow-up of the origin, with exceptional divisor Eq,and
we let Uy~ A% = Spec(k[x, w1]) be the affine chart of §; on which T : S, — A?
is given by (x, wi) — (x,xw;). Then we let Tp 1 : S>(01) — S be the blow-
up of the point 0y = (0,0) € U; C S; with exceptional divisor E, and we let
Uy ~ A% = = Spec(k[x, wz]) be the affine chart of S2(01) on which the restriction of
T21: Sa(01) — S coincides with the morphism Uy — Uy, (x, wp) — (x, xw2).
For every 2 < m < n, we define recursively the blow-up

?m,m—l . Sm(017 R ] Om—l) - Sm—l(ol, L) 0m—2)

of the point 0,,—1 = (0,0) € Up,—1 C Sm—1(01, ..., 0m—2) with exceptional divi-
sor E,, and we let U,, ~ A% = Spec(k[x, wy,]) be the affine chart of S,, (o1, .. .,
Om—1) on which the restriction of 7,, ,,—1 coincides with the morphism U,, —
Un—1,(x, wy) — (x, xwy,). By construction, we have a commutative diagram

— Tnon—1 _ Tn—1,n—-2 72,1 — 1
Sn(og, ..., Op—1) —> Sy—1(01, ..., Op—p) ——>= """ Si A2
Un Un—1 Uy AZZU().

The total transform of E1 in S, (01, . .., 0,—1) is achain E; UFZ_U --UE,_1UE,
formed by n — 1 curves with self-intersection —2 and the curve E, which has self-
intersection —1.

E] Ez En— 1 En
O - - - e e e - —e— o
-2 =2 -2 -1
Figure 4.2. Dual graph of the total transform of E1in S,(01,...,04).

The morphism 7 : X;, — S lifts to a morphism 7y : X,, — S defined by

(x, 21,22, Y0, Y15 - - > Yu) = ((x, y0), [x : yol) = ((x, ), [yoz1 + 1 : y1]).

This morphism contracts 7~ (0) onto the point o1 = ((0,0), [1 : 0]) of the ex-
ceptional divisor E1 of T;. The induced rational map 71 : X, --» Uj is given
by

M
(x7 21,22, YO» YI’ sy ,Vn) = (-xa 7)
yozi + 1

and it contracts 771 (0) onto the origin o1 = (0,0). So m lifts to a morphism
my : X, — S2(01), and with our choice of charts, the induced rational map
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m : X, —--+ Uy is given by

»2
(x9 L1542, YO’ Yh v)’n) = (x’ —2> .
(yoz1 + 1)

If n = 2 then the image of 7 ~!(0) = Spec(k[z2, y2]) by 2 is equal to E» N U, and
T, l(Ez N U,) is equivariantly isomorphic to (E» NUy) x Spec(k[z2]) on which
Gy, acts by translations on the second factor. So 5 : X, — S2(01) factors through
a G,-bundle g5 : Xo — S2(01) = S2(01) \ E1 and X»/G, =~ S»(01). Otherwise,
if n > 2 then 7, contracts 7 ! (0) onto the point 0, = (0,0) € E>NU; C S2(01).
So s 1 X, — Sa(oy) lifts to a morphism 73 : X, — S3(01, 02). With our choice
of charts, for each 2 < m < n, the induced rational map 7, : X,, --+ U,, is given
by

(x, 21,22, Y0, Y1 y)H(xyim)
£ ’ ) ’ ycc )R ’(y0Z1—|-1)m £
hence contracts 7 ~!(0) onto the point 0, = (0,0) € Uy, C Sm(01, ..., 0m—1).
It thus lifts to a morphism 7, : X, — Spu(01,...,0m—1). At the last step, the
image of zr_l(o)_: Spec(k[z2, yu]) by the rational map 7, : X, --+ U, induced
by m, : Xn — Su(o1,...,04-1) is equal to E, N Uy, and we conclude as above
that 7, : X,, = Sn(o1, ..., 0,—1) factors through a G,-bundle
Gn : Xn = Sp(01,...,0n-1) = Sn(01, ..., 0n-1) \ (El U UEn—l),

hence that X,/G, is isomorphic to the quasi-projective surface S,(oy,...,
On—1). O

44.2. A family of G,-extensions of SL; of “Type II-D”

To conclude this section, we present as an illustration of the proof of Theorem 4.9
another countable family of quasi-projective G,-extensions of SL; of Type II with
affine total spaces.

Letagain Ty : §; — S = A? be the blow-up of the origin 0 = {(0,0)}in A? =
Spec(k[x, y]) with exceptional divisor E; ~ P! identified with the closed subvari-

ety of A% x ]P’[lw():wl] with equation xw; — ywp = 0 in such a way that t coincides

with the restriction of the first projection. The second projection identifies S with
the total space p : S; — P! of the invertible sheaf Opi(—1). We fix trivializations
P (Uso) = Spec(k[zoo]l[Uoo]) and p~!(Uy) = Spec(k[zo][uo]) over the open sub-
sets Uno = P1\ {[0 : 1]} = Spec(k[zo0]) and Uy = P!\ {[1 : 0]} = Spec(k[zo]) in
such a way that the gluing of p~ N (Uso) and p~!(Uyp) over Uy N U is given by the
isomorphism (2o, u0) = (Zoo, Uoo) = (25 ', Zot0)-

For every n > 1, we let S»,,43,0 = Spec(k|[zo, u(j)tl]),

S2143,00 = Spec <k[Zoo, Uo, Uoo]/(ugovoo — zio — uoo)) ,
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and we let S»,,13 be the surface obtained by gluing S2,43.0 and S2,43,00 along the
open subsets S2,,13.0 \ {zo = 0} and S2,+43,00 \ {Zoo = Uoo = 0} by the isomorphism

~1 —n(.—2
(20, 10) F> (Zoos Uoos Voo) = (ZO , 2010, (zouo) " (2o +Z0uo)>-

The canonical open immersion Sp,43.0 < p~'(Up) and the projection |

Son+43.00 = p_l (Uso) glue to a global birational affine morphism 72,431 : S2443 —
S restricting to an isomorphism S2,43 \ {zoc = Ueo = 0} — S; \ E;| where
we identified the closed subset E3,43 = {Zco = U = 0} =~ Spec(k[veso]) Of
S2n+3.00 With its image in Sz,43. We leave to the reader to check that with the
notation of Section 4.1, S2,43 = Sau43(01, ..., 02,42) for a surface To,431 :
§2n+3 1001, ..., 00u42) — S| obtained by first blowmg -up the p01nt o1 =(0,0) €

*I(UOO) w1th h exceptional divisor Ez, then the point 0, = E; N E; with excep-
tional divisor E3, then a point 03 € E 73\ (E 1 U Ej) with exceptional divisor E4
and then a sequence of points 0; € E; \ E;_; with exceptional divisors Ei.1,
i =35,...,2n+ 2 in such a way that the total transform of £ in Sz,,+3 | is a tree
depicted in Figure 4.3. Letting 12,43 = T1 © T2243,1 : S2443 — A?, we have

-1
T2n+3(0)red = Eum3 x> Al and T2*n+3(0) =2E243.

E;

EZn +2 EZH +3
2 1

-2
Figure 4.3. Dual graph of the total transform of E| in S2,43(01, ..., 02,42).

Now we let ¢ : Xont3 — S2u43 be the G,-bundle defined as the gluing of the
trivial G,-bundles X2,43.0 = S2n4+3.0 X Spec(k[fo]) and X2,43.00 = S2n43.00 X
Spec(k[tsc]) over S2,43,0 and Sz,43, o0 respectively along the open subsets X243 0\
{zo = 0} and X243 0 \ {Zoo = Uoo = 0} by the G,-equivariant isomorphism

-1 ) -1, -2
(zo,uo,to)l—>(zoo,uoo,voo,too)=(zo , 2010, (zouo) " (zg “+20u0), to+2g g )

= . 2
Let mop43 =T10tp43,10¢q : Xopy3 —> A~

Proposition 4.14. For every n > 1, the variety X,,43 is affine and there exists a
Gy-equivariant open embedding j : SLy <> X»,13 which makes 7,13 : Xon+3 —>
A? a quasi-projective G-extension of SLy of Type II, with fiber 712_,11+3 (0) isomor-
phic to A? of multiplicity two, and geometric quotient X2,13/Gq =~ Sani3.

Proof. Let j; : SLp < W = W(SL,, 2) be the G,-extension of SL; into a locally

trivial A'-bundle # : W — S with affine total space constructed in Example 3.1.
Recall that the image of j; coincides with the restriction of @ to S1\ E; = A?\ {0}.
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With our choice of coordinates, the open subsets Wy = o1 (q_1 (Up)) and Wy, =
9_1(q_1(Uoo)) of W are respectively isomorphic to p_l(UO) x Spec(k[wp]) and
pil(Uoo) x Spec(k[weso]) glued over Uy N Uy, by the isomorphism

(20, u0, wo) H> (Zoo, Uoos Woeo) = (zo_l, 200, Z5Wo +Zo) .

The G,-action on Wy and W, are given respectively by « - (2o, uo, wo) = (2o, Uo,
wo + au%) and & + (Zoo, Uoo, Woo) = (Zoos Uoo, Woo + oeugo).

Let W' = W x5, San43, equipped with the natural lift of the G,-action on
W. Since 12,431 : Sz — S restricts to an isomorphism over S1 \Fl, the
composition j' = Tz_nl+3,1 o ji : SLp — W'is a G,-equivariant open embedding.
Furthermore, since W is affine and 15,43 ; is an affine morphism, it follows that W’
is affine. By construction, W’ is covered by the two open subsets

0 =W X -1 (1y) S2n+3.0 = S2n+3.0 X Spec(k[wol)
W=w X =1 (Un) S2n43.00 = Son+3.00 X Speck[woo])-

The local G,-equivariant morphisms

Bo : Xon43,0 = S2nt3,0 X Spec(k[ro]) — W,
Boo : Xon43,00 = Son+43,00 X Spec(k[too]) — Wéo

of schemes over S2,+1,0 and S2,43,00 respectively defined by 7o — wo = uéto and
too > Woo = ugotoo glue to a global G,-equivariant birational affine morphism
B : Xonts — W/, restricting to an isomorphism over Sp,43 \ E2n43 = A2\ {o}.
Summing up, X»,+3 is affine over W’ hence affine, and the composition ~! o j’ :
SLy — Xj,43 is a G,-equivariant open embedding which realizes 7 : Xo,43 —
A? as a G,-extension of SLy of Type II with affine total space. By construction,
7127113 (0) = ¢ "(2E2,43) is isomorphic to A%, with multiplicity two, while the
geometric quotient X, 43/G, is isomorphic to Sz,43. O

Remark 4.15. For every n > 1, the birational morphism S2,11)43,00 = S2443,00>
(Zoos Uoos Voo) F> (Zoo, Uoos UooVso) €XtEnds to a birational morphism S>(,41)43 —
Son+3 which lifts in turn in a unique way to a G,-equivariant birational morphism
Yn+ln - X2(m+1)+3 — X2p43. So in a similar way as for the family constructed
in Section 4.4.1, the family of threefolds X5,43, n > 1, form a tower of G-
equivariant affine modifications of the initial one Xs5.

References

[1] A. DUBOULOZ, “Sur une Classe de Schémas avec Actions de Fibrés en Droites”, Ph.D
Thesis, Université Joseph-Fourier-Grenoble I, https://tel archives-ouvertes.fr/tel-00007733/,
2004.



(2]
(3]

(4]
(5]
(6]
(7]

(8]
(9]
(10]
(11]
[12]
[13]

(14]

EQUIVARIANT EXTENSIONS OF G,-TORSORS OVER PUNCTURED SURFACES 167

A. DUBOULOZ Danielewski-Fieseler surfaces, Transform. Groups 10 (2005), 139-162.

A. DUBOULOZ, Quelques remarques sur la notion de modification affine, math.
AG/0503142, (2005).

A. DuBOULOZ and D. R. FINSTON, On exotic affine 3-spheres, J. Algebraic Geom. 23
(2014), 445-469.

A. DUBOULOZ, Complements of hyperplane sub-bundles in projective spaces bundles over
P!, Math. Ann. 361 (2015), 259-273.

A. GROTHENDIECK, “Eléments de Géométrie Algébrique, 1. Le Langage des Schémas”,
Inst. Hautes Etudes Sci. Publ. Math., Vol. 4, 1960.

A. GROTHENDIECK, “Eléments de Géométrie Algébrique, III. Etude Cohomologique des
Faisceaux Cohérents”, Inst. Hautes Etudes Sci. Publ. Math., Vol. 11 and Vol. 17, 1961 and
1963.

K-H. FIESELER, On complex affine surfaces with C-action, Comment. Math. Helv. 69
(1994), 5-27.

R.V.GURIAR, K. MASUDA and M. MIYANISHI, Al -fibrations on affine threefolds,J. Pure
Appl. Algebra 216 (2012),296-313.

1. HEDEN, Affine extensions of principal additive bundles over a punctured surface, Trans-
form. Groups 21 (2016), 427-449.

S. KALIMAN and M. ZAIDENBERG, Affine modifications and affine hypersurfaces with a
very transitive automorphism group, Transform. Groups 4 (1999), 53-95.

G. KEMPF, Some elementary proofs of basic theorems in the cohomology of quasi-coherent
sheaves, Rocky Mountain J. Math. 10 (1980), 637-646.

M. NAGATA, “Lectures on the Fourteenth Problem of Hilbert”, Lecture Notes, Tata Institute,
Bombay, Vol. 31, 1959.

THE STACKS PROJECT AUTHORS, Stacks Project, http://stacks.math.columbia.edu, 2017.

IMB UMRS5584, CNRS

Univ. Bourgogne Franche-Comté
F-21000 Dijon, France
adrien.dubouloz@u-bourgogne .fr

Department of Mathematics

Royal Institute of Technology (KTH)
SE-10044 Stockholm, Sweden
isach@kth.se

Department of Mathematics
Faculty of Science

Saitama University

338-8570 Saitama, Japan
tkishimo@rimath.saitama-u.ac.jp



