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Equivariant extensions of Ga-torsors over punctured surfaces

ADRIEN DUBOULOZ, ISAC HEDÉN AND TAKASHI KISHIMOTO

Abstract. Motivated by the study of the structure of algebraic actions of the ad-
ditive group on affine threefolds X , we consider a special class of such varieties
whose algebraic quotient morphisms X ! X//Ga restrict to principal homoge-
neous bundles over the complement of a smooth point of the quotient. We estab-
lish basic general properties of these varieties and construct families of examples
illustrating their rich geometry. In particular, we give a complete classification
of a natural subclass consisting of threefolds X endowed with proper Ga-actions,
whose algebraic quotient morphisms ⇡ : X ! X//Ga are surjective with only
isolated degenerate fibers, all isomorphic to the affine plane A2 when equipped
with their reduced structures.

Mathematics Subject Classification (2010): 14R20 (primary); 14R25, 14R05,
14L30, 14D06 (secondary).

1. Introduction

Algebraic actions of the complex additive group Ga = Ga,C on normal complex
affine surfaces S are essentially fully understood: the ring of invariantsO(S)Ga,C is
a finitely generated algebra whose spectrum is a smooth affine curve C = S//Ga ,
and the inclusion O(S)Ga ⇢ O(S) defines a surjective morphism ⇡ : S ! C
whose general fibers coincide with general orbits of the action, hence are isomor-
phic to the affine line A1 on which Ga acts by translations. The degenerate fibers
of such A1-fibrations are known to consist of finite disjoint unions of smooth affine
curves isomorphic to A1 when equipped with their reduced structure. A complete
description of isomorphism classes of germs of invariant open neighborhoods of
irreducible components of such fibers was established by Fieseler [8].

In contrast, very little is known so far about the structure of Ga-actions on
complex normal affine threefolds. For such a threefold X , the ring of invariants
O(X)Ga is again finitely generated [13] and the morphism ⇡ : X ! S induced
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by the inclusion O(X)Ga ⇢ O(X) is an A1-fibration over a normal affine surface
S. But in general, ⇡ is neither surjective nor equidimensional. Furthermore, it
can have degenerate fibers over closed subsets of pure codimension 1 as well as of
codimension 2. All of these possible degenerations are illustrated by the following
example:

The restriction of the projection prx,y to the smooth threefold X = {x2(x �

1)v + yu2 � x = 0} in A4 is an A1-fibration ⇡ : X ! A2 which coincides with
the algebraic quotient morphism of the Ga-action on X associated to the locally
nilpotent derivation @ = x2(x�1)@u �2yu@v of its coordinate ring. The restriction
of ⇡ over the principal open subset x2(x � 1) 6= 0 of A2 is a trivial principal Ga-
bundle, but the fibers of ⇡ over the points (1, 0) and (0, 0) are respectively empty
and isomorphic toA2. Furthermore, for every y0 6= 0, the inverse images under ⇡ of
the points (0, y0) and (1, y0) are respectively isomorphic toA1 but with multiplicity
2, and to the disjoint union of two reduced copies of A1.

Partial results concerning the structure of one-dimensional degenerate fibers
of Ga-quotient A1-fibrations were obtained by Gurjar-Masuda-Miyanishi [9]. In
the present article, as a step towards the understanding of the structure of two-
dimensional degenerate fibers, we consider a particular type of non-equidimensional
surjective Ga-quotient A1-fibrations ⇡ : X ! S which have the property that they
restrict to Ga-torsors1 over the complement of a finite set of smooth points in S.
These are simpler than the general case illustrated in the previous example since
they do not admit additional degeneration of their fibers over curves in S passing
through the given points. The local and global study of some classes of such fibra-
tions was initiated by the second author [10]. He constructed in particular many
examples of Ga-quotient A1-fibrations on smooth affine threefolds X with image
A2 whose restrictions over the complement of the origin are isomorphic to the ge-
ometric quotient SL2 ! SL2/Ga of SL2 by the action of unitary upper triangular
matrices.

Oneof the simplest examples of this type is the smooth threefold X0⇢A5x,y,p,q,r
defined by the equations

X0 :

8
><

>:

xr � yq = 0
yp � x(q � 1) = 0
pr � q(q � 1) = 0

and equipped with theGa-action associated to the locally nilpotent C[x, y]-deriva-
tion x2@p + xy@q + y2@r of its coordinate ring. The equivariant open embedding
SL2 = {xv � yu = 1} ,! X0 is given by (x, y, u, v) 7! (x, y, xu, xv, yv).
The Ga-quotient morphism coincides with the surjective A1-fibration ⇡0 = prx,y :

X0 ! A2. Its restriction over A2 \ {(0, 0)} is isomorphic to the quotient morphism
SL2 ! SL2/Ga , while its fiber over (0, 0) is the smooth quadric {pr � q(q �
1) = 0} ⇢ A3p,q,r , isomorphic to the quotient SL2/Gm of SL2 by the action of its

1 Sometimes also referred to as Zariski locally trivial principal Ga-bundles.
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diagonal torus (see Example 3.1). A noteworthy property of this example is that the
Ga-quotient morphism ⇡ : X0 ! A2 factors through a locally trivial A1-bundle
⇢ : X0 ! Ã2 over the the blow-up ⌧ : Ã2 ! A2 of the origin.

It is a general fact that every irreducible component of a degenerate fiber of
pure codimension one of aGa-quotient A1-fibration ⇡ : X ! S on a smooth affine
threefold is an A1-uniruled affine surface (see Proposition 2.3). We do not know
whether every A1-uniruled surface can be realized as an irreducible component
of the degenerate fiber of a Ga-extension. But besides the smooth affine quadric
SL2/Gm appearing in the previous example, the following one confirms that the
affine planeA2 can also be realized (see also Examples 2.4 and 2.5 for other types of
surfaces that can be realized): Let X1 ⇢ A5x,y,z1z2,w be the smooth affine threefold
defined by the equations

X1 :

8
><

>:

xw � y(yz1 + 1) = 0
xz2 � z1(yz1 + 1) = 0
z1w � yz2 = 0,

equipped with the Ga-action associated to the locally nilpotent C[x, y]-derivation
x@z1+(2yz1+1)@z2+ y2@w of its coordinate ring. The morphism SL2 ,! X1 given
by (x, y, u, v) 7! (x, y, u, uv, yv) is an equivariant open embedding. The Ga-
quotient morphism coincides with the surjective A1-fibration ⇡1 = prx,y : X1 !

A2, whose fiber over the origin is the affine plane A2 = Spec(C[z2, w]) and whose
restriction over A2 \ {(0, 0)} is again isomorphic to the quotient morphism SL2 !
SL2/Ga . A special additional feature is that theGa-action on X1 extending that on
SL2 is not only fixed point free but actually proper: its geometric quotient X1/Ga
is separated. One can indeed check that X1/Ga is isomorphic to the complement
Ã2 \ {o1} of a point o1 supported on the exceptional divisor E of the blow-up Ã2 of
A2 at the origin (see Example 4.2).

Relaxing the hypothesis that the A1-fibration ⇡ : X ! S should arise as the
quotient of a Ga-action on an affine threefold X and considering the broader prob-
lem of describing the geometry of degeneration of A1-fibrations over irreducible
closed subsets of pure codimension two of their base, we are led to the following
more general notion:
Definition. Let (S, o) be a pair consisting of a normal separated 2-dimensional
scheme S essentially of finite type over a field k of characteristic zero and of a
closed point o contained in the smooth locus of S. A Ga-extension of a Ga-torsor
⇢ : P ! S \ {o} is a Ga-equivariant open embedding j : P ,! X into an integral
scheme X equipped with a surjective morphism ⇡ : X ! S of finite type and a
Ga,S-action, such that the commutative diagram

P � � j
//

⇢

✏✏

X

⇡

✏✏

S \ {o} � �
// S

is cartesian.
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The examples X0 and X1 above provide motivation to study the following natural
classes of Ga-extensions ⇡ : X ! S of a Ga-torsor ⇢ : P ! S \ {o}, which are
arguably the simplest possible types of Ga-extensions from the viewpoints of their
global geometry and of the properties of their Ga-actions:

• (Type I) Extensions for which ⇡ factors through a locally trivial A1-bundle over
the blow-up ⌧ : S̃ ! S of the point o, the fiber ⇡�1(o) being then the total space
of a locally trivial A1-bundle over the exceptional divisor of ⌧ ;

• (Type II) Extensions for which ⇡�1(o)red is isomorphic to the affine plane A2
over the residue field  of S at o, X is smooth along ⇡�1(o) and theGa,S-action
on X is proper.

The first main result of this article, Proposition 3.3 and Theorem 3.7, is a complete
description of Ga-extensions of Type I together with an effective characterization
of which among them have the additional property that the morphism ⇡ : X ! S
is affine. Our second main result, Theorem 4.8, consists of a classification of Ga-
extensions of Type II, under the additional assumption that the morphism ⇡ : X !
S is quasi-projective. More precisely, given a Ga-torsor ⇢ : P ! S \ {o} and a
Ga-extension ⇡ : X ! S with proper Ga,S-action and reduced fiber ⇡�1(o)red
isomorphic to A2 , we establish that the possible geometric quotients S0 = X/Ga
belong to a very special class of surfaces isomorphic to open subsets of blow-ups of
S with centers over o which we fully describe in Section 4.1. We show conversely
that every such surface is indeed the geometric quotient of a Ga-extension of ⇢ :
P ! S \ {o} with the desired properties.

In a second step, we tackle the question of existence of Ga-extensions ⇡ :
X ! S of Type II for which the structure morphism ⇡ is not only quasi-projective
but affine. Our method to produce extensions with this property is inspired by the
observation that the threefolds X0 and X1 above are not only birational to each other
due to the property that they both contain SL2 as open subset, but in fact that the
birational morphism

⌘ : X1 ! X0, (x, y, z1, z2, w) 7! (x, y, p, q, r) = (x, y, xz1, yz1 + 1, w)

expresses X1 as aGa-equivariant affine modification of X0 in the sense of Kaliman
and Zaidenberg [11]. This suggests that extensions of Type II for which X is affine
over S could be obtained as equivariant affine modification in a suitable generalized
sense from extensions of Type I with the same property. Using this technique, we
are able to show in Theorem 4.9 that for each possible geometric quotient S0 above,
there exist Ga-extensions ⇡ : X ! S of ⇢ : P ! S \ {o} with geometric quotient
X/Ga = S0 such that ⇡ is an affine morphism.

As an application towards the initial question of the structure of Ga-quotient
A1-fibrations on affine threefolds, we in particular derive from this construction the
existence of uncountably many pairwise non-isomorphic smooth affine threefolds X
endowed with proper Ga-actions, containing SL2 as an invariant open subset with
complement A2, whose geometric quotients are smooth quasi-projective surfaces
which are not quasi-affine, and whose algebraic quotients are all isomorphic to A2.
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The scheme of the article is the following. The Section 2 begins with a review
of general properties ofGa-extensions. We then set up the basic tools which will be
used throughout the article: locally trivial A1-bundles with additive group actions
and equivariant affine birational morphisms between these. In Section 3, we study
Ga-extensions of Type I. The last section is devoted to the classification of quasi-
projective Ga-extensions of Type II.

ACKNOWLEDGEMENTS. The research was done during visits of the first and sec-
ond authors at Saitama University, and during visits of the third author at the Institut
de Mathématiques de Bourgogne. The authors thank these institutions for their gen-
erous supports and the excellent working conditions offered.

2. Preliminaries

Notation 2.1. In the rest of the article, the term surface refers to a normal separated
2-dimensional scheme essentially of finite type over a field k of characteristic zero.
A punctured surface S⇤ = S \ {o} is the complement of a closed point o contained
in the smooth locus of a surface S. We denote by  the residue field of S at o.
Remark 2.2. We do not require that the residue field  of S at o is an algebraic
extension of k. For instance, S can very well be the spectrum of the local ring
OX,Z of an arbitrary smooth k-variety X at an irreducible closed subvariety Z of
codimension two in X and o its unique closed point, in which case the residue field
 is isomorphic to the field of rational functions on Z .
In this section, we first review basic geometric properties of equivariant extensions
of Ga-torsors over punctured surfaces. We then collect various technical results on
additive group actions on affine-linear bundles of rank one and their behavior under
equivariant affine modifications.

2.1. Equivariant extensions of Ga-torsors

A Ga-torsor over a punctured surface S⇤ = S \ {o} is an S⇤-scheme ⇢ : P ! S⇤
equipped with a Ga-action µ : Ga,S⇤ ⇥S⇤ P ! P for which there exists a Zariski
open cover f : Y ! S⇤ of S⇤ such that P ⇥S⇤ Y is equivariantly isomorphic to
Ga,Y acting on itself by translations. In the present article, we primarily focus on
Ga-torsors ⇢ : P ! S⇤ whose restrictions P ⇥S⇤ U ! U \ {o} over every Zariski
open neighborhood U of o in S are non-trivial. Since in this case the total space of
P is affine over S (see, e.g., [4, Proposition 1.2] whose proof carries over verbatim
to our more general situation), it follows that for every Ga-extension j : P ,! X
the fiber ⇡�1(o) ⇢ X of the surjective morphism ⇡ : X ! S has pure codimension
one in X . Two important families of examples of non-trivial normal Ga-extensions
j : SL2 ! X of the Ga-torsor ⇢ : SL2 ! SL2/Ga ' A2 \ {(0, 0)}, where
Ga acts on SL2 via left multiplication by upper triangular unipotent matrices, were
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constructed in [10, Sections 5 and 6]. Various other extensions were obtained from
these by performing suitable equivariant affine modifications. One can observe that
for all of these extensions, the fiber ⇡�1({(0, 0)}) is an A1-ruled surface, a property
which is a consequence of the following more general fact:

Proposition 2.3. Let ⇢ : P ! S⇤ be a non-trivial Ga-torsor over the punctured
spectrum S \ {o} of a regular local ring of dimension 2 over an algebraically closed
field k and with residue field (o) = k, and let ⇡ : X ! S be a Ga-extension of P .
If X is smooth along ⇡�1(o), then every irreducible component F of ⇡�1(o)red is a
uniruled surface. Furthermore, if X is affine then F isA1-uniruled, henceA1-ruled
when it is normal.

Proof. Since ⇡�1(o) has pure codimension one in X and X is smooth along ⇡�1(o),
every irreducible component of ⇡�1(o) is a Ga-invariant Cartier divisor on X . The
complement X 0 in X of all but one irreducible component of ⇡�1(o) is thus again
a Ga-extension of P , and we may therefore assume without loss of generality that
F = ⇡�1(o)red is irreducible. Let x 2 F be a closed point in the regular locus
of F . Since F and X are smooth at x and X is connected, there exists a curve
C ⇢ X , smooth at x and intersecting F transversally at x . The image ⇡(C) of C
is a curve on S passing through o, and the closure B of ⇡�1(⇡(C) \ S⇤) in X is
a surface containing C . Since ⇢ : P ! S⇤ is a Ga-torsor, the restriction of ⇡ to
B \ P is a trivial Ga-torsor over the affine curve ⇡(C). So ⇡ |B : B ! ⇡(C) is an
A1-fibration. Let ⌫ : C̃ ! ⇡(C) be the normalization of ⇡(C). Then ⇡ |B lifts to
an A1-fibration ✓ : B̃ ! C̃ on the normalization B̃ of B. The fiber of ✓ over every
point in ⌫�1(o) is a union of rational curves. Since the normalization morphism
µ : B̃ ! B is surjective, one of the irreducible components of ⌫�1(o) is mapped
by µ onto a rational curve in F passing through x . This shows that for every smooth
closed point x of F , there exists a non-constant rational map h : P1 99K F such
that x 2 h(P1). Thus F is uniruled. If X in addition is affine, then B and B̃ are
affine surfaces, and the fibers of the A1-fibration ✓ : B̃ ! C̃ consist of the disjoint
union of curves isomorphic to A1 when equipped with their reduced structure. This
implies that F is not only uniruled but actually A1-uniruled.

Example 2.4. Let X be the smooth affine threefold inA2⇥A4 = Spec(k[x, y][c, d,
e, f ]) defined by the equations

8
>>>>><

>>>>>:

xd � y(c + 1) = 0
xc2 � y2e = 0
y f � c(c + 1) = 0
x f 2 � (c + 1)2e = 0
de � c f = 0,

equipped with the Ga-action induced by the locally nilpotent k[x, y]-derivation

xy@c + y2@d + x(2c + 1)@ f + (2x2 f � 2xye)@e
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of its coordinate ring. The morphism j : SL2 = {xv � yu = 1} ! X defined by
(x, y, u, v) 7! (x, y, yu, yv, xu2, xuv) is an open embedding of SL2 in X as the
complement of the fiber over o = (0, 0) of the projection ⇡ = prx,y : X ! A2. So
j : SL2 ! X is an affine Ga-extension of the Ga-torsor ⇢ : SL2 ! SL2/Ga =
A2 \ {o}, for which ⇡�1(o) consists of the disjoint union of two copies D1 = {x =
y = c = 0} ' Spec(k[d, f ]) and D2 = {x = y = c + 1 = 0} ' Spec(k[d, e]) of
A2. Note that the induced Ga-action on each of these is the trivial one.
Example 2.5. Let X be the affine Ga-extension constructed in the previous exam-
ple and let C ⇢ D1 be any smooth affine curve. Let ⌧ : X̃ ! X be the blow-up
of X along C , let i : X 0 ,! X̃ be the open immersion of the complement of the
proper transform of D1 [ D2 in X̃ and let ⇡ 0 = ⇡ � ⌧ � i : X 0 ! A2. Since C
and D1 [ D2 are Ga-invariant, the Ga-action on X lifts to a Ga-action on X̃ which
restricts in turn to X 0. By construction, ⇡ 0 is surjective, with fiber ⇡ 0�1(o) isomor-
phic to C⇥A1 and ⌧ � i : X 0 ! X restricts to an equivariant isomorphism between
X 0 \ ⇡ 0�1(o) and X \ ⇡�1(o) ' SL2. So ⇡ 0 : X 0 ! A2 is a Ga-extension of the
Ga-torsor ⇢ : SL2 ! SL2/Ga = A2 \ {o}.

2.2. Recollection on affine-linear bundles

Affine-linear bundles of rank one over a scheme are natural generalizations of Ga-
torsors. To fix the notation, we briefly recall their basic definitions and properties.

By a line bundle on a scheme S, we mean the relative spectrum p : M =
Spec(Sym·M_) ! S of the symmetric algebra of the dual of an invertible sheaf of
OS-modulesM. Such a line bundle M can be viewed as a locally constant group
scheme over S for the group law m : M ⇥S M ! M whose comorphism

m] : Sym·M_ ! Sym·M_ ⌦ Sym·M_ ' Sym·�M_ �M_�

is induced by the diagonal homomorphismM_ ! M_ �M_. An M-torsor is
then an S-scheme ✓ : W ! S equipped with an action µ : M ⇥S W ! W which
is Zariski locally over S isomorphic to M acting on itself by translations.

This is the case precisely when there exists a Zariski open cover f : Y ! S and
anOY -algebra isomorphism  : f ⇤A! Sym· f ⇤M_ such that over Y 0 = Y ⇥S Y
the automorphism p⇤

1 �p⇤
2 

�1 : Sym·M_
Y 0 ! Sym·M_

Y 0 of the symmetric algebra
ofM_

Y 0 = p⇤
2 f

⇤M_ = p⇤
1 f

⇤M_ is affine-linear, i.e. induced by an OY 0-module
homomorphismM_

Y 0 ! Sym·M_
Y 0 of the form

� � id :M_
Y 0 ! OY 0 �M_

Y 0 ,!
M

n�0

�
M_

Y 0

�⌦n
= Sym·M_

Y 0 (2.1)

for some � 2 HomY 0(M_
Y 0,OY 0) ' H0(Y 0,MY 0) which is a Čech 1-cocycle with

values inM for the Zariski open cover f : Y ! S. Standard arguments show that
the isomorphism class of ✓ : W ! S depends only on the class of � in the Čech co-
homology group Ȟ1(S,M), and one eventually gets a one-to-one correspondence
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between isomorphism classes of M-torsors over S and elements of the cohomology
group H1(S,M) = H1(S,M) ' Ȟ1(S,M) with the zero element corresponding
to the trivial torsor p : M ! S.

It is classical that every locally trivial A1-bundle ✓ : W ! S over a reduced
scheme S can be equipped with the additional structure of a torsor under a uniquely
determined line bundle M on S. The existence of this additional structure will be
frequently used in the sequel, and we now quickly review its construction (see also,
e.g., [2, Section 2.3 and Section 2.4]). LettingA = ✓⇤OW , there exists by definition
a Zariski open cover f : Y ! S and a quasi-coherent OY -algebra isomorphism
' : f ⇤A ! OY [u]. Over Y 0 = Y ⇥S Y equipped with the two projections p1 and
p2 to Y , theOY 0-algebra isomorphism 8 = p⇤

1' � p⇤
2'

�1 has the form

8 : OY 0[u] ! OY 0[u], u 7! au + b (2.2)

for some a 2 0(Y 0,O⇤
Y 0) and b 2 0(Y 0,OY 0) whose pullbacks over Y 00 = Y ⇥S

Y ⇥S Y by the three projections p12, p23, p13 : Y 00 ! Y 0 satisfy the cocycle re-
lations p⇤

13a = p⇤
23a · p⇤

12a and p
⇤
13b = p⇤

23a · p⇤
12b + p⇤

23b in 0(Y 00,O⇤
Y 00) and

0(Y 00,OY 00) respectively. The first one says that a is a Čech 1-cocycle with val-
ues in O⇤

S for the cover f : Y ! S, and thus it determines, via the isomorphism
H1(S,O⇤

S) ' Pic(S), a unique invertible sheaf M on S together with an OY -
module isomorphism ↵ : f ⇤M_ ! OY such that p⇤

1↵ �p⇤
2↵

�1 : OY 0 ! OY 0 is the
multiplication by a. The second one can be equivalently reinterpreted as the fact that
� = p⇤

2(
t↵)(b) 2 0(Y 0,MY 0) is a Čech 1-cocycle with values inM for the Zariski

open cover f : Y ! S. Letting Sym·(↵) : Sym· f ⇤M_ ! OY [u] be the graded
OY -algebra isomorphism induced by ↵, the isomorphism  = Sym·(↵�1) � ' :
f ⇤A ! Sym· f ⇤M_ has the property that p⇤

1 � p⇤
2 

�1 is affine-linear, induced
by the homomorphism � � id : M_

Y 0 ! OY 0 �M_
Y 0 . So ✓ : W ! S is a torsor

under the line bundle M = Spec(Sym·M_), with isomorphism class in H1(S,M)
equal to the cohomology class of the cocycle �. Summing up, we obtain:

Proposition 2.6. Let ✓ : W ! S be a locally trivial A1-bundle. Then there exists
a unique pair (M, g) consisting of a line bundle M on S and a class g 2 H1(S,M)
such that ✓ : W ! S is an M-torsor with isomorphism class g.

2.3. Additive group actions on affine-linear bundles of rank one

Given a locally trivial A1-bundle ✓ : W ! S, which we view as an M-torsor for a
line bundle M = Spec(Sym·M_) ! S on S, with corresponding action µ : M ⇥S
W ! W , every non-zero group scheme homomorphism ⇠ : Ga,S ! M induces a
non-trivial Ga,S-action ⌫ = µ � (⇠ ⇥ id) : Ga,S ⇥S W ! W on W . A non-zero
group scheme homomorphism ⇠ : Ga,S = Spec(OS[t]) ! M = Spec(Sym·M_)
is uniquely determined by a non-zero OS-module homomorphismM_ ! OS , or
equivalently by a non-zero global section s 2 0(S,M). The following proposition
asserts conversely that every non-trivial Ga,S-action on an M-torsor ✓ : W ! S
uniquely arises from such a section.
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Proposition 2.7 ([1, Chapter 3]). Let ✓ : W ! S be a torsor under the action
µ : M ⇥S W ! W of a line bundle M = Spec(Sym·M_) ! S on S and let
⌫ : Ga,S ⇥S W ! W be a non-trivial Ga,S-action on W . Then there exists a non-
zero global section s 2 0(S,M) such that ⌫ = µ � (⇠ ⇥ id) where ⇠ : Ga,S ! M
is the group scheme homomorphism induced by s.

Proof. Let A = ✓⇤OW and let f : Y ! S be a Zariski open cover such that there
exists anOY -algebra isomorphism ' : f ⇤A! OY [u], and let

8 = p⇤
1' � p⇤

2'
�1 : OY 0[u] ! OY 0[u], u 7! au + b

be as in (2.2) above. Since ✓ : W ! S is an M-torsor, ' also determines an OY -
module isomorphism ↵ : f ⇤M_ ! OY such that p⇤

1↵ � p⇤
2↵

�1 : OY 0 ! OY 0 is
the multiplication by a. TheGa,S-action ⌫ on W pulls back to aGa,Y -action ⌫⇥ id
on W ⇥S Y . The comophism ⌘ : OY [u] ! OY [u]⌦OY [t] of the non-trivialGa,Y -
action ' � (⌫ ⇥ id) � (id⇥ '�1) on Spec(OY [u]) has the form u 7! u ⌦ 1+ 1⌦ � t
for some non-zero � 2 0(Y,OY ). Letting I = � ·OY be the ideal sheaf generated
by � , ⌘ factors as

⌘ = (id⌦ j) � ⌘̃ : OY [u] ! OY [u] ⌦ Sym·I ! OY [u] ⌦OY [t]

where ⌘̃ is the comorphism of an action of the line bundle Spec(Sym·I) ! Y on
A1S ⇥S Y ' W ⇥S Y and j : Sym·I ! OY [t] is the homomorphism induced by
the inclusion I ⇢ OY . Pulling back to Y 0, we find that p⇤

2� = a · p⇤
1� , which

implies that t↵(� ) 2 0(Y, f ⇤M) is the pull-back f ⇤s to Y of a non-zero global
section s 2 0(S,M). Letting D = div0(s) be the divisors of zeros of s, we have
M_ ' OS(�D) ⇢ OS and f ⇤M_ ' OY (� f ⇤D) ⇢ OY is equal to the ideal
I = � · OY . The global section f ⇤s viewed as a homomorphism f ⇤M_ ! OY
coincides via these isomorphisms with the inclusion � ·OY ,! OY . We can thus
rewrite ⌘ in the form

⌘ = (id⌦ Sym· f ⇤s) � ⌘̃ : OY [u] ! OY [u] ⌦ Sym· f ⇤M_ ! OY [u] ⌦OY [t].

By construction ⌘̃ = (' ⌦ id) � f ⇤µ] � '�1 where f ⇤µ] is the pullback of the
comorphism µ] : A ! A ⌦ Sym·M_ of the action µ : M ⇥S W ! W of
M on W . It follows that the pull-back f ⇤⌫] of the comorphism of the action ⌫ :
Ga,S ⇥ W ! W factors as

f ⇤⌫]=(id⌦ Sym· f ⇤s) � f ⇤µ]= f ⇤A! f ⇤A⌦ Sym· f ⇤M_ ! f ⇤A⌦OY [t].

This in turn implies that ⌫] factors as (id⌦ Sym·s) � µ] : A! A⌦ Sym·M_ !
A⌦OY [t] as desired.

Remark 2.8. In the setting of Proposition 2.7, lettingU ⇢ S be the complement of
the zero locus of s, the morphism ⇠ restricts to an isomorphism of group schemes
⇠ |U : Ga,U ! M|U for which W |U equipped with theGa,U -action ⌫|U : Ga,U ⇥U
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W |U ! W |U is a Ga,U -torsor. This isomorphism class in H1(U,OU ) of this
Ga,U -torsor coincides with the image of the isomorphism class g 2 H1(S,M)
of W by the composition of the restriction homomorphism res : H1(S,M) !
H1(U,M|U ) with the inverse of the isomorphism H1(U,OU ) ! H1(U,M|U )
induced by s|U .

2.4. Ga-equivariant affine modifications of affine-linear bundles of rank one

Recall [3] that given an integral scheme X with sheaf of rational functions KX , an
effective Cartier divisor D on X and a closed subscheme Z ⇢ X whose ideal sheaf
I ⇢ OX contains OX (�D), the affine modification of X with center (I, D) is the
affine X-scheme � : X 0 = Spec(OX [I/D]) ! X where OX [I/D] denotes the
quotient of the Rees algebra

OX [(I ⌦OX (D))] =
M

n�0
(I ⌦OX (D))ntn ⇢ KX [t]

of the fractional ideal I ⌦ OX (D) ⇢ KX by the ideal generated by 1 � t . If
X = Spec(A) is affine, D = div( f ) is principal and Z is defined by an ideal I ⇢ A
containing f then X 0 is isomorphic to the affine modification Spec(A[I/ f ]) of X
with center (I, f ) in the sense of [11].

Now let S be an integral scheme and let ✓ : W ! S be a locally trivial A1-
bundle. Let C ⇢ S be an integral Cartier divisor, let D = ✓�1(C) be its inverse
image in W and let Z ⇢ D be a non-empty integral closed subscheme of D on
which ✓ restricts to an open embedding ✓ |Z : Z ,! C . Equivalently, Z is the
closure in D of the image ↵(U) of a rational section ↵ : C ! D of the locally
trivial A1-bundle ✓ |D : D ! C defined over a non empty open subset U of C .
The complement F of ✓ |Z (Z) in C is a closed subset of C and hence of S. Letting
i : S \ F ,! S be the natural open embedding, we have the following result:

Lemma 2.9. Let � : W 0 ! W be the affine modification ofW with center (IZ , D).
Then the composition ✓ � � : W 0 ! S factors through a locally trivial A1-bundle
✓ 0 : W 0 ! S \ F in such a way that we have a commutative diagram

W 0

✓ 0

✏✏

�
// W

✓

✏✏

S \ F i
// S.

Proof. The question being local with respect to a Zariski open cover of S over
which ✓ : W ! S becomes trivial, we can assume without loss of generality that
S = Spec(A), W = Spec(A[x]), C = div( f ) for some non-zero element f 2 A.
The integral closed subscheme Z ⇢ D is then defined by an ideal I of the form
( f, g) where g(x) 2 A[x] is an element whose image in (A/ f )[x] is a polynomial
of degree one in t . So g(x) = a0 + a1x + x2 f R(x) where a0 2 A, a1 2 A has
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non-zero residue class in A/ f and R(x) 2 A[x]. The condition that ✓ |Z : Z ! C
is an open embedding implies further that the residue classes a0 and a1 of a0 and a1
in A/ f generate the unit ideal. The complement F of the image of ✓ |Z (Z) in C is
then equal to the closed subscheme of C with defining ideal (a1) ⇢ A/ f , hence to
the closed subscheme of S with defining ideal ( f, a1) ⇢ A. The algebra A[t][I/ f ]
is isomorphic to

A[x][u]/(g � f u) = A[x]
⇥
u � x2R(x)

⇤
/(a0 + a1x � f

�
u � t2R(x)

�

' A[x][v]/(a0 + a1x � f v).

One deduces from this presentation that the morphism ✓�� : W 0 =Spec(A[I/ f ])!
Spec(A) corresponding to the inclusion A ! A[I/ f ] factors through a locally
trivial A1-bundle ✓ 0 : W 0 ! S \ F over the complement of F . Namely, since a0
and a1 generate the unit ideal in A/ f , it follows that a1 and f generate the unit ideal
in A[x][u]/(g � f u). So W 0 is covered by the two principal affine open subsets

W 0
a1 ' Spec(Aa1[x][v]/(a0 + a1x � f v)) ' Spec(Aa1[v]) ' Sa1 ⇥ A1

W 0
f ' Spec(A f [x][v]/(a0 + a1x � f v)) ' Spec(A f [x]) ' S f ⇥ A1

on which ✓ 0 restricts to the projection onto the first factor.

Remark 2.10. By construction, the restriction of the birational morphism � : W 0 !
W constructed in Lemma 2.9 over S \ F is a morphism of locally trivialA1-bundles
over S \ F , which restricts to an isomorphism over S \C but contracts ✓ 0�1(C) onto
Z ⇢ ✓�1(C).
With the notation above, ✓ : W ! S and ✓ 0 : W 0 ! S \ F are torsors under the
action of line bundles M = Spec(Sym·M_) and M 0 = Spec(Sym·M0_) for certain
uniquely determined invertible sheavesM andM0 on S and S \ F respectively.

Lemma 2.11 ([1, Section 4.3]). Let � : W 0 ! W be the affine modification of
W with center (IZ , D) as in Lemma 2.9. ThenM0 = M ⌦OS OS(�C)|S\F and
the commutative diagram of Lemma 2.9 is equivariant for the group scheme homo-
morphism ⇠ : M 0 ! M induced by the homomorphismM ⌦OS OS(�C) ! M
obtained by tensoring the inclusionOS(�C) ,! OS byM.

Proof. Since M and M 0 are uniquely determined, the question is again local with
respect to a Zariski open cover of S over which ✓ : W ! S, hence M , becomes
trivial. We can thus assume as in the proof of Lemma 2.9 that S = Spec(A), W =
Spec(A[x]), that C = div( f ) for some non-zero element f 2 A and that Z ⇢ D is
defined by the ideal ( f, g) for some g = a0+a1x+ f x2R(x) 2 A[x]. Furthermore,
the action of M ' Ga,S = Spec(A[t]) on W ' S ⇥ A1 is the one by translations
x 7! x + t on the second factor. Let N = Spec(Sym·OS(C)) ' Spec(Sym· f �1A)
where f �1A denotes the free sub-A-module of the field of fractions Frac(A) of A
generated by f �1. As in the proof of Proposition 2.7, the inclusion OS(�C) =
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f · OS ,! OS induces a group-scheme homomorphism ⇠ : N ! M whose co-
morphism ⇠] coincides with the inclusion A[t] ⇢ Sym· f �1A = A[( f �1t)]. The
comorphism of the corresponding action of N on W is given by

A[x] ! A[x] ⌦ A
⇥
f �1t

⇤
, x 7! x ⌦ 1+ 1⌦ t = x ⌦ 1+ f ⌦ f �1t.

This action lifts on W 0 ' Spec(A[x][v]/(a0 + a1x � f v)) to an action ⌫ : N ⇥S
W 0 ! W 0 whose comorphism

A[x][v]/(a0 + a1x � f v) ! A[x][v]/(a0 + a1x � f v) ⌦ A
⇥
f �1t

⇤

is given by x 7! x ⌦ 1 + 1 ⌦ t and v 7! v ⌦ 1 + a1 ⌦ f �1t . By construction,
the principal open subsets W 0

a1 ' Spec(Aa1[v]) ' Spec(Aa1[v/a1]) and W 0
f '

Spec(A f [x]) ' Spec(A f [x/ f ]) of W 0 equipped with the induced actions of N |Sa1
and N |S f respectively are equivariantly isomorphic to N |Sa1 and N |S f acting on
themselves by translations. So ✓ 0 : W 0 ! S \ F is an N |S\F -torsor, showing that
M0 =M⌦OS OS(�C)|S\F as desired.

3. Extensions of Ga-torsors of Type I: locally trivial bundles over the
blow-up of a point

Given a surface S and a locally trivial A1-bundle ✓ : W ! S̃ over the blow-up
⌧ : S̃ ! S of a closed point o in the smooth locus of S, the restriction of W over
the complement S̃\E of the exceptional divisor E of ⌧ is a locally trivialA1-bundle
⌧ � ✓ : W |S̃\E! S̃ \ E '

! S \ {o}. This observation combined with the following
re-interpretation of an example constructed in [10] suggests that locally trivial A1-
bundles over the blow-up of a closed point o in the smooth locus of a surface S
form a natural class of schemes in which to search for non-trivial Ga-extension of
Ga-bundles over punctured surfaces.
Example 3.1. Let o = V (x, y) be a global scheme-theoretic complete intersection
closed point in the smooth locus of a surface S, where x, y 2 0(S,OS). Let ⇢ :
P ! S \ {o} and ⇡0 : X0 ! S be the affine S-schemes in S⇥ A2 and S⇥ A3 with
defining sheaves of ideals (xv�yu�1) and (xr�yq, yp�x(q�1), pr�q(q�1)) in
OS[u, v] and OS[p, q, r] respectively. The morphism of S-schemes j0 : P ! X0
defined by (x, y, u, v) 7! (x, y, xu, xv, yv) is an open embedding, equivariant for
the Ga,S-actions on P and X0 associated with the locally nilpotent OS-derivations
x@u + y@v and x2@p + xy@q + y2@r of ⇢⇤OP and (⇡0)⇤OX0 respectively. It is
straightforward to check that ⇢ : P ! S \ {o} is aGa,S⇤-torsor and that ⇡0 : X0 !
S is a Ga-extension of P whose fiber over o is isomorphic to the smooth affine
quadric Q = {pr � q(q � 1) = 0} ⇢ A3 . Viewing the blow-up S̃ of o as the closed
subscheme of S ⇥k Proj(k[u0, u1]) with equation xu1 � yu0 = 0, the morphism of
S-schemes ✓ : X0 ! S̃ defined by

(x, y, p, q, r) 7! ((x, y), [x : y]) = ((x, y), [q : r]) = ((x, y), [p : q � 1])
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is a locally trivial A1-bundle. Note that since the Ga,S-action on X0 restricts to the
trivial Ga, -action on Q, ✓ : X0 ! S̃ is not a Ga,S̃-torsor. Instead, letting E ' P1
be the exceptional divisor of the blow-up, one can check that ✓ : X0 ! S̃ is a
torsor under the line bundle corresponding to the invertible sheafOS̃(2E), and that
its restriction over E is the non-trivial OP1 (�2)-torsor Q ! P1 , (p, q, r) 7! [q :
r] = [p : q � 1].
Notation 3.2. Given a surface S and a closed point o in the smooth locus of S, with
residue field  , we denote by ⌧ : S̃ ! S the blow-up of o, with exceptional divisor
E ' P1 . We identify S̃ \ E and S⇤ = S \ {o} by the isomorphism induced by ⌧ .
For every ` 2 Z, we denote by M(`) = Spec(Sym·OS̃(�`E)) the line bundle on S̃
corresponding to the invertible sheafOS̃(`E).
The aim of this section is to give a classification of all possible Ga-equivariant
extensions of Type I of a given Ga-torsor ⇢ : P ! S⇤, that is Ga-extensions
⇡ : W ! S that factor through locally trivial A1-bundles ✓ : W ! S̃.

3.1. Existence of Ga-extensions of Type I

By virtue of Propositions 2.6 and 2.7, there exists a one-to-one correspondence
between Ga-equivariant extensions of a Ga-torsor ⇢ : P ! S⇤ that factor through
a locally trivial A1-bundle ✓ : W ! S̃ and pairs (M, ⇠) consisting of an M-torsor
✓ : W ! S̃ for some line bundle M on S̃ and a group scheme homomorphism
⇠ : Ga,S̃ ! M restricting to an isomorphism over S̃ \ E , such that W equipped
with the Ga,S̃-action deduced by composition with ⇠ restricts on S⇤ = S̃ \ E to a
Ga,S⇤-torsor ✓ |S⇤ : W |S⇤! S⇤ isomorphic to ⇢ : P ! S⇤. The condition that
⇠ : Ga,S̃ ! M restricts to an isomorphism outside E implies that M ' M(`) for
some `, which is necessarily non-negative, and that ⇠ is induced by the canonical
global section ofOS̃(`E) with divisor `E .

Proposition 3.3. Let ⇢ : P ! S⇤ be a Ga,S⇤-torsor. Then there exists an integer
`0 � 0 depending on P only such that for every ` � `0, P admits a Ga-extension
to a uniquely determined M(`)-torsor ✓` : W (P, `) ! S̃ equipped with the Ga,S̃-
action induced by the canonical global section s` 2 0(S̃,OS̃(`E)) with divisor
`E .

Proof. The Ga,S⇤-torsor ⇢ : P ! S⇤ is determined up to isomorphism by a co-
homology class in H1(S⇤,OS⇤), while an M(`)-torsor is determined up to isomor-
phism by a class in H1(S̃,OS̃(`E)). The assertion is thus equivalent to saying that
the homomorphisms

H1(S̃,OS̃(nE)) ! H1(S⇤,OS̃(nE)|S⇤) ' H1(S⇤,OS⇤), n � 0

induced by restriction are injective for all n � 0 and that their images exhaust
H1(S⇤,OS⇤). To see this, we will establish that the natural homomorphism
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H1(S̃,OS̃(nE)) ! H1(S̃,OS̃((n + 1)E) is injective for all n � 0 and that
H1(S⇤,OS⇤) ' colimn�0H1(S̃,OS̃(nE)).

The invertible sheaves OS̃(nE), n � 0, form an inductive system of sub-OS̃-
modules of the sheaf KS̃ of rational functions on S̃, where for each n, the injective
transition homomorphism jn,n+1 : OS̃(nE) ,! OS̃((n + 1)E) is obtained by ten-
soring the canonical section OS̃ ! OS̃(E) with divisor E with OS̃(nE). Let
i : S⇤ = S̃ \ E ,! S̃ be the open inclusion. Since E is a Cartier divisor, it fol-
lows from [6, Théorème 9.3.1] that i⇤OS⇤ ' colimn�0OS̃(nE). Furthermore, since
E ' P1 is the exceptional divisor of ⌧ : S̃ ! S, we have OS̃(E)|E ' OP1 (�1),
and the long exact sequence of cohomology for the short exact sequence

0 ! OS̃(nE) ! OS̃((n + 1)E) ! OS̃((n + 1)E)|E ! 0, n � 0, (3.1)

combined with the vanishing of H0(P1,OP1 (�n � 1)) for every n � 0 implies
that the transition homomorphisms

H1( jn,n+1) : H1(S̃,OS̃(nE)) ! H1(S̃,OS̃((n + 1)E)), n � 0,

are all injective. By assumption, S whence S̃ is noetherian, and i : S⇤ ! S̃ is an
affine morphism as E is a Cartier divisor on S̃. We thus deduce from [12, Theorem
8] and [7, Corollaire 1.3.3] that the canonical homomorphism

 : colimn�0H1(S̃,OS̃(nE)) ! H1(S⇤,OS⇤) (3.2)

obtained as the composition of the canonical homomorphisms

colimn�0H1(S̃,OS̃(nE)) ! H1(S̃, colimn�0OS̃(nE)) = H1(S̃, i⇤OS⇤)

and H1(S̃, i⇤OS⇤) ! H1(S⇤,OS⇤) is an isomorphism.
Let g 2 H1(S⇤,OS⇤) be the isomorphism class of the Ga,S⇤-torsor ⇢ : P !

S⇤. If g = 0, then since  is an isomorphism, we have  �1(g) = 0 and, since the
homomorphisms H1( jn,n+1) are injective, it follows that  �1(g) is represented by
the zero sequence (0)n 2 H1(S̃,OS̃(nE)), n � 0 . Consequently, the only Ga-
extensions of P are the line bundles W (P, `) = M(`), ` � 0, each equipped with
the Ga,S̃-action induced by its canonical global section s` 2 0(S̃,OS̃(`E)).

Otherwise, if g 6= 0, then h =  �1(g) 6= 0, and since the homomorphisms
H1( jn,n+1), n � 0 are injective, it follows that there exists a unique minimal integer
`0 such that h is represented by the sequence

hn = H1( jn�1,n) � · · · � H1
�
j`0,`0+1

��
h`0

�
2 H1

�
S̃,OS̃(nE)

�
, n � `0 (3.3)

for some non-zero h`0 2 H1(S̃,OS̃(`0E)). It then follows from Proposition 2.7
that for every ` � `0, the M(`)-torsor ✓` : W (P, `) ! S̃ with isomorphism
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class h` equipped with the Ga,S̃-action induced by the canonical global section
s` 2 0(S̃,OS̃(`E)) is a Ga-extension of P .

Conversely, for everyGa-extension ofP into an M(`)-torsor ✓ :W!S̃ equipped
with the Ga,S̃-action induced by the canonical global section s` 2 0(S̃,OS̃(`E)),
it follows from Proposition 2.7 again that the image of the isomorphism class
h` 2 H1(S̃,OS̃(`E)) of W in H1(S̃ \ E,OS̃(`E)|S̃\E ) ' H1(S⇤,OS⇤) is equal
to g. Letting h 2 colimn�0H1(S̃,OS̃(nE)) be the element represented by the se-
quence

hn =
�
H1( jn�1,n � · · · � j`,`+1)(h`)

�
n�` 2 H1

�
S̃,OS̃(nE)

�
, n � `

we have  (h) = g and since  is an isomorphism, we conclude that W ' W (P, `)
as M(I )-torsors.

3.2. Ga-extensions with affine total spaces

The extensions ✓ : W ! S̃ we get from Proposition 3.3 are not necessarily affine
over S. In this subsection we establish a criterion for affineness which we then use
to characterize all extensions ✓ : W ! S̃ of Type I of a Ga-torsor ⇢ : P ! S⇤
whose total spaces W are affine over S.

Lemma 3.4. Let S = Spec(A) be an affine surface and let o = V (x, y) be a
global scheme-theoretic complete intersection point in the smooth locus of S. Let
⌧ : S̃ ! S be the blow-up of o with exceptional divisor E and let ✓ : W ! S̃ be
an M(`)-torsor for some ` � 0. Then the following hold:

a) H1(W,OW ) = 0;
b) The scheme W is affine if and only if H1(W, ✓⇤OS̃(`E)) = 0 for some ` � 2.

Proof. Since o is a scheme-theoretic complete intersection, we can identify S̃ with
the closed subvariety of S ⇥k P1k = S ⇥k Proj(k[t0, t1]) defined by the equation
xt1 � yt0 = 0. The restriction p : S̃ ! P1k of the projection to the second factor
is an affine morphism. More precisely, letting U0 = P1k \ {[1 : 0]} ' Spec(k[z])
and U1 = P1k \ {[0 : 1]} ' Spec(k[z0]) be the standard affine open cover of P1k ,
we have p�1(U0) ' Spec(A[z]/(x � yz)) and p�1(U1) ' Spec(A[z0]/(y� xz0)).
The exceptional divisor E ' P1 of ⌧ : S̃ ! S is a flat quasi-section of p with local
equations y = 0 and x = 0 in the affine charts p�1(U0) and p�1(U1) respectively.
Every M(`)-torsor ✓ : W ! S̃ with ` � 0 is isomorphic to the scheme obtained
by gluing W0 = p�1(U0) ⇥ Spec(k[u]) with W1 = p�1(U1) ⇥ Spec(k[u0]) over
U0 \U1 by an isomorphism induced by a k-algebra isomorphism of the form

A
⇥
(z0)±1

⇤��
y � xz0

�⇥
u0⇤ 3

�
z0, u0� 7!

�
z�1, z`u + p

�
2 A

⇥
z±1

⇤
/(x � yz)[u]

for some p2 A[z±1]/(x� yz). Since H1(W,OW )' Ȟ1(W,OW )' Ȟ1({W0,W1},
OW ), it is enough in order to prove a) to check that every Čech 1-cocycle g with
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values in OW for the covering of W by the affine open subsets W0 and W1 is a
coboundary. Viewing g as an element g = g(z±1, u) 2 A[z±1]/(x � yz)[u], it is
enough to show that every monomial gs = hzrus where h 2 A, r 2 Z and s 2 Z�0
is a coboundary, which is the case if and only if there exist a(z, u) 2 A[z]/( f �
gz)[u] and b(z0, u0) 2 A[z0]/(y� xz0)[u0] such that g = b(z�1, z`u+ p)� b(z, u).
If r � 0 then g 2 A[z]/(x � yz)[u] is a coboundary. We thus assume from now on
that r < 0. Suppose that s > 0. Then we can write us = z�`s(z`u + p)s � R(u)
where R 2 A[z±1]/(x� yz)[u] is polynomial whose degree in u is strictly less than
s. Then since r < 0,

hzrus = hzr�`s
�
z`u + p

�s
� hzr R(u)

= b
�
z�1, z`u + p

�
� hzr R(u),

where b(z0, u0) = h(z0)�r+`s(u0)s 2 A[z0]/(y � xz0)[u0]. So gs is a coboundary if
and only if�hzr R(u) is. By induction, we only need to check that every monomial
g0 = hzr 2 A[z±1]/(x � yz)[u] of degree 0 in u is a coboundary. But such a
cocycle is simply the pull-back to W of a Čech 1-cocycle h0 with value in OS̃ for
the covering of S̃ by the affine open subsets p�1(U0) and p�1(U1). Since the
canonical homomorphism

H1(S,OS) = H1
�
S, ⌧⇤OS̃

�
! H1

�
S̃,OS̃

�
' Ȟ1

⇣�
p�1(U0), p�1(U1)

 
,OS̃

⌘

is an isomorphism and H1(S,OS) = 0 as S is affine, we conclude that h0 is a
coboundary, hence that g0 is a coboundary too. This proves a).

Now suppose that H1(W, ✓⇤OS̃(`E)) = 0 for some ` � 2. Let ⌘ : V ! P1k
be a non-trivialOP1k

(�`)-torsor and consider the fiber product W ⇥p�✓,P1k ,⌘
V :

W ⇥p�✓,P1k ,⌘
V

{{w

w

w

w

w

w

w

w

##

F

F

F

F

F

F

F

F

F

W

p�✓
##

G

G

G

G

G

G

G

G

G

V

⌘
{{x

x

x

x

x

x

x

x

x

P1k .

By virtue of [5, Proposition 3.1], V is an affine surface. Since p � ✓ : W ! P1k
is an affine morphism, so is prV : W ⇥P1k

V ! V and hence, W ⇥P1k
V is an

affine scheme. On the other hand, since p⇤OP1k
(�1) ' OS̃(E), the projection

prW : W ⇥P1k
V ! W is a ✓⇤M(`)-torsor, hence is isomorphic to the trivial one

q : ✓⇤M(`) ! W by hypothesis. So W is isomorphic to the zero section of
✓⇤M(`), which is a closed subscheme of the affine scheme W ⇥P1k

V , hence an
affine scheme.
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Corollary 3.5. With the notation of Lemma 3.4, for an M(`)-torsor ✓ : W ! S̃,
` � 0, the following are equivalent:

1) W is an affine scheme;
2) W |E is a non-trivial M(`)|E -torsor;
3) The isomorphism class of W in H1(S̃,OS̃(`E)) does not belong to the image of

the injective homomorphism H1(S̃,OS̃((`� 1)E)) ,! H1(S̃,OS̃(`E)).

Proof. Since the isomorphism class of W |E in H1(E,OS̃(`E)|E ) is the image of
the isomorphism class of W in H1(S̃,OS̃(`E)) by the restriction homomorphism
H1(S̃,OS̃(`E)) ! H1(E,OS̃(`E)|E ), the equivalence of 2) and 3) simply follows
from the long exact sequence of cohomology of the short exact sequence (3.1).

If W |E is a trivial torsor, then it is a line bundle over E ' P1 . Its zero section
is then a proper curve in W |E hence in W , which prevents W from being affine. So
1) )2). Conversely, suppose that D = W |E is a non-trivial M(`)|E -torsor. Then
by virtue of [5, Proposition 3.1], D is an affine surface, and so H1(D,OW ((n +
1)D)|D) = 0 for every n 2 Z. By a) in Lemma 3.4, H1(W,OW ) = 0, and
we deduce successively from the long exact sequence of cohomology for the short
exact sequence

0 ! OW (nD) ! OW ((n + 1)D) ! OW ((n + 1)D) |D! 0

in the case n = 0 and then n = 1 that H1(W,OW (D)) = H1(W,OW (2D)) = 0.
Since OW (2D) ' ✓⇤OS̃(2E), we conclude from b) in the same lemma that W is
affine.

Remark 3.6. Since M(`)|E ' OP1 (�`), we infer in particular from Corollary 3.5
that for ` = 0, 1, there is no M(`)-torsor ✓ : W ! S̃ with affine total space W .
We obtain the following characterization:

Theorem 3.7. A Ga,S⇤-torsor ⇢ : P ! S⇤ admits a Ga-extension to a locally
trivial A1-bundle whose total space is affine over S if and only if for every Zariski
open neighborhoodU of o, P⇥S⇤ U ! U⇤ = U \ {o} is a non-trivialGa,U⇤-torsor.

When it exists, the corresponding locally trivial A1-bundle ✓ : W ! S̃ is
unique and is an M(`0)-torsor for some `0 � 2, whose restriction to E ' P1 is a
non-trivialOP1 (�`0)-torsor.

Proof. Since by construction ⇡ restricts over S⇤ to ⇢ : P ! S⇤ which is an affine
morphism, ⇡ is affine if and only if there exists an open neighborhood U of o in S
such that ⇡�1(U) is affine. Replacing S by a suitable affine open neighborhood of
o, we can therefore assume without loss of generality that S = Spec(A) is affine and
that o is a scheme-theoretic complete intersection o = V (x, y) for some elements
x, y 2 A.

If there exists a Zariski open neighborhood U of o such that the restriction
of P over U⇤ is the trivial Ga,U⇤-torsor, then the image in H1(U⇤,OU⇤) of the
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isomorphism class g of P is zero and so, arguing as in the proof of Proposition 3.3,
every Ga-extension ✓ : W ! S̃ restricts on ⌧�1(U) to the trivial M(`)|⌧�1(U)-
torsor M(`)|⌧�1(U) ! ⌧�1(U), hence to a trivial torsor on E ⇢ ⌧�1(U). By virtue
of Corollary 3.5, W is not affine, hence is not affine over S.

Now suppose that ⇢ : P ! S⇤ is a Ga,S⇤-torsor with isomorphism class g 2
H1(S⇤,OS⇤) such that P ⇥S⇤ U ! U⇤ is non-trivial for every open neighborhood
U of o. The inverse image h =  �1(g) 2 colimn�0H1(S̃,OS̃(nE)) of g by
the isomorphism (3.2) is represented by a sequence of non-zero elements hn 2
H1(S̃,OS̃(nE)) as in (3.3) above. Since H1(S̃,OS̃) = 0 and H1(S̃,OS̃(E)) = 0
as OS̃(E)|E ' OP1 (�1), we deduce from Corollary 3.5 that there exists precisely
one `0 � 2 with the property that an M(`0)-torsor ✓`0 : W`0 ! S̃ with isomorphism
class h`0 2 H1(S̃,OS̃(`0E)) has affine total space W`0 .

3.3. Examples

In this subsection, we consider Ga-torsors of the punctured affine plane. So S =
A2 = Spec(k[x, y]), o = (0, 0) and A2⇤ = A2 \ {o}. We let ⌧ : Ã2 ! A2 be the
blow-up of o, with exceptional divisor E ' P1 and we let i : A2⇤ ,! Ã2 be the
immersion of A2⇤ as the open subset Ã2 \ E . We further identify Ã2 with the total
space f : Ã2 ! P1 of the line bundle OP1(�1) in such a way that E corresponds
to the zero section of this line bundle.

3.3.1. A simple case: homogeneous Ga-torsors

Following [4, Section 1.3], we say that a non-trivial Ga,A2⇤-torsor ⇢ : P ! A2⇤
is homogeneous if it admits a lift of the Gm-action � · (x, y) = (�x, �y) on A2⇤
which is locally linear on the fibers of ⇢. By [4, Proposition 1.6], this is the case
if and only if the isomorphism class g of P in H1(A2⇤,OA2⇤) can be represented
on the open covering of A2⇤ by the principal open subsets A2x and A2y by a Čech
1-cocycle of the form x�m y�n p (x, y) where m, n � 0 and p(x, y) 2 k[x, y] is a
homogeneous polynomial of degree r  m + n � 2. Equivalently, P is isomorphic
the Ga,A2⇤-torsor

⇢ = prx,y : Pm,n,p =
�
xmv � ynu = p(x, y)

 
\ {x = y = 0} ! A2⇤,

which admits an obvious lift � · (x, y, u, v) =
�
�x, �y, �m�du, �n�dv

�
, where

d = m + n � r , of the Gm-action on A2⇤. Let q : A2⇤ ! A2⇤/Gm = P1 be
the quotient morphism of the aforementioned Gm-action on A2⇤. Then it follows
from [4, Example 1.8] that the inverse image by the canonical isomorphism

M

k2Z
H1

�
P1,OP(k)

�
' H1

�
P1, q⇤OA2⇤

�
! H1

�
A2⇤,OA2⇤

�
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of the isomorphism class g of such an homogeneous torsor is an element h of
H1(P1,OP(�d)). Furthermore, the Gm-equivariant morphism ⇢ : P ! A2⇤ de-
scends to a locally trivial A1-bundle ⇢ : P/Gm ! P1 = A2⇤/Gm which is an
OP1(�d)-torsor with isomorphism class h 2 H1(P1,OP(�d)).

Since f ⇤OP1(�d) ' OÃ2(dE), the fiber product W (P, d) = Ã2 ⇥P1 P/Gm
is equipped via the restriction of the first projection with the structure of an M(d)-
torsor ✓ : W (P, d) ! Ã2 with isomorphism class f ⇤h 2 H1(Ã2,OÃ2(dE)). On
the other other hand, W (P, d) is a line bundle over P/Gm via the second projec-
tion, hence is an affine threefold as P/Gm is affine. By construction, we have a
commutative diagram

W (P, d)

✓

✏✏

''

P

P

P

P

P

P

P

P

P

P

⇢

✏✏

j 88

p

p

p

p

p

p

p

p

p

p

// P/Gm

⇢

✏✏

Ã2
f

''

O

O

O

O

O

O

O

O

O

O

O

O

O

A2⇤

i
88

q

q

q

q

q

q

q

q

q

q

q q
// P1

in which each square is cartesian. In other words,W (P, d) is obtained from theGm-
torsor P ! P/Gm by “adding the zero section”. The open embedding j : P ,!
W (P, d) is equivariant for the Ga-action on W (P, d) induced by the canonical
global section ofOÃ2(dE) with divisor dE (see Proposition 2.7). By Theorem 3.7,
✓ : W (P, d) ! Ã2 is the unique Ga-extension of ⇢ : P ! A2⇤ with affine total
space.

In the simplest case d = 2, the unique homogeneous Ga,A2⇤-torsor is the geo-
metric quotient SL2 ! SL2/Ga of the group SL2 by the action of its subgroup of
upper triangular unipotent matrices equipped with the diagonal Gm-action, and we
recover Example 3.1.

3.3.2. General case

Here, given an arbitrary non-trivial Ga-torsor ⇢ : P ! A2⇤, we describe a pro-
cedure to explicitly determine the unique Ga-extension ✓ : W ! Ã2 of P with
affine total space W from a Čech 1-cocycle x�m y�n p (x, y), where m, n � 0 and
p(x, y) 2 k[x, y] is a non-zero polynomial of degree s  m + n � 2, representing
the isomorphism class g 2 H1(A2⇤,OA2⇤) of P on the open covering of A2⇤ by the
principal open subsets A2x and A2y .



152 ADRIEN DUBOULOZ, ISAC HEDÉN AND TAKASHI KISHIMOTO

Write p(x, y) = pr + pr+1 + · · · + ps where the pi 2 k[x, y] are the homo-
geneous components of p, and pr 6= 0. In the decomposition

H1
⇣
A2⇤,OA2⇤

⌘
' H1

⇣
P1, q⇤OA2⇤

⌘
'

M

s2Z
H1

⇣
P1,OP1(s)

⌘

a non-zero homogeneous component x�m y�n pi of x�m y�n p(x, y) corresponds to
a non-zero element of H1(P1,OP1(�m � n + i)). On the other hand, since for
every ` 2 Z, OÃ2(`E) = f ⇤OP1(�`) and f : Ã2 ! P1 is the total space of the
line bundleOP1(�1), it follows from the projection formula that

H1
⇣
Ã2,OÃ2(`E)

⌘
'H1

⇣
P1, f⇤OÃ2 ⌦OP1(�`)

⌘
'

M

t�0
H1

⇣
P1,OP1(t � `)

⌘
.

The image of x�m y�n p (x, y) in
L

s2Z H1(P1,OP1(s)) belongs to
L

t�0 H1(P1,
OP1(t � `)) if and only if ` � `0 = m + n � r � 2. Given such an `, the im-
age (ht )t�0 2

L
t�0 H1(P1,OP1(t � `)) of x�m y�n p (x, y) then defines a unique

M(`)-torsor ✓` : W (P, `) ! Ã2 whose restriction over the complement of E is
isomorphic to ⇢ : P ! A2⇤ when equipped with the action Ga-action induced
by the canonical section of OÃ2(`E) with divisor `E . On the other hand, the
restriction of W |E ! E over E is an OP1(�`)-torsor with isomorphism class
h0 2 H1(P1,OP1(�`)). By definition, h0 is non-zero if and only if ` = `0, and we
conclude from Theorem 3.7 that ✓`0 : W (P, `0) ! Ã2 is the unique Ga-extension
of ⇢ : P ! A2⇤ with affine total space.

4. Quasi-projective Ga-extensions of Type II

In this section we consider the following subclass of extensions of Type II of a
Ga-torsor over a punctured surface.
Definition 4.1. A Ga-extension ⇡ : X ! S of a Ga-torsor ⇢ : P ! S⇤ over a
punctured surface S⇤ = S \ {o} is said to be a quasi-projective extension of Type II
if it satisfies the following properties:

i) X is quasi-projective over S and the Ga,S-action on X is proper;
ii) X is smooth along ⇡�1(o) and ⇡�1(o)red ' A2 .

Example 4.2. Let o = V (x, y) be a global scheme-theoretic complete intersec-
tion closed point in the smooth locus of a surface S and let ⇢ : P ! S \ {o} be
the Ga-torsor with defining sheaf of ideals (xv � yu � 1) ⇢ OS[u, v] as in Ex-
ample 3.1. Let ⇡1 : X1 ! S be the affine S-scheme with defining sheaf of ideals
(xw�y(yz1+1), xz2�z1(yz1+1), z1w�yz2) ⇢ OS[z1, z2, w]. The morphism of
S-schemes j1 : P ! X1 defined by (x, y, u, v) 7! (x, y, u, uv, yu) is an open em-
bedding, equivariant for theGa,S-action on X1 associated with the locally nilpotent
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OS-derivation x@z1 + (2yz1 + 1)@z2 + y2@w of ⇡⇤OX1 . The fiber ⇡
�1
1 (o) is iso-

morphic to A2 = Spec([z2, w]) on which the Ga,S-action restricts to Ga, -action
by translations associated to the derivation @z2 of [z2, w]. It is straightforward to
check that X1 is smooth along ⇡�1

1 (o). We claim that the geometric quotient of the
Ga,S-action on X1 is isomorphic to the complement of a -rational point o1 in the
blow-up ⌧ : S̃ ! S of o. Such a surface being in particular separated, the Ga,S-
action on X1 is proper, implying that j1 : P ,! X1 is a quasi-projective extension
of P of Type II.

Indeed, let us identify S̃ with the closed subvariety of S⇥k Proj(k[u0, u1])with
equation xu1 � yu0 = 0 in such a way that ⌧ coincides with the restriction of the
first projection. The morphism f : X1 ! S̃ defined by

(x, y, z, u, v) 7! ((x, y), [x : y]) = ((x, y), [yz1 + 1 : w])

is Ga-invariant and maps ⇡�1
1 (o) dominantly onto the exceptional divisor E '

pr�1S (o) ' Proj([u0, u1]) of ⌧ . The induced morphism

f |⇡�1(o) : ⇡�1(o) = Spec([z2, w]) ! E, (z2, w) 7! [1 : w]

factors as the composition of the geometric quotient ⇡�1
1 (o) ! ⇡�1

1 (o)/Ga, '

Spec([w]) with the open immersion ⇡�1
1 (o)/Ga, ,! E of ⇡�1

1 (o)/Ga, as the
complement of the -rational point o1 = ((0, 0), [0 : 1]) 2 E . On the other hand,
the composition

⌧ � f � j1 : P '
�! X1 \ ⇡�1

1 (o) ! S̃ \ E '
�! S \ {o}

coincides with the geometric quotient morphism ⇢ : P ! S \ {o}. So f : X1 ! S̃
factors through a surjective morphism q : X1 ! S̃ \ {o1} whose fibers all consist
of precisely one Ga-orbit. Since q is a smooth morphism, q is a Ga-torsor which
implies that X1/Ga ' S̃ \ {o1}.

The scheme of the classification of quasi-projective extensions of Type II of a
given Ga-torsor ⇢ : P ! S⇤ which we give below is as follows: we first construct
in Section 4.1 families of such extensions, in the form of Ga-torsors q : X ! S0

over quasi-projective S-schemes ⌧ : S0 ! S such that ⌧�1(o)red is isomorphic to
A1 , S0 is smooth along ⌧�1(o), and ⌧ : S0 \ ⌧�1(o) ! S⇤ is an isomorphism. We
then show in Section 4.2 that for a quasi-projective Ga-extension ⇡ : X ! S of
Type II of a given Ga-torsor ⇢ : P ! S⇤, the structure morphism ⇡ : X ! S
factors through a Ga-torsor q : X ! S0 over one of these S-schemes S0. In the
last subsection, we focus on the special case where ⇡ : X ! S has the stronger
property of being an affine morphism.

4.1. A family of Ga-extensions over quasi-projective S-schemes

Let again (S, o) be a pair consisting of a surface and a closed point o contained
in the smooth locus of S, with residue field  . We let ⌧ 1 : S1 ! S be the blow-
up of o, with exceptional divisor E1 ' P1 . Then for every n � 2, we let ⌧ n,1 :
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Sn = Sn(o1, . . . , on�1) ! S1 be the scheme obtained from S1 by performing the
following sequence of blow-ups of -rational points:

a) The first step ⌧ 21 : S2(o1) ! S1 is the blow-up of a -rational point o1 2 E1
with exceptional divisor E2 ' P1 ;

b) Then for every 2  in�2, we let ⌧ i+1,i : Si+1(o1, . . . , oi )! Sk(o1, . . . , oi�1)
be the blow-up of a -rational point oi 2 Ei , with exceptional divisor Ei+1 '
P1 ;

c) Finally, we let ⌧ n,n�1 : Sn(o1, . . . , on�1) ! Sn�1(o1, . . . , on�2) be the blow-
up of a -rational point on�1 2 En�1 which is a smooth point of the reduced
total transform of E1 by ⌧ 1 � · · · � ⌧ n�1,n�2.

We let En ' P1 be the exceptional divisor of ⌧ n,n�1 and we let

⌧ n,1 = ⌧ 2,1 � · · · � ⌧ n,n�1 : Sn(o1, . . . , on�1) ! S1.

The inverse image of o in Sn(o1, . . . , on�1) by ⌧ 1 � ⌧ n,1 is a tree of -rational
curves in which En intersects the reduced proper transform of E1 [ · · · [ En�1 in
Sn(o1, . . . , on�1) transversally in a unique -rational point.

–1 •o1 –2 •o2 o3–1 –2 •
–2
–1 –2 •

o4 –1 –2 –2
–1E1 E1 E1 E1 E1
E5

E4E4
E3E3

E3
E2E2E2E2

S2(o1 )

–3 –2 –3 –2

S1 S3(o1 ,o2) S4(o1 ,o2,o3) S5(o1 ,o2,o3,o4)
t2,1 t3,2 t4,3 t5,4

Figure 4.1. The successive total transforms of E1 in a possible construction of a surface
of the form S5(o1, . . . , o4) over a k-rational point o. The integers indicate the self-
intersections of the corresponding curves.

Notation 4.3. For every -rational point o1 2 E1, we let S1(o1) = S1 \ {o1},
E1 = E1 \ S1 ' A1 and we let ⌧1 : S1(o1) ! S be the restriction of ⌧ 1.

For n � 2, we let Sn(o1, . . . , on�1) = Sn(o1, . . . , on�1)\ E1[ · · ·[ En�1 and
En= Sn(o1, . . . , on�1)\En ' A1 . We denote by ⌧n,1 : Sn(o1, . . . , on�1) ! S1 the
birational morphism induced by ⌧ n,1 and we let ⌧n=⌧ 1�⌧n,1 : Sn(o1, . . . , on�1)! S.

The following lemma summarizes some basic properties of the so-constructed S-
schemes:

Lemma 4.4. For every n � 1, the following hold for Sn = Sn(o1, . . . , on�1):

a) ⌧n : Sn ! S is quasi-projective and restricts to an isomorphism over S⇤ while
⌧�1
n (o)red = En;
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b) Sn is smooth along ⌧�1
n (o);

c) ⌧⇤
n : 0(S,OS) ! 0(Sn,OSn ) is an isomorphism.

Moreover for n � 2, the morphism ⌧n,1 : Sn ! S1 is affine.

Proof. Properties a)-c) are straightforward consequences of the construction. For
the last assertion, let D = E1 +

Pn�1
i=2 ai Ei where (ai )i=2,...,n�1 is a sequence of

positive rational numbers and let m � 1 be so that mD is a Cartier divisor on Sn .
Then a direct computation shows that the restriction of OSn (mD) to ⌧�1

n,1(o1)red =
Sn

i=2 Ei is an ample invertible sheaf provided that the sequence (ai )i=2,...,n�1 de-
creases rapidly enough with respect to the distance of Ei to E1 in the dual graph
of E1 [ · · · [ En�1. Concretely, it suffices to choose the sequence (ai )i=2,...,n�1
according to the following rule: If Ei has distance d to E1 and a j is known for E j

closer to E1, then we pick ai 2 Q>0 such that ai E
2
i + ak > 0 where Ek is the

unique curve intersecting Ei at distance d � 1 from E1, and a1 = 1. Since ⌧ n,1
restricts to an isomorphism over S1 \ {o1}, it then follows from [7, Théorème 4.7.1]
that OSn (mD) is ⌧ n,1-ample on Sn . Since by definition ⌧n,1 is the restriction of the
projective morphism ⌧ n,1 : Sn ! S1 to Sn = Sn \E1[ · · ·[En�1 = Sn \Supp(D),
we conclude that ⌧n,1 is an affine morphism.

Remark 4.5. Blowing up the point oi�1 in Ei�1, the multiplicity of the new ex-
ceptional curve Ei as an irreducible component of (⌧ 1 � ⌧ i,1)�1(o) equals the sum
of the multiplicities of Ei�1 and possibly Ei�2 (if it contains oi�1), while the mul-
tiplicities of the previous exceptional curves remain unchanged. By construction,
⌧�1
1 (o) = E1 in S1(o1), but for n � 2, we have ⌧�1

n (o) = mEn for some integer
m � 1 which depends on the sequence of -rational points o1, . . . , on�1 blown-
up to construct Sn(o1, . . . , on�1). For instance, it is straightforward to check that
m = 1 if and only if for every i � 1, oi 2 Ei is a smooth point of the reduced total
transform of E1 in Si (o1, . . . , oi�1).

The structure morphism of a Ga-torsor being affine, hence quasi-projective, the to-
tal space of anyGa-torsor q : X! Sn over an S-scheme ⌧n : Sn= Sn(o1, . . . , on) !
S is a quasi-projective S-scheme ⇡ = ⌧n �q : X ! S equipped with a properGa,S-
action. Furthermore ⇡�1(o)red = q�1(En) ' En ⇥ A1 ' A2 and X is smooth
along ⇡�1(o) as Sn is smooth along En . On the other hand, ⇡ : X ! S is by
construction a Ga-extension of its restriction ⇢ : P ! Sn \ En ' S⇤ over Sn \ En ,
hence is a quasi-projective Ga-extension of P of Type II. The following proposi-
tion shows conversely that every Ga-torsor ⇢ : P ! S⇤ admits a quasi-projective
Ga-extension of Type II into a Ga-torsor q : X ! Sn .

Proposition 4.6. Let ⇢ : P ! S⇤ be a Ga-torsor. Then for every n � 1 and every
S-scheme ⌧n : Sn(o1, . . . , on�1) ! S as in Notation 4.3 there exist a Ga-torsor
q : X ! Sn(o1, . . . , on�1) and an equivariant open embedding j : P ,! X such
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that in the following diagram

P � � j
//

⇢

✏✏

X
q

✏✏

Sn(o1, . . . , on�1) \ En � �
//

⌧n o
✏✏

Sn(o1, . . . , on�1)

⌧n

✏✏

S⇤
� �

// S

all squares are cartesian. In particular, j : P ,! X is a quasi-projective Ga-
extension of P of Type II.

Proof. Letting Sn = Sn(o1, . . . , on�1), we have to prove that every Ga-torsor ⇢ :
P ! Sn \ En ' S⇤ is the restriction of a Ga-torsor q : X ! Sn . It is enough
to show that there exists a Zariski open neighborhood U of En in Sn and a Ga-
torsor q : Y ! U such that Y |U\En' P |U\En . Indeed, if so then a Ga-torsor
q : X ! Sn with the desired property is obtained by gluing P and Y overU \En by
the isomorphism Y |U\En' P |U\En . In particular, we can replace Sn by the inverse
image by ⌧n : Sn ! S of any Zariski open neighborhood of o in S. We can thus
assume from the very beginning that S = Spec(A) is affine and that o = V ( f, g)
is a scheme-theoretic intersection for some f, g 2 A. Up to replacing f and g
by other generators of the maximal ideal of o in A, we can assume that the proper
transform L1 in ⌧ 1 : S1 ! S of the curve L = V ( f ) ⇢ S intersects E1 in o1. We
denote by M1 ⇢ S1 the proper transform of the curve M = V (g) ⇢ S. By virtue
of Lemma 4.6 below, it is enough to find an affine open subset Un of Sn such that
Un \ En = Un \ (Sn \ En) is affine and Sn = Un [ (Sn \ En). In the case n = 1,
U1 = S1 \ L1 ⇢ S1 has the desired property since U1 \ E1 = S1 \ ⌧�1

1 (L) ' S \ L
is indeed affine. In the case where n � 2, the open subset S1 \ M1 of S1 is affine
and it contains o1 because M1 intersects E1 in a point distinct from o1. Since
⌧n,1 : Sn ! S1 is an affine morphism by Lemma 4.4, Un = ⌧�1

n,1(S1 \ M1) is an
affine open neighborhood of En in Sn with the property that Un \ (Sn \ En) =
Un \ En = ⌧�1

n,1(S1 \ ⌧�1
1 (M)) is affine.

In the proof of Proposition 4.6, we used the following elementary extension
result:

Lemma 4.7. Let X = U [V be a scheme with a cover by two Zariski open subsets
U and V . Suppose that U and U \ V are affine. Then every Ga-torsor on V is the
restriction of a Ga-torsor on X , possibly not unique.

Proof. The assertion is equivalent to the surjectivity of the restriction homomor-
phism H1(X,OX ) ! H1(V,OV ) which follows directly from the Mayer-Vietoris



EQUIVARIANT EXTENSIONS OF Ga -TORSORS OVER PUNCTURED SURFACES 157

long exact sequence of cohomology of OX for the covering of X by U and V .
Indeed, this sequence reads

0 !H0(X,OX ) ! H0(U,OX ) � H0(V,OX ) ! H0(U \ V,OX ) ! · · ·

!H1(X,OX ) ! H1(U,OX ) � H1(V,OV ) ! H1(U \ V,OX ) ! · · · ,

and H1(U,OX ) = H1(U \ V,OX ) = 0 as U and U \ V are affine.

4.2. Classification

The following theorem shows that every quasi-projective Ga-extension of Type II
of a given Ga-torsor ⇢ : P ! S⇤ is isomorphic to one of the schemes q : X ! Sn
constructed in Section 4.1.

Theorem 4.8. Let ⇢ : P ! S⇤ be a Ga-torsor and let

P � � j
//

⇢

✏✏

X
⇡

✏✏

S⇤
� �

// S

be a quasi-projective Ga-extension of P of Type II. Then there exists an integer
n � 1 and a scheme ⌧n : Sn(o1, . . . , on�1) ! S such that X is a Ga-torsor
q : X ! Sn(o1, . . . , on�1) ' X/Ga and ⇢ : P ! S⇤ coincides with the restriction
of q to Sn(o1, . . . , on�1) \ En ' S⇤.

Proof. Since the Ga,S-action on X is proper, the geometric quotient X/Ga,S exists
in the form of a separated algebraic S-space � : X/Ga,S ! S. Furthermore, since
by definition of an extension ⇡�1(S⇤) ' P , we have ⇡�1(S⇤)/Ga,S ' P/Ga,S '
S⇤ and so � restricts to an isomorphism over S⇤. On the other hand, ⇡�1(o) ' A2 is
equipped with the induced proper Ga, -action, whose geometric quotient A2/Ga,
is isomorphic to A1 . It follows from the universal property of geometric quotients
that ��1(o) = A2/Ga, = A1 .

Since X is smooth in a neighborhood of ⇡�1(o), X/Ga,S is smooth in neigh-
borhood of ��1(o). Let ⌧ 1 : S1 ! S be the blow-up of o. Since � : X/Ga ! S
contracts ��1(o) to the point o, it follows from the universal property of blow-ups
for surfaces that � lifts to a morphism �1 : X/Ga,S ! S1. Letting ⇡1 : ⇡1 : X ! S1
be the induced morphism, we have a commutative diagram

X
⇡1

//

✏✏

S1
⌧1

✏✏

X/Ga
�

//

�1
<<

z

z

z

z

z

z

z

z

z

S.
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Furthermore, since � : X/Ga,S ! S and ⌧ 1 : S1 ! S are separated, it follows that
�1 : X/Ga,S ! S1 is separated. By construction, the image of ⇡�1(o)red/Ga, by
�1 is contained in E1.

If �1 is not constant on ⇡�1(o)red/Ga, then �1 is a separated quasi-finite bira-
tional morphism. Since S1 is normal, �1 is thus an open immersion by virtue of Za-
riski Main Theorem for algebraic spaces [14, Tag 05W7]. Since ⇡�1(o)red/Ga, '
A1 , the only possibility is that S1 \ �1(X/Ga,S) consists of a unique -rational
point o1 2 E1 and �1 : X/Ga,S ! S1(o1) = S1 \ {o1} is an isomorphism. So
⇡1 : X ! S1(o1) is a Ga-torsor whose restriction to S1(o1) \ E1 ' S⇤ coincides
with ⇢ : P ! S⇤.

Otherwise, if �1 is constant on ⇡�1(o)red/Ga, , then its image consists of a
unique -rational point o1 2 E1. The same argument as above implies that ⇡1 :
X ! S1 and �1 : X/Ga,S ! S1 lift to a Ga,S-invariant morphism ⇡2 : X !
S2(o1) and a separated morphism �2 : X/Ga,S ! S2(o1) to the blow-up ⌧ 2,1 :
S2(o1) ! S1 of S1 at o1, with exceptional divisor E2. If the restriction of �2
to ⇡�1(o)red/Ga, is not constant then �2 is an open immersion and the image of
⇡�1(o)red/Ga, is an open subset of E2 isomorphic to A1 . The only possibility is
that �2(⇡�1(o)/Ga,) = E2\E1. Indeed, otherwise S2\�2(X/Ga,S)would consist
of the disjoint union of a point in E2 \ (E1 \ E2) and of the curve E1 \ (E1 \ E2)
which is not closed in S2, in contradiction to the fact that �2 is an open immersion.
Summing up, �2 : X/Ga,S ! S2(o1) = S2(o1) \ E1 is an isomorphism mapping
⇡�1(o)red/Ga, isomorphically onto E2. So ⇡2 : X ! S2(o1) is aGa-torsor whose
restriction to S2(o1) \ E2 ' S⇤ coincides with ⇢ : P ! S⇤.

Otherwise, if �2 is constant on ⇡�1(o)red/Ga, , then �2(⇡�1(o)/Ga,) is a
-rational point o2 2 E2, and there exists a unique minimal sequence of blow-
ups ⌧ k+1,k : Sk+1(o1, . . . , ok) ! Sk(o1, . . . , ok�1), k = 2, . . . ,m � 1 of suc-
cessive -rational points ok 2 Ek ⇢ Sk(o1, . . . , ok�1), with exceptional divisors
Ek+1 ⇢ Sk+1(o1, . . . , ok) such that ⇡2 : X ! S2(o1) and �2 : X/Ga,S ! S2(o1)
lift respectively to a Ga,S-invariant morphism ⇡m : X ! Sm(o1, . . . , om�1) and
a separated morphism �m : X/Ga,S ! Sm(o1, . . . , om�1) with the property that
the restriction of �m to ⇡�1(o)red/Ga, is non-constant. By Zariski Main Theo-
rem [14, Tag 05W7] again, we conclude that �m is an open immersion, mapping
⇡�1(o)red/Ga, ' A1 isomorphically onto an open subset of Em ' P1 . As in
the previous case, the image of ⇡�1(o)red/Ga, in Em must be equal to the com-
plement of the intersection of Em with the proper transform of E1 [ · · · [ Em�1
in Sm(o1, . . . , om�1) since otherwise Sm(o1, . . . , om�1) \ �m(X/Ga,S) would not
be closed in Sm(o1, . . . , om�1). Since ⇡�1(o)red/Ga, ' A1 , it follows that Em
intersects the proper transform of E1 [ · · · [ Em�1 in a unique -rational point,
implying in turn that om�1 2 Em�1 is a smooth -rational point of the reduced total
transform E1 [ · · · [ Em�1 of E1 in Sm�1(o1, . . . , om�2). Summing up,

�m : X/Ga,S ! Sm(o1, . . . , om�1) \ E1 [ · · · [ Em�1
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is an isomorphism with an S-scheme of the form Sm(o1, . . . , om�1) as constructed
in Section 4.1, mapping ⇡�1(o)red/Ga, isomorphically onto Em = Sm(o1, . . .,
om�1) \ Em . It follows in turn that ⇡m : X ! Sm(o1, . . . , om�1) is a Ga-torsor
whose restriction to Sm(o1, . . . , om�1)\ Em ' S⇤ coincides with ⇢ : P ! S⇤. This
completes the proof.

4.3. Affine Ga-extensions of Type II

In this subsection, given a Ga-torsor ⇢ : P ! S⇤, we consider the existence of
quasi-projective Ga-extensions of Type II

P � � j
//

⇢

✏✏

X
⇡

✏✏

S⇤
� �

// S

with the additional property that X is affine over S. As in the case of extension
to A1-bundles over the blow-up of o treated in Section 3.2, a necessary condition
for the existence of such extensions is that the restriction of P over every open
neighborhood of the closed point o in S is non-trivial. Indeed, if there exists an
affine open neighborhood U of o over which P is trivial, then P ' U \ {o} ⇥ A1k is
strictly quasi-affine, hence cannot be the complement of a Cartier divisor ⇡�1(o) in
any affine U -scheme X |U . The next theorem shows that this condition is actually
sufficient:

Theorem 4.9. Let ⇢ : P ! S⇤ be a Ga-torsor such that for every open neigh-
borhood U of o in S, the restriction P ⇥S⇤ U ! U \ {o} is non-trivial. Then for
every n � 1 and every S-scheme ⌧n : Sn(o1, . . . , on�1) ! S as in Notation 4.3
there exists a quasi-projective Ga-extension of P of Type II into the total space of a
Ga-torsor q : X ! Sn(o1, . . . , on�1) for which ⇡ = ⌧n � q : X ! S is an affine
morphism.

The following example illustrates the strategy of the proof given below, which con-
sists in constructing such affine extensions ⇡ : X ! S by performing a well-chosen
equivariant affine modification of extensions of ⇢ : P ! S⇤ into locally trivial A1-
bundles ✓ : W (P) ! S̃ over the blow-up ⌧ : S̃ ! S of the point o.
Example 4.10. Let again X0 and X1 be theGa-extensions of ⇢ : P = {xv � yu =
1} ! S \ {o} considered in Example 3.1 and 4.2. Recall that X0 and X1 are the
affine S-schemes in A3S defined respectively by the equations

X0 :

8
><

>:

xr � yq = 0
yp � x(q � 1) = 0
pr � q(q � 1) = 0

and X1 :

8
><

>:

xw � y(yz1 + 1) = 0
xz2 � z1(yz1 + 1) = 0
z1w � yz2 = 0
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equipped with theGa,S-actions associated with the locally nilpotentOS-derivations
@0 = x2@p + xy@q + y2@r and @1 = x@z1 + (2yz1 + 1)@z2 + y2@w respectively.

The morphism ⇡0 : X0 ! S factors through the structure morphism ✓ : X0 !
S̃ of a torsor under a line bundle on the blow-up ⌧ : S̃ ! S of the origin, with
the property that the restriction of X0 to exceptional divisor E = P1 of ⌧ is a non-
trivial torsor under the total space of the line bundle OP1 (�2). The Ga,S-action on
X0 restricts to the trivial one on X0|E = ⇡�1

0 (o). More precisely, @0 is a global
section of the sheaf TX0 ⌦ OX0(�2X0|E ) of vector fields on X0 that vanish at
order 2 along X0|E . One way to obtain from X0 a Ga-extension ⇡ : X ! S of
⇢ : P ! S \{o} with fiber ⇡�1(o)red isomorphic toA2 and a fixed point free action
is thus to perform an equivariant affine modification which simultaneously replaces
X0|E by a copy of A2 and decreases the “fixed point order of @0 along X0|E”,
typically a modification with divisor D equal to X0|E and whose center Z ⇢ X0|E
is supported by a curve isomorphic to A1 which is mapped isomorphically onto its
image by the restriction of ✓ . The birational S-morphism

⌘ : X1 ! X0, (x, y, z1, z2, w) 7! (x, y, xz1, yz1 + 1, w)

is equivariant for the Ga,S-actions on X0 and X1 and corresponds to an equivariant
affine modification of this type: it restricts to an isomorphism outside the fibers
of ⇡0 and ⇡1 over o, and it contracts ⇡�1

1 (o) = Spec([z2, w]) onto the curve
{p = q � 1 = 0} ⇢ ⇡�1

0 (o) = {pr � q(q � 1) = 0}. This curve is isomorphic to
A1 = Spec([r]) and it is mapped by the restriction

✓ |
⇡�1
0 (o) : ⇡�1

0 (o) ' {pr � q(q � 1) = 0} ! E

= P1 , (p, q, r) 7! [p : q � 1] = [q : r]

of ✓ isomorphically onto the complement of the -rational point [0 : 1] 2 P1 .

Proof of Theorem 4.9. By virtue of Theorem 3.7, there exists a unique integer `0 �
2 such that ⇢ : P ! S⇤ is the restriction of a torsor ✓1 : W1 ! S1 under the line
bundle M1(`0) = Spec(Sym·OS1(�`0E1)) ! S1 whose total space W1 is affine
over S1. We now treat the case of S1(o1) and Sn(o1, . . . , on�1), n � 2 separately.

Given a -rational point o1 2 E1, the restriction of W1 over E1 = E1 \ {o1} '
A1 is the trivial A1-bundle E1 ⇥ A1 . Since on the other hand the restriction ✓1|E1 :

W1|E1 ! E1 is a non-trivial OP1(�`0)-torsor (see Theorem 3.7), it follows that
for every section s : E1 ! W1|E1 the image Z1 of E1 in W1|E1 is a closed curve
isomorphic to E1. Indeed, otherwise if Z1 is not closed inW1|E1 then its closure Z1
would be a section of ✓1|E1 in contradiction with the fact that ✓1|E1 : W1|E1 ! E1
is a non-trivial OP1(�`0)-torsor. Let D1 = ✓�1

1 (E1) and let �1 : W 0
1 ! W1 be

the affine modification of W1 with center (IZ1, D1) . By virtue of Lemmas 2.9 and
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2.11, ✓1 � �1 : W 0
1 ! S1 factors through a torsor ✓ 0

1 : W 0
1 ! S1 \ {o1} = S1(o1)

under the line bundle

M 0
1(`0 � 1) = Spec(Sym·OS1(o1)((�`0 + 1)E1)) ! S1(o1).

Now since E1 ' A1 is affine, the restriction of ✓ 0
1 over E1 ⇢ S1(o1) is the trivial

M 0
1(`0 � 1)|E1-torsor. Letting D2 = ✓ 0

1
�1

(E1) and Z2 ⇢ D2 be any section of
✓ 0
1|D2 : D2 ! E1, the affine modification �2 : W 0

2 ! W 0
1 with center (IZ2, D2)

is then an M 0
1(`0 � 2)-torsor ✓ 0

2 : W 0
2 ! S1(o1). Iterating this construction `0 � 1

times, we reach a Ga,S1(o1)-torsor q = ✓ 0
`0+1 : X = W 0

`0+1 ! S1(o1). Since
�1 : W 0

1 ! W1 and each �i : W 0
i ! W 0

i�1, i � 2, restricts to an isomorphism over
the complement of E1, the restriction of q : X ! S1(o1) over S1(o1) \ E1 ' S⇤ is
isomorphic to ⇢ : P ! S⇤. Furthermore, since the morphisms �i , i = 1, . . . , `0+1
are affine and ⌧ 1 � ✓1 : W1 ! S is an affine morphism, it follows that

⌧1 � q = ⌧ 1 � ✓1 � �1 � · · · �`0+1 : X ! S

is an affine morphism. So q : X ! S1(o1) is a Ga-extension of ⇢ : P ! S⇤ with
the desired property.

Now suppose that n � 2. It follows from the construction of the morphism
⌧n,1 : Sn = Sn(o1, . . . , on�1) ! S1 given in subsection 4.1 that ⌧⇤

n,1OS1(`0E1) '
OSn (mEn) for some m � 2. The fiber product Wn = W1 ⇥S1 Sn is thus a torsor
✓n : Wn ! Sn under the line bundle

Mn(m) = Spec(Sym·OSn (�mEn)) ! Sn

whose restriction to Sn \ En ' S⇤ is isomorphic to ⇢ : P ! S⇤. Furthermore,
since ⌧n,1 is an affine morphism by virtue of Lemma 4.4, so is the projection prW1 :
Wn ! W1. Since ⌧ 1 � ✓1 : W1 ! S is an affine morphism, we conclude that
⌧n � ✓n = ⌧ 1 � ⌧n,1 � ✓n = ⌧ 1 � ✓ � prW1 : Wn ! S is an affine morphism as
well. Since En ' A1 , the restriction of ✓n over En is the trivial Mn(m)|En -torsor.
The desired Ga,Sn -torsor q : X ! Sn extending ⇢ : P ! S⇤ is then obtained
from ✓n : Wn ! Sn by performing a sequence of m successive affine modifications
similar to those applied in the previous case.

Remark 4.11. In the case where S is affine, the total spaces X of the varieties
q : X ! Sn(o1, . . . , on�1) of Theorem 4.9 are all affine. To our knowledge,
these are the first instances of smooth affine threefolds equipped with proper Ga-
actions whose geometric quotients are smooth quasi-projective surfaces which are
not quasi-affine.
We do not know in general if under the conditions of Theorem 4.9 every quasi-
projective Ga-extensions of P of Type II into the total space of a Ga-torsor q :
X ! Sn(o1, . . . , on�1) has the property that ⇡ = ⌧n � q : X ! S is an affine
morphism. In particular, we ask the following:
Question 4.12. Is the total space X of a quasi-projective Ga-extension ⇡ : X !
A2 of ⇢ = prx,y : SL2 = {xv � yu = 1} ! A2⇤ of Type II always an affine variety?
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4.4. Examples

In the next paragraphs, we construct two countable families of quasi-projectiveGa-
extensions of the Ga-torsor SL2 ! SL2/Ga ' A2 \ {(0, 0)} of Type II with affine
total spaces. As a consequence of [10, Section 3], for any non-trivial Ga-torsor
⇢ : P ! S⇤ over a local punctured surface S⇤, these provide, by suitable base
changes, families of examples of Ga-extensions of P whose total spaces are all
affine over S.

4.4.1. A family of Ga-extensions of SL2 of “Type II-A”

Let S = A2 = Spec(k[x, y0]) and let Xn ⇢ An+2
S = Spec(k[x, y0][z1, z2, y1, . . .,

yn]), n � 1, be the smooth threefold defined by the system of equations
8
>>><

>>>:

yi y j � yk y` = 0 i, j, k, ` = 0, . . . , n, i + j = k + `

z2yi � z1yi+1 = 0 i = 0, . . . , n � 1
xyi+1 � yi (y0z1 + 1) = 0 i = 0, . . . , n � 1
xz2 � z1(y0z1 + 1) = 0.

The threefold Xn can be endowed with a fixed point free Ga,S-action induced by
the locally nilpotent k[x, y0]-derivation

x@z1 + (2y0z1 + 1)@z2 +
nX

i=1
iy0yi�1@yi

of its coordinate ring. The scheme-theoretic fiber over o = {(0, 0)} of the Ga-
invariant morphism ⇡n = prx,y, : Xn ! S is isomorphic A2 = Spec(k[z2, yn]),
on which the induced Ga-action is a translation induced by the derivation @z2 of
k[z2, yn]. On the other hand, the morphism j : SL2 = {xv � y0u = 1} ! Xn
defined by

(x, y, u, v) 7! (x, u, uv, y, yv, yv2, . . . , yvn)

is an equivariant open embedding of SL2 equipped with the Ga-action induced by
the locally nilpotent derivation x@u + y0@v of its coordinate ring into Xn with image
equal to ⇡�1(A2 \ {o}). So j : SL2 ,! Xn is a quasi-projective Ga-extension of
SL2 into the affine variety Xn , with ⇡�1

n (o) ' A2k .
The restrictions of the projection An+3

S ! An+2
S onto the first n + 2 variables

induce a sequence of Ga-equivariant birational morphisms �n+1,n : Xn+1 ! Xn .
The threefolds Xn thus form a countable tower of Ga-equivariant affine modifica-
tions of X1. It follows from Example 4.2 that X1 is a quasi-projective extension of
SL2 of Type II with geometric quotient isomorphic to a quasi-projective surface of
the form S1(o1). More generally, we have the following result.

Proposition 4.13. For every n � 2, the morphism j : SL2 ,! Xn is a quasi-
projective Ga-extension of Type II. The geometric quotient Xn/Ga is isomorphic
to a quasi-projective surface Sn = Sn(o1, . . . , on) as in Section 4.1 for which
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Sn(o1, . . . , on�1) \ Sn consists of a chain of n � 1 smooth rational curves with
self-intersection �2, i.e. the exceptional set of the minimal resolution of a surface
singularity of type An�1.

Proof. To see this, we consider the following sequence of blow-ups: the first one
⌧ 1 : S1 ! U0 = A2 is the blow-up of the origin, with exceptional divisor E1, and
we letU1 ' A2 = Spec(k[x, w1]) be the affine chart of S1 on which ⌧ 1 : S1 ! A2
is given by (x, w1) 7! (x, xw1). Then we let ⌧ 2,1 : S2(o1) ! S1 be the blow-
up of the point o1 = (0, 0) 2 U1 ⇢ S1 with exceptional divisor E2, and we let
U2 ' A2 = Spec(k[x, w2]) be the affine chart of S2(o1) on which the restriction of
⌧ 2,1 : S2(o1) ! S1 coincides with the morphism U2 ! U1, (x, w2) 7! (x, xw2).
For every 2 < m  n, we define recursively the blow-up

⌧m,m�1 : Sm(o1, . . . , om�1) ! Sm�1(o1, . . . , om�2)

of the point om�1 = (0, 0) 2 Um�1 ⇢ Sm�1(o1, . . . , om�2) with exceptional divi-
sor Em and we let Um ' A2 = Spec(k[x, wm]) be the affine chart of Sm(o1, . . .,
om�1) on which the restriction of ⌧m,m�1 coincides with the morphism Um !
Um�1, (x, wm) 7! (x, xwm). By construction, we have a commutative diagram

Sn(o1, . . . , on�1)
⌧n,n�1

// Sn�1(o1, . . . , on�2)
⌧n�1,n�2

// · · ·
⌧2,1

// S1
⌧1

// A2

Un

OO

// Un�1

OO

// · · · // U1

OO

// A2 = U0.

The total transform of E1 in Sn(o1, . . . , on�1) is a chain E1[ E2[ · · ·[ En�1[ En
formed by n � 1 curves with self-intersection �2 and the curve En which has self-
intersection �1.

•
E 1
− 2

•
E 2
− 2

•
E n− 1

− 2
•
E n
− 1

Figure 4.2. Dual graph of the total transform of E1 in Sn(o1, . . . , on).

The morphism ⇡ : Xn ! S lifts to a morphism ⇡1 : Xn ! S1 defined by

(x, z1, z2, y0, y1, . . . , yn) 7! ((x, y0), [x : y0]) = ((x, y), [y0z1 + 1 : y1]).

This morphism contracts ⇡�1(o) onto the point o1 = ((0, 0), [1 : 0]) of the ex-
ceptional divisor E1 of ⌧ 1. The induced rational map ⇡1 : Xn 99K U1 is given
by

(x, z1, z2, y0, y1, . . . , yn) 7!

✓
x,

y1
y0z1 + 1

◆

and it contracts ⇡�1(o) onto the origin o1 = (0, 0). So ⇡1 lifts to a morphism
⇡2 : Xn ! S2(o1), and with our choice of charts, the induced rational map
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⇡2 : Xn 99K U2 is given by

(x, z1, z2, y0, y1, . . . , yn) 7!

✓
x,

y2
(y0z1 + 1)2

◆
.

If n = 2 then the image of ⇡�1(o) = Spec(k[z2, y2]) by ⇡2 is equal to E2\U2 and
⇡�1
2 (E2 \ U2) is equivariantly isomorphic to (E2 \ U2) ⇥ Spec(k[z2]) on which

Ga acts by translations on the second factor. So ⇡2 : Xn ! S2(o1) factors through
a Ga-bundle q2 : X2 ! S2(o1) = S2(o1) \ E1 and X2/Ga ' S2(o1). Otherwise,
if n > 2 then ⇡2 contracts ⇡�1(o) onto the point o2 = (0, 0) 2 E2 \U2 ⇢ S2(o1).
So ⇡2 : Xn ! S2(o1) lifts to a morphism ⇡3 : Xn ! S3(o1, o2). With our choice
of charts, for each 2 < m < n, the induced rational map ⇡m : Xn 99K Um is given
by

(x, z1, z2, y0, y1, . . . , yn) 7!

✓
x,

ym
(y0z1 + 1)m

◆
,

hence contracts ⇡�1(o) onto the point om = (0, 0) 2 Um ⇢ Sm(o1, . . . , om�1).
It thus lifts to a morphism ⇡m : Xn ! Sm(o1, . . . , om�1). At the last step, the
image of ⇡�1(o) = Spec(k[z2, yn]) by the rational map ⇡n : Xn 99K Un induced
by ⇡n : Xn ! Sn(o1, . . . , on�1) is equal to En \ Un , and we conclude as above
that ⇡n : Xn ! Sn(o1, . . . , on�1) factors through a Ga-bundle

qn : Xn ! Sn(o1, . . . , on�1) = Sn(o1, . . . , on�1) \
�
E1 [ · · · [ En�1

�
,

hence that Xn/Ga is isomorphic to the quasi-projective surface Sn(o1, . . .,
on�1).

4.4.2. A family of Ga-extensions of SL2 of “Type II-D”

To conclude this section, we present as an illustration of the proof of Theorem 4.9
another countable family of quasi-projective Ga-extensions of SL2 of Type II with
affine total spaces.

Let again ⌧ 1 : S1 ! S = A2 be the blow-up of the origin o = {(0, 0)} inA2 =
Spec(k[x, y]) with exceptional divisor E1 ' P1, identified with the closed subvari-
ety of A2 ⇥ P1[w0:w1] with equation xw1 � yw0 = 0 in such a way that ⌧ coincides
with the restriction of the first projection. The second projection identifies S1 with
the total space p : S1 ! P1 of the invertible sheaf OP1(�1). We fix trivializations
p�1(U1) = Spec(k[z1][u1]) and p�1(U0) = Spec(k[z0][u0]) over the open sub-
sets U1 = P1 \ {[0 : 1]} = Spec(k[z1]) and U0 = P1 \ {[1 : 0]} = Spec(k[z0]) in
such a way that the gluing of p�1(U1) and p�1(U0) over U0 \U1 is given by the
isomorphism (z0, u0) 7! (z1, u1) = (z�10 , z0u0).

For every n � 1, we let S2n+3,0 = Spec(k[z0, u±1
0 ]),

S2n+3,1 = Spec
⇣
k
⇥
z1, u1, v1

⇤��
un1v1 � z21 � u1

�⌘
,
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and we let S2n+3 be the surface obtained by gluing S2n+3,0 and S2n+3,1 along the
open subsets S2n+3,0 \{z0 = 0} and S2n+3,1 \{z1 = u1 = 0} by the isomorphism

(z0, u0) 7! (z1, u1, v1) =
⇣
z�10 , z0u0, (z0u0)�n

�
z�20 + z0u0

�⌘
.

The canonical open immersion S2n+3,0 ,! p�1(U0) and the projection prz1,u1
:

S2n+3,1 ! p�1(U1) glue to a global birational affine morphism ⌧2n+3,1 : S2n+3 !
S1 restricting to an isomorphism S2n+3 \ {z1 = u1 = 0} ! S1 \ E1 where
we identified the closed subset E2n+3 = {z1 = u1 = 0} ' Spec(k[v1]) of
S2n+3,1 with its image in S2n+3. We leave to the reader to check that with the
notation of Section 4.1, S2n+3 = S2n+3(o1, . . . , o2n+2) for a surface ⌧ 2n+3,1 :
S2n+3,1(o1, . . . , o2n+2) ! S1 obtained by first blowing-up the point o1 = (0, 0) 2
p�1(U1) with exceptional divisor E2, then the point o2 = E1 \ E2 with excep-
tional divisor E3, then a point o3 2 E3 \ (E1 [ E2) with exceptional divisor E4
and then a sequence of points oi 2 Ei \ Ei�1 with exceptional divisors Ei+1,
i = 5, . . . , 2n + 2 in such a way that the total transform of E1 in S2n+3,1 is a tree
depicted in Figure 4.3. Letting ⌧2n+3 = ⌧ 1 � ⌧2n+3,1 : S2n+3 ! A2, we have
⌧�1
2n+3(o)red = E2n+3 ' A1 and ⌧⇤

2n+3(o) = 2E2n+3.

•
E 1
− 3

•
E 2
− 2

•
E 3
− 2

•
E 4
− 2

•
E2n+2

− 2
•

E2n+3
− 1

Figure 4.3. Dual graph of the total transform of E1 in S2n+3(o1, . . . , o2n+2).

Now we let q : X2n+3 ! S2n+3 be the Ga-bundle defined as the gluing of the
trivial Ga-bundles X2n+3,0 = S2n+3,0 ⇥ Spec(k[t0]) and X2n+3,1 = S2n+3,1 ⇥
Spec(k[t1]) over S2n+3,0 and S2n+3,1 respectively along the open subsets X2n+3,0\
{z0 = 0} and X2n+3,1 \ {z1 = u1 = 0} by the Ga-equivariant isomorphism

(z0, u0, t0) 7!(z1,u1,v1,t1)=
⇣
z�10 , z0u0,(z0u0)�n

�
z�20 +z0u0

�
, t0+z�10 u�2

0

⌘
.

Let ⇡2n+3 = ⌧ 1 � ⌧2n+3,1 � q : X2n+3 ! A2.

Proposition 4.14. For every n � 1, the variety X2n+3 is affine and there exists a
Ga-equivariant open embedding j : SL2 ,! X2n+3 which makes ⇡2n+3 : X2n+3 !
A2 a quasi-projective Ga-extension of SL2 of Type II, with fiber ⇡�1

2n+3(o) isomor-
phic to A2 of multiplicity two, and geometric quotient X2n+3/Ga ' S2n+3.

Proof. Let j1 : SL2 ,! W = W (SL2, 2) be the Ga-extension of SL2 into a locally
trivial A1-bundle ✓ : W ! S1 with affine total space constructed in Example 3.1.
Recall that the image of j1 coincides with the restriction of ✓ to S1 \ E1 = A2 \ {o}.
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With our choice of coordinates, the open subsets W0 = ✓�1(q�1(U0)) and W1 =
✓�1(q�1(U1)) of W are respectively isomorphic to p�1(U0) ⇥ Spec(k[w0]) and
p�1(U1) ⇥ Spec(k[w1]) glued over U0 \U1 by the isomorphism

(z0, u0, w0) 7! (z1, u1, w1) =
⇣
z�10 , z0u0, z20w0 + z0

⌘
.

The Ga-action on W0 and W1 are given respectively by ↵ · (z0, u0, w0) = (z0, u0,
w0 + ↵u20) and ↵ · (z1, u1, w1) = (z1, u1, w1 + ↵u21).

Let W 0 = W ⇥S1 S2n+3, equipped with the natural lift of the Ga-action on
W . Since ⌧2n+3,1 : S2n+3 ! S1 restricts to an isomorphism over S1 \ E1, the
composition j 0 = ⌧�1

2n+3,1 � j1 : SL2 ! W 0 is a Ga-equivariant open embedding.
Furthermore, sinceW is affine and ⌧2n+3,1 is an affine morphism, it follows thatW 0

is affine. By construction, W 0 is covered by the two open subsets
(
W 0
0 = W ⇥p�1(U0) S2n+3,0 ' S2n+3,0 ⇥ Spec(k[w0])

W 0
1 = W ⇥p�1(U1) S2n+3,1 ' S2n+3,1 ⇥ Spec(k[w1]).

The local Ga-equivariant morphisms
(
�0 : X2n+3,0 = S2n+3,0 ⇥ Spec(k[t0]) ! W 0

0
�1 : X2n+3,1 = S2n+3,1 ⇥ Spec(k[t1]) ! W 0

1

of schemes over S2n+1,0 and S2n+3,1 respectively defined by t0 7! w0 = u20t0 and
t1 7! w1 = u21t1 glue to a global Ga-equivariant birational affine morphism
� : X2n+3 ! W 0, restricting to an isomorphism over S2n+3 \ E2n+3 ' A2 \ {o}.
Summing up, X2n+3 is affine over W 0 hence affine, and the composition ��1 � j 0 :
SL2 ,! X2n+3 is a Ga-equivariant open embedding which realizes ⇡ : X2n+3 !
A2 as a Ga-extension of SL2 of Type II with affine total space. By construction,
⇡�1
2n+3(o) = q�1(2E2n+3) is isomorphic to A2, with multiplicity two, while the
geometric quotient X2n+3/Ga is isomorphic to S2n+3.

Remark 4.15. For every n � 1, the birational morphism S2(n+1)+3,1 ! S2n+3,1,
(z1, u1, v1) 7! (z1, u1, u1v1) extends to a birational morphism S2(n+1)+3 !
S2n+3 which lifts in turn in a unique way to a Ga-equivariant birational morphism
�n+1,n : X2(n+1)+3 ! X2n+3. So in a similar way as for the family constructed
in Section 4.4.1, the family of threefolds X2n+3, n � 1, form a tower of Ga-
equivariant affine modifications of the initial one X5.
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