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Quasiconformal and HQC mappings
between Lyapunov Jordan domains

VLADIMIR BOŽIN AND MIODRAG MATELJEVIĆ

Abstract. Let h be a quasiconformal (qc) mapping of the unit disk U onto a
Lyapunov domain. We show that h maps subdomains of Lyapunov type of U,
which touch the boundary of U, onto domains of similar type. In particular if h is
a harmonic qc (hqc) mapping of U onto a Lyapunov domain, using it, we prove
that h is co-Lipschitz (co-Lip) on U. This settles an open intriguing problem.

Mathematics Subject Classification (2010): 30C62 (primary); 31C05 (sec-
ondary).

1. Introduction

Throughout the paper we consider the following setting (Uqc): Let h : U ! D be a
K -qc map, where U is the unit disk and suppose that D is a Lyapunov domain(see
Definition 1.1 below). If in addition h is harmonic we say that h satisfies the hypoth-
esis (Uhqc). Under the hypothesis (Uqc) we prove that for every a 2 T = {|z| = 1},
there is a special Lyapunov domain Ua , of a fixed shape, in the unit disk U which
touches a and a special, convex Lyapunov domain lyp(D)�b (see the Subsection 3.2,
in particular Definition 3.6, Proposition 3.8, and the definition (v) before the the
proof of Theorem 3.9)1, of a fixed shape, in D, which touches b = h(a), such that
lyp(D)�b ⇢ h(Ua) ⇢ Hb, where Hb is a half-plane whose the boundary line con-
tains b. We can regard this result as “a good local approximation of a qc mapping
h by its restriction to a special Lyapunov domain so that its codomain is locally
convex”. In addition, if h is harmonic, using this result, we prove that h is co-Lip
on U. This settles an open intriguing problem in the subject and can be regarded
as a version of the Kellogg- Warschawski theorem for hqc. In order to discuss the
subject we first need a few basic definitions (see Section 2 for more details).

1 D̂0 and D�
0 (D

�
0 ⇢ D̂0) are defined in Definition 3.6 and Proposition 3.8, lyp(D)�b = T b(D

�
0 ).
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By |z| we denote the modulus of complex number z and sometimes by e we
denote Euclidean distance between complex numbers.

Definition 1.1 (Lyapunov curves).

(i) Throughout the paper by ", ✏, c, c1, "1, ✏1, , 1 etc. we denote positive con-
stants and by µ,µ1 etc. constants in the interval (0, 1);

(ii) Suppose that � is a rectifiable, oriented, differentiable planar curve given by
its arc-length parameterization g. If

l1 = lyp(� ) = lyp(� , µ) := sup
t,s2[0,l]

|g0(t) � g0(s)|
|t � s|µ

< 1,

we say that � is a C1,µ curve. C1,µ curves are also known as Lyapunov (we
say also more precisely µ-Lyapunov) curves. We call lyp(� ) the Lyapunov
multiplicative constant. In this setting we say that � is (µ, l1)-Lyap (of order
µ with multiplicative constant l1). We say that a bounded planar domain D is
µ-Lyapunov (respectively (µ, l1)-Lyap), 0 < µ < 1, if it is bounded by µ-
Lyapunov((µ, l1)-Lyap) curve � . In this setting it is convenient occasionally
to use l1 = l1(D) instead of lyp(� ).

For a complex valued function defined on a domain in the complex plane C, we use
the notation � f = l f (z) = |@ f (z)| � |@̄ f (z)| and 3 f (z) = |@ f (z)| + |@̄ f (z)|, if
@ f (z) and @̄ f (z) exist.

Note that Lyp(", c) is a special domain of Lyapunov type with two cusps and
vertex at 0.

Definition 1.2 (Elementary Lyapunov curves and special Lyapunov domains).
The curve � (c, µ) = � (c, µ, r0) is defined, in polar coordinates (r,'), by joining
the curves ' = crµ and ⇡ � ' = crµ, 0  r < r0, which share the origin (see
Example 2.7 for more details). An arc L , which is isometric to the curve � (c, µ)
we call an elementary Lyapunov (more precisely µ-Lyapunov) curve. If A is the
isometry we call b = A(0) the vertex of L . If an arc C is a circle arc or elementary
µ-Lyapunov for some 0 < µ < 1 we call it an elementary Lyapunov arc.

For ", c > 0 and c|"|µ < ⇡/2, we use the notation:

(i) L0 = L(") = Lyp(", c, µ) = {w : c|w|µ < arg(w) < ⇡ � c|w|µ , |w| < "}.

If this set is subset of H , D it seems convenient to denote it shortly by H0, D0
respectively.

A special domain of Lyapunov type (with possible two cusps) is a convex do-
main whose the boundary consists of two elementary Lyapunov curves. If the part
of boundary of a Lyapunov (µ-Lyapunov) domain is an elementary Lyapunov curve
with vertex at b, we call it special Lyapunov(µ-Lyapunov with elementary arc) do-
main with vertex at b.
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Note that the curve � (c, µ) is C1,µ but it is not C1,µ1 for µ1 > µ (at the origin),
and Lyp(", c, µ) is a special domain of Lyapunov type with two cusps and vertex
at 0.

As an application of the Gehring-Osgood inequality [6,32] concerning qc map-
pings and quasi-hyperbolic distances, in the particular case of punctured planes, we
prove Proposition 2.8 (we refer to this result as (GeOs)), which roughly stated says
that:

• If f is a K -qc mapping of the plane such that f (0) = 0, f (1) = 1 and
z1, z2 2 C⇤ = C \ {0}, then the measures of the convex angles between f (z1),
f (z2) and z1, z2 can be compared.

Using this we prove the part (IV) of Theorem 3.5 (we shortly refer this result as
(S-0)), which can be considered as our main result, and Theorem 3.9 which is a
global version of (S-0).

Theorem 3.9 gives an approximation of Lyapunov domains by special Lya-
punov domains and it is a crucial result for the application to hqc mappings, stated
here as:

(S-1) Suppose that D is a Lyapunov domain and h : U ! D is a qc homeomor-
phism. Then for every a 2 T = {|z| = 1}, there is a special Lyapunov do-
main Ua , of a fixed shape, in the unit disk U which touches a and a special,
convex Lyapunov domain lyp(D)�b , of a fixed shape, in D, which touches
b = h(a), such that lyp(D)�b ⇢ h(Ua) ⇢ Hb, where Hb is a half-plane
whose the boundary line contains b. Using this we reduce the proof of co-
Lip property, stated here as:

(L0) If h satisfies the hypothesis (Uhqc) then it is co-Lip;

to what we call locally convex case. In order to avoid confusion, note that in addi-
tion Theorem 3.9 states that there is a special, convex Lyapunov domain lyp(D)b
(see Definition 3.6 in which we suggest also simple notation D̂b instead of it and de-
fine D̂b as image of D̂0 under Tb), of a fixed shape, in D, which touches b = h(a),
such that h(Ua) ⇢ lyp(D)b ⇢ Hb (see Figure 3.1). But we do not use this part in
the proof of (L0). In the first versions of the manuscript we use notation lyp(D)�b in
order to indicate that it is an elementary Lyapunov domain. But in order to simplify
notion we further use D�

b frequently instead of it. Set db(w) = dist(w, @D�
b ).

By an elementary argument one can prove:

(L1) If w � b is in the direction of the normal vector nb of @D at b, then db(w)⇡
|w � b| if |w � b| is small enough.

Note that the subject of hqc mappings has been intensively studied by the partici-
pants of the Belgrade Analysis Seminar (see Section 2 for more details), in partic-
ular by Kalaj, who proved that if h is a hqc mapping of the unit disk onto a Lya-
punov domain, then h is Lipschitz [13]. Kalaj also probably first posed the problem
whether h is, in fact, bi-Lipschitz and proved if the codomain of h is C1,1 then h is
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bi-Lipschitz [15]). Since there is a conformal mapping of the unit disk U onto a C1
domain which is not Lipschitz, Kalaj’s result from [13] is nearly optimal. In [18],
it is shown that a harmonic diffeomorphism h between two C2 Jordan domains is a
(K , K 0) quasiconformal mapping for some constants K � 1 and K 0 � 0 if and only
if h is bi-Lipschitz continuous (note that (K , 0) qc is K -qc). These results naturally
lead to the following question (conjecture):

Question 1. If h : U ! D is a hqc homeomorphism, where D is a Lyapunov
domain, is h co-Lipschitz (shortly co-Lip)?

In Theorem 4.1 we give an affirmative answer to Question 1.
The following simple statements play an important role in the proof of Theo-

rem 4.1 (co-Lip).
[26, Proposition 5] states that if h is a harmonic univalent orientation preserv-

ing K -qc mapping of domain D onto D0, then d(z)3h(z) ⇡ dh(z), z 2 D. We need
only a corollary of this:

(S-2) d(z)3h(z) ⌫ dh(z), z 2 D.

Using a slightly modification of the [26, proof of Theorem 1.1] (planar case) and
Kellogg’s theorem we can derive:

(S-3) Suppose that h is a Euclidean harmonic mapping from a Lyapunov domain
G into a domain D and there is a half space Hb which touches a point b 2 @D
such that D = h(G) ⇢ Hb. Then e(h(z), b) ⌫ dG(z), z 2 G, where e here
denotes the Euclidean distance.

We say that a domain D is locally convex at a point b 2 @D if there is a half space
Hb such that D ⇢ Hb.

For the convenience of the reader we summarize that (S-1), (S-2) and (S-3),
are the main ingredients in the proof of Theorem 4.1 stated here as

Theorem 1.3. Suppose h : U ! D is a hqc homeomorphism, where D is a Lya-
punov domain with C1,µ boundary. Then h is co-Lipschitz.

Remark 1.4. Note that, in general, h(Ua) is not convex and we can not apply our
consideration [26] (see the proof of Theorem 1.2 there) directly; but h(Ua) ⇢ Hb
is locally convex at b and we can apply (S-3) (note that we do not use the fact that
lyp(D)�b is a convex Lyapunov domain).

Recall that a mapping h which is (Uqc) satisfies (S-1). If h is in addition harmonic
then we can apply (S-3). This is crucial for the proof of theorem and it reduces the
proof to the locally-convex case.

Note that in order to apply (S-3), we introduce several definitions and prove
several properties which are mainly of technical character in the Subsection 3.2
(Global approximation).
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Definition 1.5 (Hypothesis (Sp0), (Hqc), (Hhqc), (Lyp-0), (H0qc), (H-0), (Uqc),
(Uhqc), (U0qc), and (U-1)). It is convenient to consider the following definitions:

(Sp0) If D is a Jordan bounded planar domain, 0 2 @D and D has the real axis as
a tangent at 0, with inner normal pointing upwards, we say that D has (Sp0)
property;

(Hqc) If h : H onto
��! D is K -qc map, where H is the upper -half plane and D is

a Lyapunov domain with the boundary @D positively oriented we say that h
satisfies (Hqc) property (with respect to D).

If D is a Lyapunov domain using rotation and translation if it is necessary we can
suppose that:

(Lyp-0) D is a Lyapunov domain and satisfies (Sp0);
(Hhqc) If, in addition to (Hqc), h is harmonic, we say that h satisfies the hypothesis

(Hhqc);
(H0

qc) If h satisfies the hypothesis (Hqc), D satisfies the hypothesis (Lyp-0) and
h(0) = 0,we say that h satisfies the hypothesis (H0

qc) (with respect to D);
(H-0) If h satisfies the hypothesis (H0

qc), and in addition h is harmonic onH, we
say that h satisfies the hypothesis (H0

hqc) (shortly (H-0);
(Uqc) IfH is replaced by U in the hypothesisHqc (respectivelyHhqc) we denote

the corresponding hypotheses by (Uqc) (respectively (Uhqc));
(U0qc) If h satisfies the hypothesis (Uqc), D satisfies the hypothesis (Lyp-0) and

h(1) = 0,we say that h satisfies the hypothesis (U0qc);
(U-1) If, in addition to (U0qc), h is harmonic, we say that h satisfies the hypothesis

(U-1).

Let Ta be the translation defined by Ta(z) = z+a. If h satisfies (Hqc) property with
respect to a domain G, a 2 R and b = h(a), then there is a mapping Rb = R0�T�b,
where R0 is a rotation around 0, such that Rb(G) satisfies the hypothesis (Lyp-0)
and therefore Rb � h � Ta satisfies the hypothesis (H0

qc).2
Note that in this paper we consider only the planar case. The plan of the ex-

position is as follows: In Section 2, we consider the background, definitions and
basic properties of Lyapunov domains and we prove Proposition 2.8, which may be
considered to be a version of the Gehring-Osgood inequality related to the measures
of the corresponding angles. In Section 3, we prove Theorem 3.5 and Theorem 3.9.
In Section 4 we give the proof of Theorem 4.1(co-Lip).

The second author communicated the main result of this paper at CMFT 2017.3

2 Rb is short notation for the mapping T�1
b which appears in Definition 3.6.

3 See Cmft2017, Jule 10-15, Lublin, Poland (see http://cmft2017.umcs.lublin.pl), plenary speak-
ers.
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We also suggest to the interested reader to make rough picture and scheme
with corresponding notations in order to follow the manuscript; and first to read
Section 3 without proofs4 and and then Section 4 with all details and finally to con-
sider complete proofs and technical details in Section 3. For some basic definitions
see Subsection 2.1 and 3.2, Definitions 3.6 and 4.5.

ACKNOWLEDGEMENTS. We are indebted to M. Svetlik for helping us in prepara-
tion this manuscript. In particular we thank him for making the Figure 3.1. We are
indebted N. Mutavdžić and D. Kalaj, and in particular to the referee who patently
read manuscript versions, for useful comments which improved the exposition.

2. Background

The next example which is shortly discussed in [8, 27], see also [20], shows that
there is a conformal map of unit disk onto C1 domain which is not bi-Lipschitz.
Example 2.1. Set

w = A(z) =
z
ln 1z

, w(0) = 0 .

Note ln 1z = � ln z, w0(z) = �(ln z)�1 + (ln z)�2 and w0(z) ! 0 if z ! 0
throughout H. For r small enough A is univalent in U+

r = {z : Im z > 0, |z| < r}.
We can check that there is a smooth domain D ⇢ U+

r such that interval (�r0, r0),
r0 > 0, is a part of the boundary of D, D⇤ = A(D) is C1 domain and A is not
co-Lipschitz on D.
For basic properties of qc mappings the reader can consult Ahlfors’s lovely book
[4]. Let � be a Jordan curve. By the Riemann mapping theorem there exists a
Riemann conformal mapping of the unit disk onto the Jordan domain G = int� .
By Caratheodory’s theorem it has a continuous extension to the boundary. More-
over, if � 2 Cn,↵ , n 2 N, 0  ↵ < 1, then the Riemann conformal mapping
has a Cn,↵ extension to the boundary (this result is known as Kellogg’s theorem),
see [34]. Conformal mappings are quasiconformal and harmonic. Hence quasicon-
formal harmonic (abbreviated by HQC) mappings are a natural generalization of
conformal mappings.
Remark 2.2. Note that:

a) The proof of Kellogg’s theorem for conformal mapping is not elementary and it
is based on some techniques which we can not adapt for hqc;

b) Since there is a conformal map of unit disk onto C1 domain which is not bi-
Lipschitz (Example 2.1 above), it seems that the hypothesis that domains are
Lyapunov is essential.

4 Pay attention to Theorem 3.5(IV).
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By a) and b) in mind, it seems that we need new approaches to study hqc map-
pings.

Recall that HQC mappings are now a very active area of investigation and
some new methods have been developed for studying this subject (see for example
[28] and literature cited there). Concerning the background we mention only a few
results which are closely related to our results.

It seems that O. Martio [24] was the first one who considered HQCmapping of
the unit disk. The author of this paper started considering distortion property of hqc
mappings in 1988 /89 5, see [27, Appendix 3]. Later M. Pavlović proved in [31] that
HQC mappings of the unit disk are Lipschitz. An asymptotically sharp variant have
been obtained by Partuka and Sakan [29]. Among other things Knežević and the
second author in [19] showed that a K -qc harmonic mapping of the unit disk onto
itself is a (1/K , K ) quasi-isometry with respect to the Poincaré and Euclidean met-
rics. For bi-lipschitz approximations of quasiconformal maps see Bishop [5]. M.
Mateljević [26] and V. Manojlović [21] showed that hqc mappings are Bi-Lipschitz
with respect to quasi hyperbolic metrics. Since the composition of a harmonic map-
ping and a conformal mapping is itself harmonic, using the case of the unit disk and
Kellogg’s theorem, these theorems can be generalized to the class of mappings from
arbitrary Jordan domains with Lyapunov boundary onto the unit disk. However the
composition of a conformal and a harmonic mapping is not, in general, a harmonic
mapping. This means in particular, that results of this kind for arbitrary image do-
mains do not follow directly from the case in which the codomain is the unit disk
or the upper half-plane and Kellogg’s theorem. In [17], Kalaj and the second author
show how to combine Kellogg’s theorem with the so called inner type estimate and
that the simple proof in the case of the upper half-plane has an analogue for C2
domains; namely, they proved a version of the ”inner estimate” for quasi-conformal
diffeomorphisms, which satisfies a certain estimate concerning their Laplacian. As
an application of this estimate, it is shown that quasi-conformal harmonic mappings
between smooth domains (with respect to the approximately analytic metric), have
bounded partial derivatives; in particular, these mappings are Lipschitz. The discus-
sion in [17] includes harmonic mappings with respect to (a) spherical and Euclidean
metrics (which are approximately analytic) as well as (b) the metric induced by the
holomorphic quadratic differential.

Although the following two statements did not get attention immediately after
their publications, it turns out, surprisingly, that they play an important role in the
proof of Theorem 4.1 (co-Lip).

Proposition 2.3 ([26, Corollary 1, Proposition 5]; see also [21]). Every e-har-
monic quasi-conformal mapping of the unit disc (more generally of a strongly hy-
perbolic domain) is a quasi-isometry with respect to the hyperbolic distance.

5 During the visiting position at Wayne State University, Detroit, 1988/89.
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Theorem 2.4 ([25]). Suppose that h = f + g is a Euclidean orientation preserv-
ing harmonic mapping from U onto the bounded convex domain D = h(U), which
contains a disc B(h(0); R0).
(I) Then | f 0| � R0/4 on U;
(II) Suppose, in addition, that h is qc. Then lh � (1�k)| f 0| � (1�k)R0/4 onU;
(III) In particular, h�1 is Lipschitz.
See also D. Kalaj doctoral thesis [12, Corollary 1.3.11], and Partyka and Sakan [30].
Concerning the Lipschitz and bi-Lipschitz properties of hqc, Kalaj [13,15] proved:
Theorem 2.5. Suppose h : D1 ! D2 is a hqc homeomorphism, where D1 and D2
are domains with C1,µ, 0 < µ < 1, boundary.
(I) Then h is Lipschitz;
(II) If, in addition, D2 is convex, then h is bi-Lipschitz;
(III) If µ = 1, then h is bi-Lipschitz.
With this theorem in mind Question 1 is natural. The proof of part (a) of [13, Theo-
rem 2.5] is based on an application of Mori’s theorem on quasiconformal mappings,
which has also been used in [31] in the case D1 = D2 = U, and a geometric lemma
related to Lyapunov domains.

2.1. Notation

Here we give a few basic definitions.
Definition 2.6 (qc).
(i) By C we denote the the complex plane and by T the unit circle. For r > 0 and

w 2 C, we denote by B(w, r) and the C(w, r) the disk and circle of radius r
with center at w;

(ii) By C⇤ we denote the punctured complex plane C \ {0}, by H⇤ the lower half
plane {z : Imz < 0} and by U+ the upper half disk {z : Imz > 0, |z| < 1};

(iii) Recall that, for a complex valued function h defined on a domain in the com-
plex plane C, we use the notation

�h = lh(z) = |@h(z)| � |@̄h(z)| and 3h(z) = |@h(z)| + |@̄h(z)|,

if @h(z) and @̄h(z) exist. A homeomorphism h : D ! G, where D and G are
subdomains of the complex plane C, is said to be K -quasiconformal (K -qc or
k-qc), K � 1, if f is absolutely continuous on a.e. horizontal and a.e. vertical
line in D and there is k 2 [0, 1) such that

|hz̄|  k|hz| a.e. on D, (2.1)

where K = 1+k
1�k , i.e. k = K�1

K+1 . Note that the condition (2.1) can be written as

Dh :=
3h

�h
=

|hz| + |hz|
|hz| � |hz|

 K , (2.2)

where K = 1+k
1�k , i.e. k = K�1

K+1 ;
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(iv) Let � ⇢ Rn and R+ = [0, 1) and f, g : � ! R+. If there is a positive
constant c such that f (x)  c g(x) , x 2 � , we write f � g on �. If there is
a positive constant c such that

1
c
g(x)  f (x)  c g(x) , x 2 � ,

we write f ⇡ g (or f ⇡ g ) on �.

To gain some intuition about Lyapunov curves we give a basic example:
Example 2.7. For c > 0, 0 < µ < 1, and x0 > 0, the curve f (c, µ) = f (c, µ, x0)
in the xy-plane which is defined by

(i) y = c|x |1+µ, |x | < x0

is C1,µ at the origin but is not C1,µ1 for µ1 > µ. It is convenient to write this
equation using polar coordinates z = rei' in the form: r sin' = cr1+µ(cos')1+µ.
Next, if 0  '  ⇡/2, we have sin' = crµ(cos')1+µ, 0  r < r0, where r0 is a
positive number. Since sin' = '+ o(') and cos' = 1+ o(1), we find ' = crµ +
o(1) when ' ! 0. If ⇡/2  '  ⇡ , we have sin(⇡ �') = sin' = crµ(cos')1+µ,
0  r < r0, where r0 is a positive number. Since sin(⇡ � ') = ⇡ � ' + o(⇡ � ')
and cos' = �1 + o(1), we find ⇡ � ' = crµ + o(1) when ' ! ⇡ . The curve
� (c, µ) = � (c, µ, r0) defined by joining the curves ' = crµ and ⇡ � ' = crµ,
0  r < r0, which share the origin, has similar properties near the origin to the
curve defined by (i). The reader can check that the curves f (c, µ) and � (c, µ) are
C1,µ at the origin but are not C1,µ1 for µ1 > µ.

Note that if a curve satisfies '  crµ, then it is is below the curve � (c, µ).

2.2. Gehring-Osgood inequality

We can compute the quasihyperbolic metric k on C⇤ by using the covering exp :
C ! C⇤, where exp is the exponential function. Let z1, z2 2 C⇤, z1 = r1eit1, z2 =
r2eit2 and ✓ = ✓(z1, z2) 2 [0,⇡] the measure of the convex angle between z1, z2.
We use

k(z1, z2) =

s�
�
�
�ln

r2
r1

�
�
�
�

2
+ ✓2.

This well-known formula is due to Martin and Osgood.
Let ` = `(z1) be the line defined by 0 and z1. Then z2 belongs to one half-

plane, say M , on which ` = `(z1) divides C.
Locally, denote by ln a branch of Log on M. Note that ln maps M conformally

onto a horizontal strip of width ⇡. Since w = ln z, we find that the quasi-hyperbolic
metric

|dw| =
|dz|
|z|

.



116 VLADIMIR BOŽIN AND MIODRAG MATELJEVIĆ

Note that ⇢(z) = 1
|z| is the quasi-hyperbolic density for z 2 C⇤ and therefore

k(z1, z2) = |w1 � w2| = | ln z1 � ln z2|.

Let z1, z2 2 C⇤, w1 = ln z1 = ln r1 + i t1. Then z1 = r1eit1 and there is t2 2
[t1, t1 + ⇡) or t2 2 [t1 � ⇡, t1) such that w2 = ln z2 = ln r2 + i t2 . Hence

k(z1, z2) =

s�
�
�
�ln

r2
r1

�
�
�
�

2
+ (t2 � t1)2 .

Now using the quasi-hyperbolic distance k as a corollary of the Gehring-Osgood
inequality, we can prove the following result which we will need.
Proposition 2.8. Let f be a K -qc mapping of the plane such that f (0) = 0,
f (1) = 1 and ↵ = K�1 . If z1, z2 2 C⇤, |z1| = |z2| and ✓ 2 [0,⇡] (respec-
tively ✓⇤ 2 [0,⇡]) is the measure of the convex angle between z1, z2 (respectively
f (z1), f (z2)), then

✓⇤  cmax{✓↵, ✓},
where c = c(K ). In particular, if ✓  1, then ✓⇤  c✓↵.
Proof. By the Gehring-Osgood inequality,

k
⇣
f (z1), f (z2)

⌘
 cmax{k(z1, z2)↵, k(z1, z2)},

where c = c(K ). It is clear that ✓⇤  k
⇣
f (z1), f (z2)

⌘
. Since |z1| = |z2| and

k(z1, z2) = t2 � t1 = ✓ , we get the desired result.

3. Main result

We first need some definitions.
Elementary Lyapunov domains, Arc-chord constant b� and the second Lya-

punov constant l2D = l2� .
Definition 3.1 (Elementary Lyapunov domains).
(i) Recall for r > 0 and w 2 C, we denote by B(w, r) and the C(w, r) the disk
and circle of radius r with center at w. In particular, we use notation B(r) and
the C(r) for the disk and circle of radius r with center at 0 and we denote by
C+(r) the half circle in the upper half plane;

(ii) Definition of L�
b ("). Further for v > 0 let the circle C(iv, r) touch the curve

� = � (µ, c) at points w1 and w2 (say that u1 < u2) and let l+ be the upper
half arc of the circle C(iv, r) joining w1 and w2 and �1 be the part of � over
[u1, u2], where uk = Rewk , k = 1, 2. Then the domain enclosed by l+ and
�1 we denote by Lyp(r, c). If ✏0 is maximum of r > 0 for which Lyp(r, c)
belongs to L("), we denote the domain Lyp(✏0, c) by Lyp�(", c). If A is an
Euclidean isometry and A(0) = b, we denote the domain A(Lyp�(", c)) by
L�
b (") = Lyp�

b (", c) and call it an elementary µ- Lyapunov domain.
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Although the boundary of an elementary Lyapunov domain consists of an elemen-
tary µ- Lyapunov arc �0 and a circle arc C0 with common end points, say a0 and
b0 note that it has no cusps because �0 and C0 have common tangents at points a0
and b0.
Definition 3.2 (arc-chord condition). Let C be a rectifiable Jordan closed curve
and z1, z2 finite points of C. They divide C into two arc, and we consider one with
smaller Euclidean length and denote its length with dC(z1, z2).

(a) The curve C is said to satisfy the arc-chord condition if the ratio of this length
to the distance |z1 � z2| is bounded by a fixed number bC = barcC (which we
call arc-chord constant of C) for all finite z1, z2 2 C ;

(b) The curve C is said to satisfy the arc-chord condition at a fixed point z1 2 C if
the ratio of the length dC(z1, z) to the distance |z1 � z| is bounded by a fixed
number bC(z1) = barcC (z1) for all finite z 2 C ;

(c) If D is a µ-Lyapunov domain bounded by a curve � , we define l2 = l2(D) =
l2D = l2� = ⇡

2 l1 b
1+µ
� , and we call it the second Lyp-constant, where l1 =

lyp(� , µ).

3.1. Auxiliary results

Suppose that D satisfies the hypothesis (Lyp-0). Further, one can prove:

(c1) It is known that that a C1 curve satisfies the arc-chord condition;
(d) There is r1 > 0 such @D \ B(r1) is graph of a function F , v = F(u), �u1 <

u < u2, where u1, u2 > 0, and that the set V = {(u, v) : �u1 < u <
u2, F(u) < v} \ B(r1) belongs D, where u, v are the cartesian coordinates in
w-plane and w = u + iv;

(e) Let D be a bounded Lyapunov domain, a0 2 D and let  be a conformal map-
ping of D onto U with  (a0) = 0. Then there are constants k1 = k1(D, a0)
and k2 = k2(D, a0) (which we call the lower and upper Kellogg multiplica-
tive constants of D with respect to a0 respectively) such that k1|z1 � z2| 
| (z1) �  (z2)|  k2|z1 � z2|, z1, z2 2 D;

(f) Mori’s theorem. Let f : U ! U be a surjective K-qc mapping with f (0) = 0
and ↵ = 1/K . Then | f (z1) � f (z2)|  16|z1 � z2|↵ , z1, z2 2 U, i.e. f is
↵-Holder continuous;

(g) Let the mapping A is given by A(z) = i z�iz+i + i . Then A(i) = i and A maps
H onto B1 = B(i, 1). Since A0(z) = 2

|z+i |2 , we first find |A0(z)|  2 and
therefore |A(z)|  2|z|, z 2 H;

(h) Suppose that D is a bounded convex planar domain, f : D ! C is holo-
morphic mapping and z0 2 D. Then there is a constant c > 0 such that
| f (z) � f (z0)|  c|z � z0|, z 2 D. The proof is straightforward;

(i) Let f be a K -qc mapping of the half -planeH on a domain D such that f (0) =
0, and suppose that @D is a K -quasi-circle and ↵ = K�1. Then f has a K1-qc
extension to a map f̃ of the complex plane, which by abuse of notation we
denote sometimes again by f if there is no possibility of confusion.



118 VLADIMIR BOŽIN AND MIODRAG MATELJEVIĆ

Definition 3.3.
(i) If z1, z2 2 C⇤ by ✓(z1, z2) we denote the measure of the convex angle between

z1, z2;
(ii) For p 2 C, set

X (z) = X p(z) =
pz

z � p
, z 2 C and Y = Yp = X�1;

(iii) If f is homeomorphism of C onto itself, we define p = p( f ) = f �1(1);
(iv) If � is an arc in C and Z : � ! C⇤ continuous map by 1�ArgZ we denote

the variation of ArgZ along � .

Note that X and Y are Möbius automorphisms of C with the following properties:
Y (z) = � pz

z�p , X (0) = Y (0) = 0, X (p) = 1, X (1) = p, Y (p) = 1 and
Y (1) = �p. If we set f̆ = f � X , then f = f̆ � Y . X p and Yp map lines
l� = {rei� : r 2 R} onto the circles which contain 0 and p. Since Yp map the circle
C(0, |p|) onto line L which does not contain 0. If zn = e�i/n p and z0n = ei/n p,
then ✓(z0n, zn) ! 0 and ✓(Xz0n, Xzn) ! ✓0, ✓0 6= 0, if n ! 1. This example
shows that we need to adapt a version of Proposition 2.8 to hold for the mappings
X p.

Proposition 3.4. Let f be a K -qc mapping of the plane C onto itself, f (0) = 0,
p = f �1(1), ↵ = K�1 and r0 = |p|/2.

(I) (a) Then f = f̆ � Y , where Y = Yp, f̆ is K -qc mapping of the plane C onto
itself, with f̆ (0) = 0 and f̆ (1) = 1;

(b) If z1, z2 2 C⇤, |z1| = |z2| and ✓ 2 [0,⇡] (respectively ✓⇤ 2 [0,⇡]) is the
measure of the convex angle between z1, z2 (respectively f̆ (z1), f̆ (z2)),
then ✓⇤  cmax{✓↵, ✓}, where c = c(K ). In particular, if ✓  1, then
✓⇤  c✓↵;

(II) If z1, z2 2 C⇤ \ B(0, r0), |z1| = |z2|, then

✓(Xz1, Xz2) 
�
1+ r�1

0
�
✓(z1, z2);

(III) For given H 0
0 = Lyp(", c, µ), " < r0, there is H0 = Lyp("1, c1, µ1) such that

Y (H0)⇢H 0
0.

Proof. (I) Set f̆ = f � X . Since X (p) = 1 and p = f �1(1), we have f̆ (1) =
1. Since X is Möbius automorphism of C, f̆ is K -qc. By (a) and an application
of Proposition 2.8 to f̆ , (b) follows.

(II) Let |z1| = |z2| = R < r0. If necessary we can re-numerate points such
that zk = Reitk , k = 1, 2, t1  t2  t1 + ⇡ and l = l(z1, z2) be the circular arc
defined by l(t) = Reit , t1  t  t2. We are going to estimate the variation1lArgT
and 1lArg X . Since X (z) = X p(z) = pz

z�p , we can write:

(i) arg X = arg z � arg T + arg p, where T = z � p; hence
(ii) 1lArgX  1lArg I d +1lArg T , where I d is the identity map.
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Since T 0/T = 1/T , for z = reit ,

(arg T )t = Im
✓
T 0

T
ireit

◆
.

For z 2 B(0, r0), we have |(arg T )t |  1
|z�p|  1/r0, and therefore

✓(T z1, T z2)  1lArgT  r�1
0 |t2 � t1|.

Hence, by the item (ii), for |z1| = |z2| = R < r0,

✓(Xz1, Xz2)  1lArgX 
�
1+ r�1

0
�
|t2 � t1|.

(III) We only outline a proof. Set ⇣ = Y (z), ✓ = arg z, ' = arg ⇣ , z = x + iy =
rei✓ , ⇣ = ⇠ + i⌘ = ⇢ei' . So we define the functions ✓ = ✓(⇢,'), ' = '(r, ✓),
⇢ = ⇢(r, ✓) and r = r(⇢,').

Since Y is conformal mapping on B(0, r0) and Y (0) = 0, by the item (h) in
Subsection 3.1, we find ⇢(r, ✓) ⇡ r and r = r(⇢,') ⇡ ⇢.

Let ⇣ 2 � := � (", c, µ), ⇢ = |⇣ | and z0 = X (⇢) = r(⇢, 0)ei✓ 0 , where
✓ 0 = ✓(⇢, 0).

Case 1. Suppose that p = p1 + i p2, p2 > 0.

Since X (1) = p, X maps the coordinate axis ⌘ = 0 (in the ⇣ -plane) onto the circle
K = C(i R0, R0) which contains p, where R0 = R0(p) = |p|2

2|p2| depends only on p.

Yp maps B = B(i R0, R0) ontoH. Let K 0 be semi circle y = R0�
q
R20 � x2. Then

✓ 0 ⇡ x(⇢) � r(⇢) ⇡ r . By the part (II) of the Proposition, ✓(z, z0) � ' � ⇢µ � rµ.
Hence, since ✓  ✓(z, z0) + ✓ 0, we find ✓ � rµ (thus we can choose µ1 = µ).

In a similar way we consider:

Case 2. Suppose that p = p0 = p1 + i p2, p2 < 0. In this case Yp maps B =
B(�i R0, R0) onto H⇤.

Case 3. p0 2 R. In this case Yp maps H onto itself.

Theorem 3.5.

(I) Suppose:
(i) h is a K -qc map from H onto a Lyapunov domain D. Then h has a K1-qc

extension to a map h̃ of the complex plane;

(II) If h satisfies the hypothesis H0
qc, then there is a constant l0 = 16 2↵k�1

1 which
depends on K1 and the Kellogg multiplicative constant of D (with respect to
a0 = h(i)) k1 = k1(D, a0); such that:

(ii) |h(z)|  l0|z|1/K1 if z 2 H and |z|  1;
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(III) If D satisfies the hypothesis (Lyp-0), then there are constants " > 0 and c > 0
such that for |w| < " (here c"µ < ⇡) and w 2 @D, either |arg(w)| < c|w|µ

or |⇡ � arg(w)| < c|w|µ where arg is the branch of the argument determined
by �⇡/2 < arg(w) < 3⇡/2 and moreover that set

D0 = D0(") = Lyp(", c, µ) =
�
w : c|w|µ < arg(w) < ⇡�c|w|µ , |w| < "

 

satisfies D0 ⇢ D, where c depends only on the Lyapunov multiplicative con-
stant of @D;

(iii) We can choose c = l2 = l2D = ⇡
2 l1 b

1+µ
� , where l1 = lyp(� ) and b� =

barc� is the arc-chord constant of � ;

(IV) Then there is a constant c1 = c1(µ, ", c, K1, l2, |p|) such that the region

H0 = H0(") =
n
z : c1|z|µ/K 21 < arg(z) < ⇡ � c1|z|µ/K 21 , |z| < ("/ l0)K1

o

satisfies:

(a) h(H0) ⇢ D0;
(b) There are constants "2, c2, µ2 such that D0

0 ⇢ h(H0), where D0
0 = Lyp("2,

c2, µ2).

Note that H0 = H0(") = Lyp("1, c1, µ1), where µ1 = µ/K 21 and "1 = ("/ l0)K1 .

Recall that the hypothesis (i) (together with some technical requirements h(0) = 0
and that D satisfies (Sp0)) in the theorem is essentially equivalent to the hypothesis
(H0

qc). From the proof below it is clear that the hypothesis (i) implies:

(i1): h is a qc mapping ofH onto the quasidisk D (which is much weaker then (i)),
and that the statement (I) holds under the hypothesis (i1).

If in addition to (i1), h(0) = 0 and 0 2 @D, we leave to the interested reader to
state and prove a corresponding version of the statement (II). Since h�1 is also qc
the proof of (IV) of Theorem 3.5 shows that the following holds:

(IV0): for each special domain of Lyapunov type X0 with vertex at 0, there is a
special domain of Lyapunov type Y0 with vertex at 0 such that Y0 ⇢ h(X0).
In particular, we can choose X0 = H0 and Y0 to be an elementary Lypunov
domain D�

0 such that D
�
0 ⇢ h(H0).

On the Figure 3.1 the domains D, D0, D�
0 , H0 and h(H0) are enclosed by lines

whose colors are red, blue, green, violet (on the left) and violet (on the right) re-
spectively.
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Figure 3.1.

3.1.1. Proofs

Proof of (I). Since D is C1,µ, D is a quasi-circle and therefore by the item (i) from
Subsection 3.1, the statement (I) follows.

Proof of (II). We suppose that a0 = h(i) is given. Let B1 = B(i; 1) and R1 a
conformal mapping of B1 onto H such that R1 fixes 0 and i and R2 a conformal
mapping of D onto B1 such that R2(0) = 0 and R2(a0) = i . Set h = R2 � h � R1.
Then h(0) = 0, h(i) = i , h maps B1 onto itself, h = R�1

2 � h � R�1
1 . Set w =

h(z), ⇣ = R�1
1 (z), ⇣ 0 = R�1

2 (w) and ⇣ 0 = h(⇣ ). Note that R�1
1 (H) is a disk. By the

item (g) in Subsection 3.1, we find |R�1
1 (z)|  2|z|, z 2 H. Since D is a Lyapunov

bounded domain, |R�1
2 (⇣ 0)|  k3|⇣ 0|, ⇣ 0 2 B1, where k3 = k1(D, a0)�1. It is

clear that h is K1-qc with h(i) = i . Now an application of Mori’s theorem to h on
B1, shows that h is ↵ -Hölder continuous on B1 with a multiplicative constant 16 ,
where ↵ = 1/K1 and in particular |⇣ 0| = |h(⇣ )|  16|⇣ |↵ . Since h(0) = 0, there is
a constant l0 = l0(K1) such that the part (ii) of the theorem holds: |h(z)|  l0|z|1/K1
if z 2 H and |z|  1.

Proof of (III). Set l1 = lyp(� ). Since D satisfies the hypothesis (Lyp-0), the item
(d) in Subsection 3.1 holds. By the item (d), there is ✏1 > 0 such that the trace of
the path �1 which is defined in (d) by v = F(u), u 2 [�✏1, ✏1], where F is C1, is on
@D. Let �2 = @D\tr(�1). Then there is a constant ✏2 > 0 such that �2 has no points
in the disk B(✏2). Let L be the length of @D and �̂ a parametrization of the pos-
itively oriented boundary @D by the arc-length parameter s, where s 2 [0, L] and
s(0) = 0 (we need arc-length parameter only around 0). Set �̂ (s) = u(s) + iv(s)
and w = Rei9 . Then

|v(s)| = |v(s) � v(0)| =
�
�v0�s1

���s  c1s1+µ,
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where c1 = l1. Since a quasicircle satisfies the arc-chord condition, we have the
following:

(a1) If a C1 curve is a quasicircle, then s  c2R, where c2 = b� = barc� .

Also we can prove the following version of (a1).6

(a2) By definition of Lyapunov curve �̂ 0(t) = 1+ ✏(t), where |✏(t)|  ctµ. Hence
�̂ (s) =

R s
0 �̂

0(t)dt and therefore there is ⌧ = ⌧ (c, µ) such that s  2|�̂ (s)|
for s  ⌧ .

Hence, there is ✏ > 0 such that:

(iv) | arg �̂ (s)| < ⇡
2 for s 2 (0, ✏];

(v) ⇡
2 < arg �̂ (s) < 3⇡2 for s 2 [L � ✏, L).

We can choose ✏ < ✏2. Hence, for s small (0 < s < ✏), we find

R|9| 
2
⇡
R| sin(9)| =

2
⇡

v(s)  c3s1+µ, where c3 =
2
⇡
c1,

and therefore there is a constant c such that:

(vi) |9|  cRµ, where c is given by the item (iii) in Theorem 3.5.

Using the mapping A(w) = �w and (vi), we find that:

(vi’) |⇡ �9|  cRµ for s 2 [L � ✏, L).

From (vi) and (vi’), (III) follows.

Proof of (IV). We use the notation from Proposition 3.4. Set h̆ = h � Yp, where
p = h�1(1) 2 C. By the statement (I) and easy part of Proposition 3.4, h = h̆�Yp,
and h is K1-qc mapping of the plane C onto itself, with h̆(0) = 0 and h̆(1) = 1.
We use notation: polar coordinates ⇣ = ⇢ei' in the ⇣ -plane and w = Rei9 in
the w-plane. Recall by (III) there is a curve � = � (c, µ, R0) in D. Set �0: 9 =
90(R) = cRµ, 0  R  R0. Hence there is a part C1 of the boundary of D around
0 (say the right half part) which is below �0 and which defines the curve �1.

Case 1. We first prove for h̆. Let w = Rei9 2 �0 and let w0 = Rei9 0 be the
intersection of the circle TR with �1. Then ✓(w,w0)  (|9| + |9 0|)  2|9|. Set
⇣ = h̆�1(w) and ⇣ 0 = h̆�1(w0). Since �0 is the right half of � = � (c, µ), ⇣ 0 > 0
and ' = ✓(z, z0). Hence using the quasihyperbolic metric k on C⇤ (Proposition
2.8), we have '  29

↵ , where ↵ = 1/K1. Since, by (II), R  c⇢↵ , we find
'  2

�
90(c⇢↵)

�↵ and therefore we get '  3r↵
2µ. Thus we find:

(vii) The curve h̆�1(�0) is below the curve � (3,↵
2µ).

6 We observed it after writting a revision of the manuscript.
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Note that if a curve satisfies '  c⇢µ, then it is is below the curve � (c, µ). Recall
that we set µ1 = µ/K 21 and "1 = ("/ l0)K1 . Note that �0 is the right half of
� = � (c, µ) and that in a similar way as above we conclude that:

(viii) h̆�1(� (c, µ)) is below the curve � (c1, µ1), ⇢ < "1.

By the part (ii) of the theorem, h(B("1)) ⇢ B(") and it is readable that it yields (a).
Since h̆�1 is also qc (a) implies (b). Thus we have proved (IV) for h̆ with c1 = 3.

Case 2. Proof for h. By Case 1, there is H 0
0 such that h̆(H

0
0) ⇢ D0. By Proposition

3.4 there is H0 such that Y (H0) ⇢ H 0
0 and it completes proof. Thus we have

proved (a).
Let us prove that (a) implies (b). Namely, since h�1 is also qc, by (a) there is

D0
0 such that h

�1(D0
0) ⇢ H0 and therefore D0

0 ⇢ h(H0).

3.2. Global approximation

Concerning the previous theorem, note that µ1  µ and "1  ", and in particular,
one can derive (see (IV’)):

(a) There is ✏ = ✏(", c) < "1 such that h(L1) ⇢ L 0 ⇢ D0, where L 0 = Lyp�(", c)
is µ-Lyapunov and L1 = Lyp�(✏, c) is µ1-Lyapunov and L1 ⇢ L 0. Hence,
since h�1 is also qc, h�1(L1) ⇢ L 0 and therefore L1 ⇢ h(L 0);

(b) In a similar way, there is ✏1  ✏ and µ2  µ1 such that h�1(L1�) ⇢ L1, where
L1� = Lyp�(✏1, c) is µ2-Lyapunov.

Hence we derive:

(IVa) If h satisfies the hypothesis H0
qc, then L1� ⇢ h(L1) ⇢ D0.

Note that it is easy to transfer Theorem 3.5 to the setting of the unit disk. Now we
show that the corresponding version of it holds with U instead of H.

We first need a version of (IV0) for U with special Lyapunov convex domains.
Note that H0 has two cusps. In this subsection by D0 we denote the set defined in
Theorem 3.5.
Definition 3.6 (lyp(D)b). Here we define A0, Ra , Tb and ha .

(i) Consider the conformal mapping A0 = A0 defined by A0(z) = 4i�z
4i+z ; A0 maps

H onto U such that A0(0) = 1 and A0(�4i) = 1;
(ii) For a = ei↵ 2 T define Ra(z) = ei↵z, and for b 2 @D if the unit inner normal

nb = ei� at b exists, we define Tb(w) = T b(w) = �iei�w + b;
(iii) If D satisfies the hypothesis (Lyp-0), we define D̂b = Tb(D̂0), where D̂0 is

defined in the item (A) below. If we wish to indicate that D̂b is an elementary
Lyapunov domain we use notation lyp(D)b;

(iv) For a 2 T, set ha = hba := T�1
b � h � Ra , a 2 T, where b = h(a), and let

ĥ = h � A0 and ĥa = ha � A0.
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It is clear that T�1
b is defined by T�1

b (z) = iei�(z � b), T�1
b (b) = 0, and if D has

the tangent at b 2 @D then T�1
b (D) has (Sp0) property.

(v) Next suppose that D satisfies the hypothesis (Lyp-0) (see Definition 1).

We will prove that(see also Proposition 3.8):

(A) There is "2 > 0 such that D̂0 ⇢ T�1
b (D) for every b 2 @D, where D̂0 =

Lyp�(✏2, c);
(vi) In addition to (v) suppose that h is a qc mapping of U onto D and h(1) = 0

(that is h satisfies the hypothesis U0qc).

Then ĥ is a qc mapping of H onto D with ĥ(0) = 0.
It seems useful to consider the following properties, which is an immediate

corollary of (IVa):

(B) If h satisfies the hypothesis U0qc, there are corresponding elementary Lya-
punov domains H1 ⇢ H and D1� ⇢ D with vertex at 0 such that D1� ⇢

ĥ(H1) ⇢ D̂0. See Proposition 3.8 for a stronger result;
(vii) Further set U1 = A0(H1) and U1� = A0(D1�) and set Ua = Ra(U1).

Note that H1 is a special µ1-Lyapunov. Thus we have:

(C) U1� ⇢ h(U1) ⇢ D̂0.

In order to state a corresponding form of (IVa) for U, it is convenient to call V =
A0(L) an elementary domain if L is elementary (see also Proposition 3.4). Now,
by (IVa), it is clear that we have:

(IVb) If h satisfies the hypothesis U0qc and L is an elementary Lyapunov domain
with vertex at 0 in H, then there are elementary Lyapunov domains V1 and
V 1� in U with vertex at 1 such that V 1� ⇢ h(V1) ⇢ L;

(D) Now, we also suppose that h satisfies the hypothesis U0qc. Recall by the
item (i) from Subsection 3.1, then h has a K1-qc extension to a map h̃ of the
complex plane.

We can choose p = p̃ such that h( p̃) = 1 and | p̃| � 3. Set p̂ = A�1
0 ( p̃),

p̃↵ = h�1
a (1) and p̂↵ = A�1

0 ( p̃↵). Check that p̃ /2 h(B(0, 2)) and therefore
| p̂| � 2.Hence, since p̃↵ = h�1

a (1) = e�i↵ p̃, we find:

(D0) h�1
a (1) /2 h(B(0, 2)) and therefore, | p̂↵| � 2 for every a = ei↵ 2 T.

Note that Tb �ha = h � Ra and that h satisfies the hypothesis U0qc, (U -1) if and only
if ĥ satisfies H0

qc, (H -0) respectively.
In addition, we need a property of C1 domains. Suppose that domain D is

uv-plane.
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Lemma 3.7.

(i) Suppose that a C1 domain D satisfies the hypothesis (Sp0);
(I) Then there is r > 0 such that for each w 2 @D, T�1

w (@D) \ B(0, r) is a graph
with respect to uv-coordinates.

Proof. Let L be the length of @D and �̂ : [0, L] ! @D a parametrization of
the positively oriented boundary @D by the arc-length parameter s. We also write
w = �̂ (s), where s 2 [0, L] and s(0) = 0. Here there is the function s = s(w)
which is the inverse of the function w = �̂ (s) and which maps @D onto [0, L].
Since �̂ 0 is continuous on [0, L], it is uniformly continuous on [0, L]. The function
s = s(w) is continuous on @D and hence C(w) = �̂ 0(s(w)) is continuous on @D
and uniformly continuous on @D. Therefore there is r2 > 0 such that:

(1) | arg �̂ 0(s2) � arg �̂ 0(s1)| < ⇡/8 for |w2 � w1|  r2, where wk = �̂ (sk),
k = 1, 2.

Let us prove (I) for r = r2/2. Contrary, suppose that (I) is not true. Then for some
w0 2 @D, D(w0, r) := (@D) \ B(w0, r) is not a graph with respect to coordinates
determined by unit vectors �̂ 0(w) and nw. Hence there are two points w1 and w2 in
this set such that w1w2 is parallel to the normal nw0 of @D at w0. Therefore there
is w3 in this set such that � 0(s) at w3 is parallel to the normal nw0 . This contradicts
(1). Thus we have (I).

Using the approach in the proof of statement (III), (IV), (IV0) of Theorem 3.5,
(IVb) and (iii), we can prove:

Proposition 3.8.

(a): Suppose that D satisfies the hypothesis (Lyp-0);
(I): There is an elementary Lyapunov domains D̂0 in D with vertex at 0 such that

D̂0 ⇢ T�1
b (D);7

(b): In addition to (a) suppose that h : U ! D is a qc homeomorphism;
(IIa): Then there is a Lyapunov domain Û1 in U with vertex at 1 such that for every

a 2 T, ha(Û1) ⇢ D̂0;
(IIb): In addition, there is an elementary Lyapunov domain D�

0 = Lyp("�0 , c0, µ)

in D with vertex at 0 such that D�
0 ⇢ ha(Û1) for every a 2 T;

(III): D�
0 ⇢ ha(Û1) ⇢ D̂0.

Note that in general ha(U) is not a fixed domain for a 2 T and therefore we need
first to consider the part (I) and then the part (II).

Proof. (I). Db satisfies the hypothesis (Lyp-0) for every b 2 @D. Consider the
family D := {Db = T�1

b (D) : b 2 @D}. For b 2 @D define "(b) to be maximum

7 Note that we use the domains withˆ-notation if we have uniform estimates.
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of " for which Lyp(", l2(D)) ⇢ Db, where l2(D) is the second Lyp-constant. By
Lemma 3.7, there is r > 0 such that Db \ B(r) is a graph with respect to uv-
coordinates for each b 2 @D. Since all domains Db, b 2 @D, have the same
Lyapunov multiplicative constants, using (iii) and the approach in the proof (III) of
Theorem 3.5, we can prove that there is "0 > 0 such that "(b) � "0 for all b 2 @D,
and therefore an elementary Lyapunov domain D̂0 such that D̂0 ⇢ Db for every
b 2 @D and (I) follows.

In addition, it seems that we can prove that the function "(b) = "D(b) is
continuous with respect to b.

(IIa): Recall that we use the notation a0 = h(0) and ĥa = ha � A0. Let
!b be a conformal mapping of Db onto U such that !b(T�1

b (a0)) = 0 and !b =

!b � T�1
b . Since !

b(0) = 0, by the Kellogg-Warshawski theorem there are two
positive constants l1 and l2 such that l1  |!0(w)|  l2, w 2 D. Since T�1

b is a
Euclidean isometry, we have |(T�1

b )0| = 1 on D, and therefore l1  |!0
b(w)|  l2,

w 2 Db. Hence, since !b � ha maps U onto itself, !b � ha(0) = 0 and ha(1) = 0
there is a constant l0 which depends on K and the Kellogg multiplicative constant
of D(with respect to a0), such that for all a 2 T, |ha(z)|  l0|z � 1|1/K if |z|  1.

Using A0 we can get the corresponding result for ĥa: there is a constant l0
which depends on K1 and the Kellogg multiplicative constant of D, such that for
all a 2 T,

(iv): |ĥa(z)|  l0|z|1/K1 if |z|  1, Imz � 0.

The functions ĥa , a 2 T, are K1-qc. By (iv), an application of (IVb) to the func-
tions ĥa , a 2 T, and the statement (D0) (from Subsection 3.2), and the item (iii) of
Proposition 3.4 with r0 = 1 to the functions ĥa , a 2 T, show that there is a Lya-
punov domain Ĥ0 inH with vertex at 0 such that ĥa(Ĥ0) ⇢ D̂0. Set Û1 = A0(Ĥ0).
It yields the proof of (II).

(IIb) Using (IVb), since the corresponding parameters are the same for h and ha ,
one can get (III);

(III) It is clear that (IIa) and (IIb) can be stated as (III).

It is convenient to introduce the following notation:

(v) For b 2 @D, set D�
b = lyp(D)�b = T b(D

�
0 ) and for a 2 T, Ûa = Ra(Û1).

If we wish to indicate that D�
b is an elementary Lyapunov domain we use

notation lyp(D)�b .

Now using Euclidean isometry T b it is easy to get the corresponding results of the
property (III) of Proposition 3.8 for domains with vertexes at b. Namely, by the
property (III) of Proposition 3.8 we have T b(D

�
0 ) ⇢ T b(ha(Û1)) ⇢ T b(D̂0). By

the definitions T b � ha(Û1) = h � Ra(Û1) = h(Ûa) and therefore the part (I) of
the next theorem follows. By (L1) (see the introduction) we get the part (II). So we
have the crucial result:
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Theorem 3.9. Suppose that D is a Lyapunov domain and h : U onto
��! D is a qc

homeomorphism. Then:

(I) For every a 2 T, lyp(D)�b ⇢ h(Ûa) ⇢ lyp(D)b, where b = h(a);
(II) If w � b is in the direction of the normal vector nb then, db(w) ⇡ |w � b| if

"2 = "2(c2, µ2) is a small enough constant.

4. Proof that h is co-Lipschitz

Here we give a proof of the co-Lip property:

Theorem 4.1. Suppose h : U onto
��! D is a hqc homeomorphism, where D is a

Lyapunov domain with C1,µ boundary, i.e. belonging toD1. Then h is co-Lipschitz.

We first need a few results mentioned in the introduction which are of auxiliary
character.

Theorem 4.2 ([26, Theorem 1.3]). Suppose that h is a Euclidean harmonic com-
plex valued mapping from the unit ball B ⇢ Rn onto a bounded domain D = h(B),
which contains the ball B(h(0); R0) and there is a half space Hb which touches
the point b 2 @D such that D = h(B) ⇢ Hb. Then:

(I) e(h(z), b) � (1� |z|)cn R0, z 2 B, where cn = 1
2n�1 .

8

Sometimes, we refer to this result as a version of Harnack’s lemma.
In [26] we stated this result under the condition that the domain D = h(B) is

convex. But, a slight modification of the [26, proof of Theorem 1.1] (planar case)
shows that the theorem holds under the hypothesis (a).

Proof of (I). We only outline an argument. To b 2 @D we associate a nonnegative
harmonic function u = ub. Let 3b be the boundary of Hb and let n = nb 2 TbRn

be a unit vector such that 3b is defined by (w � b, nb) = 0. By hypothesis, 3b is a
supporting hyper-plane such that (w � b, nb) � 0 for every w 2 D. Define u(z) =
(h(z) � b, nb) and db = d(h(0),3a). Then u(0) = (h(0) � b, nb) = d(h(0),3a).
Let b0 2 3a be the point such that db = |h(0) � b0|. Then from the geometry it is
clear that da � R0, etc. (one can follow the proof from [26]).

Proposition 4.3. Suppose that h is a Euclidean harmonic mapping from the Lya-
punov domain G into a domain � and (i) there is a half space Hb which touches a
point b 2 @� such that h(G) ⇢ Hb.

Then e(h(z), b) ⌫ dG(z), z 2 G.

8 Recall e here denotes the Euclidean distance.
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We refer to this result as Harnak type estimate. Note if h : U ! D satisfies
hypothesis U -1, in general a point b 2 @D does not satisfy the hypothesis (i).
We use elementary Lyapunov domain described in Proposition 3.8 to apply this
proposition.

Proof. Let � : U ! G be a conformal mapping and h1 = h � �. Application of
Koebe’s theorem to � and Theorem 4.2 on h1 : U ! G yield the result.

Now we illustrate relation between the circles and special Lyapunov curves
and then prove Lemma 4.4.

If M(0, d), d > 0, then the circle C with center at M and radius d is given by
the equation x2+ (y�d)2 = d2 and the half -circle C� with y = d� (d2� x2)1/2.
Hence

d�y=
�
d2 � x2

�1/2
=d

�
1� x2/d2

�1/2
=d

�
1� x2/2d2 + o

�
x2

�
= x2/2d + o

�
x2

�

and therefore y = 1
2d x

2 + o(x2). The graph of the curve � (c, µ; ✏), where c =
1/d, ✏ = d is above the half -circle C .

Lemma 4.4. For c > 0, 0 < µ < 1, and x0 > 0, let the curve C be defined by ( the
curve C is defined in Example 2.7 and denoted by f (c, µ)):

(1) y = C(x) = cx1+µ, |x | < x0;
(2) Let M(0, d), d > 0, be a point and d 0 the distance from M to the graph of the

curve (1);
(I) Then d 0 ⌫ d;
(a) There is an ✏0 > 0 such that if d  C(✏0), then d  2d 0;
(b) For ✏0 we can choose the positive solution of the equation c2(1 + µ)x2µ1 = 1

with respect to x1.

Proof. Let d 0 = |M � M 0|, where M 0(x1, y1). Since y0(x) = c(1+ µ)xµ, we find
that

k =
d � y1
x1

=
�
c(1+ µ)xµ

1
��1

.

Hence, d � y1 = 1
c(1+µ) x

1�µ
1 and

d =
1

c(1+ µ)
x1�µ
1 + y1 =

1
c(1+ µ)

x1�µ
1

⇣
1+ c2(1+ µ)x2µ1

⌘
.

Hence, d  2d 0 if (1 + c2(1 + µ)x2µ1 )  2 (that is if "2 = "2(c2, µ2) is a small
enough constant).

We are now ready to finish the proof of the theorem.
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4.1. Proof of Theorem 4.1

We will apply Proposition 3.8 and notation used there, and Theorem 4.2. Further
chose a fixed positive real number x0 2 Û1. (E) Set H(a) = T�1

b
�
h(x0a)

�
, w0 =

T�1
b (w), d0(w0) = dist(w0, @D�

0 ) and d0(a) = d0
�
T�1
b

�
h(x0a)

��
, where b = h(a).

It is straightforward to check that H and d0 are continuous function with re-
spect to a 2 T. Hence there is s0 > 0 such that B(H(a), s0) ⇢ D�

0 and therefore
we conclude.

(E0) If h satisfies the hypothesisU0qc, there is a constant s0 > 0 which does not
depend of a such that B(h(x0a), s0) ⇢ D�

b , a 2 T.

Definition 4.5. (d1) For a = ei↵ 2 T let �0 be the conformal mapping of U onto
Û1 such that �0(0) = x0 and set Ûa = ei↵Û1, �a = ei↵�0 and F = F(h) = Fa =
h � �a .

Thus for a = ei↵ 2 T, � = �a is the conformal mapping of U onto Ua such
that �a(0) = x0ei↵ .

Let b 2 @D, w � b = ✏nb, ✏  ✏0. Then w 2 D�
b .

(d2) Set a = h�1(b), z = h�1(w), z0 = ��1
a (z), d(z0) = 1 � |z0|, r 0 = |z0|,

d̂a(z) = dist(z, @Ûa), db(w) = dist(w, @D�
b ). Recall that in particular for b = 0,

d0(w0) = dist(w0, @D�
0 ).

(d3) d 0
b(w) = dist(w, @Ya), where Ya := h(Ûa).

Let Hb be the half plane which contains D̂b and touches D at b. Since Fa maps U
into Hb, (Fa(z0) � b, nb) is non-negative in z0 2 U, and by a version of Harnack’s
estimate (planar version of Theorem 4.2 applied with R0 = s0), |Fa(z0) � b| �
s0(1� r 0), i.e. |w � b| � s0d(z0), where s0 = s0/2. Hence

|w � b| ⌫ d(z0), z0 2 U. (4.1)

Now we apply Lemma 4.4 (the geometric property of the domain D�
b ).

9 More
precisely we apply the property (L1) from the introduction which is a corollary of
Lemma 4.4.10

Set ✏0 := min{"�0 , ✏0} and D(✏0) := {w 2 D : d(w, @D) � ✏0}. Then there is
r0, r1 2 (0, 1) such that D(✏0) ⇢ h(B(r0)) and r 0 = |z0| � r1 implies |z| � r0.

By (L1) and (E0), we conclude:

(E1) There is s1 > 0 which is independent of z0 such that db(w) � s1d(z0), r 0 =
|z0| � r1.

9 Hence roughly speaking we find |w � b| � db(w) and therefore

db(w) ⌫ d(z0). (4.2)
10 Note here that we use a version of Harnack’s lemma, more precisely Theorem 4.2, and that the
estimate in this theorem depends on R0 and it is independent of h.
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We now estimate 3h(z). Using the fact that h(Ûa) = Ya � D�
b , we find first that

d 0
b(w) � db(w) and therefore by the property (S-2) from the introduction 11

3h(z) ⌫
d 0
b(w)

d̂a(z)
�
db(w)

d̂a(z)
.

Since �a(U) = Ûa and Ûa is a Lyapunov domain of a fixed shape, da(z) ⇡ d(z0).
Hence, using (E1), we conclude:

(F) �h(z) ⇡ 3h(z) � s2 > 0, |z| � r0, where s2 > 0 is a constant independent
of z.

It is clear that there is a constant s3 > 0 such that:

(F1) �h(z) ⇡ 3h(z) � s3 > 0, z 2 B(r0).

By (F) and (F1), there is a constant s4 > 0 such that �h(z) ⇡ 3h(z) � s4 > 0,
z 2 U.

Hence it is readable that h is co-Lip on U.

5. Further comments and related results

We briefly discus the connection with the Radó-Kneser-Choquet theorem (shortly
RKC-Theorem) and hyperbolic-harmonic mappings; it will be the subject of further
investigations.

Quasiconformal Euclidean-harmonic mappings are bi-Lipschitz with respect
to the quasi-hyperbolic metric, cf. [21, 26] (Proposition 2.3 here). It turns out that,
as in the Euclidean case, quasiconformal hyperbolic-harmonic mappings are bi-
Lipschitz with respect to the hyperbolic metric, cf. Wan [33] and of Markovic [22].

Very recently, concerning the initial Schoen conjecture (and more generally
the Schoen-Li-Wang conjecture) Markovic made a major breakthrough. In [23],
Markovic used the result of Li and Tam that every diffeomorphism of S2 admits
a harmonic quasiisometric extension to show that every quasisymmetric homeo-
morphism of the circle @H2 admits a harmonic quasiconformal extension to the
hyperbolic plane H2. This proves the initial Schoen conjecture.

In particular, concerning complex valued harmonic functions, Kalaj and the
second author, shortly KM-approach, study lower bounds of the Jacobian, cf. [27,
28] and references cited there. The corresponding results for harmonic maps be-
tween surfaces were previously obtained by Jost and Jost-Karcher [10, 11]. We
refer to this result as the JK- result (approach). G. Alessandrini and V. Nesi prove
necessary and sufficient criteria of invertibility for planar harmonic mappings which
generalize a classical result of H. Kneser, also known as the Radó-Kneser-Choquet

11 Recall that d 0
b(w) = dist(w, @Ya), where Ya := h(Ûa).
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theorem (RKC-Theorem), cf. [1]. Note only here that in the planar case the JK-
result is reduced to Theorem RKC. Kalaj [14] also has extended the Rado-Choquet-
Kneser theorem to mappings between the unit circle and Lyapunov closed curves
with Lipschitz boundary data and essentially positive Jacobian at the boundary (but
without restriction on the convexity of the image domain). The proof is based on
the extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi [2]
and an approximation scheme is used in it. Motivated by an approach described
in Kalaj’s Studia paper [14] and using the continuity of so called E-function, the
second author found a new proof of Kalaj’s result, cf. [27, 28].
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