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Quasiconformal and HQC mappings
between Lyapunov Jordan domains

VLADIMIR BOZIN AND MIODRAG MATELJEVIC

Abstract. Let & be a quasiconformal (qc) mapping of the unit disk U onto a
Lyapunov domain. We show that # maps subdomains of Lyapunov type of U,
which touch the boundary of U, onto domains of similar type. In particular if / is
a harmonic qc (hqc) mapping of U onto a Lyapunov domain, using it, we prove
that /4 is co-Lipschitz (co-Lip) on U. This settles an open intriguing problem.

Mathematics Subject Classification (2010): 30C62 (primary); 31CO05 (sec-
ondary).

1. Introduction

Throughout the paper we consider the following setting (Ugc): Leth : U — D bea
K-qc map, where U is the unit disk and suppose that D is a Lyapunov domain(see
Definition 1.1 below). If in addition % is harmonic we say that £ satisfies the hypoth-
esis (Ungc). Under the hypothesis (Ugc) we prove that forevery a € T = {|z| = 1},
there is a special Lyapunov domain Uy, of a fixed shape, in the unit disk U which
touches a and a special, convex Lyapunov domain lyp(D), (see the Subsection 3.2,
in particular Definition 3.6, Proposition 3.8, and the definition (v) before the the
proof of Theorem 3.9)1 , of a fixed shape, in D, which touches b = h(a), such that
lyp(D), C h(U,) C Hp, where Hj is a half-plane whose the boundary line con-
tains b. We can regard this result as “a good local approximation of a qc mapping
h by its restriction to a special Lyapunov domain so that its codomain is locally
convex”. In addition, if £ is harmonic, using this result, we prove that 4 is co-Lip
on U. This settles an open intriguing problem in the subject and can be regarded
as a version of the Kellogg- Warschawski theorem for hqc. In order to discuss the
subject we first need a few basic definitions (see Section 2 for more details).

' Do and Dy (Dy C D) are defined in Definition 3.6 and Proposition 3.8, lyp(D), = T} (D; ).
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By |z| we denote the modulus of complex number z and sometimes by e we
denote Euclidean distance between complex numbers.

Definition 1.1 (Lyapunov curves).

(i) Throughout the paper by ¢, €, ¢, c1, €1, €1, k, k1 etc. we denote positive con-
stants and by u, w1 etc. constants in the interval (0, 1);

(i1) Suppose that y is a rectifiable, oriented, differentiable planar curve given by
its arc-length parameterization g. If

1g'(t) — &' (9)]
l=1lyp(y) = lyp(y, ) i= sup ————=>
tsefo) 1t — sl

we say that y is a C!"# curve. C'* curves are also known as Lyapunov (we
say also more precisely p-Lyapunov) curves. We call lyp(y) the Lyapunov
multiplicative constant. In this setting we say that y is (u, [1)-Lyap (of order
w with multiplicative constant /7). We say that a bounded planar domain D is
u-Lyapunov (respectively (u, [1)-Lyap), 0 < u < 1, if it is bounded by u-
Lyapunov((u, I1)-Lyap) curve y. In this setting it is convenient occasionally
to use /1 = [1(D) instead of lyp(y).

For a complex valued function defined on a domain in the complex plane C, we use
the notation Ay = I7(z) = |0f(2)| = [0 f(z)| and Af(z) = [3f (2)| + |0 f(2)], if
df (z) and 3 f(z) exist.

Note that Lyp(e, ¢) is a special domain of Lyapunov type with two cusps and
vertex at 0.

Definition 1.2 (Elementary Lyapunov curves and special Lyapunov domains).
The curve y(c, ) = y(c, u, ro) is defined, in polar coordinates (r, ¢), by joining
the curves ¢ = cr* and m — ¢ = ¢r#*,0 < r < rg, which share the origin (see
Example 2.7 for more details). An arc L, which is isometric to the curve y (c, ®)
we call an elementary Lyapunov (more precisely w-Lyapunov) curve. If A is the
isometry we call b = A(0) the vertex of L. If an arc C is a circle arc or elementary
pu-Lyapunov for some 0 < p < 1 we call it an elementary Lyapunov arc.
For &, ¢ > 0 and c|e|* < 7/2, we use the notation:

() Lo = L(e) = Lyp(e, ¢, ) = {w : clwl* < arg(w) < 7 — clw|*, |w| < &}.

If this set is subset of H, D it seems convenient to denote it shortly by Hy, Do
respectively.

A special domain of Lyapunov type (with possible two cusps) is a convex do-
main whose the boundary consists of two elementary Lyapunov curves. If the part
of boundary of a Lyapunov (u-Lyapunov) domain is an elementary Lyapunov curve
with vertex at b, we call it special Lyapunov(u-Lyapunov with elementary arc) do-
main with vertex at b.
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Note that the curve y(c, i) is C# but it is not C1#1 for ;; > p (at the origin),
and Lyp(e, ¢, i) is a special domain of Lyapunov type with two cusps and vertex
at 0.

As an application of the Gehring-Osgood inequality [6,32] concerning gc map-
pings and quasi-hyperbolic distances, in the particular case of punctured planes, we
prove Proposition 2.8 (we refer to this result as (GeOs)), which roughly stated says
that:

e If f is a K-qc mapping of the plane such that f(0) = 0, f(c0) = oo and
71,22 € C* = C\ {0}, then the measures of the convex angles between f(z1),
f(z2) and z1, 75 can be compared.

Using this we prove the part (IV) of Theorem 3.5 (we shortly refer this result as
(S-0)), which can be considered as our main result, and Theorem 3.9 which is a
global version of (S-0).

Theorem 3.9 gives an approximation of Lyapunov domains by special Lya-
punov domains and it is a crucial result for the application to hqc mappings, stated
here as:

(S-1) Suppose that D is a Lyapunov domain and & : U — D is a q¢c homeomor-
phism. Then for every a € T = {|z| = 1}, there is a special Lyapunov do-
main U,, of a fixed shape, in the unit disk U which touches a and a special,
convex Lyapunov domain lyp(D), , of a fixed shape, in D, which touches
b = h(a), such that lyp(D), C h(U,) C Hp, where Hp is a half-plane
whose the boundary line contains b. Using this we reduce the proof of co-
Lip property, stated here as:

(LO) If h satisfies the hypothesis (Upqc) then it is co-Lip;

to what we call locally convex case. In order to avoid confusion, note that in addi-
tion Theorem 3.9 states that there is a special, convex Lyapunov domain lyp(D);
(see Definition 3.6 in which we suggest also simple notation ﬁb instead of it and de-
fine ﬁb as image of ﬁo under 7p), of a fixed shape, in D, which touches b = h(a),
such that h(U,) C lyp(D), C Hp (see Figure 3.1). But we do not use this part in
the proof of (LO). In the first versions of the manuscript we use notation lyp(D), in
order to indicate that it is an elementary Lyapunov domain. But in order to simplify
notion we further use D, frequently instead of it. Set dp(w) = dist(w, 9D,).
By an elementary argument one can prove:

(L1) If w — b is in the direction of the normal vector nj of 3 D at b, then dp(w) ~
|w — b| if |[w — b| is small enough.

Note that the subject of hqc mappings has been intensively studied by the partici-
pants of the Belgrade Analysis Seminar (see Section 2 for more details), in partic-
ular by Kalaj, who proved that if 4 is a hqc mapping of the unit disk onto a Lya-
punov domain, then # is Lipschitz [13]. Kalaj also probably first posed the problem
whether £ is, in fact, bi-Lipschitz and proved if the codomain of 4 is C!-! then 4 is
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bi-Lipschitz [15]). Since there is a conformal mapping of the unit disk U onto a C'!
domain which is not Lipschitz, Kalaj’s result from [13] is nearly optimal. In [18],
it is shown that a harmonic diffeomorphism / between two C? Jordan domains is a
(K, K') quasiconformal mapping for some constants K > 1 and K’ > 0 if and only
if & is bi-Lipschitz continuous (note that (K, 0) qc is K-qc). These results naturally
lead to the following question (conjecture):

Question 1. If h : U — D is a hqc homeomorphism, where D is a Lyapunov
domain, is & co-Lipschitz (shortly co-Lip)?

In Theorem 4.1 we give an affirmative answer to Question 1.

The following simple statements play an important role in the proof of Theo-
rem 4.1 (co-Lip).

[26, Proposition 5] states that if /4 is a harmonic univalent orientation preserv-
ing K -qc mapping of domain D onto D’, then d(z) Ap(z) ~ dj(z),z € D. We need
only a corollary of this:

(5-2) d(x)An(z) = dp(z),z € D.

Using a slightly modification of the [26, proof of Theorem 1.1] (planar case) and
Kellogg’s theorem we can derive:

(S-3) Suppose that £ is a Euclidean harmonic mapping from a Lyapunov domain
G into adomain D and there is a half space H;, which touches a pointb € 9D
such that D = h(G) C Hp. Then e(h(z), b) > dg(z),z € G, where e here
denotes the Euclidean distance.

We say that a domain D is locally convex at a point b € 9D if there is a half space
Hp, such that D C Hp.

For the convenience of the reader we summarize that (S-1), (S-2) and (S-3),
are the main ingredients in the proof of Theorem 4.1 stated here as

Theorem 1.3. Suppose h : U — D is a hgc homeomorphism, where D is a Lya-
punov domain with C'"* boundary. Then h is co-Lipschitz.

Remark 1.4. Note that, in general, #(U,) is not convex and we can not apply our
consideration [26] (see the proof of Theorem 1.2 there) directly; but 2(U,) C Hp
is locally convex at b and we can apply (S-3) (note that we do not use the fact that
lyp(D), is a convex Lyapunov domain).

Recall that a mapping & which is (Uq.) satisfies (S-1). If 4 is in addition harmonic
then we can apply (S-3). This is crucial for the proof of theorem and it reduces the
proof to the locally-convex case.

Note that in order to apply (S-3), we introduce several definitions and prove
several properties which are mainly of technical character in the Subsection 3.2
(Global approximation).
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Definition 1.5 (Hypothesis (Sp0), (Hgc), (Hnqe), (Lyp-0), (ch), (H-0), (Uge),
(Unge)» (Ugc), and (U-1)). It is convenient to consider the following definitions:

(Sp0) If D is a Jordan bounded planar domain, O € 9D and D has the real axis as
a tangent at 0, with inner normal pointing upwards, we say that D has (Sp0)
property;

(Hge) If A 2 H M Dis K -qc map, where H is the upper -half plane and D is
a Lyapunov domain with the boundary d D positively oriented we say that &
satisfies (IHgc) property (with respect to D).

If D is a Lyapunov domain using rotation and translation if it is necessary we can
suppose that:

(Lyp-0) D is a Lyapunov domain and satisfies (Sp0);
(Hpge) If, in addition to (Hgc), A is harmonic, we say that & satisfies the hypothesis

(thc);

(ch) If h satisfies the hypothesis (IHgc), D satisfies the hypothesis (Lyp-0) and
h(0) = O,we say that /& satisfies the hypothesis (ch) (with respect to D);

(H-0) If & satisfies the hypothesis (ch), and in addition /4 is harmonic on H, we
say that £ satisfies the hypothesis (ngc) (shortly (H-0);

(Uge) If His replaced by U in the hypothesis Hg (respectively Hyqc) we denote
the corresponding hypotheses by (Uqc) (respectively (Unge));

(Ugc) If h satisfies the hypothesis (Ugc), D satisfies the hypothesis (Lyp-0) and
h(1) = 0,we say that h satisfies the hypothesis (Ugc);

(U-1) If, in addition to (Ugc), h is harmonic, we say that & satisfies the hypothesis
(U-1).

Let T, be the translation defined by T,,(z) = z+a. If h satisfies (Hgc) property with
respect to a domain G,a € R and b = h(a), then there is a mapping Ry = RgoT—p,
where Ry is a rotation around O, such that R, (G) satisfies the hypothesis (Lyp-0)
and therefore Ry, o h o T, satisfies the hypothesis (ch).z

Note that in this paper we consider only the planar case. The plan of the ex-
position is as follows: In Section 2, we consider the background, definitions and
basic properties of Lyapunov domains and we prove Proposition 2.8, which may be
considered to be a version of the Gehring-Osgood inequality related to the measures
of the corresponding angles. In Section 3, we prove Theorem 3.5 and Theorem 3.9.
In Section 4 we give the proof of Theorem 4.1(co-Lip).

The second author communicated the main result of this paper at CMFT 20172

2 Ry, is short notation for the mapping zb_l which appears in Definition 3.6.

3 See Cmft2017, Jule 10-15, Lublin, Poland (see http://cmft2017.umcs.lublin.pl), plenary speak-
ers.
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We also suggest to the interested reader to make rough picture and scheme
with corresponding notations in order to follow the manuscript; and first to read
Section 3 without proofs* and and then Section 4 with all details and finally to con-
sider complete proofs and technical details in Section 3. For some basic definitions
see Subsection 2.1 and 3.2, Definitions 3.6 and 4.5.

ACKNOWLEDGEMENTS. We are indebted to M. Svetlik for helping us in prepara-
tion this manuscript. In particular we thank him for making the Figure 3.1. We are
indebted N. Mutavdzi¢ and D. Kalaj, and in particular to the referee who patently
read manuscript versions, for useful comments which improved the exposition.

2. Background

The next example which is shortly discussed in [8,27], see also [20], shows that
there is a conformal map of unit disk onto C! domain which is not bi-Lipschitz.

Example 2.1. Set
Z

w=A(z) = — w(0) =0.
In
Z
Note Inl = —Inz, w'(z) = —(Inz)~' + (Inz)~? and w'(z) — 0if z — 0
throughout H. For r small enough A is univalent in U, = {z : Imz > 0, |z| < r}.
We can check that there is a smooth domain D C U;r such that interval (—rg, rg),
ro > 0, is a part of the boundary of D, D* = A(D) is C' domain and A is not
co-Lipschitz on D.

For basic properties of qc mappings the reader can consult Ahlfors’s lovely book
[4]. Let y be a Jordan curve. By the Riemann mapping theorem there exists a
Riemann conformal mapping of the unit disk onto the Jordan domain G = inty.
By Caratheodory’s theorem it has a continuous extension to the boundary. More-
over, if y € C**, n € N, 0 < a < 1, then the Riemann conformal mapping
has a C™* extension to the boundary (this result is known as Kellogg’s theorem),
see [34]. Conformal mappings are quasiconformal and harmonic. Hence quasicon-
formal harmonic (abbreviated by HQC) mappings are a natural generalization of
conformal mappings.

Remark 2.2. Note that:

a) The proof of Kellogg’s theorem for conformal mapping is not elementary and it
is based on some techniques which we can not adapt for hqc;

b) Since there is a conformal map of unit disk onto C! domain which is not bi-
Lipschitz (Example 2.1 above), it seems that the hypothesis that domains are
Lyapunov is essential.

4 Pay attention to Theorem 3.5(IV).
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By a) and b) in mind, it seems that we need new approaches to study hqc map-
pings.

Recall that HQC mappings are now a very active area of investigation and
some new methods have been developed for studying this subject (see for example
[28] and literature cited there). Concerning the background we mention only a few
results which are closely related to our results.

It seems that O. Martio [24] was the first one who considered HQC mapping of
the unit disk. The author of this paper started considering distortion property of hqc
mappings in 1988 /89 >, see [27, Appendix 3]. Later M. Pavlovi¢ proved in [31] that
HQC mappings of the unit disk are Lipschitz. An asymptotically sharp variant have
been obtained by Partuka and Sakan [29]. Among other things KneZevi¢ and the
second author in [19] showed that a K-qc harmonic mapping of the unit disk onto
itselfis a (1/K, K) quasi-isometry with respect to the Poincaré and Euclidean met-
rics. For bi-lipschitz approximations of quasiconformal maps see Bishop [5]. M.
Mateljevi¢ [26] and V. Manojlovi¢ [21] showed that hqc mappings are Bi-Lipschitz
with respect to quasi hyperbolic metrics. Since the composition of a harmonic map-
ping and a conformal mapping is itself harmonic, using the case of the unit disk and
Kellogg’s theorem, these theorems can be generalized to the class of mappings from
arbitrary Jordan domains with Lyapunov boundary onto the unit disk. However the
composition of a conformal and a harmonic mapping is not, in general, a harmonic
mapping. This means in particular, that results of this kind for arbitrary image do-
mains do not follow directly from the case in which the codomain is the unit disk
or the upper half-plane and Kellogg’s theorem. In [17], Kalaj and the second author
show how to combine Kellogg’s theorem with the so called inner type estimate and
that the simple proof in the case of the upper half-plane has an analogue for C?
domains; namely, they proved a version of the “inner estimate” for quasi-conformal
diffeomorphisms, which satisfies a certain estimate concerning their Laplacian. As
an application of this estimate, it is shown that quasi-conformal harmonic mappings
between smooth domains (with respect to the approximately analytic metric), have
bounded partial derivatives; in particular, these mappings are Lipschitz. The discus-
sion in [17] includes harmonic mappings with respect to (a) spherical and Euclidean
metrics (which are approximately analytic) as well as (b) the metric induced by the
holomorphic quadratic differential.

Although the following two statements did not get attention immediately after
their publications, it turns out, surprisingly, that they play an important role in the
proof of Theorem 4.1 (co-Lip).

Proposition 2.3 ([26, Corollary 1, Proposition 5]; see also [21]). Every e-har-

monic quasi-conformal mapping of the unit disc (more generally of a strongly hy-
perbolic domain) is a quasi-isometry with respect to the hyperbolic distance.

5 During the visiting position at Wayne State University, Detroit, 1988/89.
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Theorem 2.4 ([25]). Suppose that h = f + g is a Euclidean orientation preserv-
ing harmonic mapping from U onto the bounded convex domain D = h(U), which
contains a disc B(h(0); Ry).

(I) Then |f'| = Ro/40onU;
(I1) Suppose, in addition, that h is gc. Thenl, > (1—k)|f'| = (1—k)Ro/4 on U;
(1) In particular, h~" is Lipschitz.

See also D. Kalaj doctoral thesis [12, Corollary 1.3.11], and Partyka and Sakan [30].
Concerning the Lipschitz and bi-Lipschitz properties of hqc, Kalaj [13,15] proved:

Theorem 2.5. Suppose h : D| — D; is a hgqc homeomorphism, where D and D,
are domains with C1*, 0 < u < 1, boundary.

(D) Then h is Lipschitz;
(Y) If, in addition, D, is convex, then h is bi-Lipschitz;
(1) If w = 1, then h is bi-Lipschitz.

With this theorem in mind Question 1 is natural. The proof of part (a) of [13, Theo-
rem 2.5] is based on an application of Mori’s theorem on quasiconformal mappings,
which has also been used in [31] in the case D; = D, = U, and a geometric lemma
related to Lyapunov domains.

2.1. Notation

Here we give a few basic definitions.
Definition 2.6 (qc).

(i) By C we denote the the complex plane and by T the unit circle. For » > 0 and
w € C, we denote by B(w, r) and the C (w, r) the disk and circle of radius r
with center at w;

(ii) By C* we denote the punctured complex plane C \ {0}, by H* the lower half
plane {z : Imz < 0} and by U the upper half disk {z : Imz > 0, |z] < 1};

(iii) Recall that, for a complex valued function 4 defined on a domain in the com-
plex plane C, we use the notation

My =1n(2) = |8h(2)| — |9h(z)| and Ap(z) = |9h(2)| + [0h(2)],

if 9h(z) and dh(z) exist. A homeomorphism #: D — G, where D and G are
subdomains of the complex plane C, is said to be K-quasiconformal (K-qc or
k-qc), K > 1,if f is absolutely continuous on a.e. horizontal and a.e. vertical
line in D and there is k € [0, 1) such that

|hz| < klh;| ae.on D, 2.1
where K = %, ie. k= g—_ﬂ Note that the condition (2.1) can be written as
A h hz

D, :Z_h:wf , (2.2)
A lhz] = |hz]
where K = %,i.e. k= Ilg—;{;
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(iv) Let @ ¢ R” and Rt = [0, o0) and f, g : @ — RT. If there is a positive
constant ¢ such that f(x) <cg(x), x € 2, we write f < g on Q. If there is
a positive constant ¢ such that

1
-8 = f(x) =cglv), xeQ,
c

we write f & g (or f ~ g ) on Q.

To gain some intuition about Lyapunov curves we give a basic example:

Example 2.7. Forc > 0,0 < i < 1,and xg > 0, the curve f(c, u) = f(c, i, xo)
in the xy-plane which is defined by

(i) y = clx"", x| < xo

is C1* at the origin but is not C'#1 for u; > w. It is convenient to write this
equation using polar coordinates z = re’¢ in the form: r sin @ = cr!*#(cos @) T+,
Next, if 0 < ¢ < w/2, we have sing = cr*(cos (p)“’", 0<r <rg,wherergisa
positive number. Since sing = ¢ + o(¢) and cos ¢ = 1+ 0(1), we find ¢ = cr* +
o(1) when ¢ — 0.If 7/2 < ¢ < 7, we have sin(7 — @) = sing = cr*(cos @) T+,
0 <r < rg, where rg is a positive number. Since sin(mr —¢) =7 — ¢ + o(wr — @)
and cosp = —1 4 o(1), we find 7 — ¢ = cr* 4+ 0o(1) when ¢ — 7. The curve
y(c, u) = y(c, u, ro) defined by joining the curves ¢ = cr** and 7 — ¢ = cr”,
0 < r < rg, which share the origin, has similar properties near the origin to the
curve defined by (i). The reader can check that the curves f(c, u) and y(c, n) are
C!# at the origin but are not C1*1 for g > p.
Note that if a curve satisfies ¢ < cr#, then it is is below the curve y (c, u).

2.2. Gehring-Osgood inequality

We can compute the quasihyperbolic metric k on C* by using the covering exp :
C — C*, where exp is the exponential function. Let z1, zo € C*, z1 = r1ei'l, z, =
ryei2 and @ = 0(zy, z2) € [0, ] the measure of the convex angle between z1, 23.
We use

2

In2 +62.
r

k(z1,22) =

This well-known formula is due to Martin and Osgood.

Let £ = £(z1) be the line defined by 0 and z;. Then z, belongs to one half-
plane, say M, on which £ = €(z;) divides C.

Locally, denote by In a branch of Log on M. Note that In maps M conformally
onto a horizontal strip of width 7. Since w = In z, we find that the quasi-hyperbolic

metric

d
|dw| = ﬁ
|z|
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Note that p(z) = ﬁ is the quasi-hyperbolic density for z € C* and therefore

k(z1,22) = lwy — wz| = [Inz; —Inzy|.

Let z1,z20 € C*, w; = Inz; = Inr; 4+ if;. Then z; = rie'" and there is t, €
[t1,t1 + ) ortr € [t; — 7, t1) such that wo = Inzp = Inry + itp . Hence

k(z1,z2) =\/

Now using the quasi-hyperbolic distance k as a corollary of the Gehring-Osgood
inequality, we can prove the following result which we will need.

2
+ (p — 1)?.

r
In =
r

Proposition 2.8. Let f be a K-qc mapping of the plane such that f(0) = 0,
f(o0) = o0 and a = KL, If 21,7220 € C*, |z1| = |z2| and 6 € [0, 7] (respec-
tively 6* € [0, 7r]) is the measure of the convex angle between z1, z» (respectively

f(z1), f(z2)), then

0* < cmax{6“, 0},
where ¢ = ¢(K). In particular, if § < 1, then 0% < c6%.

Proof. By the Gehring-Osgood inequality,

k(f(Zl)» f(22)> < cmax{k(z1, 22)%, k(z1, 22)},

where ¢ = ¢(K). It is clear that 6% < k(f(m), f(Z2)). Since |z1| = |z2| and
k(z1,z2) = tp — t; = 0, we get the desired result. O

3. Main result

We first need some definitions.
Elementary Lyapunov domains, Arc-chord constant b, and the second Lya-
punov constant l%, = 1}2,.

Definition 3.1 (Elementary Lyapunov domains).

(i) Recall for r > 0 and w € C, we denote by B(w, r) and the C(w, r) the disk
and circle of radius r with center at w. In particular, we use notation B(r) and
the C(r) for the disk and circle of radius  with center at O and we denote by
C ™ (r) the half circle in the upper half plane;

(i) Definition of L, (¢). Further for v > 0 let the circle C(iv, r) touch the curve
¥y = y(u, c¢) at points w; and wy (say that u; < u) and let [T be the upper
half arc of the circle C(iv, r) joining w; and w, and y; be the part of y over
[uy, us], where uy = Rewy, k = 1,2. Then the domain enclosed by /™ and
y1 we denote by Lyp(r, ¢). If €° is maximum of » > 0 for which Lyp(r, ¢)
belongs to L(g), we denote the domain Lyp(e®, ¢) by Lyp~ (e, ¢). If A is an
Euclidean isometry and A(0) = b, we denote the domain A(Lyp~ (¢, c)) by
L, (¢) = Lyp, (&, ¢) and call it an elementary u- Lyapunov domain.
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Although the boundary of an elementary Lyapunov domain consists of an elemen-
tary u- Lyapunov arc yp and a circle arc Cp with common end points, say ag and
bo note that it has no cusps because yp and Cp have common tangents at points ag
and by.

Definition 3.2 (arc-chord condition). Let C be a rectifiable Jordan closed curve
and 71, z2 finite points of C. They divide C into two arc, and we consider one with
smaller Euclidean length and denote its length with d¢ (z1, z2).

(a) The curve C is said to satisfy the arc-chord condition if the ratio of this length
to the distance |z; — z2| is bounded by a fixed number bc = b’ (which we
call arc-chord constant of C) for all finite 71, zp € C;

(b) The curve C is said to satisfy the arc-chord condition at a fixed point z; € C if
the ratio of the length dc (z1, z) to the distance |z; — z| is bounded by a fixed
number b¢ (z1) = b “(z1) for all finite z € C;

(c) If D is a u-Lyapunov domain bounded by a curve y, we define I, = lr(D) =
l%) = 1)2, = %ll b)l/ﬂb , and we call it the second Lyp-constant, where /| =
lyp(y, w).

3.1. Auxiliary results

Suppose that D satisfies the hypothesis (Lyp-0). Further, one can prove:

(c1) It is known that that a C'! curve satisfies the arc-chord condition;

(d) There is r; > 0 such dD N B(ry) is graph of a function F,v = F(u), —u; <
u < up, where ui,up > 0, and that the set V = {(u,v) : —u; < u <
uz, F(u) < v} N B(ry) belongs D, where u, v are the cartesian coordinates in
w-plane and w = u + iv;

(e) Let D be a bounded Lyapunov domain, ay € D and let i be a conformal map-
ping of D onto U with ¥(ap) = 0. Then there are constants k; = k,;(D, ap)
and ky = k,(D, ap) (which we call the lower and upper Kellogg multiplica-
tive constants of D with respect to ag respectively) such that ki|z; — z2| <
¥ (z1) — ¥ (z2)| < kalz1 — z2l, 21,22 € D;

(f) Mori’s theorem. Let f : U — U be a surjective K-qc mapping with f(0) =0
and @« = 1/K. Then | f(z1) — f(z2)| < 16]z1 — 22|%, 21,22 € U, i.e. f is
«-Holder continuous; ‘

(g) Let the mapping A is given by A(z) = ii; +i. Then A(i) = i and A maps
H onto B; = B(i, 1). Since A'(z) = we first find |A'(z)| < 2 and
therefore |A(2)| < 2|z],z € H;

(h) Suppose that D is a bounded convex planar domain, f : D — C is holo-
morphic mapping and zo € D. Then there is a constant ¢ > 0 such that
| f(2) — f(z0)] <clz — z0l,z € D. The proof is straightforward;

(i) Let f be a K-qc mapping of the half -plane [H on a domain D such that f(0) =
0, and suppose that d D is a K -quasi-circle and @ = K ~!. Then f has a K1-qc
extension to a map f of the complex plane, which by abuse of notation we
denote sometimes again by f if there is no possibility of confusion.

|z+i]?”
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Definition 3.3.

(1) Ifz1, z2 € C* by 6(z1, z2) we denote the measure of the convex angle between

21,225
(i1) For p € C, set

X@) =X,0) =L zeC and Y=Y, =x"";
=P
(iii) If f is homeomorphism of C onto itself, we define p = p(f) = f~1(c0);
(iv) If y isan arc in Cand Z : y — C* continuous map by A, ArgZ we denote
the variation of ArgZ along y.

Note that X and Y are Mdbius automorphisms of C with the following properties:
Y(2) = —%, X©0) =Y0) =0, X(p) = 00, X(c0) = p, Y(p) = oo and
Y(co) = —p. If we set f = foX,then f = fo Y. X, and Y, map lines
lg = {re'f : r € R} onto the circles which contain 0 and p. Since Y, map the circle
C (0, | p|) onto line L which does not contain 0. If z, = ¢~*/"p and Z, = elmp,
then 6(z),, z,) — 0 and 6(Xz),, Xz,) — 6o, 60 # 0, if n — oo. This example
shows that we need to adapt a version of Proposition 2.8 to hold for the mappings
Xp.

Proposition 3.4. Let f be a K-gc mapping of the plane C onto itself, f(0) = 0,
p=f"Yo0),a =K andrg = |p|/2.

D (@) Then f = f oY,whereY =Y, f is K -gc mapping of the plane C onto
itself, with f(0) = 0 and f (c0) = 00;

(b) Ifz1, 22 € C*, |z1]| = |z2] and 6 € [0, ] (respectively 6* € [0, r]) is the
measure of the convex angle between 71, zo (respectively f(z1), f(22)),
then 6* < cmax{0%, 0}, where ¢ = c(K). In particular, if 0 < 1, then
0% < cOY;

(D Ifz1, 22 € C* N B(0, r9), |z1| = |z2l, then

0(Xz1, Xz2) < (L +7r5")0(z1, 22);

() For given Hé = Lyp(e, ¢, ), € < ro, there is Hy = Lyp(¢e1, c1, 1) such that
Y (Ho) C Hy.

Proof. (I) Set f = f o X. Since X(p) =ocoand p = f_l(oo),we have f(oo) =
oo. Since X is Mobius automorphism of C, f is K-qc. By (a) and an application
of Proposition 2.8 to f, (b) follows.

D) Let |z1] = |z2] = R < rp. If necessary we can re-numerate points such
that zx = Re'* ,k = 1,2, <t) < t; +m and [ = I(z1, z2) be the circular arc
defined by /(?) = Re'', 1) <t < t). We are going to estimate the variation A;ArgT
and A;Arg X. Since X (z) = X,(z) = % , We can write:

(i) arg X = argz —argT + arg p, where T = z — p; hence
(i) AjArgX < AjArgld 4 AjArg T, where 1d is the identity map.
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Since T'/T = 1/T, for z = re'’,

T .
(argT); = Im (?ire”) .

For z € B(0, rg), we have |(arg T);| < |Z+p| < 1/rg, and therefore

0(Tz1, Tzp) < AjArgT < V&lllz -1l
Hence, by the item (ii), for |z1| = |z2] = R < rp,
0(Xz1, X22) < AjArgX < (1475") I — 1l

(IIT) We only outline a proof. Set { = Y(z),0 = argz, ¢ = arg¢,z =x +iy =
rel?, t = & +in = pe'?. So we define the functions 8 = 0(p, @), ¢ = @(r, 6),
p=p@r0)andr =r(p, ).

Since Y is conformal mapping on B(0, rp) and Y (0) = 0, by the item (h) in
Subsection 3.1, we find p(r,0) ®randr =r(p, p) = p.

LetZ € y == y(e,e,p), p = |¢] and 2/ = X(p) = r(p,0)e’?, where
0’ =0(p,0).

Case 1. Suppose that p = p1 +ip2, p2 > 0.

Since X (00) = p, X maps the coordinate axis 7 = O (in the ¢ -plane) onto the circle

2
K = C(i Ry, Rp) which contains p, where Ry = Ro(p) = % depends only on p.

Y, maps B = B(i Ro, Ro) onto H. Let K’ be semi circle y = Ry—,/ Ré — x2. Then

0" ~ x(p) < r(p) ~ r. By the part (I) of the Proposition, 0(z, 7') < ¢ < p* < rH.
Hence, since § < 0(z,7') +6’, we find 8 < r# (thus we can choose 1] = ).
In a similar way we consider:

Case 2. Suppose that p = pg = p1 +ip2, p2 < 0. In this case ¥, maps B =
B(—i Ry, Ry) onto H*.

Case 3. po € R. In this case Y, maps H onto itself. O
Theorem 3.5.

@ Suppose:

(i) his a K-qc map from H onto a Lyapunov domain D. Then h has a K1-qc
extension to a map h of the complex plane;

(X) If h satisfies the hypothesis ch, then there is a constant ly = 16 2"‘1(1_1 which
depends on K and the Kellogg multiplicative constant of D (with respect to
ap = h(i)) ki =k (D, ap); such that:

(i) |h()| < llz|VK1 ifz e Hand |z] < 1;
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(D) If D satisfies the hypothesis (Lyp-0), then there are constants € > 0 and ¢ > 0
such that for |\w| < € (here ce™ < ) and w € 9D, either |arg(w)| < c|w|*
or |t —arg(w)| < c|w|* where arg is the branch of the argument determined
by —m /2 < arg(w) < 31 /2 and moreover that set

Do = Do(e) = Lyp(e, ¢, ) = {w : clw|’* < arg(w) < w—clwl” . [w| < e}

satisfies Dy C D, where c¢ depends only on the Lyapunov multiplicative con-
stant of 0 D;

(iii) We can choose ¢ = I = l%) = %ll b}1,+“, where |} = lyp(y) and b, =

by¢ is the arc-chord constant of y ;

(IV) Then there is a constant c; = c1 (i, €, ¢, K1, I3, | p|) such that the region
Ho = Ho(e) = {2 1lz"/5T < arg(@) < 7w = eq[21/57, |2l < (e/10)""

satisfies:

(a) h(Ho) C Do;
(b) There are constants €3, c2, 2 such that D, C h(Hyp), where D, = Lyp(e2,
€2, 12).

Note that Hy = Ho(e) = Lyp(ey, c1, 1), where 1 = ;L/Kl2 and g1 = (g/10)%1.

Recall that the hypothesis (i) (together with some technical requirements 4 (0) = 0
and that D satisfies (Sp0)) in the theorem is essentially equivalent to the hypothesis
(ch). From the proof below it is clear that the hypothesis (i) implies:

(i1): h is a gc mapping of H onto the quasidisk D (which is much weaker then (i)),
and that the statement (I) holds under the hypothesis (i1).

If in addition to (il), £(0) = 0 and 0 € 9D, we leave to the interested reader to
state and prove a corresponding version of the statement (IT). Since 2! is also qc
the proof of (IV) of Theorem 3.5 shows that the following holds:

(IV’): for each special domain of Lyapunov type Xo with vertex at 0, there is a
special domain of Lyapunov type Yy with vertex at O such that Yo C h(Xop).
In particular, we can choose Xo = Hp and Yy to be an elementary Lypunov
domain Dy such that D, C h(Hy).

On the Figure 3.1 the domains D, Dy, D, , Hy and h(Hp) are enclosed by lines
whose colors are red, blue, green, violet (on the left) and violet (on the right) re-
spectively.
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Figure 3.1.

3.1.1. Proofs

Proof of (I). Since D is C1'*, D is a quasi-circle and therefore by the item (i) from
Subsection 3.1, the statement (I) follows. ]

Proof of (Il). We suppose that agp = h(i) is given. Let By = B(i;1) and Ry a
conformal mapping of B; onto H such that R; fixes 0 and i and R, a conformal
mapping of D onto Bj such that R2(0) = 0 and Rx(ap) =i.Seth = Ry oh o R;.
Then h(0) = 0, h(i) = i, h maps B onto itself, 7 = R, oho Ry'. Setw =
h(z), ¢ =R ' (2),¢ = Ry '(w)and ¢’ = h(¢). Note that R, ' (H) is a disk. By the
item (g) in Subsection 3.1, we find |R1_1(z)| < 2|z|,z € H. Since D is a Lyapunov
bounded domain, |R2_1(§’)| < k3|¢'|, ¢’ € By, where k3 = k{(D, ap)~!. Ttis
clear that & is K1-qc with i(i) = i. Now an application of Mori’s theorem to /& on
B1, shows that & is « -Holder continuous on B with a multiplicative constant 16 ,
where @ = 1/K and in particular |¢'| = |h(¢)| < 16]|¢|¥. Since h(0) = 0, there is
aconstant /[y = [o(K1) such that the part (ii) of the theorem holds: |k (2)| < lp|z] 1/K1
ifze Hand |z]| < 1. O

Proof of (Ill). Setl; = lyp(y). Since D satisfies the hypothesis (Lyp-0), the item
(d) in Subsection 3.1 holds. By the item (d), there is €; > 0 such that the trace of
the path y; which is defined in (d) by v = F (1), u € [—e€y, €1], where F is C!,ison
dD. Lety, = dD\tr(y1). Then there is a constant €, > 0 such that y» has no points
in the disk B(ez). Let L be the length of 4D and y a parametrization of the pos-
itively oriented boundary d D by the arc-length parameter s, where s € [0, L] and
5(0) = 0 (we need arc-length parameter only around 0). Set 7(s) = u(s) + iv(s)
and w = Re'Y. Then

()] = [v(s) —vO)] = [v/(s")]s < 15",
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where ¢; = /1. Since a quasicircle satisfies the arc-chord condition, we have the
following:

(al) Ifa C! curveis a quasicircle, then s < c2R, where ¢c; = b, = bf,’c.
Also we can prove the following version of (al)b

(a2) By definition of Lyapunov curve 7'(t) = 1 +€(t), where |e(¢)| < ct*. Hence
y(s) = f(; 7/ (¢)dt and therefore there is T = 7(c, ) such that s < 2|y (s)]
fors <.

Hence, there is € > 0 such that:

(iv) largp(s)| < 7 fors € (0, €];
(v) 7 <arg y(s) <35 fors € [L —¢, L).

We can choose € < €. Hence, for s small (0 < s < ¢€), we find
2. 2 1+
R|¥| < —R|sin(¥)| = —v(s) < c3s ™, where c¢3=—c,
b4 b4 b4

and therefore there is a constant ¢ such that:
(vi) |¥| < cR™, where c is given by the item (iii) in Theorem 3.5.
Using the mapping A(w) = —w and (vi), we find that:
") |[m — V| <cR*forse[L—¢,L).
From (vi) and (vi’), (IIT) follows. L

Proof of (IV). We use the notation from Proposition 3.4. Set h=hoV »» Where
p = h~!(c0) € C. By the statement (I) and easy part of Proposition 3.4, h = hoY,,
and h is K|-qc mapping of the plane C onto itself, with h(0) = 0 and h(c0) = co.
We use notation: polar coordinates ¢ = pe'¢ in the ¢-plane and w = Re'Y in
the w-plane. Recall by (III) there is a curve y = y(c, 4, Rg) in D. Set yp: W =
Yo(R) = cR*,0 < R < Ry. Hence there is a part C; of the boundary of D around
0 (say the right half part) which is below )y and which defines the curve y;.

Case 1. We first prove for h. Letw = Re'Y € yo and let w' = Re'Y' be the
intersection of the circle Tg with y1. Then 6(w, w') < (W] 4+ |¥']) < 2|¥|. Set
¢ =h"Y(w)and ¢’ = h~'(w’). Since yy is the right half of y = y(c, n), ¢’ > 0
and ¢ = 6(z,7'). Hence using the quasihyperbolic metric k on C* (Proposition
2.8), we have ¢ < koW¥, where « = 1/K;. Since, by (II), R < cp“, we find
@ < Kz(\llo (cp"‘))a and therefore we get ¢ < Kgro‘z“. Thus we find:

(vii) The curve h! (yo) is below the curve y (k3, o).

6 We observed it after writting a revision of the manuscript.
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Note that if a curve satisfies ¢ < cp*, then it is is below the curve y (¢, i). Recall
that we set u; = /L/Kl2 and &1 = (g/lp)X1. Note that yy is the right half of
y = y(c, i) and that in a similar way as above we conclude that:

(viii) fz*l(y(c, n)) is below the curve y (c1, (1), p < €1.

By the part (i1) of the theorem, h(B(e1)) C B(¢) and it is readable that it yields (a).
Since 2! is also gc (a) implies (b). Thus we have proved (IV) for h with ¢ 1 = k3.

Case 2. Proof for h. By Case 1, there is H such that h(HO) C Dy. By Proposition
3.4 there is Hy such that Y(Hy) C H; and it completes proof. Thus we have
proved (a).

Let us prove that (a) implies (b). Namely, since h~1is also qc, by (a) there is
D), such that h~1(D() C Hy and therefore D) C h(Hy). O

3.2. Global approximation

Concerning the previous theorem, note that ;1 < @ and €1 < ¢, and in particular,
one can derive (see (IV’)):

(a) Thereis e = €(e, c) < &1 such that (L") c L’ C Do, where L' = Lyp~ (e, ¢)
is s-Lyapunov and L' = Lyp~ (e, ¢) is u1-Lyapunov and L' C L’. Hence,
since 1~ ! is also qc, A~ (L") ¢ L’ and therefore L' c h(L');

(b) In a similar way, there is gl < € and ur < 1 such that h=Y(LY) c L', where
L' =Lyp (€, ¢) is ua-Lyapunov.

Hence we derive:

(IVa) If h satisfies the hypothesis ch, then L' c h(L") c Dy.

Note that it is easy to transfer Theorem 3.5 to the setting of the unit disk. Now we
show that the corresponding version of it holds with U instead of H.

We first need a version of (IV’) for U with special Lyapunov convex domains.
Note that Hy has two cusps. In this subsection by Dy we denote the set defined in
Theorem 3.5.

Definition 3.6 (lyp(D)p). Here we define A, R;, T, and h,,.

(i) Consider the conformal mapping Ap = A, deﬁned by Ay(z) =
H onto U such that A;(0) = 1 and Ay(—4i) =

(ii) Fora = ¢!“ € T define R,(z) = eio‘z, and for b € 8D if the unit inner normal
np = e'P at b exists, we define Tj(w) = T,(w) = —iePw + b;

(iii) If D satisfies the hypothesis (Lyp-0), we define ﬁb =T (bo), where ﬁo is
defined in the item (A) below. If we wish to indicate that ﬁb is an elementary
Lyapunov domain we use notation lyp(D)p;

(iv) Fora € T, set h, = hZ = Z;] ohoR,;,a € T,where b = h(a), and let
h=hoAgand hy = hy o Ag.

= 45e: Ag maps
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It is clear that Z;l is defined by Zb_l (z) = ietP(z — b), L;l (b) =0, and if D has
the tangent at b € 9 D then L;l (D) has (Sp0) property.

(v) Next suppose that D satisfies the hypothesis (Lyp-0) (see Definition 1).
We will prove that(see also Proposition 3.8):

(A) There is &» > 0 such that ﬁo C Tb_] (D) for every b € 9D, where ﬁo =
Lyp™ (€2, ©);
(vi) In addition to (v) suppose that % is a qc mapping of U onto D and h(1) = 0

(that is & satisfies the hypothesis Ugc).

Then £ is a qc mapping of H onto D with /(0) = 0.
It seems useful to consider the following properties, which is an immediate
corollary of (IVa):

(B) If h satisfies the hypothesis Ugc, there are corresponding elementary Lya-
punov domains H' c H and D! C D with vertex at 0 such that D!

fz(H hc Dy. See Proposition 3.8 for a stronger result;
(vii) Further set Uy = Ag(H') and U! = Ao(DL) and set U, = R, (Uy).

Note that H'! is a special 11-Lyapunov. Thus we have:
(©) UL c h(th) C Dy.

In order to state a corresponding form of (IVa) for U, it is convenient to call V =
Ap(L) an elementary domain if L is elementary (see also Proposition 3.4). Now,
by (IVa), it is clear that we have:

(IVb) If h satisfies the hypothesis [Ugc and L is an elementary Lyapunov domain
with vertex at O in H, then there are elementary Lyapunov domains V; and
V! in U with vertex at 1 such that V! ¢ h(V}) C L;

(D) Now, we also suppose that & satisfies the hypothesis Ugc. Recall by the

item (i) from Subsection 3.1, then % has a K|-qc extension to a map h of the
complex plane.

We can choose p = p such that h(p) = oo and |p| > 3. Set p = Aal(ﬁ),
Do = h;l(oo) and p, = Aal([)a). Check that p ¢ h(B(0,2)) and therefore

|p| > 2.Hence, since py = h;'(c0) = e7i%p, we find:

(DO) h;l(oo) ¢ h(B(0, 2)) and therefore, | py| > 2 for every a = ¢'“ e T.

Note that 7T o h, = h o R, and that A satisfies the hypothesis 00, (U-1)if and only

qe
if h satisfies ch,

In addition, we need a property of C! domains. Suppose that domain D is
uv-plane.

(H-0) respectively.
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Lemma 3.7.

(i) Suppose that a C' domain D satisfies the hypothesis (Sp0);
(I) Then there is r > 0 such that for each w € 9D, Z;l (@D)N B0, r) is a graph
with respect to uv-coordinates.

Proof. Let L be the length of dD and y : [0, L] — 9D a parametrization of
the positively oriented boundary 9 D by the arc-length parameter s. We also write
w = p(s), where s € [0, L] and s(0) = 0. Here there is the function s = s(w)
which is the inverse of the function w = 9 (s) and which maps D onto [0, L].
Since ' is continuous on [0, L], it is uniformly continuous on [0, L]. The function
s = s(w) is continuous on 9D and hence C(w) = p’(s(w)) is continuous on 9 D
and uniformly continuous on d D. Therefore there is r, > O such that:

(1) |argp'(s2) — argp’(s1)] < 7/8 for |wy — wi| =< rz, where wx = P(si),
k=1,2.

Let us prove (I) for » = r,/2. Contrary, suppose that (I) is not true. Then for some
wo € D, D(wop, r) := (D) N B(wo, r) is not a graph with respect to coordinates
determined by unit vectors p’(w) and n,,. Hence there are two points w; and w; in
this set such that wjw, is parallel to the normal n,,, of dD at wy. Therefore there
is w3 in this set such that y'(s) at w3 is parallel to the normal n,,,. This contradicts
(1). Thus we have (I). O

Using the approach in the proof of statement (IIT), (IV), (IV’) of Theorem 3.5,
(IVb) and (iii), we can prove:

Proposition 3.8.

(a): Suppose that D satisfies the hypothesis (Lyp-0);
(D): There is an elementary Lyapunov domains 130 in D with vertex at O such that
Dy C 1, (D),
(b): In addition to (a) suppose that h : U — D is a gc homeomorphism;
(ITa): Then there is a Lyapunov domain Ui in U with vertex at 1 such that for every
aeT,ha(Uy) C Do;
(Ib): In addition, there is an elementary Lyapunov domain D, = Lyp(g , co, |4)
in D with vertex at 0 such that D, C ha(ﬁl)for everya € T;

(II): Dy C ha(Uy) C Dy.

Note that in general 4, (U) is not a fixed domain for @ € T and therefore we need
first to consider the part (I) and then the part (II).

Proof. (I). Dy satisfies the hypothesis (Lyp-0) for every b € dD. Consider the
family D := {Dp = L:I(D) : b € 0D}. For b € 9D define ¢(b) to be maximum

7 Note that we use the domains with”-notation if we have uniform estimates.
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of & for which Lyp(e, [(D)) C Dy, where (D) is the second Lyp-constant. By
Lemma 3.7, there is r > 0 such that D, N B(r) is a graph with respect to uv-
coordinates for each b € dD. Since all domains Dy, b € 9D, have the same
Lyapunov multiplicative constants, using (iii) and the approach in the proof (III) of
Theorem 3.5, we can prove that there is g9 > O such that e(b) > ¢g forallb € 9D,
and therefore an elementary Lyapunov domain 130 such that Do C Dy, for every
b € aD and (I) follows.

In addition, it seems that we can prove that the function e(b) = ep(b) is
continuous with respect to b.

(ITa): Recall that we use the notation ag = h(0) and fza = hg o Ay. Let
wp be a conformal mapping of Dj onto U such that wy (Z;l (ap)) = 0 and o’ =
wp © L:l. Since w?(0) = 0, by the Kellogg-Warshawski theorem there are two
positive constants /1 and I, such that [} < |o'(w)| < I, w € D. Since L:l is a
Euclidean isometry, we have |(Z;1)’ | = 1 on D, and therefore /| < |a)/b(w)| <,
w € Dyp. Hence, since wp o h, maps U onto itself, wp o h,(0) = 0 and h,(1) =0
there is a constant /° which depends on K and the Kellogg multiplicative constant
of D(with respect to ag), such that for all a € T, |h,(z)| < 1]z — 1|/K if |z] < 1.

Using A, we can get the corresponding result for hg: there is a constant I
which depends on K and the Kellogg multiplicative constant of D, such that for
alla € T,

(iv): ha(2)] < lolz|/K1if |z] < 1,Imz > 0.

The functions ﬁa, a € T,are Ki-qc. By (iv), an application of (IVb) to the func-

tions fza ,a € T, and the statement (DO0) (from Subsection 3.2), and the item (iii) of
Proposition 3.4 with ryp = 1 to the functions 4., a € T, show that there is a Lya-

punov domain I:IO in H with vertex at O such that fza (I:IO) C 150. Set U 1= AO(I:IO).
It yields the proof of (II).

(ITb) Using (IVD), since the corresponding parameters are the same for /4 and #,,
one can get (III);
(IIT) Tt is clear that (Ila) and (IIb) can be stated as (IIT). O

It is convenient to introduce the following notation:

(v) Forb € aD, set D, = lyp(D), = T,(Dy) and fora € T, U, = Ra(Uy).
If we wish to indicate that D, is an elementary Lyapunov domain we use
notation lyp(D), .

Now using Euclidean isometry 7', it is easy to get the corresponding results of the
property (III) of Proposition 3.8 for domains with vertexes at b. Namely, by the
property (IIT) of Proposition 3.8 we have T',(D,,) C Zb(ha(Ul)) crT, (130). By
the definitions 7, o ha(Ul) =ho Ra(ﬁl) = h(ﬁa) and therefore the part (I) of
the next theorem follows. By (L1) (see the introduction) we get the part (I[). So we
have the crucial result:
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Theorem 3.9. Suppose that D is a Lyapunov domain and h : U M Disa qc
homeomorphism. Then:

(I) For everya € T,lyp(D), C h(Uy) C lyp(D)p, where b = h(a);
(D) If w — b is in the direction of the normal vector np, then, dp(w) =~ |w — b| if
&y = &2(c2, W2) is a small enough constant.

4. Proof that & is co-Lipschitz

Here we give a proof of the co-Lip property:

Theorem 4.1. Suppose h : U M Disa hgc homeomorphism, where D is a
Lyapunov domain with C'"* boundary, i.e. belonging to D1 . Then h is co-Lipschitz.

We first need a few results mentioned in the introduction which are of auxiliary
character.

Theorem 4.2 ([26, Theorem 1.3]). Suppose that h is a Euclidean harmonic com-
plex valued mapping from the unit ball B C R" onto a bounded domain D = h(B),
which contains the ball B(h(0); Ro) and there is a half space Hp which touches
the point b € 9D such that D = h(B) C Hp. Then:

(D) e(h(z),b) = (1 = |z))TuRo, z € B, whereT, = 55 8
Sometimes, we refer to this result as a version of Harnack’s lemma.
In [26] we stated this result under the condition that the domain D = A(B) is
convex. But, a slight modification of the [26, proof of Theorem 1.1] (planar case)
shows that the theorem holds under the hypothesis (a).

Proof of (I). We only outline an argument. To b € 9D we associate a nonnegative
harmonic function u = uj. Let Aj be the boundary of Hj and let n = n, € T,R"
be a unit vector such that Ay is defined by (w — b, np) = 0. By hypothesis, Aj is a
supporting hyper-plane such that (w — b, np) > 0 for every w € D. Define u(z) =
(h(z) — b, np) and dp = d(h(0), Ay). Then u(0) = (h(0) — b, np) = d(h(0), Ay).
Let by € A, be the point such that d, = |h(0) — bg|. Then from the geometry it is
clear that d, > Ry, etc. (one can follow the proof from [26]). O

Proposition 4.3. Suppose that h is a Euclidean harmonic mapping from the Lya-
punov domain G into a domain Q2 and (i) there is a half space Hy, which touches a
point b € 92 such that h(G) C Hjp,.

Then e(h(z),b) > dG(z),z € G.

8 Recall e here denotes the Euclidean distance.
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We refer to this result as Harnak type estimate. Note if # : U — D satisfies
hypothesis U-1, in general a point b € 9D does not satisfy the hypothesis (i).
We use elementary Lyapunov domain described in Proposition 3.8 to apply this
proposition.

Proof. Let ¢ : U — G be a conformal mapping and h; = h o ¢. Application of
Koebe’s theorem to ¢ and Theorem 4.2 on 41 : U — G yield the result. O

Now we illustrate relation between the circles and special Lyapunov curves
and then prove Lemma 4 .4.

If M(0,d),d > 0, then the circle C with center at M and radius d is given by
the equation x2 + (y —d)? = d? and the half -circle C~ with y = d — (d> —x*)!/2.
Hence

and therefore y = de2 + o(x?). The graph of the curve y(c, u; €), where ¢ =
1/d, € = d is above the half -circle C.

Lemma 4.4. Forc > 0,0 < u < 1,and xo > 0, let the curve C be defined by ( the
curve C is defined in Example 2.7 and denoted by f (c, 1)):

(1) y=Cx) =cx", |x| < xo;

(2) Let M(0,d),d > 0, be a point and d’ the distance from M to the graph of the
curve (1);

(I) Thend’ > d;

(a) There is an €% > 0 such thatif d < C(eo), thend < 2d’;

(b) For €” we can choose the positive solution of the equation ¢*(1 + ,u)xlzu =1
with respect to xj.

Proof. Letd' = |M — M'|, where M’'(x1, y1). Since y'(x) = c(1 + u)x*, we find
that

d—yi -1
k= =(c(1+u)xfb) .
X1
Hence,d — y; = c(l—imxll*” and
d= ;xl_ﬂ +y = ;xl_“ (1 +cz(1 + /L)x2”> .
cd+w™! cd+w™! !

Hence, d < 2d"if (1 + ¢2(1 + M)xlz”) < 2 (that is if &3 = &3(cp, u2) is a small
enough constant). O

We are now ready to finish the proof of the theorem.



COLIP PROPERTY OF HQC 129

4.1. Proof of Theorem 4.1

We will apply Proposition 3.8 and notation used there, and Theorem 4.2. Further
chose a fixed positive real number xo € U;. (E) Set H(a) = T, ' (h(x0a)), w' =
Tb_l(w),do(w/) = dist(w’, 8D, ) and d’a) = do(Tb_1 (h(xoa))), where b = h(a).

It is straightforward to check that H and d° are continuous function with re-
spect to a € T. Hence there is so > 0 such that B(H(a), so) C D, and therefore
we conclude.

(EO) If & satisfies the hypothesis Ugc, there is a constant s9 > 0 which does not
depend of a such that B(h(xoa), s0) C D, ,a € T.

Definition 4.5. (d1) For a = ¢!® € T let ¢ be the conformal mapping of U onto
U, such that ¢o(0) = xo and set U, = ¢'°U,, ¢, = ¢ and F = F(h) = F, =
hodg,.

Thus for a = ¢ € T, ¢ = ¢, is the conformal mapping of U onto U, such
that ¢, (0) = xpe'®.

Letb € 0D,w —b =¢€np,e < €. Thenw € D, .

(d2) Seta = h=(b),z = h 1 (w), 7 = ¢ (2),d(Z) = 1 — ||, = ||,
da(2) = dist(z, 3U,), dp(w) = dist(w, dD; ). Recall that in particular for b = 0,
do(w') = dist(w’, D).

(d3) dl/)(w) = dist(w, dY,), where Y, := h(l}a).

Let Hp be the half plane which contains ﬁb and touches D at b. Since F, maps U
into Hp, (F,(z) — b, np) is non-negative in 7/ € U, and by a version of Harnack’s
estimate (planar version of Theorem 4.2 applied with Ry = so), |F,(z)) — b| >
sO1 —r"),ie. lw—b| > s%d(z'), where s° = 50/2. Hence

lw—b|>d(Z), el (4.1)

Now we apply Lemma 4.4 (the geometric property of the domain Db_).9 More
precisely we apply the property (L1) from the introduction which is a corollary of
Lemma 4.4.1°

Set €9 := min{g, €%} and D(e) := {w € D : d(w, D) > €y}. Then there is
ro, r1 € (0, 1) such that D(eg) C h(B(rp)) and r’ = |Z’| > rq implies |z] > ro.

By (L1) and (EO), we conclude:

(E1) There is s; > 0 which is independent of 7’ such that dp(w) > s1d(Z),r’ =
12| = r1.

9 Hence roughly speaking we find |w — b| < dp(w) and therefore

dp(w) = d(Z). (4.2)

10 Note here that we use a version of Harnack’s lemma, more precisely Theorem 4.2, and that the
estimate in this theorem depends on R and it is independent of /.
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We now estimate Ay (z). Using the fact that h(ﬁa) =Y, D D, , we find first that
dé (w) > dp(w) and therefore by the property (S-2) from the introduction 1

AL > pw) _ dp(w)
T dy(z) T du(2)

Since ¢, (U) = U, and U, is a Lyapunov domain of a fixed shape, d,(z) ~ d(Z’).
Hence, using (E1), we conclude:

F) A(2) = Ap(z) = s2 > 0, |z] > ro, where sp > 0 is a constant independent
of z.

It is clear that there is a constant s3 > 0 such that:
(F1) An(2) = An(z) = 53 > 0,z € B(ro).

By (F) and (F1), there is a constant s4 > 0 such that A,(z) & Ap(z) > s4 > 0,
zeU.
Hence it is readable that £ is co-Lip on U.

5. Further comments and related results

We briefly discus the connection with the Rad6-Kneser-Choquet theorem (shortly
RKC-Theorem) and hyperbolic-harmonic mappings; it will be the subject of further
investigations.

Quasiconformal Euclidean-harmonic mappings are bi-Lipschitz with respect
to the quasi-hyperbolic metric, cf. [21,26] (Proposition 2.3 here). It turns out that,
as in the Euclidean case, quasiconformal hyperbolic-harmonic mappings are bi-
Lipschitz with respect to the hyperbolic metric, ¢f. Wan [33] and of Markovic [22].

Very recently, concerning the initial Schoen conjecture (and more generally
the Schoen-Li-Wang conjecture) Markovic made a major breakthrough. In [23],
Markovic used the result of Li and Tam that every diffeomorphism of S? admits
a harmonic quasiisometric extension to show that every quasisymmetric homeo-
morphism of the circle dH? admits a harmonic quasiconformal extension to the
hyperbolic plane H?. This proves the initial Schoen conjecture.

In particular, concerning complex valued harmonic functions, Kalaj and the
second author, shortly KM-approach, study lower bounds of the Jacobian, cf. [27,
28] and references cited there. The corresponding results for harmonic maps be-
tween surfaces were previously obtained by Jost and Jost-Karcher [10,11]. We
refer to this result as the JK- result (approach). G. Alessandrini and V. Nesi prove
necessary and sufficient criteria of invertibility for planar harmonic mappings which
generalize a classical result of H. Kneser, also known as the Rad6-Kneser-Choquet

! Recall that dj, (w) = dist(w, 9Y,), where Y4 := h(Uy).
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theorem (RKC-Theorem), c¢f. [1]. Note only here that in the planar case the JK-
result is reduced to Theorem RKC. Kalaj [14] also has extended the Rado-Choquet-
Kneser theorem to mappings between the unit circle and Lyapunov closed curves
with Lipschitz boundary data and essentially positive Jacobian at the boundary (but
without restriction on the convexity of the image domain). The proof is based on
the extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi [2]
and an approximation scheme is used in it. Motivated by an approach described
in Kalaj’s Studia paper [14] and using the continuity of so called E-function, the
second author found a new proof of Kalaj’s result, cf. [27,28].
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