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Peak functions and boundary behaviour of holomorphically
invariant distances and metrics on strictly pseudoconvex domains

ARKADIUSZ LEWANDOWSKI

Abstract. We give a parameter version of Graham-Kerzman approximation theo-
rem for bounded holomorphic functions on strictly pseudoconvex domains. Also,
we present some stability results for the localization of Carathéodory-Reiffen and
Kobayashi-Royden pseudometrics and some uniform estimates for the boundary
behaviour of the Kobayashi and Carathéodory pseudodistences on such domains.
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1. Introduction

For a bounded domain G ⇢ Cn , its boundary point ⇣ is called a peak point with
respect toO(G), the family of functions which are holomorphic in a neighborhood
of G, if there exists a function f 2 O(G) such that f (⇣ ) = 1 and f (G \ {⇣ }) ⇢
D := {z 2 C : |z| < 1}. Such a function is a peak function for G at ⇣ . The
peak functions turned out to be an important and fruitful concept in complex anal-
ysis, which has been used for instance to show the existence of (complete) proper
holomorphic embeddings of strictly pseudoconvex domains into the unit ball BN

with large N (see [2, 4]), to estimate the boundary behavior of Carathéodory and
Kobayashi metrics [1, 6], or to construct the solution operators for @ problem with
L1 or Hölder estimates [3, 11].

It is well known that if G is strictly pseudoconvex, then its every boundary
point allows a peak function. It was Graham, who showed in [6] that in this
situation there exists an open neighborhood bG of G, and a continuous function
h : bG ⇥ @G ! C such that for ⇣ 2 @G, the function h(·; ⇣ ) is a peak function for
G at ⇣ .

Let us consider the following:
Situation 1.1. Let (Gt )t2T be a family of bounded strictly pseudoconvex domains
with C2-smooth boundaries, where T is a compact metric space with associated
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metric d. Let U b Cn be a domain such that:

(i)
S

t2T @Gt b U ;
(ii) For each t 2 T there exists a defining function rt 2 C2(U) for Gt such that its

Levi form Lrt is positive on U ⇥ (Cn \ {0});
(iii) The mapping T 3 t 7! rt 2 C2(U) is uniformly continuous.

Remark 1.2. Observe that for the family (Gt )t2T of bounded strictly pseudocon-
vex domains as in Situation 1.1 for sufficiently small R > 0 the set Gt \ B(⇣, R) is
connected for any t 2 T and ⇣ 2 @Gt .

Recently we have proved the following parameter version of Graham’s result on
peak functions (see [9]):

Theorem 1.3. Let (Gt )t2T be a family of strictly pseudoconvex domains as in Sit-
uation 1.1. Then there exists an " > 0 such that for any ⌘1 < " there exist an
⌘2 > 0 and positive constants d1, d2 such that for any t 2 T there exist a domain
cGt containing Gt , and functions ht (·; ⇣ ) 2 O(cGt ), ⇣ 2 @Gt fulfilling the following
conditions:

(a) ht (⇣ ; ⇣ ) = 1, |ht (·; ⇣ )| < 1 on Gt \ {⇣ } (in particular, ht (·; ⇣ ) is a peak
function for Gt at ⇣ );

(b) |1� ht (z; ⇣ )|  d1kz � ⇣k, z 2 cGt \ B(⇣, ⌘2);
(c) |ht (z; ⇣ )|  d2 < 1, z 2 Gt , kz � ⇣k � ⌘1.

Moreover, the constants ", ⌘2, d1, d2, domains cGt , and functions ht (·; ⇣ ) may be
chosen in such a way that for any ↵ > 0 and any fixed triple (t0, ⇣0, z0), where
t0 2 T, ⇣0 2 @Gt0, and z0 2 dGt0 , there exists a � > 0 such that whenever the triple
(s, ⇠, w) satisfies s 2 T, ⇠ 2 @Gs, w 2 cGs, and max{d(s, t0), k⇠ � ⇣0k, kw �
z0k} < �, then |ht0(z0; ⇣0) � hs(w; ⇠)| < ↵.

Remark 1.4. The principal strength of Theorem 1.3 lies in the continuity property
and in the uniformity of the estimates given there: namely, all of the constants
", ⌘2, d1, d2 can be chosen independently of t .
Remark 1.5. The crucial point of the proof of Theorem 1.3 is the setting of certain
continuously varying @̄ problems on some domains fGt with Gt ⇢ fGt , t 2 T , and
solving those problems in a subtle way, with uniform estimate C , given by [12,
Theorems V.2.7 and V.3.6] and not depending on the domains Gt , to warrant that
the solutions will vary in a continuous way. Namely, we use the following result
(we give the formulation which best fits our purposes); for a bounded function f on
a set G, we from now on denote its sup-norm on G by k f kG :

Theorem 1.6. Given a strictly pseudoconvex domain G ⇢ Cn , there exist a neigh-
bourhood U of G in C2 topology on domains and a positive constant C such that
for any strictly pseudoconvex domain D 2 U and any @-closed (0, 1)-form ↵ =Pn

j=1 ↵ j dz j of class C1 on D such that k↵kD :=
Pn

j=1 k↵ jkD < 1, there exists
a function v 2 C1(D) satisfying @v = ↵ and kvkD  Ck↵kD.

Then the compactness of T gives a constant C as above, good for all domains Gt .
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The technique mentioned in the above remark, together with Theorem 1.3 it-
self, is also a vital ingredient of the proof of the first result given in the hereby paper.
This is the following approximation result for bounded holomorphic functions de-
fined near the boundary points of strictly pseudoconvex domains. The family of
such functions will be from now on denoted byH1.

Theorem 1.7. Let (Gt )t2T be a family of strictly pseudoconvex domains as in Sit-
uation 1.1 and let R > 0 be such that the set Gt \ B(⇣, R) is connected for any
t 2 T and any ⇣ 2 @Gt . Then, if R is taken to be sufficiently small, there exists a
⇢ < R such that for any " > 0 there exists an L = L(", R) > 0 with the property
that for any t 2 T , any choice of points ⇣t 2 @Gt , w

t 2 Gt \ B(⇣t , ⇢), and any
function ft 2 H1(Gt \ B(⇣t , R)), there exist an f̂t 2 H1(Gt ) such that:

(A) D↵ f̂t (wt ) = D↵ ft (wt ) for |↵|  1;
(B) k f̂tkGt  Lk ftkGt\B(⇣t ,R);
(C) k f̂t � ftkGt\B(⇣t ,⇢) < "k f kGt\B(⇣t ,R).

Remark 1.8. Notice that the estimate in (B) depends only on " and R. In particu-
lar, it is independent of t . Also, the ”size” of domains of definition of the functions
we approximate is uniform, as the constant R do not depend on t . Therefore, Theo-
rem 1.7 amplifies Graham-Kerzman theorem, i.e. [6, Theorem 2] (see also [7, The-
orem 19.1.3]).
If in addition we are interested in interpolation problem at more than one point, we
have the following variant of Theorem 1.7:

Theorem 1.9. Let the family of strictly pseudoconvex domains (Gt )t2T and number
R > 0 be as in Theorem 1.7. Then, if R is taken to be sufficiently small, there
exists a ⇢ < R such that for any " > 0 and any m 2 N,m � 2, there exists an
L = L(m, ", R) > 0 with the property that for any t 2 T , any ⇣t 2 @Gt , any
choice of pairwise different pointsWm,t = {wt

1, . . . , w
t
m} ⇢ Gt \B(⇣t , ⇢), and any

function ft 2 H1(Gt \ B(⇣t , R)), there exist an f̂t 2 H1(Gt ) such that:

(A0) D↵ f̂t (wt
j ) = D↵ ft (wt

j ) for |↵|  1, and j = 1, . . . ,m;
(B0) There exists an N = N (", R,Wm,t ) such that

k f̂tkGt  (L + N )k ftkGt\B(⇣t ,R);

(C0) k f̂t � ftkGt\B(⇣t ,⇢) < "k f kGt\B(⇣t ,R).

Remark 1.10. Note that for m � 2 the situation is totally different than in Theo-
rem 1.7, as the estimate in (B0) is not any more independent on t . In fact, it even
depends on the choice of system of pointsWm,t . The reason for this discrepancy
is that for m = 1 (i.e. in the situation from Theorem 1.7) the constant L may be
chosen independently of wt 2 Gt \ B(⇣t , ⇢) because it comes from the uniform
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(independent of t) estimates for solutions of certain @̄ problems stated on some
small modifications Gt of domains Gt (cf. Remark 1.5) with the property that
Gt \ B(⇣t , ⇢) b Gt with uniform distance to the boundary, which allows us to use
the Cauchy inequalities with constant also independent of t . On the other hand,
for m � 2 this estimate is aberrated, since we have in addition to take care of the
distances between points fromWm,t while solving the interpolation problem - see
Section 2 for the details. Observe however, that if the systems Wm,t of pairwise
different points {wt

1, . . . , w
t
m} ⇢ Gt \ B(⇣t , ⇢) are chosen in such a way that the

function T 3 t 7! min{|wt
j,l � wt

k,l | : j, k 2 {1, . . . ,m}, j 6= k, l 2 {1, . . . , n}} is
continuous, then N in (B0) may be chosen to be zero (it falls under L) and therefore
the estimate given there once again becomes independent of t in this exceptional
case.
We also consider the stability problems of the boundary behaviour and localization
of holomorphically contractible systems. We say that a system of functions

dG : G ⇥ G ! [0,+1),

where G runs over all domains in Cn with any n, is holomorphically contractible if
dD = p, the Poincaré distance on D, and if all holomorphic mappings are contrac-
tions with respect to the family (dG), that is, for any two domains D ⇢ Cn,G ⇢
Cm and any mapping f 2 O(D,G) we have

dG( f (z), f (w))  dD(z, w), z, w 2 D.

If all functions are additionally pseudodistances, we say that (dG) is a holomorphi-
cally contractible system of pseudodistances. This definition have an infinitesimal
counterpart: we say that a system of pseudometrics

�G : G ⇥ Cn ! [0,+1)

where G runs over all domains in Cn with any n, is holomorphically contractible if
�D(z; X) = sup{| f 0(z)X | : f 2 O(D, D), f (z) = 0} and if for any two domains
D ⇢ Cn,G ⇢ Cm and any mapping f 2 O(D,G) we have

�G( f (z); f 0(z)X)  �D(z; X), z 2 D, X 2 Cn,

with f 0(z) abbreviating the C-differential of f at z. For a good exposition on the
topic of holomorphically contractible objects, we refer the Reader to the monograph
[7].

With Theorems 1.3 and 1.7 at hand, we are able to deliver some uniform lo-
calization results for Carathéodory-Reiffen pseudometric � G (Proposition 3.1) and
for Kobayashi-Royden pseudometric G (Proposition 3.2): these are the parameter
versions of [6, Proposition 6] (see also [7, Theorems 19.3.1 and 19.3.2]).

In [5], some upper and lower estimates for the boundary behaviour of the
Kobayashi pseudodistance kG on strictly pseudoconvex domain G are given. It
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is showed there that for such domain G, for any couple of distinct points ⇣, ⇠ 2 @G
there exist constants K and C such that

kG(z, w) � �
1
2
log dist(z, @G) �

1
2
log dist(w, @G) � K

whenever z, w 2 G are such that z is close to ⇣ and w is close to ⇠ , and

kG(z, w)�
1
2
(log dist(z, @G) + log dist(w, @G))

+
1
2
(log(dist(z, @G) + kz � wk)+log(dist(w, @G)+kz � wk)) + C,

whenever z, w 2 G are close to ⇣ (cf. [5, Corollary 2.4 and Proposition 2.5]; observe
that for the upper estimate the strict pseudoconvexity is not needed – in [5] the
domain G is only assumed to have C1+" boundary). We prove that given (Gt )t2T , a
family of strictly pseudoconvex domains as in Situation 1.1, the estimates as above
are uniform with respect to t 2 T and ⇣, ⇠ 2 @Gt , i.e. the bounds K and C given
there can be taken to be independent of t 2 T and of ⇣, ⇠ 2 @Gt - in the case
of lower estimate, depending only on k⇣ � ⇠k (and when it comes to the upper
estimate, the domains Gt do not necessarily have to be strictly pseudoconvex), see
Propositions 3.5 and 3.7 below. These results are inspired by [10, Propositions 9.1
and 9.2]. In correspondence to that paper, note that the role of the set of parameters
T is there played by a convergent sequence of numbers with its limit added.

We also give some estimates in this spirit for the Carathéodory pseudodis-
tance cD – see Proposition 3.3 and Corollary 3.4, and Proposition 3.9 (compare
with [7, Theorem 19.2.1, Corollary 19.2.2, and Proposition 19.2.4]). Note that
Proposition 3.3 is the consequence of Theorem 1.3.

The proof of Theorems 1.7 and 1.9 is presented in Section 2, while the sta-
bility results for the localization of Carathéodory-Reiffen and Kobayashi-Royden
pseudometrics and the uniform estimates for the boundary behaviour of Kobayashi
and Carathéodory pseudodistances come in Section 3.

The author is grateful to the referee for his valuable remarks, which helped to
improve the exposition of the paper.

2. Proof of Theorems 1.7 and 1.9

Recall that a bounded domain G ⇢ Cn is called a strictly pseudoconvex one if there
exist a neighborhood U of @G and a defining function r : U ! R of class C2 on U
and such that:

(I) G \U = {z 2 U : r(z) < 0};
(II) (Cn \ G) \U = {z 2 U : r(z) > 0};
(III) rr(z) 6= 0 for z 2 @G, where rr(z) :=

�
@r
@z1 (z), · · · , @r

@zn (z)
�
;
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together with

Lr (z; X) > 0 for z 2 @G and nonzero X 2 TC
z (@G),

where Lr denotes the Levi form of r and TC
z (@G) is the complex tangent space to

@G at z.
It is known that U and r can be chosen to satisfy (I)-(III) and, additionally:

(IV) Lr (z; X) > 0 for z 2 U and all nonzero X 2 Cn;

cf. [8].
The beginning of the proof is common for both Theorems 1.7 and 1.9 and

it consists of stating and solving (with uniform estimates) certain family of @̄-
problems on domains being deformations of the domains Gt , and producing, with
the aid of the solutions of those @̄-problems, the family of holomorphic functions
on domains Gt that would satisfy the assertions of the Theorems, except those con-
cerning the interpolation. In this place the argument splits into two parts, different
for both Theorems, as we have to consider different interpolation problems. As we
have already mentioned in the Introduction, this is the source of the fact that the
estimates in (B) and in (B0) are of different nature.

Beginning of proof of Theorems 1.7 and 1.9. Set ⌘2 < ⌘1, d1, d2 < 1,cGt , and
ht (·; ⇣ ) for t 2 T, ⇣ 2 @Gt according to Theorem 1.3, where ⌘1 is small enough to
assure that the set Gt \ B(⇣, R) is connected for every t 2 T and ⇣ 2 @Gt , where
R := 2⌘1. Replacing ht with ht+3

4 we may assume that

|ht (z; ⇣ )| �
1
2
, z 2 Gt , ⇣ 2 @Gt . (2.1)

Let d3 2 (d2, 1) and choose 0 < ⌘  ⌘2 such that for any t 2 T we haveB(⇣ ; 2⌘) ⇢
cGt for all ⇣ 2 @Gt as well as |ht (z; ⇣ )| � d3 whenever ⇣ 2 @Gt and kz � ⇣k  ⌘
(this is possible because of the uniform choice of d1 in Theorem 1.3). Define ⇢ :=
min{⌘

2 ,
⌘1
5 }.

For a fixed t 2 T there are points ⇣ t1, . . . , ⇣
t
Nt 2 @Gt such that

@Gt ⇢
Nt[

j=1
B
⇣
⇣ tj , ⇢

⌘
.

For any j 2 {1, . . . , Nt } we modify the domain Gt near the boundary point ⇣ tj in
order to get a strictly pseudoconvex domain Gt

j satisfying:

(10) Gt ⇢ Gt
j ⇢ cGt \ G(⌘)

t (where G(⌘)
t denotes the ⌘-hull of Gt );

(20) Gt \ B(⇣ tj , 2⇢) b Gt
j and dist(Gt \ B(⇣ tj , 2⇢), @Gt

j ) � � > 0 with � inde-
pendent of j ;
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(30) Gt \ B(⇣ tj ,
7
2⇢) = Gt

j \ B(⇣ tj ,
7
2⇢);

(40) The estimate C for the solution of @̄-problem for Gt given by Theorem 1.6 is
good for Gt

j ;

see Figure 2.1 below.

Gt

G(η)
t

ζt
1

ζ0
Gt

1

Ĝt∥z−ζ1∥= 2ρt

∥z−ζ1∥=   ρ
7
2

t

∥z−ζ0∥= R

Figure 2.1. Geometric situation as described in (10)-(40): with t fixed, the black thick
arc represents a part of the boundary of the domain Gt near ⇣ t1, gray dashed one – a part
of the boundary of G(⌘)

t , and the black dotted one – a part of the boundary of cGt . The
gray dotted curve illustrates the required modification Gt

1 of the domain Gt near ⇣ t1.
Note we want to perform this kind of modification near finite family of suitably chosen
boundary points ⇣ t1, . . . , ⇣Nt (i.e. such that @Gt ⇢

SNt
j=1 B(⇣ tj , ⇢)) and then to allow all

the data vary uniformly in t in such a way that suitably chosen ⇢ and the estimate from
below � of the distance of the closure of the domain colored in deeper gray tint are good
for all t 2 T and all j 2 {1, . . . , Nt }, and so is the estimate C , given by Theorem 1.6,
of the norm of the solution of @-problem for all domains Gt ,Gt

j , j = 1, . . . , Nt , t 2 T ,
(this is (1)-(4)). The next part of the proof begins with taking arbitrary point ⇣0 2
@Gt which then must be contained in some of the balls B(⇣1, ⇢), . . . , B(⇣Nt , ⇢), so that
Gt \ B(⇣0, ⇢) b Gt

1, which will be used later in the proof. Finally, the area filled in
gray (both tints) is the domain of definition of bounded holomorphic function we want
to approximate.

Observe that for s close enough to t we may choose points ⇣ s1 , . . . , ⇣
s
Ns 2 @Gs

such that Ns = Nt , ⇣ sj is close to ⇣ tj (with arbitrarily prescribed distance), @Gs ⇢
SNs

j=1 B(⇣ sj , ⇢), and with the property that for any j 2 {1, . . . , Ns} we can find
strictly pseudoconvex deformation Gs

j of Gs near ⇣ sj such that:

(1) Gs ⇢ Gs
j ⇢ cGs \ G(⌘)

s ;
(2) Gs \ B(⇣ sj , 2⇢) b Gs

j and dist(Gt \ B(⇣ tj , 2⇢), @Gt
j ) � �

2 > 0;
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(3) Gs \ B(⇣ sj , 4⇢) = Gs
j \ B(⇣ sj , 4⇢);

(4) The estimate C for the solution of @̄-problem given by Theorem 1.6 is good for
Gs
j .

Using the compactness of T , we see that the constants C and � may be chosen
indepenedently of t and j .

Fix now t = t0 2 T and ⇣0 2 @Gt . Let f 2 H1(Gt \ B(⇣0, R)).
There exists a j0 2 {1, . . . Nt } such that ⇣0 2 B(⇣ tj0, ⇢). To simplify the nota-

tion, let us assume without loss of generality that j0 = 1.
Choose a � 2 C1(Cn, [0, 1]) such that � ⌘ 1 on B(⇣0,

6⌘1
5 ) and � ⌘ 0

outside B(⇣0,
9⌘1
5 ) and define ↵t := (@̄�) f on Gt \ B(⇣0, R) = Gt \ B(⇣0, 2⌘1)

and ↵t := 0 on Gt \ B(⇣0, 2⌘1). Note that in view of the fact that ↵t ⌘ 0 on
(Gt \ B(⇣0,

6⌘1
5 )) [ (Gt \ B(⇣0,

9⌘1
5 )), after trivial extension by zero, it can be

treated as a @̄-closed (0, 1)-form of class C1 on Gt
1.

For k 2 N (this will be specified later) consider the equation

@̄vtk = (ht (·; ⇣0))
k↵t . (2.2)

Then we have a solution vtk 2 C1(Gt
1) of the problem (2.2) such that

�
�vtk

�
�
Gt
1

 Ck(ht (·; ⇣0))
kkspt↵tk↵tkGt

1
.

Recall that the constant C is independent of t and of j 2 {1, . . . , Nt }. Further
estimation gives �

�vtk
�
�
Gt
1

 CC1dk2k f kGt\B(⇣0,R),

with the constant C1 depending only on ⌘1 (in particular, not depending on t).
Define the function fk := � f �ht (·; ⇣0)

�kvtk and observe it is holomorphic on
Gt (recall that at the beginning of the construction we have normalized ht to satisfy
(2.1)). Consequently, the function ht (·; ⇣0)

�kvtk is holomorphic on G
t
1 \ B(⇣0, ⌘)

(on the set Gt \ B(⇣0, ⌘) it follows from the holomorphicity of fk , and on the
remaining part - from the triviality of extension of ↵t by zero and from the choice
of ⌘). Furthermore

�
�
�ht (·; ⇣0)

�kvtk

�
�
�
Gt
1\B(⇣0,⌘)

 CC1
✓
d2
d3

◆k
k f kGt\B(⇣0,R).

Note that for z 2 Gt \ B(⇣0, ⇢) we have kz � ⇣ t1k  kz � ⇣0k + k⇣0 � ⇣ t1k  2⇢ .

Therefore, Gt \ B(⇣0, ⇢) ⇢ Gt \ B(⇣ t1, 2⇢) b Gt
1.

On the set Gt \ B(⇣0, ⌘) we have the equality fk � � f = �ht (·; ⇣0)
�kvk,

and the latter function is holomorphic on bigger set Gt
1 \ B(⇣0, ⌘). Therefore, for

z 2 Gt \ B(⇣0, ⇢) we have
�
�
�
�
@ fk
@z j

(z) �
@ f
@z j

(z)
�
�
�
� =

�
�
�
�

@

@z j

⇣
ht (·; ⇣0)

�kvk

⌘
(z)

�
�
�
� 

CC1
L1

✓
d2
d3

◆k
k f kGt\B(⇣0,R),
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where the last inequality is a consequence of the Cauchy inequalities and in virtue
of (2), the constant L1 may be chosen independently of t, ⇣0 2 @Gt , and z 2
Gt \ B(⇣0, ⇢). The same argument gives

k fk � f kGt\B(⇣0,⌘) 
CC1
L1

✓
d2
d3

◆k
k f kGt\B(⇣0,R).

The remaining part of proof is different for both Theorems.

End of proof of Theorem 1.7. Set " > 0 and let w = wt 2 Gt \ B(⇣0, ⇢) (t = t0 2
T and ⇣0 2 @Gt are as above). Define f̂k 2 O(Gt ) by f̂k(z) := fk(z) + p(z),
where

p(z) := f (w) � fk(w) +
nX

j=1

✓
@ f
@z j

(w) �
@ fk
@z j

(w)

◆
�
z j � w j

�
.

It can be easily checked that f̂k(w) = f (w), as well as @ f̂k
@z j (w) = @ f

@z j (w). Further-
more,

k f̂k � f kGt\B(⇣0,⇢)  k fk � f kGt\B(⇣0,⇢) + | f (w) � fk(w)|

+ ndiamU
�
�
�
�
@ f
@z j

(w) �
@ fk
@z j

(w)

�
�
�
�

 (2+ ndiamU)
CC1
L1

✓
d2
d3

◆k
k f kGt\B(⇣0,R).

Let finally k0 2 N so large that (2+ ndiamU)CC1L1

⇣
d2
d3

⌘k0
 " and define f̂ := f̂k0 .

Observe that k0 depends only on " and ⌘1. It is left to estimate the norm of the latter
function:

k f̂ kGt 
�
� fk0

�
�
Gt

+ | f (w) � fk0(w)| + ndiamU
�
�
�
�
@ f
@z j

(w) �
@ fk0
@z j

(w)

�
�
�
�


�
� fk0

�
�
Gt

+ "k f kGt\B(⇣0,R).

This, together with the estimate
�
� fk0

�
�
Gt

k� f kGt +
�
�(ht (·; ⇣0))

�k0vtk
�
�
Gt


�
1+2k0CC1dk02

�
k f kGt\B(⇣0,R) (2.3)

gives the conclusion with L := 1+2k0CC1dk02 +", depending only on " and R.

End of proof of Theorem 1.9. Set " > 0 and let a system of pairwise different points
Wm,t = {wt

1, . . . , w
m
t } ⇢ Gt \ B(⇣0, ⇢) (t = t0 2 T and ⇣0 2 @Gt are as above).

Put wi := wt
i , i = 1, . . . ,m. We introduce some useful notation: for pairwise
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distinct complex numbers x1, . . . , xm , the basis Lagrange polynomials are defined
as

li (z) = lmi (z) :=
mY

j=1, j 6=i

z � x j

xi � x j
, i = 1, . . . ,m.

Given a z = (z1, . . . , zn) andw1 = (w11, . . . , w
1
n), . . . , w

m = (wm
1 , . . . , wm

n ) 2 Cn

let us put

li, j (z j ) :=
mY

k=1,k 6=i

z j � wk
j

wi
j � wk

j
, i = 1, . . . ,m, j = 1, . . . , n.

Assume first thatwi1
j 6= w

i2
j for j = 1, . . . , n whenever i1 6= i2. Define f̂k 2 O(Gt )

by f̂k(z) := fk(z) + p(z), where

p(z) :=
mX

i=1

⇣
f
�
wi�� fk

�
wi�

⌘
" 

1+
2
n

nX

j=1

@li, j
@z j

�
wi
j
��

wi
j � z j

�
!
1
n

nX

j=1

�
li, j (z j )

�2
#

+
mX

i=1

 
nX

j=1

✓
@ f
@z j

�
wi� �

@ fk
@z j

�
wi�

◆
�
z j � wi

j
��
li, j

�
z j
��2

!

.

One can verify that f̂k(wi ) = f (wi ) and @ fk
@z j (w

i ) = @ f
@z j (w

i ) for i = 1, . . . ,m and
j = 1, . . . , n. We estimate

k f̂k � f kGt\B(⇣0,⇢)

k fk � f kGt\B(⇣0,⇢) + (M(1+ 2MdiamU))
mX

i=1

�
�
� f

�
wi� � fk

�
wi�

�
�
�

+ MdiamU
mX

i=1

nX

i=1

�
�
�
�
@ f
@z j

�
wi� �

@ fk
@z j

�
wi�

�
�
�
�


CC1
L1

✓
d2
d3

◆k
(1+ Mm(1+ M(2+ n)diamU)k f kGt\B(⇣0,R),

where M = M(Wm,t ). The last term is smaller than "k f kGt\B(⇣0,R), provided that
k = k0 is sufficiently large (observe this choice of k is independent of f ). Then,
performing similar computations, for f̂ := f̂k0 , because of (2.3), we get

k f̂ kGt 
�
� fk0

�
�
Gt

+
CC1
L1

✓
d2
d3

◆k0
(Mm(1+ M(2+ n)diamU)k f kGt\B(⇣0,R)



 

1+2k0CC1dk02 +
CC1
L1

✓
d2
d3

◆k0
(Mm(1+M(2+n)diamU)

!

k f kGt\B(⇣0,R)

=: (L + N )k f kGt\B(⇣0,R).
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Observe that L = 1+ 2k0CC1dk02 depends only on " and R, while

N =
CC1
L1

✓
d2
d3

◆k0
(Mm(1+ M(2+ n)diamU)

do also depend on the choice ofWm,t . See however, that according to what we have
said in Remark 1.10, if the systemsWm,t were chosen to be continuously dependent
on t , then N would fall into L and therefore would become independent of t .

Let us pass to the remaining case, namely: the one where we assume that some
of pointsw1, . . . , wm have at least one common coordinate. For i 2 {1, . . . ,m}, j 2
{1, . . . , n} and z = (z1, . . . , zn) 2 Cn define

l̃i, j (z j )
mY

k=1,k 6=i,wk
j 6=wi

j

z j � wk
j

wi
j � wk

j
if 9k 6= i : wi

j 6= wk
j ,

and
l̃i, j

�
z j
�

⌘ 0 otherwise.

Observe that for a fixed i not all of l̃i, j are zero (since the points w1, . . . , wm are
pairwise different). Therefore, we can define

Ai :=
n
j 2 {1, . . . , n} : l̃i, j is nonzero

o
6= ?, ni := |Ai |, 1 = 1, . . . ,m.

Observe that if j /2 Ai , then

Bi, j :=
n
(ki ,mi ) 2 {1, . . . ,m} ⇥ ({1, . . . , n} \ { j}) : wi

mi 6= wki
mi

o
6= ?.

Define

p(z)

:=
mX

i=1

⇣
f
�
wi�� fk

�
wi�

⌘
" 

1+
2
ni

X

j2Ai

@ l̃i, j
@z j

⇣
wi
j

⌘⇣
wi
j � z j

⌘
!
1
ni

X

j2Ai

⇣
l̃i, j (z j )

⌘2
#

+
mX

i=1

 
X

j2Ai

✓
@ f
@z j

�
wi� �

@ fk
@z j

�
wi�

◆ ⇣
z j � wi

j

⌘ ⇣
l̃i, j

�
z j
�⌘2

!

+
mX

i=1

0

@
X

j /2Ai

✓
@ f
@z j

�
wi� �

@ fk
@z j

�
wi�

◆ ⇣
z j � wi

j

⌘ Y

(ki ,mi )2Bi, j

 
zmi � w

ki
mi

wi
mi � w

ki
mi

!21

A

and f̂ (z) = f̂k(z) := f (z) + p(z) with k sufficiently large, and we end the proof
carrying out similar computations as before.
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Remark 2.1. In Theorem 1.7 one can require in the conclusion that

k f̂t � ftkGt\B(⇣t ,⇢) < ".

Analyzing the proof of our result, we see that it is possible to get this kind of esti-
mate. There is, however, a price we have to pay - the constant L is not any more
independent of f .
Remark 2.2. In [6] it is stated that the estimate in (C) holds true also for the deriva-
tives of f̂ and f up to previously prescribed order. The same result is possible to
get here - with L still independent of t.

3. Boundary behaviour of Kobayashi and Carathéodory pseudodistances
and pseudometrics

Let us recall the definitions of the holomorphically contractible pseudodistances
and pseudometrics we are interested in.

For arbitrary domain G the Carathéodory pseudodistance is defined as

cG(z, w) := sup{ p(0, f (w)) : f 2 O(G, D), f (z) = 0}, z, w 2 G,

the Carathéodory-Reiffen pseudometric is given by

� G(z; X) := sup

(��
�
�
�

nX

j=1

@ f
@z j

(z)X j

�
�
�
�
�
: f 2 O(G, D), f (z) = 0

)

z 2 G, X = (X1, . . . , Xn) 2 Cn,

the Kobayashi pseudodistance may be expressed as

kG(z, w) := inf

(
NX

j=1
p(⇠ j , ⇣ j ) : N 2 N, ⇠ j , ⇣ j 2 D, and 9p0, . . . , pN 2 G :

p0 = z, pN = w, 9 f j 2 O(D,G) : f j (⇠ j ) = p j�1, f j (⇣ j )

= p j , j = 1, . . . , N

)

, z, w 2 G,

and the Kobayashi-Royden pseudometric is defined as

G(z; X) := inf{↵ > 0 : 9' 2 O(D,G) : '(0) = z,↵'0(0) = X},

z 2 G, X = (X1, . . . , Xn) 2 Cn.

We start with localization results with parameter for Carathéodory-Reiffen (Propo-
sition 3.1) and Kobayashi-Royden (Proposition 3.2) pseudometrics. The proofs of
these results are similar to the [6, proof of Proposition 6]. However, we include
them for both the convenience of the Reader and in order to illustrate how Theo-
rems 1.3 and 1.7 work in the proofs. Note that Theorems 1.3 and 1.7 play a crucial
role here.
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Proposition 3.1. (cf. [6, Proposition 6] and the remark following it, see also [7,
Theorem 19.3.1]). Let (Gt )t2T be a family of strictly pseudoconvex domains as in
Situation 1.1. Then for all sufficiently small R > 0 the set Gt\B(⇣, R) is connected
for any t 2 T and ⇣ 2 @Gt , and for all X 2 Cn \ {0} we have

lim
Gt\B(⇣,R)3z!⇣

� Gt\B(⇣,R)(z; X)

� Gt (z; X)
= 1.

The convergence is uniform in t, ⇣ and X 2 Cn \ {0} in the sense that for any ↵ > 0
there exists a � 2 (0, R) such that for any t 2 T, ⇣ 2 @Gt , w 2 Gt \ B(⇣,�), and
X 2 Cn \ {0} we have

� Gt\B(⇣,R)(w; X)

� Gt (w; X)
 1+ ↵.

Proof. Fix ↵ > 0 and let R be as in Remark 1.2 and smaller than " from Theo-
rem 1.3, and so small that the conclusion of Theorem 1.7 holds for it. Let ⇢ < R
be as in Theorem 1.7. For any t 2 T, ⇣ 2 @Gt , w 2 Gt \ B(⇣, ⇢), and any X 2 Cn

let ft 2 O(Gt \ B(⇣, R), D) be such that ft (w) = 0 and

� Gt\B(⇣,R)(w; X) =

�
�
�
�
�

nX

j=1

@ ft
@z j

(w)X j

�
�
�
�
�
.

Take 0 < µ  ↵
2+↵ . By Theorem 1.7, for any t 2 T, ⇣ 2 @Gt , and w 2 Gt \

B(⇣, ⇢) there exists an f̂t 2 H1(Gt ) such that k f̂t � ftkGt\B(⇣,⇢) < µ, @ f̂t
@z j (w) =

@ ft
@z j (w), j = 1, . . . , n, f̂t (w) = ft (w) = 0, and k f̂tkGt  L .

Let ht (·; ⇣ ) be a family of peak functions at the points ⇣ 2 @Gt , t 2 T, given
by Theorem 1.3 with constants ⌘1 < ⇢, ⌘2, d1, and d2. Then, by estimates from
Theorem 1.3, there exists a ✓ 2 (0, 1) such that for any t 2 T and ⇣ 2 @Gt we have

{z 2 Gt : |ht (z; ⇣ )| > ✓} ⇢ Gt \ B(⇣, ⇢).

Pick a k 2 N such that ✓k L < 1. Take a � < ⇢ with |ht (w; ⇣ )|k > 1� µ for each
t 2 T, ⇣ 2 Gt , and w 2 Gt \ B(⇣,�) (again use estimates from Theorem 1.3).

Let eft := 1
1+µ(ht (·; ⇣ ))k f̂t for t 2 T, ⇣ 2 @Gt . Fix w 2 Gt \ B(⇣,�). Then

eft 2 O(Gt , D), eft (w) = f̂t (w) = 0, and

@eft
@z j

(w) =
1

1+ µ
(ht (w; ⇣ ))k

@ f̂t
@z j

(w), j = 1, . . . , n.

Therefore, for t 2 T, ⇣ 2 @Gt , w 2 Gt \ B(⇣,�), and X 2 Cn,

�
�
�
�
�

nX

j=1

@eft
@z j

(w)X j

�
�
�
�
�
�
1� µ

1+ µ
� Gt\B(⇣,R)(w; X),
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which yields

� Gt (w; X) �
1� µ

1+ µ
� Gt\B(⇣,R)(w; X),

and this concludes the proof.

Proposition 3.2. (cf. [6, Proposition 6] and remark following it, see also [7, The-
orem 19.3.2]). Let (Gt )t2T be a family of strictly pseudoconvex domains as in Sit-
uation 1.1. Then there exists an R > 0 such that for any t 2 T and any ⇣ 2 @Gt
the set Gt \ B(⇣, R) is connected and for any X 2 Cn \ {0} we have

lim
Gt\B(⇣,R)3z!⇣

Gt\B(⇣,R)(z; X)

Gt (z; X)
= 1.

The convergence is uniform in ⇣ 2 @Gt and X 2 Cn \ {0} in the sense that for any
↵ > 0 there exists a � 2 (0, R) such that for any t 2 T, ⇣ 2 @Gt , w 2 Gt\B(⇣,�),
and X 2 Cn \ {0} there is

Gt\B(⇣,R)(w; X)

Gt (w; X)
 1+ ↵.

Proof. Let R be as in Remark 1.2 and smaller than " from Theorem 1.3. By [6,
Lemma 4 ] (see also [7, Proposition 13.2.10]) we have

Gt\B(⇣,R)(z; X)  coth kGt ,⇣,R(z)Gt (z; X), (3.1)

for t 2 T, ⇣ 2 @Gt , z 2 Gt \ B(⇣, R), and X 2 Cn , where

kGt ,⇣,R(z) := inf
�
kGt (z, w) : w 2 Gt \ B(⇣, R)

 
.

Fix ↵ > 0 and let ht (·; ⇣ ) be a family of peak functions at the points ⇣ 2 @Gt , t 2 T
with constants ⌘1 < R, ⌘2, d1, and d2, given by Theorem 1.3. Let

✓ := inf{|1� ht (w; ⇣ )| : t 2 T, ⇣ 2 @Gt , w 2 Gt \ B(⇣ ; R)}.

By Theorem 1.3, ✓ > 0. Using now the estimates from Theorem 1.3 again, for
� 2 (0, ✓), sufficiently close to 0, we find a � < R such that for any t 2 T, ⇣ 2 @Gt ,
and z 2 Gt \ B(⇣,�), there is |1 � ht (z; ⇣ )| < �. Then for t 2 T, ⇣ 2 @Gt , z 2
Gt \ B(⇣,�), and w 2 Gt \ B(⇣, R) we get

kGt (z, w) � cGt (z, w) �
1
2
log

✓

�
.

This, together with (3.1) and for � sufficiently close to 0, gives

Gt\B(⇣,R)(z; X)  (1+ ↵)Gt (z; X),

for t 2 T, ⇣ 2 @Gt , z 2 Gt \ B(⇣,�), and X 2 Cn , which finishes the proof.
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Theorem 1.7 is the main ingredient of the proof of the uniform estimates for the
boundary behaviour of the Carathéodory pseudodistance, which reads as follows:

Proposition 3.3. Let (Gt )t2T be a family of strictly pseudoconvex domains as in
Situation 1.1. Let K ⇢ Cn be a compact set such that K ⇢ Gt for any t 2 T . Then
there exists a constant C > 0 such that for every t 2 T

cGt (z, w) � �
1
2
log dist(w, @Gt ) � C

whenever z 2 K , w 2 Gt .

Proof. This is a consequence of Theorem 1.3. Observe that the proof may be car-
ried out along the lines of the [7, proof of Theorem 19.2.1], however, we give the
argument here, for the convenience of the Reader. Let " > 0 be such that for any
t 2 T and z 2 Gt with dist(z, @Gt ) < " there exists exactly one point ⇣t (z) 2 @Gt
with

z = ⇣t (z) � dist(z, @Gt ) · n(⇣t (z)),

where n(⇣t (z)) is the unit outer normal vector to @Gt at ⇣t (z). Let ht (z; ⇣ ) be a
family of peak functions given by Theorem 1.3 with constants ⌘1, ⌘2, d1, and d2,
chosen so that

⌘1 < min
n"

2
, inf{dist(K , @Gt ) : t 2 T }

o
.

Observe that in virtue of the assumptions on family (Gt )t2T , the latter quantity is
positive.

For z 2 K , t 2 T , and w 2 Gt with dist(w, @Gt ) < min
�
⌘2,

1�d2
d1

 
we have

tanh cGt (z, w) � tanh
|ht (w, ⇣t (w)) � ht (z, ⇣t (w))|

|1� ht (z, ⇣t (w))ht (w, ⇣t (w))|

� tanh
1� d2 � d1kw � ⇣t (w)k

1� d2 + d1kw � ⇣t (w)k
> 0,

which implies

cGt (z, w) =
1
2
log

1� d2
d1

�
1
2
log dist(w, @Gt ).

If dist(w, @Gt ) � min
�
⌘2,

1�d2
d1

 
, then

cGt (z, w) � 0 � �
1
2
log dist(w, @Gt ) � eC

where eC > 0 is independent of t 2 T and z 2 K .
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Corollary 3.4. Let (Gt )t2T be a family of strictly pseudoconvex domains as in Sit-
uation 1.1. Let " > 0. Then there exist positive constants ⇢2 < ⇢1 < " and C > 0
such that for every t 2 T and every ⇣ 2 @Gt we have

cGt (z, w) � �
1
2
log dist(z, @Gt ) � C

whenever z 2 Gt \ B(⇣, ⇢2) and w 2 Gt \ B(⇣, ⇢1).

We include the next two results, as they generalize [10, Propositions 9.1 and 9.2]
(see Remarks 3.6 and 3.8), which, we believe, might be of some interest. Propo-
sition 3.5 relies on Corollary 3.4, and it gives the uniform lower estimate for the
boundary behaviour of the Kobayashi distance. Proposition 3.7 deals with the uni-
form upper estimate for the boundary behaviour of the Kobayashi distance. It is
independent of our main results.

Proposition 3.5. Let (Gt )t2T be a family of strictly pseudoconvex domains as in
Situation 1.1. Let " > 0. Then there exists a constant C > 0 such that for every
t 2 T and every ⇣, ⇠, different points from @Gt such that k⇣ � ⇠k � ", we have

kGt (z, w) � �
1
2
log dist(z, @Gt ) �

1
2
log dist(w, @Gt ) � C

whenever z, w 2 Gt are such that z is close to ⇣ and w is close to ⇠ (with uniform
size of the respective neighborhoods).

Proof. The proof goes similarly to the [7, proof of Proposition 19.2.7]. Only, one
has to use our Corollary 3.4 instead of [7, Theorem 19.2.2].

Remark 3.6. Observe that [10, Proposition 9.1] can be deduced from Proposi-
tion 3.5.

Proposition 3.7. Let (Gt )t2T be a family of bounded domains with C2-smooth
boundaries, where T is a compact metric space with associated metric d. Sup-
pose we have a domain U b Cn such that

S
t2T @Gt b U and with the property

that for any " > 0 there exists a � > 0 such that for any s, t 2 T with d(s, t)  �
there is krt � rskC2(U) < ", where rt denotes a defining function for Gt , defined on
U for any t 2 T . Then there exists a constant C > 0 such that for any t 2 T and
any ⇣ 2 Gt there exists a neighborhood V⇣,t of ⇣ , of uniform size, with the property
that

kGt (z, w)�
1
2
(log dist(z, @Gt ) + log dist(w, @Gt ))

+
1
2
(log(dist(z, @Gt )+kz�wk)+log(dist(w, @Gt )+kz � wk))+C,

whenever z, w 2 Gt \ V⇣,t .
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Proof. The proof follows the lines of the [7, proof of Proposition 19.2.9] with nec-
essary modifications. Observe that R therein can be taken to be independent of
t 2 T and ⇣ 2 Gt (see also the proof of [10, Proposition 9.2]). Also, the final con-
stant C , given explicitly by log 2 + kB(0, 35 )[B(1, 35 )

(0, 1) depends neither on t 2 T
nor on ⇣ 2 @Gt .

Remark 3.8. Observe that [10, Proposition 9.2] can be deduced from Proposi-
tion 3.7.
We also give the uniform upper estimate for both Carathéodory and Kobayashi dis-
tances, in the spirit of Proposition 3.3. This is independent of our main results, but
we contain it here for the sake of completeness.

Proposition 3.9. Let (Gt )t2T be a family of bounded domains with C2-smooth
boundaries, where T is a compact metric space with associated metric d. Sup-
pose we have a domain U b Cn such that

S
t2T @Gt b U and with the property

that for any " > 0 there exists a � > 0 such that for any s, t 2 T with d(s, t)  �
there is krt � rskC2(U) < ", where rt denotes a defining function for Gt , defined on
U for any t 2 T . Let K ⇢ Cn be a compact set such that K ⇢ Gt for any t 2 T .
Then there exists a constant C > 0, such that for any t 2 T we have

kGt (z, w)  �
1
2
log dist(w, @Gt ) + C,

whenever z 2 K and w 2 Gt .

Remark 3.10. In comparison with Situation 1.1, here we do not assume the strict
pseudoconvexity of the domains, only the boundary regularity.

Proof. The proof goes along the lines of the proof of [7, Proposition 19.2.4]. We
only discuss the necessary modifications.

Observe that "0 as in the proof of the mentioned result may be taken to be
independent of t 2 T .

For fixed t 2 T let � > 0 be such that for any s 2 T with d(s, t)  � the set

Kt :=
[

s2T :d(s,t)�

{z 2 Gs : dist(z, @Gs) � "0}

is compact in Gs and, moreover, dist(Kt , @Gs) � "0
2 . Let Gt,� be a bounded domain

with C2-smooth boundary such that

K [ Kt b Gt,� ⇢
\

s2T :d(s,t)�

Gs .

For s as above and z 2 K , w 2 Gs , with dist(w, @Gs)  "0, using the same
argument as in [7], we get the estimate

kGs (z, w)  �
1
2
log dist(w, @Gs) +

1
2
log(2"0) + Ct,�
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with Ct,� := sup{kGt,� (a, b) : a, b 2 K [ Kt }. By the compactness of T , the latter
constant may be chosen independently of t . We end the proof as in [7].
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