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Peak functions and boundary behaviour of holomorphically
invariant distances and metrics on strictly pseudoconvex domains
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Abstract. We give a parameter version of Graham-Kerzman approximation theo-
rem for bounded holomorphic functions on strictly pseudoconvex domains. Also,
we present some stability results for the localization of Carathéodory-Reiffen and
Kobayashi-Royden pseudometrics and some uniform estimates for the boundary
behaviour of the Kobayashi and Carathéodory pseudodistences on such domains.
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1. Introduction

For a bounded domain G C C", its boundary point ¢ is called a peak point with
respect to O(G), the family of functions which are holomorphic in a neighborhood
of G, if there exists a function f € O(G) such that f(¢) = 1 and f(G \ {¢}) C
D := {z € C : |z] < 1}. Such a function is a peak function for G at {. The
peak functions turned out to be an important and fruitful concept in complex anal-
ysis, which has been used for instance to show the existence of (complete) proper
holomorphic embeddings of strictly pseudoconvex domains into the unit ball BY
with large N (see [2,4]), to estimate the boundary behavior of Carathéodory and
Kobayashi metrics [1,6], or to construct the solution operators for F) problem with
L®° or Holder estimates [3,11].

It is well known that if G is strictly pseudoconvex, then its every boundary
point allows a peak function. It was Graham, who showed in [6] that in this
situation there exists an open neighborhood G of G, and a continuous function
h: G x 3G — C such that for ¢ € 3G, the function A(-; ¢) is a peak function for
Gatc¢.

Let us consider the following:

Situation 1.1. Let (G;);e7 be a family of bounded strictly pseudoconvex domains
with C2-smooth boundaries, where T is a compact metric space with associated
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metric d. Let U € C" be a domain such that:

) UteT 0G; € U;
(i) For eacht € T there exists a defining function r; € C%(U) for G, such that its
Levi form L, is positive on U x (C" \ {0});
(iii) The mapping T > t > r; € C>(U) is uniformly continuous.

Remark 1.2. Observe that for the family (G;);c7 of bounded strictly pseudocon-
vex domains as in Situation 1.1 for sufficiently small R > 0 the set G; NB(¢, R) is
connected forany r € T and ¢ € 9G;.

Recently we have proved the following parameter version of Graham’s result on
peak functions (see [9]):

Theorem 1.3. Let (G):er be a family of strictly pseudoconvex domains as in Sit-
uation 1.1. Then there exists an ¢ > 0 such that for any n1 < € there exist an
12 > 0 and positive constants dy, dy such that for any t € T there exist a domain
G, containing G;, and functions h,(-; £) € O(G,), ¢ € G, fulfilling the following
conditions:

@ hi(£;0) = 1,150 < 1on G\ (¢} (in particular, hy(;¢) is a peak
function for G; at ¢); e

®) 11 —hi(z; O <dillz —¢ll, z € Gy NB(&, m2);

© h(z; )l =da <1,z€ Gy llz= ¢l =1

Moreover, the constants ¢, 12, d1, dy, domains a, and functions h;(-; ) may be
chosen in such a way that for any a > 0 and any fixed triple (1o, o, zo0), where
to € T, %0 € 0Gyy, and 2o € Gy, there exists a 6 > 0 such that whenever the triple
(s, &, w) satisfies s € T, &€ € IG5, w € (/?\s, and max{d(s, tp), |€ — &oll, lw —
zoll} < 8, then |hyy (205 §o) — hs(w; §)| < a.

Remark 1.4. The principal strength of Theorem 1.3 lies in the continuity property
and in the uniformity of the estimates given there: namely, all of the constants
&, M, d1, dy can be chosen independently of 7.

Remark 1.5. The crucial point of the proof of Theorem 1.3 is the setting of certain
continuously varying 8 problems on some domains G, with G, C G;,t € T, and
solving those problems in a subtle way, with uniform estimate C, given by [12,
Theorems V.2.7 and V.3.6] and not depending on the domains G,, to warrant that
the solutions will vary in a continuous way. Namely, we use the following result
(we give the formulation which best fits our purposes); for a bounded function f on
a set G, we from now on denote its sup-norm on G by || f||g:

Theorem 1.6. Given a strictly pseudoconvex domain G C C", there exist a neigh-
bourhood 3 of G in C? topology on domains and a positive constant C such that
for any strictly pseudoconvex domain D € i and any 9-closed (0, 1)-form o =
Z?:l o jdz; of class C*° on D su_ch that ||a||p = Z?:l lajllp < oo, there exists
a function v € C*°(D) satisfying 0v = o and ||v|p < C|la|p.

Then the compactness of T gives a constant C as above, good for all domains G;.
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The technique mentioned in the above remark, together with Theorem 1.3 it-
self, is also a vital ingredient of the proof of the first result given in the hereby paper.
This is the following approximation result for bounded holomorphic functions de-
fined near the boundary points of strictly pseudoconvex domains. The family of
such functions will be from now on denoted by H*°.

Theorem 1.7. Let (G;)eT be a family of strictly pseudoconvex domains as in Sit-
uation 1.1 and let R > 0 be such that the set G; N B(¢, R) is connected for any
t € T and any ¢ € 30Gy. Then, if R is taken to be sufficiently small, there exists a
o < R such that for any ¢ > 0 there exists an L = L(g, R) > 0 with the property
that for any t € T, any choice of points ; € 0G,, w' € G, N B(&;, p), and any
function f; € H®(G; NB(, R)), there exist an ﬁ € H*®(G;) such that:

(A) D*fi(w') = D f;(w') for |a| < 1;
®) Il fillG, < Ll fillg,nse.p):
©) I fi = fillg,nBr,p) < €llfllG,nBe,,R)-

Remark 1.8. Notice that the estimate in (B) depends only on ¢ and R. In particu-
lar, it is independent of 7. Also, the size” of domains of definition of the functions
we approximate is uniform, as the constant R do not depend on ¢. Therefore, Theo-
rem 1.7 amplifies Graham-Kerzman theorem, i.e. [6, Theorem 2] (see also [7, The-
orem 19.1.3]).

If in addition we are interested in interpolation problem at more than one point, we
have the following variant of Theorem 1.7:

Theorem 1.9. Let the family of strictly pseudoconvex domains (G;);er and number
R > 0 be as in Theorem 1.7. Then, if R is taken to be sufficiently small, there
exists a p < R such that for any ¢ > 0 and any m € N, m > 2, there exists an
L = L(m,¢e, R) > 0 with the property that for any t € T, any { € 3Gy, any
choice of pairwise different points W,, ; = {w’l, cowhY C GeNB(&, p), and any

function f; € H*(G; NB(¢;, R)), there exist an f, € H*®(G;) such that:

(A D"‘ft(w;) = D“ft(w;)for el < l,and j=1,...,m;
(B’) There existsan N = N (g, R, Wy,.1) such that

I fillg, < (L + NIl fillG,nBe.R):

) fi = fillc,mB@.p) < el fllc,mB,, R)-

Remark 1.10. Note that for m > 2 the situation is totally different than in Theo-
rem 1.7, as the estimate in (B’) is not any more independent on ¢. In fact, it even
depends on the choice of system of points W,, ;. The reason for this discrepancy
is that for m = 1 (i.e. in the situation from Theorem 1.7) the constant L may be
chosen independently of w’ € G, NB(¢;, p) because it comes from the uniform
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(independent of t) estimates for solutions of certain ] problems stated on some
small modifications G’ of domains G, (¢f. Remark 1.5) with the property that
G; NB(¢, p) € G' with uniform distance to the boundary, which allows us to use
the Cauchy inequalities with constant also independent of . On the other hand,
for m > 2 this estimate is aberrated, since we have in addition to take care of the
distances between points from W, ; while solving the interpolation problem - see
Section 2 for the details. Observe however, that if the systems W, ; of pairwise
different points {w, ..., w},} C G, N B(Z, p) are chosen in such a way that the
function 7 > ¢t — min{|wti’l — w,t(’l| jkel{l,...,om},j#Ek 1el{l,...,n}}is
continuous, then N in (B’) ‘may be chosen to be zero (it falls under L) and therefore
the estimate given there once again becomes independent of ¢ in this exceptional
case.

We also consider the stability problems of the boundary behaviour and localization
of holomorphically contractible systems. We say that a system of functions

dg : G x G — [0, +00),

where G runs over all domains in C" with any n, is holomorphically contractible if
dp = p, the Poincaré distance on D, and if all holomorphic mappings are contrac-
tions with respect to the family (d¢), that is, for any two domains D ¢ C", G C
C™ and any mapping f € O(D, G) we have

do(f(2), f(w)) =dp(z,w), =z, weD.

If all functions are additionally pseudodistances, we say that (d¢) is a holomorphi-
cally contractible system of pseudodistances. This definition have an infinitesimal
counterpart: we say that a system of pseudometrics

36 :G xC" — [0, +00)

where G runs over all domains in C" with any n, is holomorphically contractible if
Sp(z; X) = sup{| (@) X]| : f € O, D), f(z) = 0} and if for any two domains
D c C", G c C™ and any mapping f € O(D, G) we have

3¢(f@2); f[(@)X) <ép(z; X), zeD, XeC",

with f’(z) abbreviating the C-differential of f at z. For a good exposition on the
topic of holomorphically contractible objects, we refer the Reader to the monograph
[7].

With Theorems 1.3 and 1.7 at hand, we are able to deliver some uniform lo-
calization results for Carathéodory-Reiffen pseudometric y ; (Proposition 3.1) and
for Kobayashi-Royden pseudometric kg (Proposition 3.2): these are the parameter
versions of [6, Proposition 6] (see also [7, Theorems 19.3.1 and 19.3.2]).

In [5], some upper and lower estimates for the boundary behaviour of the
Kobayashi pseudodistance kg on strictly pseudoconvex domain G are given. It
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is showed there that for such domain G, for any couple of distinct points ¢, £ € dG
there exist constants K and C such that

1 1
kg(z, w) > —3 logdist(z, 0G) — > logdist(w, 0G) — K
whenever z, w € G are such that z is close to ¢ and w is close to &, and

1
kg(z, w) < —E(log dist(z, dG) + logdist(w, 0G))
1
+§(10g(dist(z, 9G) + llz — wl)+log(dist(w, dG) +z — wl])) + C,

whenever z, w € G are close to ¢ (cf. [5, Corollary 2.4 and Proposition 2.5]; observe
that for the upper estimate the strict pseudoconvexity is not needed — in [5] the
domain G is only assumed to have C!*¢ boundary). We prove that given (G;);cr, a
family of strictly pseudoconvex domains as in Situation 1.1, the estimates as above
are uniform with respecttor € T and ¢, § € dGy, i.e. the bounds K and C given
there can be taken to be independent of t € T and of ¢,& € 0G; - in the case
of lower estimate, depending only on ||{ — &|| (and when it comes to the upper
estimate, the domains G; do not necessarily have to be strictly pseudoconvex), see
Propositions 3.5 and 3.7 below. These results are inspired by [10, Propositions 9.1
and 9.2]. In correspondence to that paper, note that the role of the set of parameters
T is there played by a convergent sequence of numbers with its limit added.

We also give some estimates in this spirit for the Carathéodory pseudodis-
tance c¢p — see Proposition 3.3 and Corollary 3.4, and Proposition 3.9 (compare
with [7, Theorem 19.2.1, Corollary 19.2.2, and Proposition 19.2.4]). Note that
Proposition 3.3 is the consequence of Theorem 1.3.

The proof of Theorems 1.7 and 1.9 is presented in Section 2, while the sta-
bility results for the localization of Carathéodory-Reiffen and Kobayashi-Royden
pseudometrics and the uniform estimates for the boundary behaviour of Kobayashi
and Carathéodory pseudodistances come in Section 3.

The author is grateful to the referee for his valuable remarks, which helped to
improve the exposition of the paper.

2. Proof of Theorems 1.7 and 1.9

Recall that a bounded domain G C C" is called a strictly pseudoconvex one if there
exist a neighborhood U of G and a defining functionr : U — R of class C> on U
and such that:

D GNU={zeU:r(z) <0}
) (C*"\G)NU ={zeU:r(z) > 0};
(I Vr(z) # 0 for z € 3G, where Vr(z) = (£-(2), -+ , 2= (2));
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together with
L, (z; X) > 0 for z € 3G and nonzero X € T;C(BG),

where £, denotes the Levi form of r and T;C(a G) is the complex tangent space to
G at z.
It is known that U and r can be chosen to satisfy (I)-(III) and, additionally:

(IV) L,(z; X) > 0 for z € U and all nonzero X € C";
cf. [8].

The beginning of the proof is common for both Theorems 1.7 and 1.9 and
it consists of stating and solving (with uniform estimates) certain family of 9-
problems on domains being deformations of the domains G, and producing, with
the aid of the solutions of those d-problems, the family of holomorphic functions
on domains G, that would satisfy the assertions of the Theorems, except those con-
cerning the interpolation. In this place the argument splits into two parts, different
for both Theorems, as we have to consider different interpolation problems. As we
have already mentioned in the Introduction, this is the source of the fact that the
estimates in (B) and in (B') are of different nature.

Beginning of proof of Theorems 1.7 and 1.9. Set n, < ny,dy,dy < 1, E}\,, and
hi(-;¢) fort € T, € G, according to Theorem 1.3, where 71 is small enough to
assure that the set G; N B(Z, R) is connected for every ¢ € T and ¢ € dG;, where

R :=2n;. Replacing h; with h’f we may assume that

1 _
|he(z; 6| = 5 1€ G, ¢ € 0G;. 2.1
Letds € (d2, 1) and choose 0 < 1 < ny such that forany t € T we have B(¢; 2n) C
G, for all ¢ € dG; as well as |h;(z; ¢)| = d3 whenever ¢ € 0G; and ||z —¢|| <7
(this is possible because of the uniform choice of di in Theorem 1.3). Define p :=

min{3, 4},
For a fixed ¢ € T there are points ¢/, ..., (fvt € 3G, such that
N:
16, < | JB(¢h. ).
j=1
For any j € {1, ..., N;} we modify the domain G, near the boundary point ¢ ]’ in

order to get a strictly pseudoconvex domain th satisfying:

(1) G; C th C a N G;") (where Gt(") denotes the n-hull of G;);

2) G/ N B(¢},2p) € G'; and dist(G, N B(¢}, 2p), 3G") = B > 0 with B inde-
pendent of j;
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(3) G \B(}. §p) = G\ B} §p):
(4") The estimate C for the solution of d-problem for G, given by Theorem 1.6 is
good for G’j;

see Figure 2.1 below.

l==Coll= R

Figure 2.1. Geometric situation as described in (1')-(4"): with ¢ fixed, the black thick
arc represents a part of the boundary of the domain G, near ¢{, gray dashed one — a part

of the boundary of Gf”), and the black dotted one — a part of the boundary of G,. The

gray dotted curve illustrates the required modification G/ of the domain G, near .

Note we want to perform this kind of modification near finite family of suitably chosen
boundary points ¢/, ..., {n, (i.e. such that 3G, C Uiv‘:l IEB((}, p)) and then to allow all
the data vary uniformly in 7 in such a way that suitably chosen p and the estimate from
below B of the distance of the closure of the domain colored in deeper gray tint are good
forallr € T and all j € {1, ..., N}, and so is the estimate C, given by Theorem 1.6,
of the norm of the solution ofg—problem for all domains G;, G’j, j=1,...,Ny,teT,
(this is (1)-(4)). The next part of the proof begins with taking arbitrary point ¢y €
0G; which then must be contained in some of the balls B(¢1, p), ..., B(¢w,, 0), so that

G, NB(¢, p) € G, which will be used later in the proof. Finally, the area filled in
gray (both tints) is the domain of definition of bounded holomorphic function we want
to approximate.

Observe that for s close enough to ¢ we may choose points ¢}, ..., ;1{,5 € dG;
such that Ny = N, ;j. is close to ¢ ]’ (with arbitrarily prescribed distance), 0G; C

- B(¢?, p), and with the property that for any j € {1,..., Ny} we can fin
7_1183(5) d with th hat f i e {1 Ny} find
strictly pseudoconvex deformation Géj'. of Gy near ¢ JS such that:

(1) G, € G% c G, NG

(2) G; NB(f.2p) € G4 and dis(G, NB(z!, 2p), 0G") = & > 0;
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(3) Gs \ B(}. 4p) = G5\ B(}. 4p):;
(4) The estimate C for the solution of 3-problem given by Theorem 1.6 is good for
G*.
j

Using the compactness of 7', we see that the constants C and § may be chosen
indepenedently of # and .

Fixnowt =1y € T and {y € 3G;. Let f € H*®(G; NB(¢o, R)).

There exists a jo € {1, ... N;} such that ¢, € IB%(;;O, p). To simplify the nota-
tion, let us assume without loss of generality that jo = 1.

Choose a x € C®(C", [0, 1]) such that x = 1 on B(, 65ﬂ) and x = 0
outside B (&, 95ﬂ) and define «; := (3x)f on G; N B(¢y, R) = G, N B(Zo, 211)
and o; := 0 on G; \ B(¢,2n1). Note that in view of the fact that ¢; = 0 on
(G; N B(g, 6.D.ﬂ)) U (G, \ B(¢o, @)), after trivial extension by zero, it can be
treated as a 9-closed (0, 1)-form of class C* on th .

For k € N (this will be specified later) consider the equation

vt = (e (5 ) ¥y (22)

Then we have a solution v € C*(G') of the problem (2.2) such that
[kl = CllC: 200 lsper el -

Recall that the constant C is independent of ¢ and of j € {1,..., N;}. Further
estimation gives

[villor < CC1d31 fllGinzco.p)-

with the constant C; depending only on 7; (in particular, not depending on ¢).

Define the function fi := xf —h:(; &o) ¥ v,’c and observe it is holomorphic on
G/ (recall that at the beginning of the construction we have normalized #; to satisfy
(2.1)). Consequently, the function /4, (-; {0)_1‘ v,’{ is holomorphic on G’1 N B(&o, n)
(on the set G, N B(¢p, ) it follows from the holomorphicity of fi, and on the
remaining part - from the triviality of extension of «; by zero and from the choice
of n). Furthermore

A\
<CC .
B0 1 (d3> I/l nB(z.R)

Note that for z € G, N B(Zo, p) we have [lz — ¢{|| < llz = &oll + 150 — ¢{ 1l < 2p.
Therefore, G, N B(%o, p) C G, NB(¢], 2p) € G.

On the set G; N B(¢y, n) we have the equality fx — xf = —h,(; ;0)*"1;,(,
and the latter function is holomorphic on bigger set G’1 N B(¢o, n). Therefore, for

z € G; N B(&y, p) we have
CcCy (dr\*
< — (—) I fllG.nB(zo,R)

e )70

dfk
—()——()‘ ‘ (s 0 ) @) < T (2

9z
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where the last inequality is a consequence of the Cauchy inequalities and in virtue
of (2), the constant L| may be chosen independently of ¢,y € 0Gy, and 7 €
G; N B(%o, p). The same argument gives

CcCy (dr\*
| fx — fllG.nB@o,m < L_l <£> | fllG,nB(zo,R)- [

The remaining part of proof is different for both Theorems.

End of proof of Theorem 1.7. Sete > O andletw = w' € G, NB(L, p) (t =19 €

T and ¢y € 0G, are as above). Define fk € O(G,) by fk(z) = fir(2) + p(2),
where

p@) = f(w) — fk(w)+2<—< y— ey >)( wj).

9z

It can be easily checked that ﬂ(w) = f(w), as well as 3f k(w) = agj (w). Further-
more,

I fe — FllGinBeo.p) < I fi — FllGrBo.p) + 1 f (W) — fi(w)]

0
+ ndiamU —f( )—i( )‘
Z 8Z]
CCy (d
<@ +ndlamU)— (d_j) I fllG,nB o, R)-

ki ~ ~
Let finally ko € N so large that (2 + ndiamU) =+ Ccl ( 3) ’ < ¢ and define f := fj,.

Observe that ky depends only on € and n;. It is left to estimate the norm of the latter
function:

fko(

0z

1716, = |fialg, + £ w) = fig(w)] + ndiam '—( y— o)
< [ S|l g, + €l fllGnBeo.R)-

This, together with the estimate
| fioll g, < IxfliG, +] G ) oug | 5. < (14+2°CC1a5°) 1 £l m) (23)

gives the conclusion with L := 1+2%C C1d§° +¢,depending only on ¢ and R. [

End of proof of Theorem 1.9. Sete > 0 and let a system of pairwise different points
Wi = {wl, ..., w"} C G,NB(o, p) (t =19 € T and &y € dG, are as above).
Put w! = wf ,i = 1,...,m. We introduce some useful notation: for pairwise
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distinct complex numbers xl, ...

as

x™ , the basis Lagrange polynomials are defined

m J
—X .
D ="2):= [] —— i=L...m

s oxt—x/

Jj=1,j#
Givenaz:(zl,...,zn)andwl:(wll,...,w,ll),...,wm:(w’f’,...,w,’l”)EC”
let us put

k
m .
j W .
Ljep= ] —% i=L...mj=1..n
k=lkzi Wj— Wj
Assume first that w;' * w? for j = 1,...,nwheneveriy # i>. Deﬁnefk € O(Gy)

by i@ == fi(z) + p(z), where

p(2) :=i(f(wi)_fk (wi)> [(1+% n %l;j (wlj)(wlj — Zj))% i (li,j(Zj))2:|

i=1 j=I j=l
i afk i i 2
5 Z Bz (w) = 2~ (') ) (7 = w§) (s(z7)" | -
i1 J Zj
One can verify that f(w') = f(w') and J& L) = %(wf) fori =1,...,m and
j=1,...,n. We estimate

I = fllGinBo.0)

snﬁ—:ﬂmmm@wy+u«1+2Mmmmw>§jp%w)—fuwﬁ
i=1

ofr ,
MdiamU ’ K (i
wtan 33| () |
i=1i=1
CCy (dy
= L (d3) (1 + Mm(1 + M2 + n)diamU) | fllG,nB(.R)

where M = M (WV,,1). The last term is smaller than ¢|| f || ,nB(¢,, r)» provided that
k = ko is sufficiently large (observe this choice of k is independent of f). Then,

performing similar computations, for f= fko , because of (2.3), we get

CCy (dy ko )
16, < fioll g, + gz ) MmQ+MQ+mdiam)If s p
CCy (dr )\ ,
< (1+2koccldk0+L_1<d_2> (Mm(1+M(2+n)d1amU)) | flG.nB(zo,R)
1 3

=: (L + N) |l fllG,nB(zo,R)-
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Observe that L = 1 4+ 2k CC 1d§° depends only on ¢ and R, while

ko
N = — ] (MmQA+ M2+ n)diamU)
Ly \d3

CC (dz
do also depend on the choice of W, ;. See however, that according to what we have
said in Remark 1.10, if the systems W, ; were chosen to be continuously dependent
on ¢, then N would fall into L and therefore would become independent of 7.

Let us pass to the remaining case, namely: the one where we assume that some
of points wl, ... , w" have at least one common coordinate. Fori € {1,...,m}, j€
{1,...,n}and z = (21, ..., zn) € C" define

= - —wi L k
hip ] % ifdk#iw #ub,
Cwh — wh .
k:l,k;éi,w’;;éw‘j J J

and ~
l,',j(zj) =0 otherwise.
Observe that for a fixed i not all of ; ; are zero (since the points w!

pairwise different). Therefore, we can define

..., w™ are

A,-:={je{l,...,n}:i,-,jisnonzero};ﬁ@, ni:=14;], 1=1,...,m.
Observe that if j ¢ A;, then

Biji={kom) € (1ooom) > (1o om) \ ) < wfy, # i | # 2.
Define

p(2)

2|2 ()= ) ) (o -u) T (—_w )

i _
i=1 \ j¢A; (ki,mi)eB; j \Wm; — Wm;

and f(z) = fr(2) := f(2) + p(z) with k sufficiently large, and we end the proof
carrying out similar computations as before. O
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Remark 2.1. In Theorem 1.7 one can require in the conclusion that

Ifi = fillgrB.p) < €

Analyzing the proof of our result, we see that it is possible to get this kind of esti-
mate. There is, however, a price we have to pay - the constant L is not any more
independent of f.

Remark 2.2. In [6] it is stated that the estimate in (C) holds true also for the deriva-
tives of f and f up to previously prescribed order. The same result is possible to
get here - with L still independent of ¢.

3. Boundary behaviour of Kobayashi and Carathéodory pseudodistances
and pseudometrics

Let us recall the definitions of the holomorphically contractible pseudodistances
and pseudometrics we are interested in.
For arbitrary domain G the Carathéodory pseudodistance is defined as

¢G(z, w) :==sup{p(0, f(w)) : f € OG,D), f(z) =0}, z,weQC,
the Carathéodory-Reiffen pseudometric is given by

n af
Yoz X) = SUP{ ;E(Z)Xj : feOG,D), f(2) =0}
z7€¢G, X=Xy,..., X, €C",

the Kobayashi pseudodistance may be expressed as

N
kg(z, w) := inf{z pEj.¢)):NeNgj,¢c;eD, and3pg,...,py €G :
j=1

po=2z,py=w,3f; € O, G): f;&) =pj-1, fi())
=Pj,j=1,---,N}, zweG,

and the Kobayashi-Royden pseudometric is defined as

kG(z; X) :=infla > 0:3¢p € O, G) : ¢(0) =z, ¢’ (0) = X},
z€G, X =(Xq,..., X, € C".

We start with localization results with parameter for Carathéodory-Reiffen (Propo-
sition 3.1) and Kobayashi-Royden (Proposition 3.2) pseudometrics. The proofs of
these results are similar to the [6, proof of Proposition 6]. However, we include
them for both the convenience of the Reader and in order to illustrate how Theo-
rems 1.3 and 1.7 work in the proofs. Note that Theorems 1.3 and 1.7 play a crucial
role here.
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Proposition 3.1. (cf. [6, Proposition 6] and the remark following it, see also [7,
Theorem 19.3.1]). Let (G¢);eT be a family of strictly pseudoconvex domains as in
Situation 1.1. Then for all sufficiently small R > 0 the set G;NB(¢, R) is connected
foranyt € T and ¢ € 3G, and for all X € C" \ {0} we have

. YG,nB(,R) (@ X)
lim =
GNB(.R)3z~>¢ Vg, (23 X)

The convergence is uniform int, ¢ and X € C"\ {0} in the sense that for any a > 0
there exists a B € (0, R) such that foranyt € T, € 0G;, w € G, NB(¢, B), and
X € C"\ {0} we have

YG.nB(,R)(Ws X)

<l+4a.
Yq, (w; X)

Proof. Fix @« > 0 and let R be as in Remark 1.2 and smaller than & from Theo-
rem 1.3, and so small that the conclusion of Theorem 1.7 holds for it. Let p < R
be as in Theorem 1.7. Forany t € T, ¢ € 0G,, w € G; NB(¢, p), and any X € C"
let f; € O(G, N B(¢, R), D) be such that f;(w) = 0 and

Z i(w)x

=0

YG.nB,R) (W X) =

Take 0 < u < ﬁ By Theorem 1.7, forany r € T,¢ € 3G, and w € G, N
B(¢Z, p) there exists an f, € H*(G,) such that ||f, — fillc,mB,p) < 1, %(w) =

Frw), j=1....n, fiw) = fi(w) =0, and | fillG, < L.

Let h; (- §) be a family of peak functions at the points ¢ € dG,,t € T, given
by Theorem 1.3 with constants n; < p, 12, d;, and d». Then, by estimates from
Theorem 1.3, there exists a@ € (0, 1) such that forany r € T and ¢ € dG, we have

{ze G |h(z;0)] >0} C G, NB(, p).

Pick a k € N such that 0¥ < 1. Take a B < p with |h; (w; £)[¥ > 1 — u for each
teT, € Gi,andw € G, N IB%({ B) (again use estimates from Theorem 1.3).

Let ft = lJrM(h,( Nk ﬁ fort € T,¢ € 0G,;. Fix w € G, NB(¢, B). Then
i € O(G, D), fy(w) = fy(w) =0,and

0
i( )= —(h,(w ;))ki( ), j=1,...,n.

Therefore, fort € T,¢ € 3G,, w € G, N B(¢, B),and X € C",

—u _
Z 1T, Y6, R (W X),

d
Z %(w)X,

j=1
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which yields

(w; X) = ——*
w; =
VG, 1+

and this concludes the proof. O

YG.nB(,R)(W; X),

Proposition 3.2. (cf.[6, Proposition 6] and remark following it, see also [7, The-
orem 19.3.2]). Let (Gt):er be a family of strictly pseudoconvex domains as in Sit-
uation 1.1. Then there exists an R > 0 such that for any t € T and any ¢ € 0G;
the set Gy NB(¢, R) is connected and for any X € C" \ {0} we have

kG,nB(,R)(Z X)

lim  —— = =
GiNB(,R)3z—>¢ kg, (2 X)

The convergence is uniform in { € 0G, and X € C" \ {0} in the sense that for any
a > Othere existsa 8 € (0, R) such that foranyt € T, € 0G;, w € G;,NB(¢, B),
and X € C"\ {0} there is

KG,nB(,R)(W; X)
kg, (w; X)

<l+4oa.

Proof. Let R be as in Remark 1.2 and smaller than ¢ from Theorem 1.3. By [6,
Lemma 4 ] (see also [7, Proposition 13.2.10]) we have

KG,nB(,R)(2; X) < cothkg, ¢ r(2kg,(2; X), 3.1
fort € T, € 0G;,z € G;NB(Z, R), and X € C", where
kG,.¢.r(2) = inf {k, (2, w) : w € G, \ B, R)}.

Fix « > 0 and let /;(-; ¢) be a family of peak functions at the points ¢ € 0G;,t € T
with constants 71 < R, 12, d1, and d3, given by Theorem 1.3. Let

0 :=inf{|1 —h,(w;¢)|:t €T,z € 3G, w € G, \ B(¢; R)}.

By Theorem 1.3, 6 > 0. Using now the estimates from Theorem 1.3 again, for
A € (0, 9), sufficiently close to 0, we finda 8 < R suchthatforanys € T, ¢ € dGy,
and z € G, NB(, B), there is |1 — h;(z;¢)| < A. Thenfort € T,¢ € 0G4,z €
G, NB(, B), and w € G, \ B(¢, R) we get

1 0
kg, (z, w) > ,w) > —log —.
G (2, w) = €6, (z, w) = 7 log -
This, together with (3.1) and for A sufficiently close to 0, gives

kG,nB(,R)(2; X) < (1 + kg, (z; X),

fort e T,; € 0G;,z € G, NB(¢, B), and X € C", which finishes the proof. [
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Theorem 1.7 is the main ingredient of the proof of the uniform estimates for the
boundary behaviour of the Carathéodory pseudodistance, which reads as follows:

Proposition 3.3. Let (G;);er be a family of strictly pseudoconvex domains as in
Situation 1.1. Let K C C" be a compact set such that K C G, for any t € T. Then
there exists a constant C > 0 such that for everyt € T

1
cG,(z, w) > —3 log dist(w, 0G;) — C

whenever z € K, w € G;.

Proof. This is a consequence of Theorem 1.3. Observe that the proof may be car-
ried out along the lines of the [7, proof of Theorem 19.2.1], however, we give the
argument here, for the convenience of the Reader. Let ¢ > 0 be such that for any
t € T and 7 € G, with dist(z, 0G;) < ¢ there exists exactly one point ¢ (z) € IG;
with

z=§(z) — dist(z, 9Gy) - n(£(2)),

where n(¢;(z)) is the unit outer normal vector to dG; at {(z). Let h;(z;¢) be a
family of peak functions given by Theorem 1.3 with constants 1y, 12, di, and d»,
chosen so that

n1 < min {% inf{dist(K, 3G,) : 1 € T}}.

Observe that in virtue of the assumptions on family (G;)sc7, the latter quantity is
positive.
1—d;

Forz € K,t € T,and w € G, with dist(w, dG;) < min {7727 d—1} we have

h |hi (w, & (W) — hy(z, & (w))]

11— hi(z, & (w))he (w, & (w))]
1 —dy —di|lw =& (w)|

1 —dy +dillw — & (w)ll

tanh ¢, (z, w) > tan

> tanh

’

which implies

1—dp

1
cG,(z, w) = < log

1 .
> a —3 log dist(w, dGy).

If dist(w, 8G,) > min {n, 132}, then

1 ~
cG,(z,w)>0> ~3 log dist(w, 0G;) — C

where C > 0 is independentof t € T and 7 € K. O
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Corollary 3.4. Let (G;)seT be a family of strictly pseudoconvex domains as in Sit-
uation 1.1. Let ¢ > 0. Then there exist positive constants p» < p1 < € and C > 0
such that for every t € T and every { € dG; we have

1
cG, (2, w) > ~5 logdist(z, 0G;) — C

whenever z € G, NB(¢, p2) and w € G, \ B(¢, py).

We include the next two results, as they generalize [10, Propositions 9.1 and 9.2]
(see Remarks 3.6 and 3.8), which, we believe, might be of some interest. Propo-
sition 3.5 relies on Corollary 3.4, and it gives the uniform lower estimate for the
boundary behaviour of the Kobayashi distance. Proposition 3.7 deals with the uni-
form upper estimate for the boundary behaviour of the Kobayashi distance. It is
independent of our main results.

Proposition 3.5. Let (G;);er be a family of strictly pseudoconvex domains as in
Situation 1.1. Let ¢ > 0. Then there exists a constant C > 0 such that for every
t € T and every ¢, &, different points from 0G, such that || — &|| > &, we have

1 1
kg, (z, w) > —3 log dist(z, 0G;) — 7 log dist(w, 0G,;) — C

whenever z, w € G, are such that z is close to ¢ and w is close to & (with uniform
size of the respective neighborhoods).

Proof. The proof goes similarly to the [7, proof of Proposition 19.2.7]. Only, one
has to use our Corollary 3.4 instead of [7, Theorem 19.2.2]. O

Remark 3.6. Observe that [10, Proposition 9.1] can be deduced from Proposi-
tion 3.5.

Proposition 3.7. Let (G;);er be a family of bounded domains with C*-smooth
boundaries, where T is a compact metric space with associated metric d. Sup-
pose we have a domain U € C" such that | J,c; dG; € U and with the property
that for any ¢ > 0 there exists a § > 0 such that for any s,t € T withd(s,t) <
there is |[ry — rsllc2yy < €, where r; denotes a defining function for G, defined on
U for any t € T. Then there exists a constant C > 0 such that for any t € T and
any ¢ € G; there exists a neighborhood V¢ ; of ¢, of uniform size, with the property
that

1
kg, (z, w) < —E(log dist(z, 0G;) + logdist(w, 0Gy))
1
+5(10g(dist(z, 0G )+ llz—wl)+logdist(w, 3G,)+z — wl))+C,

whenever z, w € G; N V¢ ;.
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Proof. The proof follows the lines of the [7, proof of Proposition 19.2.9] with nec-
essary modifications. Observe that R therein can be taken to be independent of
t € T and ¢ € Gy (see also the proof of [10, Proposition 9.2]). Also, the final con-
stant C, given explicitly by log2 + kB(O’ 3B} )(O, 1) depends neitheront € T
noron ¢ € 0G;y. O

Remark 3.8. Observe that [10, Proposition 9.2] can be deduced from Proposi-
tion 3.7.

We also give the uniform upper estimate for both Carathéodory and Kobayashi dis-
tances, in the spirit of Proposition 3.3. This is independent of our main results, but
we contain it here for the sake of completeness.

Proposition 3.9. Let (G;);er be a family of bounded domains with C2?-smooth
boundaries, where T is a compact metric space with associated metric d. Sup-
pose we have a domain U € C" such that | J,.; 8G; € U and with the property
that for any ¢ > O there exists a § > 0 such that for any s,t € T withd(s,t) <§
there is |[ry — rsll2yy < €, where r; denotes a defining function for G, defined on
Uforanyt € T. Let K C C" be a compact set such that K C G, foranyt € T.
Then there exists a constant C > 0, such that for any t € T we have

1
kg, (z, w) < —> logdist(w, 0G;) + C,

whenever z € K and w € G;.

Remark 3.10. In comparison with Situation 1.1, here we do not assume the strict
pseudoconvexity of the domains, only the boundary regularity.

Proof. The proof goes along the lines of the proof of [7, Proposition 19.2.4]. We
only discuss the necessary modifications.

Observe that gy as in the proof of the mentioned result may be taken to be
independentof t € T'.

For fixed r € T let § > 0 be such that for any s € T with d(s, ) < & the set

K= |J f{zeG;:distz,0Gy) = &)
seT:d(s,1)<8

is compact in G and, moreover, dist(K;, 0G) > %" Let G 5 be a bounded domain
with C2-smooth boundary such that

KUK, €Gysc () Gs.
seT:d(s,1)<8

For s as above and z € K,w € Gy, with dist(w, dG5) < &g, using the same
argument as in [7], we get the estimate

1 1
kg, (z,w) < —3 log dist(w, 0Gy) + 3 log(2e0) 4+ Ci s
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with C; 5 := sup{kg, ;(a,b) : a,b € K U K;}. By the compactness of T, the latter
constant may be chosen independently of #. We end the proof as in [7]. O
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