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A fresh look at the notion of normality

VITALY BERGELSON, TOMASZ DOWNAROWICZ AND MICHA L MISIUREWICZ

Abstract. Let G be a countably infinite cancellative amenable semigroup and
let (Fn) be a (left) Følner sequence in G. We introduce the notion of an (Fn)-
normal set in G and an (Fn)-normal element of {0, 1}G . When G = (N,+) and
Fn = {1, 2, . . . , n}, the (Fn)-normality coincides with the classical notion. We
prove several results about (Fn)-normality, for example:

• If (Fn) is a Følner sequence in G, such that for every ↵ 2 (0, 1)we haveP
n ↵

|Fn | < 1, then almost every (in the sense of the uniform product
measure ( 12 ,

1
2 )
G ) x 2 {0, 1}G is (Fn)-normal.

• For any Følner sequence (Fn) in G, there exists an effectively defined
Champernowne-like (Fn)-normal set.

• There is a rather natural and sufficiently wide class of Følner sequences
(Fn) in (N,⇥), which we call “nice”, for which the Champernowne-like
construction can be done in an algorithmic way. Moreover, there exists
a Champernowne-like set which is (Fn)-normal for every nice Følner
sequence (Fn).

We also investigate and juxtapose combinatorial and Diophantine properties of
normal sets in semigroups (N,+) and (N,⇥). Below is a sample of results that
we obtain:

• Let A ⇢ N be a classical normal set. Then, for any Følner se-
quence (Kn) in (N,⇥) there exists a set E of (Kn)-density 1, such
that for any finite subset {n1, n2, . . . , nk} ⇢ E , the intersection A/n1 \
A/n2 \ . . . \ A/nk has positive upper density in (N,+). As a conse-
quence, A contains arbitrarily long geometric progressions, and, more
generally, arbitrarily long “geo-arithmetic” configurations of the form
{a(b + ic) j , 0  i, j  k}.

• For any Følner sequence (Fn) in (N,+) there exist uncountably many
(Fn)-normal Liouville numbers.

• For any nice Følner sequence (Fn) in (N,⇥) there exist uncountably
many (Fn)-normal Liouville numbers.
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1. Introduction

It follows from the classical law of large numbers [12]1 that given a fair coin whose
sides are labeled 0 and 1, the infinite binary sequence (xn), obtained by indepen-
dent tossing of the coin, is almost surely normal, meaning that, for any k 2 N =
{1, 2, . . . }, any 0-1 word of length k, w = hw1, w2, . . . , wki 2 {0, 1}k , appears in
(xn) with frequency 2�k . This provides a proof of existence of normal sequences
(note that a priori it is not even clear whether normal sequences exist!). There
are also numerous explicit constructions of normal sequences (see for instance
[16, 19, 38]). For example, the Champernowne sequence 1 10 11 100 101 110 . . . ,
which is formed by the sequence 1, 2, 3, 4, 5, 6, . . . written in base 2, is a normal
sequence.

Any 0-1 sequence (xn) 2 {0, 1}N may be viewed as the sequence of digits in
the binary expansion of the real number x =

P1
n=1 xn2�n 2 [0, 1], which leads to

an equivalent formulation of the above fact: almost every x 2 [0, 1] is normal in
base 2. Similarly, due to the natural bijection between 0-1 sequences and subsets of
N (any subset ofN is identified with its indicator function which is a 0-1 sequence),
one can talk about normal sets in N (more accurately, in (N,+); see the discussion
below).

The peculiar combinatorial and Diophantine properties of normal sequences/
sets/numbers, together with the fact that they are “typical” (in the sense of mea-
sure), make them a natural object of interest and a source of various generalizations,
see [2, 20, 25, 45].

The classical definition of normality of a 0-1 sequence x = (xn)n2N 2 {0, 1}N
is formulated as follows.2

Definition 1.1. For n, k2N (kn), and a 0-1 wordw2{0, 1}k , we letN(w,x,n) be
the number of times the word w occurs as a subword of the word hx1, x2, . . . , xni2
{0, 1}n:

N(w, x, n) =
�
��m 2 {1, . . . , n � k + 1} : hxm, xm+1, . . . , xm+k�1i = w

 ��

(here | · | denotes the cardinality of a set). A sequence x 2 {0, 1}N is normal if for
every k 2 N and every w 2 {0, 1}k we have

lim
n!1

1
n
N(w, x, n) = 2�k . (1.1)

One may ask a naive but in some sense natural question whether replacing the se-
quence of “averaging intervals” {1, 2, . . . , n} (which are implicit in the above def-
inition because one can write hx1, x2, . . . , xni = x |{1,2,...,n}) by a more general

1 See Appendix for historical notes.
2 In [12], this formulation appears not as the definition but as a “characterization” of normality,
see the Appendix for more details.
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sequence (Fn) of (a priori arbitrary) finite subsets of N leads to a meaningful gen-
eralization of the notion of normality. More precisely, one would like to count the
number of times the word w occurs as a subword of x |Fn :

N(w, x, Fn)
=
�
��m2N : {m,m + 1, . . . ,m + k � 1}⇢Fn and hxm, xm+1, . . . , xm+k�1i=w

 ��

and call a sequence x 2 {0, 1}N (Fn)-normal if, for every k 2 N and any w 2
{0, 1}k , one has

lim
n!1

1
|Fn|

N(w, x, Fn) = 2�k . (1.2)

It turns out that in order for the above notion of (Fn)-normality to be nonvoid, the
sequence of sets (Fn) has to be a Følner sequence, i.e., satisfy the so-called Følner
condition:

8k 2 N lim
n!1

|Fn \ (Fn � k)|
|Fn|

= 1 (1.3)

(in particular, it must hold that |Fn| ! 1). As a matter of fact, the Følner condition
is implied by a rather mild requirement that there exists an x 2 {0, 1}N such that,
for each k 2 N,

lim
n!1

1
|Fn|

X

w2{0,1}k
N(w, x, Fn) = 1. (1.4)

The proof will be given later (see Theorem 2.10 below) in a more general context.
Our next observation is that if x 2 {0, 1}N is (Fn)-normal then not only words,

but in fact all 0-1 blocks, occur in x with “correct frequencies”, by which we mean
the following. Let K be a nonempty finite subset of N. Any element (function)
B 2 {0, 1}K will be called a block. We will say that a shift of a block B 2 {0, 1}K
occurs in the block x |Fn 2 {0, 1}Fn at a position m 2 N [ {0} if

(8i 2 K ) i + m 2 Fn and xi+m = B(i).

We let N(B, x, Fn) be the number of shifts of the block B occurring in x |Fn , i.e.,

N(B, x, Fn) = |{m 2 N [ {0} : (8i 2 K ) i + m 2 Fn and xi+m = B(i)}|.

Then (Fn)-normality of x implies

lim
n!1

1
|Fn|

N(B, x, Fn) = 2�|K |, (1.5)

for any nonempty finite set K and every block B 2 {0, 1}K . We will prove this
implication in Section 2 using the language of dynamics (see Lemma 2.11).

Once we are driven into considering Følner sequences of the “averaging sets”,
the natural context for continuing our discussion of normality becomes that of
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countably infinite amenable cancellative semigroups3 G (it is known that such semi-
groups admit (left) Følner sequences see [39, Theorem 3.5 and Corollary 4.3], see
also Definition 2.1). In order to adapt the definition of (Fn)-normality to this con-
text, we pick a Følner sequence (Fn) in G, fix a 0-1-valued function x = (xg)g2G 2
{0, 1}G , and, for each finite set K ⇢ G and a block B 2 {0, 1}K , denote

N(B, x, Fn) =
�
g 2 G [ {e} : (8h 2 K ) hg 2 Fn and xhg = B(h)

 
, (1.6)

where e is the formal identity element added to G in case G lacks an identity.
We will say that x is (Fn)-normal if for any nonempty finite K ⇢ G and every
B 2 {0, 1}K , one has (as in the case of (N,+)),

lim
n!1

1
|Fn|

N(B, x, Fn) = 2�|K |. (1.7)

Let us now examine closer the dynamical underpinnings of the notion of normality.
Let G be a countably infinite amenable cancellative semigroup. The semigroup G
acts naturally on the symbolic space {0, 1}G by shifts, as follows: for g 2 G and
x = (xh)h2G , �g(x) = (xhg)h2G .4

For any nonempty finite set K ⇢ G, each block B 2 {0, 1}K determines a
cylinder

[B] =
�
x 2 {0, 1}G : x |K = B

 
.

As we will explain later (see Theorem 2.8), if (Fn) is a Følner sequence then (Fn)-
normality can be expressed in terms of the shift action and cylinder sets in the
following way:

• An element x 2 {0, 1}G is (Fn)-normal if and only if for every nonempty finite
set K and every block B 2 {0, 1}K one has

lim
n!1

1
|Fn|

|{g 2 Fn : �g(x) 2 [B]}| = 2�|K |.

When dealing with a general amenable semigroup G and a Følner sequence (Fn),
it is not a priori obvious whether (Fn)-normal elements x 2 {0, 1}G exist. We
solve this problem in the affirmative by showing, in Theorem 4.2 below, that for
any countably infinite cancellative amenable semigroup G and any Følner sequence
(Fn) in G, with |Fn| strictly increasing, �-almost every x 2 {0, 1}G is (Fn)-normal,
where � is the uniform product measure (12 ,

1
2 )
G on {0, 1}G . In an equivalent form

(see Theorem 4.4), our result can be interpreted as a sort of pointwise ergodic the-
orem for Bernoulli shifts. Namely, for any Følner sequence (Fn) with |Fn| strictly

3 A semigroup G is (two-sided) cancellative if, for any a, b, c 2 G, ab = ac =) b = c and
ba = ca =) b = c.
4 In the classical case G = (N,+), the action is given by �m(x) = (xn+m)n2N (where m 2 N
and x = (xn)n2N).
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increasing5, any continuous function f on {0, 1}G and �-almost every x 2 {0, 1}G
we have

lim
n!1

1
|Fn|

X

g2Fn

f (�gx) =
Z

f d�.

We emphasize that the pointwise ergodic theorem for general actions of amenable
groups (and measurable functions) holds only for tempered Følner sequences which
satisfy the so-called Shulman’s condition:

�
�
�
�
�

n[

i=1
F�1
i Fn+1

�
�
�
�
�
 C|Fn+1| (1.8)

(see [37, page 83], see also [1] for the necessity of Shulman’s condition).
The set N of natural numbers has two natural semigroup operations: addition

and multiplication. This leads to two parallel notions of normality of subsets of
N, which will be referred to as additive and multiplicative normality, respectively.
The possibility of juxtaposing the Diophantine and combinatorial properties of ad-
ditively and multiplicatively normal subsets ofN served as the initial motivation for
this paper.

The notion of (Fn)-normality in (N,+) and (N,⇥) allows one to reconsider,
from the more general point of view, the classical results dealing with the existence
of normal Liouville numbers6 (see [14]7). While it is true that the set of Liouville
numbers is residual (i.e., topologically large, see [31, Theorem 5]), the set of (Fn)-
normal numbers is, as we will show in subsection 4.2, of the first category (i.e.,
topologically small). This holds for any Følner sequence (Fn) in either (N,+) or
(N,⇥). As for the largeness in the sense of measure, the situation is reversed: as we
have already mentioned, the set of (Fn)-normal numbers is (for any Følner sequence
(Fn), in either (N,+) or (N,⇥), with |Fn| strictly increasing) of full Lebesgue
measure, while it is well known that the set of Liouville numbers has Lebesgue
measure zero (see for example [43]). So, using just the criteria of topological or
measure-theoretic largeness it is impossible to decide whether the sets of Liouville
numbers and of (Fn)-normal numbers have nonempty intersection.

Below is a brief description of results obtained in this paper.
• Section 2 is devoted to reviewing or establishing basic facts about amenable

groups and semigroups, which are needed in the sequel. In particular we prove an
auxilliary theorem which shows that in many situations one can deal, without loss
of generality, with amenable groups rather than semigroups.

5 Actually, our assumption in Theorems 4.2 and 4.4 on the Følner sequence (Fn) is even weaker:
for any ↵ 2 (0, 1),

P
n2N ↵

|Fn | < 1.
6 Let us recall that an irrational number x is called a Liouville number if for every natural k there
exists a rational number pq such that |x � p

q | < 1
qk .

7 In fact, in [14] Bugeaud proves the existence of absolutely normal (i.e., classical normal with
respect to any base) Liouville numbers. We are interested in (Fn)-normality in base 2, but for a
general Følner sequence (Fn) in (N,+), as well as in (N,⇥).
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• In Section 3 we establish left invariance of the class of (Fn)-normal sets in
countably infinite amenable cancellative semigroups.

• Section 4 contains our “ergodic theorem for Bernoulli shifts and continuous
functions” which says that the set N ((Fn)) of (Fn)-normal elements of {0, 1}G is
large in the sense of measure. By the way of contrast, we also prove that the set
N ((Fn)) is small in the sense of topology (is of first category).

• In Section 5 we give a general Champernowne-like construction of an (Fn)-
normal element x 2 {0, 1}G for any countably infinite amenable cancellative semi-
group G and any Følner sequence (Fn) in G.

• Section 6 focuses on the notion of normality in the semigroup (N,⇥) of mul-
tiplicative positive integers. We introduce a natural class of Følner sequences which
we call “nice”. For any nice Følner sequence (Fn) we construct a Champernowne-
like (Fn)-normal element x 2 {0, 1}N. Due to monotileability of the semigroup
(N,⇥) and properties of a nice Følner sequence, the construction resembles that
of the classical Champernowne number and is much more transparent than the one
described in the preceding section.

We also study the class of elements x 2 {0, 1}N which are normal with respect
to all nice Følner sequences in (N,⇥). We call these elements net-normal. We
prove that the set of net-normal elements has measure zero but is nonempty (to
this end we use a modification of the Champernowne-like construction from the
preceding section).

• Section 7 is devoted to the study of combinatorial and Diophantine properties
of additively and multiplicatively normal subsets of N. In particular, we prove the
following results:

– Let (Fn) be a Følner sequence in (N,+). Then any (Fn)-normal set S contains
solutions of any partition-regular system of linear equations.8

– Let (Fn) be a Følner sequence in (N,⇥). Then any (Fn)-normal set S con-
tains solutions of any homogeneous system of polynomial equations which has
solutions in N.

– Let S be any classical normal set in (N,+). Then
(i) S contains solutions a, b, c of any equation ia + jb = kc, where i, j, k are
arbitrary positive integers,

(ii) S contains pairs {n + m, nm} with arbitrary large n,m,
(iii) S contains arbitrarily long geometric progressions, and, more generally, ar-

bitrarily long “geo-arithmetic” configurations of the form
{a(b + ic) j , 0  i, j  k}.

• In Section 8 we show that for any Følner sequence (Fn) in (N,+) there
exists an (Fn)-normal Liouville number (actually, we construct a Cantor set of such

8 A system of equations is called partition-regular if for any finite coloring of N there exists a
monochromatic solution.
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numbers) and, likewise, for any nice Følner sequence (Fn) in (N,⇥) there exists an
(Fn)-normal Liouville number (and indeed a Cantor set of (Fn)-normal Liouville
numbers).

2. Preliminaries

We now present some background material concerning properties of Følner se-
quences in countably infinite amenable cancellative semigroups, and tilings in
countably infinite amenable groups.

Let G be a cancellative semigroup. Recall that given g 2 G and a finite subset
F ⇢ G, g�1F stands for {h 2 G : gh 2 F}.

Definition 2.1. A sequence (Fn) of finite subsets of G is a Følner sequence if it
satisfies the Følner condition:

8g 2 G lim
n!1

|Fn \ g�1Fn|
|Fn|

= 1.

We have g�1F \ F = { f 2 F : g f 2 F}. By cancellativity, f 2 g�1F \ F ()
g f 2 gF [ F , and thus

|g�1F \ F | = |gF \ F |. (2.1)

It follows that the Følner condition is equivalent to

8g 2 G lim
n!1

|gFn \ Fn|
|Fn|

= 1.

Another useful equivalent form of the Følner condition utilizes the notion of a
(K , ")-invariant set.

Definition 2.2. Given a nonempty finite set K ⇢ G and " > 0 we will say that a
finite set F ⇢ G is (K , ")-invariant if

|K F4F |

|F |
 "

(4 stands for the symmetric difference of sets).

It is not hard to see that a sequence of finite sets (Fn) is Følner if and only if for
any nonempty finite K ⇢ G and " > 0, the sets Fn are eventually (K , ")-invariant.

We remark that a general Følner sequence need not be increasing with respect
to inclusion (in particular, it can consist of disjoint sets), the cardinalities |Fn| need
not increase (but, of course |Fn| ! 1), and the union

S
n�1 Fn need not equal the

whole semigroup.
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Given a Følner sequence (Fn) in G and a set V ⇢ G, one defines the upper
and lower (Fn)-densities of V by the formulas

d(Fn)(V ) = lim sup
n!1

|Fn \ V |

|Fn|
,

d(Fn)(V ) = lim inf
n!1

|Fn \ V |

|Fn|
.

If d(Fn)(V ) = d(Fn)(V ), then we denote the common value by d(Fn)(V ) and call it
the (Fn)-density of V . The Følner property of (Fn) and cancellativity immediately
imply that for any V ⇢ G and any g 2 G,

d(Fn)(V ) = d(Fn)(gV ) = d(Fn)(g
�1V ) (2.2)

(analogous equalities hold for d(Fn)(·) and d(Fn)(·)).
Definition 2.3. Let K and F be nonempty finite subsets of G.

(1) The K -core of F is the set FK = {h 2 G : Kh ⇢ F} =
T

g2K g�1F .
(2) K is called an "-modification of F if |K4F |

|F |  ", (" > 0).

The following elementary lemma is a slightly more general form of Lemma 2.6
in [23]. We include the proof for the reader’s convenience.

Lemma 2.4. For any " > 0 and any nonempty finite subset K of an amenable
cancellative semigroup G, there exists � > 0 (in fact � = "

2|K | ), such that if F ⇢ G
is finite and (K , �)-invariant then the K -core of F is an "-modification of F .

Proof. Note that (K , �)-invariance of F implies that

(8g 2 K ) |gF \ F |  �|F |,

i.e., using (2.1),

(8g 2 K ) |g�1F \ F | = |gF \ F | � (1� �)|F |,

in particular, |g�1F \ F |  �|F |. Using the above, we get

|FK \ F | =

�
�
�
�
�

\

g2K
(g�1F \ F)

�
�
�
�
�
� (1� |K |�)|F |,

while |FK [ F | 
P

g2K |g�1F \ F | + |F |  (1 + �|K |)|F |. Combining the
two estimates above, we obtain |FK4F | = |FK [ F | � |FK \ F |  2�|K ||F | =
"|F |.

Definition 2.5. Wewill say that two Følner sequences (Fn) and (F 0
n) in an amenable

semigroup G are equivalent if |F 0
n4Fn |
|Fn | ! 0 (equivalently, |F 0

n4Fn |
|F 0
n |

! 0).
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Note that if (Fn) is a Følner sequence in G and, for each n, F 0
n is an "n-

modification of Fn , where "n ! 0, then (F 0
n) is a Følner sequence equivalent to

(Fn).
Remark 2.6. It is not hard to see that if (Fn) and (F 0

n) are equivalent Følner se-
quences then:

(i) the notions of (upper/lower) (Fn)-density and (F 0
n)-density coincide;

(ii) the notions of (Fn)-normality and (F 0
n)-normality coincide.

Invoking Lemma 2.4, we obtain the following lemma.

Lemma 2.7. If (Fn) is a Følner sequence in a countably infinite cancellative semi-
group G and K ⇢ G is nonempty finite then the sequence (Fn,K ) (of the K -cores
of Fn), is a Følner sequence equivalent to (Fn).

In particular, for any g 2 G, (g�1Fn) is a Følner sequence equivalent to (Fn).
By (2.1), the same holds for (gFn).9

We can now rephrase slightly the definition of (Fn)-normality using a “dynam-
ical” modification Ñ(B, x, Fn) of the quantity N(B, x, Fn) introduced in (1.6). For
two nonempty finite sets F, K ⇢ G, a 0-1-valued function x 2 {0, 1}G , and a block
B 2 {0, 1}K let us denote by Ñ(B, x, F) the number of visits of the orbit of x to the
cylinder [B] at “times” belonging to F :

Ñ(B, x, F) =
�
��g 2 F : �g(x) 2 [B]

 ��.

For comparison, as easily verified, N(B, x, F) (see (1.6)) counts the visits of the
orbit of x in [B] at “times” belonging to the K -core of F in the extended semigroup
G [ {e}:

N(B, x, F) =
�
��g 2 FoK : �g(x) 2 [B]

 ��,

where
FoK = {g 2 G [ {e} : Kg ⇢ F}.

(Clearly, if G has an identity element then FoK = FK . In any case, FK ⇢ FoK ⇢

FK [ {e}). The difference between Ñ(B, x, F) and N(B, x, F) is best seen in the
classical case of (N,+). Let F = {1, 2, . . . , n} and let B be a word w of length k.
Then we have

Ñ(w, x, F) =
�
��m 2 {1, . . . , n} : hxm, xm+1, . . . , xm+k�1i = w

 ��,

N(w, x, F) =
�
��m 2 {1, . . . , n � k + 1} : hxm, xm+1, . . . , xm+k�1i = w

 ��.

Here is now a reformulation of the definition of normality in terms of Ñ(B, x, Fn).

9 It is easy to see that if (Fn) is a Følner sequence in a countably infinite cancellative semigroup
G and g 2 G then the sequence (Fng) satisfies the Følner condition. However, unless G is
commutative, (Fng) need not be equivalent to (Fn).
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Theorem 2.8. Let G be a countably infinite amenable cancellative semigroup and
let (Fn) be a Følner sequence in G. An element x 2 {0, 1}G is (Fn)-normal if and
only if, for any nonempty finite K ⇢ G and each B 2 {0, 1}K , we have

lim
n!1

1
|Fn|

Ñ(B, x, Fn) = 2�|K |. (2.3)

Proof. Notice that N(B, x, Fn) equals either Ñ(B, x, Fn,K ) (if G contains an iden-
tity element) or at most Ñ(B, x, Fn,K ) + 1 otherwise. Now apply Remark 2.6 (ii)
and Lemma 2.7 above.

One of two main advantages of using the function B 7! Ñ(B, x, F) over
B 7! N(B, x, F) is its finite additivity on cylinders (even when the domains of
the blocks involved in the summation do not necessarily coincide)10.

Lemma 2.9. Let K0, K1, . . . , Kr be nonempty finite subsets of a countably infinite
semigroup G and let Bi 2 {0, 1}Ki , i = 0, 1, . . . , r , be blocks such that [B0] =
[B1][ [B2][ · · ·[ [Br ] is a disjoint union. Let F ⇢ G be finite and let x 2 {0, 1}G .
Then

Ñ(B0, x, F) =
rX

i=1
Ñ(Bi , x, F).

Proof. Recall that for i = 0, 1, 2 . . . , r we have Ñ(Bi , x, F) = |{g 2 F : �g(x) 2
[Bi ]}|, and notice that by the assumption

{g 2 F : �g(x) 2 [B0]} =
r[

i=1
{g 2 F : �g(x) 2 [Bi ]}

is a disjoint union. Since cardinality is a finitely additive function, we are done.

Another advantage of working with Ñ(B, x, F) (rather thanN(B, x, F)) is that
it can be represented as an ergodic sum of the indicator function of [B]:

Ñ(B, x, F) =
X

g2Fn

1[B](�g(x)). (2.4)

We will be referring to this interpretation later.

We shall now fulfill the promise made in the introduction and prove that the
rather mild condition (1.4) forces the sequence (Fn) to be Følner.

10 To see that the function B 7! N(B, x, F) is not finitely additive, recall that a word is an ele-
ment of {0, 1}{1,2,...,k}, where k is its length, and consider the words u = h0i, v = h0, 1i w =
h0, 0, 0i, y = h0, 0, 1i. Notice that [u] = [v] [ [w] [ [y] is a disjoint union of cylinders corre-
sponding to words of lengths 2 and 3. Let x = (0, 0, 0, 0, 0, . . . ) 2 {0, 1}N and consider the set
F = {1, 2, 3}. We have N(u, x, F) = 3, N(v, x, F) = 0, N(w, x, F) = 1, N(y, x, F) = 0, and
N(u, x, F) 6= N(v, x, F) + N(w, x, F) + N(y, x, F).
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Theorem 2.10. Let (Fn) be a sequence of arbitrary finite subsets of a countably
infinite semigroup G. Suppose that there exists a 0-1-valued function x 2 {0, 1}G
such that for every two-element set K ⇢ G we have

lim
n

1
|Fn|

X

B2{0,1}K
N(B, x, Fn) = 1 (2.5)

(this assumption weakens and generalizes (1.4)). Then (Fn) is a Følner sequence
in G.

Proof. Let x 2 {0, 1}G satisfy (2.5) for every nonempty finite K ⇢ G. Notice that,
for any nonempty finite sets K and F , we have

X

B2{0,1}K
N(B, x, F) = |FK |.

Now, let g 2 G be arbitrary. We fix some h 2 G and we let K = {h, gh}. By
assumption, given any " > 0, for n large enough we have |Fn,K | � (1�")|Fn|. For
our particular K , we have Fn,K = h�1Fn \ h�1g�1Fn , so, we obtain

(1� ")|Fn|  |h�1Fn \ h�1g�1Fn| = |h�1(Fn \ g�1Fn)|  |Fn \ g�1Fn|.

This implies the Følner condition |Fn\g�1Fn |
|Fn | ! 1.

We remark that, without assuming the Følner condition, Theorem 2.8 may fail
very badly, i.e., the notion of (Fn)-normality via the sets N(B, x, Fn) may differ
drastically from the notion involving the sets Ñ(B, x, Fn). By Theorem 2.10, if (Fn)
is not Følner, the set of (Fn)-normal elements x 2 {0, 1}G (i.e., elements satisfying
(1.7)) is empty. On the other hand, taking for example Fn = {2, 4, . . . , 2n} in
(N,+)we see that even though (Fn) is not a Følner sequence, almost every element
x 2 {0, 1}N satisfies, for every word w, the condition (2.3): limn

1
|Fn | Ñ(w, x, Fn) =

2�|w|.
The following lemma shows that the formulas (1.2) and (1.5) in the Introduc-

tion lead to the same notion of (Fn)-normality in (N,+).

Lemma 2.11. Let (Fn) be a Følner sequence in (N,+). If x 2 {0, 1}N is (Fn)-
normal, i.e., satisfies (1.2) (for words) then it satisfies (1.5) (for blocks), i.e., for
every nonempty finite K ⇢ N and every block B 2 {0, 1}K , we have

lim
n

1
|Fn|

N(B, x, Fn) = 2�|K |.

Proof. By Theorem 2.8, in (1.2), we can replace N(w, x, Fn) by Ñ(w, x, Fn), and
in (1.5) we can replace N(B, x, Fn) by Ñ(B, x, Fn). If B 2 {0, 1}K then, letting I
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be the shortest interval in N of the form {1, 2, . . . , r}, r 2 N, which contains K , we
have the disjoint union representation of the cylinder [B]:

[B] =
[

w2{0,1}I , w|K=B

[w].

By Lemma 2.9, the function [B] 7! limn
1

|Fn | Ñ(B, x, Fn) is finitely additive on
cylinders for which the limits exist. By (1.2), for each w 2 {0, 1}I , we have

lim
n

1
|Fn|

Ñ(w, x, Fn) = lim
n

1
|Fn|

N(w, x, Fn) = 2�|I |.

Thus,

lim
n

1
|Fn|

N(B, x, Fn)

= lim
n

1
|Fn|

Ñ(B, x, Fn)

=
X

w2{0,1}I , w|K=B

lim
n

1
|Fn|

Ñ(w, x, Fn) = 2|I |�|K | · 2�|I | = 2�|K |.

The next theorem will allow us to reduce the proofs of some results pertaining
to countably infinite amenable cancellative semigroups to the setup of countably
infinite amenable groups (in particular, we will be able to use the machinery of
tilings). The fact given below appears independently in [21, Corollary 2.12].

Theorem 2.12. Let G ba a countably infinite amenable cancellative semigroup G.
Then there exists an amenable group eG containing G as a subsemigroup, such that
any Følner sequence (Fn) in G is a Følner sequence in eG.

Proof. First of all, any amenable cancellative semigroup is embeddable in a group
H (see [44]). Then each element g 2 G has an inverse g�1 2 H . Let eG ⇢ H
be the set of all finite products g1g�1

2 · · · g2k�1g�1
2k , k 2 N, where all the terms gi

belong to G [ {e} (e is the identity element of H and must be added only in case G
does not have an identity element). Clearly, eG is a subgroup of H and it contains G
(alternatively, eG can be defined as the smallest subgroup of H containing G). Let
(Fn) be a Følner sequence in G. Fix an element ḡ 2 eG and write it as a product
g1g�1

2 · · · g2k�1g�1
2k . Also fix an " > 0 and denote "0 = "

2k . For large n, the set Fn
is (gi , "0)-invariant for each i = 1, 2, . . . , 2k. Then

|Fn4gi Fn| = |Fn4g�1
i Fn|  "0|Fn|

(the set g�1
i Fn is understood in eG). Mutiplying both sets in Fn4g�1

i Fn by g j on
the left (for some j 2 {1, 2, . . . , 2k}), we obtain

|g j Fn4g j g�1
i Fn|  "0|Fn|.
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Now, by the triangle inequality for the metric | · 4 · | (on finite sets), we have

|Fn4g j g�1
i Fn|  |Fn4g j Fn| + |g j Fn4g j g�1

i Fn|  2"0|Fn|.

Repeating this argument k times (with the appropriate order of indices) we get

|Fn4ḡFn| = |Fn4g1g�1
2 · · · g2k�1g�1

2k Fn|  2k"0|Fn| = "|Fn|,

which means that Fn is (ḡ, ")-invariant. We have shown that (Fn) is a Følner se-
quence in eG. This also implies that the group eG is amenable.

In this context we have the following fact.

Lemma 2.13. Let (Fn) be a Følner sequence in a countably infinite amenable semi-
group G which is embeddable in a group eG such that (Fn) is a Følner sequence in
eG. A subset A ⇢ G is (Fn)-normal in G if and only if it is (Fn)-normal, viewed as
a subset of the group eG (in other words, 1A ⇢ {0, 1}G is (Fn)-normal if and only if
1A ⇢ {0, 1}eG is (Fn)-normal).

Proof. In the proof we will use Theorem 3.1 which will be proved later and is
independent from Lemma 2.13. If A is (Fn)-normal in eG then clearly it is (Fn)-
normal in G (because every nonempty finite set K ⇢ G is also a subset of eG).
Suppose A is (Fn)-normal in G and let K be a nonempty finite subset of eG. For
large enough n0, the intesection Fn0\Fn0,K is nonempty, i.e., there exists g 2 Fn ⇢
G and a bijection h 7! fh from K onto some K 0 ⇢ Fn0 , such that hg = fh for
each h 2 K . Then, in the group eG, we have

d(Fn)

 
\

h2K
h�1A

!

= d(Fn)

 

g�1
\

h2K
h�1A

!

= d(Fn)

 
\

h2K
f �1
h A

!

= d(Fn)

0

@
\

f 2K 0

f �1A

1

A .

The meaning of f �1A is different in eG and in G (in G it means f �1A \ G),
however, since the sets Fn are contained in G, the value of d(Fn)

�T
f 2K 0 f �1A

�

does not depend on whether it is considered in eG or in G. Since K 0 ⇢ G and
A is (Fn)-normal as a subset of G, the equivalence (1) () (3) in Theorem 3.1
and formula (3.2) yield that d(Fn)

�T
h2K h�1A

�
= 2�|K 0| = 2�|K |. By invoking

Theorem 3.1 again, we obtain (Fn)-normality of A as a subset of eG.

Throughout the remainder of this section we assume that G is a countably
infinite amenable group. Our key tool for handling (Fn)-normality in G is a special
system of tilings (Tk)k�1 of G which was constructed in [23]. (We could employ
instead an older concept of quasi-tilings introduced in [42], but the system (Tk) is a
more convenient tool for our purposes.)
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Let S be a collection of finite subsets of G, each containing the identity el-
ement, which we will call shapes. To each S 2 S we associate a set of trans-
lates (of S), CS ⇢ G. We require that the sets CS be pairwise disjoint and write
C = {CS : S 2 S}. If the family

T = {Sc : S 2 S, c 2 CS},

is a partition of G, we call it the tiling of G associated with the pair (S,C).
An element Sc of this partition will be called a tile of shape S centered at

c. By disjointness of the tiles, the assignment (S, c) 7! Sc is a bijection from
{(S, c) : S 2 S, c 2 CS} to T , i.e., each tile has a uniquely determined center and
shape.

Given a tiling T and a set F ⇢ G, the T -saturation of F is defined as

F (T ) =
[

{Sc 2 T : Sc \ F 6= ;}.

Let K be the union of the sets SS�1 over all shapes S of those tiles of T which have
nonempty intersections with F . Formally,

K =
[

{SS�1 : S 2 S, (9c 2 CS)Sc \ F 6= ;}.

It is an easy observation that if F is a finite and (K , ")-invariant set, then |F (T ) \
F |  "|F |.

A tiling whose set of shapes is finite will be called proper.
A sequence of proper tilings (Tk)k�1 is called a congruent system of tilings if

for each k every tile of Tk+1 is a union of some tiles of Tk .
A congruent system of tilings is deterministic, if, for each k � 1, all tiles of

Tk+1 having the same shape are partitioned into the tiles of Tk the same way. More
precisely, we require that whenever T 0

1 = S0c1 and T 0
2 = S0c2 are two tiles of Tk+1

of the same shape S0 (note that then c1, c2 2 CS0) and T 0
1 =

Sl
i=1 T1,i is the partition

of T 0
1 into the tiles of Tk , then the sets T2,i = T1,i c�11 c2 (with i = 1, 2, . . . , l) are

also tiles of Tk (and clearly they partition T 0
2). It follows that in the deterministic

case, the tiling Tk+1 determines all the tilings T1, . . . ,Tk . Also note that, with
the above notation, the family {T1,i c�11 : i = 1, 2 . . . , l} (which is the same as
{T2,i c�12 : i = 1, 2 . . . , l}) is a partition of the shape S0 into shifted shapes of
the tiling Tk . We will call this partition the standard tiling of S0 by the tiles of Tk
(although formally, the sets T1,i c�11 need not be tiles of Tk).

We will say that a system of proper tilings (Tk)k�1 is Følner if for every
nonempty finite set K ⇢ G and every " > 0, for large enough k, all shapes of Tk
(and thus also all tiles) are (K , ")-invariant (in other words, if (S j ) j2N is obtained
by enumerating the collection

S
k Sk of all shapes used in the system of tilings, then

(S j ) is a Følner sequence).
A proper tiling is called syndetic if for every shape S the set of translates CS is

(left) syndetic, i.e., such that KCS = G for some finite set K (depending on S).
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It is proved in [23] that every countably infinite amenable group G admits a
congruent, deterministic, Følner system of proper tilings (Tk)k�1. One can actually
obtain a system of syndetic tilings with all the above properties, as follows. First, as
noted in [23], any proper tiling T of G can be represented as an element of the sym-
bolic space (S [ {0})G (where the role of the alphabet is played by the finite collec-
tion S of shapes of T with an additional symbol 0). Now, a system of proper tilings
(Tk)k�1 becomes an elementT of the space

Q
k�1(Sk[{0})G = (

Q
k�1(Sk[{0}))G ,

on which G acts by shifts. Let O(T) denote the orbit closure of Twith respect to the
shift action. Every element T0 2 O(T) is again a system of proper tilings (T 0

k )k�1
with the respective sets of shapes S 0

k satisfying S 0
k ⇢ Sk for each k.11 Note that if

T is a Følner system of tilings, so is every T0 2 O(T). Also, the properties of be-
ing congruent and deterministic pass from T to all members of O(T). The system
O(T) (with the shift action) has a minimal subsystem. Any element of this minimal
subsystem, in addition to the preceding properties, is a system of syndetic tilings,
which follows by a standard characterization of minimality in symbolic dynamics.

We define T0 to be the tiling all tiles of which are singletons (T0 has one shape
S = {e} and the corresponding set of translates CS is the whole group).

3. Left invariance of (Fn)-normality

We call a subset A ⇢ G (Fn)-normal if its indicator function 1A, viewed as an
element of {0, 1}G , is (Fn)-normal. The goal of this section is to prove that if G is a
countably infinite amenable cancellative semigroup and (Fn) is a Følner sequence
in G then a set A ⇢ G is (Fn)-normal if and only if so is gA, and also if and only
if so is g�1A.

The following theorem provides a characterization of normal sets in terms of
“combinatorial independence”.

Theorem 3.1. Let G be a countably infinite amenable cancellative semigroup and
let (Fn) be a Følner sequence in G. Let A ⇢ G. We will use the following notation:
A1 = A, A0 = G \ A. Consider the following five conditions:

(1) A is (Fn)-normal,
(2) for any nonempty finite set K and any 0-1 block B 2 {0, 1}K we have

d(Fn)

 
\

h2K
h�1AB(h)

!

= 2�|K |, (3.1)

(3) for any nonempty finite set K we have

d(Fn)

 
\

h2K
h�1A

!

= 2�|K |, (3.2)

11 In fact, if for every element T 0
k 2 O(Tk) we have S 0

k = Sk then Tk is already syndetic.
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(4) for any nonempty finite set K and any 0-1 block B 2 {0, 1}K we have

d(Fn)

 
\

h2K
hAB(h)

!

= 2�|K |, (3.3)

(5) for any nonempty finite set K we have

d(Fn)

 
\

h2K
hA

!

= 2�|K |. (3.4)

Then (1) () (2) () (3) =) (4) () (5). If G is a group or G is commutative
then all conditions (1)–(5) are equivalent.

Remark 3.2. If we enumerate the set K as {h1, h2, . . . , hk} then the blocks B 2
{0, 1}K stand in 1-1 correspondence to 0-1 words of length k. Then, we can rewrite
conditions (2)–(5) as follows:

(2) for any nonempty finite set K = {h1, h2, . . . , hk} and any 0-1 word w of
length k, we have

d(Fn)(h
�1
1 Aw1 \ h�1

2 Aw2 \ · · · \ h�1
k Awk ) = 2�k;

(3) for any nonempty finite set K = {h1, h2, . . . , hk} we have

d(Fn)(h
�1
1 A \ h�1

2 A \ · · · \ h�1
k A) = 2�k;

(4) for any nonempty finite set K = {h1, h2, . . . , hk} and any 0-1 word w of
length k, we have

d(Fn)(h1A
w1 \ h2Aw2 \ · · · \ hk Awk ) = 2�k;

(5) for any nonempty finite set K = {h1, h2, . . . , hk} we have

d(Fn)(h1A \ h2A \ · · · \ hk A) = 2�k .

Proof of Theorem 3.1. In view of Theorem 2.8, (Fn)-normality can be defined via
the condition (2.3). Observe that

g 2
\

h2K
h�1AB(h) () (8h2K ) hg 2 AB(h) () �g(1A) 2 [B].

Thus (3.1) is just (2.3) written in terms of (Fn)-density, which immediately gives
the equivalence (1) () (2). Next, (2) implies (3) because (3.2) is the particular
case of (3.1) for the block B equal to the constant function 1 on K . By the same
argument (4) implies (5).
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We pass to proving that (3) =) (2). Suppose that some two sets A1, A2 ⇢ G
have well defined (Fn)-densities and satisfy the “independence condition”:

d(Fn)(A1 \ A2) = d(Fn)(A1) · d(Fn)(A2).

Then, by finite additivity of (Fn)-density, we have

d(Fn)(A1 \ A02) = d(Fn)(A1) � d(Fn)(A1 \ A2)
= d(Fn)(A1) � d(Fn)(A1) · d(Fn)(A2)
= d(Fn)(A1)(1� d(Fn)(A2))

= d(Fn)(A1) · d(Fn)(A
0
2).

Iterating the above calculation one shows that if a finite family {A1, A2, . . . , Ak} of
subsets of G satisfies the “independence condition”:

• for any subset E ⇢ {1, 2, . . . , k} one has d(Fn)

⇣T
i2E Ai

⌘
=
Q

i2E d(Fn)(Ai ),

then, for any 0-1-word w 2 {0, 1}k , the family {Aw1
1 , Aw2

2 , . . . , Awk
k } also satisfies

the independence condition. Next, notice that condition (3) applied to all possi-
ble nonempty subsets of K is precisely the independence condition for the family
{h�1A : h 2 K }. This, combined with the preceding observation, implies (2).

The same argument proves the implication (5) =) (4).
To prove the implication (3) =) (5), we note that for large n the “K�1-core”

of Fn , i.e., the set
T

h2K hFn is nonempty (like the K -core, it is eventually an "-
modification of Fn). Thus there exists an n0 2 N, a g 2 G and a bijection h 7! fh
from K onto some K 0 ⇢ Fn0 , such that g = h fh for each h 2 K . By (2.2), the
(Fn)-density of

T
h2K hA is the same as that of g�1T

h2K hA =
T

h2K g�1hA =
T

h2K f �1
h A =

T
f 2K 0 f �1A. By (3), this density equals 2�|K 0| = 2�|K |, as

needed.
If G is a group then the equivalence (3) () (5) is obvious: the family {hA :

h 2 K } is the same as {h�1A : h 2 K�1}.
Suppose G is commutative and assume (4). Let K be a nonempty finite subset

of G. As before, there exists g 2 G and a bijection h 7! fh from K onto some
K 0 ⇢ G, such that g = h fh for each h 2 K . By (2.2) we have

d(Fn)

 
\

h2K
h�1AB(h)

!

= d(Fn)

 
\

h2K
gh�1AB(h)

!

.

We would like to replace gh�1 by fh (using commutativity), however, in general
gh�1A is only a subset of h�1gA = fh A (an analogous inclusion holds for A0 =
G \ A). Thus

1
|Fn|

�
�
�Fn \

\

h2K
h�1AB(h)

�
�
� 

1
|Fn|

�
�
�Fn \

\

h2K
fh AB(h)

�
�
� =

1
|Fn|

�
�
�Fn \

\

f 2K 0

f AB
0( f )
�
�
�,
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where B0 is defined on K 0 by B0( fh) = B(h). By (4), the right-hand side tends to
2�|K 0| = 2�|K |. But since the sum of the left-hand sides over all blocks B 2 {0, 1}K
equals 1, we have convergence of the left-hand side to 2�|K | for every block, i.e.
(3.1). We have proved that (4) =) (2).

Theorem 3.3. Let G be a countably infinite amenable cancellative semigroup and
let (Fn) be a Følner sequence in G. For any A ⇢ G and g 2 G we have the
equivalences

gA is (Fn)-normal () A is (Fn)-normal () g�1A is (Fn)-normal. (3.5)

Proof. The first half of the proof relies on the equivalence (1) () (3) in Theo-
rem 3.1. Assume that gA is (Fn)-normal and let K be a nonempty finite subset of
G. Condition (3.2) applied to K 0 = gK and the set gA reads

2�|K | = d(Fn)

 
\

h2K
(gh)�1gA

!

= d(Fn)

 
\

h2K
h�1A

!

,

i.e., we have obtained (3.2) for K and A. Now assume that A is (Fn)-normal and
let K be a nonempty finite subset of G. Condition (3.2) applied to K 0 = gK and
the set A is

2�|K | = d(Fn)

 
\

h2K
(gh)�1A

!

= d(Fn)

 
\

h2K
h�1g�1A

!

,

which gives (3.2) for K and g�1A.
If G is a group or is commutative then we can use the equivalence (1) ()

(4) to reverse the implications: Assume that g�1A is (Fn)-normal and let K be a
nonempty finite subset of G and B 2 {0, 1}K . We have

1
|Fn|

�
�
�Fn \

\

h2K
hg2g�1AB(h)

�
�
� 

1
|Fn|

�
�
�Fn \

\

h2K
hgAB(h)

�
�
�.

The condition (3.3) applied to K 0 = Kg2, the block B0 2 {0, 1}Kg2 defined by
B0(hg2) = B(h), and the set g�1A implies that the left-hand side tends to 2�|K |.
But since the sum of the right-hand sides over all blocks B 2 {0, 1}K equals 1, we
have convergence of the right-hand side to 2�|K | for every block, i.e., (3.3) holds
for gA. Since (4) =) (1) we have proved (Fn)-normality of gA.

Finally, we can use the fact that G is cancellative. By Theorem 2.12, it can be
embedded in a group eG such that (Fn) is a Følner sequence in eG. Suppose g�1A
is (Fn)-normal as a subset of G. By definition, the set g�1A regarded as a subset
of G is equal, in eG, to g�1A \ G. By Lemma 2.13, g�1A \ G is (Fn)-normal as a
subset of eG. Since all sets Fn are contained in G, also the set g�1A is (Fn)-normal
in eG. In the group eG, (Fn)-normality of g�1A implies (Fn)-normality gA. Finally,
by the trivial direction of Lemma 2.13, gA is also (Fn)-normal when viewed as a
subset of G.



A FRESH LOOK AT THE NOTION OF NORMALITY 45

Remark 3.4. We were unable to prove the implication (4) =) (2) in Theorem 3.1
for semigroups embeddable in groups.
Remark 3.5. In general, even if G is a group, (Fn)-normality is not right invariant:
if A is (Fn)-normal then Ag is not guaranteed to be (Fn)-normal12. For this reason,
(Fn)-normality of the elements of {0, 1}G is not preserved by the shift-action: �g(x)
need not be (Fn)-normal if x is (if x is the indicator function of a set A then �g(x)
is the indicator function of Ag�1). Nevertheless, under very mild assumptions on
(Fn), this may happen only with probability zero, see Corollary 4.3 below.

4. Properties of the family of (Fn)-normal sets

4.1. Ergodic interpretation of normality

Fix a countably infinite amenable cancellative semigroup G and a Følner sequence
(Fn) in G. Suppose that G acts by continuous maps Tg on a compact metric space
X , preserving a Borel probability measure µ. We will tacitly assume that, when
convenient or necessary, the identity element (always denoted by e) is attached to
the semigroup, and Te is the identity mapping. A point x 2 X is called (Fn)-generic
for µ if for any continuous function f 2 C(X) one has

lim
n!1

1
|Fn|

X

g2Fn

f (Tgx) =
Z

f dµ, (4.1)

in other words, if the measures 1
|Fn |

P
g2Fn �Tgx converge to µ in the weak-star

topology.
Note that the shift action on the symbolic space X = {0, 1}G preserves (among

many other measures) the product measure mG , where m is the (12 ,
1
2 )-measure on

{0, 1}. The measure mG will be henceforth denoted by � and called the (uniform)
Bernoulli measure.

We have the following equivalent formulation of normality of a set A ⇢ G, in
dynamical terms.

12 For instance, a counterexample can be constructed in the group G = h�, ⌧ i of transformations
of the symbolic space {0, 1}Z, generated by the shift � and the flip ⌧ of the zero-coordinate
symbol (note that ⌧�1 = ⌧ ). This group is solvable: the subset H = h��k⌧� k : k 2 Zi
(consisting of flips at finitely many coordinates, with no shift) is a normal subgroup of G and
G/H = h� i is Abelian. In particular, G is amenable. Each g 2 G is representable in a unique
way as � kg hg with hg 2 H . For each h 2 H denote by mh 2 Z the rightmost coordinate on
which h applies the flip. Let (F 0

n) be a Følner sequence in G. Let mn = max{mhg : g 2 F 0
n}.

Now we create a new Følner sequence (Fn) by setting Fn = F 0
n�

mn+1. Notice that any g 2 Fn
does not flip the zero-coordinate symbol (but perhaps shifts it). This implies that Fn1 and Fn2⌧
are disjoint for any n1, n2 2 N. As we know, there exist an (Fn)-normal set A0 ⇢ G and its
intersection with the union A =

S
n Fn is also (Fn)-normal. The set A is disjoint from Fn⌧ for

all n � 1, which implies that A⌧ has (Fn)-density zero and hence cannot be (Fn)-normal.
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Proposition 4.1. A set A ⇢ G is (Fn)-normal if and only if its indicator function
1A is (Fn)-generic for the Bernoulli measure � on {0, 1}G .

Proof. First of all, note that for any nonempty finite set K ⇢ G and any B 2
{0, 1}K , we have 2�|K | = �([B]). Thus, using (2.3) and (2.4), we can see that
the (Fn)-normality of x can be equivalently expressed by the condition (4.1) (with
µ = � and Tg = �g) for all functions of the form f = 1[B]. Finally, observe that
the indicator functions of cylinders are linearly dense in the space C({0, 1}G) of
continuous functions on {0, 1}G , which clearly ends the proof.

As was already mentioned in the Introduction, the existence of (Fn)-normal
0-1 sequences (and the fact that the set of such sequences has full measure) is often
derived with the help of the pointwise ergodic theorem, which, in general, holds
only along rather special (tempered) Følner sequences. However, in the specific
case of the Bernoulli measure and continuous functions, the conventional pointwise
ergodic theorem can be replaced by Theorem 4.2 below (more precisely, by its
equivalent version Theorem 4.4), which is valid under much weaker restrictions on
Følner sequences.

Theorem 4.2. Let G be a countably infinite amenable cancellative semigroup.
Let (Fn)n�1 be a Følner sequence in G such that for any ↵ 2 (0, 1) we haveP1

n=1 ↵
|Fn | < 1. Then �-almost every x 2 {0, 1}G is (Fn)-normal, i.e., for any

nonempty finite set K ⇢ G and any block B 2 {0, 1}K , one has

lim
n!1

1
|Fn|

|{g 2 Fn : �g(x) 2 [B]}| = 2�|K |. (4.2)

Proof. By Theorem 2.12 and Lemma 2.13, it suffices to consider the case where
G is a group. Because there are countably many blocks over finite subsets of G, it
suffices to prove that for any nonempty finite set K ⇢ G and any block B 2 {0, 1}K ,
(4.2) holds for �-almost every x 2 {0, 1}G .

Given ">0, we will partition the groupG into finitely many sets D0,D1,...,Dr ,
such that d(Fn)(D0)  " (the set D0 may be empty), and for every i > 0, we have:

(1) d(Fn)(Di ) > 0;
(2) for all distinct g1, g2 2 Di , Kg1 \ Kg2 = ;.

We start by showing that the existence of the sets D0, D1, . . . , Dr as above im-
plies the assertion of the theorem. Choose a positive � < min{d(Fn)(Di ), i =
1, 2, . . . , r}. Let n0 be such that for every n � n0,

|Fn \ D0|
|Fn|

< 2", and, for each i 2 {1, 2, . . . , r},
|Fn \ Di |

|Fn|
> �.

Let � = ({0, 1}G,B, �) where B denotes the Borel � -algebra in {0, 1}G . Fix an
n � n0 and consider the finite sequence of {0, 1}-valued random variables defined
on � by

Yg(x) = 1[B](�g(x)), g 2 Fn.
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Also, for each i = 0, 1, . . . , r define

Ȳi =
1

|Fn \ Di |

X

g2Fn\Di

Yg.

By (2), for each i > 0 the variable Ȳi is the average of finitely many independent
random variables Yg, each assuming the value 1 with probability 2�|K |. Clearly, the
expected value of Ȳi equals 2�|K |. Now, the classical Bernstein’s inequality (see,
e.g., [11]) implies that

�
⇣n
x : |Ȳi (x) � 2�|K || > "

o⌘
 � |Fn\Di | < � �|Fn |,

where � 2 (0, 1) is some constant (not depending on n). Then, denoting by X" =
{x : 9i = 1, 2, . . . , r : |Ȳi (x) � 2�|K || > "}, we have

�(X") = �

 
[

i=1,2,...,r
{x : |Ȳi (x) � 2�|K || > "}

!


X

i=1,2,...,r
�
⇣n
x : |Ȳi (x) � 2�|K || > "

o⌘
 r� �|Fn |.

On the complementary set {0, 1}G \ X", for each i = 1, 2, . . . , r , we have the
inequality |Ȳi (x) � 2�|K ||  ", i.e.,

1
|Fn \ Di |

X

g2Fn\Di

Yg(x) 2
⇥
2�|K | � ", 2�|K | + "

⇤
. (4.3)

For i = 0, recall that |Fn\D0|
|Fn | < 2", and we have the trivial estimate

1
|Fn \ D0|

X

g2Fn\D0

Yg(x) 2 [0, 1]. (4.4)

Averaging the left-hand sides of (4.3) and (4.4) over i = 0, 1, 2, . . . , r (with weights
|Fn\Di |

|Fn | ) we obtain

1
|Fn|

X

g2Fn

Yg(x) 2
⇥
2�|K | � 3", 2�|K | + 3"

⇤
.

So, the set on which the inequality
�
�
�
�
�
1

|Fn|

X

g2Fn

Yg(x) � 2�|K |

�
�
�
�
�
> 3"
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holds is contained in X", thus has measure at most r� �|Fn |. Summarizing, we have
shown that

�

⇢��
�
�
|{g 2 Fn : �g(x) 2 [B]}|

|Fn|
� 2�|K |

�
�
�
� > 3"

�
 r� �|Fn |.

Let ↵ = � � and note that ↵ 2 (0, 1). By the assumption,
P

n ↵
|Fn | < 1. The

Borel-Cantelli Lemma now yields that for �-almost every x , the numbers

|{g 2 Fn : �g(x) 2 [B]}|

|Fn|
=

1
|Fn|

Ñ(B, x, Fn)

eventually remain within 3" from 2�|K |. Since " is arbitrary, we have proved the
desired almost everywhere convergence.

It remains to define the sets Di . We will do that with the help of tilings. As
we have mentioned earlier, G admits a congruent, deterministic, Følner system of
proper, syndetic tilings (Tk)k�1. Let k be such that all shapes S 2 S of the tiling
T = Tk = (S,C) are (K , �)-invariant, where � = "

2|K | . Then, for each S 2 S , the
K -core of S, i.e., the set SK = {g 2 G : Kg ⇢ S} satisfies

|SK |

|S|
� 1� "

(see Lemma 2.4 and notice since that K contains the identity element, we have
SK ⇢ S). Also, if T is any tile of T and TK denotes the K -core of T then

|TK |

|T |
� 1� "

(recall that T = Sc where S 2 S , c 2 CS , in which case TK = SK c). Let now

D0 =
[

T2T
T \ TK .

We claim that d(Fn)(D0)  ". Indeed, this inequality is obvious if the Følner se-
quence (Fn) is replaced by the sequence (F (T )

n ) of the T -saturations of the sets
Fn . But the Følner sequences (Fn) and (F (T )

n ) are equivalent (see Definition 2.5)
and hence they define the same upper densities of sets. For S 2 S and g 2 SK ,
let D(S,g) = gCS . Since for any such pair (S, g) we have Kg ⇢ S (and hence
Kgc ⇢ Sc) and the sets Sc, c 2 CS , are tiles (and thus are pairwise disjoint), the
sets Kh are pairwise disjoint when h = gc varies over D(S,g). By syndeticity of
the tiling, each set CS is syndetic, and so is each of the sets D(S,g). It follows im-
mediately from finite subadditivity of d(Fn)(·) and the fact that for any D ⇢ G and
g 2 G, d(Fn)(gD) = d(Fn)(D), that syndetic sets have positive lower (Fn)-density.
In particular, d(Fn)(D(S,g)) > 0. Finally, since there are finitely many pairs (S, g),
the sets D(S,g) can be enumerated as D1, D2, . . . , Dr (r 2 N). By construction, the
family {Di : i = 0, 1, 2, . . . , r}, is a partition of G. This ends the proof.
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Recall (see Remark 3.5) that if the semigroup G is not commutative then gen-
erally speaking, the action �g need not preserve (Fn)-normality. Nevertheless, by a
straightforward application of shift-invariance of �, the following holds.

Corollary 4.3. Let G be an infinitely countable amenable cancellative semigroup.
If a Følner sequence (Fn) in G satisfies, for each ↵ 2 (0, 1), the summability
condition

P
n2N ↵

|Fn | < 1, then �-almost every element x 2 {0, 1}G has the
property that all the images �g(x) (g 2 G) are (Fn)-normal.

Proposition 4.1 allows us to formulate now an (ostensibly stronger) equivalent ver-
sion of Theorem 4.2 as follows.

Theorem 4.4. Under the assumptions of Theorem 4.2, �-almost every x 2 {0, 1}G
is (Fn)-generic for �, i.e., the convergence

lim
n!1

1
|Fn|

X

g2Fn

f (�gx) =
Z

f d�

holds for any continuous function f on {0, 1}G .

Remark 4.5.

(i) The requirement
P1

n=1 ↵
|Fn | < 1 for each ↵ 2 (0, 1) is much weaker than

(1.8) (of (Fn) being tempered), and is satisfied, for example, by any Følner
sequence (Fn) such that |Fn| strictly increases as n ! 1;

(ii) On the other hand, some condition on the growth of |Fn| is necessary. For
example, for G = Z consider the Følner sequence consisting of pairwise dis-
joint intervals: n1 intervals of length 1 followed by n2 intervals of length 2,
followed by n3 intervals of length 3, etc. If a number nk is very large compared
with k, then there exists a set Xk ⇢ {0, 1}Z with �(Xk) close to 1 and such that
for every x 2 Xk the restriction of x to at least one of the intervals Fn of length
k will be filled entirely by 0’s. We can thus arrange the sequence nk so that
the measures of the complements of the sets Xk are summable over k. Then,
by the Borel-Cantelli Lemma, for almost every x there will be arbitrarily far
Følner sets filled entirely with 0’s (instead of being filled nearly half-half by
0’s and 1’s), contradicting (Fn)-genericity of x already on cylinders of length
1. In fact, in this example the set of (Fn)-generic elements has measure zero.

Remark 4.6. It is worth mentioning that the method used in the proof of Theo-
rem 4.2 fails in proving the pointwise ergodic theorem (even for the Bernoulli mea-
sure) for discontinuous L1 functions. In [1], Akcoglu and del Junco proved that
for any ergodic (and aperiodic) (Z,+)-action the pointwise ergodic theorem along
the Følner sequence of intervals [n, n + b

p
nc] fails for the indicator function of

some measurable set A. Note that, for any ↵ 2 (0, 1), the sequence ↵|Fn | = ↵b
p
nc

is summable, thus in the case of the uniform Bernoulli measure, according to The-
orem 4.2, the set A cannot be clopen in {0, 1}Z.
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4.2. Normal elements form a first category set

In contrast to the measure-theoretic largeness established in Theorem 4.2, the fol-
lowing simple proposition demonstrates that the set of (Fn)-normal elements in
{0, 1}G is always topologically small (i.e., is of first category), without any assump-
tions on the Følner sequence.

Proposition 4.7. Let G be a countably infinite cancellative amenable semigroup
and let (Fn) be a Følner sequence in G. Then the set N ((Fn)) of (Fn)-normal
elements is of first Baire category in {0, 1}G .

Proof. For n 2 N, a nonempty finite set K 2 G, B 2 {0, 1}K and " 2 (0, 2�|K |),
letW (Fn, B, ") be the union of all cylinders corresponding to the blocks C over the
Følner set Fn , such that

2�|K | � " 
1

|Fn|
�
��g 2 Fn : (8h 2 K ) hg 2 Fn and C(hg) = B(h)

 ��  2�|K | + ".

Since W (Fn, B, ") is a finite union of cylinders, it is clopen. The set N ((Fn)) can
be written as

\

K⇢G, K nonempty finite

\

B2{0,1}K

\

0<"<2�|K |

[

n02N

\

n�n0
W (Fn, B, ").

Note that for each B, " and n0 as above, the closed set
T

n�n0 W (Fn, B, ") has
empty interior, because the set of the elements of {0, 1}G which are constant on
complements of finite sets is dense in {0, 1}G . Thus by the Baire theorem, the
set

S
n02N

T
n�n0 W (Fn, B, ") is of first category and contains the set N ((Fn)),

which ends the proof.

Corollary 4.8. Let G be either (N,+) or (N,⇥) and let (Fn) be an arbitrary
Følner sequence in G. Then the set of (Fn)-normal numbers in [0, 1] (i.e., num-
bers which have (Fn)-normal binary expansions) is of first category.

Proof. For any countably infinite semigroup G in which we have a fixed enumera-
tion, i.e., a bijection between G and N, n 7! gn , the formula

 (x) =
X

n2N
2�nx(gn), where x = (x(g))g2G 2 {0, 1}G,

establishes a continuous map from {0, 1}G onto [0, 1]. This map is injective except
on a countable set, on which it is two-to-one. Note that every continuous map �
on a compact domain, such that all but countably many fibers (preimages of points)
are singletons and all other fibers are of first category, preserves the first category.
Indeed, let A be a first category subset of the domain, i.e., A ⇢ B =

S
n Bn , where

each Bn is compact and has empty interior. The set C =
S

n �
�1(�(Bn)) contains

the first category set B and differs from it by at most a countable union of fibers
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(which is of first category), so C is also a first category set. By continuity, for
each n the set �(Bn) is compact and, moreover, it has empty interior (otherwise
��1(�(Bn)) would have nonempty interior, which is impossible since C is of first
category). Thus �(B) =

S
n �(Bn) is of first category, and so is its subset �(A).

We conclude that the binary expansion map  preserves the first category. Now it
remains to apply this fact to (N,+) or (N,⇥) and invoke Proposition 4.7.

5. An effectively defined normal set

Although Lebesgue-almost every number is normal (in the classical sense) in any
base b 2 N, the set of computable numbers (i.e., the numbers whose b-ary expan-
sion can be computed with the help of a Turing machine, like, for example, the
Champernowne number) has Lebesgue measure zero. It is so, because the asymp-
totic Kolmogorov complexity of such expansions is zero, while, as shown by A. A.
Brudno [13], a typical expansion has Kolmogorov complexity log b. Hence com-
putable normal numbers are highly exceptional among normal numbers.

Let G be a countably infinite amenable group and let (Fn) be an arbitrary
Følner sequence in G. In this subsection we describe an “effective” construction of
an (Fn)-normal Champernowne-like set (viewed, when convenient, as an element
of {0, 1}G). We use the term effective to indicate that our construction is given by an
inductive algorithm which allows to determine, for every g 2 G, whether it belongs
to the set or not, in finitely many inductive steps. We cannot claim that our con-
struction gives a computable set, since we make no assumptions on computability
of the group G or the Følner sequence (Fn).

In the construction of the classical binary Champernowne number three types
of 0-1 words are involved:
(1) The binary words which are expansions of natural numbers. We will call these

words “bricks”. Notice that a brick never starts (on the left) with the symbol
0, and there are exactly 2k�1 bricks of length k;

(2) The “packages”. For each k, the kth “package” is the concatenation (in the
lexicographical order) of all bricks of length k. The length of the kth package
is k2k�1;

(3) Finally, the “chains”. For each k, the kth “chain” is formed by the packages,
from the first to the kth, concatenated together (by increase of k). The kth
chain stretches from the coordinate 1 to the coordinate

Pk
i=1 i2i�1.

Once the chains are defined, the sequence representing the binary Champernowne
number is obtained by taking the coordinatewise limit in {0, 1}N of the chains (ex-
tended to infinite 0-1 words by adding zeros).

In the construction of the binary Champernowne number described above one
can introduce the following three modifications which do not destroy the normality:
(1) one can include as bricks also the words starting with the symbol 0 (the reason

why they are not used is purely aesthetic) so that there are 2k (rather than 2k�1)
bricks of length k;
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(2) the package of order k may contain every brick of order k repeated more than
once, as long as the number of repetitions is the same (or nearly the same)
for every brick; then the length of the package of order k is mkk2k for some
sequence mk ;

(3) in the chain, one may repeat each package of order k more than once, say nk
times (then the length of the kth chain equals

Pk
i=1 nimi i2i�1).

While the modifications described above are not necessary in the construction of the
classical Champernowne number, they contain an idea instrumental for the proof of
the following theorem.

Theorem 5.1. Let G be a countably infinite amenable group and let (Fn) be an ar-
bitrary Følner sequence in G. Then there exists an effectively defined (Fn)-normal
element x 2 {0, 1}G .

Remark 5.2. The theorem provides (Fn)-normal elements even when the cardinal-
ities |Fn| do not strictly increase, in which case Theorem 4.2 does not necessarily
apply.

Proof of Theorem 5.1. The construction involves a congruent, deterministic, Følner
system (Tk)k�0 of proper, syndetic tilings ofG, starting with the tiling T0 comprised
of singletons (see Section 2). We can choose the system (Tk) independently of
the Følner sequence (Fn); any such system of tilings will lead to an (Fn)-normal
element.

For each k � 1 and each shape S of Tk letBS = {0, 1}S be the set of all possible
0-1 blocks over S (clearly, |BS| = 2|S|) and let

S
S2Sk BS be the set of “bricks” of

order k. Syndeticity of the sets CS together with the fact that (Tk) is a Følner and
deterministic system of tilings imply that for each k � 1 there exists an index r(k)
such that the standard tiling of each shape S0 of the tiling Tr(k), by the tiles of Tk ,
contains, for each shape S of Tk , at least 2k2|S| tiles of shape S. Let `(S0, S) �
2k2|S| denote the number of tiles of Tk , having the shape S, in the standard tiling
of S0. We are now in a position to associate with each shape S0 of Tr(k) a package
of order k, P(S0) 2 {0, 1}S0 . Since for each S 2 Sk we have `(S0, S) � 2k2|S|, one
can divide the collection of all tiles T of shape S, occurring in the standard tiling of
S0, into 2|S| nonempty and disjoint families T(S,S0)

B indexed bijectively by the bricks
B 2 BS , and having roughly equal cardinalities. More precisely we can arrange
that, for each B 2 BS , |T(S,S0)

B | 2 [`(S0, S)2�|S| � 1, `(S0, S)2�|S| + 1] (since
2  1

k `(S
0, S)2�|S|, the above cardinalities differ by at most 100k percent). Then, for

each tile T of shape S occurring in the standard tiling of S0 we define the restriction
of P(S0) to T as the unique brick B such that T 2 T(S,S0)

B . This concludes the
definition of the packages P(S0) of order k � 1. For completeness, we let r(0) = 0
and define the package of order 0 as the single symbol 0. This is consistent with
the previous conventions: the package of order 0 has a shape corresponding to the
tiling Tr(0) = T0. Since T0 has only one shape (the singleton), the 0th package is a
block over a singleton (i.e., a single symbol).
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At this point we need to introduce some additional terminology. For a nonempty
finite set K ⇢ G and " > 0, a block C 2 {0, 1}F over another finite set F ⇢ G is
(K , ")-normal if for every block B 2 {0, 1}K one has

2�|K | � " 
1

|F |

�
��g 2 F : (8h 2 K ) hg 2 F and C(hg) = B(h)

 ��  2�|K | + ".

Summing over all blocks B 2 {0, 1}K one obtains that in order for C to be (K , ")-
normal, F must be (K , 2|K |")-invariant.

The following fact is now easily verified:
(1) For any nonempty finite set K ⇢ G and any " > 0, if k is sufficiently large

then every package of order k is (K , ")-normal. So is every concatenation of
such (shifted) packages.

In order to define the (Fn)-normal element x 2 {0, 1}G we first create a (not proper)
mixed tiling2, i.e., a partition of G into tiles belonging to different tilings from the
subsequence (Tr(k))k�0 (this will be possible due to the fact that we are working
with a congruent system of tilings). Then we will define x as follows: x restricted
to a tile T of2 equals the (appropriately shifted) package associated to the shape of
T (if T belongs to the tiling Tr(k) then the order of the package is k). In this manner
x becomes an infinite concatenation of packages of various orders. We remark that
working with a mixed tiling is equivalent to working with chains: one can define
the kth chain as the part of x covered by the tiles of 2 belonging to the tilings
Tr(0),Tr(1), . . . ,Tr(k). Conversely, whenever a Champernowne set is defined via
the concept of chains, as a concatenation of packages of different orders, then the
tiles of 2 are simply the domains of these packages.

It remains to describe how we define the mixed tiling 2. The procedure will
depend on the a priori given Følner sequence (Fn) (which so far was not involved
in the construction).

For each k � 1 let nk be such that the Følner sets Fn with n > nk are (Sk, 1k )-
invariant, where Sk =

S
S02Tr(k) S

0S0�1 (then Fn is also (Si , 1k )-invariant for all
i  k). We begin by defining2 on the Tr(1)-saturation (denoted by F1) of the union
F1[F2 · · ·[Fn1 simply as T0. Notice that2 remains undefined on the complement
of F1 which is a union of complete tiles of Tr(1). Inductively, let k � 2 and suppose
that, after step k�1, 2 remains undefined on a union of complete tiles of Tr(k�1).
In the kth step we define 2 as Tr(k�1) on the yet untiled part of the Tr(k)-saturation
Fk of the union F1 [ F2 · · · [ Fnk . Note that 2 remains undefined on a union of
complete tiles of Tr(k). Continuing in this way we will define the mixed tiling 2
on a set containing the union of all Følner sets Fn . If any part of the group remains
untiled, we define 2 on that part as T0. This concludes the construction of the
mixed tiling 2.

Observe that the mixed tiling 2 has the following properties:

(2) Each Fn is covered only by tiles of those shapes S0 for which Fn is (S0S0�1, 1k )-
invariant (where k is the largest index such that n > nk). This implies that Fn
differs from its 2-saturation by at most 1k |Fn| elements;
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(3) For each k � 1, 2 uses only finitely many tiles belonging to Tr(k).

As we have already explained earlier, 2 determines some x 2 {0, 1}G . It remains
to verify the (Fn)-normality of x . Let K ⇢ G be a nonempty finite set and let us
fix some " > 0. It is enough to show that, for n sufficiently large, x |Fn is (K , 3")-
normal. Pick k � 1

" so large that all packages of orders larger than or equal to k are
(K , ")-normal (see (1) above). Choose n � nk . In order to determine the parameter
� for which x |Fn is (K , �)-normal we first replace Fn by its 2-saturation. By (2),
this affects the estimation of � by at most ". Next, we remove from this saturation
all tiles of orders smaller than k (there are finitely many such tiles). If n is large
enough, this last step also affects the estimation of � by at most ". Now it remains
to examine the restriction of x to a set on which it is a concatenation of packages of
orders at least k. By the choice of k, this restriction is (K , ")-normal. It follows that
x restricted to Fn is (K , 3")-normal, as required. This concludes the proof.

Via Theorem 2.12 and Lemma 2.13, the above construction applies also to
cancellative semigroups.

Corollary 5.3. Let G be a countably infinite amenable cancellative semigroup and
let (Fn) be a Følner sequence in G. Then there exists an effectively defined (Fn)-
normal subset of G.

6. Multiplicative normality

In this section we will focus on the action of (N,⇥) on the symbolic space {0, 1}N.
In this case the shift action, henceforth called the multiplicative shift and denoted
by (⇢n)n2N is defined on {0, 1}N as follows:

if x = (x j ) j2N then ⇢n(x) = (x jn) j2N.

In other words, ⇢n maps each binary sequence to its subsequence obtained by read-
ing its every nth term. Clearly, the classical (12 ,

1
2 )-Bernoulli measure on the sym-

bolic space {0, 1}N is invariant under both the additive and multiplicative shift ac-
tions, and in both cases it is the unique measure of maximal entropy. In fact we
are dealing here with the case of a sequence of independent identically distributed
random variables, which corresponds to the Bernoulli process regardless of the ap-
plied action, as long as the action “permutes” the indices (we use quotation marks,
because our “permutations” are not surjective). Note that both shift actions are er-
godic (in fact mixing) and their Kolmogorov-Sinai entropies equal the entropy of
the generating partition {[0], [1]}, i.e., to log 2, and so are the topological entropies
of both shift actions. For a treatment of entropy for actions of amenable groups see
for example [41].
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6.1. Følner sequences in (NNN,⇥)

The semigroup (N,⇥) is a free Abelian semigroup generated by the set of primes.
We will denote the set of primes by P and view (N,⇥) as the direct sum13

G =
M

p2P
Np,

where, for each p 2 P, Np is the same additive semigroup (N [ {0},+). The
isomorphism is given by

(k1, k2, . . . , kr ) 7! pk11 p
k2
2 · · · pkrr ,

where p1 = 2, p2 = 3 , p3 = 5, etc. are consecutive prime numbers. Notice
that G is additive, i.e., in this representation multiplication of natural numbers is
interpreted as addition of vectors.

In order to deal with the actions of (N,⇥) it is crucial to identify convenient
choices of Følner sequences in this semigroup. A natural choice of a Følner se-
quence in G is given by anchored (i.e., containing the origin) rectangular boxes of
the form

F={0,1, . . . , k1} ⇥ {0,1, . . . , k2} ⇥ · · · ⇥ {0, 1, . . . , kd} ⇥ {0} ⇥ {0} ⇥ · · · . (6.1)

The parameter d (i.e., the largest index i such that ki > 0) will be referred to as the
dimension of F . The number ki will be called the size of F in the i th direction. Let
now

Fn={0,1, . . . , k(n)
1 }⇥{0,1, . . . , k(n)

2 }⇥· · ·⇥{0,1, . . . , k(n)
d(n)}⇥{0}⇥{0}⇥· · · (6.2)

be a sequence of anchored rectangular boxes. With this notation, (Fn) is a Følner
sequence in G if and only if limn dn = 1 and limn k(n)

i = 1 for each i 2 N).
Any such Følner sequence will be called anchored rectangular. The verification of
the Følner property is straightforward. Preferably, the Følner sets should increase
with respect to inclusion, which means that the sequences (dn) and (k(n)

i ) for each
i should be nondecreasing and the sum k(n)

1 + k(n)
2 + · · · + k(n)

dn should be strictly
increasing. Such increasing Følner sequences will be called nice. Not every nice
Følner sequence (Fn) is tempered. However, since the cardinalities |Fn| strictly
increase, Theorem 4.2 applies.

Every nice Følner sequence occurs as a subsequence of a specific nice and slow
Følner sequence, such that at each step the sum k(n)

1 +k(n)
2 +· · ·+k(n)

dn increases by 1.
The choice of a nice and slow Følner sequence is equivalent to fixing a “sequence of
directions” (in), in which every natural number appears infinitely many times, and

13 Recall that a direct sum is the subset of the Cartesian product (with addition acting coordinate-
wise) consisting of points with at most finitely many nonzero coordinates.
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letting k(n)
i = |{ j 2 {1, . . . , n} : i j = i}|. There are several fairly natural options

for choosing the sequence (in), for example:

1; 1, 2; 1, 2, 3; 1, 2, 3, 4; 1, 2, 3, 4, 5; . . . the staircase type, (6.3)
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . . the Toeplitz type. (6.4)

Now we can translate all this to the multiplicative representation (N,⇥). In (N,⇥)
we have the natural partial order given by m 4 M () m|M . The set N
equipped with this order is a directed set (i.e., every two elements have a common
upper bound; in this case a common multiple). A sequence of natural numbers (Ln)
multiplicatively tends to infinity, if for any m 2 N there exists n0 such that m 4 Ln
for all n � n0. If, in addition, the sequence Ln strictly increases with respect to the
multiplicative order, we will say that (Ln) multiplicatively increases to infinity. For
an anchored rectangular box F ⇢ G (see (6.1)) the number L = pk11 p

k2
2 · · · pk

d
d will

be called the leading parameter of F . Interpreting F as a subset of (N,⇥), notice
that F = {m : m 4 L} (i.e., F is the set of all divisors of L). With this terminology,
a sequence of anchored rectangular boxes in (N,⇥) is a Følner sequence (resp.
nice Følner sequence) if and only if the sequence (Ln) of their leading parameters
multiplicatively tends (resp. multiplicatively increases) to infinity. A nice Følner
sequence (Fn) in (N,⇥) is nice and slow if and only if Ln+1

Ln is a prime for every
n. Notice that even if (Fn) is nice and slow, the cardinalities |Fn| grow relatively
fast. Indeed, from time to time the dimension dn+1 of Fn+1 has to increase, i.e., a
new direction has to be included, and then the cardinality doubles: |Fn+1| = 2|Fn|.
Otherwise the cardinality is multiplied by a factor smaller than 2, but in any case
a rectangular box of dimension dn � 1 is added. In particular, |Fn+1| � |Fn| > 1
for n > 1.

Obviously, there are many other Følner sequences inG. The rectangular boxes
need not be anchored at zero, and moreover, they can be replaced by other shapes.
For instance, it is possible to create a Følner sequence with |Fn| = n, but it is not
going to be rectangular (however, it may have a nice and slow Følner subsequence).
We skip further details. While there is no preferred “canonical” choice for a Følner
sequence in G, it will be convenient for our purposes to focus on anchored rect-
angular, and, in particular, on nice Følner sequences (mainly due to advantageous
arithmetic properties of their multiplicative interpretation).

6.2. Multiplicative Champernowne set

The construction of a Champernowne set in (N,⇥) can be made significantly more
transparent than in the general case discussed in Section 5. This is due to the fact
that the semigroup (N,⇥) admits a system of (congruent, deterministic, Følner,
syndetic) monotilings, i.e., tilings with only one shape. In fact, any rectangular
box tiles the semigroup, while a congruent system of tilings is obtained from a
specific Følner sequence, which we will call doubling. This will enable us to create
“condensed” packages which contain every brick exactly once (like in the classical
Champernowne construction). For every k, the kth chain still has to contain more
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than one repetition of every package of order k (this we would have to do even in
the two-dimensional semigroup (N2,+)), but we will use the least possible number
of repetitions to fill a rectangular box the size of the next order package. In this
manner we will obtain a “compendious” Champernowne set, which will turn out
to be normal at least with respect to the same doubling Følner sequence which is
used in its construction. Later we will present a slight modification of the same
construction, which produces a “net-normal” set, i.e., normal with respect to any
nice Følner sequence, at the cost of repeating each package of order k an infinite
number of times.

We begin by formally introducing the notion of a doubling Følner sequence.
Again, we will interpret (N,⇥) as the additive semigroup G.
Definition 6.1. A nice Følner sequence (Fn) is called doubling if Fn+1 is a disjoint
union Fn [ (vn + Fn) for some vn 2 G.

Note that since Fn+1 is a anchored rectangular box, vn must be equal to one of
the vectors spanning Fn , i.e., if

Fn = {0, 1, . . . , k(n)
1 } ⇥ {0, 1, . . . , k(n)

2 } ⇥ · · · ⇥ {0, 1, . . . , k(n)
dn } ⇥ {0} ⇥ {0} ⇥ · · · ,

then vn is of the form (0, 0, . . . , 0, k(n)
i + 1, 0, 0, . . . ), where k(n)

i + 1 occurs as the
i th term, i = 1, 2, . . . , dn , or vn = (0, 0, . . . , 0, 1, 0, 0, . . . ), where 1 occurs at a
position larger than dn .

Any doubling Følner sequence can be obtained by the following procedure. As
before, in the construction of a nice and slow Følner sequence, we fix a sequence
of directions (in)n�1 in which each natural i is repeated infinitely many times. We
begin with the “zero Følner set” F0 = {0}. Once the Følner set Fn is determined,
the next one, Fn+1, instead of growing by a unit in the direction in+1, is doubled in
that direction. The cardinality of Fn will hence be equal to 2n . For example, if (in)
is the staircase sequence 1; 1, 2; 1, 2, 3; . . . , the first six Følner sets are

F0 = {0}
F1 = {0, 1}
F2 = {0, 1, 2, 3}
F3 = {0, 1, 2, 3} ⇥ {0, 1}
F4 = {0, 1, 2, 3, 4, 5, 6, 7} ⇥ {0, 1}
F5 = {0, 1, 2, 3, 4, 5, 6, 7} ⇥ {0, 1, 2, 3}
F6 = {0, 1, 2, 3, 4, 5, 6, 7} ⇥ {0, 1, 2, 3} ⇥ {0, 1}.

(for convenience we skip the infinite product of singletons {0} that should follow to
the right in the formula for each of the above sets).

6.2.1. The construction

We shall now construct an (Fn)-normal element x 2 {0, 1}N for a doubling Følner
sequence. We describe how we build the bricks and packages, and how we place
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them in x (we will use the language of chains rather than that of mixed tilings). The
bricks of order k will simply be blocks over the Følner set Fk (of cardinality 2k),
i.e., the bricks will belong to {0, 1}Fk . We accept as bricks of order k all blocks
over Fk . Thus there will be 22

k different bricks, which, when concatenated together
(each used exactly once), produce a package of cardinality 22k+k . Since the sizes
in all directions of all our objects (Følner sets, bricks, packages, etc.) are powers
of 2, we can arrange the package so that it is a block over F2k+k (the index 2k + k
plays the role of r(k) from the general construction). We define the 0th chain as the
concatenation of 4 copies of the package of order zero arranged to fill a block over
F3 (see Figure 6.1 below). For k � 1 we assume inductively that the (k�1)st chain
is a block over the same set as the package of order k (for k = 1 this holds). This
assumption guarantees that the (k�1)st chain is saturated with respect to the tiling
number rk , so it can be concatenated together with packages of order k without gaps
or overlaps. Now we can build the kth chain. It consists of

(i) the (k�1)st chain occupying the “lower left” corner, i.e., containing the origin,
and

(ii) 22k+1 � 1 shifted copies of the kth order package,

so that the chain has cardinality 22k+1+k+1. The chain can be arranged to be a block
over F2k+1+k+1, i.e., over the same set as the package of order (k + 1), as required
in the induction.

Figure 6.1 corresponds to the (mentioned above) “staircase type” doubling
Følner sequence. It shows the package of order 0 with the initial “zero” brick of
order 0 shaded, and next to it the 0th chain, which is a concatenation of four such
packages. In the next line we show the package of order 1 with the initial “zero”
brick of order 1 shaded, and next to it the 1st chain which is a concatenation of the
preceding chain (shaded) and seven identical packages of order 1. The last picture
shows the package of order 2 with the initial “zero” brick of order 2 shaded. The 2nd
chain is too large to be shown. It is a concatenation of the 1st chain and 31 copies
of the package of order 2, and it is a block over F11 (which is four-dimensional).

The chains converge to an element x 2 {0,1}G. The set {g 2G : c(g)= 1} and
the real number with binary expansion x will be called the multiplicative Champer-
nowne set and multiplicative Champernowne number, respectively.

6.2.2. (Fn)-normality of x

Recall that given a nonempty finite set K and " > 0, for some large k0, packages of
orders k � k0 are multiplicatively (K , ")-normal. So, to prove (Fn)-normality of x
we need to check that, as n increases, we have an

|Fn | ! 1, where an is the cardinality
of the portion F 0

n of Fn such that x |F 0
n is a concatenation of packages of orders

k � k0. First, we will check this for indices n of the special form n = r(k) = 2k+k.
For such an n, Fn is filled with the kth chain, consisting of the (k�1)st chain and
many (precisely, 22k+1�1) packages of order k (having the same size as the (k�1)st
chain), so these packages “dominate” in x |Fn (precisely,

an
|Fn | � 1� 1

22k+1 ). If a large
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0 1 0   package
0 1 0 1
0 1 0 1 0  chain

1 0 1 1
0 0 0 1 1  package

1 0 1 1 1 0 1 1
0 0 0 1 0 0 0 1
1 0 1 1 1 0 1 1
0 0 0 1 0 0 0 1

1 0 1 1 1 0 1 1
0 0 0 1 0 0 0 1
0 1 0 1 1 0 1 1
0 1 0 1 0 0 0 1 1   chain

1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 0
1 0 1 0 1 0 1 1
1 0 0 0 1 0 0 1

0 1 1 0 0 1 1 1
0 1 0 1 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1 2   package

th th

stst

nd

Figure 6.1.

n is not of this form, then, for some k � k0, we have 2k + k < n < 2k+1 + k + 1,
and the block x |Fn is a concatenation of the kth chain and some number of packages
of order k + 1, so an

|Fn | >
a2k+k

|F2k+k |
. This completes the proof of (Fn)-normality of x .

Remark 6.2. We can also deduce multiplicative normality of x with respect to the
nice and slow Følner sequence of which (Fk) is a subsequence (to obtain such a
nice and slow Følner sequence, instead of doubling a direction we increase it by 1
several times). We omit the details. On the other hand, x is definitely not normal
for some other nice Følner sequences. For instance, if the Følner sets increase in
the first direction much faster than in other directions (elongated shapes) then the
symbol 0 will prevail. We skip the details again.

6.3. Net-normal sets

The notion of an anchored rectangular box or Følner sequence is meaningful not
only in G, but also in Nd (d 2 N) with addition. The elements of such a sequence
are d-dimensional anchored rectangular boxes given by

F = {0, 1, . . . , k1} ⇥ {0, 1, . . . , k2} ⇥ · · · ⇥ {0, 1, . . . , kd} (6.5)

(cf. (6.1)). Denoting by G either G or Nd for some d 2 N, let FG stand for the
family of all anchored rectangular boxes in G. In either case, this family, ordered
by inclusion14, is a directed set: any two such boxes are contained in a third one.

14 When working with (N,⇥) rather than with G, the above order on FG coincides with the
multiplicative order 4 (see Section 6.1) applied to the respective leading parameters.
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So any function with domain FG is a net. With slight abuse of terminology, the
directed set FG will be called the Følner net (formally, this term should refer to the
identity function on FG).

Now we introduce the notion of net-normality.
Definition 6.3. Let G be either G or Nd for some d 2 N. A set A ⇢ G (as well as
its indicator function 1A 2 {0, 1}G) is net-normal if for any finite set K ⇢ G and
every block B 2 {0, 1}K , the net of averages (indexed by F 2 FG)

1
|F |

N(B, x, F)

converges15 to 2�|K | (comp. with (1.7)). If G = G is interpreted as the multi-
plicative semigroup (N,⇥), a net-normal set A ⇢ N (and its indicator function
1A 2 {0, 1}N) will be called multiplicatively net-normal.

Proposition 6.4. A set A ⇢ N is multiplicatively net-normal if and only if it is (Fn)-
normal with respect to every anchored rectangular Følner sequence (Fn) in (N,⇥).
Also, A is multiplicatively net-normal if and only if it is (Fn)-normal with respect to
every nice (i.e., anchored rectangular and increasing by inclusion) Følner sequence
(Fn) in (N,⇥).

Proof. Every anchored rectangular Følner sequence is a subnet of the Følner net,
hence net-normality implies normality with respect to any anchored rectangular
Følner sequence. The fact that normality with respect to every nice Følner sequence
implies net-normality follows from the trivial observation that the failure of conver-
gence of any countable net can be detected along some increasing subsequence of
that net (in our case, an increasing subsequence of the Følner net is a nice Følner
sequence).

It is natural to inquire about the existence of net-normal sets and their typical-
ity, in Nd and inG. Curiously enough, it turns out that the answers are different for
Nd and G. This difference is captured by the following two theorems.

Theorem 6.5. For any d � 1, almost every (with respect to the Bernoulli measure
�) element of {0, 1}Nd is net-normal.

Proof. It is not hard to check that the proof of Theorem 4.2 works also for countable
Følner nets. It now suffices to notice that inNd the sum

P
F2FNd

e�|F | is finite.

The above argument fails for G, because the sum
P

F2FG
e�|F | diverges (for

example, there are infinitely many anchored rectangular boxes of cardinality 2). In
fact, we have the following theorem.

15 A net ◆ 7! a◆ of real numbers, indexed by a directed set (I,�), converges to a limit a if for
every " > 0 there exists ◆0 such that |a◆ � a| < " for every ◆ � ◆0 in I .
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Theorem 6.6. The collection of all net-normal elements in {0, 1}G has measure
zero for the Bernoulli measure �.
Proof. For �-almost every x 2 {0, 1}G we will construct a nice (in fact doubling)
Følner sequence (Fn(x))n2N for which x is not (Fn(x))-normal. By Proposition 6.4
this will imply that any such x is not net-normal. For even n the definition of Fn(x)
will depend on x and will apply to a subset of full measure of the set of points x
for which Fn�1(x) was defined. For odd n, Fn(x) will be defined for all points x
for which Fn�1(x) is defined (at step 1 this will be the whole space {0, 1}G). For
even n the rectangular box Fn(x) will grow (relatively to Fn�1(x)) in a “random”
(i.e., depending on x) direction. However, for Fn(x) to be a Følner sequence, the
rectangles must grow in every direction infinitely many times. This property will
be guaranteed by judicial (deterministic) choice of the directions at odd steps of the
construction.

We start by defining F1(x) (for every x 2 X1={0, 1}G) as the “zero rectangle”:
F1(x) = {0} ⇥ {0} ⇥ {0} ⇥ · · · .

Next, for each x and every k � 1 we consider the rectangle which is “doubled” in
the kth direction:

F1(x, k) = {0} ⇥ {0} ⇥ {0} ⇥ · · · ⇥ {0} ⇥ {0, 1} ⇥ {0} ⇥ · · · ,

where {0, 1} appears at the kth position in the product. Note that the sets F1(x, k) \
F1(x) (which at this step of construction are singletons) are disjoint for different
k’s, and hence the functions x 7! xgk where gk 2 F1(x, k) \ F1(x) form an i.i.d.
sequence of random variables. Thus, there exists a full measure set X2 ⇢ {0, 1}G,
such that for every x 2 X2 there exists k such that xgk = 0. We let k1(x) be the
smallest such k and we define F2(x) as F1(x, k1(x)). In this manner, for almost
every x , we have guaranteed at least half of the symbols xg, g 2 F2(x), to be zeros.
From now on we consider only the points x 2 X2.

Next, we produce F3(x) by doubling F2(x) in the direction provided (for ex-
ample) by the staircase sequence (6.3). Since the first term of the staircase sequence
is 1, we simply double the first coordinate:

F3(x) =

(
{0, 1} ⇥ {0} ⇥ {0} ⇥ · · · ⇥ {0} ⇥ {0, 1} ⇥ {0} ⇥ · · · if k1(x) > 1
{0, 1, 2, 3} ⇥ {0} ⇥ {0} ⇥ · · · if k1(x) = 1.

This time for any x some two “random” symbols xg with g 2 F3(x) \ F2(x) appear
in the block x |F3(x). We let X3 = X2. At the fourth step, for each x and every
k > k1(x),16 we consider the rectangle which is “doubled” in the kth direction:

F3(x, k)=

8
><

>:

{0, 1}⇥{0}⇥· · ·⇥{0}⇥{0, 1}⇥{0}⇥· · ·⇥{0}⇥{0, 1} ⇥ {0}⇥· · ·
if k1(x)>1

{0,1,2,3}⇥{0}⇥{0}⇥· · ·⇥{0}⇥{0,1} ⇥ {0}⇥· · · if k1(x)=1,

16 The requirement k > k1(x) is inessential. We put it only to reduce the variety of possible
formulas for F3(x, k).
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where the last appearance of {0, 1} takes place at the position k in the product. As
before, there exists a set of full measure, X4 ⇢ X3, such that for every x 2 X4
there exists k for which all symbols xg with g 2 F3(x, k) \ F3(x) are zeros (again,
it is essential that the sets F3(x, k) \ F3(x) are disjoint for different k’s). We let
k2(x) > k1(x) be the smallest such k and define F4(x) = F3(x, k2(x)). In this way,
we have guaranteed at least the fraction 12 + 1

8 of zeros in the block x |F4(x).
Continuing in this way, at the odd steps we will double the rectangles in the

directions provided by the staircase sequence, and at the even steps (restricting to
a full measure set) we will double the rectangles so that all the symbols xg with
g 2 Fn(x) \ Fn�1(x) (which constitutes half of Fn(x)) will be zeros.

It is clear that eventually, for �-almost every x (more precisely for x 2
T

n Xn),
we will obtain a doubling Følner sequence (Fn(x)), such that the lower (Fn(x))-
density of zeros in x is at least 12 + 1

8 + 1
32 + · · · = 2

3 . Thus x is not (Fn(x))-
normal.

We remark that the set of net-normal elements of {0, 1}G is an intersection of
the sets of (Fn)-normal elements for a family of Følner sequences (Fn), hence, by
Proposition 4.7, it is of the first category. Further, in view of the Theorem 6.6, in
the case G = G, it is not only topologically, but also measure-theoretically small.
Nevertheless, we will prove in Theorem 6.8 that this set is nonempty, and moreover,
as follows from Remark 6.9 below, it is even uncountable.

We begin with a preparatory lemma.
Lemma 6.7. Fix some nonempty finite set K ⇢ N and " > 0. Let Z(K , ") de-
note the union of all anchored rectangular boxes which are not multiplicatively
(K , ")-invariant. Then Z(K , ") has density zero with respect to any (not necessar-
ily rectangular) Følner sequence (Fn) in G.
Proof. For sake of convenience we will write [0, n] instead of {0, 1, 2, . . . , n}.
Intuitively, a rectangular box is not multiplicatively (K , ")-invariant if it is “nar-
row” in some direction, and narrow sets have density zero. More precisely, let
K̄ = [0, k1] ⇥ [0, k2] ⇥ · · · ⇥ [0, kq ] be the smallest rectangular box containing K .
If a rectangular box B = [0, b1]⇥ [0, b2]⇥ · · ·⇥ [0, br ] is not (K , ")-invariant, then
it is not (K̄ , ")-invariant, i.e., there is an index i 2 {1, 2, . . . , q} such that bi < ↵i ,
where ↵i = 2ki

" . Thus, the union Z(K , ") of all such rectangles B is contained in
the finite union

Sq
i=1 Xi , where Xi is the set of all vectors in G whose i th coordi-

nate is smaller than ↵i . It is clear that each set Xi has density zero with respect to
any Følner sequence (Fn), because its size in one of the directions is bounded. The
proof is complete since density zero is preserved under finite unions.

Theorem 6.8. There exists an effectively defined net-normal set A ⇢ G.
Remark 6.9. Given one net-normal set A we can easily produce a Cantor set of
net-normal elements of {0, 1}G, by altering the indicator function 1A in all possible
ways along some infinite subset of G which has density zero for all nice Følner
sequences (an example of such a subset is provided by any finitely-generated sub-
semigroup; see also Lemma 6.7 above).
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Proof of Theorem 6.8. The construction is a modification of the construction of an
(Fn)-normal element for a doubling Følner sequence (Fn) (see Subsection 6.2.1).
The bricks and packages will be the same (they depend on the choice of the se-
quence (Fn)). The mixed tiling will be different: this time, for each k � 1 it will
contain infinitely many tiles of Tr(k). We can now describe the modification of the
mixed tiling 2 (or, equivalently, of the chains) appearing in the construction 6.2.1.
We continue to use the notation r(k) = 2k + k and keep denoting by Tr(k) the tiling
by shifted copies of F2k+k . Step 0 is unchanged: the 0th chain is the concatenation
of 4 packages of order zero arranged to fill a block over F3 = Fr(1). In the language
of tilings, this defines 2 on Fr(1) (as a partition into 4 rectangles), which clearly
is a Tr(1)-saturated set. For k � 1 assume that at the steps 1, . . . , k�1 we have
defined2 on a Tr(k)-saturated set. Now, at the step k, we consider the set Z(Fk, 1k ),
and its saturation Zk with respect to the tiling Tr(k+1). Part of Zk has been tiled in
preceding steps (by tiles of orders Tr(i) with i < k), and this part is Tr(k)-saturated.
We now tile the remaining part of Zk by the tiles of Tr(k). Due to the congruency
of the system of tilings (Tk), in this manner we tile exactly the set Zk (which is
Tr(k+1)-saturated), so that the inductive assumption is fulfilled for k+1. Notice
that the sets Zk eventually fill up the whole group, thus the mixed tiling 2 is well
defined on G and it determines an element x = 1A 2 {0, 1}G.

By Proposition 6.4, it remains to verify multiplicative normality of x with re-
spect to any nice Følner sequence (Hn). As in (6.2.2), we need to show that for each
k0 we have an

|Hn | ! 1, where an is the cardinality of the portion H 0
n of Hn such that

x |H 0
n is a concatenation of packages of orders k � k0, equivalently, the portion of

Hn tiled by the tiles belonging to Trk with k � k0. In other words, we need to show
the convergence bn

|Hn | ! 0, where bn is the cardinality of the portion Hn \ H 0
n of Hn

tiled by the tiles belonging to Trk with k < k0. This convergence follows directly
from three facts:

• tiles belonging to Trk with k < k0 appear only in Zk0 ;
• by Lemma 6.7, Z(Fk0,

1
k0 ) has (Hn)-density zero;

• for any Følner sequence (Hn) in any countably infinite group G, if a set has
(Hn)-density zero, then so does its saturation with respect to any proper (i.e.,
having finitely many shapes) tiling of the group, in particular, Zk0 has (Hn)-
density zero.

Remark 6.10. Notice that for any countably infinite amenable (semi)group G it
is impossible to find an element x 2 {0, 1}G which is normal with respect to all
Følner sequences. For instance, if A is (Fn)-normal for some Følner sequence (Fn)
in (N,+), then its complement Ac contains arbitrarily long intervals, which consti-
tute a Følner sequence disjoint from A. A similar argument applies to any amenable
semigroup. The existence of a multiplicatively net-normal subset of (N,⇥) shows
that the restriction to anchored rectangular boxes is a well balanced level of gener-
ality.
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7. Combinatorial and Diophantine properties of additively and
multiplicatively normal sets in N

In this section we will be focusing on the combinatorial and Diophantine richness
of normal sets in (N,+) and (N,⇥). Before starting the discussion we review some
terminology.

(i) We say that a set S ⇢ N is additively (multiplicatively) large if there exists a
Følner sequence (Fn) in (N,+) (resp. (N,⇥)) for which d(Fn)(S) > 0.

(ii) A set S in a semigroup G is called thick if it contains a right translate of
every finite set. The family of thick sets in G is denoted by T (G). Note
that S 2 T (N,+) if and only if S contains arbitrarily long intervals, and
that S 2 T (N,⇥) if and only if S contains arbitrarily large sets of the form
an{1, 2, . . . , n} = {an, 2an, . . . , nan}.

(iii) We say that S ⇢ N is additively normal if it is (Fn)-normal for some Følner
sequence (Fn) in (N,+). If (Fn) = ({1, 2, . . . , n}), we will call S a classical
normal set. Similarly, a set S is called multiplicatively normal if it is (Fn)-
normal for some Følner sequence (Fn) in (N,⇥) (there is no classical notion
in this case).17

(iv) Let (ni )1i=1 be a sequence of (not necessarily distinct) positive integers. The
set

FS(ni )1i=1 = {ni1 + ni2 + · · · + nik : i1 < i2 < . . . < ik, k 2 N}

is called an additive IP-set. Likewise, the set

FP(ni )1i=1 = {ni1ni2 · · · nik : i1 < i2 < . . . < ik, k 2 N}

is called a multiplicative IP-set.

7.1. Multiplicative versus additive density and normality – some basic
observations

Recall that (Fn)-normality (additive or multiplicative) of an element x 2 {0, 1}N is
defined as the property that for any finite set K ⇢ N and every block B 2 {0, 1}K
the (additive or multiplicative) shifts of B occur in x with (Fn)-density 2�|K |. We
emphasize that the additive and multiplicative shifts of a block are quite different.
For example, if w is a word over {1, 2, . . . , k}, its additive shift occurs at a position

17 We remark that in contrast to the set of classical normal numbers (which is of first category,
see Corollary 4.8), the set of additively normal numbers is residual. Indeed, given a nonempty
finite set K ⇢ N and " > 0, it is easy to see that the set S(K , ") of all 0-1 sequences x 2 {0, 1}N,
such that there exists an interval I ⇢ N for which x |I is (K , ")-normal, is open and dense. The
countable intersection

T
K ," S(K , ") over all nonempty finite sets K and all rational " 2 (0, 1) is

residual and consists of additively normal sequences. Residuality of the set of additively normal
numbers in [0, 1] now follows by a proof similar to that of Corollary 4.8.
An analogous argument establishes the residuality of the set of multiplicatively normal numbers.
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n of some x if x |{n+1,n+2,...,n+k} = w, while its multiplicative shift occurs at n if
x |{n,2n,3n,...,kn} = w.

Theorem 4.2 implies that for any Følner sequence (Fn) in (N,+) such that
|Fn| increases, �-almost every x 2 {0, 1}N is (Fn)-normal and, similarly, for any
Følner sequence (Kn) in (N,⇥) such that |Kn| increases, �-almost every x is (Kn)-
normal. So �-almost every x is both additively (Fn)-normal and multiplicatively
(Kn)-normal. On the other hand, the two notions of normality are “in general po-
sition”: additively normal sets can be multiplicatively trivial (have multiplicative
density 0 or 1), and vice-versa, multiplicatively normal sets can have additive den-
sity 0 or 1. More precisely, the following holds.
Theorem 7.1. For any Følner sequence (Kn)n2N in (N,⇥) there exists a set A ⇢ N
with (Kn)-density 1 and having universal additive density 0 (here universal means
that the additive density can be computed with respect to an arbitrary Følner se-
quence in (N,+)).

Proof. First observe that for any m the set mN (being a multiplicative shift of a
set of (Kn)-density 1) has (Kn)-density 1. Let nm be such that for each n > nm
the fraction of multiples of m! in Kn is larger than 1 � 1

m . The set A is defined as
the union K1 [ K2 [ · · · [ Kn2 to which we add all multiples of 2! contained in
the union Kn2+1 [ Kn2+2 [ · · · [ Kn3 , all multiples of 3! contained in the union
Kn3+1 [ Kn3+2 [ · · · [ Kn4 , etc. It is obvious that the (Kn)-density of A equals
1. On the other hand, since A has gaps which tend to infinity in length, its additive
density is equal to 0 (for any additive Følner sequence).

Note that the complementary set Ac has (Kn)-density 0 and universal additive
density 1. Further, given a Følner sequence (Fn) in (N,+), let B ⇢ N be a set
which is both multiplicatively (Kn)-normal and additively (Fn)-normal. Then A\B
is multiplicatively (Kn)-normal, while it has universal additive density zero, and
on the other hand, Ac \ B is additively (Fn)-normal and has multiplicative (Kn)-
density 0. These examples justify our claim above that the notions of multiplicative
and additive normality are in “general position”.
Remark 7.2. A statement symmetric to Theorem 7.1, in which one fixes a Følner
sequence (Fn) in (N,+) (for instance the classical one) and looks for a set of (Fn)-
density 1 and universal multiplicative density 0, does not hold. As a matter of fact,
any set of upper density 1 with respect to the classical Følner sequence in (N,+)
has density 1 with respect to some Følner sequence in (N,⇥). Indeed, in the proof
of [9, Theorem 6.3] it is shown that if A has classical upper density 1, so does
A/n \ A for every n (see Definition 7.15 below). By an obvious iteration, we
get that A \ A/2 \ A/3 \ · · · \ A/n is nonempty, which implies that A contains
arbitrarily large sets of the form an{1, 2, . . . , n}, i.e., A is multiplicatively thick (see
(ii) above). This, in turn, implies that for some Følner sequence (Kn) in (N,⇥) one
has d(Kn)(A) = 1.

On the other hand, for every " > 0 there are sets A ⇢ (N,+)with d(A) � 1�"
such that A has universal multiplicative density zero (take for example all numbers
not divisible by some large n).
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7.2. Elementary combinatorial properties of additively and multiplicatively
normal sets

The above Theorem 7.1 and Remark 7.2 hint that, in general, the combinatorial
properties of additively and multiplicatively normal sets are distinct. We will see
below that this is indeed the case.

In this subsection we will focus on properties of additively/multiplicatively
normal sets which follow from the fact that these sets are additively/multiplica-
tively thick. Since we are interested in properties of normal sets, in the statements
of our theorems we will make the ostensibly stronger assumption that the sets in
question are normal rather than just thick. Note that, since every thick set obviously
contains an (Fn)-normal set for some Følner sequence (Fn), in all theorems in this
subsection the normality and thickness assumptions are in fact equivalent.

For example, it is not hard to see that every thick, in particular every normal,
set contains an IP-set (this applies to both additive and multiplicative setups). Now,
IP-sets can be defined as solutions of (an infinite) system of certain equations, and
in our quest for patterns in normal sets, it is natural to inquire which Diophantine
equations and systems thereof are always solvable in normal sets. The following
two theorems shed some light on this question.

Theorem 7.3. If S is a multiplicatively normal set then any homogeneous system
of finitely many polynomial equations (with several variables) which is solvable in
N is solvable in S.

Proof. Since S 2 T (N,⇥) (i.e., is multiplicatively thick), S contains arbitrarily
large sets of the form an{1, 2, . . . , n}. If a given homogeneous system is solvable
in N then it is solvable in {1, 2, . . . , n} for some n and hence, due to homogeneity,
also in an{1, 2, . . . , n}.

Remark 7.4. Note that it follows from Theorem 7.3 that any multiplicatively nor-
mal set contains, for any m 2 N, “finite-sums sets” of the form

FS(ni )mi=1 =
�
ni1 + ni2 + · · ·+ nik : i1 < i2 < · · · < ik  m, k 2 {1, 2, . . . ,m}

 
.

Indeed, these sets can be described as solutions of finite homogeneous systems
of linear equations18. On the other hand, we will now show that, in general, multi-
plicatively normal sets need not contain additive IP-sets FS(ni )1i=1 or shifts thereof.
Take any Følner sequence (Fn) in (N,⇥) and let A be the set of (Fn)-density 1 con-
structed in the proof of Theorem 7.1 (A has universal additive density zero). For

18 The set FS(ni )mi=1 is the solution of the following system of equations (with variables nT ):

nT =
X

i2T
ni ,

where T ranges over all nonempty finite subsets of the set {1, 2, ...,m} (this applies also to m =
1).
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each n, this set contains only finitely many numbers not divisible by n. On the other
hand, it is well known (and also easy to see) that every additive IP set contains, for
arbitrarily large n, infinitely many numbers divisible by n as well as infinitely many
numbers not divisible by n. Thus any (shifted or not) additive IP-set contains in-
finitely many numbers not divisible by n, and hence cannot be contained in A.
Remark 7.5. We remark that additively normal sets (even the classical ones) need
not contain multiplicative IP-sets. In fact, they do not need to contain triples of the
form {a, b, ab} (see [25]).

Theorem 7.6. Let A!
x = 0 be a partition-regular (see Introduction) system of

finitely many linear equations with n variables. Then, for any additively normal
set S one can find a solution

!
x = (x1, x2, . . . , xn) with all entries in S.

Proof. The proof is short but uses same facts from Ramsey theory, topological dy-
namics and topological algebra in the Stone–Čech compactification �N viewed as
a semitopological semigroup obtained by an extension of the operation in (N,+).
Since this theorem forms only a rather small fragment of a big picture, in order to
save space, we will be using some terms and results without giving all the needed
details (but remedying this by providing pertinent references).

First, note that our additively normal set is thick and hence is a member of a
minimal idempotent in (�N,+). Further, any member of a minimal idempotent in
(�N,+) is a central set (see, for example, Definition 5.8 and Lemma 5.10 in [8]).
Now it only remains to invoke the theorem due to Furstenberg which states that
any central set contains solutions to any partition-regular system A

!
x = 0 ( [29,

Theorem 8.22]).19

One can actually show that a system of linear equations is partition-regular if
and only if it is solvable in any additively normal set (equivalently, in any thick set).
For sake of simplicity we prove this equivalence in the case of one equation with
three variables. Note that any such equation (which has at least one solution) can
be written as ia + jb = kc with i, j, k 2 N and a, b, c as unknowns.

Theorem 7.7. Let i, j, k be three natural coefficients. The following conditions are
equivalent:

(1) k 2 {i, j, i + j};
(2) the equation ia + jb = kc is partition-regular;
(3) the equation ia + jb = kc is solvable in any thick set;
(4) the equation ia + jb = kc is solvable in any additively normal set.

Proof. Equivalence of (1) and (2) is well known. As a matter of fact, a necessary
and sufficient condition for partition-regularity of an equation i1a1 + i2a2 + · · · +
inan = 0 is that some subset of coefficients sums up to zero, see for example [30].

19 See [26, Theorem 4.1] for a more general result of this kind, obtained by a different method.
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Conditions (3) and (4) are equivalent since every additively normal set is thick,
while every thick set contains the union

S
n Fn of some Følner sequence and—

within this union—an additively normal set. Solvability of partition-regular linear
equations in thick (and hence additively normal) sets is our Theorem 7.6. It remains
to consider coefficients for which (1) does not hold and construct a thick set A ⇢ N,
which contains no solutions, i.e., is such that (i A + j A) \ kA = ;.

Since k /2 {i, j, i + j} there exist a rational number � > 0 such that

k[1, 1+ �] \ (i[1, 1+ 2�] [ j[1, 1+ 2�] [ (i + j)[1, 1+ �]) = ;.

Let

A =
1[

n=1
In, where In = rn[1, 1+ �],

where the numbers rn 2 N are such that rn� 2 N and grow geometrically with a
large ratio. Obviously, A is a thick set. Choose any a, b 2 A. If a, b belong to the
same interval In , then ia + jb 2 (i + j)rn[1, 1+ �]. If a, b belong to two different
intervals, say Im, In with m < n, then, since rm is much smaller than rn , ia + jb is
either in irn[1, 1+ 2�] or in jrn[1, 1+ 2�]. In any case, ia + jb /2 k In and, due to
the fast growth of rn , ia + jb /2 k Il for any other l. So, (i A + j A) \ kA = ;, as
needed.

Remark 7.8. We will show later (see Corollary 7.19) that any classical normal set
A has the stronger property that any equation ia + jb = kc with i, j, k 2 N is
solvable in A.

We conclude this subsection with a simple observation that additively normal
sets always contain at least some modest amount of multiplicative structure.

Theorem 7.9. Any additively normal set A contains “consecutive product sets” of
the form {y1, y1y2, . . . , y1y2 · · · yk} with arbitrarily large k and yn � 2.

Proof. The result follows from the (almost obvious) fact that any thick set contains
arbitrarily large product sets.

7.3. Covering property of translates of normal sets

The special case (for (Z,+)) of the following result is implicit in [10]. We give a
short proof for arbitrary countably infinite amenable groups (and cancellative semi-
groups).

Lemma 7.10. Let G be a countably infinite amenable group in which we fix arbi-
trarily a Følner sequence (Fn). If A is an (Fn)-normal set and B ⇢ G is infinite,
then the set BA has (Fn)-density 1.
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Proof. Observe that if K ⇢ G is nonempty finite then K A has (Fn)-density pre-
cisely 1�2�|K |. Indeed, g /2 K A is equivalent to K�1g\ A = ;, i.e., the indicator
function 1A|K�1g = 0. By normality of A, the last equality holds for elements g
whose (Fn)-density is 2�|K |. If B is infinite, the lower (Fn)-density of BA is larger
than 1� 2�k for any k, so BA has (Fn)-density 1.

Corollary 7.11. By Theorem 2.12, Lemma 7.10 holds in countably infinite amena-
ble cancellative semigroups, in particular in (N,+) and (N,⇥). Moreover, we also
have that B�1A defined as the set of such g 2 G that bg 2 A for some b 2 B, has
(Fn)-density 1.

Remark 7.12. The following useful observation generalizes [10, Theorem 2]: If
C ⇢ G has positive upper (Fn)-density then bA \ C has (Fn)-density zero for at
most finitely many b 2 N. Indeed, if k is such that d(Fn)(C) > 2�k , then for any
K ⇢ Nwith |K | = k one has d(Fn)(K A\C) > 0. If there were k different elements
b1, . . . , bk 2 N satisfying d(Fn)(bi A\C) = 0, then the set K = {b1, . . . , bk}would
violate the last inequality.
Example 7.13. The following example, in the classical setup of (N,+), shows that
for an additively (in particular, classical) normal set A the complement of B + A
need not be finite, even if B = A. Start the construction by choosing a finite word
w1 with good normality properties. Let w̃ denote the block obtained from w by
switching zeros and ones and writing the symbols in reverse order. The concate-
nated word v1 = w1w̃1 also has good normality properties and is antisymmetric,
i.e., it satisfies v1(k) = 1�v1(n1� k), for all 0  k < n1, where n1 is the length of
v1. Note that if A is any set whose indicator function 1A starts with v1 then A + A
misses n1. Let w2 be a word much longer than w1 and with much better normality
properties. Define v2 as the concatenation v1w2w̃2v1. This word starts with v1, is
antisymmetric and has nearly as good normality properties as w2. If 1A starts with
v2 then A + A misses both n1 and n2 = |v2|. Continuing in this fashion we will
end up with an infinite set A which is normal and such that A+ A misses infinitely
many integers.
Remark 7.14. On the other hand, thickness alone easily implies that A � A = N
(where A � A is understood as the set of positive differences of elements from A).

7.4. Divisibility properties of classical normal sets. First applications

Until the end of Section 7 we will be dealing with classical normal sets in (N,+)
(and also, briefly, with net-normal sets in (N,⇥)). As we will see, they exhibit
especially rich combinatorial structure (not shared by general additively or multi-
plicatively normal sets). In this subsection we focus on general linear equations
with three variables in classical normal sets.
Definition 7.15. Given A ⇢ N, and n 2 N, denote by A/n the set {m : nm 2 A}
(formally, this is 1n (A \ nN) or, invoking the multiplicative shift, 1A/n = ⇢n(1A)).
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Lemma 7.16. If A is a classical normal set, so is A/n for any n 2 N.

Remark 7.17.

(i) Lemma 7.16 says that (xk) 2 {0, 1}N is classical normal if and only if, for
every n 2 N, the sequence (xnk) is classical normal. This result was proved in
D. Wall’s thesis [46]. We provide a different, ergodic proof.

(ii) A nontrivial fact which is implicitly used in the proof is the divisibility prop-
erty of the classical Følner sequence Fn = {1, 2, . . . , n} in (N,+): for any
k 2 N, (Fn/k) is essentially the same Følner sequence. For example, for
k = 3, (Fn/k) is (;,;, F1, F1, F1, F2, F2, F2, F3, F3, F3, . . . ).

Proof of Lemma 7.16. Suppose A/n is not normal, i.e., some wordw having length
k does not occur in the indicator function 1A/n of A/n with the correct frequency
2�k . This means that the “scattered” block ŵ (in which the entries ofw appear along
the arithmetic progression {n, 2n, . . . , kn}) occurs in 1A starting at coordinatesm 2
nN with, say, upper density different from 2k 1n . Let y be the periodic sequence
y(i) = 1 () n|i . Now consider the pair (1A, y) (it is convenient to imagine this
pair as a two-row sequence with 1A written above y). This pair is a sequence over
four symbols in {0, 1}2. This means that the scattered block (ŵ, v̂) where v̂ denotes
the block of just 1’s at each bottom position {n, 2n, . . . , kn}, occurs in (1A, y) with
the upper density different from 2k 1n . There is a subsequence ni such that the upper
density is achieved along intervals {1, . . . , ni }, and moreover, the corresponding
sequence of normalized counting measures supported by the sets

�
(1A, y), � ((1A, y)), � 2((1A, y)), . . . , � ni ((1A, y))

 

(where � ((x, y)) = (� (x), � (y))) converges in the weak-star topology to a shift-
invariant measureµ on ({0, 1}2)N. Since 1A is normal (i.e., generic for the Bernoulli
measure �) and y is periodic (hence generic for the unique invariant probability
measure ⇠ on the periodic orbit of y), the marginal measures of µ are � and ⇠ . Now,
µ([ŵ]⇥[v̂]) 6= 2k 1n = µ([ŵ])⇠([v̂]), which means that µ 6= �⇥⇠ . This contradicts
disjointness of Bernoulli measures from periodic measures (which is a particular
case of disjointness between K-systems and entropy zero systems, see [28]).

We can now derive another fact in the classical case.

Theorem 7.18. If A is a classical normal set and n,m 2 N are coprime, then both
nA + mA and nA � mA (restricted to N) have density 1.

Proof. The theorem follows from the fact that, relatively, in every residue class
mod n, (i.e., in the set nN + i for each i = 0, 1, . . . , n � 1), the set nA ± mA has
density 1. Indeed, sincem, n are coprime, the set (mA⌥i)/n is infinite (this follows
already from the thickness of A). Then, by Lemma 7.10, the set A ± (mA ⌥ i)/n,
which we can write as (nA±mA�i)/n, has density 1. Hence nA±mA has density
1 in the residue class of i .
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Corollary 7.19. For any i, j, k 2 N there are a, b, c 2 A solving the equation
ia + jb = kc.20

Proof. Restricting to nN, where n = LCD(i, j, k), we can assume that some two
coefficients, for example i and j , are coprime (the other cases can be treated sim-
ilarly). By Theorem 7.18, i A + j A has relative density 1 in nN, while kA has
positive relative density in nN, so (i A + j A) \ kA 6= ;.

Actually, one has a more general fact. In the theorem below we use the fol-
lowing terminology: a set B ⇢ N is called divisible if it contains multiples of
every natural number n (note that then B/n is infinite for each n), and it is called
substantially divisible if B/n has positive upper density for every n.

Theorem 7.20. Let A, B,C be subsets ofN and assume that A is classical normal,
B is divisible, and C is substantially divisible. Fix any i, j, k 2 N. Then the
equation ia + jb = kc is solvable with a 2 A, b 2 B, c 2 C .

Remark 7.21. The assumptions are satisfied when A, B,C are classical normal
sets (the special case A = B = C was treated in Corollary 7.19).

Proof of Theorem 7.20. Note that the set kC/ i can be interpreted in two ways: as
k ·C/ i or as (kC)/ i with the latter set being possibly larger than the former. Never-
theless, both sets have positive upper density. Also, regardless of the interpretation,
the set j B/ i is infinite. By Lemma 7.10, (A + j B/ i) \ kC/ i has positive upper
density (the same as kC/ i). Multiplying by i we obtain that (i A + j B) \ kC has
positive upper density, in particular is nonempty. So, there exist (many) desired
solutions.

7.5. Solvability of certain equations in net-normal sets

Motivated by the preceding subsection, let us now turn to the multiplicative semi-
group (N,⇥) and multiplicative normality. The analogue of the equation ia+ jb =
kc reads aib j = ck . To see this analogy even better, let us view (N,⇥) again as
the direct sum G which is an additive semigroup. Now the multiplicative equa-
tion aib j = ck takes on the familiar additive form ia + jb = kc. The problem
we immediately encounter in this “infinite-dimensional” semigroup is that if A is
multiplicatively normal (even net-normal) then the set A/n (multiplicatively this is
the set {m : mn 2 A}) need not be multiplicatively normal. In fact, it can even be
empty, because the set nG (multiplicatively this is the set of nth powers) has uni-
versal multiplicative density zero. Below we provide an easy example of failure for
the multiplicative equation a2b2 = c3, regardless of the Følner sequence in (N,⇥).

20 For a more general result of this type, presented in a different language and with a different
proof see [26, Theorem 1.3.2].
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Example 7.22. Let (Fn) be a Følner sequence in (N,⇥) and let A be an (Fn)-
normal set (alternatively, it can be net-normal). By removing from A all squares
(note that the set of squares is a set of universal multiplicative density 0), we can
assume that A contains no squares. Then the elements c3 with c 2 A are not squares
either. Thus A contains no solutions of a2b2 = c3.

This is why we will restrict our attention only to the case with i = j = 1, i.e.,
consider only equations of the form ab = ck .

Theorem 7.23. Let A and B be net-normal sets and let C contain infinitely many
pairs (n, rn), where r is fixed, while n tends to infinity with respect to the multi-
plicative order 4 (i.e., for any k 2 N, large enough n is a multiple of k; this holds,
for instance, if C is (Fn)-normal with respect to some fixed Følner sequence in
(N,⇥)). Then for any natural k there exist a 2 A, b 2 B and c 2 C such that
ab = ck .

Corollary 7.24. If A is net-normal then for any natural k the equation ab = ck is
solvable in A.

Proof of Theorem 7.23. We continue to switch freely between the sets A, B,C and
their indicator functions denoted 1A, 1B, 1C . We view (N,⇥) again as the additive
semigroup G. Thus our task becomes to find solutions of the equation a + b = kc
with a 2 A, b 2 B, c 2 C . From now on, adjectives “small”, “nearly”, “close”, etc
will refer to quantities (error terms, distances) that are estimated above by functions
of " tending to zero as " ! 0. Fix a small " > 0. By the assumption, we can find in
C two elements n and n+ r , where (r 2 G is fixed a priori), with n multiplicatively
so large that any anchored rectangle F with a leading parameter multiplicatively
larger than or equal to 3n is (kr, ")-invariant and has the property that both A and
B have in F a proportion nearly 1

2 (it is here that we are using net-normality of A
and B).

Now suppose that there are no triples a 2 A, b 2 B, c 2 C satisfying a + b =
kc. This implies that within the rectangle F with the leading parameter kn, A is
disjoint from kn � B. Since the proportion of both sets in F is nearly 1

2 , these
two sets are in fact nearly complementary within F , i.e., we can write 1A(m) =
1 () 1B(kn � m) = 0 and this will be true except for a small percentage of
m’s in F . The same holds with n + r replacing n within the rectangle F 0 with the
leading parameter k(n + r), in particular, also in F (because by (kr, ")-invariance,
F is negligibly smaller than F 0). This implies that the configuration of symbols
in 1A (and also in 1B) within F is nearly invariant under the shift by kr , i.e., in
most places m 2 F the symbols at m and m + kr are the same. This contradicts
net-normality of 1A (and likewise of 1B): if F is large enough then the proportion
of pairs of identical symbols at positions m and m+ kr with m 2 F should be close
to 12 , not to 1.

Example 7.25. Using an idea similar to that utilized in the proof of Theorem 7.7,
we will show that assuming multiplicative normality with respect to just one nice
Følner sequence may be insufficient for the solvability of the equation ab = c3. We
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continue to use the additive notation of G. Let Ln be a multiplicatively increasing
to infinity sequence of natural numbers. We assume that 5Ln 4 Ln+1 (recall that
multiplicatively this means L5n|Ln+1). Let Fn be the rectangle with the leading
parameter 3Ln and let Bn be Fn with the rectangle with the leading parameter 2Ln
removed. Let B =

S
n Bn . Note that as soon as Ln is high-dimensional, say of a

large dimension d (multiplicatively, this means that Ln is a product of [powers of]
d different primes) then Bn constitutes the large fraction 1 � (23 )

d of Fn . It is now
obvious that B has (Fn)-density 1. Consider the sum a + b of two elements of B.
Let n be the maximal index such that Bn contains either a or b. Then a+ b belongs
to the rectangle with the leading parameter 6Ln with the rectangle with the leading
parameter 2Ln removed (call this difference Cn). It is easy to see (it suffices to
consider the one-dimensional case) that the union

S
n Cn is disjoint from 3B. We

have shown that a + b = 3c has no solutions in B. Since B has (Fn)-density 1,
it now suffices to intersect it with any (Fn)-normal set to get an (Fn)-normal set
without the considered solutions.

It is now natural to ask: are all multiplicative equations ab = ck solvable in
classical normal sets? Here the answer is known to be negative. In [25], A. Fish
constructed normal sets of the form A = {n : f (n) = �1}, where f is a multiplica-
tive function (so-called random Liouville function) f : N ! {�1, 1}. In such sets
there are clearly no solutions of the equations ab = ck for any odd k.21

7.6. Pairs {a + b, ab} in classical additively normal sets

In this subsection we establish yet another nontrivial property of classical normal
sets.

Theorem 7.26. Let A be a classical normal set. For given a 2 N define

Sa = {b : a + b 2 A, ab 2 A}.

Then for every a 2 N either Sa or Sa2 has positive upper density. In particular, A
contains pairs {a + b, ab} with arbitrarily large a and b.

Remark 7.27. The property stipulated in Theorem 7.26 does not necessarily hold
for general additively normal sets. Indeed, one can construct an additively thick set
which does not contain pairs {a+ b, ab} [9, Theorem 6.2]. Clearly, such a thick set
contains an additively normal set with no pairs {a + b, ab}.

Proof of Theorem 7.26. It follows from the definition of the set A/n that b2 Sa()
b 2 A/a \ (A� a). Fix some a � 2 and suppose that both Sa and Sa2 have density
zero. This can be written as

A \ (A/a + a) ⇡ ; and A \ (A/a2 + a2) ⇡ ;,

21 On the other hand, the equation ab = c2 is solvable in any classical normal set. This follows
from the fact that classical normal sets contain geometric progressions of length 3, see Theo-
rems 7.33 or 7.35 below.
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where ⇡ means equality up to a set of density zero. Since every set in the above
intersections has density 12 , we get A/a + a ⇡ N \ A and A/a2 + a2 ⇡ N \ A, and
in particular

A/a + a ⇡ A/a2 + a2.

Multiplying both sides by a we obtain

(A \ aN) + a2 ⇡ (A/a \ aN) + a3.

Since A/a and A� a are nearly disjoint (the intersection has zero density), we also
have that (A/a\aN)+a3 is nearly disjoint from (A\aN)+a3�a. Plugging this
into the last displayed formula we conclude that (A \ aN) is nearly disjoint from
(A\ aN)+ a3� a2� a. Dividing both sets by a, we get that A/a is nearly disjoint
from A/a+a2�a�1. Since A/a has density 12 , we have proved that the indicator
function of A/a has the property that for n’s of density 1 its values at n and at n+ r
(where r = a2 � a � 1) are different. This contradicts Lemma 7.16 (normality of
A/a), as in normal sets the density of such ns should be 12 .

7.7. Multiplicative configurations in classical normal sets

In this subsection we show that every classical normal set contains (up to scaling)
all configurations which are known to be present in multiplicatively large sets. The
following theorem is the main technical result allowing us to prove this fact.

Theorem 7.28. Let A ⇢ N be a classical normal set. Then, for any Følner se-
quence (Kn) in (N,⇥) there exists a set E of (Kn)-density 1

2 such that for any
nonempty finite subset {n1, n2, . . . , nk} ⇢ E the intersection A/n1 \ A/n2 \ · · · \
A/nk has positive upper density in (N,+).

The key role in the proof of Theorem 7.28 will be played by the following
theorem (cf. [5, Theorem 4.19] and [4, Theorem 2.1]).

Theorem 7.29. Let (Fn) be a Følner sequence in (N,+), let a 2 (0, 1), and let
F = {A1, A2, . . . } be a countable family of subsets inN such that d(Fn)(A) � a for
all A 2 F . Then there exists an invariant mean L on the space BC(N) of bounded
complex-valued functions such that

(i) L(1A) = d(Fn)(A) for every A 2 F ,
(ii) for any k 2 N and any n1, n2, . . . , nk 2 N,

d(Fn)(An1 \ An2 \ · · · \ Ank ) � L(1An1 · 1An2 · . . . · 1Ank ),

(iii) there exists a compact metric space X , a regular measure µ on B(X) (the
Borel � -algebra of X), and sets Ãn 2 B(X), n 2 N, such that for any
n1, n2, . . . , nk 2 N one has

L(1An1 · 1An2 · . . . · 1Ank ) = µ( Ãn1 \ Ãn2 \ · · · \ Ãnk ).
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Proof. In the proof, when convenient, we will view L as a finitely additive measure
on the family P(N) of all subsets of N. Let S be the (countable) family of all finite
intersections of the form An1 \ An2 \ · · · \ Ank , where An j 2 F , j = 1, . . . , k.
By using the diagonal procedure we arrive at a subsequence (Fni ) of our Følner
sequence (Fn), such that for any S 2 S the limit

L(S) = lim
i!1

|S \ Fni |
|Fni |

= lim
i!1

1
|Fni |

X

m2Fni

1S(m)

exists. Notice that L(A)=d(Fn)(A) for any A2F , and that for any n1, n2, . . . , nk 2
N we have

d(Fn)

 
k\

j=1
An j

!

= lim sup
n!1

�
�
�
⇣Tk

j=1 An j
⌘

\ Fn
�
�
�

|Fn|

� lim
i!1

�
�
�
⇣Tk

j=1 An j
⌘

\ Fni
�
�
�

|Fni |
= L

 
k\

j=1
An j

!

.

Extending by linearity, we get a linear functional L on a subspace V ⇢ BR(N). By
invoking the Hahn-Banach Theorem22, we can extend L from V to BR(N). This L
naturally extends to a functional on the space BC(N), which satisfies conditions (i)
and (ii).

We move now to proving (iii). LetA be the uniformly closed and closed under
conjugation algebra of functions on N, which is generated by indicator functions
1A of sets A 2 F . Then A is a separable C⇤-subalgebra of `1(N, k · k1), and,
by the Gelfand Representation Theorem, A ⇠= C(X), where X is a compact metric
space. The restriction LA of the mean L , which we constructed above, induces a
positive linear functional L̃ on C(X), which by the Riesz Representation Theorem
is given by a Borel measure µ.

Note that the isomorphism A ⇠= C(X) sends indicator functions of subsets of
N to indicator functions of subsets of X (because the isomorphism provided by the
Gelfand transform preserves algebraic operations, and the indicator functions are
the only ones which satisfy the equation f 2 = f ). Let Ã j be the subsets of X
which correspond to sets A j 2 F (note that since 1 Ã j

2 C(X) for each j , the sets
Ã j are measurable). Clearly, we have

LA(An1 \ An2 \ · · · \ Ank ) = µ( Ãn1 \ Ãn2 \ · · · \ Ãnk )

for any n1, n2, . . . , nk . This completes the proof.

22 We remark that for our applications we need only a “restricted” version of Theorem 7.29 which
deals with functional LA on A and does not need appealing to the Hahn–Banach Theorem.
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The last result which is needed for the proof of Theorem 7.28, is the following
theorem.

Theorem 7.30 (see Lemma 5.10 in [7]). Let (Kn) be a Følner sequence in (N,⇥),
let (X,B, µ) be a probability space, and let A j , j 2 N, be measurable sets in
X , satisfying µ(A j ) � a for some a > 0. Then there exists a set E 2 N with
d(Kn)(E)�a, such that for any nonempty finite set F⇢E, one hasµ

�T
j2F A j

�
>0.

Proof of Theorem 7.28. The result in question follows from Theorem 7.29 applied
to the Følner sequence Fn = {1, 2, . . . , n} in (N,+) and F = {A/n : n 2 N} (and
then we apply Theorem 7.30). Note that by Lemma 7.16, each A/n is a classical
normal set and hence has density a = 1

2 .

It was shown in [6] that multiplicatively large sets in N have very rich combi-
natorial structure (which is quite a bit richer than that of additively large sets). For
example, any multiplicatively large set contains not only arbitrarily long geometric
and arithmetic progressions, but also all kinds of more complex structures which
involve both the addition and multiplication operations. Theorem 7.28 allows us
to conclude that classical normal sets in N are, in a way, as combinatorially rich
as multiplicatively large sets. For example, we can combine it with the following
theorems.

Theorem 7.31 (Theorem 3.10 in [6]). Let Sa,Sm be two families of finite subsets
of N with the following properties:

(i) Any additively large set inN contains a configuration of the form a+F , where
F 2 Sa;

(ii) Any multiplicatively large set in N contains a configuration of the form bF ,
where F 2 Sm.

Then any multiplicatively large set E contains a configuration of the form bF2(a +
F1), where F1 2 Sa and F2 2 Sm.
Theorem 7.32 (Theorem 3.11 in [6]). Let E ⇢ N be a multiplicatively large set.
Let S1, S2 ⇢ N be two infinite sets and let IPa(S1) and IPm(S2) be the additive and
multiplicative IP sets generated by S1 and S2, respectively. Then for any n 2 N,
there exist a, b 2 N, d 2 IPa(S1), and q 2 IPm(S2) such that

{bq j (a + id), 0  i, j  n} ⇢ E .

Then we get the following result.

Theorem 7.33. Let Sa and Sm be two families of finite sets in N which have the
following properties:

(i) any additively large set in N contains a configuration of the form a + F1 for
some F1 2 Sa and a 2 N;23

23 An example of Sa is the family {{r, 2r, . . . , nr} : r 2 N} with any fixed n (this follows from
the classical Szemerédi Theorem).
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(ii) any multiplicatively large set in N contains a configuration of the form bF2
for some F2 2 Sm and b 2 N.24

Then any classical normal set A ⇢ N contains a configuration bF2(a + F1) with
F1 2 Sa, F2 2 Sm and a, b 2 N.

In particular, any classical normal set A contains, for any n 2 N, configura-
tions of the form {q j (a + id) : 0  i, j  n} with some q > 1, a, d 2 N.

Proof. Theorem 7.31 tells us that any multiplicatively large set E contains a config-
uration of the form bF2(a+ F1) with a, b 2 N, F1 2 Sa, F2 2 Sm. For a classical
normal set A ⇢ N, we can take as E the set given by Theorem 7.28. Thus, E con-
tains a set {n1, n2, . . . , nk} of the above form bF2(a + F1). Then the intersection
A/n1 \ A/n2 \ · · · \ A/nk has positive additive upper density. In particular, this
intersection contains some natural number c, and then cbF2(a + F1) ⇢ A.

To get the last statement of the theorem, one has to use Theorem 7.32 which
guarantees the existence of configurations of the form {bq j (a + id) : 0  i, j 
n} with some q > 1, a, b, d 2 N. Observe that we may write bq j (a + id) as
q j (a0 + id 0).

Similarly, we can invoke another theorem.

Theorem 7.34 (Theorem 3.15 in [6]). Let E ⇢ N be a multiplicatively large set.
For any k 2 N there exist a, b, d 2 N such that {b(a + id) j , 0  i, j  k} ⇢ E .

Then one gets the following result.

Theorem 7.35. Any classical normal set contains, for any n 2 N, sets of the form
{b(a + id) j ; 0  i, j  n} with some a, b, d 2 N.

Remark 7.36. While Theorems 7.33 and 7.35 guarantee that any classical normal
set contains arbitrarily long finite geometric progressions, it need not contain infinite
geometric progressions. Indeed, it is not hard to construct a set of density zero
which contains, for any b, q 2 N, a number of the form bq j for some j . Removing
this set from a classical normal set results in a desired example.

Remark 7.37. Note that Theorem 7.28, and thus Theorems 7.33 and 7.35, are not
valid for general additively normal sets in (N,+). For example, one can show
(see [3, Theorem 3.5]) that there exist additively thick sets which do not contain ge-
ometric progressions of length 3, {c, cr, cr2}, where r 2 Q \ {1} (cf. Remark 7.27).

Many of the results of Section 7 are valid in a wider setup, where one replaces
normal sets with more general sets having strong enough randomness properties.
See for example [26], where configurations in so-called weakly mixing sets are
studied.

24 An example of Sm is the family {{q, q2, . . . , qn} : q � 1} with any fixed n (see [6, Theorem
3.11]).
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8. (Fn)-normal Liouville numbers

Let us recall that an irrational number x is called a Liouville number if for every
natural k there exists a rational number p

q such that |x � p
q | < 1

qk . Clearly, “for
every k” can be equivalently replaced by “for arbitrarily large k” (if p

q is good for
k, it is also good for all k0 < k). It is well known that the set L of Liouville
numbers is residual (dense G�) but its Lebesgue measure equals zero. This can be
expressed concisely by saying that this set is T-large and M-small. On the other
hand, Theorem 4.2 and Corollary 4.8 imply that the set N ((Fn)) of (Fn)-normal
numbers is M-large and T-small (this applies to both additive and multilplicative
normality; we recall that Theorem 4.2 requires a mild assumption on (Fn) which is
satisfied e.g. when the sequence |Fn|, n = 1, 2 . . . is strictly increasing). Thus, it is
a priori not clear whether the sets L andN ((Fn)) have a nonempty intersection. In
this section we will show that if (Fn) is any Følner sequence in (N,+) or any nice
Følner sequence in (N,⇥) (see Section 6.1) thenL\N ((Fn)) is not only nonempty
but in fact uncountable (contains a Cantor set). For results dealing with Liouville
numbers in the context of classical normality see e.g. [14].

Theorem 8.1. For every Følner sequence (Fn) in (N,+) there exists an (Fn)-
normal Liouville number.

The proof will be preceded by some generalities about Følner sequences in (N,+).
Recall that two Følner sequences (Fn) and (F 0

n) in an amenable semigroup G are
called equivalent if |Fn4F 0

n |
|Fn | ! 0, and that if (Fn), (F 0

n) are equivalent Følner se-
quences then the notions of (Fn)-normality and (F 0

n)-normality coincide.

Lemma 8.2. Let (Fn) be an arbitrary Følner sequence in (N,+). There exists a
sequence of natural numbers (`n) tending to infinity and a Følner sequence (F 0

n)
equivalent to (Fn) such that each set F 0

n is a disjoint union of intervals, each of
length at least `n .

Proof. Fix a sequence ("`)`�1 decreasing to zero. For each ` there exists n` such
that for every n � n`, the set Fn is (K`, "`2` )-invariant, where K` stands for
{1, 2, . . . , `}. Then, by Lemma 2.4, the K`-core of Fn , which we denote by Fn,K` ,
is an "`-modification of Fn . For each n we define `n as the unique ` satisfying
the inequalities n`  n < n`+1. We set F 0

n = Fn for n < n1, and for n � n1,
F 0
n = Fn,K`n + K`n . Now, for each n, F 0

n is an "`n -modification of Fn (hence
(F 0

n) is a Følner sequence equivalent to (Fn)), and it is a union of (not necessarily
disjoint) intervals of length `n . The “connected components”25 of F 0

n are disjoint
intervals of lengths at least `n , as required.

Wewill establish now some technical facts about (a subclass of) Liouville num-
bers which will be utilized in the proof of Theorem 8.1.

25 By a connected component of a set F ⇢ N we mean an interval I = {a, a + 1, . . . , b} ⇢ F
such that a � 1 /2 F (this includes the case a � 1 = 0) and b + 1 /2 F .
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Definition 8.3. We will call a binary sequence w 2 {0, 1}N repetitive if it is the
limit of a sequence of words wk (k � 1) defined inductively, as follows:

(1) w1 = u1 is an arbitrary nonempty 0-1 word,
(2) for k > 1, wk = wk�1wk�1 . . . wk�1uk , where wk�1 is repeated at least k � 1

times, and uk is an arbitrary nonempty 0-1 word.

Proposition 8.4. Any not eventually periodic repetitive sequence w is the binary
expansion of a Liouville number x .

Proof. Given k, consider the rational number p
q represented by the periodic se-

quence wkwkwk . . . . Then q < 2|wk |, hence 1
qk > 2�k|wk |. The difference |x � p

q |
is a number whose first nonzero binary digit appears at a position larger than k|wk |,
which means that |x � p

q |  2�k|wk |, hence |x � p
q | < 1

qk . Since w is not eventually
periodic, x is irrational, and thus it is a Liouville number.

Notice that since in Definiton 8.3 the word uk is completely arbitrary, in par-
ticular it may have the form vkvk . . . vk (where the word vk and the number of
repetitions are also arbitrary). Using this observation, we can isolate a special class
of repetitive sequences.
Definition 8.5. Let (vk) be a sequence of nonempty binary words. A repetitive
sequence w is said to be balanced with respect to (vk) if, for each k � 1, uk =
vkvk . . . vk , where the number of repetitions is such that the following two condi-
tions hold:

�k =
max{|vk |, |vk+1|, |vk+2|, |wk�1|}

|wk |
! 0, (8.1)

1� �k =
|uk |
|wk |

! 1. (8.2)

It is easy to see that given any sequence of nonempty words (vk), one can construct
a repetitive sequence w which is balanced with respect to (vk). One just needs to
apply large enough number of repetitions of vk in uk (depending on the lenghts |vk |,
|vk+1| and |vk+2|).

Lemma 8.6. Let (vk) be a sequence of nonempty binary words and let w be a
repetitve sequence balanced with respect to (vk). For each k � 2 define "k =
2(�k + �k) (see Definition 8.5). If W is a subword of wk+2 with |W | � |wk | then,
for some r, s, t � 0 satisfying r |vk |+s|vk+1|+t |vk+2|

|W | � 1 � "k , W contains r + s + t
nonoverlapping subwords of which r are copies of vk , s are copies of vk+1 and t
are copies of vk+2.

Proof. Note that wk+2 has the following structure: (wk+1)
a(vk+2)

a0 , and like-
wise wk+1 = (wk)

b(vk+1)
b0 , wk = (wk�1)

c(vk)
c0 (a � k + 1, b � k, c �

k�1, a0, b0, c0 � 1). By successive substitution (two times), we obtain that wk+2 is
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a concatenation of (shifted) copies of vk, vk+1, vk+2 and wk�1. So is any subword
W of wk+2, except that the copies covering the ends of W may extend beyond W
in which case the concatenation representing W includes (at most two) end words
V1, V2 which are subwords of either vk, vk+1, vk+2 or wk�1.

To finish the proof we need to show that,

p|wk�1| + |V1| + |V2|
|W |

< "k,

where p is the number of copies of wk�1 in the concatenation representing W . The
fraction p|wk�1|

|W | is largest precisely when W = (wk�1)
c(vk)

c0(wk�1)
c and then we

have
p|wk�1|

|W |
=

2c|wk�1|

|wk | + c|wk�1|
< 2

c|wk�1|

|wk |
= 2�k .

The joint length of the end words not larger than 2max{|vk |, |vk+1|, |vk+2|, |wk�1|},
so |V1|+|V2|

|W | < 2�k . We have shown that the joint length of the (nonoverlapping)
copies of vk, vk+1 and vk+2 which are subwords ofW is least (1�2�k�2�k�1)|W |=
(1� "k)|W | and this is precisely what we needed to show.

Proof of Theorem 8.1. Fix a Følner sequence (Fn) in (N,+). In view of Lemma
8.2 we can assume without loss of generality that if `n denotes the length of the
shortest connected component of Fn then the sequence (`n) tends to infinity. For
each natural j we define t j as the largest element of the set

[

{n: `n< j}
Fn,

i.e., t j is such that if Fn has at least one connected component shorter than j then
Fn ⇢ {1, 2, . . . , t j }.

Let v 2 {0, 1}N be a classical normal sequence and let vk = v|{1,2,...,k}.
Note that the words (vk) are asymptotically normal in the following sense: for
any nonempty finite K ⇢ N and any " > 0, if k is sufficiently large then vk is
(K , ")-normal.

Let w be a repetitive sequence which is balanced with respect to (vk). By
choosing the numbers of repetitions of vk+2 in uk+2 (see Definition 8.5) sufficiently
large, we can arrange that |wk+2| � t|wk+1|, for each k. For each n let kn be the
unique integer satisfying the inequalities |wkn |  `n < |wkn+1|. Notice that since
the numbers `n tend to infinity with n, so do the numbers kn . By the definition
of the numbers t j and since `n < |wkn+1|, we have Fn ⇢ {1, 2, . . . , t|wkn+1|} ⇢
{1, 2, . . . , |wkn+2|}. Thus, for any connected component I of Fn , the word W =
w|I is a subword of length at least |wkn | of wkn+2. Now, Lemma 8.6 implies that
at least the fraction 1 � "kn of w|I is a constituted by nonoverlapping copies of
the words vkn , vkn+1 and vkn+2. Since "kn ! 0, it is now obvious that the blocks
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w|Fn
26 are asymptotically normal as n grows to infinity, i.e., that w is (Fn)-normal.

In particular, the number x (whose binary expansion is w) is irrational27, hence it is
an (Fn)-normal Liouville number.

Remark 8.7. If in the above construction we vary the classical normal element v
(used to define the words vk), while keeping the numbers of repetitions of vk in
uk unchanged, we obtain a continuous and injective map v 7! w sending classical
normal sequences to (Fn)-normal repetitive sequences. Moreover, since every (Fn)-
normal number is irrational, also the map w 7! x (where x is the number whose
binary expansion is w) is injective and continuous. Thus, for every compact set
C consisting of classical normal sequences, the restriction to C of the composition
v 7! w 7! x is a homeomorphism of C onto its image. Since the set of classical
normal sequences contains a Cantor set, so does the set of (Fn)-normal Liouville
numbers.

We now turn to constructing Liouville numbers which are (multiplicatively)
normal with respect to nice Følner sequences. As we shall see, repetitive sequences
are naturally well fitted for this kind of normality. Recall (see Section 6.1) that for
m,M 2 N we write m 4 M when m|M . If m 4 M and M 6= m, we will write
m � M . Recall also that a nice Følner sequence (Fn) in (N,⇥) corresponds to
a multiplicatively increasing sequence (Ln) of the leading parameters, i.e., natural
numbers such that, for each n, Ln � Ln+1 and Fn = {m : m 4 Ln}.

Lemma 8.8. Given k � 1 and " > 0, there exists an mk," such that for any m and
M satisfying mk," 4 m 4 M , the interval {m + 1, . . . , (k + 1)m} contains at most
a fraction " of all divisors of M , i.e,

|{i : i 4 M, m + 1  i  (k + 1)m}|

|{i : i 4 M}|
 ".

Proof. Let p be the smallest prime number strictly larger than k. Let r 2 N be
such that 1r  ", and put mk," = pr . Let m be any multiple of mk," and let M
be any multiple of m. The set of all divisors of M (which can be visualized as
the anchored rectangular box with the leading parameter M , see Section 6.1) splits
into disjoint union of one-dimensional sets of the form aI = {a, ap, ap2, . . . , aps},
where a is not a multiple of p, and ps is the largest power of p dividing M . Clearly,
s � r . Since p � k + 1, at most one element from any set aI may fall in {m +
1, . . . , (k + 1)m}. Thus at most the fraction 1

s  1
r  " of all divisors of M may

fall in {m + 1, . . . , (k + 1)m}.

Theorem 8.9. For any nice Følner sequence (Fn) in (N,⇥) there exists an (Fn)-
normal Liouville number.

26 We use the term “block” because Fn need not be an interval.
27 Rational numbers are neither additively nor multiplicatively normal because their additive as
well as multiplicative orbits are finite.
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Proof. The proof relies on choosing an arbitrary (Fn)-normal 0-1-sequence w̃ and
modifying it on a set of (Fn)-density zero. Clearly, then the modified sequence
w maintains (Fn)-normality. On the other hand, we will make the sequence w
repetitive. Since the number x whose binary expansion is w is multiplicatively
normal is not rational, Proposition 8.4 will imply that x is the desired (Fn)-normal
Liouville number.

Given k � 1, Lemma 8.8 applied for k and " = 2�k provides a number mk,2�k .
Let nk be the smallest index n such that mk,2�k 2 Fn (i.e., mk,2�k 4 Ln) and let
mk = LCM(mk,2�k , Lnk�1). In this manner, we have assured that Lnk�1 4 mk 4
Lnk . Since mk is a multiple of mk,2�k , the following holds:

mk 4 M implies
|{i : i 4 M, mk + 1  i  (k + 1)mk}|

|{i : i 4 M}|
 2�k . (8.3)

Further, it is obvious that mk can be replaced by mk0 with any k0 � k (mk0 has
the above property with k0 thus also with k). Hence, passing if necessary to a
subsequence, we can assume that mk+1 > (k + 1)mk for each k. Although the
property Lnk�1 4 mk 4 Lnk may be lost, we still have for any natural indices k
and n, either mk 4 Ln or Ln 4 mk .

Now we are in a position to define w. We let u1 = w1 = w̃|{1,...,m1}. Next,
we define w2 = w1w1u2, where u2 = w̃|{2m1+1...,m2}. Notice that the coordinates
on which w2 disagrees with w̃{1,...,m2} (if any) are contained in the interval {m1 +
1, . . . 2m1}. Then we definew3 = w2w2w2u3, where u3 = w̃|{3m2+1,m3}. Similarly,
the coordinates where w3 disagrees with w̃{1,m3�1} (if any) are contained in the
union {m1+ 1, . . . 2m1}[ {m2+ 1, . . . 3m2}. Continuing in this way we will define
a sequence of words wk converging to a sequence w which agrees with w̃ on the
complement of the set [

k�1
{mk + 1, . . . (k + 1)mk}. (8.4)

According to Definition 8.3, w is a repetitive sequence. It remains to show that the
(Fn)-density of the union (8.4) is zero. Given an n 2 N, we divide the indices k
into three classes (some of them possibly empty): k 2 Sn if kmk  |Fn|

1
3 , k 2 Ln

if mk � Ln andMn = N \ (Sn [ Ln).

• For k 2 Sn we have

|{mk + 1, . . . , (k + 1)mk} \ Fn|
|Fn|

=
kmk

|Fn|
 |Fn|�

2
3 .

Because |Sn|  |Fn|
1
3 , we have

1
|Fn|

�
�
�
�
�

[

k2Sn
{mk + 1, . . . (k + 1)mk} \ Fn

�
�
�
�
�
 |Fn|�

1
3 .
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• For k 2 Ln , Fn is disjoint from {mk + 1, . . . (k + 1)mk}, hence

1
|Fn|

�
�
�
�
�

[

k2Ln
{mk + 1, . . . (k + 1)mk} \ Fn

�
�
�
�
�
= 0.

• For k 2 Mn , we have Ln > mk , in particular Ln 64 mk and thus mk 4 Ln . By
(8.3), we have

1
|Fn|

�
��mk + 1, . . . (k + 1)mk

 
\ Fn

�
�  2�k .

Putting the above three cases together, we get

1
|Fn|

�
�
�
�
�

[

k2N
{mk + 1, . . . (k + 1)mk} \ Fn

�
�
�
�
�
 |Fn|�

1
3 +

X

k2Mn

2�k .

Since |Fn| ! 1, the right hand side tends to zero with n (note that every k eventu-
ally falls in Sn).

Remark 8.10. Denote by D the complement in N of the union (8.4). Then D has
(Fn)-density 1 in (N,⇥), and w|D = w̃|D, where w̃ is the (Fn)-normal sequence
chosen at the beginning of the proof of Theorem 8.9. The construction of w uses
only the subwords of w̃ appearing in w̃|D, hence the mapping w̃|D 7! w is injective
(and obviously it is also continuous). It is easy to see that there exists a Cantor set
consisting of (Fn)-normal elements w̃ on which the map w̃ 7! w̃|D is injective. On
this Cantor set, the map w̃ 7! w is injective and continuous. Arguing as in Remark
8.7, we get that the map w 7! x is injective and continuous on this Cantor set. This
implies that the set of (multiplicatively) (Fn)-normal Liouville numbers contains a
Cantor set.
Remark 8.11. The technique employed in the proof of Theorem 8.9 can be uti-
lized to obtain Liouville numbers with other properties. Let (Fn) be a nice Følner
sequence in (N,⇥) and let P be any property satisfied by a nonempty set of num-
bers and preserved under zero (Fn)-density modifications of the binary expansions
(for example, the property of being generic for some multiplicatively invariant, not
necessarily Bernoulli, measure). Then there exist Liouville numbers with prop-
erty P .

We conclude this section (and the paper) with an open problem.

Question 8.12. Do there exist net-normal Liouville numbers?

We remark that our technique does not allow us to produce such numbers.
Indeed, for any fixed sequence of intervals of the form {mk + 1, . . . , kmk}, the
union (8.4) has upper density at least 12 for a suitable nice Følner sequence. To
prove this, it suffices to indicate for any leading parameter L a multiple pL such
that half of divisors of pL belong to one of the intervals {mk +1, . . . , kmk}. To this
end, choose k � 2L and a prime number p in {mk + 1, . . . , 2mk} (such p exists
by Bertrand’s postulate). Then at least half of the divisors of pL have the form pl,
where l 4 L (in particular l  L) and then mk < p  pl  2mkL  kmk .
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Appendix

In this appendix we briefly discuss the original proof in [12] of the fact that the
set of normal numbers in [0, 1] has full Lebesgue measure, and the controversies
it generated. The proof has two parts. In the first part Borel defines a number x 2
[0, 1] to be simply normal in base b if the frequency of every digit 0, 1, . . . , b�1 in
the expansion of x equals 1b . He then shows that the set of numbers in [0, 1] which
are simply normal in base b is of full Lebesgue measure. One can view this result as
a special case of the Strong Law of Large Numbers (SLLN). The proof is based on
what is now known as the Borel-Cantelli Lemma. We remark that in this part it is
inessential that Z is a group. What matters is that the functions Xi = bbi xc mod b
(which express the digits in the base b expansion of x) form a countable family
of independent identically distributed random variables and that the averaging sets
Fn (in this case {1, 2, . . . , n}) strictly increase in cardinality. The Følner property
and the inclusions Fn ⇢ Fn+1 are not used. In the second part of the proof, Borel
defines a number x to be completely normal if for every k,m � 1 numbers bmx
(considered modulo 1) are simply normal in base bk . As a countable intersection of
sets of full measure, the set of completely normal numbers also has full measure.
Then Borel writes (for b = 10):

“La propriété caractéristique d’un nombre normal est la suivante: un groupe-
ment quelconque de p chiffres consecutifs étant considéré, si l’on désigne par
cn le nombre de fois que se rencontre ce groupement dam les n premiers chiffres
décimaux, on a:

lim
n!1

cn
n

=
1
10p

. ” (*)

(The characteristic property of a normal number is the following: for any
grouping of p consecutive digits being considered, denoting by cn the num-
ber of times this grouping occurs in the first n decimal digits, one has (*).)

This “characteristic property” is exactly normality in terms of our Definition 1.1
(adapted to base 10). Borel does not prove equivalence between his definition of
“complete normality” and the “propriété caractéristique”. Perhaps Borel intention-
ally skipped the proof (considering it fairly obvious), but this omission triggered
a long-lasting controversy (and confusion). In particular, Champernowne [16],
Koksma [34], Copeland and Erdős [18], Hardy and Wright [33] explicitly or im-
plicitly used the unproved equivalence. To illustrate how far from obvious this
equivalence was at that time, let us quote what Donald D. Wall claimed in his dis-
sertation [46] (written in 1949 under the supervision of Derrick H. Lehmer):

“Actually, there seems to be little reason to believe that the classes are identi-
cal.”

In fact, Wall believed to be close to finding a counterexample:
“Certain aspects of the problem are discussed in some detail here, and the main
result is a new method of constructing some class II numbers – a method which
seems to give hope of finding a class II number which is not in class III.”
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Eventually the equivalence was established by I. Niven and H. S. Zuckerman in
1951 [40] (see also [15]). Today this equivalence is no longer controversial, once
we understand that normality (in the sense of Borel’s “characteristic property”) of a
sequence x implies normality of x restricted to any infinite arithmetic progression28.

Borel was also criticized for other gaps in his proof. One such criticism appears
in the 1910 book of Georg Faber [24] on page 400. It seems that Faber finds it
unclear that the Lebesgue measure on [0, 1] corresponds to the distribution of the
i.i.d. process {Xi }i�1, where the Xi ’s are the random variables defined above.

“Sodann hat Herr Borel kürzlich nach Aufstellung geeigneter Definitionen
über Wahrscheinlichkeit bei einer abzählbaren Menge von Dingen bewiesen,
dass die Wahrscheinlichkeit dafür, dass ein Punkt der obigen Menge angehört,
gleich Null ist. Die Vergleichung des obigen Satzes mit dem Borelschen Re-
sultat legt die Frage nahe:
Ist die Wahrscheinlichkeit – nach der Borelschen Festsetzung die eventuell zur
Beantwortung dieser Fragen zu erweitern wäre –, dass eine Zahl einer bes-
timmten vorgelegten Menge vom Masse Null angehört, immer gleich Null?
Und umgekehrt: Ist eineMenge immer vomMasse Null, wenn dieWahrschein-
lichkeit, dass ein Punkt ihr angehört, gleich Null ist?”

(Next, shortly after establishing appropriate definitions about probability as-
sociated with a countable set, Mr. Borel has proved that the probability for a
point to be an element of the above set equals zero. The comparison of the
above theorem with Borel’s result suggests the following question:
Is the probability – which, according to Borel’s definition, possibly has to be
extended in order to answer these questions – that a number belongs to a certain
given set of mass zero, always zero? And conversely: Does a set always have
mass zero, if the probability that a point belongs to it is zero?a)
a We thank Christoph Kawan for helping us with the translation.

Because of Faber’s somewhat antiquated style and terminology, we are not exactly
sure what is bothering him, but from today’s perspective, the equivalence between
the above two meanings of a null set leaves no doubts. It is worth mentioning that
Faber provides his own, different proof of SLLN. A reference to Faber’s proof is
made in the following passage in the survey [22] by Joseph L. Doob, where he
indicates that Borel has actually proved only convergence in measure rather than
almost everywhere:

“Classical elementary probability calculations imply that this sequence of av-
erages converges in measure to 1/2, but a stronger mathematical version of the
law of large numbers was the fact deduced by Borel—in an unmendably faulty
proof—that this sequence of averages converges to 1/2 for (Lebesgue measure)
almost every value of x . A correct proof was given a year later by Faber, and

28 Ironically, this implication was first proved by Wall in his dissertation, but apparently he has
not realized that it solves the “equivalence problem”. In modern times the implication follows
immediately from the fact that K-systems (in particular Bernoulli systems) and systems with
entropy zero (in particular periodic) are disjoint in the sense of Furstenberg.
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much simpler proofs have been given since. [Fréchet remarked tactfully:
<<Borel’s proof is excessively short. It omits several intermediate arguments
and assumes certain results without proof.>>]”

So, what is actually wrong with Borel’s proof of the SLLN? A careful examination
of Borel’s proof reveals the following:

(1) On pages 250–252, it is proved, under the (implicit) assumption that a se-
quence of sets An is independent, that if the sequence of probabilities P(An)
is summable then the upper limit

T
m�1

S
n�m An has measure zero (which is

a special case of what is today called the Borel–Cantelli Lemma).
(2) On page 259, in the proof of the fact that simply normal numbers form a

set of full measure (in other words, in the proof of the SLLN for 0-1 valued
random variables), the Borel–Cantelli Lemma is applied to sets An which are
not independent.

(3) The proof of the full version of the Borel–Cantelli Lemma is missing. Without
it, Borel’s proof indeed establishes (as pointed out by Doob) only the version
of the Law of Large Numbers which involves the convergence in measure.

So, formally speaking, Borel’s proof does contain a gap. But does that mean that
the proof is “unmendably faulty”? We are inclined to accept Fréchet’s assessment,
that the proof was just excessively short.

We conclude with a comment concerning the possibility of adapting Borel’s
method to more general amenable groups.

The key property ofZwhich is behind the equivalence between the two Borel’s
definitions of normality is that Z admits, for each k, a monotiling (tiling with one
shape) with the shape being the interval {0, 1, . . . , k � 1}. It is plausible that
for monotileable groups29 Borel’s definition of normality and his proof that (Fn)-
normal elements form a set of full measure � can be adapted with not too much ef-
fort to a large class of Følner sequences. But it seems impossible to extend Borel’s
definition of normality to elements of {0, 1}G , where G is any infinitely countable
amenable group or semigroup. Although the notion of simple normality can be nat-
urally defined in this case, and moreover, by essentially the same proof as in the case
of {0, 1}Z, one can show that almost every element x 2 {0, 1}G is simply normal, it
is not clear what is the analog of the operation of changing the base from b to bk .
One would need to find a large finite set S which tiles the group (i.e., is a shape of
a monotiling T ) and then treat the blocks B = x |T (where T = Sc, c 2 CS , are the
tiles of T ) as new symbols (from the alphabet {0, 1, . . . , b � 1}S) associated to the
centers c of the tiles. It is not known which groups (except residually finite) admit
monotilings with arbitrarily large shapes. In fact, it is an open problem whether all
countable amenable groups are monotileable. This is the reason why in the proof
of Theorem 4.2 we must use tiling with many shapes which complicates the proof
of this theorem.

29 A group G is monotileable if it admits monotilings with arbitrarily large shapes, by which we
mean that any finite set K 2 G is eventually a subset of the shape of some monotiling.
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