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Hardy-type inequalities related to
degenerate elliptic differential operators

LORENZO D’ AMBROSIO

Abstract. We prove some Hardy-type inequalities related to quasilinear second-
order degenerate elliptic differential operators L pu := —V; (IVpul? -2 Viu). If
¢ is a positive weight such that —L ¢ > 0, then the Hardy-type inequality
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holds. We find an explicit value of the constant involved, which, in most cases,
results optimal. As particular case we derive Hardy inequalities for subelliptic
operators on Carnot Groups.

Mathematics Subject Classification (2000): 35H10 (primary); 22E30, 26D10,
46E35 (secondary).

1. Introduction

An N-dimensional generalization of the classical Hardy inequality is the following
c/ |u|? w™Pdx 5/ |VulPdx,  ue €¢,(%Q), (1.1)
Q Q

where p > 1, Q@ ¢ R" and the weight w is, for instance, w := |x| or w(x) :=
dist (x, 9€2) (see for instance [5, 10, 23] and the references therein).

A lot of efforts have been made to give explicit values of the constant ¢, and
even more, to find its best value ¢, , (see e.g. [5, 10, 23, 24, 31, 40, 41, 42]).

The preeminent role of the Hardy inequality in the study of linear and nonlinear
partial differential equations is well-known. For instance, let us consider the linear
initial value problem

ut—Au=A#,xeR”, n>3, te€]0,T[, reR,

5 (1.2)
ulx,0) =ugx), x eR", ugeL“(R"), wug>0.
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The problem (1.2) has a solution if and only if A < (”—52)2 = cp,2 (see [3] for more
details). In the last years this result has been extended in several directions, see e.g.
[9, 12, 28, 32, 45, 46, 49].

In the Heisenberg-group setting, Garofalo and Lanconelli in [29], Niu, Zhang
and Wang in [47] and the author in [19] proved, among other results, the following
Hardy-type inequality related to the sub-Laplacian Ap on the Heisenberg-group
H":

2
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where Vg denotes the vector field associated to the real part of the Kohn Laplacian
(Ag = Vg - Vpy), p and gy are respectively a suitable distance from the origin
and a weight function such that 0 < ¥y < 1.

Recently, in [32], it has been pointed out that the analogue problem of (1.2)
involving the sub-Laplacian A g, namely

Uy — Apu = W,Z,p“—z onR 1510, T[, 1 eR,
u(-, 0) = uo(") onR>*H,ug € L2R*), ug > 0,

has a positive solution if and only if A < ¢, g, where cp g is the best constant in
(1.3).

Similar results have been established for equations involving the Baouendi-
Grushin-type operators A, := Ay + |x|2Y Ay =V, -V, (see [37]).

Recently, in [21] Mitidieri, Pohozaev and the author, among other results,
found some conditions on the functions # and f that assure the positivity of the
solutions of the partial differential inequalities —Lu > f(&, u) on RY. Here L is a
quite general linear second-order differential operator, namely, Lu := —V; - Vpu,
where V| is a general vector field. This class of operators include all previously
cited operators as well as the sub-Laplacian on Carnot groups.

Having in mind some extensions of the above results to the setting of second-
order linear degenerate (or singular) partial differential operators, it appears that an
important step towards this programme is to establish some fundamental inequali-
ties of Hardy-type.

In this paper we shall prove some Hardy-type inequalities associated to the
quasilinear operators

Lpu:=—=Vi(VeulP2Vou)  (p> 1.

Our principal result can be roughly described as follows: if ¢ : Q@ — R is any
positive weight, for any u € ‘,ﬁol (£2) we have

172k
c| —I1Vol’ d& < | |Mul? dé,
Q ¢F Q

provided —L,¢ > 0.
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For this goal we shall mainly use a technique developed in [18, 19, 44]. An
interesting outcome of this approach is that, in several cases, one can easily obtain
the best constant. Furthermore, our main results represent a generalization of some
results contained in [4, 5]. Indeed, in those papers the authors deal with a very spe-
cial case, the usual Euclidean case where ¢ is a particular power of the Euclidean
distance from a given surface, whereas, in our approach, V;, can be any quite gen-
eral vector field and ¢ any positive weight, the generality of this approach being
an important strength. It is, in fact, to remark that this unifying method allows,
specializing the choice of ¢, to obtain almost all the fundamental Hardy inequali-
ties known in Euclidean and subelliptic settings as well as to yield new Hardy-type
inequalities. Moreover, let us to stress that our only hypothesis —L ,¢ > 0 plays a
relevant role in order to establish that the best constant is not achieved.

We pay particular attention to the following special cases of L : the Grushin
type operators, the Heisenberg-Greiner operators and the sub-Laplacian on Carnot
groups (see Section 3). Specializing the function ¢, we get more concrete Hardy-
type inequalities for these operators with explicit values of the constants involved,
which result the best possible in almost all the considered cases.

2. Main results

The aim of this section is to present some preliminary results and derive some
Hardy-type inequalities related to a general vector field.

In this paper V stands for the usual gradient in R". We indicate with I; and
with || respectively the identity matrix of order k and the Euclidean norm.

Let w := (uij), i = 1,...,1, j = 1,..., N be a matrix with continuous
entries p;j € €¢(RY). Let X; (i = 1,...,1) be defined as

N
d
X; o= ij(s)a—g 2.1)
j=I i

and let V, be the vector field defined by
V= (X1, .., XD = V.

Assuming that fori = 1,...,/and j = 1, ..., N the derivative a%-“ij € %(RN),

we set
N

d
Xi==) —uij®):-
2 3g, "

the formal adjoint of X; and V/* := (X7, ..., XI*)T.
For any vector field h = (hy, ..., h)T € €1(2, R'), we shall use the follow-
ing notation

divz (h) := div(u” h),
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that is
l
dive(h) = =) Xjhi = =Vj" - h.
i=1

In what follows L stands for the linear second-order differential operator defined by

1
L:=div, (%) = — Zx;‘x,- =-V'-V

i=1
and for p > 1, with L, we denote the quasilinear operator

1
Lp(u) = dive (IMul? > ) ==Y X7 (INul? ™2 Xju) ==V - (Il ” > V).
i=1

Example 2.1. Let [ < N be a positive natural number and let u! be the matrix
defined as

nl = (1 0).

The corresponding vector field V! results to be the usual gradient acting only on the
first / variables V! = (%, ad@’ e, a%). It is clear that VY = V. The correspond-
ing quasilinear operator L, is the usual p—Laplacian acting on the first / variables

of RV.

Example 2.2. (Baouendi-Grushin type operator) Let RY be splitted in & = (x, y) €
R" x R¥. Let y > 0 and let i be the following matrix

L 0
<0 xl Ik). (2.2)

The corresponding vector field is V, = (V,, |x|” V) and the linear operator L is the
so-called Baouendi-Grushin operator L = A, + X% A ¥

Notice that if k = 0 or y = 0, then L and L coincide respectively with the
usual Laplacian operator and p-Laplacian operator.

Example 2.3. (Heisenberg gradient) Let £ = (x,y,t) € R* x R" x R = H"(=
RN and let  be defined as

I, 0 2y

01, —2x)°

The corresponding vector field Vi is the Heisenberg gradient on the Heisenberg-
group H".

This is the simplest case of a more general setting: the Carnot groups. More
details are given in Section 3.3.
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Example 2.4. (Heisenberg-Greiner operator) Let & = (x, y,1) € R” x R" x R,
r:=|(x, y)|,y > 1and let u be defined as

I, 0 2yyr?r=2
(0 I, —2yxr?v=2)" 2.3)
The corresponding vector fields are X; = B%—I—ZyyirQV_Z%, Yi= a% —2yxir27_2§—t
fori=1,...,n.
For y = 1 L is the sub-Laplacian Ay on the Heisenberg-group H". If y =
2,3, ..., L is a Greiner operator (see [33]).

- Let A be an open subset of R with Lipschitz boundary dA and let h e
¢ (A, R be a vector field. By the divergence theorem we have

/divLﬁdg =/div(,ﬂfz)d5 =/ h-pvdx =/ h-vdz,
A A JA JA

where vy, := pv, and v denotes the exterior normal at point £ € dA. If h has the
formh = fh with f € € '(A)andh € € (A, R!), then

/ fdivphdé& —|—/ Vo f - hd& =/ fh-vedX. 2.4)
A A 9A
Moreover, if h = Vyu withu € ¢2(A), then (2.4) yields the Gauss—Green formula
/ fLudé& —}—/ VL f - Mudé =/ fVou-vpdx.
A A dA

Letg € (61 (R) be such that g(0) = 0 and let 2 C RY be open. For every vector
fieldh € ¢ '(A, R") and any compactly supported function u € %(} (£2), choosing
f = g(u) in (2.4), we obtain

/ g(u)divy hdé = —/ g (w)Vpu - hdk. (2.5)

Q Q

Leth € LIIOC(Q, R! ) be a vector field. As usual, we define the distribution div; A

using the formula (2.5) with g(s) = s. If in (2.5) we chose g(7) = [t|P” with p > 1,
then for every u € Yﬁol () we have

/ lu|? div hdg = —p/ lul? "2 uNu - hdé. (2.6)
Q Q

Leth € L} (2, R') be a vector field and let A € L}, () be a function. In what
follows we write A < divzh meaning that the inequality holds in distributional

sense, that is for every ¢ € “{P& (€2) such that ¢ > 0, we have

quAdggqudithdg:—/ Vi - hdé.
Q Q Q

Identities (2.5) and (2.6) play an important role in the proof of the following Hardy-
type inequalities and the Poincaré inequality too.
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Theorem 2.5. Let p > 1. Let h € Ll (Q,RY be a vector field and let Ay, €

loc

Llloc(Q) be a nonnegative function such that A, < divph and |h|? A}lfp € LIIOC(Q).
Then for every u € %01 (€2), we have
|n|?
lul? Ay d& < p? = 1Vul? dE. (2.7)
Q Q Agf’ -b

Proof. We note that the right hand side of (2.7) is finite since u € ir”ol (£2). Using
the identity (2.6) and Holder inequality we obtain

/ ul? Ande
Q

IA

/ ul? divg hd Sp/ wlP=" 1B [Vl de
Q Q

_ p—1 40=/p__10I
—p [ it a Sy [l

(r=D/p h|P Ve
p(/ |u|PAhds> [ g )
Q Q AP

h

IA

This completes the proof. O

Specializing the vector field 4 and the function Aj, we shall deduce from (2.7) some
concrete inequalities of Hardy-type.

Remark 2.6. Setting A, = divph in (2.7), we have

. |h|”
Pdivphdg < p? | ———— |Moul? d§. 2.8
/Q|u| ivh dg < p fmdwh'(l,l)um £ (2.8)

Acting as Davies and Hinz in [24], the choice & := V; V with V such that LV > 0,
yields

VP
ul? |LV|dé < ”/—Vu”d. 29
fQ||| s < p? | o IVl de (2.9)

In order to state a Hardy inequality, now the problem is to find a suitable function
V. In the Euclidean setting for I < p < N, choosing V (§) = ||>7Pif 1 < p < 2,
VE)=mh|é|if p=2and V(§) = — |§|2*p if 2 < p < N, we obtain the Hardy
inequality (1.1) with w(§) = |&].

Another strategy is to chose the vector field h as h = |V V[P 2%,V with V
such that L,V > 0. Thus, we have

v, v |P(r—D
f|u|P|va\ds Spp/ S ul as. (2.10)
o 2 |L,v[”
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Hence, in the Euclidean setting for 1 < p < N, choosing V (§) = In || we reobtain
the inequality (1.1) with w(§) = |&].

In order to obtain the classical Hardy inequalities in Euclidean setting, these
strategies are equivalent. This equivalence is basically due to the fact that|V |£]| =
1 for & # 0. The latter approach is slightly more simple: the choice of V is indepen-
dent of p. Moreover, it turned out to be more fruitful in the Heisenberg-group and in
the Grushin plane settings (see [19, 18]) as well as in our more general framework.

Letd : Q — R be a nonnegative non constant measurable function. In order
to state Hardy inequalities involving the weight d, the basic assumption we made
on d is that, for @ # 0, d* is a one side weak solution of —L,(u) = 0, that is d
is super-L ,-harmonic or sub-L ,-harmonic in weak sense. Namely, let , 8 € R,
o # 0, requiring

de Ve g gt e L] (), (2.11)
we assume that
—L,d*)>0 onQ [resp. < 0] (2.12)

in weak sense, that is for every nonnegative ¢ € %01 (£2) we have

/ Md|" 2 - = o el / d VP AP N d - g
N > 0 [resp. 5%] (2.13)
and
afla —D(p—1)—p—1] >0, [resp. < 0O]. (2.14)
Gluing together the above conditions, we assume that
—L,(cd*) =0 onQ (2.15)
in weak sense, where ¢ ;.= «[(a¢ — 1)(p — 1) — B — 1]
Theorem 2.7. Assume that (2.11) and (2.15) hold. Let B € R be such that

dP |NLd|P e L}, (), (2.16)
dftr e L] (). (2.17)

For every function u € %01 (2), we have
(ca,,s,pV/ u|PdP |NLd|P dE < / dPTP |NpulP dé, (2.18)
Q Q

where co g.p = (@ — D(p—1)— B —1]/p.
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In particular, if —L,(d*) > 0, then for every function u € %701 () we have

_ P P
(M) Jul® IVid|P dE < / [VoulP d& (2.19)
p o dr Q

provided d=P |\jd|P € LL_(Q).

loc

Remark 2.8. In most examples we shall deal with, the constant cf;’ B.p yielded by
applying Theorem 2.7, results to be sharp. We shall now indicate an argument that
can be used to prove the sharpness of the constant cO’Z’ B.p involved in the inequality
of Theorem 2.7. Let ¢, (£2) be the best constant in (2.18). It is clear that ¢, (£2) >
cg’ B.p- We shall assume that the hypotheses of Theorem 2.7 are satisfied and that
there exists s > 0 such that Q° := d~1(] — oo, s[) and €, := d~(Js, +00[) are
not empty open subsets of 2 with piecewise regular boundaries.
We assume that there exists €p > 0 such that for every € €]0, €p[ there hold

0 </ d€©OPTP 1N d|P < +o0, 0 </ d=COPTB I 4P < 400, (2.20)
d<s d

>S5

where

o) = @D =D -p-ll+e = Capp+ = 2.21)
p p

By rescaling argument, we can assume that s = 1. Lete €]0, [ andletv : @ — R
be defined as

_Ja©e)  ifdE) <1,
ve)= {d“f/%) ifd(E) > 1. (222)

By hypothesis, [, v7d? [V.d|? is finite. Thus, we have
c(e)p/ vPdP IVLd|P = c(e)p/ dptrgc@©—=bp IVLd|P
Q d<1

+c(e)p/ dPtrg=c€/2=Dr |y q\P
d>1

c(e)
c(e/2)

=/ dPTP | ulP + ( )”/ dPtP |l
d<1 d>1

P
Z/dﬂ+p|VLv|p+( COF [ atr g,
Q c(e/2)P d>1
Observing that c(€) > c(€/2), we get
c(e)l’/ uPdﬂ|VLd|P>/dﬂ+P|va|P, (2.23)
Q Q

the converse of the Hardy inequality.
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Now we assume that the Hardy inequality (2.18) holds for the function v de-
fined in (2.22). From (2.23) we deduce c(€)” > ¢p(2). Letting ¢ — 0, we get
cs’ﬁ’p > ¢, (L2) and hence the claim.

The question of the existence of functions that realize the best constant arises.
In such a general framework a unique answer cannot be given. Indeed, even in the
Euclidean setting several cases occur. Let p = 2, let d1(-) := || be the Euclidean
distance from the origin, and let d(-) := dist (-, 3€2) be the distance from the
boundary of a given domain . If @ ¢ RV (N > 3) is a ball centered at the origin,
then the best constants in the Hardy inequality (2.19) related to d; and d> are not
achieved. On the other hand, there exist smooth bounded domains €2 such that the
best constant in the inequality related to d; is not achieved and the best constant in
the inequality related to d> is achieved (see [40, 41]). Anyway, some steps in this
direction can be done even in our general framework. For the sake of simplicity, we
shall focus our attention on the inequality (2.19).

Therefore, under the same hypotheses of Theorem 2.7 we assume that
—L,(d¥) > 0 on Q in weak sense, that (fsz |Viu|P dg)1/P is a norm and that

Dz’p (2), the closure of %Ooo(Q) in that norm, is well defined. We denote by cp, (£2)
the best constant in (2.19), namely

() : inf Jo INLul? d&
b = .
ueD"? uz0 Jo I’ d™P [V d|P dE

Theorem 2.9. Under the above hypotheses we have:

(2.24)

P! 1,p _ p=1\p o=l L
L. Ifd" » € D" (), then cp(2) = (|| p) and d~ » is a minimizer.

p—1

2. Ifd* 7 ¢ Di’p(Q), p =2 |1Md| #0ae and cp(Q) = (|| PTj‘)P then the
best constant cp(K2) is not achieved.

Remark 2.10. In all the examples we shall deal with in the last section, it is possi-
ble to apply Theorem 2.9 and, hence, for p > 2 the best constants mentioned in all
the theorems of Section 3 are not achieved.

Remark 2.11. Let us to consider the special case of V, = V, the usual Euclidean
gradient, d is the Euclidean distance from a given regular surface K of codimension
k(l <k <N),a= g—:llc and B = —p. In this case, replacing Q with Q2 \ K,
Theorem 2.7 assures that the inequality

_ )4
('p k') lul” e 5/ \Vu|? d& (2.25)
p o dp Q

holds for every u € %OI(Q \ K) provided —A,(d*) > 0on Q\ K.

This particular case of Theorem 2.7 is contained in [4, 5], where the authors
also study the remainder terms for inequality (2.25).

The reader interested in the study of Hardy inequalities with remainder terms
can refer to [4, 5, 10, 11, 31] and the references therein for the Euclidean case and
to [19] for the case V, = Vy, the Heisenberg gradient on the Heisenberg-group.
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Proof of Theorem 2.7. We prove the thesis in the case —L,(d*) > 0 and ¢ :=
of(e — 1)(p — 1) — B — 1] > 0. The alternative case is similar.

Letg 6%01 () be a nonnegative function. Choosing in (2.13) ¢ :=d# 1= (@-Dr=Dy,
we have

0 < a/ AP 172N - Vg
Q

—afla=D(p—1)—p - 1]/9d'3 INLdI . (2.26)

Using Holder inequality and hypotheses (2.16) and (2.17), it is immediate to check
that the above integrals are finite.

Let & be the vector field defined by & := —adPt! IVLdII’_2 Vi.d and let Aj, be
the function defined as A, := a[(¢ — D)(p — 1) — B — 11d? |V.d|P. Thus, from
(2.26) and the fact that ¢ > 0, we obtain divyh > A, > 0. Now we are in the
position to apply Theorem 2.5 and this concludes the proof. O

Proof of Theorem 2.9. 1) From (2.19), we have ¢, (2) > (|| pT_l)”. It is imme-

—1
diate to check that u := d® 7 realizes the infimum in (2.24).

2)Letu € LE%"’(Q). We define the functional I as

_ p
1(u) ;=/ IVoulP de — (M) lul? INLd|P dE.
Q )4 o dP

The functional / is non negative, and the best constant will be achieved, if and only
if, I (1) = 0 for some u € D, (Q).

Let v be the new variable v := d " Yu with y := oszjl. By computation we
have

IVul? = |y P v2d® 72 [Npd? + d¥ [pol? + 2yvd® "N (Vd - ). (2.27)

(If d is not smooth enough, by standard argument one can consider d, a regulariza-
tion of d and after the computation taking the limit as € — 0).
We remind that the inequality

E—n)' =& —sp&s! (2.28)

holds forevery &, 1, s € Rwithé > 0,& > npands > 1 (see [31]). Applying (2.28)
and (2.27) with s = p/2, &€ = |y|? v2d*~2|Vd|*> and n = —2yvd? 1 (Vi d -
Viv) — d* |V v|?, we have

INul?P > |y|P vPd"Pd =P |\d|P
+plylP7 2y P2 vd@ VP | 41772 (Vd - Vv)

+§ P2 u]P=2d @ DP=DH 1y g2 [0
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Taking into account that u := d¥v we have
() = I (v) + I(v)

where
I(v) = f plyIP2y P2 ud @ DP=D N d (P72 (Vid - o) dE,
Q
P _ _ _ _ _
h() = Syl 2/ [u|P=2 @@= DP=DF 5 g P2 |V o de.
Q

Re-arranging the expression in /1 and integrating by parts we obtain

—1\7! _
1 (v) =(”—) /(VL|v|f’-|VLd“|” > va*) d
p Q

_1\»,1
() frtnr e s

p—1\""
N (_> Ul (~Lp(d))dE = 0,
P Q

where we have used the fact that v € %’6’0(9) and the hypothesis —L,(d%) > 0.
On the other hand we can rewrite I as

2

2
IZ(U)ZEW'H/ a0 517 5 ol de.
Q

Thus, we conclude that for any u € DlL’p (£2)

2 2
Ol Rl P T A
p Q

dg,

and this inequality implies the non existence of minimizers in Dé’p (2). O

Specializing the function d, we shall deduce from Theorem (2.7) some con-
crete inequalities of Hardy-type. A first example is the following. We assume that
there exists m € N, 1 < m < [ such that the matrix u in (2.1) has the following
form

o Ly
ui= (O MZ) (2.29)

where 1 and o denote matrixes with m x (N — m) and (I — m) x (N — m)
continuous entries respectively and /,,, stands for the identity matrix of order m.
Notice that this case occurs in all the examples cited above.
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Setn = (§1,...,6m), T = (Emt1,...,én) and let v, be defined for n €
R™\ {0} as

p—m

— ) InlP7t if p #m, 230
D= ol it p = m, (250)

The function v, is p-harmonic on R™ \ {0} x RN~ for the Euclidean p-Laplacian
acting on the n variable A, ;, and hence also for the quasilinear operator L ,. More-
over, there exists a constant /,, # 0 such that

—Apvp =180 onR"

in weak sense, where &y is the Dirac distribution at 0 € R™ and /,, > 0 if and only
if 1 < p < m. These relations allow us to apply Theorem 2.7.

Theorem 2.12. Assume that ju has the form (2.29) and let B € R be fixed.
1. Let 1 < p < oo and let @ C RY be an open set. If m + B < 0, then we also
require that Q@ C (R™ \ {0}) x RN~ Then for every u %& (), we have

b,g’/Qm(n, O InPdnd< S/QIVLu(n,r)I”InI”*ﬁdndr, (2.31)

lm+p|
P -
In particular, for every u € %01 (€2), we obtain

Im—p|>p lu(é)|? (Im—p|>‘” lu(n, 7)|?
d ——dnd
( » o Er = o ndr

< /Q N (E)]7 dE. (232)

where bg =

2. Letp=m > 1. Let R > Oand set 2 := {§ = (n, 7) € R" x RN="_|n| < R}.
If B < —1, then for every u € ‘é)& (82), we have

~ , O R R

5 Man—)ﬂdndts/ IS, o) In o

Q n

YHtBandr, (2.33)
Pla  InlP In]

where Bﬂ = m—;”.

In particular, for every u € iﬁ(} (2), we obtain
—1\? , p
(p—) / O gyar < / Mu@®Pde. (234
p o (InlIn(R/ |nl))P Q

Remark 2.13. It is easy to check that the inequality (2.33) holds also for g > —1
provided the set € is replaced by  := {(, 7) e R x R¥ =" 0 < || < R}.
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Proof. Let 1 < p < m. We claim that the function v, is super-L ,-harmonic
on RY. Indeed, let ¢ € “?01 (RM) be a non negative function. Observing that
[Vvp| =

/ —L,v, pdé =/ dt/ dn(=Ap yvp)d
RN Rme m

= lp/ ¢, 7)dTr >0 (2.35)
RN-m

Analogously, one can prove that v, is super-L ,-harmonic when p = m and sub-
L ,-harmonic when p > m.

First we consider the case p # m. We choose d* = v, withd(§) =d(n, ) =
In] and @ = 1; L. Observing that |V, ||| = |V, Inl| = 1 a.e. and that the inte-
grability condmons (2.11),(2.16), (2.17) are satisfied, applying Theorem 2.7 we get
(2.31).

Let p = m > 1. The choices d(n, T) = In WR‘ and o = 1 in Theorem 2.7 yield
the inequality (2.33).

Finally, we prove the missing inequality (2.31) when p = m. We consider the
case m + B > 0. The case m + 8 < 0 is analogous and the case m + 8 = 0 is
trivial. Let 0 > O be such thatm + 8 — o > 0. We chose d(§) = |n|, @ = ﬁ In

this case it easy to check that d* is sub-L,,-harmonic on RN that is

o m—1 o™ 1
Lo (d*) = —di c—m-HV —_ <0.
m(d™) 1vL <(m_1) nl 77'”') (m_l)m—l |n|m—(f -

The constant ¢ in (2.15) is ¢ = -5 7= Z < 0. Hence, we are in the position to

apply Theorem 2.7; thus, we derive the inequality

(%) /|u|f’|n|f’ds</ NLul? [n]PHP dt.

Letting 0 — 0, we get the claim. O

Remark 2.14. In the case ;u = Iy, the vector field V, is the usual gradient V. For
m < N, inequalities of type (2.31) are already present in [43] and in [44]. Secchi,
Smets and Willem in [48] prove that the constant bg is optimal when m + 8 > 0

and © = RY (see next section for further generalization in this direction).

An immediate consequence of Theorem 2.12 is a Poincaré inequality for the
vector field V.. The claim easily follows from inequality (2.31) with 8 = 0.

Theorem 2.15. Let Q be an open subset of RY bounded in & direction, that is,
there exists M > 0 such that for every & € Q it results |&1| < M. Assume that the
matrix | has the form (2.29).
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Then, for every u € “(%01 (), we have

cP/ |u|l’dé:/ Yul? de,
Q Q

; — L
with ¢ 1= i

In [21] the authors, in order to study the inequality —Lu > f, make the same
assumptions on the operator L. Namely, for a fixed € R" they say that (H,) is
satisfied if there exist a real number Q = Q(n) > 2 and a nonnegative continuous
function d,,; : RY — R, such that the following four properties hold

1. dy(§) =0if and only if § = 7.

2. dy € C2RN\ (n)).

3. The fundamental solution of —L on R¥ at 5 is given by Iy = d,?iQ. That is,
the functions d% 2 and d,;_Q belong to LlloC (R™) and for any ¢ € ﬁoz (RV) we
have

/RN(—L@(S)W(S)dS =¢m).

4. For any i, j = 1,...,I the functions X;d,, X;(d,;X;d,) are bounded and
[V.d, |> % 0 almost everywhere on RV

In this setting, it is immediate to check that the hypotheses of Theorem 2.7 are
fulfilled and a Hardy inequality related to the operator L holds.

Theorem 2.16. Let n € RY and assume that (H,) is satisfied. Then for any u €
‘ﬁol (RN), we have

O@m —2 2 uQ(S) 5 i
(f) /RN %Wmn@ﬂ d§ < /RN IVLu(€)|? de.

As particular case of Theorem 2.7, we obtain the following

Theorem 2.17. Let g € ¢ *(Q2) be an L p-harmonic function, thatis L ,g = 0 and

let v € ¢ 2(R) be a concave function such that v o g is positive on Q. For any
ue ‘501 () we have

[v'g@En]” /
p Vi P d Vi P dg.
( ) fl &l 07 (2E)) IVLg(§)I d& < QI Lu)|” d§

The above result follows from Theorem 2.7 and the following worthwhile lemma
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Lemma2.18. Let p > 1,0 € R, @ #0and g € ¢ 2(2) be a positive function
such that L ,(g%) = 0. Let v € ¢ 2(R) be such that v'(g(&€)) # 0 for & € Q. Then
setting u(¢) := v(g(&)), we have

2 , 11—«
Lyu=(p—1)%gl” |v'(g)|” [v’+ : v'].

Proof. We notice that for every f ¢ 1(Q) and h ¢ 1(Q, R), we have —V}*(fh) =
Mo f-h—fV'h. Let¢ € %1 (R). Observing that Vj (pog) = ¢'(g)V.g, we deduce

Lyp = = (|| 1%l ¢' ()W)

= |¢'@|" 7 [(p = D" INegl” + ¢'Lpg]. (2.36)

Choosing ¢ (t) = t* in (2.36) and taking into account the p-harmonicity of g% we
obtain

gLlpg=(p— DU —0a)Vigl”,
which substituted in (2.36), yields the claim. ]

Remark 2.19. Lemma 2.18 provides a generalization of the expression of the usual
p-Laplacian for radial function.

As simple application of previous results is the following

Proposition 2.20. Let V be the usual gradient in R2, thatis V. := V = (9, By)T
and Q =] — %, Z[xR. Foreveryu (t,%ol () we have

1 u2(x, y) 5
- dxdy < [Vu(x, y)|© dxdy. (2.37)
4 Jo cos?x Q

Moreover the constant 1/4 is optimal and it is not achieved in D2 ().

Proof. The inequality (2.37) follows from Theorem 2.7 and the choice d(x, y) :=
e’ cosx.
Merging (2.37) and the inequality

cosx < % x| = dist ((x, y), 9Q) for (x,y) € Q,

we have

1 2(x,
—/ — &) dy 5/ IVu(x, )2 dxdy. (2.38)
4 Jo dist=((x, y), Q) Q

The fact that 1/4 is the best constant in (2.38) (see [41]), implies the optimality of
1/4 in (2.37). Hence applying Theorem 2.9 we conclude the proof. 0

Remark 2.21. Finally, we notice that the result stated in our main Theorem 2.7 can
be reformulated also for non compact Riemannian manifold. This allow us to re-
obtain the Hardy inequalities present in [16] as well as their many generalizations
with weaker hypotheses.



466 LORENZO D’ AMBROSIO

3. Hardy inequalities for some subelliptic operators

In this section we shall apply the previous results to particular operators.

Let 1 < p < oo. In the sequel for a given vector field V. and open set @ C RY,
we shall denote by D'” () the closure of ‘¢ £°(%2) in the norm (f,, |VLul? d€)'/”.
Ifwe L. (Q)andw > 0ae. on$, Dz’p(Q, w) denotes the closure of %(?O(Q)

loc

in the norm ([, [VLulP wd&)!/P.

3.1. Baouendi-Grushin operator

Let RN be splitted in & = (x,y) € R x R¥. Let y > 0 be a nonnegative real
number and let i be the matrix defined in (2.2). The corresponding vector field is
V, = (Vy, |x|” V,) and the nonlinear operator L, is L ,u = diVL(|Vyu|p*2 Nou).
The linear operator L = L is the so-called Baouendi-Grushin operator L = A, =

Ax + |x)? A y. Notice thatif k = 0 or y = 0, then L and L coincide respectively
with the usual Laplacian operator and p-Laplacian operator.
Defining on R" the dilation §;, as

8,(x, y) i= (hx, 1177 y): (3.1)

it is not difficult to check that ¥, is homogeneous of degree one with respect to the
dilation: V, (8;) = Adx (V).
Let [¢€] = [(x, y)] be the following distance from the origin on RN:

d 1+y k ﬁ
[E] = [(x. )] = <Zx?) + 1+ 5}
i=1

i=1

It is easy to see that [-]] is homogeneous of degree one with respect to §;,.
Let Q := n + (1 + y)k be the so called homogeneous dimension. If for R > 0
we denote by Bg the set

Br = {& e RN : [€] < R},
then we have
|Br| = |B1| RY.

Moreover, we have that [€]* € LI (RV) if and only if s > —Q and [£]° €

loc

L'@RN \ By)ifand only if s < —Q.
The function [-] is related to the fundamental solution at the origin of Grushin

operator L (see [20]). Namely, if O > 2 then the function u, := [ 12~ € satisfies

the relation
—Luy =108y on RN

in weak sense, where § is the Dirac measure at 0 and /; is a positive constant.
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It is immediate to check that

II';‘—;]VV <. (3.2)

Let p > 1 and let I', be the function defined as

% 1E0] =

0
r) = B TP #0 e 2g (3.3)
—Infe] if p = Q

A direct calculation gives that I"j, is L, harmonic on R \ {0}, that is
—L,T, =0 onRY\{0}. (3.4)

Moreover, with analogous computations of [2], it is possible to show that there
exists a constant /,, # 0 such that

~L,T,=1,80 onRY 3.5)
in weak sense and [, > O if and only if Q > p > 1 (see also [6]).

Theorem 3.1. Let 8 € R be fixed.

1. Let 1 < p < 400 and let @ C RN be an open set. If B + Q < 0, then we also
require that O & 2. We have

|x|7P
B P B
ch [ ey e < [ (gl wsn e
ue DY (Q, [€17HF), (3.6)
where cg 1= @ In particular, we obtain
10— pl\" lul? |x[7P P Lp
< p )/Q[[s]]l’[[s]wdsf/szwy”‘ @ uebr@ GD

Moreover, if Q2 U {0} is a neighbourhood of the origin, then the constant CZ is
sharp.

2. Letp=Q > 1. Let R > O and set Q© := (¢ € RN| [€]] < R}. If B < —1, then
we have

P R yp R \ PP
5§/ Wl g Ky 1] dés/\wp(ln—) dt
Q

o [E17 (&0 [&D7P [T
u e DY@, (n(R/IE)"HF). (3.8)
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where cg := ’3— In particular, we obtain

p—1\’ |ul? |x|7P p
p o ([ENIn(R/MEM)P (€177 Q
weDP(Q). (3.9

Moreover, the constant Eg is sharp.

Remark 3.2. If y = 0, then the operator A, is the standard Laplacian operator
acting on functions defined on R" and (3.7) is the classical Hardy inequality (see
(1.1) where w(§) = |&]).

Remark 3.3. The above inequality (3.6) is already obtained inthe case 1 < p < Q
by the author in [18].

Remark 3.4. The inequality (3.8) holds also for any 8 > —1 provided the set €2 is
replaced by Q := {£ e RV| 0 < [[£] < R}.

Proof. We shall prove the inequalities for u € %g (€2). The general case will
follows by density argument.

The inequalities (3.6) for p # Q, and (3.8) follow from Theorem 2.7 choosing
d* =T.

NoI\jv, we prove the missing inequality (3.6) when p = Q. We consider the case
0 + B > 0, the converse case is similar. Let & > 0 be such that Q + 8 — o > 0.
We choose d(§) = [[€] and ¢ = ﬁ In this case it easy to check that d“ is

sub-L p-harmonic on RN, that is

) . o \2' IMENe?
—Lop(d") = —div, ((ﬁ) (&1 WVL[E]] <0

in weak sense. Indeed, using (3.4) with p = Q, we deduce

0-1 o-1y Q

_( o )Q‘l[[g]]aé_o_ o  |[E]©
S \o-1 lo (0—12 ! g2~

Therefore, we get —Lo(d*) = _(Q—Ul% %%lelf < 0 in weak sense. The con-

stant ¢ in (2.15) is ¢ = ﬁ Uﬁgfﬂ < 0.
These choices yield the inequality

Q+p—o ”/ prgns X7 / T
—_— d v PrPd
( 0 ) Nl IEY gy ds < | [Nul” 1517,

Letting 0 — 0 we get the thesis.
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It remains to show that the constants cg and Eg appearing in (3.6) and in (3.8)
are sharp. First we consider the case Q = R \ {0}. To this end it suffices to show
that we are in the position to apply the scheme outlined in Remark 2.8.

Indeed, let d(£) := [[£]] and for € > 0 consider the constant c(€) = % +
defined in (2.21). We have

£
p

c@Op+B=10+Bl+0+B+0—-0+e>—-0+c¢
and
—c@Op+B=—10+Bl+B+0—-0—€e=<-0—c¢

These inequalities imply the integrability conditions (2.20). Hence we obtain the
sharpness of the constants.

In order to conclude in the general case we proceed as follows: let ¢, (€2) be
the best constant in (3.6). By invariance of (3.6) under the dilation §, defined in
(3.1) we have,

cp(Br) = cp(B1) and cp(Bg \ {0}) = cp(B; \ {0}) forany R > 0.
We note that if Bg \ {0} € @ c RV \ {0} then,
cp= RN\ {0 < cp(R) < cp(Br \ {0}) = cp(By \ {O]). (3.10)

Let¢ € *fgo (RN \ {0}). Since the support of ¢ is compact, then (3.6) holds for ¢
with Q = Bpg \ {0}, R large enough and ¢ = ¢, (Bg \ {0}) = ¢, (B1\ {0}). Therefore
cp(B1 \ {0}) < (RN \ {0}), and from (3.10) we have c;(B; \ {0}) = cg. Finally,

since Bg C Q C RY imply
cp < cp(RY) < cp(Q) < cp(Br) = cn(B1) < cp(Bi \ {0) = cf,

we conclude the proof.
The optimality of the constant Eg in (3.8) can be easily proved using the pro-
cedure of Remark 2.8. O

Other inequalities of Hardy-type related to Baouendi-Grushin operator are given in
the following

Theorem 3.5. Let 1 <m < nandlet B € R be fixed. We set 7 := (x1, ..., Xm).
1. Let 1 < p < 400 and let @ C RN be an open set. Ifm+ B < 0, we also
require that @ C (R™ \ {0}) x RN="_ Then for every u %01 (2), we have

b,’;/9|u|l’|z|ﬁdss/g|vyu|”|z|P+f’ds, 3.11)

m+B|

where bg = >
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In particular, for every u € %& (), we obtain

- p P - P p
p o [&1P p Q |Z|p
Moreover, denoting with B; the Euclidean ball in R® of radius r and center at

the origin, if B™ \ {0} x BN™"™ C Q for some r, then the constant bg in (3.11)
is sharp.

2. Let p=m > 1. Let R > 0 and set Q := {(z, xm+1 X, y) € R x R x
R¥, |z| < R}). If B < —1, then for every u € (‘éo (Q) we have

g [0, R ds |Vu|” ln— p+ﬂd§ (3.13)
b o lzlP |z| ’ ‘

where b IR ﬂ—

In particular, for everyu € \fol (R2), we obtain

p o (zIn(R/1z)? > ~ Jo' 7 ' '

Moreover, the constant Eg is sharp.

Proof. The inequalities (3.11) and (3.13) are a direct consequence of Theorem 2.12.

The fact that [£] > |z| yields the inequality (3.12).

The sharpness of involved constants cannot be proved using the procedure of
Remark 2.8. Thus, we shall use a modification of the idea presented in [48].

We prove the optimality of the constant bg in (3.11). The proof of the sharpness
of the constant 155 is similar.

Let ¢ (£2) be the best constant in (3.11), that is

fsz’ Vd)’p |Z|ﬁ+p
Jo |17 1z|P

cp(Q) = , pE Ca(, p#0¢. (3.15)

From (3.11) we have ¢, (2) > bg. We shall prove the equality sign holds.
First we consider the case Q := R” \ {0} x R*™™ x R¥. Observe that if we
get the claim for €2, that is ¢, (2) = b from bp < cp(RY) < (), we get the

claim also for Q@ = RV,

In what follows ¢ stands for the variables ¢t := (xp+1,...,x,) € R"™. Let
¢ € %/S(Q) be such that ¢ = wvw withu = u(z) v = v(t), w = w(y), v €
Co@®™\{0hve CJR"™) and w € €4 (RF). Itis clear that if m = n, then
we choose ¢ = uw and the following proof results to be slightly simpler.
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By the convexity of the function (q2 +r2 4 sz)p/ 2 for q,r,s > 0 we have

@+ 7+ < (L =h— ) PgP + 21 TPrP 4 PP
for A, u >0, A4+u < 1.
Hence for A, & > O such that A + © < 1, we get
2
|Vy¢|p = W w? |[Voul? + u?w? [Vou)? + u?v? |V},w‘ yP/2
<A =a=w" P l” [w|? [Vaul? + 277 [u]? w]|” |V,v]?
+u P ul? ol? [Gwl|”
Therefore, we obtain

Ja [%e|" 121747 1_p Jo 1017 [w]? [V |z|P+P

h(Q) < <(I=x—p)
Jo 1817121 Jo 017 [wl]? [ul? |z|#
Hl_,,fg ul? [w|? |Vl (2Pl ul? [Gw]” (2P TP
Jo lul? [I? [w]? |z|# Jo lul? wl? [w]? |z|?
w |Vou|P |2|PTP dz
5(1—A—M>1*PfR |Vul ||ﬁ
S 11?1217 dz
o d-p JRoon V01 dE g ] |27+ dz
Jgnom WIPde - fo ul? 217 dz
+,u_prk Vyw|” dy fo lul? [0]7 (24P |x |77 dx

Jex wl? dy S 1l 017 1217 dx

Now, the infimum of the ratio [p |Vyw|pdy/ [k lw|? dy vanishes, as well
as the ratio [pu—w |Viv|P dt/ [gu_m |v|” dt. From the classical Hardy inequa-
lities (see also Theorem 3.1 with k = 0, n = N = (), the infimum of
S |V2l? 121PTP dz/ [ lul? |2|P dz is bfy. Thus, letting &, u — 0, we get the
claim.

In order to complete the proof, we prove the claim in the case B \ {0} x
BN c @ c R™\ {0} x RN~ for some r > 0.

Let B := B \ {0} x B"™™ x BX_ . Fors > 0 sufficiently small we have

rlty:
that Bf = B" \ {0} x B/ ™™ x BY, < @ C R™\ {0} x R"™™. Thus, we obtain
bg = cp(R™\ {0} x R"™™) < ¢,(R2) < ¢p(BY). By invariance of (3.11) under the
dilation &y defined in (3.1) we have, ¢;(B)) = ¢»(B}) forany r > 0. Arguing as
in the proof of Theorem 3.1, we get the claim and conclude the proof. O

3.2. Heisenberg-Greiner operator

Leté = (x,y,1) e R" x R" xR, r := [(x,y)|, y = 1 and let u be the matrix
defined in (2.3). We remind that for p =2 and y =1 L, is the sub-Laplacian Ay
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on the Heisenberg-group H". If p =2 and y = 2,3, ..., L, is a Greiner operator
(see [33]).
For (x, y,t) € R" x R" x R, we define

N(x,y, 1) = ((x* + yH)2 + DOV = 4 42V

where we have set r := (x2 + y>)!/2. Let Q :=2n + 2y, p > 1 and let "), be the
function defined as

r=9Q
_ N ifp£Q
r,: {—lnNifp:Q for & # 0. (3.16)

The function I", is L, harmonic on RN \ {0}, that is
—L,T, =0 onRY\{0}. (3.17)
Moreover, arguing as in [2], there exists a constant /,, # 0 such that
—L,I), =1,00 (3.18)
in weak sense and [, > 0 if and only if Q > p (see also [50]). Moreover, |V, N| =
Theorem 3.6. Ler B € R be fixed.

1. Let 1 < p < 4+ocandlet Q C RN be an open set. If B+ Q < 0 we also require
that 0 & Q2. Then, we have

p rp(2y ! p NP+B

ch [ N s < [ N N7
ue D@, NPT, (3.19)

where cg 1= lQ;m.

In particular, we obtain

1Q = pI\" [ lul? rP@r~Y
( p ) o NP NPQy=1)

de 5/ IMulPde  ue DPP(Q). (3.20)
Q

Moreover, if Q2 U {0} is a neighbourhood of the origin, then the constant cf; is
sharp.

2. Let p= Q. Let R > 0 and set Q := {€ e RN| N(€) < R}). If B < —1, then we
have

~p |M|p R ﬂ rp(z)/ 1) p R P+,3
[0 o) e < [ )
e DIP(Q, (In(R/N)PHF), (3.21)

where Cg := %”.
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In particular, we obtain

p—1 lu|? FPQ2y—=1) )
( P ) /sz(Nln(R/N))p NPQy=1 dg = / |Voul” d§

ueDP(Q). (3.22)

Moreover, the constant Eg is sharp.

Remark 3.7. If y = 1, then the operator L is the counterpart of the p-Laplacian
for the sub-Laplacian operator acting on functions defined on the Heisenberg-group
H". In this case the Hardy inequality (3.20) is already obtained for 1 < p < Q by
Garofalo and Lanconelli in [29], Niu, Zhang and Wang in [47]. The author in [19]
proves the inequality (3.19) and the sharpness of the involved constant.

In the general case y > 1, the inequality (3.20) is already obtained in the case
1 < p < Q for functionu € ¢ (RY \ {0}) in [50].

The proof of the above theorem follows arguing as in the proof of Theorem
3.1. Arguing as in Theorem 3.5 we obtain the following

Theorem 3.8. Let € R be fixed.

1. Let 1 < p < 400 and let @ C RN be an open set. If2n + B < 0, we also
require that Q@ C (R?" \ {0}) x R. Then for every u € %01(9), we have

bh | ulPrfds < | |Nul? rP e, (3.23)
A Q Q

where bg = lz"—;rﬂl

radius r with center at the origin, ifBrZ” \ {0} x B,1 C 2 for some r, then the
constants bg is sharp.

. Moreover, denoting with B} the Euclidean ball in R® of

In particular, for every u € i[”(; (2), we obtain
on — p p on — p p
(l n P|> |u] dé_(l n pl) |u] d§</ Nul? dE. (3.24)
p o N? p Q rf

2. Let p = 2n. Let R > 0 and set Q2 := {(x,y,1) € R> x R, |(x,y)| < R). If
B < —1, then for every u € %OI(Q), we have

~ P R R
b / M a0 B ypag < / |Vl (in —)P*Pdg, (3.25)
rp r Q r
where bg = ’3;”
In particular, for every u € %01 (), we obtain
p— 1)”/ || /
dé < | |Mul? ds. (3.26)
( p ) Jo (xlin(R/r)? Q

Moreover, the constant 155 is sharp.
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3.3. Hardy inequalities on Carnot groups

In this section we shall present some Hardy inequalities in the framework of Carnot
Groups.

We begin by quoting some preliminary facts on these structures and refer the
interested reader to [7, 25, 26, 34]) for more precise information on this subject.

A Carnot group is a connected, simply connected, nilpotent Lie group G of
dimension N with graded Lie algebra G = V| @ - - - @ V, such that [V, V;] = V4
fori = 1...r — 1 and [V}, V;] = 0. A such integer r is called the step of the
group. We set/ = n; = dim Vi, np = dim Vs, ..., n, = dim V,. A Carnot group
G of dimension N can be identified, up to an isomorphism, with the structure of a
homogeneous Carnot Group (RN , o, 8;.) defined as follows; we identify G with RY
endowed with a Lie group law o. We consider R" splitted in r subspaces RN =
R™ x R" x .- x R"™ withn; +ny4---+n, = Nand & = (WD, ..., 7)) with
£ e R™ . We shall assume that there exists a family of Lie group automorphisms,
called dilation, 8, with A > 0 of the form 8, (§) = (A, 226@ .. A7), The
Lie algebra of left-invariant vector fields on (RN,0)isG. Fori = 1,...,n; =1
let X; be the unique vector field in G that coincides with 3/ Béi(l) at the origin. We
require that the Lie algebra generated by X1, ..., X; is the whole G.

If the above hypotheses are satisfied, we shall call G = (RV, o, 8;) a homo-
geneous Carnot Group. We denote with Vi the vector field V = (X1,..., X))T.
The canonical sub-Laplacian on G is the second-order differential operator defined
by Ly :== Ag = Zle Xl2 and we define for p > 1 the p-sub-Laplacian operator
Lp(u) := iy Xi (INeul P~ X;u).

Some important properties of Homogeneous Carnot groups are the following:
the Lebesgue measure on R" coincides with the bi-invariant Haar measure on G.
We denote by Q := > i_,in; =Y :_, i dimV; the homogeneous dimension of G.
For every measurable set E C RY, we have |6, (E)| = AQ|E|. Since X1, ..., X
generate the whole G, the sub-Laplacian L satisfies the Hormander’s hypoellipticity
condition. Moreover, the vector fields X1, ..., X; are homogeneous of degree 1
with respect to J;,.

A nonnegative continuous function N : RY — R, is called a homogeneous
norm on G, if N(¢~') = N(£), N(§) = 0 if and only if £ = 0 and it is homo-
geneous of degree 1 with respect to 6, (i.e. N(5x(§)) = AN(&)). A homogeneous
norm N defines on G a pseudo-distance as d(&, n) := N(£~'n). For such a func-
tion d, there holds only a pseudo-triangular inequality:

d,n) <CdE ) +Cdic,n  (.¢neb) (3.27)

with C > 1. Hence, d, in general, is not a distance.

If N and N are two homogeneous norms, then they are equivalent, that is, there
exists a constant C > 0 such that C"'N (&) < ]\7(5) < CN ().

Let N be a homogeneous norm, then there exists a constant C > 0 such that
Cllg|] < NE) <C |§|1/’, for N(¢) < 1 and |-| stands for the Euclidean norm.
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An example of homogeneous norm is the following

- 1/2r!
Ns(€) := (Z &1 ") : (3.28)
i=1

Notice that if N is a homogeneous norm differentiable a.e., then |V, N| is homoge-
neous of degree 0 with respect to §;, hence |V, N| is bounded.

Special examples of Carnot groups are the Euclidean spaces RZ. Moreover, if
Q < 3 then any Carnot group is the ordinary Euclidean space R€.

The most simple nontrivial example of a Carnot group is the Heisenberg-group
H' = R3. For an integer n > 1, the Heisenberg-group H" is defined as follows:
let & = (W, @) with &D 1= (x1,..., %0, ¥1, ..., yn) and £? := r. We endow
R2"+1 with the group law

n
Eok = (£+i,§+&,f+f+22(ii§i—)%l&i))-

i=1

Fori =1, ..., n, consider the vector fields
0 0 0 0
Xi=——+2yi—, Yi=——2xi,
0x; at ay; at

and the associated Heisenberg gradient as follows
Vi = (X1, X, Y, V)T
The sub-Laplacian Ay is then the operator defined by
n
A=Y X;+Y
i=1
The family of dilation is given by
81(8) 1= (hx, hy, 3%0).

In H" we can define the canonical homogeneous norm by

1/4

2
n
6l = (Zx? +y?) +12
i=1

The homogeneous dimension is given by Q = 2n4-2, and the fundamental solution
of the sub-Laplacian —A g at point 7 takes the form I',(§) = \17_1 o€ |;2n.
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Other particular cases of Carnot groups are the Heisenberg-type groups. They
were introduced by Kaplan [36] and have subsequently studied by several authors.
We list some properties for Heisenberg-type groups and refer the reader to [8, 30]
and the reference therein.

Let G be a Carnot group of step 2 with Lie algebra G = V| @ V; and let V| be
endowed with a scalar product (-, -). Let J : Vo — End(V}) be defined as

(J(E,E) = (€, El,m), neVs, E EeV.

We say that G is of H(eisenberg)-type if for all n € V, we have J(n)? = — |17|2 ld.
Let G be an H-type group. Denoting by exp the exponential mapexp : G — G
(that is a global diffeomorphism), we define the analytic mappings x : G — V; and
t : G — V, by the identity & = exp(x(§) + 7(£)). For the sake of simplicity we
shall identify & with & = (x, 1).
Let N be defined as

NE) = (Ix[* +16 1) 1/4. (3.29)

Then N is a homogeneous norm on G. In this setting, the homogeneous dimension
is given by Q = n| + 2n; (we remind that n; = dim V| and ny = dim V»).
Let p > 1 and let I', be the function defined as

r—=0
— N7 ifp#£Q
rpé): { N ifp— 0 for & # 0. (3.30)

The function I", is L, harmonic on RN\ {0}, that is
—L,T, =0 onRY\{0}. (3.31)
Moreover, there exists a constant /,, such that
—L,T', =1,50 (3.32)

and if Q > p, thenl, > 0 (see [15, 35, 36]). Moreover, |V, N (§)| = %

Suppose that a function u has the form u = u(|x|, ¢), then we have

2
|x|

R x
|Viu| and Lu(§) = Ayu+ TA,u.

V@) = |Vaul? + ==
Now we come back to the general Carnot group. It is well-known that there exists a
homogeneous norm N, smooth on G \ {0} such that (N, (é))z_Q is a fundamental
solution of —L; at 0 (see [25, 27]). On the other hand there exists a homogeneous
norm Ng on G such that —In Ny is a fundamental solution of —L¢ at 0 (see
[1, 35]). In general these two norms do not agree (see [2]). Moreover, according
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to author’s knowledge, the best result on the regularity of N is that it is Holder
continuous ([14, 15], see also [13]).

In spite of lack of information on regularity of No, we can still use the re-
sults of previous section to obtain Hardy inequalities related to V; involving the
homogeneous norm N, and Ng for p =2 and p = Q.

In the case 1 < p < Q one can argue as follows. Assume that G, is a
fundamental solution of —L, at 0 on G (thatis —L,G, = 8¢) with a singularity

p—1
at0. Weset N, :=G I‘TQ. Now applying the results of previous section we get a
Hardy inequality involving the function N,. Using the results presented in [15], it
is easy to prove that if N is a homogeneous norm on G, then there exists a constant
C > 0 such that

CN(E) < Ny <C7'N() forevery& €G.

Hence, we obtain a Hardy inequality involving a homogeneous norm N, more pre-
cisely

Proposition 3.9. Under the above hypotheses, there exists a constant ¢ > 0 such
that for every u € %(} (G), we have

P
S 1N | ds < [ (5 ae. (3:33)
G NP G
If, in the previous inequality (3.33) we fix, for instance, N = N,, we cannot say
anything on the constant ¢ and, in particular, we are not able to estimate c¢: This is
due to the lack of information about the relation between N, and N>.
Therefore, in what follows, for p > 1 we denote with I';, the function defined

as
#
L) = { Ny ifp#Q  fore #0. (3.34)
—InNifp=20Q

The question if T, is L, harmonic on G \ {0} arises.
In [2] the authors give the following definition

Definition 3.10. The group G is polarizable if N5 is co-harmonic on G \ {0}, that
is, N> is a solution of

1
Aoof = 5<vL|va|2,va>=o on G\ {0}

We recall that for f € ¢ we can write Ay f also as
Aoof = (VNS LS

where VLZ* f denotes the symmetrized horizontal Hessian matrix of f, VLz* f =
L2A0H) + OFEHTLL
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In [2] the authors prove that if G is polarizable then I',, defined in (3.34) is
p-harmonic on G \ {0}. Moreover, there exists [, 7 0 such that —L ,(I",) = {,8¢
on Gand/, > Oifandonlyif1 < p < Q.

Actually, the condition that T, is L ,-harmonic on G \ {0} is also a sufficient
condition for the polarizability as specified by the following

Proposition 3.11. The group G is polarizable if and only if the function T"}, defined
in (3.34) is L,-harmonic on G \ {0} for some p > 1, p # 2 (and hence for all
p>1).

Proof. The necessary condition is already proved in [2]. Thus, we shall prove the
sufficient condition.
Let u be a smooth function. By computation we have

Lpu = N (1%ul”™2) - Vo + [l "2 Lou
= (p — 2 IMul”* Asout + [Vul?~? Lou. (3.35)

Q

Taking into account that N22 ~ ¥ is Ly-harmonic on G \ {0}, from Lemma 2.18, we

have LoN, = (Q — l)%. Hence, applying (3.35) to N> we have

_ |Vi, N> |P
LyNy = (p—2) [V N2|P " AN + (Q — 1>T2. (3.36)

The thesis will follow if we prove that the identity

IV, N> |P
L,N»=(Q—1)

(3.37)

holds for every & # 0.
Let p > 1, p # 2 be such that I', is L ,-harmonic G \ {0}. First we assume

that p # Q. We apply Lemma 2.18 with g = Ny, o = ’;_T? to u = N, obtaining
the identity (3.37).

Now we consider the case p = Q. Since I'g = —1In N> is Q-harmonic, the
function — In % is still Q-harmonic and positive on Qg = {£ € G|0 < N,(§) <
R}. Thus applying Lemma 2.18 with g = —In %, a = 1tou = Ny we have
that the identity (3.37) is fulfilled on Q. Since R is arbitrary we conclude that the
identity (3.37) holds on G \ {0}. O

Examples of polarizable Carnot groups are the usual Euclidean space, as well
as H-type group and hence the Heisenberg-group. This is proved in [2].

Remark 3.12. Proposition 3.11 provides a straightforward proof of the polarizabil-
ity of H-type groups.
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Theorem 3.13. Let p > 1 and let ', be L ,-harmonic on G \ {0}. Let B € R be
fixed and let N = N».

1. Let 1 < p < +o00 and let Q@ C G be an open set. If B + Q < 0 we also require
that O & Q2. Then we have

cf;/ |u|PNﬁ|vLN|Pdsz Sul? NPPdg e DY@ NPYF), (3.38)
Q Q

where cg 1= @ In particular, we obtain

_ p
(lQppl) /W IVN|Pds</|VLu|”ds ue D). (3.39)

Moreover, if Q U {0} is a neighbourhood of the origin, then the constant cﬁ is
sharp.

2. Let p=Q > 1. Let R > 0andset 2 :={£ € G, N(&) < R}. If B < —1, then
we have

~ [ul? R R
b~ (n )P P P (ln —)P+h
Cﬂ/Q o )" MLNIPdg 5/Q|VLu| (In )" P dé

u e DPP(Q, (In(R/N)PHF), (3.40)

where g := ﬁT.

In particular, we obtain

(p_l>p/ Wl® g N az < / INul? dé
p o (NIn(R/N))? —Ja
ueDP(Q).  (341)

Moreover, the constant Eg is sharp.
Remark 3.14. The above theorem still holds for p = 2 with N = N, and for p =
Q with N = N in any Carnot Group and without the hypothesis of polarizability.

If G = RN and V}, = V is the usual gradient, then [VN| = 1 and the above
inequalities are a generalization of the known Hardy inequalities.

Letd; =ny+---+mn;fori =1,...,rsothatd; =n; =landd, = N. It
results

r—1 dis1 9
Xi= 85 Z Z PisiEr, .. 8a, Ea1s o 8y o B 1 e Sdk)a%_
! =1 s=d+1 §

where P; s x is a polynomial homogeneous of degree k with respect to dilation §;,.
Denoting with @ the matrix such that X; = Zj-vzl wij (& )8%_, it results that u has
J

the form . = (I;, 1), hence in particular u has the form (2.29). Therefore we have
the following
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Theorem 3.15. Let 1 <m <l andlet B € R be fixed. We set 7 := (x1, ..., Xp).

1. Let 1 < p < 400 and let @ C G be an open set. Ifm + B <0, we also require
that @ C (R™\ {0}) x RN~ Then for every u € fol (2), we have

bh | |ulPlz|Pde < | |Mul? |z|P TP dE, (3.42)
B Q Q

where bg 1= . In particular, if Ng is the homogeneous norm defined in
(3.28), then for every u € ‘?01 (2), we obtain

Im — pI\" [ |ul” (Im—pl)” |ul” /
= d d ViulP dg, (343
( » ) o N7 £ < » Q|Z|pé< IVLul”d§, (3.43)

[m+pB|
p

and if N is any homogeneous norm and p # m, then there exists a constant
¢ > 0 such that for every u € \58 (2), we have

P
ldé <f [Vou|? d&, (3.44)
2. Let p = m > 1. Let R > 0 and set Q := {(z Entl, ..., En) € R™ x
RN=™ \z| < R}. If B < —1, then for every u € ip (2), we have
B u|? R\P R\PtA
bg/ —(111—) dgg/ ul? (m—) dE, (3.45)
 lzI? |z Q |zl
where bg = |ﬁ+” . In particular, for every u € f(; (), we obtain
—1\? P
(” ) | eprde < [rde. a0
r o (IzlIn(R/ |z])? Q

Moreover, if G is of H-type, m = | and Bf \ {0} x B,N_l C 2 for some r, then the
constants bg and bg in (3.42) and in (3.45) (and hence the constants in (3.43) and
(3.46)) are sharp.

Remark 3.16. From the above Theorem 3.15, taking m = 1, we obtain the inequal-
ity (3.44) for any p > 1, any homogeneous norm N and any function u € %01 (2)
with Q@  (R\ {0}) x R¥~! and hence also for any smooth function defined on the
cone Ry x RV—1,

Proof. The inequalities (3.42) and (3.45) are a direct consequence of Theorem 2.12.
The fact that Ng > |z| yields the inequality (3.43). Finally the equivalence between
homogeneous norms implies (3.44).
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We have to prove the sharpness of the constant in the case G is of H-type with
m =1 =dimVy, z = x and k := dim V,. We prove the optimality of the constant
bg in (3.42). The proof for l;g in (3.45) is similar.

We shall proceed as in the proof Theorem 3.5, therefore it is sufficient to prove
the claim for = (R™ \ {0}) x RN—",

Let ¢p, be the best constant in (3.42). We choose ¢ € %01 (€2) such that ¢ = uw
with u = u(|x|), w = w(t), v € €4 (10, +o0)) and w € ¢ (R").

Arguing as in the proof of Theorem 3.5, using the convexity of the function
(r2 + s%)P/2, and the fact that

x| x|
IVpl* = [Vio|* + T IVip|* = w? (@ (|x]))* + Tuz IV,wl?,

we obtain for0 < A < 1
St [VculP x|PHP dx
Jar lul? [x1 dx
Jae IVew|P dt [ |u)? x|V TP

e < (1—n)'P

+al=p (3.47)
Jae lwlPdt [ Jul? |x|P
The infimum of [p, |V;w|? dt/ [pi |w|? dt vanishes. The infimum of
Voul? |x|V AP TN (5)| sBHPH g
Jr IVeul? |x| =f0 |u/ ()] (3.48)

Jro lul? |x1P o lu(s)] sPH=ds

is bg . Indeed, it follows from Theorem 3.13 with Q = 1 and g replaced by B+ —1.
Letting . — 01in (3.47), we conclude the proof. O

The next results deal with Hardy inequalities for functions defined on a ball or
on the complement of a ball and involving the distance from the boundary.

If G is the Euclidean space or an H-type group, then the pseudo-distance
dr(E, 1) := Na(E"1n) is actually a distance (see [17]). In a general Carnot group,
there holds only the pseudo-triangular inequality (3.27). Hence, d>, in general is
not a distance. Therefore, in the general framework we shall deal with the Carnot-
Carathéodory distance d¢c, defined as follows. Let y : [a, b] — R bea piecewise
smooth curve, we call y a horizontal path if y (t) belongs to V| whenever it exists.
Then for every &, n € G, we define

dcc(&,n):=inf {/h}l , v:[a,b]— R horizontal path with y (a) =&, y (b)) =1 } .
(3.49)

In the framework of Carnot group, by Chow Theorem, for every &, n € G, it results
dcc (&, 1) < 00, and hence d¢c¢ is a metric on G. The distance d¢c is left invariant
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with respect to the group action and it is homogeneous of degree 1 with respect to
dilation §;, namely

dcc (8§, ¢n)=dcc(&,m), dcc(8:(8),8:.(m)=Ardcc(E n) ¢, n,6€G, A >0,
Hence, dcc (-, 0) is a homogeneous norm.

Theorem 3.17. Let p > 1 and let T, be L ,-harmonic on G \ {0}. Let R > 0 and
set Q :={& € G, N2(§) < R}. We have

p=1)’ Jul” p p Lp
P o (R—Ny)? [VLN2|P dE < Q|VLu| dé, ueD;P(Q). (3.50)

—~1\? . .
The constant (pTl) is optimal.
Moreover, we have

p
% ';‘—l',wLNzV’ds s/ MulPds,  ue D) (3.51)
Q Q

where § is one of the following functions

a) §(§) := dcc(§,092) = infldcc(&,n), n € IR}, ¢ = ijlc% and Cy =
IVEN2 [l o0;
or

b) (&) :=dy(&,0Q) :=inf{dr(&, 1), n € IR} and ¢ := ijlprovideddz(é, n):
No(g~! n) is a distance.

Remark 3.18. The constant ¢? in (3.51) with this generality cannot be improved.
Indeed, if G is the Euclidean space RY and V; = V, we have ¢ = ijl, which is
the best constant (see [41]).

Proof. From (3.36), and if p # 2 by polarizability of G, we get

P
VLN | -

LyNy = M2 |P 2 LaNy = (Q — 1) ¥, > 0.

Therefore, choosing d(§) = R — N»(€), we are in the position to apply Theorem
2.7 and from (2.19) we get (3.50).

Applying the scheme outlined in Remark 2.8, we obtain the optimality of the
constant.

We prove the inequality (3.51). Let § = dcc(-,02) or 6 = da(-, 9L2), let
& € Q be fixed and let T € 92 be a point where the minimum is attained, that is
8(§) =dcc(t,§) or §(§) = da(z, §).

First we prove the inequality (3.51) in the case b). The inequality (3.51) follows
from (3.50) and the fact that d> (-, -) is a distance. By triangular inequality, we have
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R =dy(1,0) < dr(t,&)+d2(&,0) = 5(§)+ N2 (&), and hence we get the inequality
(3.51).
We prove the case a). By the inequality

IN2(8) = Na()| = L Nallpe dec (€, m),  forevery &,m€G,

we have

R — N3(§) = Na(1) — N2(§) = Cadec(t, §) = C28(8),
which concludes the proof. O

Remark 3.19. We remark that if ¢ is a regular H-convex function and Vi ¢ # 0
a.e., then for p > 2, from (3.35), we have —L ,(¢) < 0, thus in order to obtain
Hardy inequalities involving the function ¢ we can apply the results of previous
section. For H-convex function on Carnot groups, we refer the interested reader to
[22, 38, 39]. For instance, in [22] the authors prove that in an H-type group the
gauge N defined in (3.29) is H-convex, hence R — N(§) is H-concave and we can
obtain again the inequalities (3.50) and (3.51).

We conclude with a Hardy inequality on an exterior domain.

Theorem 3.20. Let p > Q and let T, be L ,-harmonic on G \ {0}. Let R > 0 and
set Q :={& € G, N»(§) > R}. Foreveryu € \[”(} (2) we have

lp — Ol p/ lul? /
— Vi M|Pd Viul? dE. 3.52
( » ) Q(NZ—R)I)'L 2P dE < QILM| & (3.52)

Moreover, for every u € %01 (2), we have

)4
e ﬂwmﬂpdsf/ Youl? de, (3.53)
Q P Q

where § is one of the following functions

a) §(&) :=dcc(&,0) := inf{dcc(&,n), n € 02}, ¢ = @C% and Cp =
VL N2l poo;
or

b) §(&):=dr(&, 0Q2):=inf{d>(&,n), n € 0L} and c:= @provideddz(é, n):
N>(E~ ') is a distance.

-0 -0
Proof. Let d be defined as d(£) := No(§) 7T — R7-1 (£ € Q). Itis clear that d is
positive and L ,d = 0. Applying Theorem 2.7 we derive

1-0 p

—0I\? N
(Ip QI) /Mp o S |VLN2|Pd$5/ |VulP ds. (3.54)
P ¢ Na(§) 71 = R7T ¢

S
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It is easy to check that for & € €, it results

1

=0 p=0Q 4
Na(§) r=T — R»=T < N (N2 — R),

which with (3.54) implies (3.52).

Arguing as in the proof of Theorem 3.17, we obtain the missing inequality

(3.53). O

Remark 3.21. The constant ¢? in (3.52) and (3.53) cannot be improved in this
generality. Indeed if V; is the usual gradient V, then this constant is sharp (see
[42]).
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