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The recurrence dimension for piecewise
monotonic maps of the interval

FRANZ HOFBAUER

Abstract. We investigate a weighted version of Hausdorff dimension introduced
by V. Afraimovich, where the weights are determined by recurrence times. We do
this for an ergodic invariant measure with positive entropy of a piecewise mono-
tonic transformation on the interval [0, 1], giving first a local result and proving
then a formula for the dimension of the measure in terms of entropy and charac-
teristic exponent. This is later used to give a relation between the dimension of a
closed invariant subset and a pressure function.

Mathematics Subject Classification (2000): 37E05 (primary); 37C45, 28A80,
37B40, 28A78 (secondary).

1. Introduction

In the last years there was much interest in generalized notions of dimension. In
[14] a theory of dimension structures is developed. Special cases of these structures
are weighted versions of Hausdorff dimensions. We define them only on the interval
[0, 1]. Let |U | be the diameter of a subset U of [0, 1]. For δ > 0 a δ-cover of a set
A ⊂ [0, 1] is a finite or countable collection of intervals of length ≤ δ covering A.
For a set function w with values in R+ and s, t ∈ R we define for A ⊂ [0, 1]

νs,t (A) = lim
δ→0

inf
C

∑
U∈C

w(U )s |U |t

where the infimum is taken over all δ-covers C of A. It follows from the general
theory in [14] that for fixed s ∈ R there is a critical value tc ∈ [−∞, ∞] such that
νs,t (A) = ∞ for t < tc and νs,t (A) = 0 for t > tc. We denote this critical value tc
by ds(A) and call it the dimension of the set A.

If m is a probability measure on [0, 1] and if one sets w(U ) = m(U ), one gets
the dimension introduced by Olsen in [13] and called multifractal generalization of
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the Hausdorff dimension there. For invariant sets of piecewise monotonic maps on
the interval, this dimension is investigated in [9].

If T : [0, 1] → [0, 1] is a map, one can define the recurrence time of a set
U ⊂ [0, 1] by τ(U ) = min{n ≥ 1 : T n(U ) ∩ U �= ∅}. If one sets w(U ) = e−τ(U )

one gets the dimension introduced in [1] (see also [2]) and called the spectrum of
dimensions for Poincaré recurrences there. This is the dimension we consider in
this paper. We call it recurrence dimension for simplicity.

For topological Markov chains and conformal repellers satisfying a specifica-
tion property this recurrence dimension has been computed in terms of topologi-
cal entropy or implicitly using a pressure function (see [2]). In this paper we do
the same for invariant subsets of piecewise monotonic maps on the interval [0, 1].
We say that T : [0, 1] → [0, 1] is piecewise monotonic if there are numbers
0 = c0 < c1 < · · · < cN = 1, such that T |(ci−1, ci ) is monotone and continuous
for 1 ≤ i ≤ N . Set Z = {(c0, c1), . . . , (cN−1, cN )} and P = {c0, c1, . . . , cN }. We
assume that the dynamical system ([0, 1], T ) has only finitely many or no attracting
periodic orbits. In chapter IV of [12] it shown that this holds for C2-maps T with
non-flat critical points. In the second part of this paper we assume that T is expand-
ing, which implies that there can be no attracting periodic orbits. Furthermore, we
assume that T has a continuous derivative T ′ on [0, 1] \ P and set ϕ = − log |T ′|.
We shall need regularity conditions for ϕ. To this end let C be the set of all func-
tions f : [0, 1] \ P → R, such that for each Z ∈ Z the map f |Z can be extended
to a continuous real-valued function on the closure Z of Z . Furthermore let D be
the set of all functions f : [0, 1] \ P → R, such that for each Z ∈ Z the map f |Z
can be extended to a continuous function fZ : Z → (−∞, ∞]. For p ≥ 1 let D p

be the set of all f ∈ D such that e− f is of bounded p-variation. The p-variation of

a function g : [0, 1] → R is defined by var pg := sup
{∑n

j=1 |g(x j ) − g(x j−1)|p
}

where the sup is taken over n ≥ 1 and 0 ≤ x0 < x1 < · · · < xn ≤ 1. Notice
that ϕ ∈ C excludes the possibility that T ′ attains the value zero, whereas this is
possible on P , if ϕ ∈ D.

In the first part of the paper we investigate the dimension of an invariant mea-
sure. For a probability measure µ we define

ds(µ) = inf{ds(A) : µ(A) = 1} .

Theorem 2.4 below gives a local result. If ϕ is either in C or in D p for some
p ≥ 1 and if µ is an ergodic T –invariant measure with hµ > 0, then χµ :=
−µ(ϕ) is greater than zero and limr→0

τ(Br (x))
− log r = 1

χµ
holds for µ-almost all x . In

this paper we prove only lim supr→0
τ(Br (x))
− log r ≤ 1

χµ
using methods similar to those

used in [7] and [8] for Hausdorff dimension and local dimension of an ergodic
invariant measure. The other part of this theorem, namely lim infr→0

τ(Br (x))
− log r ≥

1
χµ

, is already shown in [15]. Using Theorem 2.4 and results from [7] on local

dimension we get then that ds(µ) = hµ−s
χµ

for every s ∈ [0, hµ). This is stated as



RECURRENCE DIMENSION FOR INTERVAL MAPS 441

Theorem 2.6 below. Similar results are known for subshifts with positive entropy
satisfying a specification property (see [3]).

In the second part of this paper we investigate the dimension of a closed subset
A of [0, 1], which is invariant under the piecewise monotonic map T . We assume
that T is expanding, which means that inf |T ′| > 1, and that ϕ ∈ C . Furthermore,
we set Zn = ∨n−1

j=0 T − jZ . For a function f ∈ C we define

p(T |A, f ) = lim sup
n→∞

1

n
log

∑
Z∈Zn,Z∩A �=∅

sup
x∈Z∩A

e
∑n−1

j=0 f (T j x)
.

This is the definition of pressure for the isomorphic shift space one gets by coding
with respect to the partition Z . Since the transformation T can have discontinuities
on the set P , we use p(T |A, f ) as the notion of pressure. Set π(t) = p(T |A, tϕ)

for t ≥ 0. For s ∈ [0, htop(T |A)) we show then that there is a unique solution
zs(A) > 0 of the equation π(t) = s, which equals ds(A). This is stated as Theo-
rem 3.1 below.

2. Dimension of an invariant measure

In order to investigate the recurrence dimension of an ergodic invariant measure
µ with hµ > 0 we use Markov extensions introduced in [5] and [10] and used in
[7] and in [8] for the investigation of Hausdorff dimensions. Let Y be a finite or
countable collection of open pairwise disjoint intervals, such that T |Y is monotone
for all Y ∈ Y and such that µ(

⋃
Y∈Y Y ) = 1. Set R = ⋂∞

j=0 T − j (
⋃

Y∈Y Y ). Since
µ is invariant, we have µ(R) = 1. For n ≥ 1 let Yn(x) be the unique element of
Yn = ∨n−1

j=0 T − jY , which contains x . If x ∈ R, then Yn(x) exists for all n ≥ 1.
The Markov extension of the dynamical system ([0, 1], µ, T ) with respect to

Y is constructed as follows. If D is a subinterval of some Y ∈ Y , we call the
nonempty sets among T (D)∩ Y for Y ∈ Y the successors of D. We write D → C ,
if C is a successor of D. The successors are again subintervals of elements of Y ,
so we can iterate the formation of successors. Set D1 = Y and Dk+1 = Dk ∪ {C :
there is D ∈ Dk with D → C} for k ≥ 1. Finally set D = ⋃∞

k=1 Dk .

In order to get a dynamical system, take disjoint copies D̂ of the intervals
D ∈ D and set X̂ = ⋃

D∈D D̂. Let q : D̂ → [0, 1] be the imbedding, such that
q : X̂ → [0, 1] is defined. If D ∈ D and x ∈ D ∩ ⋃

Y∈Y Y then T (x) is defined

and contained in
⋃

D→C C . For the corresponding point x̂ ∈ D̂ we let T̂ (x̂) be the
point in

⋃
D→C Ĉ corresponding to T (x). In this way we have defined T̂ on the

subset q−1(
⋃

Y∈Y Y ) of X̂ , such that q ◦ T̂ = T ◦ q holds. Note that q−1(
⋃

Y∈Y Y )

contains q−1(R). If Hµ(Y) = − ∑
Y∈Y µ(Y ) log µ(Y ) < ∞, it is shown in [8] (for

finite Y in [11]) that there is a probability measure µ̂ on X̂ with µ̂(q−1(R)) = 1,
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such that T̂ is defined µ̂-almost everywhere and has the following properties

µ̂ is a T̂ -invariant ergodic measure,

µ̂(q−1(A)) = µ(A) for all Borel subsets A of [0, 1] .

Set Ŷ = {D̂ : D ∈ D}. By the above construction, Ŷ is a finite or countable Markov
partition of the dynamical system (X̂ , T̂ , µ̂). This explains the name Markov ex-
tension. For n ≥ 1 let Ŷn(x̂) be that element of Ŷn = ∨n−1

j=0 T̂ − j Ŷ , which contains

x̂ . If x̂ ∈ q−1(R) then Ŷn(x̂) exists for all n ≥ 1.
We investigate recurrence on the Markov extension.

Lemma 2.1. There is a set M̂ ⊂ X̂ with µ̂(M̂)=1 such that lim sup
n→∞

1
n τ(Ŷn(x̂)) ≤ 1

for all x̂ ∈ M̂.

Proof. Choose D ∈ D with µ̂(D̂) > 0. By the ergodic theorem there is a set
M̂D ⊂ X̂ with µ̂(M̂D) = 1 such that limn→∞ 1

n

∑n−1
j=0 1D̂(T̂ j (x̂)) = µ̂(D̂) holds

for all x̂ ∈ M̂D .
Let x̂ ∈ D̂∩M̂D and let n0 = 0 < n1 < n2 < . . . be those integers n, for which

T̂ n(x̂) ∈ D̂ holds. The above result says that lim j→∞ j
n j

= µ̂(D̂) > 0. Since Ŷ
is a Markov partition, we have either D̂ ⊂ T̂ n j (Ŷn j (x̂)) or D̂ ∩ T̂ n j (Ŷn j (x̂)) = ∅.

Since T̂ n j (x̂) ∈ D̂ ∩ T̂ n j (Ŷn j (x̂)) we conclude that D̂ ⊂ T̂ n j (Ŷn j (x̂)) for j ≥ 1.

For arbitrary n ≥ 1 choose j such that n j−1 < n ≤ n j . Then Ŷn j (x̂) ⊂ Ŷn(x̂)

and x̂ ∈ D̂ ⊂ T̂ n j (Ŷn(x̂)) follows. Since x̂ ∈ Ŷn(x̂) we get τ(Ŷn(x̂)) ≤ n j and
1
n τ(Ŷn(x̂)) ≤ n j

n j−1
. Furthermore, lim j→∞

n j
n j−1

= lim j→∞ j
j−1

n j
j

j−1
n j−1

= 1. This

implies lim supn→∞ 1
n τ(Ŷn(x̂)) ≤ 1.

Set D∗ = {D ∈ D : µ̂(D̂) > 0} and M̂ = ⋃
D∈D∗(D̂ ∩ M̂D). We have shown,

that lim supn→∞ 1
n τ(Ŷn(x̂)) ≤ 1 holds for all x̂ ∈ M̂ . Since µ̂(D̂ ∩ M̂D) = µ̂(D̂)

we get

µ̂(M̂) =
∑

D∈D∗
µ̂(D̂ ∩ M̂D) =

∑
D∈D∗

µ̂(D̂) =
∑
D∈D

µ̂(D̂) = µ̂(X̂) = 1

and the proof is finished.

We bring down this result to the original dynamical system.

Lemma 2.2. We have lim supn→∞ 1
n τ(Yn(x)) ≤ 1 for µ-almost all x ∈ [0, 1].

Proof. Let M̂ be as in Lemma 2.1 and set M = q(M̂) ∩ R. Then q−1(M) ⊃
M̂ ∩ q−1(R) and hence µ(M) = µ̂(q−1(M)) = 1.

For x ∈ M there is x̂ ∈ M̂ with q(x̂) = x . Suppose that Dn ∈ D is such that
T̂ n(x̂) ∈ D̂n for all n ≥ 0. We have q(D̂n) = Dn . By the definition of successor and
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because of q ◦ T̂ = T ◦q there are U0, U1, · · · ∈ Y , such that T n(x) ∈ Dn ⊂ Un for
n ≥ 0. It follows that Yn(x) = ⋂n−1

j=0 T − jU j and Ŷn(x̂) = ⋂n−1
j=0 T̂ − j D̂ j . We get

q(Ŷn(x̂)) = ⋂n−1
j=0 T − j D j ⊂ Yn(x). If τ(Ŷn(x̂)) = k, then T̂ k(Ŷn(x̂))∩ Ŷn(x̂) �= ∅,

and since q ◦ T̂ k = T k ◦q holds we get T k(Yn(x))∩Yn(x) �= ∅. Hence τ(Yn(x)) ≤
τ(Ŷn(x̂)). It follows from Lemma 2.1 that lim supn→∞ 1

n τ(Yn(x)) ≤ 1 holds for all
x ∈ M , which means for µ-almost all x .

Lemma 2.3. Let T be a piecewise monotonic transformation, which has only
finitely many or no attracting periodic orbits. Suppose that ϕ = − log |T ′| is either
in C or in D p for some p ≥ 1. Let µ be an ergodic T –invariant measure with
hµ > 0. Then µ(ϕ) ≤ 0 and ϕ ∈ L1(µ).

Proof. Suppose that µ(ϕ) > 0 holds. There is a continuous function ψ : [0, 1] →
R satisfying ψ ≤ ϕ and µ(ψ) > 0. Let (X̂ , T̂ , µ̂) be the Markov extension of
([0, 1], T, µ) with respect to the partition Z and let q be the corresponding projec-
tion. By the ergodic theorem, there is x̂ ∈ X̂ , such that 1

n

∑n−1
j=0 δT̂ j (x̂)

converges
weakly to µ̂. Since µ̂ is ergodic and has nonzero entropy, the set of all ŷ, for which⋂∞

j=1 Ŷn(ŷ) is a nondegenerate interval, has µ̂-measure zero, and hence we can

assume that
⋂∞

j=1 Ŷn(x̂) = {x̂}. There is a sequence D0 D1 D2 . . . in D such that

T̂ k(x̂) ∈ D̂k for k ≥ 0. Since Ŷ is a Markov partition, we have T̂ (D̂k) ⊃ D̂k+1 for
k ≥ 0. There is D ∈ D with µ̂(D̂) > 0, and hence D occurs infinitely often in this
sequence. Choose n1 < n2 < n3 < . . . such that Dnk = D. For every m there is
a point ŷ of period nm − n1 with T̂ j (ŷ) ∈ D̂n1+ j for 0 ≤ j ≤ nm − n1. Let ν̂m be
the periodic-orbit-measure supported by the periodic orbit of ŷ. Then the sequence
ν̂m converges weakly to µ̂. Since q : X̂ → [0, 1] is continuous, the measures
νm = ν̂m ◦ q−1 are periodic-orbit-measures on ([0, 1], T ), which converge weakly
to µ. Since ψ is continuous, there is m0 with νm(ψ) > 0 for m ≥ m0. Because of
ϕ ≥ ψ we have also νm(ϕ) > 0 for m ≥ m0. This implies, that the periodic orbits
supporting the measures νm for m ≥ m0 are attracting, contradicting the assump-
tion, that at most finitely many attracting periodic orbits exist. This contradiction
shows that µ(ϕ) ≤ 0. Since we assume that ϕ is in C or in D p, it follows that ϕ is
bounded below and hence in L1(µ).

Theorem 2.4. Let T be a piecewise monotonic transformation, which has only
finitely many or no attracting periodic orbits. Suppose that ϕ = − log |T ′| is either
in C or in D p for some p ≥ 1. Let µ be an ergodic T –invariant measure with
hµ > 0. Then χµ := −µ(ϕ) is greater than zero and limr→0

τ(Br (x))
− log r = 1

χµ
holds

for µ-almost all x.

Proof. By Lemma 2.3 we have ϕ ∈ L1(µ) and by Theorem 1 in [6] we get χµ =
−µ(ϕ) > 0. Choose ε ∈ (0,

χµ

2 ). By Lemma 1 in [8] there is a finite or countable
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collection Y of pairwise disjoint intervals, such that

µ

( ⋃
Y∈Y

Y

)
= 1;

sup
x∈Y

ϕ(x) − inf
x∈Y

ϕ(x) < ε for every Y ∈ Y;

Hµ(Y) = −
∑
Y∈Y

µ(Y ) log µ(Y ) < ∞ .

Now let Mε be a set of µ-measure one, such that lim supn→∞ 1
n τ(Yn(x)) ≤ 1 and

that limn→∞ 1
n

∑n−1
j=0 ϕ(T j x) = µ(ϕ) = −χµ for all x ∈ Mε. This is possible

because of Lemma 2.2 and the ergodic theorem. For x ∈ Mε we get by the mean
value theorem and as T n(Yn(x)) ⊂ [0, 1] that

log |Yn(x)| ≤ sup
y∈Yn(x)

n−1∑
j=0

ϕ(T j y) + log |T n(Yn(x))| ≤ sup
y∈Yn(x)

n−1∑
j=0

ϕ(T j y).

Since supU ϕ−infU ϕ<ε for every U ∈Y we get
∑n−1

j=0 ϕ(T j y) ≤ ∑n−1
j=0 ϕ(T j x)+

nε, if y ∈ Yn(x), and hence log |Yn(x)| ≤ ∑n−1
j=0 ϕ(T j x) + nε. It follows that

lim
n→∞

1

n
log |Yn(x)| ≤ −χµ + ε .

In particular we have limn→∞ |Yn(x)| = 0, as −χµ + ε < 0.
For x ∈ Mε and r > 0 let n be such that |Yn(x)| ≤ r < |Yn−1(x)|. This

implies Yn(x) ⊆ Br (x), and therefore

τ(Br (x))

− log r
≤ τ(Yn(x))

− log |Yn−1(x)| =
1
n τ(Yn(x))

− 1
n log |Yn−1(x)| .

There is n0, such that 1
n τ(Yn(x)) < 1 + ε and − 1

n log |Yn−1(x)| > χµ − 2ε for

n ≥ n0. For r < |Yn0(x)| we get τ(Br (x))
− log r < 1+ε

χµ−2ε
and hence also

lim sup
r→0

τ(Br (x))

− log r
≤ 1 + ε

χµ − 2ε
.

Now set M = ⋂∞
k=1 M1/k . Then we have µ(M) = 1 and lim supr→0

τ(Br (x))
− log r ≤ 1

χµ

for all x ∈ M , which means for µ-almost all x .
Theorem 2 in [15] says that lim infr→0

τ(Br (x))
− log r ≥ 1

χµ
holds for µ-almost all

x . It is proved there first for cylinder sets with respect to a partition for general
dynamical systems and then an approximation procedure as above is used.
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In the proof of the result on the dimension of a measure we shall use centered
covers. For ε > 0 we call F a centered δ–cover of A, if A ⊆ ⋃

C∈F C and for
every C ∈ F there exists an x ∈ A and an α ∈ (0, δ] with C = (x − α, x + α). The
next lemma shows that we can use centered covers instead of covers.

Lemma 2.5. For A ⊂ [0, 1] let ν̃s,t (A) be defined in the same way as νs,t (A) but
with centered covers instead of covers. Then νs,t (A) ≤ ν̃s,t (A) ≤ 2νs,t (A) for
s, t ≥ 0.

Proof. Since a centered δ-cover is also a δ-cover, it follows that νs,t (A) ≤ ν̃s,t (A).
Let I be an interval of length ≤ δ with I ∩ A �= ∅. Let I1 be the left half and

I2 the right half of I . If I1 ∩ A �= ∅, there is x1 ∈ I1 ∩ A with I1 ⊂ Br1(x1) ⊂ I ,
where r1 is the distance from x1 to the left endpoint of I . If I1 ∩ A = ∅, set
Br1(x1) = ∅. Similarly, if I2 ∩ A �= ∅, there is x2 ∈ I2 ∩ A with I2 ⊂ Br2(x2) ⊂ I ,
where r2 is the distance from x2 to the right endpoint of I . If I2 ∩ A = ∅, set
Br2(x2) = ∅. We have A ∩ (Br1(x1) ∪ Br2(x2)) = A ∩ I . If C is a δ-cover of A, for
each I ∈ C choose Br1(x1) and Br2(x2) as above. The nonempty sets among them

form a centered δ-cover C̃ of A such that
∑

C̃∈C̃ e−sτ(C̃)|C̃ |t ≤ 2
∑

C∈C e−sτ(C)|C |t ,
since U ⊂ V implies τ(U ) ≥ τ(V ) and |U | ≤ |V |. From this inequality we get
ν̃s,t (A) ≤ 2νs,t (A).

Theorem 2.6. Let T be a piecewise monotonic transformation, which has only
finitely many or no attracting periodic orbits. Suppose that ϕ = − log |T ′| is either
in C or in D p for some p ≥ 1. Let µ be an ergodic T –invariant measure with
hµ > 0. Then for every s ∈ [0, hµ) we have ds(µ) = hµ−s

χµ
, where χµ = −µ(ϕ).

Proof. Set α= hµ

χµ
and β = 1

χµ
. By Theorem 2.4 we have χµ > 0 and lim

r→0

τ(Br (x))
− log r =

β for µ-almost all x . By Theorem 1 in [7] we have limr→0
log µ(Br (x))

log r = α for µ-
almost all x .

In order to prove ds(µ) ≤ α − sβ choose an arbitrary t > α − sβ and set
ε = 1

2 (t − α + sβ). Since s < hµ, we have t > 0. For k ∈ N define

Mk={x∈ [0,1] : µ(Br (x))
t−ε
α ≥ 1

k r t and µ(Br (x))
sβ−ε

α ≥ 1
k e−sτ(Br (x)) for all r ∈(0,1)}

For µ-almost all x ∈ [0, 1] there exists an r0(x) > 0 such that

t − ε

α

log µ(Br (x))

log r
≤ t and

sβ − ε

α

− log µ(Br (x))

τ (Br (x))
= sβ − ε

α

log µ(Br (x))

log r

− log r

τ(Br (x))
≤ s

for all r ∈ (0, r0(x)). These are the inequalities in the definition of Mk with k = 1.
Hence for µ-almost all x ∈ [0, 1] there is a k ∈ N with x ∈ Mk , and therefore
µ(

⋃∞
k=1 Mk) = 1.
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Fix k ∈ N and δ ∈ (0, 1), and let C be a centered δ–cover of Mk . Since each
C ∈ C is a ball with center in Mk we get by the definition of Mk∑

C∈C
e−sτ(C)|C |t ≤ 2t k2

∑
C∈C

µ(C)
sβ−ε

α µ(C)
t−ε
α = 2t k2

∑
C∈C

µ(C) ≤ 2t+1k2 .

The last inequality follows, since we can assume that each x ∈ [0, 1] is contained
in at most two element of C. Otherwise we can cancel elements from C and have
still a cover. This implies that ν̃s,t (Mk) < 2t+1k2. By Lemma 2.5 we get also
νs,t (Mk) < 2t+1k2. By the definition of dimension we have ds(Mk) ≤ t . For
u > t we have therefore νs,u(Mk) = 0 for all k, and as νs,u is an outer measure,
we get νs,u(

⋃∞
k=1 Mk) = 0. It follows that ds(

⋃∞
k=1 Mk) ≤ t and hence ds(µ) ≤ t ,

since µ(
⋃∞

k=1 Mk) = 1. As t can be chosen arbitrarily close to α − sβ, we get
ds(µ) ≤ α − sβ.

In order to prove that α − sβ ≤ ds(µ), it suffices to show µ(L) = 0 for every
Borel set L ⊆ [0, 1] with ds(L) < α − sβ. Let L be such a set. Since s < hµ, we
have α−sβ > 0. Choose t > 0 with ds(L) < t < α−sβ and set ε = 1

2 (α−sβ− t).
For k ∈ N define

Lk ={x ∈ L : µ(Br (x))
t+ε
α ≤kr t and µ(Br (x))

sβ+ε
α ≤ke−sτ(Br (x)) for all r ∈(0,1)}

For µ-almost all x ∈ L there is an r0(x) > 0 such that

t + ε

α

log µ(Br (x))

log r
≥ t and

sβ + ε

α

− log µ(Br (x))

τ (Br (x))
= sβ + ε

α

log µ(Br (x))

log r

− log r

τ(Br (x))
≥ s

holds for all r ∈ (0, r0(x)). These are the inequalities in the definition of Lk with
k = 1. Hence for µ-almost all x ∈ L there is a k ∈ N with x ∈ Lk , and therefore
µ(L) = µ(

⋃∞
k=1 Lk). It remains to show µ(Lk) = 0 for all k ∈ N.

To this end fix k ∈ N and η > 0. Since ds(Lk) ≤ ds(L) < t we have
νs,t (Lk) = 0 and hence also ν̃s,t (Lk) = 0 by Lemma 2.5. There exists a δ ∈ (0, 1)

and a centered δ–cover C of Lk with∑
C∈C

e−sτ(C)|C |t <
2t

k2
η .

Since each C ∈ C is a ball with center in Lk we get by the definition of Lk that

µ(Lk) ≤
∑
C∈C

µ(C) =
∑
C∈C

µ(C)
sβ+ε

α µ(C)
t+ε
α ≤ k2

2t

∑
C∈C

e−sτ(C)|C |t < η .

As η > 0 was arbitrary we get µ(Lk) = 0, which completes the proof.

Remark 2.7. The statement in Theorem 2.6 holds also for s < 0. This can be
shown by the method developed in chapter 5 of [16], which is based on a result in
[4]. But it seems that the proof for s > 0 cannot be given by this method. One gets
only an inequality in this case.
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3. Dimension of an invariant set

In order to investigate the dimension of a closed invariant set A in the dynamical
system ([0, 1], T ), we assume that T is expanding, this means that inf |T ′| > 1.
Furthermore, we assume that T ′ ∈ C . This implies that ϕ = − log |T ′| is also in C .
For a function f ∈ C we define

p(T |A, f ) = lim sup
n→∞

1

n
log

∑
Z∈Zn(A)

sup
x∈Z∩A

eSn f (x)

where Sn f (x) = ∑n−1
j=0 f (T j x) and Zn(A) = {Z ∈ Zn : Z ∩ A �= ∅}. If we

consider the dynamical system ([0, 1], T ) as a shift space, this is the usual definition
of pressure. In particular, the pressure does not change, if we refine Z , and the
variational principle holds. These and other properties of the pressure can be found
in [17]. We define the function π : [0, ∞) → R by

π(t) = p(T |A, tϕ) .

For t1 < t2 we have t2ϕ ≤ t1ϕ + (t2 − t1) sup ϕ and hence π(t2) ≤ π(t1) +
(t2 − t1) sup ϕ. Since sup ϕ < 0 this implies that π is strictly decreasing and
that limt→∞ π(t) = −∞. Furthermore, π(0) = htop(T |A) ≥ 0. Hence for
s ∈ [0, htop(T |A)] there is a unique t̃ ≥ 0 with π(t̃) = s, with π(t) > s for
t < t̃ and with π(t) < s for t > t̃ . We denote this t̃ by zs(A). If s < htop(T |A)

then zs(A) > 0.

Theorem 3.1. Let T be an expanding piecewise monotonic transformation on [0,1],
such that T ′ ∈ C, and A a closed invariant subset with htop(T |A) > 0. For
s ∈ [0, htop(T |A)) we have then ds(A) = zs(A).

Proof. Since s < htop(T |A) we have zs(A) > 0. Choose t ∈ (0, zs(A)). Since
t < zs(A), we get p(T |A, tϕ) = π(t) > s. By the variational principle there
is an ergodic invariant measure µ on A satisfying hµ + tµ(ϕ) > s. Because of
µ(ϕ) ≤ sup ϕ < 0 we get hµ > s. Since ϕ ∈ C we can apply Theorem 2.6 and

get ds(µ) = hµ−s
χµ

. Since hµ − s > −tµ(ϕ) = tχµ we get ds(µ) > t . This
implies ds(A) > t . As t can be chosen arbitrarily close to zs(A), the inequality
ds(A) ≥ zs(A) is shown.

Choose t > zs(A). Then t > 0 and π(t) < s. Fix ε ∈ (0,
s−π(t)

t ). We
choose points 0 = d0 < d1 < · · · < dK = 1 containing c0, c1, . . . , cN and set
Z = {(d0, d1), . . . , (dK−1, dK )}, such that T |Z is monotone and supx∈Z ϕ(x) −
infx∈Z ϕ(x) < ε for every Z ∈ Z . If we define the pressure with respect to this
finer partition Z we get the same as for the original Z . Set α = s−π(t)−εt

2 > 0 and
pn = en(tε−s) ∑

Z∈Zn(A) supZ∩A et Snϕ for n ≥ 1. Then

lim sup
n→∞

1

n
log pn = tε−s+lim sup

n→∞
1

n
log

∑
Z∈Zn(A)

sup
Z∩A

et Snϕ = tε−s+π(t) = −2α .

Hence there is a constant c > 0, such that pn ≤ ce−nα holds for all n ≥ 1.
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Set Zk
n (A) = {Z ∈ Zn(A) : τ(Z) = k} and Zn

n (A) = {Z ∈ Zn(A) : τ(Z) ≥
n}. Suppose that Z = ⋂n−1

j=0 T − j Z j ∈ Zk
n (A), where Z0, Z1, . . . , Zn−1 ∈ Z and

k < n. Then T k(Z) ∩ Z �= ∅ and hence Z j+k = Z j for 0 ≤ j ≤ n − k − 1.
Set Z̃ = ⋂k−1

j=0 T − j Z j . Then Z ⊂ Z̃ and Z̃ ∈ Zk(A), as A ∩ Z �= ∅ and hence

A ∩ Z̃ �= ∅. Furthermore, the map Z �→ Z̃ from Zk
n (A) to Zk(A) is injective, since

Zk, . . . , Zn−1 are determined by Z1, . . . , Zk−1. For k = n we set Z̃ = Z and these
results are trivial.

For each Z ∈ Zk(A) we get by the mean value theorem that

|Z | ≤ |T k Z | sup
x∈Z

|T (k)(x)| − 1 = |T k Z | sup
x∈Z

eSkϕ(x) .

Since T k Z ⊂ [0, 1] we have |T k Z | ≤ 1. Since supU ϕ − infU ϕ < ε for every
U ∈ Z we have Skϕ(x) − Skϕ(y) ≤ kε whenever x and y are in Z . As A ∩ Z �= ∅
it follows that

|Z | ≤ sup
x∈A∩Z

eSkϕ(x)+kε .

If Z ∈ Zk
n (A) and Z̃ as above, we have |Z | ≤ |Z̃ | since Z ⊂ Z̃ . Hence we get

∑
Z∈Zn(A)

e−sτ(Z)|Z |t ≤
n∑

k=1

e−sk
∑

Z∈Zk
n (A)

|Z |t ≤
n∑

k=1

e−sk
∑

Z̃∈Zk(A)

|Z̃ |t

≤
n∑

k=1

e−sk
∑

Z̃∈Zk(A)

sup
A∩Z̃

et Skϕ+tkε

=
n∑

k=1

pk ≤
∞∑

k=1

pk ≤ c
∞∑

k=1

e−kα ≤ ce−α

1 − e−α

Now Zn(A) covers the set A except for possibly finitely many points. We can cover
these finitely many points by intervals I1, I2, . . . , I j of arbitrary small length, such

that
∑ j

i=1 e−sτ(Ii )|Ii |t < 1 holds. Since T is expanding, for every δ > 0 there is n
such that the diameter of all intervals in Zn(A) is less than δ. Hence for every δ > 0
we have found a δ-cover C of A with

∑
C∈C e−sτ(C)|C |t < ce−α

1−e−α + 1. This implies

that νs,t (A) ≤ ce−α

1−e−α + 1 and ds(A) ≤ t follows. We can choose t arbitrarily close
to zs(A) so that ds(A) ≤ zs(A) is shown.
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