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The recurrence dimension for piecewise
monotonic maps of the interval

FRANZ HOFBAUER

Abstract. We investigate a weighted version of Hausdorft dimension introduced
by V. Afraimovich, where the weights are determined by recurrence times. We do
this for an ergodic invariant measure with positive entropy of a piecewise mono-
tonic transformation on the interval [0, 1], giving first a local result and proving
then a formula for the dimension of the measure in terms of entropy and charac-
teristic exponent. This is later used to give a relation between the dimension of a
closed invariant subset and a pressure function.
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37B40, 28A78 (secondary).

1. Introduction

In the last years there was much interest in generalized notions of dimension. In
[14] a theory of dimension structures is developed. Special cases of these structures
are weighted versions of Hausdorff dimensions. We define them only on the interval
[0, 1]. Let |U| be the diameter of a subset U of [0, 1]. For § > 0 a §-cover of a set
A C [0, 1] is a finite or countable collection of intervals of length < § covering A.
For a set function w with values in R* and s, r € R we define for A C [0, 1]

i1 (4) = lim ilclfz wU)* U
- UeC

where the infimum is taken over all §-covers C of A. It follows from the general
theory in [14] that for fixed s € R there is a critical value 7, € [—00, 0o] such that
Vs :(A) = oo fort < t. and v, ;(A) = O for t > #.. We denote this critical value ?.
by ds(A) and call it the dimension of the set A.

If m is a probability measure on [0, 1] and if one sets w(U) = m(U), one gets
the dimension introduced by Olsen in [13] and called multifractal generalization of
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the Hausdorff dimension there. For invariant sets of piecewise monotonic maps on
the interval, this dimension is investigated in [9].

If T :[0,1] — [0, 1] is a map, one can define the recurrence time of a set
U c[0,11by t(U) =min{n > 1: T"(U) N U # @}. If one sets w(U) = e~ *¥)
one gets the dimension introduced in [1] (see also [2]) and called the spectrum of
dimensions for Poincaré recurrences there. This is the dimension we consider in
this paper. We call it recurrence dimension for simplicity.

For topological Markov chains and conformal repellers satisfying a specifica-
tion property this recurrence dimension has been computed in terms of topologi-
cal entropy or implicitly using a pressure function (see [2]). In this paper we do
the same for invariant subsets of piecewise monotonic maps on the interval [0, 1].
We say that 7 : [0, 1] — [0, 1] is piecewise monotonic if there are numbers
0=cy<cy <--- <cy = 1,such that T|(c;_1, ¢;) is monotone and continuous
forl1 <i <N. Set Z = {(C(), Cl), ey (CN—l, CN)} and P = {C(), Clyevny CN}. We
assume that the dynamical system ([0, 1], 7') has only finitely many or no attracting
periodic orbits. In chapter IV of [12] it shown that this holds for C?-maps T with
non-flat critical points. In the second part of this paper we assume that 7 is expand-
ing, which implies that there can be no attracting periodic orbits. Furthermore, we
assume that 7 has a continuous derivative 7" on [0, 1]\ P and set ¢ = —log |T"|.
We shall need regularity conditions for ¢. To this end let C be the set of all func-
tions f : [0, 1]\ P — R, such that for each Z € Z the map f|Z can be extended
to a continuous real-valued function on the closure Z of Z. Furthermore let D be
the set of all functions f : [0, 1]\ P — R, such that for each Z € Z the map f|Z
can be extended to a continuous function f7 : 7 — (=00, c0]. For p > 1 let D?
be the set of all f € D such that e~/ is of bounded p-variation. The p-variation of

a function g : [0, 1] — R is defined by var? g := sup {Z?:l lg(x;) — g(Xj_1)|p}
where the sup is taken overn > l and 0 < xp < x; < -+ < x, < 1. Notice
that ¢ € C excludes the possibility that 7’ attains the value zero, whereas this is
possible on P, if ¢ € D.

In the first part of the paper we investigate the dimension of an invariant mea-
sure. For a probability measure y we define

dy(n) = inf{d; (A) : p(A) = 1}.

Theorem 2.4 below gives a local result. If ¢ is either in C or in D? for some
p > 1 and if u is an ergodic 7T—invariant measure with s, > 0, then y, :=

—u(yp) is greater than zero and lim,_,q %{fgx}) = i holds for p-almost all x. In

%(fgxr)) < t using methods similar to those

used in [7] and [8] for Hausdorff dimension and local dimension of an ergodic

invariant measure. The other part of this theorem, namely liminf,_, ¢ % >
1

% is already shown in [15]. Using Theorem 2.4 and results from [7] on local

this paper we prove only limsup,._,

dimension we get then that ds(u) = h‘)‘(—;s for every s € [0, h,). This is stated as
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Theorem 2.6 below. Similar results are known for subshifts with positive entropy
satisfying a specification property (see [3]).

In the second part of this paper we investigate the dimension of a closed subset
A of [0, 1], which is invariant under the piecewise monotonic map 7. We assume
that 7' is expanding, which means that inf |7’| > 1, and that ¢ € C. Furthermore,
we set Z, = \/” ! T=J Z. For a function f € C we define

1 n—1 i
n—oo N ZeZ,,,ZﬂA;éQ)XEZﬂA

This is the definition of pressure for the isomorphic shift space one gets by coding
with respect to the partition Z. Since the transformation 7 can have discontinuities
on the set P, we use p(T|A, f) as the notion of pressure. Set w(¢) = p(T|A, tp)
fort > 0. For s € [0, hp(T|A)) we show then that there is a unique solution
zs(A) > 0 of the equation 7 (t) = s, which equals d;(A). This is stated as Theo-
rem 3.1 below.

2. Dimension of an invariant measure

In order to investigate the recurrence dimension of an ergodic invariant measure
w with 1, > 0 we use Markov extensions introduced in [5] and [10] and used in
[7] and in [8] for the investigation of Hausdorff dimensions. Let ) be a finite or
countable collection of open pairwise disjoint intervals, such that T'[Y is monotone
forall Y € Y and such that u({ Jyy ¥) = 1. Set R = ﬂ ol ™/ (UYey Y). Since
w is invariant, we have w(R) = 1. Forn > 1 let ¥, (x) be the unique element of
YV, = \/j:() T/, which contains x. If x € R, then Y,,(x) exists for all n > 1.

The Markov extension of the dynamical system ([0, 1], i, T)) with respect to
Y is constructed as follows. If D is a subinterval of some Y € ), we call the
nonempty sets among 7' (D) NY for Y € Y the successors of D. We write D — C,
if C is a successor of D. The successors are again subintervals of elements of )/,
so we can iterate the formation of successors. Set D1 = ) and Dy = Dy U {C :
there is D € Dy with D — C} for k > 1. Finally set D = | ;2 Dx.

In order to get a dynamlcal system, take disjoint copies D of the intervals
D € Dandset X = Upep D. Let q : D — [0, 1] be the imbedding, such that
q : X — [0, 1] is defined. If D € Dandx € D N UYey Y then T (x) is defined
and contained in | J,,_,  C. For the corresponding point x € D we let T(%) be the
point in {Jp_, ¢ C corresponding to 7'(x). In this way we have defined T on the
subset q_l(UYGy Y) of X, such that g o T = T o ¢ holds. Note that q_l(UYGy Y)
contains ¢~ ' (R). If H, () =— ZYey w(¥Y)logu(Y) < oo, itis shown in [8] (for
finite ) in [11]) that there is a probability measure [t on X with g~ (R)) =1,
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such that 7 is defined i-almost everywhere and has the following properties

[ is a T-invariant ergodic measure,

(g~ (A)) = (A) for all Borel subsets A of [0, 1].

Set J> {b D € D}. By the above construction, )A} is a finite or countable Markov
partition of the dynamrcal system (X, T, ). This explarns the name Markov ex-
tension. Forn > 1 let Yn (x) be that element of y,, = \/ T y which contains

£.If % € g71(R) then Y, (%) exists forall n > 1.
We investigate recurrence on the Markov extension.

Lemma 2.1. There is a set M C X with fL(M) =1 such that limsup L (¥, (%)) < 1

n—oo

forall £ € M.

Proof. Choose D € D with (D) > 0. By the ergodic theorem there is a set
Mp C X with i(Mp) = 1 such that lim, o 2 3120 15(T7 (%)) = (D) holds
forall £ € Mp.

Letx € bﬂMD andletng =0<n; <np <...be those 1ntegers n, for which
T”(x) € D holds. The above result says that hm]ﬁOO W= ,u(D) > 0. Since y
is a Markov partition, we have either D c 1" (Ynj (X)) br DNTm (Y,,j X)) = 0.
Since 7"/ (X) € D N T"i (Yy; (%)) we conclude that D C T"/ (Yy, (X)) for j > 1.
For arbitrary n > 1 choose j such thatn;_; < n < nj. Then Y,;(X) C ¥, (%)
and tebc T"/(Yn(x)) follows. Since x € Yn(x) we get r(Yn(x)) < n; and

1 "_ RN _Jonjj=l
r(Y x)) < o Furthermore, lim;_, T = lim;_, T = = 1. This

implies limsup,,_, o, nr(Yn(x)) <1.
SetD* ={D eD: (D) >0}and M = UDGD*(DQMD) We have shown,
that lim sup,,_, ”r(Yn(x)) < 1 holds for all £ € M. Since M(D N MD) = ,u(D)
we get
AM) = D" pDNMp)= Y D)= D) =pX) =1
DeD* DeD* DeD

and the proof is finished. O
We bring down this result to the original dynamical system.

Lemma 2.2. We have limsup,,_, o, %‘L’(Yn (x)) < 1 for w-almost all x € [0, 1].

Proof. Let M be as in Lemma 2.1 and set M = q(M) N R. Then q_l(M) D
M N g~ '(R) and hence u(M) = (¢~ (M)) = 1.

For x € M there is £ € M with ¢(£) = x. Suppose that D, € D is such that
f"”()?) € ﬁn foralln > 0. We have q(ﬁn) = D,,. By the definition of successor and
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because ofqof = T oq there are Uy, Uy, --- € Y, such that T"(x) € D, C U, for
n > 0. Tt follows that ¥, (x) = (ViZg T/U; and ¥, (%) = (ViZy T~/ D;. We get
q(Va(®) = VIZ T~/ Dj C Yy (x). T (Y, (%)) = k, then TX(¥, ($)) N T, (%) # 0,
and since g o T¥ = T* 04 holds we get T¥(Y,,(x)) N Y, (x) # ¥. Hence 7(Y,(x)) <
t(f/n (x)). It follows from Lemma 2.1 that lim sup,,_, %‘L’(Yn (x)) < 1 holds for all
x € M, which means for p-almost all x. Il

Lemma 2.3. Let T be a piecewise monotonic transformation, which has only
finitely many or no attracting periodic orbits. Suppose that ¢ = —log |T’| is either
in C orin D? for some p > 1. Let u be an ergodic T—invariant measure with
hy > 0. Then u(e) <0and ¢ € L' ().

Proof. Suppose that u(¢) > 0 holds. There is a continuous function v : [0, 1] —
R satisfying ¥ < ¢ and u(y) > 0. Let ()A(, T, /1) be the Markov extension of
([0, 1], T, ) with respect to the partition Z and let g be the corresponding projec-
tion. By the ergodic theorem, there is X € X, such that % Z’;;(l) 3 i) converges
weakly to [&. Since j1 is ergodic and has nonzero entropy, the set of all y, for which
ﬂ;’il }A’n () is a nondegenerate interval, has ji-measure zero, and hence we can

assume that ﬂj’il Y, (%) = {£). There is a sequence DoD1 D5 ... in D such that

fk()?) € ﬁk for k > 0. Since ;)A) is a Markov partition, we have f"(ﬁk) D bk+1 for
k > 0. There is D € D with ﬁ(ﬁ) > 0, and hence D occurs infinitely often in this
sequence. Choose n1 < np < n3 < ... such that D,, = D. For every m there is
a point § of period n,, — n| with 77 (3) € ﬁan for0 < j < n, —nyp. Let by, be
the periodic-orbit-measure supported by the periodic orbit of y. Then the sequence
Uy, converges weakly to ji. Since ¢ : X — [0,1] is continuous, the measures
V= Dy © q_l are periodic-orbit-measures on ([0, 1], T'), which converge weakly
to u. Since v is continuous, there is mq with v, (¢) > 0 for m > mq. Because of
¢ > ¢ we have also vy, (¢) > 0 for m > mg. This implies, that the periodic orbits
supporting the measures v,, for m > mg are attracting, contradicting the assump-
tion, that at most finitely many attracting periodic orbits exist. This contradiction
shows that u(p) < 0. Since we assume that ¢ is in C or in D7, it follows that ¢ is
bounded below and hence in L!(u). ]

Theorem 2.4. Let T be a piecewise monotonic transformation, which has only
finitely many or no attracting periodic orbits. Suppose that ¢ = —log |T’| is either
in C or in D? for some p > 1. Let u be an ergodic T—invariant measure with

h, > 0. Then x, = —u(y) is greater than zero and lim,_, Tﬁg(gxr)) = i holds

Sfor pw-almost all x.

Proof. By Lemma 2.3 we have ¢ € L'(u) and by Theorem 1 in [6] we get Au =
—u(p) > 0. Choose ¢ € (0, ey, By Lemma 1 in [8] there is a finite or countable
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collection Y of pairwise disjoint intervals, such that

()=

sup@(x) — inf p(x) < e forevery Y € V;
xeY xeY

H,(Y) =— Z w(¥)logu(Y) < oo.

Yey
Now let M, be a set of p-measure one, such that limsup,,_, o, %r(Yn (x)) < 1and
that lim,,_, 5o % Z’};(l)cp(zj) = u(p) = —xu for all x € M,. This is possible

because of Lemma 2.2 and the ergodic theorem. For x € M, we get by the mean
value theorem and as 7" (Y,,(x)) C [0, 1] that

n—1 n—1
log [Y, ()] < sup Y o(T/y) +1log |T" (Y, ()| < sup Y o(T/y).
ye¥u(x) j=0 yeYu(x) j=0

Since sup;; ¢ —infy ¢ <& forevery U € Y we get Z’;;(l) o(Tly) < Z?;(l) o(T/x)+
ne,if y € Y, (x), and hence log |Y,,(x)| < Z?;(l) (p(zj) + ne. It follows that

1
lim —log|Y,(x)| < —xu+e.
n—o0on

In particular we have lim,, o0 |Y,(x)| = 0, as —x, + € < 0.
For x € M, and r > 0 let n be such that |Y,(x)] < r < |Y,—1(x)|. This
implies Y, (x) € B,(x), and therefore

B ()t yT(a®)
—logr = —log[Y,—1()]  —Llog|¥,_1(x)|

There is n, such that 17(¥,(x)) < 1 + ¢ and —1log|¥,_i(x)| > x, — 2e for

n > ng. Forr < [Y,,(x)| we get TEB{—O(‘;,)) < ﬁ and hence also
. T(By(x)) l+e¢
lim sup < .
r—0 —logr T x, —2e

Now set M = (3; Mi/k. Then we have (M) = 1 and limsup, _, fiBlggr)) < XLM

for all x € M, which means for w-almost all x.
Theorem 2 in [15] says that liminf,_, ¢ % >
x. It is proved there first for cylinder sets with respect to a partition for general

dynamical systems and then an approximation procedure as above is used. O

Xiﬂ holds for p-almost all
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In the proof of the result on the dimension of a measure we shall use centered
covers. For ¢ > 0 we call F a centered d—cover of A, if A C UCe # C and for
every C € F thereexistsanx € A andan « € (0, §] with C = (x —«, x + ). The
next lemma shows that we can use centered covers instead of covers.

Lemma 2.5. For A C [0, 1] let Vs ;(A) be defined in the same way as v ;(A) but
with centered covers instead of covers. Then vs(A) < V5(A) < 2v5,(A) for
s, t > 0.

Proof. Since a centered §-cover is also a §-cover, it follows that vg ;(A) < Vs ;(A).

Let [ be an interval of length < § with / N A # . Let I; be the left half and
I the right half of 1. If 1 N A # @, thereis x; € Iy N A with [} C B, (x1) C 1,
where ry is the distance from x; to the left endpoint of I. If I} N A = @, set
By (x1) = 9. Similarly, if I, N A # @, there isxp € [ N A with I» C B,,(x2) C 1,
where r; is the distance from x; to the right endpoint of 7. If L, N A = {4, set
By, (x2) = @. We have A N (B, (x1) U B, (x2)) = AN I.If C is a §-cover of A, for
each I € C choose B, (x1) and B,,(x) as above. The nonempty sets among them

form a centered 8-cover C of A such that Zéeé e—s7(0) IC|f <2 Y cec eST O,
since U C V implies t(U) > (V) and |U| < |V|. From this inequality we get
Vs, (A) < 2v51(A). [

Theorem 2.6. Let T be a piecewise monotonic transformation, which has only
finitely many or no attracting periodic orbits. Suppose that ¢ = —log |T’| is either
in C orin D? for some p > 1. Let u be an ergodic T—invariant measure with

hy > 0. Then for every s € [0, hy,) we have dg(u) = = —u(p).

Proof. Seta= " and B=— By Theorem 2.4 we have x,, > 0 and lmg) T(Bl:)(gxr)) =
r—

B for p-almost all x. By Theorem 1 in [7] we have lim, ¢ log B () _ ¢ for -

logr
almost all x.

In order to prove ds;(u) < o — sB choose an arbitrary t > o — sf and set
&= %(t — o+ sp). Since s < hy,, we have t > 0. For k € N define

Mi={x€[0,1]: £(B, (x))& > Lr' and u(B, (x)) @ e %*”‘Br“)) for all  €(0,1)}

For p-almost all x € [0, 1] there exists an ro(x) > 0 such that

t— ¢ logn(Br(x) _

< and
o logr
sp—e —logu(By(x)) _ sp—e logu(B,(x)) —logr _
o (B (x)) =« log r (B, (x)) ~

for all ¥ € (0, ro(x)). These are the inequalities in the definition of My with k = 1.
Hence for p-almost all x € [0, 1] there is a k € N with x € My, and therefore

M(Ulfozl M) =1.
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Fix k € Nand § € (0, 1), and let C be a centered 5—cover of M. Since each
C € C is a ball with center in M} we get by the definition of M},

sB—¢ t—e
> e O] <2k Y () w p(C)w =2k u(C) <23
ceC ceC ceC

The last inequality follows, since we can assume that each x € [0, 1] is contained
in at most two element of C. Otherwise we can cancel elements from C and have
still a cover. This implies that vy ,(My) < 21+ g2, By Lemma 2.5 we get also
Ve (My) < 2012, By the definition of dimension we have dg(My) < t. For
u > t we have therefore v; ,(My) = O for all k£, and as v, is an outer measure,
we get vy, (e Mk) = 0. It follows that dy (_ye, Mk) < t and hence d,(n) < 1,
since ;L(U,fil M) = 1. As t can be chosen arbitrarily close to o — sf, we get
ds(pn) < o — sB.

In order to prove that @ — s8 < d;(w), it suffices to show p(L) = O for every
Borel set L C [0, 1] with dg(L) < a — sB. Let L be such a set. Since s < h,, we
have @« —sB > 0. Choose t > O withd,(L) <t < a—sf and sete = %(a—sﬁ—t).
For k € N define

t+e sB+e
Li={xeL: u(B,(x))« <kr' and (B, (x))"« <ke T forall € (0,1))
For p-almost all x € L there is an ro(x) > 0 such that
e log (B )

and
o logr
sp+e —logu(Br(x)) sp+e logu(Br(x)) —logr s
o (B (x)) =« log r (B, (x)) ~

holds for all » € (0, rg(x)). These are the inequalities in the definition of L; with
k = 1. Hence for p-almost all x € L there is a k € N with x € Ly, and therefore
w(L) = /,L(U]C;il Ly). It remains to show (L) = 0 for all k € N.

To this end fix k € N and n > 0. Since d;(Ly) < d;(L) < t we have
vs.¢(Lr) = 0 and hence also s ;(L;) = 0 by Lemma 2.5. There exists a é € (0, 1)
and a centered §—cover C of L; with

2t
Ze—s‘[(c)|c|l < =
k2
CceC
Since each C € C is a ball with center in Ly we get by the definition of Ly that

spre e k2 _
(i) = ) m(€) =) w@) 7 (O s =23 e OC <.
ceC ceC ceC
As n > 0 was arbitrary we get w(Lg) = 0, which completes the proof. 0

Remark 2.7. The statement in Theorem 2.6 holds also for s < 0. This can be
shown by the method developed in chapter 5 of [16], which is based on a result in
[4]. But it seems that the proof for s > 0 cannot be given by this method. One gets
only an inequality in this case.



RECURRENCE DIMENSION FOR INTERVAL MAPS 447

3. Dimension of an invariant set

In order to investigate the dimension of a closed invariant set A in the dynamical
system ([0, 1], T'), we assume that T is expanding, this means that inf |7’| > 1.
Furthermore, we assume that 7’ € C. This implies that ¢ = — log |T”| is also in C.
For a function f € C we define

1
p(TIA, f) =limsup—1log >  sup /™
n—oo N Zegn(A)XEZﬂA

where S, f(x) = ';;g f(T/x) and Z,(A) = {Z € Z, : ZNA # §}. If we
consider the dynamical system ([0, 1], 7) as a shift space, this is the usual definition
of pressure. In particular, the pressure does not change, if we refine Z, and the
variational principle holds. These and other properties of the pressure can be found
in [17]. We define the function 7 : [0, c0) — R by

n(t) = p(T|A, 19).

For 11 < t, we have rhgp < t1¢ + (t2 — t1)supe and hence w () < mw(t1) +
(tp — t1)supg. Since supg < O this implies that 7 is strictly decreasing and
that lim, , o w(#) = —oo. Furthermore, w(0) = hyp(T|A) > 0. Hence for
s € [0, hyp(T|A)] there is a unique ¢+ > 0 with 7 (z) = s, with 7w (r) > s for
t < 7 and with 77 (1) < s for 7 > 7. We denote this 7 by z;(A). If s < hip(T|A)
then z5(A) > 0.

Theorem 3.1. Let T be an expanding piecewise monotonic transformation on [0,1],
such that T' € C, and A a closed invariant subset with hip(T|A) > 0. For
s € [0, hwop(T|A)) we have then dy(A) = z;(A).

Proof. Since s < hyp(T|A) we have z;(A) > 0. Choose ¢ € (0, z;(A)). Since
t < z5(A), we get p(T|A,tp) = m(t) > s. By the variational principle there
is an ergodic invariant measure p on A satisfying h, + tu(¢) > s. Because of
n(p) < supp < 0 we get h;, > s. Since ¢ € C we can apply Theorem 2.6 and

get dy(n) = "=
implies dg(A) > t. As t can be chosen arbitrarily close to z5(A), the inequality
dy(A) > z4(A) is shown.

Choose t > z5(A). Thent > 0 and n(t) < s. Fix ¢ € (0, S_[ﬂ). We
choose points 0 = dyp < d; < --- < dg = 1 containing cg, c1, ..., cy and set
Z = {(do, d1), ..., (dg—1,dk)}, such that T|Z is monotone and sup, ., ¢(x) —
infyez @(x) < € forevery Z € Z. If we define the pressure with respect to this

finer partition Z we get the same as for the original Z. Set o = W > 0 and

. Since hy — s > —tu(p) = ty, we get dy(u) > t. This

pn=€" TN o aySUPzaa €Y forn = 1. Then

1 1
lim sup — log p,, = te—s+limsup — log Z sup "5 = te—s+m(1) = —2a.
n—oo N n—oo N ZeZ,(A) ZNA

Hence there is a constant ¢ > 0, such that p, < ce™"“ holds for all n > 1.
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Set Z,’f(A) ={Z e Z,(A):1(Z)=k}and Z'(A) ={Z € Z,(A) : ©(2) =
n}. Suppose that Z = ﬂ;f;(l) T_ij € Z,’f(A), where Zg, Z1,...,Z,—1 € Z and
k < n. Then T"(Z)N Z # ¢ and hence Zjy = Z; for0 < j <n—k—1.
Set Z = ';;(1) T‘ij. Then Z C Zand Z € Zr(A), as AN Z # ¢ and hence
ANZ # 0. ‘Furthermore, the map Z +— Z from Z,’f (A) to Z(A) is injective, since

Zkys ..., Zy—1 are determined by Z, ..., Zy_1. For k = n we set 7 = Z and these
results are trivial.
For each Z € Z;(A) we get by the mean value theorem that

1Z| < |T*Z| sup |T® (x)| — 1 = |T*Z| sup 59 |

xeZ xeZ

Since T%Z [0, 1] we have |T¥Z| < 1. Since supy;; ¢ — infy ¢ < ¢ for every
U € Z we have Spp(x) — Sr@(y) < ke whenever x and y arein Z. ASANZ # (J
it follows that

|Z| < sup eSkrp(x)+ks )
xeANZ

IfZ e Z,’f(A) and Z as above, we have |Z| < |Z| since Z C Z. Hence we get

Z e—SI(Z)|Z|t < Xn:e_Sk Z ZI' < Xn:e—sk Z |Z|t
k=1

Zez,(A) k=1 ZeZk(A) ZeZ1(A)
n
< Ze—sk Z sup etSkgo—Hks
k=1 ZEZk(A) ANZ
n o o0 ka ce—a
Y mEymsey s
k=1 =1 =1 —¢

Now Z,,(A) covers the set A except for possibly finitely many points. We can cover
these finitely many points by intervals Iy, I, ..., I; of arbitrary small length, such

that lezl eSTUD|L;|" < 1 holds. Since T is expanding, for every § > 0 there is n
such that the diameter of all intervals in Z, (A) is less than §. Hence for every § > 0

—o

we have found a §-cover C of A with "~ eSTOC|" < £“— 4 1. This implies

l—e @
that vy ;(A) < % + 1 and ds(A) < t follows. We can choose ¢ arbitrarily close
to z5(A) so that dg(A) < z,(A) is shown. O
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