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Abstract. In this paper we study the possible solutions u of the one-dimensional non-linear singular
problem which formally reads as

(S)

−
d

dx

(
a(x)

du

dx

)
= −

dϕ(u)

dx
−
dg(x)

dx
in (0, L),

u(0) = u(L) = 0 ,

where L > 0, and where the data (a, g, ϕ) are as follow: a is a function of L∞(0, L) which is bounded

between two positive constants, g is a function of L2(0, L), and the singular function ϕ : R 7→ R∪{+∞}
is continuous as a function with values in R ∪ {+∞}, and satisfies ϕ(0) = +∞ and ϕ(s) < +∞ for
every s ∈ R, s ̸= 0; the model example for the singular function ϕ is ϕγ(s) = |s|−γ with γ > 0.

We first study the behaviour of the solutions of approximating problems (Sn) involving non-

singular functions ϕn which converge to ϕ in a sense that we specify, and we prove that these
solutions have subsequences which either converge to weak solutions of (S) (for a definition of weak

solutions that we specify), or converge to zero. We then prove that for a large class of data (a, g, ϕ)

it does not exist any weak solution of (S), while for another large class of data (a, g, ϕ) it does exist
at least one weak solution of (S).

Thanks to the study of an associated singular ODE (this study is of independent interest), we

prove that under additional assumptions which are satisfied by the model example ϕγ(s) = |s|−γ

when 0 < γ < 1, if for some data (a, g, ϕ) there exists one weak solution of (S), then for the same

data it also exist infinitely many weak solutions of (S) which are parametrized by c ∈ (−∞, c∗] for
some finite c∗.

We finally prove that for any given data (a, g, ϕ) and for any weak solution u of (S) corresponding

to these data, there exist sequences of data (a, gn, ϕn), with non-singular functions ϕn which converge
to (a, g, ϕ), for which the solutions converge to u, while there also exist other sequences of data

(a, gn, ϕn), with non-singular functions ϕn which converge to (a, g, ϕ), for which the solutions

converge to zero.
Most of these results are unexpected.
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1. Introduction

Setting of the problem
In the present paper we deal with a singular one-dimensional problem. Our main aim consists in

trying to find a function u which formally satisfies

(1.1)

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg

dx
in (0, L),

u(0) = u(L) = 0 .

We will soon give a mathematically correct and natural definition of solutions of this problem, but
let us first give the assumptions on its data.

We will assume that L > 0 and that the data (a, g, ϕ) satisfy

(1.2) a ∈ L∞(0, L) , ∃ α > 0 : a(x) ≥ α , a.e. in (0, L) ;

(1.3) g ∈ L2(0, L) ;

(1.4)

{
ϕ : R 7→ R∪{+∞}, ϕ is continuous with values in R∪{+∞},
ϕ(s) < +∞ ∀s ∈ R, s ̸= 0 .

Our main purpose is to study the case where

(1.5) ϕ(0) = +∞

even though some results will be true (and new) also in the case where ϕ(0) < +∞.

The model case for the function ϕ is

ϕγ(s) =
c

|s|γ
+ φ(s), with c > 0, γ > 0, φ ∈ C0(R) .

Assuming ϕ(0) = −∞ in place of ϕ(0) = +∞ is just a variant of problem (1.1) by a simple change
of variable (see Remark 2.3 below) and we will not treat that case.

Definition of a weak solution
We introduce the following definition of a weak solution of problem (1.1) (for more details see

Definition 2.6 and Subsection 2.2 below).

Definition 1.1. We say that u is a weak solution of problem (1.1) if u satisfies

(1.6)


u ∈ H1

0 (0, L) , ϕ(u) ∈ L2(0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg

dx
in D′(0, L) .

□
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Note that (1.6) holds true if and only if u solves (see Proposition 2.13 below)

(1.7)

u ∈ H1
0 (0, L) ϕ(u) ∈ L2(0, L),

a(x)
du

dx
= ϕ(u) + g + c in D′(0, L),

for

(1.8) c = −

ˆ L

0

ϕ(u)

a(x)
dx+

ˆ L

0

g(x)

a(x)
dx

ˆ L

0

1

a(x)
dx

.

Three other classes of singular problems and some bibliographical references

A first class of singular problems is as follows:
If one has ϕ ∈ C0(R) and N ≥ 1, it is proved in [7] and [8] that there exists a renormalized solution

of the N -dimensional problem which formally reads as

(1.9)

{
−div(A(x)∇u) = −div(ϕ(u))− divg in Ω,

u(x) = 0 on ∂Ω,

where Ω is a bounded domain of RN and A(x) is a bounded matrix satisfying, for some α > 0,

A(x)ξ · ξ ≥ α|ξ|2, a.e. x ∈ Ω, ∀ ξ ∈ RN .

These solutions turn out to be also weak solutions if the growth at infinity of ϕ(s) is sufficiently low.

In the special case N = 1 with ϕ ∈ C0(R) this notion coincides with the notion of classical weak
solution: u ∈ H1

0 (0, L),ˆ L

0

a(x)
du

dx

dz

dx
dx =

ˆ L

0

ϕ(u)
dz

dx
dx+

ˆ L

0

g(x)
dz

dx
dx ∀z ∈ H1

0 (0, L),

and there exists a classical weak solution of this problem (see Proposition 2.15 below).

A second class of singular problems is the class of semilinear problems involving a zeroth-order term
h(x, u) ≥ 0 which is singular in u = 0, for which one looks for a nonnegative solution u of

(1.10)

{
−div(A(x)∇u) = h(x, u) in Ω,
u = 0 on ∂Ω,

For this class, let us quote several important papers. First, the cases h(x, s) = f(x)e1/s or

h(x, s) =
f(x)

sγ
for a regular function f(x) are treated in [15] where the authors prove the existence of

a classical solution when A(x) is the identity matrix. In [13, 30] similar results are proved for a regular
matrix A(x) and a regular function h(x, s) uniformly bounded for s > 1 with lims→0 h(x, s) = +∞
uniformly for x ∈ Ω. Moreover, continuity properties of the solution are proved in [13] if h(x, s) does
not depend on x.

The case where the nonlinearity is of the form h(x, s) =
f(x)

sγ
with f(x) a positive Hölder continuous

function in Ω is studied in [25] where it is proved that problem (1.10) has a classical non-negative
solution which does not always belong to H1

0 (Ω). More precisely the authors prove in [25] that the
solution belongs to H1

0 (Ω) if and only if γ < 3. Furthermore, they demonstrate that for γ > 1 the

solution is not in C1(Ω). In the case h(x, s) = f(x)h̃(s), some extensions may be found, among others,
in [23, 24] for Ω = RN and in [31] for bounded domains. In the latest case f(x) may also be singular
at the boundary of Ω.

Let us highlight the paper [9], in which the authors extensively study the semi-linear problem in

the case h(x, s) =
f(x)

sγ
with f ≥ 0, f ∈ Lm(Ω) for m ≥ 1, and prove existence results depending on γ

and on m. For γ = 1 and f ∈ L1(Ω), they prove the existence of a solution belonging to H1
0 (Ω). They

also prove a similar result when f ∈ Lm(Ω) with m ≥ C(N, γ) > 1. Finally, for the case γ > 1 and

f ∈ L1(Ω) they prove the existence of a solution u belonging to H1
loc(Ω) satisfying u

γ+1
2 ∈ H1

0 (Ω).
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In [28] (see also [1]), the authors prove the existence of a solution in H1
0 (Ω) if f ∈ Lm(Ω), f positive,

1 < γ < 3 − 2
m . These results are optimal for f ∈ L∞(Ω), and they fit with the result of [25], i.e.

u ∈ H1
0 (Ω) for all γ < 3 if one formally takes m = +∞.

In [16, 17, 18, 19, 20] the authors introduce, in the case of strong singularities (which in the
model case corresponds to γ > 1), a new definition of the solution, with a space for the solution
which is unconventional, and test functions which are reminiscent of the notion of solution defined by
transposition. In this framework they prove results of existence, stability and uniqueness. They also
prove [17, 19] results of homogenization in this framework. Another step in this direction is [12] where
the right-hand side of the equation can change sign. Other homogenization results can be found in [6]
and [14].

Let us also point out that the cases h(x, s) =
f(x)

sγ
+ µ and h(x, s) = µh̃(s) with µ a non-

negative Radon measure have been studied in [27]. Moreover, the case of a variable exponent , i.e.

h(x, s) =
f(x)

sγ(x)
is considered in [11]. For more details and a gentle introduction to singular elliptic

problems we refer to the recent survey [29].

The third class of singular problems concerns the case of singularities which appear in first order
terms with natural growth in the gradient, which has also been extensively studied. For a far to be
complete account on these problems see [5, 26, 2, 3, 4], and references therein.

Originality of problem (1.1)
Let us emphasize some features which are specific to problem (1.1). Both in the singular case (i.e.

ϕ(0) = +∞) and in the non-singular case (i.e. ϕ ∈ C0(R)), for any (possible) weak solution u of (1.1)

one has

ˆ L

0

ϕ(u)
du

dx
dx = 0, since

if z ∈ H1
0 (0, L) with ϕ(z) ∈ L2(0, L), then

ˆ L

0

ϕ(z)
dz

dx
dx = 0,

(see Lemma 2.12 below); here the hypothesis ϕ(z) ∈ L2(0, L) is essential. This implies that every weak
solution u of (1.1) defined above by (1.6) satisfies the following important a priori estimate

(1.11)

∥∥∥∥dudx
∥∥∥∥
L2(0,L)

≤ 1

α
∥g∥L2(0,L),

and, by Morrey’s embedding (here N = 1 is crucial)

(1.12) ∥u∥L∞(0,L) ≤
√
L

α
∥g∥L2(0,L) .

In order to (try to) prove the existence of a weak solution of problem (1.1), we proceed as usual by
approximation.

We consider sequences of an, gn and ϕn which satisfy

(1.13)

{
an ∈ L∞(0, L), α ≤ an ≤ β for some fixed constant β,

an(x) → a(x) a.e. x ∈ (0, L),

(1.14) gn ∈ L2(0, L), gn ⇀ g weakly in L2(0, L),

(1.15) ϕn ∈ C0(R) for every n ∈ N,

(1.16) if sn → s in R then ϕn(sn) → ϕ(s) in R∪{+∞};

the latest property (1.16) is equivalent (see Proposition 2.18 and Remark 2.19 below) to say that the
sequence ϕn locally uniformly converges to ϕ, even in the case in which ϕ(0) = +∞.

Examples of such reasonable approximations of ϕ are the truncations (i.e. ϕn(s) = Tn(ϕ(s))) and

the homographic approximations (i.e. ϕn(s) =
ϕ(s)

1 + 1
nϕ(s)

).
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For (an, gn, ϕn) satisfying (1.13)–(1.16) it is quite easy to show that, for every n ∈ N, there exists
at least one function un which satisfies

(1.17)

un ∈ H1
0 (0, L),ˆ L

0

an(x)
dun
dx

dz

dx
dx =

ˆ L

0

ϕn(un)
dz

dx
dx+

ˆ L

0

gn
dz

dx
dx ∀z ∈ H1

0 (0, L).

Therefore, due to estimate (1.11), there exists u ∈ H1
0 (0, L) such that, for a subsequence

(1.18)

{
un ⇀ u weakly in H1

0 (0, L),

un(x) → u(x) a.e. x ∈ (0, L).

An alternative
Our first main result (see Theorem 3.4 below) consists in the following alternative for the weak limit u:

if ϕ(0) = +∞, then

• either u ≡ 0,
• or u is a weak solution of problem (1.1) in the sense of Definition 1.1.

In the proof of this alternative we use a new estimate on the sequence ϕn(un) in L2(0, L). This
estimate, which is specific to the one-dimensional setting, can only be obtained when the sequence un
weakly converges to a function u which is not identically zero.

Note that the result is a true alternative, in the sense that the two possible situations are mutually
exclusive since 0 is not a weak solution of (1.1) in the sense of Definition 1.1 when ϕ(0) = +∞.

Moreover the two cases of the alternative effectively happen depending on the data g and ϕ. Indeed
on the first hand there exists a large class of functions g ∈ L2(0, L) (see Theorem 4.1 below), and a
large class of functions ϕ which satisfy (1.4) and (1.5) (see Theorem 4.4 below), such that the limit
of the sequence un is always u ≡ 0. On the other hand there exists (see Section 7 below) a large
class of data g and ϕ such that (1.1) has a weak solution, and for every weak solution, there exists
(see Proposition 8.1 in Section 8 below) sequences of approximations of the data which have solutions
which converge to this weak solution.

Let us emphasize that hypothesis ϕ(0) = +∞ is essential in order to get the alternative. When
ϕ(0) < +∞, then for any sequence ϕn of approximations of ϕ, one has ϕn(un) bounded in L∞(0, L)
and ϕn(un) converges strongly in L2(0, L) to ϕ(u). Moreover, in this setting, the case u ≡ 0 occurs if
and only if g ≡ c for some c ∈ R.

The results of Theorem 4.1 and Theorem 4.4 proved in Section 4 are in fact results of non-existence
of weak solutions of problem (1.1) in the sense of Definition 1.1.

The first one, Theorem 4.1, states that when the datum g is bounded from below, there exists no
weak solution of problem (1.1) in the sense of Definition 1.1. This is essentially due to the fact that
in this case the datum g cannot compensate the singular behaviour of the function ϕ(u(x)) when u(x)
tends to zero.

The second one, Theorem 4.4, states that when the function ϕ(s) is not integrable in s = 0+ and
in s = 0−, there exists no weak solution of problem (1.1) in the sense of Definition 1.1. This is proved
by showing that the strong behaviour of the singular function ϕ(s) near s = 0 implies that the class of
functions u ∈ H1

0 (0, L) with ϕ(u) ∈ L2(0, L) is empty.

An associated ODE
If we look at (1.7)-(1.8), which is an equivalent formulation of the definition of a weak solution of

problem (1.1) in the sense of Definition 1.1, one is naturally led to consider, for h ∈ L2(0, L), the ODE

(1.19)


v ∈ H1(0, L), ϕ(v) ∈ L2(0, L),

a(x)
dv

dx
= ϕ(v) + h in D′(0, L),

v(0) = 0,

which is a singular ODE when ϕ(0) = +∞.
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This problem is clearly related to our problem (1.1). Indeed, if h = g + c, any solution u of this
ODE is a weak solution of (1.1) when c is given by (1.8). Conversely, any solution v of the ODE (1.19)
is a weak solution of problem (1.6) when v satisfies v(L) = 0.

In Section 5 below we study the ODE (1.19). This is original when ϕ(0) = +∞. We obtain
existence, non-negativity, comparison, and uniqueness results for the solution v of (1.19), under
further assumptions on ϕ and on g; note that these assumptions on ϕ are satisfied in the model
case ϕγ(s) =

c
|s|γ + φ(s) when c > 0, 0 < γ < 1, and φ ∈ C0

b (R) with ϕγ(s) non-increasing for s > 0.

In order to get existence of solutions v to (1.19), we use the integrability of the function ϕ at s = 0
and its boundedness at infinity (see Theorem 5.5 below), while for the comparison and uniqueness
results (see Proposition 5.16 below) we further require that ϕ(s) is monotone non-increasing for s > 0.

A synthesis of the results that we prove for the ODE (1.19) is given in Subsection 5.3 below. These
results are new and, in our opinion, of independent interest, because of the singular behaviour of the
function ϕ(s) in s = 0.

These results will then be strongly used for proving the existence of weak solutions of problem (1.1)
(see Section 7 below) as well as the multiplicity result that we describe now.

A multiplicity result for the solutions of the singular problem (1.1)
Another interesting consequence of these results is indeed a multiplicity result for the weak solutions

of problem (1.1) in the sense of Definition 1.1 (see Section 6 below). This multiplicity result, which
is stated in Theorem 6.1 below, is quite unexpected: it says that, whenever a solution of problem
(1.1) in the sense of Definition 1.1 exists for some given data (a, g, ϕ), then infinitely many solutions
exist for the same data. These solutions are indexed by a real parameter c which varies in an interval
(−∞, c∗] where c∗ is finite. These infinitely many solutions are strictly ordered with respect to c and
any possible solution of problem (1.1) in the sense of Definition 1.1 for these data correspond to some
c ∈ (−∞, c∗].

Stability and instability of the approximations
We also show, in Section 8 below, two quite remarkable results concerning the stability of the weak

solutions of (1.1) for the data (a, gn, ϕn) when gn converges to g in L2(0, L) and when ϕn is a reasonable
sequence of approximations of ϕ. We prove in particular that for any weak solution u of problem (1.1)
in the sense of Definition 1.1, approximations (a, gn, ϕn) can be built for which the solutions un of
the approximating problems converge to u. In other terms this result asserts that a weak solution
of problem (1.1) in the sense of Definition 1.1 is never isolated. But in contrast with this result, we
also show that for any weak solution u of problem (1.1) in the sense of Definition 1.1 one can build
approximations (a, gn, ϕn) for which the solutions un of the approximating problems converge to 0.
This can be viewed as a strong instability result. Let us stress that in both results, the approximating
sequence ϕn can be any reasonable sequence of approximations of ϕ, while the sequence gn should be
chosen accordingly.

Existence of solutions of problem (1.1)
Finally, Section 7 below is devoted to produce explicit large classes of data for which solutions of

(1.1) in the sense of Definition 1.1 do exist.
These results are essentially straightforward consequences of the fact that for any given ϕ satisfying

(1.4) and (1.5) as well as the fact that ϕ is integrable in 0, one can construct a large class of functions

u such that u ∈ H1
0 (0, L) with ϕ(u) ∈ L2(0, L). Defining then g ∈ L2(0, L) by g(x) = a(x)

du

dx
− ϕ(u),

one has built data such that problem (1.1) admits u as a weak solution.
Another result, Theorem 7.5 below, is in some sense a “density result”: it asserts that for any ϕ

satisfying (1.4) and (1.5) as well as the fact that ϕ is integrable in 0, for any g ∈ L2(0, L), and for any
δ > 0, one can construct a function ĝδ ∈ L2(0, L) such that ĝδ ≡ g on (0, L− δ) for which the problem
(1.1) has a weak solution in the sense of Definition 1.1 for the data (a, ĝδ, ϕ).

Let us note that most of the results that we obtain and prove in this article, even if simple and
obtained through elementary proofs, are new.

In any case, they are unexpected.

Concluding remarks and comments
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Much to our regrets, our results are confined to the one-dimensional setting, since, as said before,
in this case we are able to find, when u ̸= 0, a new estimate on ϕn(un) in L

2(0, L), which is no more
the case in the N -dimensional setting for N > 1. The only N -dimensional situations that we were able
to face are special forms of equations which can be solved by separation of variables, and the case of
radial solutions under special (radial) assumptions on the data. We will publish in [21] these partial
results along with some variants of problem (1.1), namely

• the case where a zeroth-order term +b(x)u with b(x) ≥ 0 (or more generally +b(x, u) with
b(x, s)s ≥ 0) is added to the left hand side of (1.1);

• the case where in (1.1) the linear operator − d
dx

(
a(x)dudx

)
is replaced by a nonlinear monotone

operator − d
dxa(x,

du
dx ) (or even by a nonlinear pseudo-monotone operator − d

dxa(x, u,
du
dx )) where

a : (x, ξ) ∈ (0, L) × R → a(x, ξ) ∈ R is a Carathéodory function that satisfies, for some p, α,
β, b(x) with 1 < p < +∞, α > 0, β ≥ α, b ∈ Lp(0, L), the classical monotonicity properties{

a(x, ξ)ξ ≥ α|ξ|p, |a(x, ξ)| ≤ β(|ξ|p−1 + |b(x)|p−1),

(a(x, ξ)− a(x, η))(ξ − η) > 0, a.e. x ∈ (0, L), ∀ξ ∈ R, ∀η ∈ R, ξ ̸= η.

In a second paper ([22]) we will treat the problem where the model singular function ϕγ(s) =
1

|s|γ is

replaced by a function that is singular in s = m with m ̸= 0 whose model is

ϕmγ (s) =
1

|s−m|γ
, with γ > 0, m ̸= 0.

Notation
In the present paper we will use classical notations. Here we just recall and precise some of them.
We denote by C0(R) the space of functions ϕ : R 7→ R which are continuous at each point of R.

Observe that a function ϕ : R 7→ R∪ {+∞} which is continuous (see an example in (2.10) below) does
not belong to C0(R) when ϕ(s0) = +∞ for some s0 ∈ R.

We denote by C0
b (R) the space of functions of C0(R) which are bounded on R, namely C0

b (R) =
C0(R) ∩ L∞(R).

We denote by D′(0, L) the space of distributions on the open interval (0, L), namely the dual of the
space C∞

c (0, L) of functions which have derivatives of any order and which have a compact support in
(0, L).

We denote by Lip(R) the space of the Lipschitz continuous functions on R, namely the space of
those functions ψ ∈ C0(R) such that

∥ψ∥Lip(R) = sup
s,t∈R, s ̸=t

|ψ(s)− ψ(t)|
|s− t|

< +∞.

We denote by H1
0 (0, L) the Sobolev space of those functions z ∈ L2(0, L) whose distributional first

derivative
dz

dx
belongs to L2(0, L) and which satisfy z(0) = z(L) = 0. The space H1

0 (0, L) will be

equipped with the norm

(1.20) ∥z∥H1
0 (0,L) =

∥∥∥∥dzdx
∥∥∥∥
L2(0,L)

, ∀ z ∈ H1
0 (0, L),

since the Poincaré inequality asserts that

(1.21) ∥z∥L2(0,L) ≤ L

∥∥∥∥dzdx
∥∥∥∥
L2(0,L)

, ∀z ∈ H1
0 (0, L).

Recall that the Morrey’s embedding and estimate, which are specific to the one-dimensional case,
assert that

(1.22) H1
0 (0, L) ⊂ L∞(0, L) with ∥z∥L∞(0,L) ≤

√
L

∥∥∥∥dzdx
∥∥∥∥
L2(0,L)

, ∀z ∈ H1
0 (0, L),

and also that

(1.23)


H1(0, L) ⊂ C0, 12 ([0, L]), with

∥z∥
C0, 1

2 ([0,L])
= sup

x,y∈[0,L]
x ̸=y

|z(x)− z(y)|√
|x− y|

≤
∥∥∥∥dzdx

∥∥∥∥
L2(0,L)

, ∀z ∈ H1(0, L) .
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Finally, for k ∈ R+, let us denote by Tk : R 7→ R the truncation function at height k, i.e. the
function given by

(1.24) Tk(s) =

s if |s| ≤ k,

k
s

|s|
if |s| ≥ k,

∀s ∈ R.

2. Assumptions and definitions

As mentioned in the Introduction, in this paper we will study a one-dimensional singular problem
that we formally write as

(2.1)

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg(x)

dx
in (0, L),

u(0) = u(L) = 0 ,

where u is the unknown and where (a, g, ϕ) are data which will be specified below (see Subsection 2.1).
One of the main difficulties of the problem is to give a correct mathematical meaning to problem

(2.1) (see Subsection 2.2 below).

2.1. Assumptions. We will always assume that

(2.2) N = 1 and L > 0.

As far as the data (a, g, ϕ) are concerned, we will assume that they satisfy

(2.3) a ∈ L∞(0, L), ∃ α, β, 0 < α < β, α ≤ a(x) ≤ β a.e. x ∈ (0, L),

(2.4) g ∈ L2(0, L),

(2.5)

{
ϕ : R 7→ R ∪ {+∞}, ϕ is continuous with values in R ∪ {+∞},
ϕ(s) < +∞, ∀s ∈ R, s ̸= 0 .

We are mainly interested in the case where ϕ is singular at s = 0, i.e. in the case where

(2.6) ϕ(0) = +∞ ;

this will be the originality and the difficulty of the problem.
Note however that we will also consider functions ϕ which do not satisfy (2.6), for instance when

approximating a singular function ϕ which satisfies (2.5) and (2.6) by a sequence of functions ϕn which
belong to C0(R), and therefore satisfy (2.5) but not (2.6).

Remark 2.1. When ϕ satisfies (2.5), condition (2.6) is equivalent to

(2.7) ϕ(s) → +∞ as s→ 0,

which implies that

(2.8) ϕ(s) ≥ 0 for s sufficiently small.

Note that conditions (2.5)-(2.6) exclude oscillatory singularities of the type ϕ(s) =
sin(1/s)

|s|γ
, and

ϕ(s) =
1 + sin(1/s)

|s|γ
.

Observe also that when ϕ satisfies (2.5), then ϕ satisfies

(2.9) ϕ ∈ C0
b ([−R,−δ]) ∩ C0

b ([+δ,+R]), ∀(δ,R), 0 < δ < R < +∞.

Finally note that (2.5) does not impose any behaviour of ϕ as s tends to +∞
and −∞.

□

Remark 2.2. The model case for the function ϕ is the case of the function ϕγ given by

(2.10) ϕγ(s) =
c

|s|γ
+ φ(s), with c > 0, γ > 0, φ ∈ C0(R),

which satisfies (2.5)-(2.6) for every γ > 0.
□
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Remark 2.3. Assuming ϕ(0) = −∞ in place of ϕ(0) = +∞ in (2.6) is just a variant of problem (2.1):
indeed the problem

(2.11)

− d

dx

(
a(x)

dû

dx

)
= −dϕ̂(û)

dx
− dĝ

dx
in D′(0, L),

û(0) = û(L) = 0 ,

with

(2.12)

{
ϕ̂ : R 7→ R ∪ {−∞}, ϕ̂ is continuous with values in R ∪ {−∞},
ϕ̂(s) > −∞, ∀s ∈ R, s ̸= 0,

reduces to problem (2.1) with assumptions (2.5)-(2.6) on ϕ by setting

(2.13) u = −û, g = −ĝ, ϕ(s) = −ϕ̂(−s), ∀s ∈ R.

□

Remark 2.4. Observe that when u is a solution of (2.1), then u is still a solution of (2.1) when ϕ is
changed in ϕ+ c1 and g in g + c2, where c1 and c2 are arbitrary constants.

To avoid confusion, we then emphasize the fact that in the whole of the present paper, the data
g and ϕ are fixed once and for all; in other terms the data g and ϕ are not defined up to additive
constants, but fixed.

□

Remark 2.5. When the data (a, g, ϕ) are given and when they satisfy the hypotheses (2.3)-(2.5)
above, we claim that it is always possible to assume without any loss of generality that ϕ also enjoys
the following property

(2.14) ϕ ∈ C0
b (R\(−δ,+δ)), ∀ δ > 01,

(compare with (2.9)), if one considers weak solutions of problem (2.1) in the sense of Definition 2.6
below for the data (a, g, ϕ) and if g satisfies for some M > 0

(2.15) ∥g∥L2(0,L) ≤
α√
L
M.

Note that condition (2.15) is not a restriction on g, since M is an arbitrary constant; on the contrary,
this condition allows g to vary into a given ball of L2(0, L) in the proof below.

Let us prove this claim.
Consider data (a, g, ϕ) which satisfy (2.3)-(2.5) and (2.15), and let u be any weak solution of problem

(2.1) in the sense of Definition 2.6 below for these data (a, g, ϕ), i.e. a function u which satisfies

(2.16)


u ∈ H1

0 (0, L), ϕ(u) ∈ L2(0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg(x)

dx
in D′(0, L).

Then, in view of (2.25) (see Proposition 2.10 below) and of condition (2.15) on g and M , the function
u satisfies

(2.17) ∥u∥L∞(0,L) ≤
√
L

α
∥g∥L2(0,L) ≤M.

Define the function ϕ̂M : R 7→ R ∪ {+∞} by the formula

(2.18) ϕ̂M (s) =


ϕ(−M) if s ≤ −M,

ϕ(s) if −M ≤ s ≤ +M,

ϕ(+M) if s ≥ +M.

Then the function ϕ̂M satisfies both (2.5) and (2.14).
On the other hand, in view of (2.17) one has

(2.19) ϕ̂M (u) = ϕ(u) ∈ L2(0, L) and
dϕ̂M (u)

dx
=
dϕ(u)

dx
in D′(0, L).

1or, equivalently, ϕ ∈ C0
b (R\(−δ,+δ)) for some given δ > 0.
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When g satisfies both (2.4) and (2.15), this implies that, any weak solution u of problem (2.1) in
the sense of Definition 2.6 below for the data (a, g, ϕ) also satisfies

(2.20)


u ∈ H1

0 (0, L), ϕ̂M (u) ∈ L2(0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ̂M (u)

dx
− dg(x)

dx
in D′(0, L),

or, in other terms, u is a weak solution of problem (2.1) in the sense of Definition 2.6 below for the

data (a, g, ϕ̂M ).
Conversely, when g satisfies both (2.4) and (2.15), any weak solution u of problem (2.1) in the sense

of Definition 2.6 below for the data (a, g, ϕ̂M ), or in other terms, any solution u of (2.20), is also a
solution of (2.16), or in other terms a weak solution of problem (2.1) in the sense of Definition 2.6
below for the data (a, g, ϕ).

In brief, when g satisfies both (2.4) and (2.15) for some M > 0, one can always replace the function

ϕ, which only satisfy (2.5), by the function ϕ̂M , which satisfies both (2.5) and (2.14), if one considers
weak solutions of problem (2.1) in the sense of Definition 2.6 below. This proves the claim.

□

2.2. Definition of a weak solution of problem (2.1). We introduce the following notion of solution:

Definition 2.6. Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses (2.3)-(2.5).
We will say that u is a weak solution of problem (2.1) if u satisfies

(2.21)


u ∈ H1

0 (0, L), ϕ(u) ∈ L2(0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg(x)

dx
in D′(0, L).

□

Remark 2.7. The above Definition 2.6 will be justified by the result presented below in Theorem 3.4
(Alternative).

Let us emphasize that there are cases where problem (2.1) does not have any solution in the sense
of Definition 2.6.

This is for example the case if the nonlinearity ϕ satisfies ϕ(0) = +∞ (hypothesis (2.6)) and if the
source term g is bounded from below (see Theorem 4.1 below).

This is also the case if g is arbitrary in L2(0, L) and if

ˆ +δ

0

ϕ(t) dt = +∞ and

ˆ 0

−δ

ϕ(t) dt = +∞

(see Theorem 4.4 below).
For this reason we will state most of the result of the present paper assuming that there exists at

least a solution of problem (2.1) in the sense of Definition 2.6. We will face the problem of existence
of such a solution in Section 7.

□

Remark 2.8. Problem (2.21) has a precise mathematical meaning, in contrast with problem (2.1)
which has no mathematical meaning, since in (2.1) the spaces to which u and ϕ(u) have to belong to
are not specified, and since the mathematical meanings of the two equations in (2.1) are not specified
neither.

□

Remark 2.9. Since the first line in (2.21) asserts that u ∈ H1
0 (Ω) and ϕ(u) ∈ L2(0, L) while a and g

satisfy (2.3)-(2.4), the second line of (2.21) is equivalent to the variational formulation

(2.22)

ˆ L

0

a(x)
du

dx

dz

dx
=

ˆ L

0

ϕ(u)
dz

dx
+

ˆ L

0

g(x)
dz

dx
, ∀z ∈ H1

0 (Ω).

□



UNEXPECTED PHENOMENA IN A SINGULAR 1D ELLIPTIC EQUATION 11

Proposition 2.10. Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy
(2.3)-(2.5). Then every possible weak solution u of problem (2.1) in the sense of
Definition 2.6 satisfies

(2.23)

ˆ L

0

a(x)
du

dx

du

dx
dx =

ˆ L

0

g(x)
du

dx
dx.

This energy equality in particular implies that

(2.24)

∥∥∥∥dudx
∥∥∥∥
L2(0,L)

≤ 1

α
∥g∥L2(0,L),

which in turn implies that

(2.25) ∥u∥L∞(0,L) ≤
√
L

α
∥g∥L2(0,L).

Remark 2.11. Proposition 2.10 asserts that every possible solution of (2.21) satisfies the a priori
estimates (2.24)-(2.25), i.e. H1

0 (0, L) and L
∞(0, L) bounds which depend only on L, on the coercivity

constant α of a, and on ∥g∥L2(0,L), but not on the function ϕ, which is only assumed to satisfy (2.5).
□

The three results of Proposition 2.10 immediately follow from (2.22), from the coercivity (2.3), from
Morrey’s embedding (1.22) which is specific to the dimension one, and from Lemma 2.12 below.

Lemma 2.12. Assume that ϕ satisfies hypothesis (2.5), and let z be such that

(2.26) z ∈ H1
0 (0, L) with ϕ(z) ∈ L2(0, L).

Then one has:

(2.27)

ˆ L

0

ϕ(z)
dz

dx
dx = 0.

Proof. For n > 0, let Tn : R 7→ R be the truncation at height n defined by (1.24), and let ψn : R 7→ R
be the function defined by

ψn(s) =

ˆ s

0

Tn(ϕ(t)) dt.

Since Tn(ϕ) ∈ C0
b (R), one has ψn ∈ C0(R) with

dψn

ds
∈ C0

b (R), so that

∀z ∈ H1
0 (0, L), ψn(z) ∈ H1

0 (0, L) with
dψn(z)

dx
= (Tn(ϕ(z)))

dz

dx
,

and therefore

(2.28)

ˆ L

0

Tn(ϕ(z))
dz

dx
dx =

ˆ L

0

dψn(z)

dx
dx = ψn(z(L))− ψn(z(0)) = 0− 0 = 0.

Since |Tn(ϕ(z(x)))| ≤ |ϕ(z(x))| a.e. x ∈ [0, L], and since by hypothesis (2.26) ϕ(z) belongs to
L2(0, L), while

Tn(ϕ(z(x))) → ϕ(z(x)) a.e. x ∈ (0, L) as n→ +∞,

passing to the limit in (2.28) thanks to Lebesgue’s dominated convergence theorem implies that

(2.29)

ˆ L

0

ϕ(z)
dz

dx
dx = 0,

which proves (2.27).
□

The proof of the following proposition is straightforward (the last line of (2.31)
below is just dividing the second line by a(x), integrating on (0, L), and using that u(0) = u(L)).
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Proposition 2.13 (Equivalence). Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy
(2.3)-(2.5). Then u is a weak solution of (2.1) in the sense of Definition 2.6, (i.e. u satisfies (2.21))
if and only if u satisfies

(2.30)

u ∈ H1
0 (0, L), ϕ(u) ∈ L2(0, L),

∃ c ∈ R, a(x)
du

dx
= ϕ(u) + g + c in D′(0, L) ,

or, equivalently, if and only if

(2.31)



u ∈ H1
0 (0, L), ϕ(u) ∈ L2(0, L),

a(x)
du

dx
= ϕ(u) + g + c in D′(0, L),

with c = −

ˆ L

0

ϕ(u)

a(x)
dx+

ˆ L

0

g(x)

a(x)
dx

ˆ L

0

1

a(x)
dx

.

Remark 2.14. Consider a function ϕ : R 7→ R which satisfies

(2.32) ϕ ∈ C0(R).

Then the function ϕ satisfies (2.5) and the notion of weak solution in the sense of Definition 2.6 of
problem (2.1) for this function ϕ is defined.

On the other hand, when ϕ satisfies (2.32), it is standard to define a classical weak solution of
problem of (2.1) for such a function ϕ as a function u which satisfies

(2.33)


u ∈ H1

0 (0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg(x)

dx
in D′(0, L) ,

where ϕ(u) “automatically” belongs to L2(0, L), since by Morrey’s embedding (see (1.22)) one has
H1

0 (0, L) ⊂ L∞(0, L), which implies when ϕ ∈ C0(R) that

ϕ(z) ∈ L∞(0, L) ⊂ L2(0, L), ∀z ∈ H1
0 (0, L).

When ϕ satisfies (2.32), the definition of “weak solution of problem (2.1) in the sense of
Definition 2.6” coincides with the definition of “classical weak solution of problem (2.1)” given by
(2.33).

Definition 2.6 is actually an extension of definition (2.33) of a “classical weak” solution of the
singular case where ϕ(0) = +∞.

□

2.3. Existence of a weak solution when ϕ ∈ C0(R).

Proposition 2.15. Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy (2.3)-(2.5). Assume
also that

(2.34) ϕ ∈ C0(R).

Then there exists at least one classical weak solution u of problem (2.1) in the sense of (2.33), or
equivalently a function u which satisfies

(2.35)

u ∈ H1
0 (0, L),ˆ L

0

a(x)
du

dx

dz

dx
dx =

ˆ L

0

ϕ(u)
dz

dx
dx+

ˆ L

0

g(x)
dz

dx
dx, ∀z ∈ H1

0 (0, L).

This classical weak solution is also a weak solution of problem (2.1) in the sense of Definition 2.6.
Moreover any solution u of (2.35) satisfies

(2.36)

∥∥∥∥dudx
∥∥∥∥
L2(0,L)

≤ 1

α
∥g∥L2(0,L) ,
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which in turn implies that

(2.37) ∥u∥L∞(0,L) ≤
√
L

α
∥g∥L2(0,L) .

Proof of Proposition 2.15. Step 1. Further to (2.34), let us assume in this first step that

(2.38) ϕ ∈ C0
b (R) = C0(R) ∩ L∞(R).

For every u ∈ L2(0, L), define u as the unique solution of the linear problem

(2.39)


u ∈ H1

0 (0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg

dx
in D′(0, L).

Using u as test function in the variational formulation of (2.39), one hasˆ L

0

a(x)

∣∣∣∣dudx
∣∣∣∣2 dx =

ˆ L

0

ϕ(u)
du

dx
dx+

ˆ L

0

g(x)
du

dx
dx,

which implies that

α

∥∥∥∥dudx
∥∥∥∥
L2(0,L)

≤
√
L∥ϕ∥L∞(R) + ∥g∥L2(0,L).

Recalling Poincaré’s inequality (1.21), we get that

∥u∥L2(0,L) ≤ L

∥∥∥∥dudx
∥∥∥∥
L2(0,L)

≤ L

α

(√
L∥ϕ∥L∞(R) + ∥g∥L2(0,L)

)
.

Then Leray-Schauder’s fixed point theorem applied to the map W defined by

W : u ∈ L2(0, L) →W (u) = u ∈ L2(0, L)

and to the ball B of L2(0, L) defined by

B =

{
z ∈ L2(0, L) : ∥z∥L2(0,L) ≤

L

α

(√
L∥ϕ∥L∞(R) + ∥g∥L2(0,L)

)}
implies, using also the Rellich-Kondrachov’s compactness theorem, that W has at least a fixed point
in B.

When ϕ satisfies (2.38), this proves that there exists a classical weak solution of problem (2.1), i.e.
a solution of (2.35) (or of (2.33), which is equivalent to (2.35)).

Using then z = u as test function in (2.35) and Lemma 2.12 implies thatˆ L

0

a(x)
du

dx

du

dx
dx =

ˆ L

0

g(x)
du

dx
dx,

which immediately implies (2.36), which in turns implies (2.37) using Morrey’s inequality (1.22) (where
the latest inequality is specific to the one-dimensional case).

Observe that when ϕ satisfies (2.38) and not only (2.34) in Proposition 2.15, the existence of (at
least) one classical weak solution of (2.35) and estimate (2.36), as well as their proofs, continue to hold
true in dimension N > 1; in contrast estimate (2.37) is a result specific to the case N = 1, since it
follows from Morrey’s inequality (1.22).
Step 2. Let us now consider the case where the sole hypothesis (2.34) holds true, i.e. the case where
ϕ belongs to C0(R) and not necessarily to C0

b (R).
In this case, fix m which satisfies

(2.40) m ≥
√
L

α
∥g∥L2(0,L),

and consider the function ϕm : R 7→ R defined by

ϕm(s) = ϕ(Tm(s)), ∀s ∈ R,
where Tm is the truncation at height m defined by (1.24). Then ϕm belongs to C0

b (R), and Step 1
implies that there exists at least one solution um of

(2.41)

um ∈ H1
0 (0, L),ˆ L

0

a(x)
dum
dx

dz

dx
dx =

ˆ L

0

ϕm(um)
dz

dx
dx+

ˆ L

0

g(x)
dz

dx
dx, ∀z ∈ H1

0 (0, L).
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Moreover every solution um of (2.41) satisfies (2.36) and (2.37), and therefore in view of (2.40)

∥um∥L∞(0,L) ≤
√
L

α
∥g∥L2(0,L) ≤ m.

This implies that
Tm(um) = um, and ϕm(um) = ϕ(Tm(um)) = ϕ(um),

which in turn implies that um is also a solution of (2.35) for the function ϕ.
Proposition 2.15 is then proved in full generality.

□

2.4. Definitions of reasonable sequence of approximations and good sequence of approxi-
mations of ϕ. Let us conclude this section by introducing the following definition.

Definition 2.16. Let ϕ be a function which satisfies (2.5). We will say that a sequence ϕn of functions
is a reasonable sequence of approximations (or simply a reasonable approximation) of ϕ if the sequence
ϕn satisfies

(2.42) ϕn satisfies assumption (2.5) for every given n,

(2.43)

{
for every sequence sn ∈ R and every s ∈ R such that sn → s in R,
then ϕn(sn) → ϕ(s) in R ∪ {+∞}.

Moreover, we will say that a sequence ϕn of functions is a good sequence of approximations (or
simply a good approximation) of ϕ if the sequence ϕn is a reasonable sequence of approximations of ϕ
for which every ϕn belongs to C0(R). □

Remark 2.17 (Examples). Let us give, for functions ϕ which satisfy (2.5) (and possibly (2.6)),
five examples of reasonable approximations of ϕ. The first, the second and the fifth examples are
actually good approximations, while, when ϕ(0) = +∞, the third and the fourth examples are not
good approximations of ϕ.

The first example is the approximation by truncation, which consists in taking, for every
function ϕ which satisfies (2.5), the sequence of functions ϕn defined by

(2.44) ϕn(s) = Tn(ϕ(s)), ∀s ∈ R, ∀n ∈ N,
where Tn is the truncation at height n defined by (1.24).

It is easy to prove that ϕn ∈ C0
b (R), which proves (2.42). It is also easy to prove (2.43) when s ̸= 0,

as well as when ϕ(0) < +∞.
The case where ϕ(0) = +∞ and where sn → 0 requires special attention. In this case one has indeed

to prove that
if sn → 0, then ϕn(sn) = Tn(ϕ(sn)) → ϕ(0) = +∞.

This can be done using the facts that Tn(r) ≥ Tm(r) for every n ≥ m > 0 and for every r > 0. Indeed,
as sn → 0, one has ϕ(sn) > 0 for every n sufficiently large. Therefore for every m > 0 and n sufficiently
large, one has

ϕn(sn) = Tn(ϕ(sn)) ≥ Tm(ϕ(sn)) → Tm(+∞) = m for every m > 0 fixed.

This completes the proof of the fact that the sequence ϕn of approximations by truncation defined
by (2.44) is a good sequence of approximations of any function ϕ which satisfies (2.5).

Note that the approximations by truncation (2.44) satisfy

(2.45) ϕn ∈ C0
b (R), |ϕn(s)| ≤ |ϕ(s)|, |ϕn(s)| ≤ n, ∀s ∈ R, ∀n ∈ N.

The second example is the homographic approximation, which consists in
taking, for every function ϕ which satisfies (2.5), the sequence of functions ϕn defined by

(2.46)


ϕn(s) =

ϕ(s)

1 + 1
n |ϕ(s)|

, ∀s ∈ R, s ̸= 0,

ϕn(0) =


ϕ(0)

1 + 1
n |ϕ(0)|

, when ϕ(0) < +∞,

n, when ϕ(0) = +∞.
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It is easy to prove that ϕn ∈ C0
b (R), which implies (2.42): indeed, when ϕ(0) = +∞, one has, for every

fixed n,

ϕn(s) ∼
ϕ(s)

1
n |ϕ(s)|

= n, if s→ 0, s ̸= 0.

Here again the only (small) difficulty in proving (2.43) is the case where ϕ(0) = +∞ and where
sn → 0. Since ϕ(sn) > 0 for n sufficiently large, this is done by considering first subsequences
{n′} ⊂ {n} for which

1

n′
|ϕ(sn′)| = 1

n′
ϕ(sn′) → c, with 0 ≤ c < +∞, as n′ → +∞,

and then subsequences {n′} ⊂ {n} for which

1

n′
|ϕ(sn′)| = 1

n′
ϕ(sn′) → +∞, as n′ → +∞;

in the latest case, one has either ϕn′(sn′) = n′ if sn′ = 0, or if sn′ ̸= 0,

ϕn′(sn′) =
ϕ(sn′)

1 + 1
n′ |ϕ(sn′)|

∼ ϕ(sn′)
1
n′ |ϕ(sn′)|

=
ϕ(sn′)
1
n′ϕ(sn′)

= n′.

In any cases one has
ϕn′(sn′) → +∞ = ϕ(0), as n′ → +∞,

which proves (2.43).
This completes the proof of the fact that the sequence ϕn of homographic approximations defined

by (2.46) is a good approximation of any function ϕ which satisfies (2.5).
Note that here again the homographic approximations satisfy (2.45).

The third example is the trivial approximation of the function ϕ by itself, which consists in
taking, for every function ϕ which satisfies (2.5) the sequence of approximations defined by

(2.47) ϕn(s) = ϕ(s), ∀s ∈ R, ∀n ∈ N.
In this trivial example, it is clear that (2.42)-(2.43) hold true, and that the trivial sequence of

approximations defined by (2.47) is a reasonable sequence of approximations of any function ϕ which
satisfies (2.5), but not a good approximation if ϕ satisfies (2.6).

The fourth example consists in approximating
1

|s|γ
by

1

|s|γn
, in the specific case where ϕ is the

model example (2.10) given by

(2.48) ϕγ(s) =
c

|s|γ
+ φ(s), with c > 0, γ > 0, φ ∈ C0(R).

In this case one can approximate the function ϕγ by the sequence of functions ϕn given by

(2.49) ϕn(s) =
cn

|s|γn
+ φn(s), with cn > 0, γn > 0, φn ∈ C0(R),

where

(2.50) cn → c, γn → γ, φn → φ uniformly in C0([−R,+R]) for every fixed R.

Using in particular the fact that for every ε, with 0 < ε < min{γ, c}, one has

ϕn(sn) =
cn

|sn|γn
+ φn(sn) ≥

c− ε

|sn|γ−ε
+ φn(sn) → +∞ = ϕ(0), as sn → 0, sn ̸= 0,

allows one to prove that the sequence ϕn defined by (2.49)-(2.50) is a reasonable sequence of (but not
a good sequence of) approximations of the function ϕ defined by (2.48).

The fifth example concerns the case where ϕ ∈ C0(R) and consists in this case in the classical
approximation by convolution, namely

ϕε = ϕ ∗ ρε ,
where ρε is a standard sequence of mollifiers, i.e. ρε = ερ(εx) with ρ ∈ C∞

c (R), ρ ≥ 0, such that´
R ρ = 1. Then ϕε is a good sequence of approximations of ϕ since ϕε converges locally uniformly to
ϕ. Here one has ϕε ∈ C∞(R).
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Moreover, in the case where ϕ ∈ C0(R) is constant at infinity, namely when there exists R > 0 such
that

ϕ(s) =

{
ϕ(+R) if s > +R,

ϕ(−R) if s < −R,

then for every ε the function ϕε = ϕ ∗ ρε is Lipschitz continuous on R.
□

To conclude this section, let us state and prove a characterization of a reasonable sequence of
approximations defined by Definition 2.16.

Proposition 2.18. Assume that ϕ satisfies hypotheses (2.5)-(2.6). Then Definition 2.16 is equivalent
to assert that the sequence ϕn satisfies (2.42) as well the following two properties

(2.51)

{
for every η and R, 0 < η < R,

ϕn → ϕ uniformly in C0([+η,+R]) and in C0([−R,−η]),

(2.52) lim inf
n→+∞

(
inf

t∈[−η,+η]
ϕn(t)

)
→ +∞, as η → 0+.

Remark 2.19. The meaning of the two properties (2.51)-(2.52) is that, in some sense, the sequence
of functions ϕn : R 7→ R ∪ {+∞} (which are assumed to satisfy (2.42)) locally uniformly converges
to the function ϕ : R 7→ R ∪ {+∞} which satisfies (2.5)-(2.6). Note however that the local uniform
convergence is usually defined only for functions from R into R, while here one has ϕ(0) = +∞.

Property (2.51) is indeed nothing but the classical local uniform convergence of the sequence ϕn to
ϕ in R− {0}, while property (2.52) asserts that ϕn uniformly converges to +∞ around s = 0.

When ϕ(0) is finite, a variant of the proof below shows that it is equivalent for an approximation
ϕn to satisfy (2.43) or to converge locally uniformly on the whole of R, i.e. in C0([−R,+R]) for every
R ∈ R. Note that when ϕ(0) is finite, then necessarily ϕn(0) is finite for n sufficiently large (take
sn = 0 in (2.43)).

□

Proof of Proposition 2.18. Step 1. Let us first prove that if ϕ satisfies (2.5)-(2.6), and if the
sequence ϕn satifies (2.42), (2.51)-(2.52), then the sequence ϕn satisfies (2.43).

Consider indeed on the first hand a sequence sn which satisfies

sn → s as n→ +∞, s ̸= 0,

and write

ϕn(sn)− ϕ(s) = (ϕn(sn)− ϕ(sn)) + (ϕ(sn)− ϕ(s)).

Then using (2.51) and (2.9) proves (2.43).
Consider on the other hand a sequence sn which satisfies

sn → 0 as n→ +∞.

Then for every η > 0, one has |sn| ≤ η for n sufficiently large, and the inequality ϕn(sn) ≥
inft∈[−η,+η] ϕn(t) for n sufficiently large implies that

lim inf
n→+∞

ϕn(sn) ≥ lim inf
n→+∞

inf
t∈[−η,+η]

ϕn(t),

which combined with (2.52) proves that

ϕn(sn) → +∞ = ϕ(0), as n→ +∞.

This completes the proof of (2.43).
Step 2. Conversely let us prove that if ϕ satisfies (2.5)-(2.6), and if the sequence ϕn satisfies (2.42)-
(2.43), then the sequence ϕn satisfies (2.51)-(2.52).

As far as (2.51) is concerned, fix η and R with 0 < η < R and choose any sn ∈ [η,R] such that

(2.53) |ϕn(sn)− ϕ(sn)| = max
t∈[η,R)

|ϕn(t)− ϕ(t)| = sup
t∈[η,R]

|ϕn(t)− ϕ(t)| = ∥ϕn − ϕ∥C0([η,R]);



UNEXPECTED PHENOMENA IN A SINGULAR 1D ELLIPTIC EQUATION 17

observe indeed that in (2.53) the supremum on [η,R] is actually a maximum. From any subsequence
denoted by {n′} of {n}, extract from n′ a subsequence {n′′} ⊂ {n′} such that the subsequence
s′′n ∈ [η,R] converges to some s ∈ [η,R], and apply (2.43) to s′′n; then

ϕn′′(sn′′) → ϕ(s), as n′′ → +∞.

Since

∥ϕn′′ − ϕ∥C0([η,R]) = |ϕn′′(sn′′)− ϕ(sn′′)| ≤ |ϕn′′(sn′′)− ϕ(s)|+ |ϕ(s)− ϕ(sn′′)|,
using (2.43) and (2.5) implies that

(2.54) ϕn′′ → ϕ uniformly in C0([η,R]), as n′′ → +∞.

The fact that the limit in (2.54) does not depend on the subsequence n′ implies that the convergence
(2.54) takes place for the whole sequence {n} = N.

A similar proof implies the similar result in C0([−R,−η]), and (2.51) is proved.
As far as (2.52) is concerned, fix η > 0 and choose any sn ∈ [−η,+η] such that

(2.55) ϕn(sn) = min
t∈[−η,+η]

ϕn(t) = inf
t∈[−η,+η]

ϕn(t);

observe indeed that in (2.55) the infimum on [−η,+η] is actually a minimum, and that ϕn(sn) is finite
for every n since, for every s ∈ [−η,+η], one has

ϕn(sn) = inf
|t|≤η

ϕn(t) ≤ ϕn(s).

Since
ϕn(s) → ϕ(s), as n→ +∞,

this implies that for some constant C, one has

(2.56) ϕn(sn) ≤ C, ∀n ∈ N,
as well as

lim inf
n

ϕn(sn) ≤ lim
n
ϕn(s) = ϕ(s), ∀s ∈ [−η,+η],

so that

(2.57) lim inf
n

ϕn(sn) ≤ inf
s∈[−η,+η]

ϕ(s).

Let us now prove that for some constant C, one has

(2.58) ϕn(sn) ≥ C, ∀n ∈ N.
Indeed, if (2.58) does not hold true, there exists a subsequence {n′} ⊂ {n} = N such that

(2.59) ϕn′(sn′) → −∞, as n′ → +∞.

Extract from {n′} a subsequence {n′′} ⊂ {n′} such that the subsequence s′′n ∈ [−η,+η] converges to
some s ∈ [−η,+η], and apply (2.43) to s′′n; then

ϕn′′(sn′′) → ϕ(s), as n′′ → +∞,

in contradiction with (2.59), since ϕ : R 7→ R ∪ {+∞}.
We use the fact that from any sequence ρn with c ≤ ρn ≤ c for some c, c ∈ R, one can extract a

subsequence {n′} ⊂ {n} such that
lim
n′
ρn′ = lim inf

n
ρn.

Using this result with ρn = ϕn(sn), which satisfies C ≤ ϕn(sn) ≤ C in view of (2.58) and (2.56), there
exists a subsequence {n′} ⊂ {n} such that

lim
n′
ϕn′(sn′) = lim inf

n
ϕn(sn).

Extract from {n′} a subsequence {n′′} ⊂ {n′} such that the subsequence s′′n ∈ [−η,+η] converges to
some s ∈ [−η,+η], and apply (2.43) to s′′n; then

lim inf
n

ϕn(sn) = lim
n′′

ϕn′′(sn′′) = ϕ(s) ≥ inf
t∈[−η,+η]

ϕ(t).

Combining this result with (2.57), we have proved that

(2.60) ∀η > 0, lim inf
n

(
inf

t∈[−η,+η]
ϕn(t)

)
= lim inf

n
ϕn(sn) = inf

t∈[−η,+η]
ϕ(t).
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Since in view of (2.5)-(2.6) one has

(2.61) inf
t∈[−η,+η]

ϕ(t) → ϕ(0) = +∞, as η → 0+,

we have proved (2.52).
This completes the proof of Proposition 2.18.

□

3. Approximation of problem (2.1), a priori estimates,
and an alternative

As we already said, in order to (try to) prove the existence of a weak solution of problem (2.1) in
the sense of Definition 2.6, one proceed as usual by approximation, finding suitable priori estimates,
and finally passing to the limit.

3.1. Approximation of problem (2.1) and the main difficulty. We assume that hypothesis (2.2)
holds true (so that we are dealing with a one-dimensional problem), and that the data (a, g, ϕ) satisfy
hypotheses (2.3)-(2.5) and (2.6), and we consider sequences (an, gn, ϕn) of “approximated data” which
satisfy, for some β > α > 0, and some c0 > 0

(3.1) an ∈ L∞(0, L), ∃ α, β, 0 < α < β, α ≤ an(x) ≤ β, an(x) → a(x) a.e. x ∈ (0, L),

(3.2) gn ∈ L2(0, L), ∥gn∥L2(0,L) ≤ c0, gn ⇀ g weakly in L2(0, L),

(3.3) ϕn is a good sequence of approximations of ϕ,

(recall Definition 2.16 in Section 2), so that ϕn satisfies

(3.4) ϕn ∈ C0(R) for every given n.

Proposition 2.15 then ensures that for every n there exists at least one classical weak solution of
problem (2.1) for every (an, gn, ϕn), namely at least one function un which satisfies (see (2.23)) the
energy equality

(3.5)

ˆ L

0

an(x)
dun
dx

dun
dx

dx =

ˆ L

0

gn(x)
dun
dx

dx,

which implies

(3.6)


un ∈ H1

0 (0, L),ˆ L

0

an(x)
dun
dx

dz

dx
dx =

ˆ L

0

ϕn(un)
dz

dx
dx+

ˆ L

0

gn
dz

dx
dx, ∀z ∈ H1

0 (0, L).

Moreover the function un satisfies (see (2.36))

(3.7)

∥∥∥∥dundx
∥∥∥∥
L2(0,L)

≤ 1

α
∥gn∥L2(0,L) ≤

c0
α
.

One can therefore extract a subsequence, denoted by n′, and there exists some
u ∈ H1

0 (0, L) such that

(3.8)

{
un′ ⇀ u weakly in H1

0 (0, L),

un′(x) → u(x) a.e. x ∈ (0, L),

thanks to Rellich-Kondrashov’s theorem. One easily passes to the limit in the first and last terms of

(3.6) thanks to the strong convergence of an
dz

dx
and the weak convergence of gn in L2(0, L), which

result from (3.1) and (3.2), obtaining

(3.9)


ˆ L

0

an′(x)
dun′

dx

dz

dx
dx→

ˆ L

0

a(x)
du

dx

dz

dx
dx,

ˆ L

0

gn′
dz

dx
dx→

ˆ L

0

g
dz

dx
dx,

as n′ → +∞.
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As far as the second term of (3.6) is concerned, the almost everywhere convergence in (0, L) of un′

stated in (3.8) and the fact that ϕn is a reasonable sequence of approximations of ϕ immediately imply
(see (2.43)) that

(3.10) ϕn′(un′(x)) → ϕ(u(x)) a.e. x ∈ (0, L), as n′ → +∞.

Observe however that this almost everywhere convergence does not allow one to pass to the limit in
the term ˆ L

0

ϕn′(un′)
dz

dx
dx,

since the a.e. convergence of ϕn′(un′) is not sufficient to imply the convergence of the integrals.
Observe that up to now, we could have obtained results similar to (3.6)-(3.10) in an N -dimensional

setting.

3.2. A new a priori estimate due to the one-dimensional setting. We will now prove a new a
priori estimate which is specific to the one-dimensional case, see assumption (2.2).

Lemma 3.1. Assume that (2.2) holds true, and that the data (a, g, ϕ) and (an, gn, ϕn) satisfy
hypotheses (2.3)-(2.5) and (2.6), and (3.1)-(3.3) and (3.4). If a subsequence, denoted by un′ , satisfies
(3.6) and (3.8) for some u ∈ H1

0 (0, L), and if

(3.11) u ̸= 0,

then

(3.12) ϕn′(un′) is bounded in L2(0, L),

and

(3.13) ϕn′(un′)⇀ ϕ(u) weakly in L2(0, L).

Proof. Step 1. We will strongly use in the present proof the assumption that N = 1 in two ways.
First by using Morrey’s embedding theorem (see (1.23)) which asserts that, when N = 1, then

H1
0 (0, L) ⊂ C0, 12 ([0, L]), so that, in view of (3.8), that

(3.14) un′ → u uniformly in C0([0, L]), as n′ → +∞.

And, second, by using the characterization of a weak solution of problem (2.1) in the sense of
Definition 2.6 given in Proposition 2.13, see (2.30); applied to un′ , (2.31) implies that

(3.15)



un′ ∈ H1
0 (0, L), ϕn′(un′) ∈ L2(0, L),

∃ cn′ ∈ R, an′(x)
dun′

dx
= ϕn′(un′) + gn′(x) + cn′ in D′(0, L) ,

with cn′ = −

ˆ L

0

ϕn′(un′)

an′(x)
dx+

ˆ L

0

gn′(x)

an′(x)
dx

ˆ L

0

1

an′(x)
dx

.

Observe that here ϕn′ ∈ C0(R) (see (3.4)), and that un′ ∈ H1
0 (0, L) ⊂ L∞(0, L), so that ϕn(un′)

“automatically” belongs to L∞(0, L) ⊂ L2(0, L) for each n′.
Step 2. If we assume that u ̸= 0 (hypothesis (3.11)), there exists at least one
x0 ∈ (0, L), such that

(3.16) u(x0) ̸= 0.

We claim that

(3.17) cn′ is bounded in R.

Let us assume for a moment that

(3.18) u(x0) > 0.

(the proof will be similar in the case where u(x0) < 0).
Since u ∈ H1

0 (0, L) ⊂ C0([0, L]), (3.18) implies that there exists some δ > 0 and η > 0 such that

(3.19) 0 < x0 − δ < x0 < x0 + δ < L, with u(x) ≥ η, ∀x ∈ [x0 − δ, x0 + δ],
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and the uniform convergence (3.14) implies that

(3.20) for n′ sufficiently large, ∀x ∈ [x0 − δ, x0 + δ] one has un′(x) ≥ η

2
.

On the other hand, in view of the Morrey’s inequality (1.22), and of (3.7) and (3.2), we have

(3.21) ∥un′∥L∞(0,L) ≤
√
L

∥∥∥∥dun′

dx

∥∥∥∥
L2(0,L)

≤
√
L

α
∥gn′∥L2(0,L) ≤

√
L

α
c0,

therefore one has in view of (3.20)

(3.22) for n′ sufficiently large, ∀x ∈ [x0 − δ, x0 + δ]
η

2
≤ un′(x) ≤

√
L

α
c0.

Since ϕn′ , which is a reasonable approximation of ϕ, satisfies

(3.23) ϕn′ → ϕ uniformly in C0

([
η

2
,

√
L

α
c0

])
,

see (2.51); we deduce that

(3.24) for n′ sufficiently large, ϕn′ is bounded in L∞(x0 − δ, x0 + δ).

From (3.15), (3.1), (3.7), (3.2), and (3.24), we deduce that

(3.25) for n′ sufficiently large, cn′ is bounded in L2(x0 − δ, x0 + δ),

which implies that

(3.26) cn′ is bounded in R,

which proves the claim (3.17).

Turning back to (3.15), the estimates (3.1), (3.7), (3.2), and (3.26) together imply that

(3.27) ϕn′(un′) is bounded in L2(0, L).

We have proved that (3.12) holds true.
The weak convergence (3.13) of ϕn′(un′) to ϕ(u) then results from (3.27) and (3.10), since a bounded

sequence zn′ in Lp(Ω) which converges a.e. in Ω to some z also converges to z weakly in Lp(Ω) when
1 < p < +∞ (this results from Vitali’s theorem since the sequence zn′ is equi-integrable in L1(Ω), and
therefore it converges strongly in L1(Ω)).

Lemma 3.1 is proved.
□

Remark 3.2. As we said at the beginning of its Step 1, the proof of Lemma 3.1 strongly uses the
assumption N = 1.

On the other hand, the proof given in the second step is very surprising, since it consists to transform
the local estimate (3.24), which is only valid in (x0 − δ, x0 + δ), into the global estimate (3.27), which
is valid in (0, L). This passing from local to global is also specific to the dimension N = 1.

□

Remark 3.3. It is assumed in hypothesis (3.2) that gn converges weakly to g in L2(0, L). If this
hypothesis is reinforced in

(3.28) gn → g strongly in L2(0, L),

then the weak convergence (3.8) is reinforced in

(3.29) un′ → u strongly in H1
0 (0, L).

Indeed once a subsequence n′ has been extracted for which one has (3.8) for some u ∈ H1
0 (0, L),

one has

(3.30)

ˆ L

0

gn′
dun′

dx
dx→

ˆ L

0

g
du

dx
dx, as n′ → +∞.

when the strong convergence (3.28) holds true. Then either u ≡ 0, in which case (3.5) implies that

un′ → 0 strongly in H1
0 (0, L),
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or u ̸≡ 0, in which case, in view of Theorem 3.4 (Alternative) below, u is a weak solution of problem
(2.1) in the sense of Definition 2.6, which therefore satisfies the energy equality (2.23) in view of
Proposition 2.10. Passing to the limit in (3.5) and using (3.30) proves thatˆ L

0

an′(x)
dun′

dx

dun′

dx
dx→

ˆ L

0

a(x)
du

dx

du

dx
dx, as n′ → +∞.

which with the weak convergence (3.8) implies the strong convergence (3.29) by passing to the limit in

α

ˆ L

0

∣∣∣∣dun′

dx
− du

dx

∣∣∣∣2 dx ≤
ˆ L

0

an′(x)

(
dun′

dx
− du

dx

)(
dun′

dx
− du

dx

)
dx =

=

ˆ L

0

an′(x)
dun′

dx

dun′

dx
dx− 2

ˆ L

0

an′(x)
du

dx

dun′

dx
dx+

+

ˆ L

0

an′(x)
du

dx

du

dx
dx.

□

3.3. An alternative. From the results obtained in Subsection 3.1, and from Lemma 3.1 of
Subsection 3.2, we deduce that we are in front of an alternative:

Theorem 3.4 (Alternative). Assume that hypothesis (2.2) holds true, and that the data (a, g, ϕ)
satisfy hypotheses (2.3)-(2.5) and (2.6). Consider approximations (an, gn, ϕn) which satisfy (3.1)-(3.3)
and (3.4).

Then for every n ∈ N there exists at least one function un which satisfies (3.6) and (3.7). If one
extract a subsequence, denoted by un′ , such that (3.8) holds for some u ∈ H1

0 (0, L), then one has the
alternative:

• either u ≡ 0,
• or u is a weak solution of problem (2.1) in the sense of Definition 2.6.

Remark 3.5. Let us emphasize that in the whole of the present section, and in particular in
Theorem 3.4, we have assumed hypothesis (2.6), namely ϕ(0) = +∞. If we do not make this hypothesis,
but ϕ(0) < +∞, we have ϕ ∈ C0(R) and we are in the hypotheses of Proposition 2.15 with good
approximations ϕn which converge uniformly on C0([−R,+R]) for every R < +∞. In this classical
setting, u ≡ 0 can be a solution2, and there is no alternative: all the converging subsequences un′

converge to a classical weak solution, see the proof of Proposition 2.15.
In Theorem 3.4 the alternative is indeed due to the fact that ϕ is singular in s = 0.

□

Let us complete Theorem 3.4 by a result which characterizes the behaviour of the constant cn which
appears in (3.15), and also the behaviour of ϕn(un).

To this aim observe that, since cn ∈ R for any given n, but without any bound on |cn|, we are at
liberty to extract from n′ a further subsequence denoted by n′′ such that

(3.31) ∃ c̃ ∈ R ∪ {+∞} ∪ {−∞} such that cn′′ → c̃ in R ∪ {+∞} ∪ {−∞}, as n′′ → +∞.

We then have the following result, which describes the links between the possible limits of un,
ϕn(un), and cn.

Proposition 3.6. Assume that hypothesis (2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses
(2.3)-(2.5) and (2.6). Consider approximations (an, gn, ϕn) which satisfy (3.1)-(3.3) and (3.4). For c̃
and n′′ defined by (3.31), we have the following equivalences:

(3.32)


u = 0 ⇔ c̃ = −∞ ⇔
⇔ ∀M ∈ R, ϕn′′(un′′(x)) ≥M, ∀x ∈ (0, L), for n′′ sufficiently large ⇔
⇔ ϕn′′(un′′(x)) → +∞ uniformly in [0, L], as n′′ → +∞.

(3.33)

{
u ̸= 0 ⇔ −∞ < c̃ < +∞ ⇔
⇔ ϕn′′(un′′)⇀ ϕ(u) weakly in L2(0, L), as n′′ → +∞.

2As a side remark, note that when ϕ ∈ C0(R) (or in other terms when ϕ(0) < +∞), u ≡ 0 is a classical weak solution

of problem (2.1) if and only if g is constant (see (2.33)).



22 D. GIACHETTI, P.J. MARTÍNEZ-APARICIO, F. MURAT, AND F. PETITTA

Remark 3.7. Since the limit u of a subsequence un′ can only be equal to u = 0, or to u ̸= 0, taking
into account the equivalences in (3.32) and in (3.33), one sees that the limit c̃ of a subsequence cn′′

can never be equal to +∞ (but only be either finite or equal to −∞), and that the limit ϕ(u) of a
subsequence ϕn′′(un′′) can only be equal to +∞, or to ϕ(u) for u a weak solution of problem (2.1) in
the sense of Definition 2.6.

□

Proof of Proposition 3.6. Step 1: The case u ̸= 0. In this case, we have proved in Step 2 of the
proof of Lemma 3.1 that (see (3.26)-(3.27))

u ̸= 0 ⇒ cn′′ is bounded in R ⇒ ϕn′′(un′′) is bounded in L2(0, L),

which implies that (see the last paragraph of the proof of Lemma 3.1)

(3.34)

{
u ̸= 0 ⇒ −∞ < c̃ < +∞ ⇒
⇒ ϕn′′(un′′)⇀ ϕ(u) weakly in L2(0, L), as n′′ → +∞.

Step 2: The case u = 0. In view of (3.14) un′′ converges to 0 uniformly in C0([0, L]), and therefore

∀η > 0, |un′′(x)| ≤ η, ∀x ∈ [0, L] for n′′ sufficiently large,

which implies that

(3.35) ∀η > 0, ϕn′′(un′′(x)) ≥ inf
t∈[−η,+η]

ϕn′′(t) ∀x ∈ [0, L] for n′′ sufficiently large.

On the other hand, in the second part of Step 2 of the proof of Proposition 2.18, we have proved,
see (2.60), that

∀η > 0, lim inf
n′′

{
inf

t∈[−η,+η]
ϕn′′(t)

}
= inf

t∈[−η,+η]
ϕ(t),

which implies that for every k < inf
t∈[−η,+η]

ϕ(t), one has

inf
t∈[−η,+η]

ϕn′′(t) ≥ k, for n′′ sufficiently large.

Since it results from (2.5)-(2.6) that

inf
t∈[−η,+η]

ϕ(t) → ϕ(0) = +∞, as η → 0,

we have proved that

(3.36) ∀M ∈ R, inf
t∈[−η,+η]

ϕn′′(t) ≥M, for n′′ sufficiently large.

Combining (3.35) and (3.36) we have proved that

(3.37) u = 0 ⇒ ∀M ∈ R, ϕn′′(un′′(x)) ≥M, ∀x ∈ (0, L), for n′′ sufficiently large.

On the other hand, in view of (3.15) one has

cn′′ + ϕn′′(un′′) = an′′(x)
dun′′

dx
− gn′′(x) in L2(0, L),

which combined with (3.37) implies that

∀M ∈ R, cn′′ +M ≤ an′′(x)
dun′′

dx
− gn′′(x) in L2(0, L), for n′′ sufficiently large.

Since the right-hand side of this inequality is bounded in L2(0, L) in view of (3.1)-(3.2) and (3.7),
integrating on (0, L) and dividing by L implies that there exists a constant c0 < +∞ such that

∀M ∈ R, cn′′ +M ≤ c0, for n′′ sufficiently large,

which implies that cn′′ → −∞ as n′′ → +∞, or in other terms that c̃ = −∞.
We have proved that

(3.38)


u = 0 ⇒
⇒ ∀M ∈ R, ϕn′′(un′′(x)) ≥M, ∀x ∈ (0, L), for n′′ sufficiently large ⇒
⇒ c̃ = −∞.
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Step 3: Proof of the two equivalences (3.32) and (3.33). We will deduce (3.32) and (3.33) from
the two results (3.34) and (3.38), and from the fact that when a subsequence un′′ converges weakly to
u in H1

0 (0, L) (see (3.8)), then one has the dicotomy “either u ̸= 0 or u = 0”.
Indeed, when considering c̃, one deduces from (3.32) and (3.33) and from the dicotomy “either u ̸= 0

or u = 0”, that

either c̃ is finite or c̃ = −∞,

and that one can not have c̃ = +∞.
Consider first the case when c̃ is finite; then use the dicotomy “either u ̸= 0 or u = 0”: if u = 0,

then by (3.38) c̃ = −∞, which is not the case; therefore

c̃ finite ⇒ u ̸= 0.

Consider then the case where c̃ = −∞; then use the dicotomy “either u ̸= 0 or u = 0”: if u ̸= 0, then
by (3.34) c̃ is finite, which is not the case; therefore

c̃ = −∞ ⇒ u = 0.

As far as ϕn′′(un′′) is concerned, one deduces from (3.32) and (3.33) and from the dicotomy “either
u ̸= 0 or u = 0” that, as n′′ → +∞,

either ϕn′′(un′′)⇀ ϕ(u) weakly in L2(0, L) or ϕn′′(un′′) → +∞ uniformly in [0, L].

A proof similar to the proof made just above for c̃ leads to

ϕn′′(un′′)⇀ ϕ(u) weakly in L2(0, L), as n′′ → +∞ ⇒ u ̸= 0,

and to

ϕn′′(un′′(x)) → +∞ uniformly in [0, L], as n′′ → +∞ ⇒ u = 0.

This completes the proof of the two equivalences (3.32) and (3.33) and of Proposition 3.6.
□

At the end of this section, one could think that, except maybe in some very special cases, every limit
u of weak solutions of approximations of problem (2.1) which satisfy (3.1)-(3.3) and (3.4) is always a
weak solution of problem (2.1) in the sense of Definition 2.6.

We will see in Section 4 below that this is not the case, and that for a large class of functions
g ∈ L2(0, L) (see Theorem 4.1), and for a large class of functions ϕ (see Theorem 4.4), every limit of
approximations is u ≡ 0. This is unexpected.

We will also see in Section 7 below that for an another large class of functions ϕ and for another
large class of functions g, there exists at least one weak solution of problem (2.1) in the sense of
Definition 2.6. This will be also unexpected.

4. Non-existence results

In this section we give two results of non-existence of a weak solution of problem (2.1) in the sense
of Definition 2.6.

Our first non-existence result states, in particular, that there is no weak solution of problem (2.1) in
the sense of Definition 2.6 when g ∈ L∞(0, L). This result is obtained independently of the nonlinearity
ϕ, provided ϕ(0) = +∞, i.e (2.6) holds true.

Theorem 4.1 (Non-existence when g is bounded from below). Assume that hypothesis (2.2)
holds true, and that the data (a, g, ϕ) satisfy hypotheses (2.3)-(2.5) and (2.6). Assume moreover that
exists M > 0 such that

(4.1) g(x) ≥ −M for a.e. x ∈ (0, L).

Then it does not exist any weak solution of problem (2.1) in the sense of Definition 2.6.

Remark 4.2. Observe that Theorem 4.1 implies that if, for a given nonlinearity ϕ, û is a weak solution
of problem (2.1) in the sense of Definition 2.6 corresponding to a source term g (we will see in Section
7 below that there exist many data (a, g, ϕ) for which there exist weak solutions of problem (2.1) in the
sense of Definition 2.6), one can not hope to approximate û by approximating ĝ by any sequence ĝn
which approximate ĝ (weakly or strongly) in L2(0, L): in view of Theorem 4.1, it is indeed sufficient to
approximate ĝ by a sequence ĝn ∈ L∞(0, L) which converges to g (weakly or even strongly) in L2(0, L),
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since for those ĝn there is no weak solution un of problem (2.1) in the sense of Definition 2.6 with the
source term gn.

□
The proof of Theorem 4.1 will use the following Lemma:

Lemma 4.3 (The forbidden region). Assume that hypothesis (2.2) holds true, and consider data
(a, l, ϕ) which satisfy hypotheses (2.3)-(2.5) and (2.6). Let w which satisfies

(4.2)

w ∈ H1(0, L) , ϕ(w) ∈ L2(0, L),

a(x)
dw

dx
= ϕ(w) + l in D′(0, L) .

Let A,B and x0 be such that

(4.3) 0 ≤ A < B ≤ L, x0 ∈ [A,B], w(x0) = 0 .

If l satisfies

(4.4) ∃M > 0, l(x) ≥ −M for a.e. x ∈ [A,B] ,

then one has

(4.5)


∀ k > 0, ∃ δ > 0 such that
dw

dx
≥ k, a.e. x ∈ [x0 − δ, x0 + δ] ∩ [A,B],

w(x) ≥ k(x− x0), ∀ x ∈ [x0, x0 + δ] ∩ [A,B],

w(x) ≤ k(x− x0), ∀ x ∈ [x0 − δ, x0] ∩ [A,B].

Observe that formula (4.5) implies that the graph of the function w can not enter in the forbidden
region colored red in Figure 1, when x0, which is a zero of w, can be either an interior point of [A,B]
or an extremity of [A,B], namely x0 = A or x0 = B.

L0 x

w(x)

BA A+ δ L0 x

w(x)

x0x0 − δ x0 + δ

w(x) ≤ k(x− x0)

w(x) ≥ k(x− x0)

A B L0
x

w(x)

B

B − δA

Figure 1. Visualizing the statement of Lemma 4.3:
the extreme case x0 = A, the case x0 ∈ (A,B) and the extreme case x0 = B.

Proof of Lemma 4.3. The main idea of the proof is that the facts that ϕ(w(x0)) = +∞ and l ≥ −M

and the equation of the second line of (4.2), formally imply that
dw

dx
(x0) = +∞, and therefore that

dw

dx
(x) is very large when x is close to x0. Let us write this idea in a correct mathematical form.

Because N = 1 one has H1(A,B) ⊂ C0([A,B]) by Morrey’s theorem (see (1.23)). Since w(x0) = 0,
then for every fixed ε > 0 there exists δ > 0, δ = δ(ε), such that

∀x ∈ Vδ = [x0 − δ, x0 + δ] ∩ [A,B], |w(x)| ≤ ε.

Then,

∀x ∈ Vδ |ϕ(w(x))| ≥ inf
t∈[−ε,+ε]

ϕ(t),

so that in view of (4.4) and (4.2), one has

(4.6) a(x)
dw

dx
≥ inf

t∈[−ε,+ε]
ϕ(t)−M, for a.e. x ∈ Vδ.
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Since inf
t∈[−ε,+ε]

ϕ(t) → +∞ as ε → 0, the left hand side of (4.6) is non-negative for ε sufficiently

small, so that
dw

dx
≥ 0 and, by (2.3), for ε sufficiently small, one has

β
dw

dx
≥ a(x)

dw

dx
≥ inf

t∈[−ε,+ε]
ϕ(t)−M, for a.e. x ∈ Vδ.

Dividing by β and choosing ε sufficiently small, this implies that, for every k > 0, one has for some
δ > 0

(4.7)
dw

dx
≥ k a.e. in Vδ ,

which immediately implies, using also w(x0) = 0, that also the two latest lines of (4.5) hold true.
Lemma 4.3 is proved.

□

Proof of Theorem 4.1. Assume by contradiction that there exists some u which is a weak solution
of problem (2.1) in the sense of Definition 2.6. Then, by Proposition 2.13, u satisfies

u ∈ H1(0, L), ϕ(u) ∈ L2(0, L),

u(0) = u(L) = 0,

a(x)
du

dx
= ϕ(u) + g + c in D′(0, L),

where c is given in the last line of (2.31).
Apply Lemma 4.3 with w = u, l = g + c, A = 0, B = L, and x0 = 0. Fixing any k > 0, one obtains

that for some δ0 > 0 with δ0 < L,

(4.8) u(x) ≥ kx > 0, ∀x ∈ (0, δ0] .

Let us define the set X ⊂ [0, L] and the number y by

X = {x : x ∈ [δ0, L], u(x) = 0}
y = inf

x∈X
x.

The set X is non-empty since L ∈ X; therefore y is correctly defined. In the case where y is not a
minimum, let xn be a minimizing sequence, i.e. a sequence which satisfies

xn ∈ X, i.e. xn ∈ [δ0, L], u(xn) = 0, and xn → y.

Then y ∈ [δ0, L] and u(y) = 0 since u is continuous. Since u(δ0) ≥ kδ0 > 0 by (4.8), one has
L ≥ y > δ0 > 0. The same holds in the case where y is a minimum.

Then apply again Lemma 4.3, now with w = u, l = g + c, A = δ0, B = y, and x0 = y. Fixing any
k > 0, one obtains that for some δy > 0 with y − δy ≥ δ0,

(4.9) u(x) ≤ k(x− y) < 0, ∀x ∈ [y − δy, y) .

Now observe that u(δ0) > 0 and u(y− δy) < 0. Since u is continuous there exists some y0 such that
δ0 < y0 < y − δy < y with u(y0) = 0, which contradicts the definition of y. Theorem 4.1 is proved.

□

Our second non-existence result is obtained instead independently of the source term g. It asserts
that when the singularity of ϕ at s = 0 is too strong, and, more precisely, when ϕ is not integrable
both in 0+ and 0−, then it does not exist any weak solution of problem (2.1) in the sense of Definition
2.6.

Theorem 4.4 (Non-existence when the singularity is too strong). Assume that hypothesis
(2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses (2.3)-(2.5) and (2.6). Assume moreover
that ϕ satisfies

(4.10)

ˆ +δ

0

ϕ(t) dt = +∞ , ∀δ, 0 < δ < 1,

and

(4.11)

ˆ 0

−δ

ϕ(t) dt = +∞, ∀δ, 0 < δ < 1.
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Then it does not exist any weak solution of problem (2.1) in the sense of Definition 2.6.

Remark 4.5. In the model case (2.10) where the function ϕ is given by ϕ = ϕγ defined by

(4.12) ϕγ(s) =
c

|s|γ
+ φ(s), with c > 0, γ > 0, φ ∈ C0(R),

hypotheses (4.10) and (4.11) are satisfied if and only if γ ≥ 1.
In this case the proof of Theorem 4.4 is very simple. Assume indeed by contradiction that u is a

weak solution of problem (2.1) in the sense of Definition 2.6, and let x0 ∈ [0, L] be such that u(x0) = 0.

Recalling Morrey’s embedding H1
0 (0, L) ⊂ C0, 12 ([0, L]) (see (1.23)), one has

|u(x)| = |u(x)− u(x0)| ≤ ∥u∥
C0, 1

2 ([0,L])
|x− x0|

1
2 .

Using (4.12) and recalling that u ∈ H1(0, L) and therefore φ(u) is bounded, one has

ϕγ(u(x)) =
c

|u(x)|γ
+ φ(u(x)) ≥ c

∥u∥γ
C0, 1

2 ([0,L])
|x− x0|

γ
2

+ inf
|s|≤∥u∥L∞(0,L)

|φ(s)| ,

from which one deduces that ϕγ(u(x)) ̸∈ L2(0, L) if γ ≥ 1, a contradiction.
Observe that this proof continues to hold in the case where (2.10) is only assumed to be in force on

a neighborhood of s = 0.
□

Remark 4.6. Let us remark that, when ϕ satisfies hypothesis (2.5), it is equivalent to make hypotheses
(4.10) and (4.11) for every δ, 0 < δ < 1, or to assume that there exists some δ0 > 0 such that hypothesis
(4.10) and (4.11) hold true for this fixed δ0.

□

Theorem 4.4 immediately follows from the following proposition, which has its own interest.

Proposition 4.7. Assume that hypothesis (2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses
(2.3)-(2.5) and (2.6). Assume moreover that ϕ satisfies (4.10). Then every possible weak solution of
problem (2.1) in the sense of Definition 2.6 is non-positive.

Similarly, assume that ϕ satisfies (4.11). Then every possible weak solution of problem (2.1) in the
sense of Definition 2.6 is non-negative.

Proposition 4.7 is itself an immediate consequence of the following result, where the set U is defined
by

(4.13) U = {u ∈ H1
0 (0, L) such that ϕ(u) ∈ L2(0, L)};

observe that every solution u of problem (2.1) in the sense of Definition 2.6 belongs
to U , while 0 ̸∈ U .

Proposition 4.8. Assume that hypothesis (2.2) holds true, let ϕ be a nonlinearity satisfying (2.5) and
(2.6), and let u ∈ U . Then if ϕ satisfies (4.10), one has

(4.14) u(x) ≤ 0, ∀x ∈ [0, L];

if ϕ satisfies (4.11), one has

(4.15) u(x) ≥ 0, ∀x ∈ [0, L].

Proof of Proposition 4.8. We will prove that hypothesis (4.10) implies (4.14). In the case where
(4.11) is assumed instead of (4.10), the proof of (4.15) is similar.

Assume that (4.10) holds true and assume by contradiction that u ∈ U is such that for some
x0 ∈ (0, L) one has u(x0) > 0.

Define y0 by

(4.16) y0 = inf{x ∈ [0, x0] such that u(z) > 0 for all z ∈ (x, x0]}

(one could also consider y1 = sup{x ∈ [x0, L] such that u(z) > 0 for all z ∈ [x0, x)). Observe that y0 is
well defined since the set {x ∈ [0, x0] such that u(z) > 0 for all z ∈ (x, x0]} is not empty as it contains
x0, and that 0 ≤ y0 < x0 since u is continuous. One has

(4.17) u(y0) = 0;



UNEXPECTED PHENOMENA IN A SINGULAR 1D ELLIPTIC EQUATION 27

indeed, since u(x) > 0 for every x ∈ (y0, x0], one has u(y0) ≥ 0; but if u(y0) > 0, there exists δ > 0
such that u(x) > 0 for every x ∈ [y0 − δ, y0 + δ], a contradiction with the definition (4.16) of y0.

On the other hand, fix δ > 0 and define the function ψ̂δ : ]0,+∞[7→ R by

ψ̂δ(s) =

ˆ δ

s

ϕ(t)dt, ∀s > 0,

or equivalently by

ψ̂δ(δ) = 0, ψ̂′
δ(s) = −ϕ(s), ∀s > 0;

(please do not confuse this function ψ̂δ with the function ψn used in the proof of Lemma 2.12 above,
whose definition is recalled in (5.17) below). Then (4.10) is equivalent to

(4.18) ψ̂δ(s) → +∞ as s→ 0, s > 0.

Recall that u ∈ H1
0 (Ω) ⊂⊂ C0([0, L]), and for η such that 0 < η < x0 − y0, define the two real

numbers uη and u by
uη = min

x∈[y0+η,x0]
u(x), u = max

x∈[y0,x0]
u(x),

and observe that

∀η, 0 < η < x0 − y0, one has 0 < uη ≤ u(x) ≤ u < +∞, ∀x ∈ [y0 + η, x0].

Define also the two real numbers

ϕ = min
s∈[0,u]

ϕ(s), ϕη = max
s∈[uη,u]

ϕ(s),

and observe that ϕη is finite for every η, 0 < η < x0 − y0, even if it is unbounded as η → 0.

Then since u ∈ H1(y0 + η, x0) and since

ϕ ∈ C0
b ([uη, u]), which implies that ψ̂δ ∈ C1([uη, u]),

one has the chain rule

ϕ(u)
du

dx
= −ψ̂′

δ(u)
du

dx
= −dψ̂δ(u)

dx
in L2(y0 + η, x0),

and thereforeˆ x0

y0+η

ϕ(u)
du

dx
dx =

ˆ x0

y0+η

−dψ̂δ(u)

dx
dx = ψ̂δ(u(y0 + η))− ψ̂δ(u(x0)), ∀η, 0 < η < x0 − y0.

Now ψ̂δ(u(x0)) is finite, while in view of (4.17) and (4.18) one has

u(y0 + η) → 0 and ψ̂δ(u(y0 + η)) → +∞, as η → 0, η > 0,

which implies that

(4.19)

ˆ x0

y0+η

ϕ(u)
du

dx
dx→ +∞, as η → 0, η > 0,

a contradiction since u ∈ U . This proves Proposition 4.8.
□

5. Studying an (associated) ODE

In this section we will study an Ordinary Differential Equation (ODE) that for the moment we
formally write as

(5.1)

a(x)
dv

dx
= ϕ(v) + h(x) in (0, L) ,

v(0) = 0.

Under convenient hypotheses, we will prove an existence result, an a priori estimate, and two
stability results (Subsection 5.1), a positivity result, a comparison result, and an uniqueness result
(Subsection 5.2). For the sake of exposition these results are summarized in the brief Subsection 5.3.

The ODE (5.1) is clearly strongly related to problem (2.1), see e.g. (2.30) in Proposition 2.13 above.
But in the present section we will not try to make any connection between the two problems and we
will study the ODE (5.1) for itself. The results of the present section will then be exploited in the
following sections, and in particular in Section 6 to obtain multiplicity results for problem (2.1).
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In order to emphasize the difference between the present study of ODE (5.1) and the study of
problem (2.1), we will denote by v (and not by u as in problem (2.1)) the solution of the ODE (5.1).
We will also denote by (a, h, ϕ) (and not by (a, g, ϕ)) the data for ODE (5.1).

In the whole section we will assume that the data (a, h, ϕ) satisfy the following hypotheses (see
Remark 5.2 below for a comparison with the hypotheses (2.3)-(2.5) on the data (a, g, ϕ) for problem
(2.1)):

(5.2) a ∈ L∞(0, L), ∃ α, β, 0 < α < β, α ≤ a(x) ≤ β a.e. x ∈ (0, L),

(5.3) h ∈ L2(0, L),

(5.4)

{
ϕ : R 7→ R ∪ {+∞}, ϕ is continuous with values in R ∪ {+∞},
ϕ(s) < +∞, ∀s ∈ R, s ̸= 0 ,

(5.5)

ˆ +δ

0

ϕ(t) dt < +∞,

ˆ 0

−δ

ϕ(t) dt < +∞, ∀δ, 0 < δ < 1,

(5.6) ϕ ∈ C0
b (R\(−δ, δ)), ∀ δ > 0.

Remark 5.1. When ϕ(0) < +∞, then (5.5) is automatically satisfied, and, due to (5.6), one has
ϕ ∈ C0

b (R). In this case the results of the present section are classical. But the interest is actually in
the case

ϕ(0) = +∞,

where the results of this section are new.
□

Remark 5.2. Hypothesis (5.2) on a, (5.3) on h, and (5.4) on ϕ are identical to hypotheses (2.3) on
a, (2.4) on g, and (2.5) on ϕ made in Section 2 above.

In contrast, hypotheses (5.5) and (5.6) on ϕ are new and restrictive in comparison with the
hypotheses made in Section 2 above.

Hypothesis (5.5) it is quite natural in this context; recall in fact that it is proved in Theorem 4.4
above that if ϕ satisfies (4.10) and (4.11), namely if

(5.7)

ˆ +δ

0

ϕ(t) dt = +∞,

ˆ 0

−δ

ϕ(t) dt = +∞, ∀δ, 0 < δ < 1,

(compare with hypothesis (5.5)), then problem (2.1) does not have any weak solution in the sense of
Definition 2.6.

Concerning hypothesis (5.6), observe that this new hypothesis impose a restriction on the function ϕ
in comparison with the hypotheses made in Section 2: indeed hypothesis (5.6) impose that ϕ is bounded
at s = −∞ and s = +∞, or in other terms that ϕ ∈ C0

b (R\(−δ,+δ)) for every δ > 0 (compare with
(2.9)). However this restriction can be considered as tolerable due to the uniform boundedness of every
possible solutions of problem (5.1) (see Remark 2.5 above).

□

Remark 5.3. Observe that, when ϕ satisfies hypothesis (5.4), it is equivalent to make hypothesis (5.5)
for every δ, 0 < δ < 1, and hypothesis (5.6) for every δ, δ > 0, or to assume that there exists some
δ0 > 0 such that hypotheses (5.5) and (5.6) hold true for this δ0.

□

Remark 5.4. In the ODE (5.1) we have assumed that the (Cauchy) initial condition is v(0) = 0.
Results similar to the ones stated and proved in the present section could be obtained for any arbitrary
initial condition v(0) = v0 ∈ R. We do not consider this possibility here since our interest in the present
paper is only in the case where v(0) = 0.

□
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5.1. Existence of a solution of the Cauchy problem (5.8). The mathematical (correct)
formulation of initial value problem associated to the ODE in (5.1) that we will use in this paper
is the following: we look for a function v which satisfies

(5.8)


v ∈ H1(0, L), ϕ(v) ∈ L2(0, L) ,

a(x)
dv

dx
= ϕ(v) + h in D′(0, L),

v(0) = 0 .

In this subsection we will prove the following existence result:

Theorem 5.5 (Existence). Assume that (2.2) holds true, and that the data (a, h, ϕ) satisfy hypotheses
(5.2)-(5.6). Then there exists at least a solution of problem (5.8).

The proof of the existence Theorem 5.5 is based on the two propositions 5.9 and 5.11 below. Before
stating and proving these two propositions, let us state and prove a lemma which looks natural but is
not so easy to obtain due to the possible singularity of the function ϕ.

Let us define the function ψ : R 7→ R by

(5.9) ψ(s) =

ˆ s

0

ϕ(t)dt, ∀ s ∈ R;

note that in view of hypothesis (5.5) the function ϕ is integrable both in 0+ and 0−, and that the
function ψ therefore satisfies

(5.10) ψ ∈W 1,1
loc (R) ⊂ C0(R) with ψ(0) = 0 .

Lemma 5.6. Assume that (2.2) holds true, and that ϕ satisfies hypotheses (5.4)-(5.6). Let z satisfying

(5.11) z ∈ H1(0, L) with ϕ(z) ∈ L2(0, L).

Then the function ψ defined by (5.9) satisfies

(5.12) ψ(z) ∈W 1,1(0, L) with
dψ(z)

dx
= ϕ(z)

dz

dx
in D′(0, L),

a result which in particular implies that

(5.13)

ˆ L

0

ϕ(z)
dz

dx
dx = ψ(z(L))− ψ(z(0)).

Remark 5.7. When ϕ(0) < +∞, the result (5.12) is classical since then ϕ ∈ C0
b (R) in view of (5.4)

and (5.6). Indeed in this case one has ψ′ = ϕ ∈ C0
b (R), which implies that ψ ∈ C1(R) ∩ Lip(R); the

classical chain rule in H1(0, L) then implies that

ψ(z) ∈ H1(0, L) with
dψ(z)

dx
= ϕ(z)

dz

dx
in D′(0, L),

which implies (5.12).
□

Remark 5.8. If z ∈ H1
0 (0, L), the result (5.13) implies that

ˆ L

0

ϕ(z)
dz

dx
dx = ψ(0)− ψ(0) = 0− 0 = 0.

This result is nothing but Lemma 2.12 above, which we recall was proven under the sole hypothesis
(2.5) (identical to (5.4)) without making hypotheses (5.5) and (5.6) on ϕ.

□

Proof of Lemma 5.6. Step 1. Fix R > 0. Then, one has

ψ(s) =

ˆ s

0

ϕ(t)dt =

ˆ +R

0

ϕ(t)dt+

ˆ s

+R

ϕ(t)dt, ∀s ≥ +R,

which, thanks to (5.6), implies that
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(5.14)


|ψ(s)| ≤

ˆ +R

0

|ϕ(t)|dt+ ∥ϕ∥L∞(+R,+∞) (s−R) ≤

≤ ∥ϕ∥L1(0,+R) + ∥ϕ∥L∞(+R,+∞) |s| , ∀ s ≥ +R,

a result which in fact holds true for every s ≥ 0.
Similarly, one has, for s ≤ −R

ψ(s) =

ˆ s

0

ϕ(t)dt =

ˆ −R

0

ϕ(t)dt+

ˆ s

−R

ϕ(t)dt, ∀s ≤ −R,

which implies that

(5.15)


|ψ(s)| ≤

ˆ 0

−R

|ϕ(t)|dt+ ∥ϕ∥L∞(−∞,−R) (−R− s) ≤

≤ ∥ϕ∥L1(−R, 0) + ∥ϕ∥L∞(−∞,−R) |s| , ∀ s ≤ −R,

a result which in fact holds true for every s ≤ 0.
These two results imply that when ϕ satisfies (5.4)-(5.6), one has

(5.16) |ψ(s)| ≤ ∥ϕ∥L1(−R,+R) + ∥ϕ∥L∞(R\[−R,+R]) |s| , ∀R > 0, ∀ s ∈ R.

Step 2. Let Tn be the truncation at height n defined by (1.24). Then Tn(ϕ) ∈ C0
b (R).

Defining, as it was done in the proof of Lemma 2.12, the function3 ψn by

(5.17) ψn(s) =

ˆ s

0

Tn(ϕ(t)) dt, ∀s ∈ R,

one has ψn ∈ C1(R) ∩ Lip(R), so that, as observed in the Remark 5.7 where ϕ ∈ C0
b (R), one has

(5.18) ψn(z) ∈ H1(0, L) with
dψn(z)

dx
= Tn(ϕ(z))

dz

dx
in D′(0, L).

Let us now use the fact that ϕ(z) ∈ L2(0, L).
Since

|Tn(ϕ(z(x)))| ≤ |ϕ(z(x))|, a.e. x ∈ (0, L) with Tn(r)→ r as n→ +∞, ∀r ∈ R,

Lebesgue’s dominated convergence theorem implies that

(5.19) Tn(ϕ(z))
dz

dx
→ ϕ(z)

dz

dx
strongly in L1(0, L).

On the other hand, in view of (5.16), one has

|ψn(s)| ≤ ∥Tn(ϕ)∥L1(−R,+R) + ∥Tn(ϕ)∥L∞(R\[−R,+R])|s| ≤

≤ ∥ϕ∥L1(−R,+R) + ∥ϕ∥L∞(R\[−R,+R]) |s|, ∀k > 0, ∀s ∈ R.
(5.20)

Since z ∈ H1(0, L) ⊂ L∞(0, L), this implies that

(5.21) ψn(z) is bounded in L∞(0, L).

Also, for every s ∈ R, one has by (5.5)

ϕ ∈ L1(0, s) if s > 0, and ϕ ∈ L1(s, 0) if s < 0,

while {
|Tn(ϕ(t))| ≤ |ϕ(t)| ,∀ t ∈ (0, s) if s > 0, and ∀t ∈ (s, 0) if s < 0,

with Tn(r)→ r as n→ +∞, ∀r ∈ R,

3Please do not confuse this function ψn with the function ψ̂δ used in the proof of Proposition 4.8
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so that Lebesgue’s dominated convergence theorem (in L1(0, s) and in L1(s, 0)) implies that

(5.22) ψn(s) =

ˆ s

0

Tn(ϕ(t))dt→
ˆ s

0

ϕ(t)dt = ψ(s), ∀s ∈ R.

From (5.21) and (5.22) one deduces (using again Lebesgue’s dominated convergence theorem) that

(5.23) ψn(z) → ψ(z) strongly in Lp(0, L) ∀p, 1 ≤ p < +∞.

This fact implies that
dψn(z)

dx
converges to

dψ(z)

dx
in D′(0, L) and also, by (5.18) and (5.19), strongly

in L1(0, L); this implies that
dψ(z)

dx
= ϕ(z)

dz

dx
, and therefore that ψ(z) ∈W 1,1(0, L).

Lemma 5.6 is proved.
□

Proposition 5.9 (A priori estimate). Assume that (2.2) holds true, and that the data (a, h, ϕ)
satisfy hypotheses (5.2)-(5.6). If v is any solution of the problem (5.8), then, for any given R > 0, v
satisfies

(5.24) ∥v∥H1(0,L) ≤ CR ,

where CR is given by

(5.25) CR = (L+ 1)

(√
L∥ϕ∥L∞(R\[−R,+R]) + ∥h∥L2(0,L)

α
+

√
∥ϕ∥L1(−R,+R)√

α

)
,

which depends only on R, L, α, ∥h∥L2(0,L), ∥ϕ∥L1(−R,+R), and ∥ϕ∥L∞(R\(−R,+R)).

Proof of Proposition 5.9. Multiplying pointwise the second line of (5.8) by
dv

dx
and integrating

between 0 and L, we get

(5.26)

ˆ L

0

a(x)

∣∣∣∣dvdx
∣∣∣∣2 dx =

ˆ L

0

ϕ(v)
dv

dx
dx+

ˆ L

0

h(x)
dv

dx
dx .

Using in (5.26) the coercivity of a (see (5.2)), the result (5.13), ψ(v(0)) = ψ(0) = 0, and the
Cauchy-Schwartz inequality implies that

(5.27) α

ˆ L

0

∣∣∣∣dvdx
∣∣∣∣2 dx ≤ |ψ(v(L))|+ ∥h∥L2(0,L)

∥∥∥∥dvdx
∥∥∥∥
L2(0,L)

.

Since v ∈ H1(0, L) with v(0) = 0, (5.16) combined with Morrey’s estimate (1.22) (which continues
to hold true for z ∈ H1(0, L) with z(0) = 0 without assuming that z(L) = 0), yields

|ψ(v(L))| ≤ ∥ϕ∥L1(−R,+R) + ∥ϕ∥L∞(R\[−R,+R]) |v(L)| ≤

≤ ∥ϕ∥L1(−R,+R) + ∥ϕ∥L∞(R\[−R,+R])

√
L

∥∥∥∥dvdx
∥∥∥∥
L2(0,L)

, ∀R > 0.

(5.28)

Turning back to (5.27) we have proved that, for every R > 0

α

∥∥∥∥dvdx
∥∥∥∥2
L2(0,L)

≤
(√

L∥ϕ∥L∞(R\[−R,+R]) + ∥h∥L2(0,L)

)∥∥∥∥dvdx
∥∥∥∥
L2(0,L)

+ ∥ϕ∥L1(−R,+R).

From this inequality, using the fact that for α > 0, B > 0, Γ > 0, one has

αX2 ≤ BX + Γ, X ≥ 0 ⇐⇒ 0 ≤ X ≤ B +
√
B2 + 4αΓ

2α

and then the inequality

B +
√
B2 + 4αΓ

2α
≤ B +B + 2

√
αΓ

2α
=
B

α
+

√
Γ√
α
,



32 D. GIACHETTI, P.J. MARTÍNEZ-APARICIO, F. MURAT, AND F. PETITTA

one deduces that v satisfies

(5.29)

∥∥∥∥dvdx
∥∥∥∥
L2(0,L)

≤
√
L∥ϕ∥L∞(R\[−R,+R]) + ∥h∥L2(0,L)

α
+

√
∥ϕ∥L1(−R,+R)√

α
,∀R > 0 .

Combined with the Poincaré inequality (1.21) (which continues to hold true for z ∈ H1(0, L) with
z(0) = 0 without assuming that z(L) = 0), namely

(5.30) ∥z∥L2(0,L) ≤ L

∥∥∥∥dzdx
∥∥∥∥
L2(0,L)

,

formula (5.29) gives the desired a priori estimate (5.24) with CR given by (5.25).
□

Remark 5.10. Observe that as far as Lemma 5.9 is concerned it is an a priori estimate for any possible
solution of the problem (5.8).

Observe that the proof of this result is a proof in the spirit of an a priori estimate for a PDE, rather
then for an ODE.

□

Proposition 5.11 (Passage to the limit). Assume that (2.2) holds true, and that the data (a, h, ϕ)
satisfy hypotheses (5.2)–(5.6). Let hk be a sequence which satisfies

(5.31) hk ∈ L2(0, L), hk ⇀ h weakly in L2(0, L).

Let also ϕk be a reasonable sequence of approximations of ϕ which satisfies (5.4)–(5.6) for every k.
Assume that there exists some R∗ > 0 and some C∗ > 0 such that, one has

(5.32) (L+ 1)

√
L∥ϕk∥L∞(R\[−R∗,+R∗]) + ∥hk∥L2(0,L)

α
+

√
∥ϕk∥L1(−R∗,+R∗)

√
α

 ≤ C∗, ∀k .

Consider a sequence of solutions vk of the ODE problem

(5.33)


vk ∈ H1(0, L), ϕk(vk) ∈ L2(0, L) ,

a(x)
dvk
dx

= ϕk(vk) + hk in D′(0, L),

vk(0) = 0 .

Then there exists a function v and a subsequence, denoted by vk′ , such that

(5.34) vk′ ⇀ v weakly in H1(0, L),

where v is a solution of the ODE (5.8), that is

(5.35)


v ∈ H1(0, L), ϕ(v) ∈ L2(0, L) ,

a(x)
dv

dx
= ϕ(v) + h in D′(0, L),

v(0) = 0 .

Moreover, if further to hypothesis (5.31), the sequence hk satisfies

(5.36) hk → h strongly in L2(0, L),

and if, further to hypotheses (5.4)–(5.6), the sequence ϕk satisfies

(5.37) ϕk(s) → ϕ(s) strongly in L1
loc(R).

then one has the strong convergence

(5.38) vk′ → v strongly in H1(0, L).

Remark 5.12. Note that in view of hypotheses (5.4) and (5.5) the funciton ϕ satisfies ϕ ∈ L1
loc(R).

Therefore hypothesis (5.37) makes sense.
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Proof. In view of (5.24), (5.25), and (5.32) we have

∥vk∥H1(0,L) ≤ C∗ .

Therefore, there exists a v ∈ H1(0, L) and a subsequence, denoted by vk′ , such that{
vk′ ⇀ v weakly in H1(0, L),

vk′ → v strongly in L2(0, L) and a.e. in (0, L).

Moreover,

ϕk(vk) = a(x)
dvk
dx

− hk is bounded in L2(0, L),

so that, since ϕk is a reasonable sequence of approximations of ϕ, one gets{
ϕk′(vk′) → ϕ(v) a.e. in (0, L),

ϕk′(vk′)⇀ ϕ(v) weakly in L2(0, L),

which allows one to pass to the limit in (5.33) and to prove that v satisfies (5.35).
In order to prove the strong convergence (5.38), assume now hypothesis (5.36), namely that the

sequence hk converges strongly in L2(0, L), as well as thypothesis (5.37), namely that the sequence ϕk

converges strongly in L1
loc(R). Multiplying pointwise the equation in (5.33) by

dvk
dx

and integrating on

(0, L) we get ˆ L

0

a(x)
dvk
dx

dvk
dx

dx =

ˆ L

0

ϕk(vk)
dvk
dx

dx+

ˆ L

0

hk(x)
dvk
dx

dx .

Define now in this proof the function ψk by

ψk(s) =

ˆ s

0

ϕk(t) dt, ∀k ∈ R,

(please do not confuse this function ψk, neither with the function ψn defined by (5.17) and used in

the proof of Lemma 2.12 and of Lemma 5.6, nor with the function ψ̂δ used in the proof of Proposition
4.8).

Using formula (5.13) and ψk(vk(0)) = ψk(0) = 0, we get

(5.39)

ˆ L

0

a(x)
dvk
dx

dvk
dx

dx = ψk(vk(L)) +

ˆ L

0

hk(x)
dvk
dx

dx .

Since the subsequence vk′ converges weakly in H1(0, L) (see (5.34)) and therefore by Morrey’s
embedding strongly in C0([0, L]), since the sequnce ϕk converges strongly in L1

loc(R), which implies

that the sequence ψk converges strongly in W 1,1
loc (R), and therefore strongly in C0

loc(R), and finally
since the sequence hk is assumed to converge strongly to h in L2(0, L) (see (5.36)), the right hand side
of (5.39) converges to

ψ(v(L)) +

ˆ L

0

h(x)
dv

dx
dx,

which is nothing but ˆ L

0

a(x)
dv

dx

dv

dx
dx,

(multiply pointwise the second line of (5.8) by
dv

dx
and integrate between 0 and L, which is allowed),

we have proved that

(5.40)

ˆ L

0

a(x)
dvk′

dx

dvk′

dx
dx→

ˆ L

0

a(x)
dv

dx

dv

dx
dx.

Passing to the limit inˆ L

0

a(x)

(
dvk′

dx
− dv

dx

)(
dvk′

dx
− dv

dx

)
dx ≥ α

ˆ L

0

(
dvk′

dx
− dv

dx

)2

dx

with the help of (5.34) and (5.40) proves (5.38).
Proposition 5.11 is proved.

□
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Proof of Theorem 5.5. In order to prove the existence theorem 5.5 we will apply three times
Proposition 5.11 to the following sequences of approximations:

• Firstly, for any n ∈ N, we define ϕn : R 7→ R by

ϕn(s) = Tn(ϕ(s)) ,

where Tn is the truncation at level n defined by (1.24).
• Then, for n fixed, for any m ∈ N, we define ϕn,m : R 7→ R by

ϕn,m(s) =


ϕn(−m) if s < −m,
ϕn(s) if |s| ≤ m,

ϕn(m) if s > m .

• Finally, for n and m fixed, for any ε > 0, we define ϕn,m,ε : R 7→ R by

ϕn,m,ε = ϕn,m ∗ ρε,

where ρε is a standard sequence of mollifiers.
We will first pass to the limit in ε for n and m fixed.
Recalling the fifth example in Remark 2.17, one observes that the function ϕn,m ∈ C0(R) and that

the function ϕn,m,ε ∈ Lip(R). Therefore there exists a unique solution vn,m,ε of problem (5.8) for the
function ϕn,m,ε. For n and m fixed, the sequence ϕn,m,ε is a good sequence of approximations of ϕn,m,
which satisfies

∥ϕn,m,ε∥L∞(R) ≤ ∥ϕn,m∥L∞(R) ≤ n.

Therefore, for n and m fixed, (5.32) is satisfied with a constant C∗ given by

(L+ 1)

(√
Ln+ ∥h∥L2(0,L)

α
+

√
2R∗n√
α

)
.

An application of Proposition 5.11 proves the existence of a solution vn,m of problem (5.8) for the
function ϕn,m.

We will then pass to the limit in m for n fixed.
For n fixed, the sequence ϕn,m is a good sequence of approximations of ϕn, which satisfies, for

m > R∗,

ϕn,m = ϕn in (−R∗,+R∗),

∥ϕn,m∥L∞(R\[−R∗,+R∗]) ≤ ∥ϕn∥L∞(R\[−R∗,+R∗]).

Therefore, for n fixed and m > R∗, (5.32) is satisfied with a constant C∗ given by

(L+ 1)

(√
L∥ϕn∥L∞(R\[−R∗,+R∗]) + ∥h∥L2(0,L)

α
+

√
∥ϕn∥L1(−R∗,+R∗)√

α

)
.

An application of Proposition 5.11 proves the existence of a solution vn of problem (5.8) for the function
ϕn.

We will finally pass to the limit in n.
The sequence ϕn is a good sequence of approximations of ϕ (recall the first example in Remark 2.17),

which satisfies

|ϕn(s)| ≤ |ϕ(s)|, ∀s ∈ R.

Therefore (5.32) is satisfied with a constant C∗ given by

(L+ 1)

(√
L∥ϕ∥L∞(R\[−R∗,+R∗]) + ∥h∥L2(0,L)

α
+

√
∥ϕ∥L1(−R∗,+R∗)√

α

)
.

An application of Proposition 5.11 proves the existence of a solution v of problem (5.8) for the function
ϕ, namely the Theorem 5.5.

□
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5.2. Positivity, comparison and uniqueness of the solutions of (5.8). In this subsection, further
to hypotheses (5.2)–(5.6) on the data (a, g, ϕ), we shall assume (2.6), that is

(5.41) ϕ(0) = +∞,

i.e. that ϕ is singular in s = 0, and that

(5.42) ∀ η ∈ (0, L), ∃Mη > 0, such that h(x) ≥ −Mη ∀ x ∈ [0, L− η];

i.e. that h may blow down to −∞ only for x = L.

Remark 5.13. Observe that hypothesis (5.42) looks similar to hypothesis (4.1) of Theorem 4.1, but
that these two hypoteses are used in the study of two different problems (namely problem (5.8) and
problem (2.1)), for which they imply very different consequences. Indeed in (5.42) one assumes η > 0,
so that h may blow down at s = L, while, in Theorem 4.1, one assumes that h is globally bounded
from below, i.e. that in some sense η = 0, an assumption which implies that problem (2.1) does not
have any weak solution in the sense of Definition 2.6.

□

Proposition 5.14 (Positivity). Assume that (2.2) holds true, and that the data (a, h, ϕ) satisfy
hypotheses (5.2)–(5.6) and (5.41)–(5.42).

Then any solution v of the ODE problem (5.8) satisfies

(5.43) v(x) > 0, ∀x ∈ (0, L).

L
0

x0

x

v(x)

Figure 2. The forbidden region in red

Proof. Since all the hypotheses of the existence Theorem 5.5 are assumed in the statement of
Proposition 5.14, the ODE problem (5.8) has at least a solution v.

Apply Lemma 4.3 with w = v, l = h, A = 0, B = L, and x0 = 0; this is licit in view of hypothesis
(5.42). Fixing any k > 0, one obtains that for some δ0 > 0 with δ0 < L, one has

(5.44) v(x) ≥ kx > 0, ∀x ∈ (0, δ0] .

The function v ∈ C0([0, δ0]) satisfies (5.44). Then one has the following alternative: either

(5.45) v(x) > 0, ∀x ∈ (0, L),

or

(5.46) ∃x̂, x̂ ∈ (δ0, L), v(x̂) = 0.

In the second case, we define the set X and the number y by

X = {x : x ∈ [δ0, L], u(x) = 0}
y = inf

x∈X
x.

The set X is non-empty, since x̂ ∈ X; therefore y is correctly defined, y > δ0, and reasoning as in
the proof of Theorem 4.1, y is actually a minimum, i.e. v(y) = 0.
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Apply now Lemma 4.3 with w = v, l = h, A = 0, B = L, and x0 = y. Fixing any k > 0, one obtains
that for some δy > 0, one has

v(x) ≤ k(x− y) < 0, ∀x ∈ (y − δy, y) .

a contradiction with the definitions of the set X and of y.
Therefore the second possibility (5.46) is impossible and so (5.45) holds, i.e.

v(x) > 0, ∀x ∈ (0, L).

This completes the proof of Proposition 5.14.
□

Remark 5.15. Proposition 5.5 can be analogously proved for the ”backward” case (starting from L)
by performing the change of variable y = L − x. In this case, a corresponding result of the one in
Lemma 5.14 can be proved provided one assume (5.42) in [η, L] instead of [0, L− η]; as an application
of Lemma 4.3 in this case the solution is negative and it cannot be zero up to possibly x = 0. □

In the rest of this section, further to hypotheses (5.2)–(5.6) and (5.41)–(5.42), we also assume that
ϕ(s) is monotone non-increasing for s > 0, i.e. that:

(5.47) ϕ(s) ≥ ϕ(t) for 0 ≤ s ≤ t .

Proposition 5.16 (Comparison and uniqueness). Assume that (2.2) holds true, and that the
data (a, h1, ϕ) and (a, h2, ϕ) satisfy hypotheses (5.2)–(5.6), (5.41)–(5.42), and (5.47). Let v1 and v2 be
solutions of problem (5.8) for the data h1 and h2. Assume that

(5.48) h1 ≤ h2 ,

then one has

(5.49) v1 ≤ v2.

This comparison result immediatly implies that the solution of ODE problem (5.8) is unique.

Proof. By Theorem 5.14 v1 and v2 are positive. We take the difference of the second lines of the
formulations 

v1 ∈ H1(0, L), ϕ(v1) ∈ L2(0, L) ,

a(x)
dv1
dx

= ϕ(v1) + h1 in D′(0, L),

v1(0) = 0 ,
v2 ∈ H1(0, L), ϕ(v2) ∈ L2(0, L) ,

a(x)
dv2
dx

= ϕ(v2) + h2 in D′(0, L),

v2(0) = 0 ,

and we multiply this difference pointwise by (v1 − v2)
+. Since (v1 − v2)

+ ∈ H1(0, L), using (5.47) and
(5.48), one has

a(x)

2

d

dx
((v1 − v2)

+)2 = (ϕ(v1)− ϕ(v2))(v1 − v2)
+ + (h1 − h2)(v1 − v2)

+ ≤ 0,

(v1 − v2)
+(0) = 0,

which easily implies the comparison result.
□

5.3. Synthesis of the results on the ODE problem (5.8). To conclude this section, we synthesize
the results that we have proved concerning the ODE problem (5.8), namely

v ∈ H1(0, L), ϕ(v) ∈ L2(0, L) ,

a(x)
dv

dx
= ϕ(v) + h in D′(0, L),

v(0) = 0 .

If we assume that the data satisfy hypotheses (5.2)–(5.6), then the ODE problem (5.8) has at least
one solution (Theorem 5.5). Moreover, all the possible solutions of (5.8) satisfy an a priori estimate
(Proposition 5.9). These solutions enjoy a stability property (Proposition 5.11), namely the fact that
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from a sequence of solutions of problems (5.8) relative to a sequence of reasonable approximations ϕk
of ϕ, one can extract a subsequence which converges to a solution of problem (5.8) relative to ϕ, weakly
in H1(0, L) if the sequence of source terms converges weakly in L2(0, L), and strongly in H1(0, L) if
the sequence of source terms converges strongly in L2(0, L) and if the sequence ϕk strongly converges
in L1

loc(R).
If further to hypotheses (5.4)–(5.6), we assume that the data satisfy hypotheses (5.41) (ϕ(0) = +∞)

and (5.42) (h(x) ≥Mη on (0, L− η) for every η > 0), then every solution of the ODE problem (5.8) is
positive in (0, L) (Proposition 5.14).

If in addition to hypotheses (5.4)–(5.6) and (5.41)–(5.42), we assume hypothesis (5.47) (ϕ monotone
non-increasing for s > 0), then the solutions of the ODE problem (5.8) satisfy a comparison principle
and the solution is unique (Proposition 5.16). In this latest case, the stability property described above
becomes the continuity (in the weak and in the strong topologies) of the application which from the
source term h provides the (unique) solution of the ODE problem (5.8).

6. An unexpected multiplicity result

In this section we show that, under suitable assumptions on ϕ, if there exists a solution of (2.1) in
the sense of Definition 2.6 then there are infinitely many solutions of (2.1) in the sense of Definition
2.6. Here we will assume that g satisfies (5.42) with h replaced by g, i.e.

(6.1) ∀ η ∈ (0, L), ∃Mη > 0, such that g(x) ≥ −Mη ∀ x ∈ [0, L− η].

Here is the main result of this section:

Theorem 6.1. Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses (2.3)–(2.6),
(5.5)-(5.6), (5.47) and (6.1).

Assume that there exists a solution u of problem (2.1) in the sense of Definition 2.6. Then there
exist infinitely many solutions of (2.1) in the sense of Definition 2.6.

More precisely, there exists a critical value c∗ satisfying

(6.2) c∗ ≤ 1√
L

(
β

α
+ 1

)
∥g∥L2(0,L) − inf

s∈R
ϕ(s) ,

and a function U

(6.3) U : c ∈ (−∞, c∗] −→ U(c) ∈ H1
0 (0, L) weakly continuous in H1

0 (0, L) ,

which satisfies

(6.4) U(c) is a solution of problem (2.1) in the sense of Definition 2.6 ,

(6.5) U(c) ≥ 0 ,

(6.6)

{
for any c1, c2 ∈ (−∞, c∗] such that c1 < c2,

then U(c1)(x) < U(c2)(x) for any x ∈ (0, L) ,

(6.7)

{
U(c)⇀ 0 weakly in H1

0 (0, L),

U(c) → 0 uniformly on [0, L],
when c→ −∞.

Moreover

(6.8)

{
for any solution u of problem (2.1) in the sense of Definition 2.6 for the data (a, g, ϕ),

there exists (a unique) c ∈ (−∞, c∗] such that u = U(c) .

Proof of Theorem 6.1. We assumed that there exists a solution u of problem (2.1) in the sense of
Definition 2.6. Then by Proposition 2.13, u also solves

(6.9)

u ∈ H1
0 (0, L), ϕ(u) ∈ L2(0, L),

a(x)
du

dx
= ϕ(u) + g + c in D′(0, L),
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for

(6.10) c = −

ˆ L

0

ϕ(u)

a(x)
dx+

ˆ L

0

g

a(x)
dx

ˆ L

0

1

a(x)
dx

.

On the other hand, for every c ∈ R, by Theorem 5.5 with h = g + c and Proposition 5.16 there
exists a unique solution vc of

(6.11)


vc ∈ H1(0, L), ϕ(vc) ∈ L2(0, L),

a(x)
dvc
dx

= ϕ(vc) + g + c in D′(0, L),

vc(0) = 0.

This allows us to define a function V by

V : c ∈ R −→ V (c) = vc ∈ H1(0, L) .

Since, by Lemma 5.14, V (c) = vc > 0 in (0, L), one has

(6.12) V (c)(L) ≥ 0 ∀ c ∈ R.

Observe that V (c) is a solution of problem (2.1) in the sense of Definition 2.6 if and only if
V (c)(L) = 0.

Moreover, as a consequence of Proposition 5.16, u = V (c), and, in particular, V (c)(L) = 0.
For any c < c one has, again by Proposition 5.16, V (c) ≤ V (c). Therefore, by (6.12), we have

V (c)(L) = 0 and V (c) is a solution of (2.1) in the sense of Definition 2.6.
For any c ∈ R we consider the solution V (c) of (6.11) and we define

c∗ = sup{c ∈ R : V (c) satisfies V (c)(L) = 0}

Observe that c∗ ≥ c where c is defined in (6.10).
On the other hand, if c > c∗ then V (c)(L) > 0 and so, by uniqueness of solutions of (6.11), no

solutions of (2.1) do exist.
We show that c∗ < +∞. In fact, if u is a solution for (2.1) in the sense of Definition 2.6 then by

(2.24) one has

(6.13)

∥∥∥∥dudx
∥∥∥∥
L2(0,L)

≤ 1

α
∥g∥L2(0,L) .

Hence, by Proposition 2.13, there exists c ≤ c∗

c = a(x)
du

dx
− ϕ(u)− g ≤ β

∣∣∣∣dudx
∣∣∣∣− inf

s∈R
ϕ(s) + |g| .

Therefore, using (6.13)

c ≤ 1√
L

(
β

α
+ 1

)
∥g∥L2(0,L) − inf

s∈R
ϕ(s) ,

this, recalling Proposition 2.13 and the Definition of c∗, implies that

c∗ ≤ 1√
L

(
β

α
+ 1

)
∥g∥L2(0,L) − inf

s∈R
ϕ(s) < +∞;

that is (6.2).
Let us show that c∗ is actually a maximum. Let cn ↗ c∗ so that V (cn) ∈ H1

0 (0, L). As cn are
bounded, using (5.24) one gets

∥V (cn)∥H1
0 (0,L) ≤ C .

Reasoning as before one can pass to the limit in

a(x)
dV (cn)

dx
= ϕ(V (cn)) + g + cn in D′(0, L)

to obtain, using also Proposition 5.16, that

a(x)
dV (c∗)

dx
= ϕ(V (c∗)) + g + c∗ in D′(0, L).
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The map U = V|(−∞,c∗] is then well defined by

U(c) = V (c) for any c ∈ (−∞, c∗];

as there is no ambiguity in view of Proposition 2.13, we will denote by U(c) the function V (c) once
referring to the solution of (2.1) in the sense of Definition 2.6. Hence (6.4) and (6.5) are proven and
the weak continuity of U in H1

0 (Ω) is straightforward.

Let us prove (6.6).
By Proposition 5.16 one has that U(c1) ≤ U(c2). Assuming by contradiction that there exists
x0 ∈ (0, L) be such that U(c1)(x0) = U(c2)(x0) then we define

σ(x) = a(x)
d(U(c1)− U(c2))

dx
(x)

so that

σ(x) = ϕ(U(c1)(x))− ϕ(U(c2)(x)) + c1 − c2;

in particular, since σ is continuous on (0, L) and since

(6.14) σ(x0) = c1 − c2 < 0,

One has

σ(x) <
c1 − c2

2
∀x in (x0 − δ, x0 + δ)

for some δ > 0. This implies that

(6.15)
d(U(c1)− U(c2))

dx
(x) ≤ c1 − c2

2β
< 0 for a.e.x ∈ (x0 − δ, x0 + δ),

a contradiction with the fact that U(c1) ≤ U(c2) as (6.15) gives that U(c1)−U(c2) is strictly decreasing
around x0. In fact, let x ∈ (x0 − δ, x0) and denote by w = U(c1) − U(c2); we have w(x) ≤ 0 and
w(x0) = 0. On the other hand

w(x) =

ˆ x

x0

dw

dx
(s) ds = −

ˆ x0

x

dw

dx
(s) ds

(6.15)
> 0 .

Let us formally prove (6.7). Let cn < c∗ such that cn ↘ −∞. As before

∥U(cn)∥H1
0 (0,L) ≤

1

α
∥g∥L2(0,L) .

so that, up to a subsequence, U(cn) converges to u weakly in H1
0 (0, L) and uniformly (by compact

embedding). We can apply Theorem 3.4: either u ≡ 0 or assume by contradiction that there exists
x0 ∈ (0, L) such that

u(x0) > 0,

and so, in a small neighborhood of x0 of the form (x0 − δ, x0 + δ), one has

cn = a(x)
dU(cn)

dx
− ϕ(U(cn))− g .

i.e., using Proposition 3.6 one has that |cn| is bounded, that is a contradiction.

In order to conclude the proof of Theorem 6.1 we are left with the proof of (6.8) which easily follows
by Proposition 5.16: in fact, if u is a solution of problem (2.1) in the sense of Definition 2.6, then
u = U(c) by uniqueness of the solution of problem (5.8).

□

7. Existence of solutions in the sense of Definition 2.6

Up to now we explored the consequences of Theorem 3.4 (Alternative) by assuming the existence
of a solution of problem (2.1) in the sense of Definition 2.6, but we never proved the existence of such
a solution.

In this section we fix a and ϕ satisfying (2.3) and (2.5) as well as (4.10) and (4.11) (to be compared
with Theorem 4.4), and we consider g satisfying (2.4) as a parameter. We aim at constructing two
large sets of g’s for which a solution in the sense of Definition 2.6 does exist.
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7.1. A first remark about the set of solutions of problem (2.1) in the sense of Definition 2.6.
Let us begin with the following remark, which is very simple, but essential.

Remark 7.1. Define the set G of ”good data“ by

(7.1) G = {g ∈ L2(0, L) : ∃ at least one solution u of (2.1) in the sense of Definition 2.6},

and, as in (4.13), the set

(7.2) U = {û ∈ H1
0 (0, L) such that ϕ(û) ∈ L2(0, L)} .

It is clear that every u which is a solution of problem (2.1) in the sense of Definition 2.6 is an
element of U .

On the other side, for every u ∈ U , taking any c ∈ R, and setting

(7.3) g = a(x)
du

dx
− ϕ(u)− c ,

it is clear that u is a solution of problem (2.1) in the sense of Definition 2.6 for the source term g.
Actually, every g ∈ G is of the form (7.3) for some u ∈ U and c ∈ R.

This establishes a very strong relation between the two sets G and U . In particular G is non-empty
if and only if U is non-empty.

Therefore the study of the set U is essential when studying the existence of solutions of problem
(2.1) in the sense of Definition 2.6

□

Remark 7.2 (Model example). In the model case where the nonlinearity ϕ is given by

ϕ(s) =
c

|s|γ
with c > 0 and 0 < γ < 1,

it is easy to see that u defined by

(7.4) u(x) = Kxλ(L− x)λ with
1

2
< λ <

1

2γ
, ∀K ∈ R, K ̸= 0,

belongs to U (since then
du

dx
∈ L2(0, L) and

1

|u|γ
∈ L2(0, L) because we have 0 < γ < 1). Therefore,

for every c ∈ R, the function u is a solution of problem (2.1) in the sense of Definition 2.6 for the
source term

g(x) = a(x)
du

dx
− ϕ(u)− c =

= a(x)
(
Kλxλ−1(L− x)λ −Kλxλ(L− x)λ−1

)
− c

|K|λxλγ(L− x)λγ
− c.

This is a first example of a solution of problem (2.1) in the sense of Definition 2.6, which will be a
model for the whole of the present section.

□

7.2. A large class of good data. Starting from the idea of the example presented in Remark 7.2 we
will show that it is always possible to construct explicit local solutions wr of problem (2.1) emerging
from a point x ∈ [0, L) towards the right side, and wℓ coming backward from a point y ∈ (0, L] to the
left side provided the datum g is chosen accordingly.

For the sake of exposition we start by showing how these solutions can be constructed in the model
case

(7.5) ϕ(s) =
c

|s|γ
with c > 0 and 0 < γ < 1.

Define for y ∈ [0, L) and for some Kr ∈ R, Kr ̸= 0, λr > 0 and δ > 0, the function wr by

wr(x) = Kr(x− y)λ
r

for y ≤ x ≤ y + δ .

Since
dwr

dx
= Krλr(x− y)λ

r−1 and ϕ(wr) =
c

(|Kr|(x− y)λr )γ
for y ≤ x ≤ y + δ,
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we have
dwr

dx
and ϕ(wr) in L2(y, y + δ) if and only if

(7.6)
1

2
< λr <

1

2γ
;

this choice is possible since 0 < γ < 1.
Reasoning in the same way, define for y ∈ (0, L] and for some Kℓ ∈ R, Kℓ ̸= 0, λℓ > 0 and δ > 0,

the function wℓ by

wℓ(x) = Kℓ(y − x)λ
ℓ

for y − δ ≤ x < y ,

for which we have
dwℓ

dx
and ϕ(wℓ) in L2(y − δ, y) if and only if

1

2
< λℓ <

1

2γ
.

Now, we show how given any x1 and x2 with 0 ≤ x1 < x2 ≤ L and δ > 0 with x1 + δ < x2 − δ,
one is able to construct a solution of problem (2.1) in the sense of Definition 2.6 in any interval of
the form [x1, x2] and not only on [0, L]. In fact, take any function wint(x) ∈ H1(x1 + δ, x2 − δ) such
that wint(x1 + δ) = wr

1(x1 + δ) and wint(x2 − δ) = wl
2(x2 − δ) where wr

1 and wl
2 are, respectively, the

function wr departing from x1 and the function wℓ arriving in x2 constructed above. We also request
that, for some η > 0, wint(x) ≥ η in x ∈ (x1 + δ, x2 − δ). Now we define

(7.7) w(x) =


wr

1 x ∈ [x1, x1 + δ),

wint x ∈ [x1 + δ, x2 − δ],

wl
2 x ∈ (x2 − δ, x2].

Then, if we set

g = a(x)
dw

dx
− c

|w|γ
a.e.x ∈ (x1, x2),

it is easy to check that g ∈ L2(x1, x2), and that w is a solution of
w ∈ H1

0 (x1, x2),
c

|w|γ
∈ L2(x1, x2),

− d

dx

(
a(x)

dw

dx

)
= − d

dx

(
c

|w|γ

)
− dg

dx
in D′(x1, x2) .

By modifying the value of λ, with 1
2 < λ < 1

2γ , the value and the sign of K, and reasoning around

a finite number of points x0 = 0 < x1 < ... < xn < xn+1 = L, we can construct a bunch of functions
which behave as w between xi and xi+1, and so a large class of data for which there exists a solution
of problem (2.1) in the sense of Definition 2.6.

x0 = 0 xn+1 = Lxixi − δ xi + δ xi+1 − δ xi+1 xi+1 + δ xn+1 − δ
x

w(x)

δ

+η

−η

wr
0 wℓ

i wr
i wint

i wℓ
i+1 wr

i+1 wℓ
n+1

Figure 3. Building up the function w(x)

More precisely let x0 = 0 < x1 < ... < xn < xn+1 = L (i.e. x1, ..., xn are the internal points) and
let δ > 0 such that

xi + δ < xi+1 − δ , for 0 ≤ i ≤ n .
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Moreover for the internal points xi, i = 1, ..., n, let us consider λri , λ
ℓ
i satisfying (7.6), and let Kr

i ,
Kℓ

i in R \ {0}; also consider λr0 and λℓn+1 in R satisfying (7.6), and Kr
0 and Kℓ

n+1 in R \ {0} for the
extremal points 0 and L. We assume

Kr
iK

ℓ
i+1 > 0, for i = 0, ..., n.

Now, around each internal point xi, i = 1, ..., n, we set

wℓ
i (x) = Kℓ

i (xi − x)λ
ℓ
i for xi − δ < x < xi ,

wr
i (x) = Kr

i (x− xi)
λr
i for xi < x < xi + δ,

(7.8)

and for the extremities (i.e. i = 0 and i = n+ 1)

wr
0(x) = Kr

0x
λr
0 for 0 < x < δ,

wℓ
n+1(x) = Kℓ

n+1(L− x)λ
ℓ
n+1 for L− δ < x < L .

(7.9)

In the remaining intervals, which are of the form (xi+δ, xi+1−δ), i = 0, ..., n, we define wint
i (x) as any

function in H1(xi + δ, xi+1 − δ) which is continuously joined with the functions wr
i and wℓ

i+1 defined
in (7.8) and (7.9), i.e.

wint
i (xi + δ) = wr

i (xi + δ) and wint
i (xi+1 − δ) = wℓ

i+1(xi+1 − δ) ∀ i = 0, ..., n ,

and which satisfies, for some η > 0

|wint
i (x)| ≥ η > 0, for any x ∈ (xi + δ, xi+1 − δ).

Summarizing we have defined a function w ∈ H1
0 (0, L) that in any interval (xi, xi+1), i = 0, ..., n, is

given by

(7.10) w(x) =


Kr

i (x− xi)
λr
i , x ∈ (xi, xi + δ],

wint
i (x), x ∈ (xi + δ, xi+1 − δ),

Kℓ
i+1(xi+1 − x)λ

ℓ
i+1 , x ∈ [xi+1 − δ, xi+1).

Finally we define the function g by

(7.11) g =
dw

dx
− ϕ(w) in D′(0, L),

and we observe that w ∈ H1
0 (0, L) is a solution of problem (2.1) in the sense of Definition 2.6 with g

as datum.
We have proved the following result.

Proposition 7.3. Assume (2.2)–(2.3) and (2.10). For n ∈ N, fix n points x1, ..., xn such that
0 = x0 < x1 < ...xn < xn+1 = L. For the internal points xi, i = 1, ..., n, take λri , λ

ℓ
i satisfying

(7.6), and Kr
i , K

ℓ
i in R\{0}. For the external point x0 = 0 and xn+1 = L, take λr0 and λℓn+1 satisfying

(7.6), and Kr
0 and Kℓ

n+1 in R \ {0}. Finally assume that

Kr
iK

ℓ
i+1 > 0, for i = 0, ..., n.

Then there exists w ∈ H1
0 (0, L) solution of (2.1) in the sense of Definition 2.6 with datum g =

dw

dx
− ϕ(w) and such that w(xi) = 0 for i = 1, ..., n.

Remark 7.4. Observe that the data g that we have built in the proof of Proposition 7.3 are in general
unbounded around each zero of the function w. Indeed, near each zero xi one has∣∣∣∣dwdx

∣∣∣∣ (x) ≈ (x− xi)
λr
i−1 and ϕ(w(x)) ≈ (x− xi)

−λr
i γ , for x ∈ (xi, xi + δ),

and ∣∣∣∣dwdx
∣∣∣∣ (x) ≈ (xi − x)λ

ℓ
i−1 and ϕ(w(x)) ≈ (xi − x)−λℓ

iγ , for x ∈ (xi − δ, xi),

so that the function g = a(x)
dw

dx
− ϕ(w) behaves as the difference or the sum of two (in general

different) powers of (x− xi) or (xi − x), and therefore is, in general, unbounded around xi.
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Observe neverthless that, in case where

a(x) = a ∈ R with a > 0 and ϕ(s) =
c

|s|γ
with c > 0,

the choice

w(x) = K|x− xi|λ−1(x− xi) for x ∈ (xi − δ, xi + δ), with λ =
1

1 + γ
and K =

(
aλ

c

)− 1
1+γ

,

produces a function g = a
dw

dx
− ϕ(w)which satisfies

g = 0 for x ∈ (xi − δ, xi + δ).

This proves that there exist some cases where the function g can be bounded (or even be identically
zero) around a zero xi of some weak solution of problem (2.1) in the sense of Definition 2.6.

Note in contrast that it can be proven by an argument based on the proof of Lemma 4.3 above and
similar to the proof of Theorem 4.1 that it is impossible for the function g to be bounded from below
around two consecutive zeros xi and xi+1 of a weak solution of problem (2.1) in the sense of Definition
2.6.

Also observe that in this subsection we choose to present the construction for the model case of ϕ
given by (7.5). As a matter of fact this construction can be done for a general ϕ satisfying (2.5)–(2.6),
(5.5) and (5.6) using the idea presented in Theorem 7.5 of Subsection 7.3.

□

7.3. Obtaining solutions for any datum g by modifying it on [L − δ, L]. In the previous
subsection we constructed a bunch of solutions of problem (2.1) in the sense of Definition 2.6. From
this construction we obtained by (7.11) a large class of data g for which there exist a solution of
problem (2.1) in the sense of Definition 2.6.

In this subsection, we change viewpoint and we construct, for any fixed g ∈ L2(0, L) and for any
δ with 0 < δ < L, a datum ĝ which coincides with g on [0, L − δ] for which problem (2.1) admits a
solution in the sense of Definition 2.6. This construction uses an idea similar to the one used in the
previous subsection, but now exploits a shooting argument for backward solutions starting from x = L
on [L−δ, L]. Moreover, this argument is presented here in the case of a general ϕ satisfying (2.5)–(2.6),
(5.5) and (5.6), and not only in the model case of ϕ given by (7.5).

Theorem 7.5. Assume that (2.2) holds true, and that the data (a, ϕ) satisfy hypotheses (2.3), (2.5)–
(2.6), (5.5)-(5.6), and (5.41)–(5.42). Then for any g ∈ L2(0, L) and any δ with 0 < δ < L, there exist
ĝδ in G such that ĝδ = g in [0, L− δ).

Proof. By Theorem 5.5, there exists v such that
v ∈ H1(0, L), ϕ(v) ∈ L2(0, L),

a(x)
dv

dx
= ϕ(v) + g in D′(0, L),

v(0) = 0 .

By possibly changing δ in a smaller one we can assume that v(L− δ) ̸= 0.
Let us assume for a moment that we know a function wδ which satisfies

(7.12)


wδ ∈ H1(L− δ, L), ϕ(wδ) ∈ L2(L− δ, L),

wδ(L− δ) = v(L− δ) ,

wδ(L) = 0 .

Then we define ûδ and ĝδ by

ûδ(x) =

{
v(x) for every x in [0, L− δ],

wδ(x) for every x in (L− δ, L],

and

ĝδ(x) =

g(x) for a.e. x in (0, L− δ),

a(x)
dwδ

dx
− ϕ(wδ) for a.e. x in (L− δ, L).
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Then ûδ is a solution of problem (2.1) in the sense of Definition 2.6 for the datum ĝδ. This proves that
ĝδ ∈ G.

In order to prove Theorem 7.5, it is then sufficient to construct a function wδ satisfying (7.12).
To simplify the argument we observe that, by mean of the change of variable y = L − x, the

construction of such a function w satisfying (7.12) is equivalent to the construction of a function w
satisfying

(7.13)


w ∈ H1(0, δ), ϕ(w) ∈ L2(0, δ),

w(δ) = v(L− δ) ,

w(0) = 0 ,

where, to ease the notation, we now omit the dependence on the parameter δ.
Assume first that v(L− δ) > 0. We define the following function

(7.14) ϕ⊕(s) = ϕ(s)− inf
s∈R

ϕ(s) + 1 ;

it is easy to check that ϕ⊕ also satisfies (2.5)–(2.6), (5.5) and (5.6), moreover

(7.15) ϕ⊕(s) ≥ 1 for any s ∈ R.

Now, for a fixed K > 0 to be chosen later, Theorem 5.5 implies that there exists at least a solution
w⊕ to 

w⊕ ∈ H1(0, δ), ϕ⊕(w⊕) ∈ L2(0, δ),
dw⊕

dx
= Kϕ⊕(w⊕) in D′(0, L),

w⊕(0) = 0;

by Proposition 5.14 one has w⊕ > 0 on (0, δ).
First observe that ϕ(w⊕) ∈ L2(0, δ) if and only if ϕ⊕(w⊕) ∈ L2(0, δ).
Now, in view of (7.15), we have

(7.16)
1

ϕ⊕(w⊕)

dw⊕

dx
= K for a.e. x ∈ (0, δ).

Now observe that

(7.17) 0 ≤ 1

ϕ⊕(s)
≤ 1 for any s ∈ R.

Hence, we define

ζ(s) =

ˆ s

0

1

ϕ⊕(r)
dr,

and, using (7.15), ζ is strictly increasing on R+, by (2.6) one has ζ(0) = 0, and, recalling (5.6), for any
η > 0 there exists cη > 0 such that

1

ϕ⊕(r)
≥ 1

cη
> 0 for any r in [η,+∞),

so that we deduce that

lim
s→+∞

ζ(s) = +∞,

yielding in particular that ζ : R+ 7→ R+ is a bijection.
Ultimately, by (7.16) one has

d

dx
ζ(w⊕) = K for a.e. x ∈ (0, δ),

ζ(0) = 0 ,

i.e.,

ζ(w⊕(x)) = Kx for a.e. x ∈ (0, δ),

that is, choosing

K =
ζ(v(L− δ))

δ
,

one easily check that w⊕ satisfies (7.13) and we conclude.
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In the case where v(L− δ) < 0, we define

ϕ⊖(s) = ϕ⊕(−s),
and we reason as before and we may pick a positive K > 0 and a solution w of

w ∈ H1(0, δ), ϕ⊖(w) ∈ L2(0, δ),
dw

dx
= Kϕ⊖(w) in D′(0, L),

w(0) = 0 ,

such that w(δ) = −v(L− δ). To conclude we define w⊖ = −w and observing that

ϕ(w⊖) ∈ L2(0, δ) ⇐⇒ ϕ⊕(w⊖) ∈ L2(0, δ) ⇐⇒ ϕ⊖(w) ∈ L2(0, δ)

we get that w⊖ satisfies (7.13).

0 L
x

v(x)

w(x)

L− δ

Figure 4. Gluing up v(x) and w(x)

□

8. Stability and instability of the solutions of approximate equations

The following Proposition 8.1 shows that any solution of (2.1) in the sense of Definition 2.6 is
not isolated, or, in other terms, can be obtained as a limit of solutions of convenient approximating
problems, each of those problems being different from the limit one.

Proposition 8.1. Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses (2.3)–
(2.5). Assume also that there exists a weak solution u of problem (2.1) in the sense of Definition 2.6,
i.e. a function u which satisfies

(8.1)


u ∈ H1

0 (0, L), ϕ(u) ∈ L2(0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg

dx
in D′(0, L) .

Fix any reasonable approximation ϕn of ϕ, and assume that the sequence ϕn satisfies for some
positive constant C

(8.2) |ϕn(s)| ≤ C|ϕ(s)| ∀s ∈ R, ∀n.
Then there exists a sequence gn satisfying

(8.3) gn ∈ L2(0, L) with gn → g strongly in L2(0, L),

for which there exists a weak solution un in the sense of Definition 2.6 of

(8.4)


un ∈ H1

0 (0, L), ϕn(un) ∈ L2(0, L),

− d

dx

(
a(x)

dun
dx

)
= −dϕn(un)

dx
− dgn

dx
in D′(0, L) ,

such that
un → u strongly in H1

0 (0, L) .
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Proof. As u is a solution of problem (2.1) in the sense of Definition 2.6, the second line of (8.1) is
equivalent to the existence of some c ∈ R such that

a(x)
du

dx
= ϕ(u) + g + c in D′(0, L),

in view of Proposition 2.13.
Let ϕn be any reasonable approximation of ϕ which satisfies (8.2). Define gn by

gn = ϕ(u)− ϕn(u) + g;

then un = u is a weak solution of (8.4) in the sense of Definition 2.6, while gn converges strongly to
g in L2(0, L) since ϕn is a reasonable approximation of ϕ which satisfies the condition of domination
(8.2). This proves Proposition 8.1. □

Remark 8.2. Note that the approximation by truncation and the homographic approximation (defined
respectively in the first example (2.44) and in the second example (2.46) of Remark 2.17) both satisfy
the condition of domination (8.2) for the constant C = 1.

Note also that choosing any sequence ϕn of reasonable approximations of ϕ which satisfies (8.2) as
well as ϕn ̸= ϕ for every n proves that any weak solution of (8.1) in the sense of Definition 2.6 is not
isolated in the sense defined above.

Finally, the reader could be disturbed by the fact un is equal to u for every n. This can be mitigated
in the following way: take any interval [A,B] with 0 < A < B < L for which u(x) ≥ δ on [A,B] (or
for which u(x) ≤ −δ on [A,B]) for a certain δ > 0, and replace u by

un =

{
u in [0, L]\(A,B),

vn in [A,B] ,

where vn ∈ H1(A,B) is any sequence such that (vn − u) tends to 0 strongly in H1
0 (A,B), with vn ≥ η

(or with vn ≤ −η) for a certain η > 0.
□

Proposition 8.1 shows that, given any weak solution u of (8.1) in the sense of Definition 2.6, and
any reasonable approximation ϕn which satisfies the condition of domination (8.2), one can find a
sequence gn which satisfies (8.3) such that there exists a sequence of solutions of (8.4) in the sense of
Definition 2.6 which converges to u in H1

0 (0, L).
In contrast, the following Proposition 8.3 shows that a “bad choice” of gn produces, for a subsequence

n′, approximated problems (8.4) in which gn′ converges strongly to g while un′ converges weakly to 0
in H1

0 (0, L).
Let us stress that in Proposition 8.1 the sequence ϕn can be any reasonable approximation of ϕ which

satisfies a condition of domination (in the sense of Lebesgue’s theorem), and that in Proposition 8.3
the sequence ϕn can be any good approximation of ϕ, but that in contrast, in both cases, the sequence
gn has to be chosen according to the choice of the sequence ϕn.

Proposition 8.3. Assume that (2.2) holds true, and that the data (a, g, ϕ) satisfy hypotheses (2.3)–
(2.6). Assume also that there exists a weak solution u of problem (2.1) in the sense of Definition 2.6,
i.e. a function u which satisfies

(8.5)


u ∈ H1

0 (0, L), ϕ(u) ∈ L2(0, L),

− d

dx

(
a(x)

du

dx

)
= −dϕ(u)

dx
− dg

dx
in D′(0, L) .

Fix any good approximation ϕn of ϕ. Then one can extract a subsequence n′ and find a sequence
gn′ such that

gn′ ∈ L2(0, L) gn′ → g strongly in L2(0, L),

for which for any sequence un′ of classical weak solutions of the approximating problems

(8.6)


un′ ∈ H1

0 (0, L),

− d

dx

(
a(x)

dun′

dx

)
= −dϕn

′(un′)

dx
− dgn′

dx
in D′(0, L) ,
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(such classical weak solutions exist in view of Proposition 2.15), one has

un′ ⇀ 0 in H1
0 (0, L) .

Proof. Fix any sequence gn such that

gn ∈ L∞(0, L) with gn → g strongly in L2(0, L) .

For every fixed n ∈ N, and for every k ∈ N, Proposition 2.15 implies that there exists at least one
classical weak solution vkn of

(8.7)


vkn ∈ H1

0 (0, L),

− d

dx

(
a(x)

dvkn
dx

)
= −dϕk(v

k
n)

dx
− dgn

dx
in D′(0, L) .

Moreover any classical weak solution vkn of (8.7) satisfies (see (2.36) above)

(8.8)

∥∥∥∥dvkndx
∥∥∥∥
L2(0,L)

≤ 1

α
∥gn∥L2(0,L) ≤ C,

where the constant C does not depend neither on n nor on k.
As n is fixed and gn ∈ L∞(0, L), Theorems 3.4 and 4.1 imply that

(8.9) vkn ⇀ 0 weakly in H1
0 (0, L) as k → +∞ ,

and therefore strongly in L2(0, L). In particular, if εn is a sequence of positive constants which tend
to 0, for any fixed n one can pick some k∗(n) such that

(8.10) ∥vkn∥L2(0,L) ≤ εn for any k ≥ k∗(n) .

Choose a strictly increasing function k : N 7→ N such that

k(n) ≥ k∗(n), for any n ∈ N ,

and denote by N′ ⊂ N the image k(N) of the (strictly increasing) function k. Then k is a bijection

from N to N′, and its inverse k
−1

is a (strictly increasing) bijection from N′ to N. Denote

n′ = k(n) and n = k
−1

(n′), ∀n ∈ N,

and set

gn′ = gn = g
k
−1

(n′)
, un′ = uk(n)n = un

′

k
−1

(n′)
, ηn′ = εn = ε

k
−1

(n′)
, ∀n′ ∈ N′;

note that ηn′ → 0 as n′ → +∞.
Then (8.7) with k = k(n) reads as

(8.11)


un′ ∈ H1

0 (0, L),

− d

dx

(
a(x)

dun′

dx

)
= −dϕn

′(un′)

dx
− dgn′

dx
in D′(0, L), ∀n′ ∈ N′,

and (8.10) with k = k(n) reads as

∥un′∥L2(0,L) ≤ εn = ηn′ ∀n′ ∈ N′,

which implies, since un′ is bounded in H1
0 (0, L) in view of (8.8), that one has

un′ ⇀ 0 weakly in H1
0 (0, L) as n′ → +∞ .

Since gn′(= gn) converges strongly to g in L2(0, L), Proposition 8.3 is proved.
□

Remark 8.4. In the proof of Propositions 8.1 and 8.3, one fixes the sequence ϕn, and the choices of
the sequences gn and gn′ are made according to the choice of the given sequence ϕn. In contrast we
do not know how choose a sequence ϕn if the sequence gn is given.

□
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