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ABSTRACT. In this paper we study the possible solutions u of the one-dimensional non-linear singular
problem which formally reads as

d du _ dé(u) dg(z) i
(S) T de (“(”%) T e da 0, L),

u(0) =u(L) =0,

where L > 0, and where the data (a, g, ¢) are as follow: a is a function of L>°(0, L) which is bounded
between two positive constants, g is a function of L2(0, L), and the singular function ¢ : R — RU{+cc}
is continuous as a function with values in R U {400}, and satisfies ¢(0) = +oco and ¢(s) < +oo for
every s € R, s # 0; the model example for the singular function ¢ is ¢~(s) = |s|~7 with v > 0.

We first study the behaviour of the solutions of approximating problems (S,) involving non-
singular functions ¢, which converge to ¢ in a sense that we specify, and we prove that these
solutions have subsequences which either converge to weak solutions of (for a definition of weak
solutions that we specify), or converge to zero. We then prove that for a large class of data (a, g, ¢)
it does not exist any weak solution of , while for another large class of data (a, g, ¢) it does exist
at least one weak solution of .

Thanks to the study of an associated singular ODE (this study is of independent interest), we
prove that under additional assumptions which are satisfied by the model example ¢~(s) = |s|~7
when 0 < v < 1, if for some data (a, g, ¢) there exists one weak solution of , then for the same
data it also exist infinitely many weak solutions of which are parametrized by ¢ € (—oo, c*| for
some finite c*.

We finally prove that for any given data (a, g, ¢) and for any weak solution u of corresponding
to these data, there exist sequences of data (a, gn, ¢n), with non-singular functions ¢, which converge
to (a, g, ¢), for which the solutions converge to u, while there also exist other sequences of data
(a, gn, ¢n), with non-singular functions ¢, which converge to (a, g, ¢), for which the solutions
converge to zero.

Most of these results are unexpected.
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1. INTRODUCTION

Setting of the problem
In the present paper we deal with a singular one-dimensional problem. Our main aim consists in
trying to find a function w which formally satisfies

d du  do(u) dg
W) i (w0g) ==t - mon

u(0) =u(L) =0.

We will soon give a mathematically correct and natural definition of solutions of this problem, but
let us first give the assumptions on its data.

We will assume that L > 0 and that the data (a, g, ¢) satisfy
(1.2) ae€L>®0,L), 3a>0: a(z)>a, ae in (0,L);

(1.3) g€ L*0,L);

(1.4) {¢ : R+ RU{+o00}, ¢ is continuous with values in RU{+o0},

d(s) <+oco VseR, s#£0.
Our main purpose is to study the case where
(1.5) #(0) = 400
even though some results will be true (and new) also in the case where ¢(0) < +oo.

The model case for the function ¢ is

o(s) = @ + ¢(s), with ¢ > 0,7 >0, p € C°(R).

Assuming ¢(0) = —oo in place of ¢(0) = +o0 is just a variant of problem (1.1)) by a simple change
of variable (see Remark [2.3| below) and we will not treat that case.

Definition of a weak solution
We introduce the following definition of a weak solution of problem (I.1) (for more details see
Definition and Subsection [2.2] below).

Definition 1.1. We say that u is a weak solution of problem (1.1)) if u satisfies
we Hg(0,L),  ¢(u) € L*(0,L),

d du\ _  do(u) dg . /
. <a(x)dx> = Iz B D'(0,L).

(1.6)
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Note that ([1.6)) holds true if and only if u solves (see Proposition below)

ue HH0,L) ¢(u) € L*(0,L),

1.7 U
(L.7) a(m)j—x =¢(u)+g+c in D(0,L),

[ [ 2
1
/0 mdm

Three other classes of singular problems and some bibliographical references

for

(1.8) c

A first class of singular problems is as follows:
If one has ¢ € C°(R) and N > 1, it is proved in [7] and [§] that there exists a renormalized solution
of the N-dimensional problem which formally reads as

(1.9) {—div(A(x)Vu) = _div($(w)) — divg in Q,
u(z) =0 on 052,

where ) is a bounded domain of RY and A(z) is a bounded matrix satisfying, for some a > 0,
A(z)E-€> alE)?, ae z€Q, VEERY,

These solutions turn out to be also weak solutions if the growth at infinity of ¢(s) is sufficiently low.

In the special case N = 1 with ¢ € CY(R) this notion coincides with the notion of classical weak

solution:
u € Hi(0,L),

L L L
du dz dz dz
———dx = —d —dx Vze€ Hy(0,L
/0 a(w)dxdx x /o ¢(u)da: er/O g(:r)dx x Vze Hy(0,L),
and there exists a classical weak solution of this problem (see Proposition below).

A second class of singular problems is the class of semilinear problems involving a zeroth-order term
h(z,u) > 0 which is singular in u = 0, for which one looks for a nonnegative solution u of

—div(A(x)Vu) = h(z,u) inQ,
(1.10) { u=>0 on 0,
For this class, let us quote several important papers. First, the cases h(z,s) = f(x)el/s or
h(z,s) = f(f) for a regular function f(z) are treated in [I5] where the authors prove the existence of
s

a classical solution when A(z) is the identity matrix. In [I3| B0] similar results are proved for a regular
matrix A(z) and a regular function h(z,s) uniformly bounded for s > 1 with lim,_,o h(z,s) = +o0
uniformly for z € €. Moreover, continuity properties of the solution are proved in [13] if h(x, s) does
not depend on .

f(z)

s
function in Q is studied in [25] where it is proved that problem has a classical non-negative
solution which does not always belong to H}(2). More precisely the authors prove in [25] that the
solution belongs to H} () if and only if v < 3. Furthermore, they demonstrate that for v > 1 the
solution is not in C1(Q). In the case h(z, s) = f(z)h(s), some extensions may be found, among others,
in [23, 24] for Q = RY and in [31] for bounded domains. In the latest case f(x) may also be singular
at the boundary of €.

Let us highlight the paper [9], in which the authors extensively study the semi-linear problem in
f(@)
s
and on m. For v = 1 and f € L}(Q), they prove the existence of a solution belonging to Hg (). They
also prove a similar result when f € L™(Q) with m > C(N,v) > 1. Finally, for the case v > 1 and

[ € L'(2) they prove the existence of a solution u belonging to H,. () satisfying uw e HE(Q).

The case where the nonlinearity is of the form h(z, s) = with f(z) a positive Holder continuous

the case h(z,s) = with f >0, f € L™(Q) for m > 1, and prove existence results depending on ~
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In [28] (see also [I]), the authors prove the existence of a solution in H}(Q) if f € L™(Q), f positive,
1 <y < 3— 2. These results are optimal for f € L>°(f2), and they fit with the result of [25], i.e
u € HY(Q) for all v < 3 if one formally takes m = +oo.

In [I6l 17, 18, 19, 20] the authors introduce, in the case of strong singularities (which in the
model case corresponds to v > 1), a new definition of the solution, with a space for the solution
which is unconventional, and test functions which are reminiscent of the notion of solution defined by
transposition. In this framework they prove results of existence, stability and uniqueness. They also
prove [I7, [19] results of homogenization in this framework. Another step in this direction is [I2] where
the right-hand side of the equation can change sign. Other homogenization results can be found in [6]

and [T4].
/(@)

negative Radon measure have been studied in [27]. Moreover, the case of a variable exponent , i.e

Let us also point out that the cases h(x,s) = + p and h(x,s) = ph(s) with gz a non-

h(zx,s) = /() is considered in [I1I]. For more details and a gentle introduction to singular elliptic
S'Y(z)

problems we refer to the recent survey [29].

The third class of singular problems concerns the case of singularities which appear in first order
terms with natural growth in the gradient, which has also been extensively studied. For a far to be
complete account on these problems see [0l 26] 2, [ [4], and references therein.

Originality of problem (|1.1)
Let us emphasize some features which are specific to problem (1.1}). Both in the singular case (i.e.
#(0) +oo and in the non-singular case (i.e. ¢ € C°(R)), for any (possible) weak solution u of ([.1))

one has / o(u)— dx =0, since

if 2 € H(0, L) with ¢(z) € L*(0, L), then/ oz —dx—O

(see Lemma [2.12| below); here the hypothesis ¢(2) € L?(0, L) is essential. This implies that every weak
solution u of (1.1)) defined above by (|1.6)) satisfies the following important a priori estimate

(1.11) ‘du

< gl
e < 2 llgllzzo,),

L2(0,L)

and, by Morrey’s embedding (here N =1 is crucial)

S

(1.12) Jull oo 0,1y < ||9||L2<0 L)

o
In order to (try to) prove the existence of a weak solution of problem (1.1)), we proceed as usual by

approximation.
We consider sequences of a,,, g, and ¢, which satisfy

(1.13) an € L*(0,L), a < a, < 8 for some fixed constant 3,
' an(z) — a(z) a.e. z € (0,L),

(1.14) gn € L*(0, L), g, — g weakly in L*(0, L),

(1.15) én € C°(R) for every n €N,

(1.16) if s, — sin R then ¢,(s,) = ¢(s) in RU{+o0};

the latest property is equivalent (see Proposition and Remark below) to say that the
sequence ¢,, locally uniformly converges to ¢, even in the case in which ¢(0) = +oo.
Examples of such reasonable approzimations of ¢ are the truncations (i.e. ¢,(s) = T, (¢(s))) and
¢(s) )
L+ 2o(s)”

the homographic approximations (i.e. ¢,(s) =
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For (an, gn, ¢n) satisfying (1.13)—(1.16) it is quite easy to show that, for every n € N, there exists
at least one function u,, which satisfies

Uy € H&(O,L),

(1.17) L duy, dz L dz L d
n(z)—=—dx = () — d w—dx Yz e H}0,L).
| @G T [Cow)Fdos [ 0T vzemon

Therefore, due to estimate (1.11)), there exists u € H} (0, L) such that, for a subsequence

(1.18) {un —u weakly in Hg(0, L),

un(x) = u(z) ae. xz€(0,L).

An alternative
Our first main result (see Theorembelow) consists in the following alternative for the weak limit u:
it $(0) = 400, then
e cither u =0,
e or u is a weak solution of problem (|1.1]) in the sense of Definition

In the proof of this alternative we use a new estimate on the sequence ¢y, (u,) in L?(0,L). This
estimate, which is specific to the one-dimensional setting, can only be obtained when the sequence u,,
weakly converges to a function u which is not identically zero.

Note that the result is a true alternative, in the sense that the two possible situations are mutually
exclusive since 0 is not a weak solution of in the sense of Definition [1.1] when $(0) = +o0.

Moreover the two cases of the alternative effectively happen depending on the data g and ¢. Indeed
on the first hand there exists a large class of functions g € L%(0, L) (see Theorem below), and a
large class of functions ¢ which satisfy and (see Theorem below), such that the limit
of the sequence u,, is always u = 0. On the other hand there exists (see Section [7| below) a large
class of data g and ¢ such that has a weak solution, and for every weak solution, there exists
(see Proposition in Section (8| below) sequences of approximations of the data which have solutions
which converge to this weak solution.

Let us emphasize that hypothesis ¢(0) = +oo is essential in order to get the alternative. When
#(0) < 400, then for any sequence ¢,, of approximations of ¢, one has ¢, (u,) bounded in L*(0, L)
and ¢, (u,) converges strongly in L?(0, L) to ¢(u). Moreover, in this setting, the case u = 0 occurs if
and only if g = ¢ for some ¢ € R.

The results of Theorem and Theorem proved in Section [4] are in fact results of non-existence
of weak solutions of problem in the sense of Definition

The first one, Theorem states that when the datum g is bounded from below, there exists no
weak solution of problem in the sense of Definition This is essentially due to the fact that
in this case the datum g cannot compensate the singular behaviour of the function ¢(u(z)) when u(x)
tends to zero.

The second one, Theorem states that when the function ¢(s) is not integrable in s = 0 and
in s = 07, there exists no weak solution of problem in the sense of Definition This is proved
by showing that the strong behaviour of the singular function ¢(s) near s = 0 implies that the class of
functions u € Hg (0, L) with ¢(u) € L?(0, L) is empty.

An associated ODE
If we look at (1.7)-(L.8), which is an equivalent formulation of the definition of a weak solution of
problem (L.1)) in the sense of Deﬁnition one is naturally led to consider, for h € L?(0, L), the ODE

ve HY0,L), ¢(v)e L*0,L),
(1.19) a(m)j—z = ¢(v) +h in D'(0,L),
v(0) =0,

which is a singular ODE when ¢(0) = +o0.
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This problem is clearly related to our problem (l.1)). Indeed, if h = g + ¢, any solution w of this
ODE is a weak solution of when c is given by . Conversely, any solution v of the ODE
is a weak solution of problem when v satisfies v(L) = 0.

In Section [5| below we study the ODE (1.19). This is original when ¢(0) = +oco. We obtain
existence, non-negativity, comparison, and uniqueness results for the solution v of , under
further assumptions on ¢ and on g; note that these assumptions on ¢ are satisfied in the model
case ¢, (s) = me ¢(s) when ¢ > 0,0 <y < 1, and ¢ € CP(R) with ¢-(s) non-increasing for s > 0.

In order to get existence of solutions v to ([L.19]), we use the integrability of the function ¢ at s =0
and its boundedness at infinity (see Theore below), while for the comparison and uniqueness
results (see Proposition [5.16 below) we further require that ¢(s) is monotone non-increasing for s > 0.

A synthesis of the results that we prove for the ODE is given in Subsection below. These
results are new and, in our opinion, of independent interest, because of the singular behaviour of the
function ¢(s) in s = 0.

These results will then be strongly used for proving the existence of weak solutions of problem
(see Section [7| below) as well as the multiplicity result that we describe now.

A multiplicity result for the solutions of the singular problem (|1.1))

Another interesting consequence of these results is indeed a multiplicity result for the weak solutions
of problem in the sense of Definition (see Section |§| below). This multiplicity result, which
is stated in Theorem below, is quite unexpected: it says that, whenever a solution of problem
in the sense of Definition exists for some given data (a, g, ¢), then infinitely many solutions
exist for the same data. These solutions are indexed by a real parameter ¢ which varies in an interval
(—o0, ¢*] where ¢* is finite. These infinitely many solutions are strictly ordered with respect to ¢ and
any possible solution of problem in the sense of Definition for these data correspond to some
¢ € (—o0,c"].

Stability and instability of the approximations

We also show, in Section [§] below, two quite remarkable results concerning the stability of the weak
solutions of for the data (a, gn, ¢») when g,, converges to g in L?(0, L) and when ¢,, is a reasonable
sequence of approximations of ¢. We prove in particular that for any weak solution u of problem
in the sense of Definition approximations (a, g,, ¢,) can be built for which the solutions w,, of
the approximating problems converge to u. In other terms this result asserts that a weak solution
of problem in the sense of Definition is never isolated. But in contrast with this result, we
also show that for any weak solution u of problem in the sense of Definition one can build
approximations (a, gn, ¢») for which the solutions w, of the approximating problems converge to 0.
This can be viewed as a strong instability result. Let us stress that in both results, the approximating
sequence ¢, can be any reasonable sequence of approximations of ¢, while the sequence g,, should be
chosen accordingly.

Existence of solutions of problem (|1.1))

Finally, Section [7] below is devoted to produce explicit large classes of data for which solutions of
in the sense of Definition do exist.

These results are essentially straightforward consequences of the fact that for any given ¢ satisfying
and as well as the fact that ¢ is integrable in 0, one can construct a large class of functions

d
u such that u € Hg(0, L) with ¢(u) € L?(0, L). Defining then g € L?(0,L) by g(z) = a(m)d—u — ¢(u),
i
one has built data such that problem (1.1)) admits u as a weak solution.
Another result, Theorem below, is in some sense a “density result”: it asserts that for any ¢
satisfying (1.4)) and (1.5 as well as the fact that ¢ is integrable in 0, for any g € L%(0, L), and for any

§ > 0, one can construct a function gs € L?(0, L) such that gs = g on (0, L — ) for which the problem
(1.1) has a weak solution in the sense of Definition for the data (a, gs, &).

Let us note that most of the results that we obtain and prove in this article, even if simple and
obtained through elementary proofs, are new.

In any case, they are unexpected.

Concluding remarks and comments
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Much to our regrets, our results are confined to the one-dimensional setting, since, as said before,
in this case we are able to find, when u # 0, a new estimate on ¢y, (uy,) in L?(0, L), which is no more
the case in the N-dimensional setting for N > 1. The only N-dimensional situations that we were able
to face are special forms of equations which can be solved by separation of variables, and the case of
radial solutions under special (radial) assumptions on the data. We will publish in [2I] these partial
results along with some variants of problem , namely

e the case where a zeroth-order term +b(z)u with b(z) > 0 (or more generally +b(x,u) with
b(x, s)s > 0) is added to the left hand side of (1.1));

. . d du\ : .
e the case where in (1.1 the linear operator — - (a(m)%) is replaced by a nonlinear monotone
operator — - a(z, %) (or even by a nonlinear pseudo-monotone operator — - a(z, u, %)) where

a:(z,€) € (0,L) xR — a(x,€) € R is a Carathéodory function that satisfies, for some p, «,
B, b(x) with 1 < p < 400, @ >0, 8 > a, b € LP(0, L), the classical monotonicity properties
a(a,€)& > alélP, la(z,&)| < BEP +[b(z)[P~1),
(a(x, &) —a(z,n)(E—n) >0, ae z€(0,L), VEER, VneR, £#£n.

In a second paper ([22]) we will treat the problem where the model singular function ¢, (s)
replaced by a function that is singular in s = m with m # 0 whose model is

1

=S

¢7(8):m7 with ’y>0,m#0

Notation

In the present paper we will use classical notations. Here we just recall and precise some of them.

We denote by C°(R) the space of functions ¢ : R + R which are continuous at each point of R.
Observe that a function ¢ : R — RU {400} which is continuous (see an example in below) does
not belong to C°(R) when ¢(sg) = +oo for some sy € R.

We denote by CP(R) the space of functions of C°(R) which are bounded on R, namely Cp(R) =
C°(R) N L*(R).

We denote by D’(0, L) the space of distributions on the open interval (0, L), namely the dual of the
space C2°(0, L) of functions which have derivatives of any order and which have a compact support in
(0,L).

We denote by Lip(R) the space of the Lipschitz continuous functions on R, namely the space of
those functions 1 € C°(R) such that

¥ (s) — ¥ ()]
ip(R) = SUp
191 Lip(r) s gy
We denote by Hg (0, L) the Sobolev space of those functions z € L?(0, L) whose distributional first
d
derivative d—z belongs to L?(0,L) and which satisfy z(0) = 2(L) = 0. The space H}(0,L) will be

x
equipped with the norm

< +00.

dz
(1.20) lon = |2 . veem0.D
TllL2(0,L)
since the Poincaré inequality asserts that
dz
(1.21) 2l 220,y < L‘ - , Vze H}0,L).
T llL2(0,L)

Recall that the Morrey’s embedding and estimate, which are specific to the one-dimensional case,
assert that

d
(1.22) HY(0,L) € L®(0,L)  with ||2]| (o) < VI di , V2 e HX(0,L),
TllL2(0,1)
and also that
H'(0,L) c C%3([0,L]), with
z(z) — 2(y dz
(1.23) ||Z||CO’%([0 Ly = S [z(2) — 2(y)| < ’ - , Vze HY(0,L).
’ w,ye#[O,L] |z — y T llL2(0,L)
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Finally, for k € R*, let us denote by T} : R — R the truncation function at height k, i.e. the
function given by

s if |s| <k,

k2t |s| > E,
5|

2. ASSUMPTIONS AND DEFINITIONS

(1.24) Th(s) = Vs € R.

As mentioned in the Introduction, in this paper we will study a one-dimensional singular problem

that we formally write as

d du dp(u) dg(x) .

= =) == — L

(2.1) dx (a(m)dx) dx dr (0.L),
u(0) =u(L) =0,

where u is the unknown and where (a, g, ¢) are data which will be specified below (see Subsection |2.1]).
One of the main difficulties of the problem is to give a correct mathematical meaning to problem

(2.1) (see Subsection [2.2] below).

2.1. Assumptions. We will always assume that

(2.2) N=1 and L >0.

As far as the data (a, g, ¢) are concerned, we will assume that they satisfy
(2.3) a€ L>*0,L), 3a,p, 0<a<p, a<a(zr)<p ae x€(0,L),
(2.4) g€ L*0,L),

(2.5) {(;5 :R— RU{+o0}, ¢ is continuous with values in R U {400},

¢(s) <400, VseR, s#0.
We are mainly interested in the case where ¢ is singular at s = 0, i.e. in the case where
(2.6) 6(0) = +o0;
this will be the originality and the difficulty of the problem.

Note however that we will also consider functions ¢ which do not satisfy (2.6]), for instance when

approximating a singular function ¢ which satisfies (2.5)) and (2.6 by a sequence of functions ¢,, which
belong to CY(R), and therefore satisfy (2.5)) but not (2.6))

Remark 2.1. When ¢ satisfies (2.5)), condition (2.6) is equivalent to

(2.7) ¢(s) > +oo as s —0,
which implies that
(2.8) ¢(s) >0 for s sufficiently small.
in(1
Note that conditions ([2.5))-(2.6) exclude oscillatory singularities of the type ¢(s) = Smi,y/s), and
1+ sin(1/s
Observe also that when ¢ satisfies (2.5]), then ¢ satisfies
(2.9) ¢ € Cy([-R, =8)) NCY([+6,+R]), V(§,R), 0 <6< R < +o0.

Finally note that (2.5) does not impose any behaviour of ¢ as s tends to +oo
and —oo.

O
Remark 2.2. The model case for the function ¢ is the case of the function ¢, given by
(2.10) by (s) = ﬁ +(s), with ¢ > 0,7 > 0, ¢ € CO(R),

which satisfies (2.5])-(2.6) for every v > 0.
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Remark 2.3. Assuming ¢(0) = —oo in place of ¢(0) = +oco in (2.6) is just a variant of problem (2.1f):
indeed the problem

d (a(a:)dﬁ> _ o) 9 o, n,

(2.11) dx dx der  da
a(0) = a(L) =0,
with
(2.12) ¢ :R+— RU{—0c}, ¢ is continuous with values in R U {—oc},
' B(s) > —o0, Vs € R, s #£ 0,

reduces to problem ([2.1) with assumptions (2.5)-(2.6)) on ¢ by setting
(2.13) w=—t, g=-—g, ¢(s)=—¢(—s), VseR.
O

Remark 2.4. Observe that when w is a solution of , then w is still a solution of when ¢ is
changed in ¢ 4+ ¢; and ¢ in g + co, where ¢; and ¢y are arbitrary constants.
To avoid confusion, we then emphasize the fact that in the whole of the present paper, the data
g and ¢ are fized once and for all; in other terms the data g and ¢ are not defined up to additive
constants, but fized.
O

Remark 2.5. When the data (a,g,¢) are given and when they satisfy the hypotheses (2.3)-(2.5)
above, we claim that it is always possible to assume without any loss of generality that ¢ also enjoys
the following property

(2.14) ¢ € CY(R\(=0,+9)), V6> (]

(compare with (2.9))), if one considers weak solutions of problem ({2.1)) in the sense of Definition
below for the data (a, g, ¢) and if ¢ satisfies for some M > 0

«
(2.15) lgllz20,0) < ﬁM'
Note that condition is not a restriction on g, since M is an arbitrary constant; on the contrary,
this condition allows g to vary into a given ball of L?(0, L) in the proof below.

Let us prove this claim.

Consider data (a, g, ¢) which satisfy (2.3)-(2.5) and (2.15), and let u be any weak solution of problem
in the sense of Definition below for these data (a, g, ¢), i.e. a function u which satisfies

u € Hi(0,L), ¢(u) € L*(0, L),
(2.16) d (a du) __do(u)  dg(z)

[ — JR— —_— ] /
dx () dz dz de D0, L).

Then, in view of (2.25]) (see Proposition below) and of condition (2.15) on g and M, the function
u satisfies

VL
(2.17) HU||L<><>(0,L) = 7”9”L2(0,L) <M.
Define the function ¢y : R — RU {400} by the formula
G(—M) if s < —M,

(2.18) dar(s) = { p(s) if —M <s<+M,
Oo(+M) if s >+M.

Then the function ¢y satisfies both (2.5) and (2.14).
On the other hand, in view of (2.17) one has

(2.19) drr(w) = ¢(u) € L*(0,L) and d‘ﬁde (W) _ d‘z(x“) in D0, L).

lor, equivalently, ¢ € C’g (R\(—9,+9)) for some given § > 0.
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When ¢ satisfies both (2.4 and (2.15]), this implies that, any weak solution u of problem (2.1) in
the sense of Definition below for the data (a, g, ¢) also satisfies

u € Hy(0, L), dar(u) € L*(0, L),
(2.20) d < du> ~ déu(u)  dg(x)

_ - /
dx a(x)dm dx dx n D0, L),

or, in other terms, v is a weak solution of problem in the sense of Definition below for the
data (a,g,éM).

Conversely, when g satisfies both and , any weak solution u of problem in the sense
of Definition below for the data (a, g, d;M), or in other terms, any solution u of , is also a
solution of (2.16)), or in other terms a weak solution of problem in the sense of Definition

below for the data (a, g, ¢).

In brief, when g satisfies both and for some M > 0, one can always replace the function
¢, which only satisfy , by the function (ﬁM, which satisfies both and , if one considers
weak solutions of problem in the sense of Definition [2.6| below. This proves the claim.

O

2.2. Definition of a weak solution of problem ([2.1). We introduce the following notion of solution:

Definition 2.6. Assume that (2.2)) holds true, and that the data (a, g, ¢) satisty hypotheses (2.3))-(2.5]).
We will say that u is a weak solution of problem (2.1) if u satisfies

u € Hy(0,L),¢(u) € L*(0,L),

(2.21) d( du>:_d¢>(u) dg(z)

—_ E— ] /
T a(x) i in D'(0,L).

dx dx

O

Remark 2.7. The above Definition will be justified by the result presented below in Theorem
(Alternative).

Let us emphasize that there are cases where problem does not have any solution in the sense
of Definition [2.6]

This is for example the case if the nonlinearity ¢ satisfies ¢(0) = +oo (hypothesis ) and if the
source term g is bounded from below (see Theorem below).

This is also the case if g is arbitrary in L2(0, L) and if

+6 0
¢(t) dt = +o00 and / @(t) dt = 400
0 -4
(see Theorem below).
For this reason we will state most of the result of the present paper assuming that there exists at
least a solution of problem ([2.1)) in the sense of Definition We will face the problem of existence

of such a solution in Section [7
O

Remark 2.8. Problem (2.21) has a precise mathematical meaning, in contrast with problem (2.1))
which has no mathematical meaning, since in (2.1)) the spaces to which v and ¢(u) have to belong to
are not specified, and since the mathematical meanings of the two equations in (2.1)) are not specified

neither.
O

Remark 2.9. Since the first line in (2.21)) asserts that u € H}(Q2) and ¢(u) € L?(0, L) while a and g
satisfy (2.3)-(2.4)), the second line of (2.21)) is equivalent to the variational formulation

L du d L d L d
(2.22) /Oa(x)££=/o ¢(U)£+/O g(w)é, vz € Hy(Q).
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Proposition 2.10. Assume that (2.2) holds true, and that the data (a,g,$) satisfy

(2.3)-(2.5). Then every possible weak solution w of problem (2.1) in the sense of
Definition [2.4] satisfies
L L
du du du
2.23 ——dx = — dx.
(223) | @ e = [ o) ds

This energy equality in particular implies that

du 1
2.24 ke <= ,
(2:24) 5], = sletieon
which in turn implies that
VI
(2.25) lull oo 0,2y < ||9||L2(0 Ly

Remark 2.11. Proposition asserts that every possible solution of ([2.21)) satisfies the a priori

estimates (2.24)-(2.25)), i.e. Ha(0,L) and L°(0, L) bounds which depend only on L, on the coercivity

constant a of a, and on ||g||z2(o,z), but not on the function ¢, which is only assumed to satisfy (2.5).

O

The three results of Proposition immediately follow from ([2.22)), from the coercivity (2.3)), from
Morrey’s embedding (|1.22)) which is specific to the dimension one, and from Lemma below.

Lemma 2.12. Assume that ¢ satisfies hypothesis (2.5)), and let z be such that
(2.26) z € H}(0,L) with ¢(z) € L*(0,L).

Then one has:

(2.27) / o) E dx _0

Proof. For n > 0, let T}, : R — R be the truncation at height n defined by (1.24]), and let ¢, : R — R
be the function defined by

Un(s) = /0 S T (p(t)) dt.

Since T,,(¢) € CP(R), one has 1, € CY(R) with — d¢n € CP(R), so that
Vs € HYO, L), vnz) € HY0,1) with ) 1 o)
and therefore
L d dipy,
e [ree = [ g ew) o) =0-0=0

Since |T,(¢p(z(x)))| < |p(z(x))| a.e. x € [0,L], and since by hypothesis (2.26) ¢(z) belongs to
L?(0, L), while

To(p(z(x))) = ¢(2(z)) ae. z€(0,L) as n— +oo,
passing to the limit in (2.28]) thanks to Lebesgue’s dominated convergence theorem implies that

(2.29) / B(z)— dx =0,

which proves (2.27)).
O

The proof of the following proposition is straightforward (the last line of (2.31)
below is just dividing the second line by a(z), integrating on (0, L), and using that u(0) = u(L)).
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Proposition 2.13 (Equivalence). Assume that (2.2) holds true, and that the data (a,g, ) satisfy

(23)-2-5). Then u is a weak solution of [2.1) in the sense of Definition[2.6, (i.e. u satisfies ([2.21)))

if and only if u satisfies
ue Hy(0,L), ¢(u) € L*(0,L),

2.30
(2:30) JceR, a(w)j—u:¢(u)+g+c in D'(0,L),
T

or, equivalently, if and only if
u€ H0 (0,L), ¢(u) € L*(0,L),
a(x )7 &( )—|—g—|—c in D'(0,L),

(2.31) / P(u /giﬂc;dx

with ¢ = .
/ 1
——dx
o alz)
Remark 2.14. Consider a function ¢ : R — R which satisfies
(2.32) ¢ € CO(R).

Then the function ¢ satisfies and the notion of weak solution in the sense of Definition of
problem for this function ¢ is defined.

On the other hand, when ¢ satisfies , it is standard to define a classical weak solution of
problem of for such a function ¢ as a function u which satisfies

u € H(0,L),
(2.33) d du\  de(u) dg(x) .,
- <a(x)dx> = T gy b D'(0,L),

where ¢(u) “automatically” belongs to L?(0, L), since by Morrey’s embedding (see (1.22)) one has
H(0,L) C L*(0, L), which implies when ¢ € C°(R) that

¢(z) € L°(0,L) C L*(0,L), Vz € Hy(0, L).

When ¢ satisfies (2.32), the definition of “weak solution of problem (2.1) in the sense of
Definition ’ coincides with the definition of “classical weak solution of problem (2.1)” given by
@2-33).

Definition is actually an extension of definition (2.33) of a “classical weak” solution of the
singular case where ¢(0) = +o0.

O

2.3. Existence of a weak solution when ¢ € C°(R).

Proposition 2.15. Assume that (2.2)) holds true, and that the data (a, g, $) satisfy (2.3))-(2.5). Assume
also that

(2.34) ¢ € CO(R).

Then there exists at least one classical weak solution u of problem (2.1} in the sense of (2.33)), or
equivalently a function u which satisfies

u € Hy(0,L),
(2.35) L du d d
/Oa( B /¢ 7dx+/ g() o dw, ¥x € HYO,L)

This classical weak solution is also a weak solution of problem (2.1 in the sense of Definition
Moreover any solution u of (2.35) satisfies

du

(2.36) -

1
< aHQHL?(O,L),

L2(0,L)
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which in turn implies that

VL

(2.37) el 0.2y < S ll20.0)-
Proof of Proposition Step 1. Further to (| -, let us assume in this first step that
(2.38) ¢ € CY(R) = C°(R) N L*°(R).
For every u € L?(0, L), define u as the unique solution of the linear problem
u € H(0,L),
(2.39) 7% <a(x)§z> = 7%@@ - % n D'(0,L).

Using u as test function in the variational formulation of (2.39)), one has
L 2 L L
du du du
— = u)—d —d
| at | oo+ [ o G

du
- < \/Z"¢||L°°(R) +1lgllz2(0,1)-
L2(0,L)

which implies that

dx
Recalling Poincaré’s inequality 1 , we get that

llull 20,0y < L

L
< = (VEIllm e + lglizo)) -

Then Leray-Schauder’s fixed point theorem applied to the map W defined by
W:we L*0,L) — W(u) =u € L*(0,L)
and to the ball B of L?(0, L) defined by

L
B={:e 220.0): Pllron < 5 (VElim + ol

implies, using also the Rellich-Kondrachov’s compactness theorem, that W has at least a fixed point
in B.
When ¢ satisfies (2.38)), this proves that there exists a classical weak solution of problem (2.1)), i.e.

a solution of (2.35)) (or of (2.33)), which is equivalent to (2.35)).
Using then z = u as test function in (2.35)) and Lemma [2.12] implies that

L L
du du du
/0 a(x) o da dx = /0 g(x) 7d:c dz,

which immediately implies (2.36)), which in turns implies (2.37)) using Morrey’s inequality (where
the latest inequality is specn‘ic to the one-dimensional case)

Observe that when ¢ satisfies (| -) and not only (2 i in Proposition m the existence of (at
least) one classical weak solution o and estlmaute7 as well as their proofs, continue to hold
true in dimension N > 1; in contrabt ebtlmate I is a result specific to the case N = 1, since it
follows from Morrey’s inequality .

Step 2. Let us now consider the case where the sole hypothesis holds true, i.e. the case where
¢ belongs to C°(R) and not necessarily to CP(R).

In this case, fix m which satisfies

L2(0,L)

VL
(2.40) m 2 THQHLQ(O,L)v
and consider the function ¢,, : R — R defined by

dm(s) = d(Tin(s)), Vs eR,
where T}, is the truncation at height m defined by (L.24). Then ¢,, belongs to CP(R), and Step 1
implies that there exists at least one solution u,, of
Uy € Hy(0,L),
(2.41) L dtiy, dz
| e

L L
dz dz
_ =2 dx + il H(0,L).
T dx /0 ¢m(um)dx dz /0 g(m)dx dx, Vz € Hy(0,L)
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Moreover every solution u,, of (2.41]) satisfies (2.36)) and (2.37)), and therefore in view of ([2.40)

s

||um||L°°(O,L) < lgllz2c0,0) < m.

This implies that
Tm(um) = Um, and (bm(um) = QS(Tm(um)) = ¢(um)7
which in turn implies that u,, is also a solution of (2.35)) for the function ¢.

Proposition is then proved in full generality.
O

2.4. Definitions of reasonable sequence of approximations and good sequence of approxi-
mations of ¢. Let us conclude this section by introducing the following definition.

Definition 2.16. Let ¢ be a function which satisfies (2.5). We will say that a sequence ¢,, of functions
is a reasonable sequence of approzimations (or simply a reasonable approximation) of ¢ if the sequence
¢, satisfies

(2.42) ¢, satisfies assumption (2.5)) for every given n,

(2.43) {for every sequence s, € R and every s € R such that s,, = s in R,

then ¢, (sn) — ¢(s) in RU {+o0}.

Moreover, we will say that a sequence ¢,, of functions is a good sequence of approzimations (or
simply a good approzimation) of ¢ if the sequence ¢,, is a reasonable sequence of approximations of ¢
for which every ¢,, belongs to C°(R). O

Remark 2.17 (Examples). Let us give, for functions ¢ which satisfy (and possibly ),
five examples of reasonable approximations of ¢. The first, the second and the fifth examples are
actually good approximations, while, when ¢(0) = +o0, the third and the fourth examples are not
good approximations of ¢.

The first example is the approximation by truncation, which consists in taking, for every
function ¢ which satisfies ([2.5]), the sequence of functions ¢,, defined by

(2.44) on(s) =Tn(9(s)), VseR, VneN,

where T, is the truncation at height n defined by (1.24).

It is easy to prove that ¢,, € CP(R), which prov. It is also easy to prove when s # 0,
as well as when ¢(0) < +o0.

The case where ¢(0) = +o0o and where s, — 0 requires special attention. In this case one has indeed
to prove that

if s, =0, then ¢,(sn) = Tn(¢(sn)) = ¢(0) = +o0.

This can be done using the facts that T,,(r) > T,,,(r) for every n > m > 0 and for every r > 0. Indeed,
as s, — 0, one has ¢(s,,) > 0 for every n sufficiently large. Therefore for every m > 0 and n sufficiently
large, one has

O (8n) = Tn(P(sn)) = T (d(8n)) = Tim(+00) =m  for every m > 0 fixed.

This completes the proof of the fact that the sequence ¢,, of approximations by truncation defined
by (2.44)) is a good sequence of approximations of any function ¢ which satisfies (2.5]).
Note that the approximations by truncation (2.44) satisfy

(2.45) $n € CRR),  on(s)] < lo(s)l, [dn(s)| <n, Vs€R, VneN

The second example is the homographic approximation, which consists in
taking, for every function ¢ which satisfies (2.5]), the sequence of functions ¢,, defined by

e
= e
(2.46) o0)

$n(0) = ¢ 1+ 116(0)]
n, when ¢(0) = +o0.

Vs eR, s#£0,

when ¢(0) < 400,
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It is easy to prove that ¢,, € C(R), which implies (2.42)): indeed, when ¢(0) = 400, one has, for every
fixed n,
(s)
Pn(s) ~
0]

Here again the only (small) difficulty in proving (2.43) is the case where ¢(0) = +oo and where
S$n, — 0. Since ¢(s,) > 0 for n sufficiently large, this is done by considering first subsequences
{n'} C {n} for which

=n, ifs—0, s#0.

1 1
—|o(sn)| = = d(sp) = ¢, with 0<¢< 400, asn' — +oo,
n n
and then subsequences {n’'} C {n} for which
1 1
glqj)(sn’)‘ = g(b(sn’) — +00, as n' — —+00;

in the latest case, one has either ¢,/ (s, ) =n' if s, =0, or if 5,7 #£ 0,
¢(8n’) ¢(5n/) ¢(Sn’)

P n) = T L6 ™ Do)l ~ Totow) "

In any cases one has
b (sp7) = +00 = ¢(0), as n’ — +oo,

which proves ([2.43)).

This completes the proof of the fact that the sequence ¢, of homographic approximations defined

by (22.46) is a good approximation of any function ¢ which satisfies (2.5)).
p.49),

Note that here again the homographic approximations satisfy (|

The third example is the trivial approximation of the function ¢ by itself, which consists in
taking, for every function ¢ which satisfies (2.5 the sequence of approximations defined by

(2.47) dn(s) = ¢(s), VseR, VneN.

In this trivial example, it is clear that (2.42)-(2.43) hold true, and that the trivial sequence of
approximations defined by (2.47)) is a reasonable sequence of approximations of any function ¢ which

satisfies (2.5, but not a good approximation if ¢ satisfies (2.6]).

1 1
The fourth example consists in approximating —— by ——, in the specific case where ¢ is the
[s|* 7 Is7
S 5|
model example (2.10) given by
(2.48) by (s) = ﬁ +o(s), with ¢ > 0,7 > 0, ¢ € CO(R).
In this case one can approximate the function by the sequence of functions ¢,, given by
y g
(2.49) n(5) = ﬁ + @n(s), with ¢, > 0, 7, > 0, ¢, € C(R),
where
(2.50) Cn =€, Yn—7 @n—¢ uniformly in C°([—R,+R]) for every fixed R.

Using in particular the fact that for every e, with 0 < ¢ < min{~, ¢}, one has

Cn c—e¢

¢n(5n) = [5n [ + Spn(sn) > W + LPrz(Sn) — +00 = ¢(O>7 as s, — 0, s, #0,
allows one to prove that the sequence ¢,, defined by (2.49)-(2.50) is a reasonable sequence of (but not
a good sequence of) approximations of the function ¢ defined by (2.48).

The fifth example concerns the case where ¢ € C°(R) and consists in this case in the classical
approximation by convolution, namely

e = P *pe,
where p. is a standard sequence of mollifiers, i.e. p. = ep(ex) with p € C*(R), p > 0, such that

fR p = 1. Then ¢. is a good sequence of approximations of ¢ since ¢. converges locally uniformly to
¢. Here one has ¢. € C*(R).
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Moreover, in the case where ¢ € C°(R) is constant at infinity, namely when there exists R > 0 such
that

o(+R) if s > +R,
o(s) = { D

¢(—R) if s < —R,
then for every € the function ¢. = ¢ * p. is Lipschitz continuous on R.

0

To conclude this section, let us state and prove a characterization of a reasonable sequence of
approximations defined by Definition

Proposition 2.18. Assume that ¢ satisfies hypotheses (2.5)-(2.6). Then Definition[2.16 is equivalent
to assert that the sequence ¢y, satisfies (2.42)) as well the following two properties

(2.51) for every n and R, 0 < n < R,

’ ¢n — ¢ uniformly in C°([+n, +R]) and in C°([—R, —1)),
2.52 lim inf inf  ¢,(t) | — , —0F.
(2:52) LR (tqg,m ol >) oo, s

Remark 2.19. The meaning of the two properties (2.51)-(2.52) is that, in some sense, the sequence
of functions ¢, : R + R U {400} (which are assumed to satisfy (2.42)) locally uniformly converges
to the function ¢ : R — R U {+00} which satisfies (2.5)-(2.6). Note however that the local uniform
convergence is usually defined only for functions from R into R, while here one has ¢(0) = +oo.

Property is indeed nothing but the classical local uniform convergence of the sequence ¢,, to
¢ in R — {0}, while property asserts that ¢, uniformly converges to +oco around s = 0.

When ¢(0) is finite, a variant of the proof below shows that it is equivalent for an approximation
¢y, to satisfy or to converge locally uniformly on the whole of R, i.e. in C°([—R, +R]) for every
R € R. Note that when ¢(0) is finite, then necessarily ¢,(0) is finite for n sufficiently large (take

s$n =0 in (2.43)).

O

Proof of Proposition Step 1. Let us first prove that if ¢ satisfies (2.5))-(2.6), and if the
sequence ¢,, satifies (2.42)), (2.51)-(2.52)), then the sequence ¢,, satisfies (2.43)).

Consider indeed on the first hand a sequence s,, which satisfies

Sp — S as n— +oo, s # 0,
and write
Pn(sn) = &(s) = (dn(sn) — &(sn)) + (¢(sn) — ¢(s)).
Then using and proves .

Consider on the other hand a sequence s, which satisfies
Sn, — 0 as n — +oo.

Then for every n > 0, one has |s,| < n for n sufficiently large, and the inequality ¢,(s,) >
infye[_yy, 1) &n(t) for n sufficiently large implies that

liminf ¢, (s,) > liminf inf ¢, (1),
Rl Onlon) 2 Bl o)

which combined with (2.52)) proves that
On(8n) = +00 = ¢(0), as n — +oo.

This completes the proof of (2.43)).
Step 2. Conversely let us prove that if ¢ satisfies (2.5)-(2.6]), and if the sequence ¢,, satisfies (2.42))-

(2.43)), then the sequence ¢,, satisfies (2.51))-(2.52)).
As far as (2.51) is concerned, fix n and R with 0 < < R and choose any s,, € [, R] such that

(2.53) |n(sn) = d(sn)| = max [on(t) = d(t)] = sup [dn(t) = ()] = l[on — dllco (. m);

te[n,R) te[n,R)
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observe indeed that in (2.53)) the supremum on [, R] is actually a maximum. From any subsequence
denoted by {n'} of {n}, extract from n’ a subsequence {n”} C {n'} such that the subsequence
s € [n, R] converges to some s € [n, R], and apply (2.43)) to s//; then

¢n/’(sn”) - (;5(8), as " — +o0.
Since
lfnr = llcon,r)y = [&n (snr) = G(snr)| < b (s07) = B(5)] + [d(5) = Dsn)],

using (2.43)) and (2.5) implies that
(2.54) ¢nr — ¢ uniformly in C°([n, R]), as n” — +oo.
The fact that the limit in (2.54) does not depend on the subsequence n’ implies that the convergence
(2.54) takes place for the whole sequence {n} = N.

A similar proof implies the similar result in C°([—R, —n]), and (2.51) is proved.

As far as (2.52) is concerned, fix 7 > 0 and choose any s,, € [-n, +7] such that

2.55 n(Sp) = min n(t) = inf n(t);
(2.55) Pn(sn) i ¢ (t) L (t)

observe indeed that in (2.55) the infimum on [—n, +7] is actually a minimum, and that ¢,(s,) is finite
for every n since, for every s € [—n, +7)], one has

Since

dn(3) = ¢(3), as n — +oo,
this implies that for some constant C, one has
(2.56) n(sn) <C, Vn €N,

as well as
liminf ¢, (s,,) < lim ¢, (3) = ¢(35), Vs € [-n,+n],

so that
(2.57) liminf ¢, (s,) < inf  @(s).
n s€[—n,+n]
Let us now prove that for some constant C, one has
(2.58) Gn(sn) >C, VYneN.
Indeed, if does not hold true, there exists a subsequence {n'} C {n} = N such that
(2.59) G (Spr) — —00, as n' — +oo.

Extract from {n’} a subsequence {n”} C {n'} such that the subsequence s\ € [—n,+n] converges to
some s € [—n, +n], and apply (2.43)) to s//; then
¢n”<sn"> - ¢<5>7 as n’ — +00,
in contradiction with (2.59)), since ¢ : R — R U {+o0}.
We use the fact that from any sequence p,, with ¢ < p,, < ¢ for some ¢,¢ € R, one can extract a

subsequence {n'} C {n} such that
lim p,,» = liminf p,,.
n’ n

Using this result with p,, = ¢, (s,), which satisfies C < ¢,,(s,,) < C in view of (2.58) and (2.56)), there
exists a subsequence {n'} C {n} such that

lim ¢,/ (spy) = Hminf ¢ (sn).
Extract from {n'} a subsequence {n”} C {n'} such that the subsequence s, € [—,+n] converges to
some s € [—n,+n], and apply (2.43)) to s//; then

lim inf ¢n(5n) = lim ¢, (Sn/’) = ¢(8) > inf ¢(t)
n n'’ t€[—n,+n]

Combining this result with (2.57)), we have proved that

(2.60) Yn >0, liminf ( inf gbn(t)) = liminf ¢, (s,) = inf &(¢).
n te[—n,+n) n te[—n,+n]
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Since in view of (2.5)-(2.6]) one has

(2.61) inf  @(t) = ¢(0) = +oo, asn — 0T,

te€[—n,+n]
we have proved (2.52]).
This completes the proof of Proposition [2.18]

3. APPROXIMATION OF PROBLEM (2.1)), A PRIORI ESTIMATES,
AND AN ALTERNATIVE

As we already said, in order to (try to) prove the existence of a weak solution of problem (2.1)) in
the sense of Definition [2.6] one proceed as usual by approximation, finding suitable priori estimates,
and finally passing to the limit.

3.1. Approximation of problem (2.1)) and the main difficulty. We assume that hypothesis (2
holds true (so that we are dealing w1th a one-dimensional problem), and that the data (a, g, ¢) satlsfy
hypotheses - and , and we consider sequences (@, gn, ¢r) of “approximated data” which
satisfy, for some g > a > 0, and some ¢y > 0

(3.1) an € L*(0,L), 3,8, 0 <a< B, a<ay(z) <B, an(xz) = a(z) ae. z€(0,L),

(32) gn € LQ(O’ L)v ||gn||L2(O,L) <co, gn — 9 Weak]y in LQ(OvL)7
(3.3) ¢ 1s a good sequence of approximations of ¢,

(recall Definition in Section 2), so that ¢, satisfies

(3.4) ¢n € C°(R) for every given n.

Proposition then ensures that for every n there exists at least one classical weak solution of
problem (2.1)) for every (a,, gn, ¢n), namely at least one function w, which satisfies (see (2.23))) the
energy equality

L L
du,, du, dun,
. n(r)— ———dx = n(x)—— dz,
(35) | o GG dr= [ aute) G i
which implies

u, € H3(0,L),

dda:

Moreover the function w,, satisfies (see (2.36]))

(36) L du dz L dz L dy
n = = o (Up) — d n—dz, Vze HL0,L).
| @G [ o) Fdos [ 0. Fan vzemon

du,,

(3.7) ‘ -

1
< gnllzar < 2
o o

L2(0,L)

One can therefore extract a subsequence, denoted by mn’/, and there exists some

u € H}(0, L) such that

(3.8) {un/ —u weakly in H}(0, L),

Up () = u(z) a.e. x€(0,L),
thanks to Rellich-Kondrashov’s theorem. One easily passes to the limit in the first and last terms of

d
(3.6) thanks to the strong convergence of an—z

dz
result from (3.1)) and (3.2)), obtaining
L L
du, dz du dz
n ————dx ———d )
/0 “ ()dx dx /0 a(x)dxdx *

/gn dx—)/ g—dm
0

and the weak convergence of g, in L?(0, L), which

(3.9) as n’ — +o0.
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As far as the second term of (3.6) is concerned, the almost everywhere convergence in (0, L) of u,,
stated in (3.8]) and the fact that ¢,, is a reasonable sequence of approximations of ¢ immediately imply

(see (2.43)) that
(3.10) On (s (2)) = d(u(x)) ae. z€(0,L), asn — +oo.

Observe however that this almost everywhere convergence does not allow one to pass to the limit in
the term

L
dz
| ot o

since the a.e. convergence of ¢,/ (uy,/) is not sufficient to imply the convergence of the integrals.
Observe that up to now, we could have obtained results similar to (3.6[)-(3.10) in an N-dimensional
setting.

3.2. A new a priori estimate due to the one-dimensional setting. We will now prove a new a
priori estimate which is specific to the one-dimensional case, see assumption (2.2]).

Lemma 3.1. Assume that (2.2) holds true, and that the data (a,g,d) and (an,gn,dn) satisfy

hypotheses (2.3))-(2.5) and (2.6), and (3.1)-(3.3) and (3.4)). If a subsequence, denoted by w,, satisfies
(3.6) and (3.8) for some u € HL(0,L), and if

(3.11) w0,

then

(3.12) G (Unr) s bounded in L*(0, L),
and

(3.13) G () — Pp(u) weakly in L*(0,L).

Proof. Step 1. We will strongly use in the present proof the assumption that N =1 in two ways.
First by using Morrey’s embedding theorem (see (1.23])) which asserts that, when N = 1, then
HE(0,L) € ¢%3([0, L)), so that, in view of (3.8)), that

(3.14) U — u uniformly in C°([0, L]), as n/ — +oo.

And, second, by using the characterization of a weak solution of problem (2.1 in the sense of
Definition given in Proposition [2.13] see (2.30); applied to u,, (2.31) implies that
Up! € H(} (Oa L)a ¢n’ (un/) € L2(07 L)a

5 e € By e (0) 0 = () - gue (@) + e i D0, L),
L L
(3.15) ¢n’(“n/)dx+ / gw (@) o
0 aw(z) 0 aw(z)

with ¢,y = —

L
/ 1 dxr
0 an(T)

Observe that here ¢,, € C°(R) (see (3.4)), and that u,, € H}(0,L) C L>(0, L), so that ¢, (un)
“automatically” belongs to L>°(0, L) C L?(0, L) for each n’.
Step 2. If we assume that uw # 0 (hypothesis (3.11)), there exists at least one
xo € (0, L), such that

(3.16) u(xg) # 0.
We claim that

(3.17) ¢ns is bounded in R.
Let us assume for a moment that

(3.18) u(zg) > 0.

(the proof will be similar in the case where u(zo) < 0).
Since u € HE(0,L) C C°([0, L]), (3.18)) implies that there exists some § > 0 and 7 > 0 such that

(3.19) O<mp—d<zp<z0+0d<L, with u(z)>n, Vo€ [rg— 0 zo+7],
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and the uniform convergence (3.14]) implies that

(3.20) for n’ sufficiently large, Va € [z — 0,29 + 0] one has wu,/ (x) >

(VBN

On the other hand, in view of the Morrey’s inequality (1.22)), and of (3.7)) and (3.2]), we have

dty VL L
(3.21) ol < VE[ % < g llion < e,
T lr200,1) e a
therefore one has in view of (3.20))
L
(3.22) for n’ sufficiently large, Vz € [zg — §, 2 + 0] g <y (z) < £Co.
o

Since ¢/, which is a reasonable approximation of ¢, satisfies

L
(3.23) ¢n — ¢ uniformly in C° ( g, 0 > )
see ([2.51)); we deduce that
(3.24) for n’ sufficiently large, ¢, is bounded in L% (xzg — §, 2 + ).
From (3.15), (3.1), (3.7), (3-2), and (3.24)), we deduce that
(3.25) for n' sufficiently large, ¢,/ is bounded in L*(zo — 8,0 + 0),

which implies that
(3.26) ¢ns 18 bounded in R,

which proves the claim (3.17)).
Turning back to (3.15)), the estimates (3.1]), , (13.2), and (3.26]) together imply that
(3.27) b () is bounded in L2(0, L).

We have proved that (3.12)) holds true.

The weak converge of ¢ns(un) to ¢(u) then results from and (3.10), since a bounded
sequence z,s in LP(€)) which converges a.e. in ) to some z also converges to z weakly in LP(Q)) when
1 < p < +00 (this results from Vitali’s theorem since the sequence z, is equi-integrable in L!(2), and
therefore it converges strongly in L'()).

Lemma, [3.1] is proved.
O

Remark 3.2. As we said at the beginning of its Step 1, the proof of Lemma [3.1] strongly uses the
assumption N = 1.

On the other hand, the proof given in the second step is very surprising, since it consists to transform
the local estimate (3.24)), which is only valid in (z¢ — &, 2o + §), into the global estimate (3.27), which
is valid in (0, L). This passing from local to global is also specific to the dimension N = 1.

O

Remark 3.3. It is assumed in hypothesis (3.2) that g, converges weakly to g in L?(0,L). If this
hypothesis is reinforced in

(3.28) gn — g strongly in L?(0, L),
then the weak convergence (3.8]) is reinforced in
(3.29) Upr — u strongly in Hj (0, L).

Indeed once a subsequence n’ has been extracted for which one has (3.8)) for some v € H}(0, L),
one has

dx
when the strong convergence (3.28)) holds true. Then either u = 0, in which case (3.5]) implies that
U, — 0 strongly in HJ (0, L),

L L
du,, d
(3.30) / In/ Y da:—>/ g—u dr, as n' — +o0.
0 0 de'
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or u # 0, in which case, in view of Theorem (Alternative) below, u is a weak solution of problem
(2.1) in the sense of Definition which therefore satisfies the energy equality (2.23)) in view of
Proposition Passing to the limit in (3.5)) and using (3.30] proves that

L L
Aty diy, du d
/o () ;;x ZZE dx—)/o a(m)%ﬁ dr, as n' — +oo.

which with the weak convergence (3.8)) implies the strong convergence (3.29)) by passing to the limit in

/L duy  dul® </L () (S ( du
“ 0 = 0 AT dz dz dx de ) T

dr  dx
L L
Aty Ay, du duy,
= . dx —2 () — d
/0 an () dr dz /0 “ (m)dx dz v

L
du d
Jr/ an/(x) uld
0

dedz
O

3.3. An alternative. From the results obtained in Subsection and from Lemma of
Subsection we deduce that we are in front of an alternative:

Theorem 3.4 (Alternative). Assume that hypothesis (2.2]) holds true, and that the data (a,g, )

satisfy hypotheses - and . Consider approximations (ap, gn, ¢rn) which satisfy -
and (3.4).

Tlgfor every n € N there exists at least one function u, which satisfies and . If one
extract a subsequence, denoted by wu,/, such that holds for some u € H}(0,L), then one has the
alternative:

o either u =0,
e oru is a weak solution of problem in the sense of Definition .

Remark 3.5. Let us emphasize that in the whole of the present section, and in particular in
Theorem we have assumed hypothesis , namely ¢(0) = +oo. If we do not make this hypothesis,
but ¢(0) < 400, we have ¢ € C°(R) and we are in the hypotheses of Proposition with good
approximations ¢, which converge uniformly on C°([—R,+R]) for every R < +o0. In this classical
setting, © = 0 can be a solutiorﬂ and there is no alternative: all the converging subsequences wu,,
converge to a classical weak solution, see the proof of Proposition [2.15
In Theorem the alternative is indeed due to the fact that ¢ is singular in s = 0.
O

Let us complete Theorem by a result which characterizes the behaviour of the constant ¢, which
appears in , and also the behaviour of ¢, (uy).

To this aim observe that, since ¢, € R for any given n, but without any bound on |¢,|, we are at
liberty to extract from n’ a further subsequence denoted by n’” such that

(3.31) Jé € RU{+oo} U{—o0} such that c,» — & in RU {+oo} U {—o0}, asn” — +co.
We then have the following result, which describes the links between the possible limits of wu,,
On(uy), and c,.

Proposition 3.6. Assume that hypothesis holds true, and that the data (a, g, ¢) satisfy hypotheses
— and (2.6). Consider approzimations (an, gn, ¢n) which satisfy — and . For ¢
and n” defined by (3.31]), we have the following equivalences:

u=0&c=—-0c0&
(3.32) S VM eR, ¢pr(upr(x)) > M, Yz € (0,L), forn” sufficiently large <

& dpr (upr(z)) — +oo  uniformly in [0,L], asn” — +oo.

(3.33) {u#O@—oo<c<+oo<:>

& G (Upr) — d(u) weakly in L?(0,L), as n" — +oo.

2As a side remark, note that when ¢ € C°(R) (or in other terms when ¢(0) < 400), u = 0 is a classical weak solution

of problem (2.1)) if and only if g is constant (see (2.33))).
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Remark 3.7. Since the limit u of a subsequence u,s can only be equal to u = 0, or to u # 0, taking
into account the equivalences in and in 7 one sees that the limit ¢ of a subsequence ¢,
can never be equal to 400 (but only be either finite or equal to —o0), and that the limit ¢(u) of a
subsequence ¢, (u,~) can only be equal to +00, or to ¢(u) for u a weak solution of problem in
the sense of Definition [2.0]

O

Proof of Proposition Step 1: The case u # 0. In this case, we have proved in Step 2 of the
proof of Lemma [3.] that (see (3.26)-(3.27))

u # 0 = c,» is bounded in R = ¢, (u,~) is bounded in L*(0, L),
which implies that (see the last paragraph of the proof of Lemma

(3.34) {U%O:soo<c<+ooé

= ¢pr(upr) — ¢(u) weakly in L?(0,L), as n" — +o0.

Step 2: The case u = 0. In view of upr converges to 0 uniformly in C9([0, L]), and therefore
V>0, |upr(x)]<mn, Voel0,L] forn" sufficiently large,

which implies that

(3.35) V>0, ¢pr(upr(z)) > [inf ]¢nu(t) Vo € [0,L] for n” sufficiently large.
te|—n,+n

On the other hand, in the second part of Step 2 of the proof of Proposition [2.18] we have proved,

see ([2.60)), that

Vn >0, liminf inf e (t) p = inf t),
0>0 tmjur{ it 0@} = it o)

which implies that for every k <  inf  ¢(t), one has
t€[—n,+n]

inf ¢, (t) >k, for n” sufficiently large.
te€[—n,+n]

Since it results from (2.5))-(2.6) that

in o(t) = ¢(0) = +o0, asn—0,
te[_777+77]

we have proved that

(3.36) VM eR, inf ¢, (t) > M, for n” sufficiently large.
te€[—n,+n]

Combining ({3.35)) and (3.36|) we have proved that
(3.37) u=0=VYM eR, ¢p(up (z)) > M, Vz € (0,L), for n” sufficiently large.
On the other hand, in view of (3.15]) one has

dun//

dr 7gn”(517) in LQ(O,L),

Cn/ + ¢n//(un’/) = Qp" (I)

which combined with (3.37)) implies that

dun//

VM eR, cpr+ M < ap(z) — gur(x) in L*(0,L), for n” sufficiently large.

dzx

Since the right-hand side of this inequality is bounded in L?(0,L) in view of (3.I)-(3.2) and (3.7),
integrating on (0, L) and dividing by L implies that there exists a constant ¢y < +o0o such that

VM eR, cpv+ M <cy, forn” sufficiently large,

which implies that ¢,» — —oco0 as n’/ — +o0, or in other terms that ¢ = —oco.
We have proved that
u=0=
(3.38) = VM € R, ¢pr(upr(x)) > M, Yz € (0,L), for n” sufficiently large =

= ¢ = —00.
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Step 3: Proof of the two equivalences (3.32) and (3.33]). We will deduce (3.32)) and (3.33) from
the two results (3.34) and (3.38)), and from the fact that when a subsequence u,,» converges weakly to
see (3.8

win HE(0,L) ( ), then one has the dicotomy “either u # 0 or u = 07.
Indeed, when considering ¢, one deduces from ([3.32)) and (3.33)) and from the dicotomy “either u # 0
or u =07, that

either ¢ is finite or ¢ = —oo,

and that one can not have ¢ = +oo.
Consider first the case when ¢ is finite; then use the dicotomy “either u # 0 or u = 0”7: if u = 0,
then by (3.38) ¢ = —oo, which is not the case; therefore

¢ finite = u # 0.

Consider then the case where ¢ = —oo; then use the dicotomy “either u # 0 or w = 07: if u # 0, then
by (3.34)) ¢ is finite, which is not the case; therefore
c=—-o00=>u=0.

As far as ¢ (upn) is concerned, one deduces from (3.32)) and (3.33) and from the dicotomy “either
u# 0 or u =07 that, as n” — +oo,

either ¢, () — ¢d(u) weakly in L?(0, L) or ¢y (un») — 400 uniformly in [0, L].
A proof similar to the proof made just above for ¢ leads to
G () — ¢(u) weakly in L?(0,L), as n” — +oo = u # 0,
and to
G (U (2)) = +o0 uniformly in [0, L], as n” — +o00 = u = 0.
This completes the proof of the two equivalences and and of Proposition
O

At the end of this section, one could think that, except maybe in some very special cases, every limit
u of weak solutions of approximations of problem which satisfy (3.1)-(3.3) and is always a
weak solution of problem in the sense of Definition

We will see in Section {| below that this is not the case, and that for a large class of functions
g € L?(0, L) (see Theorem 4.1), and for a large class of functions ¢ (see Theorem , every limit of
approximations is v = 0. This is unexpected.

We will also see in Section [7] below that for an another large class of functions ¢ and for another
large class of functions g, there exists at least one weak solution of problem in the sense of
Definition [2.6] This will be also unexpected.

4. NON-EXISTENCE RESULTS

In this section we give two results of non-existence of a weak solution of problem in the sense
of Definition 2.6

Our first non-existence result states, in particular, that there is no weak solution of problem in
the sense of Definition [2.6|when g € L°°(0, L). This result is obtained independently of the nonlinearity
¢, provided ¢(0) = +o0, i.e holds true.

Theorem 4.1 (Non-existence when g is bounded from below). Assume that hypothesis (2.2))
holds true, and that the data (a,g, ) satisfy hypotheses (2.3)-(2.5) and (2.6). Assume moreover that
exists M > 0 such that

(4.1) g(x) > —M for a.e. x € (0,L).
Then it does not exist any weak solution of problem (2.1]) in the sense of Definition .

Remark 4.2. Observe that Theorem [£.1]implies that if, for a given nonlinearity ¢, @ is a weak solution
of problem in the sense of Definition corresponding to a source term g (we will see in Section
below that there exist many data (a, g, ¢) for which there exist weak solutions of problem in the
sense of Definition , one can not hope to approximate @ by approximating ¢ by any sequence g,
which approximate § (weakly or strongly) in L?(0, L): in view of Theorem it is indeed sufficient to
approximate § by a sequence g, € L°(0, L) which converges to g (weakly or even strongly) in L?(0, L),
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since for those g, there is no weak solution u,, of problem ([2.1)) in the sense of Definition with the
source term g,.

d
The proof of Theorem will use the following Lemma:

Lemma 4.3 (The forbidden region). Assume that hypothesis (2.2]) holds true, and consider data

(a,l, @) which satisfy hypotheses (2.3))-(2.5) and (2.6)). Let w which satisfies
we HY(0,L), ¢(w) e L*(0, L),

(4.2) dw . /

a(x)% =¢(w)+1 in D'(0,L).

Let A, B and zo be such that

(4.3) 0<A<B<L, z€[AB], w(zg)=0.
If | satisfies
(4.4) IM >0, l(z)>—-M fora.e x€[A B],

then one has
VEk>0, 36§>0 such that

(4.5) 7 2k a.e. ¢ € [xg — 6,20 + 6] N [A, B],
w(x) > k(z —x9), Y € [x0,70 + 0] N [A, B],
w(z) < k(z —x0), Yz € [xg—0d,20] N[A, B].

Observe that formula (4.5) implies that the graph of the function w can not enter in the forbidden
region colored red in Figure [I} when xg, which is a zero of w, can be either an interior point of [A, B|
or an extremity of [A, B], namely xg = A or ¢ = B.

w(z) w(w) w(z)

.
]
I 1

A

+6 B L xr 0| * wo-2

FIGURE 1. Visualizing the statement of Lemma 4.3}
the extreme case xg = A, the case xy € (4, B) and the extreme case xo = B.

Proof of Lemma [4.3] The main idea of the proof is that the facts that ¢(w(zg)) = +oo and | > —M

d
and the equation of the second line of (4.2)), formally imply that d—w
x

d—(m) is very large when x is close to xg. Let us write this idea in a correct mathematical form.
x

Because N = 1 one has H'(A, B) C C°([A, B]) by Morrey’s theorem (see (1.23))). Since w(zg) = 0,
then for every fixed € > 0 there exists § > 0, § = §(¢), such that

Vo eVs=xo—0dx0+|N[AB], |w(x) <e.

(zg) = +00, and therefore that

Then,
Ve eVs |p(w(x))| = inf ¢(t),

te[—e,+e]
so that in view of (4.4) and (4.2)), one has

d
(4.6) a(:z:)—w > inf ¢(t) — M, for a.e. x € Vs.
dx t€[—e,+e]
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Since [inf ]¢(t) — 400 as € — 0, the left hand side of (4.6]) is non-negative for e sufficiently
te[—e,+e

d
small, so that % > 0 and, by (2.3)), for € sufficiently small, one has

5% > a(m)ccll—z;) > te[i_rg+s] o(t) — M, forae. x€Vs.
Dividing by S and choosing ¢ sufficiently small, this implies that, for every k > 0, one has for some
>0
(4.7 dw >k ae. in Vs
dxr — ’
which immediately implies, using also w(xg) = 0, that also the two latest lines of hold true.
Lemma [4.3|is proved.

O

Proof of Theorem [4.1l Assume by contradiction that there exists some u which is a weak solution
of problem (2.1)) in the sense of Definition Then, by Proposition [2.13] u satisfies

u€ HY0,L), ¢(u) € L*0,L),
u(0) = u(L) =0,
d
alw) 7= = 6(w) +g+c i D(0,L),
where c is given in the last line of (2.31)).
Apply Lemma [£.3 with w =u, l =g+¢, A=0, B= L, and 2o = 0. Fixing any k > 0, one obtains
that for some dg > 0 with dg < L,
(4.8) u(z) > kx>0, Va € (0,d].
Let us define the set X C [0, L] and the number y by
X ={z: z €[bo, L], u(z) =0}
= i

The set X is non-empty since L € X; therefore y is correctly defined. In the case where y is not a
minimum, let z,, be a minimizing sequence, i.e. a sequence which satisfies

xn € X, le. x, € [0o, L], u(zy) =0, and z, — y.

Then y € [0o,L] and u(y) = 0 since u is continuous. Since u(dp) > kdy > 0 by (4.8)), one has
L >y > dg > 0. The same holds in the case where y is a minimum.

Then apply again Lemma [£.3] now with w =u, l = g+ ¢, A =6y, B =y, and o = y. Fixing any
k > 0, one obtains that for some §, > 0 with y — d, > do,

(4.9) u(z) < k(z—y) <0, Yaely—3d,y).

Now observe that u(dp) > 0 and u(y — d,) < 0. Since u is continuous there exists some yq such that
do < Yo <y —d, <y with u(yo) = 0, which contradicts the definition of y. Theorem is proved.

Our second non-existence result is obtained instead independently of the source term g. It asserts
that when the singularity of ¢ at s = 0 is too strong, and, more precisely, when ¢ is not integrable
both in 0 and 0~, then it does not exist any weak solution of problem ([2.1)) in the sense of Definition

Theorem 4.4 (Non-existence when the singularity is too strong). Assume that hypothesis
(2.2) holds true, and that the data (a, g, @) satisfy hypotheses (2.3)-(2.5) and (2.6). Assume moreover
that ¢ satisfies

+6
(4.10) ¢(t)dt = +o0, V4, 0 < <1,
0

and

0
(4.11) / é(t)dt = +00, V5, 0< 4 < 1.
)
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Then it does not exist any weak solution of problem (2.1)) in the sense of Definition .
Remark 4.5. In the model case (2.10) where the function ¢ is given by ¢ = ¢~ defined by
c

(4.12) 62(9) = T

hypotheses (4.10]) and (4.11]) are satisfied if and only if v > 1.

In this case the proof of Theorem [{.4] is very simple. Assume indeed by contradiction that u is a
weak solution of problem (2.1)) in the sense of Definition [2.6] and let zo € [0, L] be such that u(zg) = 0.
Recalling Morrey’s embedding HZ (0, L) € C%2 ([0, L]) (see (1.23)), one has

+ ¢(s), with ¢ >0, v >0, p € C°(R),

[u(@)] = [u(@) = (o)l < Jull oy 4|2 = 20l

Using (4.12) and recalling that w € H'(0, L) and therefore p(u) is bounded, one has
Oy (u(z)) = + p(u(x)) = w(s)l,

> + inf
HUIIZ,O,%([O L])Iw —20|7 sl lullzoo o,z

c

ealy

from which one deduces that ¢.,(u(x)) & L?(0, L) if v > 1, a contradiction.
Observe that this proof continues to hold in the case where (2.10) is only assumed to be in force on
a neighborhood of s = 0.
O

Remark 4.6. Let us remark that, when ¢ satisfies hypothesis (2.5)), it is equivalent to make hypotheses
4.10f) and (4.11)) for every §, 0 < § < 1, or to assume that there exists some dy > 0 such that hypothesis
H

4.10) and (4.11)) hold true for this fixed dy.

O
Theorem immediately follows from the following proposition, which has its own interest.

Proposition 4.7. Assume that hypothesis holds true, and that the data (a, g, ¢) satisfy hypotheses
1) and . Assume moreover that ¢ satisfies . Then every possible weak solution of
problem (2.1)) in the sense of Definition |2.6] is non-positive.

Similarly, assume that ¢ satisfies Then every possible weak solution of problem in the
sense of Definition is non-negative.

Proposition 4.7 is itself an immediate consequence of the following result, where the set U is defined
by

(4.13) U = {u € Hy(0,L) such that ¢(u) € L*(0,L)};

observe that every solution u of problem (2.1)) in the sense of Definition belongs
to U, while 0 &€ U.

Proposition 4.8. Assume that hypothesis (2.2)) holds true, let ¢ be a nonlinearity satisfying (2.5)) and
(2.6), and let w € U. Then if ¢ satisfies (4.10), one has

(4.14) u(z) <0, Vzel0,L];
if ¢ satisfies , one has
(4.15) u(z) >0, Vzelo,L].

Proof of Proposition We will prove that hypothesis (4.10) implies (4.14). In the case where
(4.11) is assumed instead of (4.10]), the proof of (4.15) is similar.

Assume that (4.10) holds true and assume by contradiction that v € U is such that for some
zo € (0, L) one has u(zg) > 0.
Define yo by

(4.16) yo = inf{x € [0, zg] such that u(z) > 0 for all z € (z, zo]}

(one could also consider y; = sup{z € [zg, L] such that u(z) > 0 for all z € [zg,x)). Observe that yg is
well defined since the set {z € [0, zo] such that u(z) > 0 for all z € (x, 0]} is not empty as it contains
xg, and that 0 < yg < x¢ since u is continuous. One has

(4.17) u(yo) = 0;
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indeed, since u(z) > 0 for every = € (yo,xo], one has u(yg) > 0; but if u(yy) > 0, there exists § > 0
such that u(z) > 0 for every = € [yg — §, yo + J], a contradiction with the definition (4.16)) of yo.
On the other hand, fix § > 0 and define the function ;5 : |0, +oo[— R by

5
s(s) = / (t)dt, Vs >0,

or equivalently by

Ps(8) =0, Pi(s) = —o(s), Vs>0;
(please do not confuse this function 1235 with the function 1),, used in the proof of Lemma above,
whose definition is recalled in below). Then is equivalent to

(4.18) Us(s) = +o0  ass— 0, s> 0.
Recall that u € H}(Q) cc C°([0, L]), and for n such that 0 < n < zg — yo, define the two real
numbers w, and u by
u,= min wu(z), = max u(z),
T E€[yo+n,zo] z€[yo,zo]

and observe that
Vn, 0<mn<zo—yo, one has 0 <wu, <u(r)<u<+oo, V€ [yo+ 1,0l
Define also the two real numbers

¢ = min ¢(s), ¢,= max ¢(s),

s€[0,7] s€(u, 1]

and observe that 5,7 is finite for every n, 0 < n < x¢ — yo, even if it is unbounded as n — 0.
Then since u € H'(yo + n,z0) and since
XS C’g([ﬁn,ﬂ]), which implies that 15 € C*([w,, 1)),

one has the chain rule

~—

¢(U) = _1%(”) = - in L2<y0 + 7, '/I"O)a

dj diu d’([)(s (u
dr dx d

T
and therefore

*o du , o dqﬁg(u) i R
/yw7 ¢(U)@d$ = /yw7 g dr= Ys(u(yo + 1)) — vs(u(zo)), Vn, 0<n<z0— Y0

Now ts(u(xg)) is finite, while in view of [{.17) and (&.18) one has
u(yo+n) =0 and ds(u(yo +m) = +o0, as n =0, 1>0,
which implies that
o du
(4.19) / d(u)—dxr — 400, asn—0,n>0,
Yo+n dz

a contradiction since u € Y. This proves Proposition

5. STUDYING AN (ASSOCIATED) ODE

In this section we will study an Ordinary Differential Equation (ODE) that for the moment we
formally write as

() 2 = ofv) + hix) i (0,L),

v(0) = 0.

Under convenient hypotheses, we will prove an existence result, an a priori estimate, and two
stability results (Subsection 7 a positivity result, a comparison result, and an uniqueness result
(Subsection [5.2)). For the sake of exposition these results are summarized in the brief Subsection

The ODE is clearly strongly related to problem (2.1)), see e.g. in Proposition [2.13|above.
But in the present section we will not try to make any connection between the two problems and we
will study the ODE for itself. The results of the present section will then be exploited in the
following sections, and in particular in Section |§| to obtain multiplicity results for problem .

(5.1)
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In order to emphasize the difference between the present study of ODE and the study of
problem 7 we will denote by v (and not by w as in problem ) the solution of the ODE .
We will also denote by (a, h, ¢) (and not by (a,g,)) the data for ODE (5.1).

In the whole section we will assume that the data (a,h, @) satisfy the following hypotheses (see
Remark [5.2] below for a comparison with the hypotheses (2.3)-(2.5) on the data (a, g, ¢) for problem

E1):

(5.2) a€ L*0,L), 3a,b, 0<a<p, a<alzr)<p ae xe€(0,L),
(5.3) h e L*(0,L),
(5.4) ¢:R—=RU{+o0}, ¢ is continuous with values in R U {400},
’ d(s) <400, VseR, s#£0,
+6 0
(5.5) o(t) dt < 400, / (t) dt < +o00, V4, 0 <4 <1,
0 -5
(5.6) ¢ € Cp(R\(—46,0)), ¥V &>0.

Remark 5.1. When ¢(0) < 400, then (5.5) is automatically satisfied, and, due to (5.6]), one has
¢ € C(R). In this case the results of the present section are classical. But the interest is actually in
the case

where the results of this section are new.
O

Remark 5.2. Hypothesis on a, on h, and on ¢ are identical to hypotheses on
a, on g, and on ¢ made in Section [2[ above.

In contrast, hypotheses and on ¢ are new and restrictive in comparison with the
hypotheses made in Section [2[ above.

Hypothesis it is quite natural in this context; recall in fact that it is proved in Theorem

above that if ¢ satisfies (4.10)) and (4.11)), namely if

+6 0
(5.7) (1) dt = +oc, / (1) dt = +o0, W5, 0< 5 < 1,
0 -5
(compare with hypothesis ), then problem does not have any weak solution in the sense of
Definition 2.6l
Concerning hypothesis , observe that this new hypothesis impose a restriction on the function ¢
in comparison with the hypotheses made in Section indeed hypothesis impose that ¢ is bounded
at s = —oo0 and s = +00, or in other terms that ¢ € CP(R\(—6,+9)) for every § > 0 (compare with
(2.9)). However this restriction can be considered as tolerable due to the uniform boundedness of every
possible solutions of problem (see Remark above).
O

Remark 5.3. Observe that, when ¢ satisfies hypothesis (5.4), it is equivalent to make hypothesis (5.5))
for every d, 0 < § < 1, and hypothesis (5.6 for every §, 6 > 0, or to assume that there exists some
do > 0 such that hypotheses ((5.5) and (5.6) hold true for this dy.

O

Remark 5.4. In the ODE (5.1) we have assumed that the (Cauchy) initial condition is v(0) = 0.
Results similar to the ones stated and proved in the present section could be obtained for any arbitrary
initial condition v(0) = vy € R. We do not consider this possibility here since our interest in the present

paper is only in the case where v(0) = 0.
O
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5.1. Existence of a solution of the Cauchy problem (5.8). The mathematical (correct)
formulation of initial value problem associated to the ODE in (5.1) that we will use in this paper
is the following: we look for a function v which satisfies

ve HY0,L), ¢(v) € L*(0,L),
(5.8) a(m)j—z = ¢(v) +h in D'(0,L),
v(0) =0.
In this subsection we will prove the following existence result:

Theorem 5.5 (Existence). Assume that (2.2) holds true, and that the data (a, h, ¢) satisfy hypotheses
(5.2)-(5.6). Then there exists at least a solution of problem (5.8).

The proof of the existence Theorem [5.5] is based on the two propositions [5.9 and below. Before
stating and proving these two propositions, let us state and prove a lemma which looks natural but is
not so easy to obtain due to the possible singularity of the function ¢.

Let us define the function ¢ : R — R by

(5.9) P(s) = /0 o(t)dt, VseR;

note that in view of hypothesis (5.5) the function ¢ is integrable both in 0% and 07, and that the
function v therefore satisfies

(5.10) Y e WENR) € CO(R) with (0) =0.
Lemma 5.6. Assume that (2.2) holds true, and that ¢ satisfies hypotheses (5.4])-(5.6). Let z satisfying
(5.11) z € HY(0,L) with ¢(z) € L*(0,L).
Then the function ¢ defined by (5.9) satisfies
d d
(5.12) w(2) € w0, 1) with &) Z 4% i Do, 1),
dx dx
a result which in particular implies that
L dz
(5.13) ; $(z) 7 du = P(2(L)) = $(2(0)).

Remark 5.7. When ¢(0) < 400, the result (5.12) is classical since then ¢ € CP(R) in view of (5.4)
and (5.6). Indeed in this case one has ¢/ = ¢ € CP(R), which implies that ¢ € C*(R) N Lip(R); the
classical chain rule in H'(0, L) then implies that

W(z) € HY0,L) with dlfliz) :qﬁ(z)j—; in D'(0,L),

which implies (5.12)).
Remark 5.8. If z € H(0, L), the result (5.13)) implies that
L dz
¢(z)7_dz =9(0) —$(0) =0-0=0.
O w

This result is nothing but Lemma above, which we recall was proven under the sole hypothesis

(2.5) (identical to (5.4))) without making hypotheses (5.5) and (5.6) on ¢.
U

Proof of Lemma [5.6l Step 1. Fix R > 0. Then, one has

+R s
o(t)dt + o(t)dt, Vs> +R,
+R

b(s) = / ()t = 0

which, thanks to (5.6]), implies that
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+R
i(s)] < / (G(8)[dE + 8]l 2~ (7 400y (5 — R) <
(5.14) 0

<|9llzr(0,4r) + |9z (4R, +00) 18], V8> +R,

a result which in fact holds true for every s > 0.
Similarly, one has, for s < —R

s —-R s
¥(s) =/0 ¢(t)dt=/0 ¢(t)dt+/_R¢(t)dt, Vs < —R,

which implies that

0
i(s)] < / 16(8)]dt 4+ 16l] L (oe—ry (—R —5) <
(5.15) R
<|9llzr(=r,0) + 1Pl Lo (—o0,—r) I8, V5 < =R,

a result which in fact holds true for every s < 0.
These two results imply that when ¢ satisfies (5.4)-(5.6)), one has

(5.16) ()| < N ellr(-r+r) + Ol @\[-r+R) ||, YVRE>0, VseR.
Step 2. Let T, be the truncation at height n defined by (1.24)). Then T,,(¢) € CP(R).
Defining, as it was done in the proof of Lemma the function| ¥, by

(5.17) U (s) = /O TL(6(t) dt, VseR

one has 1, € C*(R) N Lip(R), so that, as observed in the Remark [5.7| where ¢ € CP(R), one has

(5.18) ¥n(z) € HY(0,L) with dzﬁ;ﬂfz) - Tn((j)(z))g—z

in D'(0,L).
. in (0,L)

Let us now use the fact that ¢(z) € L*(0, L).
Since

[T (p(2(2)))| < |o(2(x))|, a.e. z€(0,L) with T,(r)—r as n — +oo, Vr € R,

Lebesgue’s dominated convergence theorem implies that

(5.19) Tn(gb(z))j—; — qs(z)j—; strongly in  L'(0, L).

On the other hand, in view of (5.16)), one has

[Vn(8)] < NT0 (D)t (= r4r) + 1T (D)l @\ [ R +RD S| <
(5.20)

<lolei(-r+r) + |9l @\[-r+r) IS, VE>0, Vs €R.
Since z € H(0, L) C L*(0, L), this implies that
(5.21) ¥n(2z) is bounded in L*°(0, L).
Also, for every s € R, one has by
¢ € L'0,s) if s>0, and ¢ € L'(5,0) if s <0,

while
[T, (6()] < |o(¥)],VE € (0,s) if s>0, and Vt € (s,0) if s <0,
with Ty, (r)—r as n — 400, ¥r € R,

3Please do not confuse this function Yy, with the function 1&5 used in the proof of Proposition
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so that Lebesgue’s dominated convergence theorem (in L!(0,s) and in L'(s,0)) implies that

(5.22) Pn(s) = / ))dt —>/ o(t) P(s), VseR.
From (5.21)) and (5.22)) one deduces (using again Lebesgue’s dominated convergence theorem) that
(5.23) Yn(z) = P(z) strongly in  LP(0,L) Vp, 1 <p < +4o0.
di,, d .
1/1(;(2) 12(,2) in D’(0, L) and also, by (5.18) and (5.19)), strongly

This fact implies that converges to
= ¢(z )— and therefore that ¢ (z) € Wh1(0, L).

T
d
in L1(0, L); this implies that Z( 2)
T

Lemma is proved.
O

Proposition 5.9 (A priori estimate). Assume that (2.2)) holds true, and that the data (a,h, d)

satisfy hypotheses (5.2))-(5.6). If v is any solution of the problem (5.8]), then, for any given R > 0, v
satisfies

(5.24) lvllzr0,) < Cr,

where C'r is given by

\/Z oo _ + ||h]| 7.2 1
(5.25) CR—(L+1)< 19l + hzon) | VIOl cram

a e

which depends only on R, L, a, ||h||r2(0.0), [l (—r4r), and [l Lo @\ (— R+ R))-

d
Proof of Proposition Multiplying pointwise the second line of (5.8]) by d—v and integrating
x
between 0 and L, we get

(5.26) /OLa( / H(0) 2 +/ ) .

Using in (5.26) the coercivity of a (see (5.2)), the result (5.13), ¢(v(0)) = %(0) = 0, and the
Cauchy-Schwartz inequality implies that

2

d
dz < [¢(v(L))] + |2l 2 (0,)

L
v
(5.27) « /0 T

Since v € H'(0, L) with v(0) = 0, (5.16) combined with Morrey’s estimate (1.22)) (which continues
to hold true for z € H'(0, L) with z(0) = 0 without assuming that z(L) = 0), yields

dv
dz

L2(0,L) .

[V (v(L)] < Dl (—r+r) + |9l @\[=r+r) V(L) <

(5.28)

< llollpr (- , VR > 0.

Tz,
Turning back to (5.27)) we have proved that, for every R > 0

@2
dx

dv

@ dzr

+ ol (=R, +R)-
L2(0,L)

< (VENlmnmy + blzzon) | 52

L2(0,L)

From this inequality, using the fact that for a > 0, B > 0, I' > 0, one has

B+ VB2 + 4al’
aX?< BX +T, XZO@OSXS%
Q

and then the inequality

B+\/BQ+4a1" B+ B+ 2Val B+\f

2a 200 T
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one deduces that v satisfies

@
dx

Y ll e (s ) + (1B V9l (- r+r)
- VL@l L\ [-r+r) + Il L20.2) n ol (—r,+R) VR>0.
L2(0,L) @ Ve

Combined with the Poincaré inequality (1.21)) (which continues to hold true for = € H'(0, L) with
z(0) = 0 without assuming that z(L) = 0), namely

(5.29) ‘

dz

dx

b

(5.30) Vel 200 < L ]
L2(0,L)

formula ([5.29) gives the desired a priori estimate ([5.24) with Cr given by (5.25)).
U

Remark 5.10. Observe that as far as Lemmal5.9]is concerned it is an a priori estimate for any possible
solution of the problem .
Observe that the proof of this result is a proof in the spirit of an a priori estimate for a PDE, rather
then for an ODE.
O

Proposition 5.11 (Passage to the limit). Assume that (2.2) holds true, and that the data (a,h, )
satisfy hypotheses (5.2)—(5.6). Let hy be a sequence which satisfies

(5.31) hp € L*(0,L), hyp — h weakly in L*(0,L).

Let also ¢y be a reasonable sequence of approximations of ¢ which satisfies (5.4)—(5.6|) for every k.
Assume that there exists some R* > 0 and some C* > 0 such that, one has

VL co(m\ [ o rey + ||B lnll L1~ r* + R
(5.32) (L+1)( |9k llLoe @\ (- r* 4 r*)) + [kl 22(0,1) Y <C*. k.

a Ja

Consider a sequence of solutions vy of the ODE problem

vV € .[?[1(0,[/)7 (;Sk(vk) € L2(0,L),
d’l}k

(5.33) a(x)a = ¢(vg) + h in D'(0,L),
ve(0) =0.
Then there exists a function v and a subsequence, denoted by vy, such that

(5.34) v — v weakly in H(0, L),
where v is a solution of the ODE , that is

ve HY0,L), ¢(v) € L*(0,L),
(5.35) a(m)j—; =¢(v)+h in D'(0,L),

v(0) =0.

Moreover, if further to hypothesis (5.31)), the sequence hy, satisfies

(5.36) hy — h  strongly in L*(0,L),
and if, further to hypotheses (5.4)—(5.6), the sequence ¢y, satisfies
(5.37) br(s) — ¢(s) strongly in L (R).

then one has the strong convergence
(5.38) v — v strongly in H(0, L).

Remark 5.12. Note that in view of hypotheses (5.4) and (5.5) the funciton ¢ satisfies ¢ € L] (R).
Therefore hypothesis (5.37)) makes sense.
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Proof. In view of (5.24)), (5.25)), and (5.32)) we have
vl m10,0) < C*.

Therefore, there exists a v € H(0, L) and a subsequence, denoted by vy, such that

v — v weakly in H(0, L),
vgr — v strongly in L?(0, L) and a.e. in (0, L).

Moreover,
dv

or(vg) = a(x) dg: — hy, is bounded in L*(0, L),

so that, since ¢y, is a reasonable sequence of approximations of ¢, one gets
¢k’ (Uk/) — ¢(U) a.e. in (O,L),
¢ (v) = ¢(v)  weakly in L*(0, L),
which allows one to pass to the limit in ([5.33)) and to prove that v satisfies ([5.35)).
In order to prove the strong convergence (5.38)), assume now hypothesis (5.36]), namely that the
sequence hy, converges strongly in L2(0, L), as well as thypothesis (5.37)), namely that the sequence ¢y,
d
converges strongly in L, (R). Multiplying pointwise the equation in (5.33)) by % and integrating on
i
(0, L) we get

L L L
dvk d’l}k d’l}k / dvk
— —dx = —d. h —dz.
/0 a() dr dx v /0 Ok (vr) dx T 0 k(@) dx v
Define now in this proof the function v, by
P (3) :/ o (t)dt, Yk € R,
0

(please do not confuse this function 1, neither with the function 1, defined by (5.17) and used in
the proof of Lemma and of Lemma nor with the function 15 used in the proof of Proposition
13).

Using formula (5.13)) and 1, (v (0)) = 1, (0) = 0, we get

L L
(5.39) /O () T D = (1) + /O hk(x)%dm.

Since the subsequence vy converges weakly in H'(0,L) (see (5.34)) and therefore by Morrey’s
embedding strongly in C°([0, L]), since the sequnce ¢, converges strongly in L (R), which implies

loc

that the sequence 1, converges strongly in Wl’l(R)7 and therefore strongly in CP (R), and finally

loc

since the sequence hy, is assumed to converge strongly to h in L?(0, L) (see (5.36))), the right hand side

of (5.39)) converges to

L
v + | @) Ghds,

L
dv dv
——d
/0 a(z) dz dz
d
(multiply pointwise the second line of (5.8]) by (Tv and integrate between 0 and L, which is allowed),
x

we have proved that

L L
dvy dvog dv dv
4 — ——dx.
(5.40) /0 a(x) T o dx /0 a(a:)dx T dx

which is nothing but

Passing to the limit in

L L 2
d’Uk/ dv dvk/ dv / dvk/ dv
- — —— | dx > -—— ] d
/0 a(z) ( dz da:) ( dz dx> r=o 0 dr dz *
with the help of (5.34) and (5.40)) proves (5.38).
Proposition is proved.
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Proof of Theorem [5.5l In order to prove the existence theorem we will apply three times
Proposition to the following sequences of approximations:
e Firstly, for any n € N, we define ¢, : R — R by

Pn(s) = Tn((s)) ,

where T, is the truncation at level n defined by (|1.24)).
o Then, for n fixed, for any m € N, we define ¢,, ,,, : R = R by

On(—m) if s < —m,
Onm(8) = < dn(s) if [s| < m,
on(m) ifs>m.
e Finally, for n and m fixed, for any ¢ > 0, we define ¢y, s, - : R = R by

(bn,m,s = ¢n,m * Pe,

where p. is a standard sequence of mollifiers.

We will first pass to the limit in e for n and m fixed.

Recalling the fifth example in Remark one observes that the function ¢, € C°(R) and that
the function ¢y, ,, - € Lip(R). Therefore there exists a unique solution vy, . of problem for the
function ¢y, ;. For n and m fixed, the sequence ¢, - is a good sequence of approximations of ¢y, m,,
which satisfies

[@n,m.ellLe®) < |PnmllLe®) < n.
Therefore, for n and m fixed, (5.32)) is satisfied with a constant C* given by

In+ ||k oYz
(L+1)<fn+” lezon) R”).

a Va

An application of Proposition proves the existence of a solution vy, ,, of problem for the
function ¢y, .

We will then pass to the limit in m for n fixed.

For n fixed, the sequence ¢, is a good sequence of approximations of ¢,, which satisfies, for
m > R*,

¢n,m :¢n in (7R*3+R*)7

|Pn,mll Loo(®\[= R* 4+ R*]) < |@nllLoo ®\[=R*,+R*])-
Therefore, for n fixed and m > R*, (5.32)) is satisfied with a constant C* given by

V|| ¢nllpoo @\ - re+ 5 + 1Pl 20,0y 1@nllir(—r-+Rr)
(L+1) + .
(6% \/a

An application of Proposition proves the existence of a solution v,, of problem ([5.8)) for the function
P

We will finally pass to the limit in n.

The sequence ¢, is a good sequence of approximations of ¢ (recall the first example in Remark [2.17),
which satisfies

[on(s)| < [(s)], VseR.
Therefore (5.32) is satisfied with a constant C* given by

a Va

An application of Proposition proves the existence of a solution v of problem (5.8)) for the function
¢, namely the Theorem [5.5

L oo (R\[—R* +R*) T |7 P
(L+1)<\F|¢”L ®\[-Rr*,+r*]) T [[hll220.1) n 1ol Lo R,+R)>.

O
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5.2. Positivity, comparison and uniqueness of the solutions of ([5.8). In this subsection, further
to hypotheses ([5.2)—(5.6) on the data (a, g, ¢), we shall assume (2.6)), that is

(5.41) #(0) = 400,
i.e. that ¢ is singular in s = 0, and that
(5.42) vV ne(0,L), 3M, >0, such that h(xz)>—M, Yz e[0,L—nl;

i.e. that h may blow down to —co only for z = L.

Remark 5.13. Observe that hypothesis looks similar to hypothesis (4.1]) of Theorem [4.1} but
that these two hypoteses are used in the study of two different problems (namely problem (5.8) and
problem )7 for which they imply very different consequences. Indeed in one assumes 7 > 0,
so that h may blow down at s = L, while, in Theorem one assumes that h is globally bounded
from below, i.e. that in some sense = 0, an assumption which implies that problem does not
have any weak solution in the sense of Definition

O

Proposition 5.14 (Positivity). Assume that (2.2) holds true, and that the data (a,h, ) satisfy

hypotheses (5:2)-(0) and (BAT)-GAD).
Then any solution v of the ODE problem (5.8)) satisfies

(5.43) v(z) >0, Vze(0,L).

v(x)

11 Sl

FI1GURE 2. The forbidden region in red

v

W |

Proof. Since all the hypotheses of the existence Theorem are assumed in the statement of
Proposition the ODE problem has at least a solution v.

Apply Lemma [£:3| with w = v, L = h, A= 0, B = L, and o = 0; this is licit in view of hypothesis
(5.42)). Fixing any k£ > 0, one obtains that for some §y > 0 with g < L, one has

(5.44) v(z) > kx>0, Vz e (0,d].
The function v € C°([0, &) satisfies (5.44). Then one has the following alternative: either
(5.45) v(z) >0, Vxe (0,L),
or
(5.46) Iz, € (b, L), wv(z)=0.

In the second case, we define the set X and the number y by
X ={z: z €[bo, L], u(zx) =0}

y = inf x.
zeX
The set X is non-empty, since & € X; therefore y is correctly defined, y > &g, and reasoning as in

the proof of Theorem y is actually a minimum, i.e. v(y) = 0.



36 D. GIACHETTI, P.J. MARTINEZ-APARICIO, F. MURAT, AND F. PETITTA

Apply now Lemma[4.3|with w = v, l = h, A= 0, B = L, and 2y = y. Fixing any k > 0, one obtains

that for some 9, > 0, one has
v(z) <k(z—y) <0, Vo€ (y—26yy).

a contradiction with the definitions of the set X and of .

Therefore the second possibility ([5.46]) is impossible and so (5.45|) holds, i.e.

v(z) >0, Vx e (0,L).
This completes the proof of Proposition
O

Remark 5.15. Proposition can be analogously proved for the ”"backward” case (starting from L)
by performing the change of variable y = L — x. In this case, a corresponding result of the one in
Lemma can be proved provided one assume in [n, L] instead of [0, L — n]; as an application
of Lemma in this case the solution is negative and it cannot be zero up to possibly z = 0. ]

In the rest of this section, further to hypotheses (5.2)—(5.6) and (5.41)—(5.42), we also assume that
¢(s) is monotone non-increasing for s > 0, i.e. that:

(5.47) d(s) > o(t) for 0<s<t.
Proposition 5.16 (Comparison and uniqueness). Assume that holds true, and that the

data (a,hq1,®) and (a, ha, @) satisfy hypotheses (5.2 . ., - -, and - Let vy and vy be

solutions of problem (5.8|) for the data hy and hs. Assume that

(5.48) hy < ha,
then one has
(549) U1 S V9.

This comparison result immediatly implies that the solution of ODE problem (5.8]) is unique.

Proof. By Theorem [5.14] v; and vy are positive. We take the difference of the second lines of the
formulations
V1 € ]71(0,[/)7 ¢(U1) S LQ(O,L) R

()WL = (o) + Iy v D0, L),
v1(0) =0,
vy € HY(0, L), ¢(va) € L*(0,L),
a(x)% = ¢(v2) + hy in D'(0,L),
v2(0) =0,
and we multiply this difference pointwise by (v; —v2)*. Since (v —v9)™ € H(0, L), using and
, one has
5 7= (01 = 02) )% = ($(v1) = 6(v2)) (v = v2) " + (b1 = ha) (01 —v2) " <0,
(v1 = v2)7(0) =0,

which easily implies the comparison result.

O

5.3. Synthesis of the results on the ODE problem (5.8). To conclude this section, we synthesize
the results that we have proved concerning the ODE problem (/5.8)), namely

ve HY0,L), ¢(v) € L*(0,L),
a(m)j—z = ¢(v) +h in D'(0,L),
v(0) =0.

If we assume that the data satisfy hypotheses (5.2)—(5.6]), then the ODE problem (5.8 has at least
one solution (Theorem . Moreover, all the possible solutions of (5.8 satisfy an a priori estimate
(Proposition . These solutions enjoy a stability property (Proposition , namely the fact that
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from a sequence of solutions of problems relative to a sequence of reasonable approximations ¢
of ¢, one can extract a subsequence which converges to a solution of problem relative to ¢, weakly
in H'(0, L) if the sequence of source terms converges weakly in L?(0, L), and strongly in H'(0, L) if
the sequence of source terms converges strongly in L?(0, L) and if the sequence ¢y, strongly converges
in Llloc (R)'

If further to hypotheses 7, we assume that the data satisfy hypotheses (6(0) = 400)
and (h(z) > M, on (0, L —n) for every n > 0), then every solution of the ODE problem is
positive in (0, L) (Proposition [5.14)).

If in addition to hypotheses 1’ and 7, we assume hypothesis (¢ monotone
non-increasing for s > 0), then the solutions of the ODE problem satisfy a comparison principle
and the solution is unique (Proposition. In this latest case, the stability property described above
becomes the continuity (in the weak and in the strong topologies) of the application which from the
source term h provides the (unique) solution of the ODE problem .

6. AN UNEXPECTED MULTIPLICITY RESULT

In this section we show that, under suitable assumptions on ¢, if there exists a solution of (2.1)) in
the sense of Definition then there are infinitely many solutions of (2.1)) in the sense of Definition
Here we will assume that g satisfies (5.42)) with h replaced by g, i.e.

(6.1) Vne(0,L), 3M, >0, such that g(z) > —M, Yz e€l[0,L—nl.
Here is the main result of this section:

Theorem 6.1. Assume that (2.2) holds true, and that the data (a, g, d) satisfy hypotheses (2.3)—(2.6)),

65)-[68), EA7) and G-1)-
Assume that there exists a solution T of problem (2.1)) in the sense of Definition . Then there

exist infinitely many solutions of (2.1) in the sense of Definition .
More precisely, there exists a critical value c¢* satisfying

1
(6:2) ¢ == (Z41) lallzon - ng o0s).

and a function U

(6.3) U:ce (—o0,c] — Ulc) € Hy(0,L) weakly continuous in Hy(0,L),
which satisfies
(6.4) U(c) is a solution of problem (2.1)) in the sense of Definition 2.6,
(6.5) U(e) >0,
(6.6) for any c1,co € (—00,c*] such that ¢1 < ca,
. then U(er)(z) < Ulez)(x) for any x € (0,L),
U(c)—0 Kly in H} (0, L
(6.7) (c) weo y in Hy (0, L), when ¢ — —o0.
U(c) = 0 wuniformly on [0, L],
Moreover

(6.8) {for any solution u of problem (2.1)) in the sense of Deﬁnitionfor the data (a, g, ),

there exists (a unique) ¢ € (—oo,c*] such that u=U(c).

Proof of Theorem[6.1, We assumed that there exists a solution @ of problem (2.I)) in the sense of
Definition [2.6] Then by Proposition [2.13] % also solves

we Hy(0,L), ¢(u)e L*(0,L),
(6.9) di o
a(:c)% =¢(w)+g+¢ inD'(0,L),
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[ [
1
/0 mdm

On the other hand, for every ¢ € R, by Theorem [5.5] with h = g + ¢ and Proposition [5.16] there
exists a unique solution v, of

for

(6.10) c=

ve € HY(0,L), ¢(v.) € L?(0,L),
(6.11) a(x)% =¢(ve) +g+c in D'(0,L),

v(0) = 0.
This allows us to define a function V' by
ViceR—V(c)=v.€ H(0,L).
Since, by Lemma V(c) =v. > 01in (0, L), one has
(6.12) V() L)>0 VceR.
Observe that V(c) is a solution of problem (2.1) in the sense of Definition if and only if
V(e)(L) = 0.
Moreover, as a consequence of Proposition u =V (¢), and, in particular, V(¢)(L) = 0.
For any ¢ < € one has, again by Proposition V(e) < V(¢). Therefore, by (6.12)), we have
V(e)(L) =0 and V(c) is a solution of (2.1]) in the sense of Definition
For any ¢ € R we consider the solution V(c¢) of (6.11)) and we define
¢ =sup{c € R: V(c) satisfies V(c)(L) = 0}

Observe that ¢* > ¢ where ¢ is defined in .

On the other hand, if ¢ > ¢* then V(c)(L) > 0 and so, by uniqueness of solutions of (6.11), no
solutions of do exist.

We show that ¢* < +o00. In fact, if u is a solution for in the sense of Definition then by

(2.24) one has

du 1
(6.13) — < —llgllzzco,) -
dzx 20,0
Hence, by Proposition there exists ¢ < ¢*

d d
c:a(x)ﬁ —¢(u) —g < 5‘(;;‘ —g2£¢(5) + gl

Therefore, using (6.13)
1
o< = (2 41) lallzo - o),

this, recalling Proposition [2.13| and the Definition of ¢*, implies that

1
¢ < o= (241) lallnony — g 609 < oo

that is (6.2]).

Let us show that ¢* is actually a maximum. Let ¢,  ¢* so that V(c,) € H}(0,L). As ¢, are
bounded, using ([5.24)) one gets
IV(en)llmgo,0) <C-
Reasoning as before one can pass to the limit in

o)) _ (e 49+ en nD0,D)
to obtain, using also Proposition [5.16] that
dV(c*
a(@) ™D _ () 4 g+ ¢ in D0, ).

dx
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The map U = V|(_ ¢+ is then well defined by
U(c) = V(c) for any ¢ € (—oo,c’];

as there is no ambiguity in view of Proposition [2.13] we will denote by U(c) the function V(c) once

referring to the solution of (2.1)) in the sense of Definition Hence (6.4]) and (6.5) are proven and
the weak continuity of U in H} () is straightforward.

Let us prove (6.6).
By Proposition :5.16 one has that U(c;) < U(cz). Assuming by contradiction that there exists
xo € (0, L) be such that U(cy)(zo) = U(cz)(xo) then we define

O'(J?) _ CL(Z‘) d(U(Cl)d; U(CQ))

(z)
so that
o(x) = ¢(U(c1)(x)) — ¢(U(c2)(w)) + 1 — cz;
in particular, since o is continuous on (0, L) and since
(6.14) o(xg) =c1 —ca <0,
One has

€1 — C2

5 Vo in (zg — 0,29 + 0)

o(z) <

for some & > 0. This implies that
d(U(Cl) - U(CQ)) (.’E) C1 — C2
dx - 2p

a contradiction with the fact that U(cy) < U(cz) as (6.15) gives that U(cq) —U(cz) is strictly decreasing
around xo. In fact, let € (vo — J,20) and denote by w = U(c1) — U(cz); we have w(z) < 0 and
w(zg) = 0. On the other hand

w(x)—/ s )ds——/%i%(s) as 57 0

Let us formally prove (6.7). Let ¢, < ¢* such that ¢, N\, —oco. As before

N

(6.15)

<0 forae.x € (zg— 9,20+ 9),

1Tl gz 0,y < *||9||L2 0.L)-

so that, up to a subsequence, U(c,) converges to u weakly in H{(0,L) and uniformly (by compact
embedding). We can apply Theorem either u = 0 or assume by contradiction that there exists
xo € (0, L) such that

'U/(xo) > Oa
and so, in a small neighborhood of xy of the form (z¢ — d, 29 + J), one has

en = a@) T o)) g

i.e., using Proposition [3.6] one has that |c,| is bounded, that is a contradiction.

In order to conclude the proof of Theorem [6.1] we are left with the proof of which easily follows
by Proposition in fact, if w is a solution of problem (2.1]) in the sense of Definition then
u = U(c) by uniqueness of the solution of problem (/5.8].

(]

7. EXISTENCE OF SOLUTIONS IN THE SENSE OF DEFINITION

Up to now we explored the consequences of Theorem (Alternative) by assuming the existence
of a solution of problem in the sense of Definition ut we never proved the existence of such
a solution.

In this section we fix a and ¢ satisfying (2.3)) and (2.5 as well as 1 and - to be compared
with Theorem 4 7 and we consider g satlsfymg |-i as a parameter We alm at constructing two
large sets of g’s for which a solution in the sense of Definition [2.6] does exist.
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7.1. A first remark about the set of solutions of problem (2.1)) in the sense of Definition
Let us begin with the following remark, which is very simple, but essential.

Remark 7.1. Define the set G of ”good data“ by

(7.1) G ={g € L*(0,L) : 3 at least one solution u of (2.1)) in the sense of Definition 2.6},
and, as in (4.13), the set
(7.2) U = {a € H}(0,L) such that (@) € L*(0,L)}.

It is clear that every w which is a solution of problem (2.1) in the sense of Definition is an
element of U.
On the other side, for every u € U, taking any ¢ € R, and setting

(7.3) 0= a(e) 2 — ow) —c,

it is clear that u is a solution of problem in the sense of Definition for the source term g.
Actually, every g € G is of the form for some u € U and c € R.

This establishes a very strong relation between the two sets G and U. In particular G is non-empty
if and only if U is non-empty.

Therefore the study of the set U is essential when studying the existence of solutions of problem

(2.1) in the sense of Definition

O
Remark 7.2 (Model example). In the model case where the nonlinearity ¢ is given by
q[)(s):ﬁ with ¢>0 and 0<~vy<1,
it is easy to see that u defined by
(7.4) u(zr) = KoL — x)* with % <A< % VK € R, K #0,

d 1
belongs to U (since then ﬁ € L*(0,L) and PR € L*(0, L) because we have 0 < v < 1). Therefore,

for every ¢ € R, the function u is a solution of problem (2.1)) in the sense of Definition for the
source term
du
9(r) = alw) 3~ b(u) — e =
c

= a(e) (XL =) = KN =) ) = s

— C.

This is a first example of a solution of problem ({2.1)) in the sense of Definition which will be a
model for the whole of the present section.
O

7.2. A large class of good data. Starting from the idea of the example presented in Remark [7.2] we
will show that it is always possible to construct explicit local solutions w” of problem emerging
from a point Z € [0, L) towards the right side, and w’ coming backward from a point 7 € (0, L] to the
left side provided the datum g is chosen accordingly.

For the sake of exposition we start by showing how these solutions can be constructed in the model
case

(7.5) qﬁ(s):ﬁ with ¢>0 and 0<~vy<1.
s

Define for y € [0, L) and for some K™ € R, K" # 0, A" > 0 and § > 0, the function w" by
w(z)=K'(x—y)N fory<z<y-+4.

Since
dw”

dzx

(IK"|(z —y)")7

= K"\N(z—y)" ! and ¢(w") = fory<z<y+9d,
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”

we have and ¢(w") in L%(y,y + 0) if and only if

1 1
7.6 — <N < —;
(7.6) 3 <N <o

this choice is possible since 0 < v < 1.
Reasoning in the same way, define for y € (0, L] and for some K € R, K* # 0, A > 0 and 6§ > 0,
the function w® by

w'(z) = Ké(y—x)’\l fory—d<z<uy,
d Y4
for which we have dl and ¢(w’) in L?(y — 6,y) if and only if
x

Loyl
2 27y

Now, we show how given any z; and xo with 0 < 21 < zo < L and 6 > 0 with 21 +§ < z9 — 0,
one is able to construct a solution of problem in the sense of Definition in any interval of
the form [z1, 5] and not only on [0, L]. In fact, take any function w™(z) € H'(z1 + 6,22 — &) such
that w'™(z1 + 6) = wi(z1 + ) and w™(xy — §) = wh(xe — §) where w} and wh are, respectively, the
function w” departing from z; and the function w’ arriving in x5 constructed above. We also request
that, for some 1 > 0, w™(x) > nin x € (1 + §,22 — §). Now we define

w] € [ry,71 +0),
(7.7) w(z) = Cw™ € [ry + 0,29 — 6],
why  x € (v2 — 6, 2]
Then, if we set
dw c
de Jwl
it is easy to check that g € L?(z1,25), and that w is a solution of
c

w e Hol(xl,xg), W € L?(xq,x2),

d dw\ _d [ ¢ dg . /
dx (a(x)dx)_ dx (|w7) dz D'y, a2).

By modifying the value of A, with % <A< %, the value and the sign of K, and reasoning around
a finite number of points zp =0 < 21 < ... < x,, < T41 = L, we can construct a bunch of functions
which behave as w between z; and z;41, and so a large class of data for which there exists a solution

of problem (2.1)) in the sense of Definition

g =a(x) a.e.r € (v1,%2),

w(z)

FIGURE 3. Building up the function w(x)

More precisely let o =0 < 21 < ... < z, < 41 = L (i.e. x1,...,x, are the internal points) and
let 6 > 0 such that
Ti+d<zipr—0, for0<i<n.
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Moreover for the internal points z;, ¢ = 1,...,n, let us consider A7, /\f satisfying (7.6), and let K7,
K! in R\ {0}; also consider A\j and A\, in R satisfying (7.6, and K and K’ ; in R\ {0} for the
extremal points 0 and L. We assume

K[KfH >0, fori=0,...,n.

Now, around each internal point x;, i = 1,...,n, we set

wt(z) = K (z; — 91:))‘f forz; —d <z <ay,
(78) r r AL
wy (z) = K] (x —x;)™ for o; <z < x; + 9,

and for the extremities (i.e. i=0andi=n+1)
wh(x) = Kz for 0 < z < 4,

(7.9) . . N
Wy () =K, (L—x)'"+ for L—6 <x<L.

In the remaining intervals, which are of the form (z; +6, 2,41 —0), i = 0, ..., n, we define w!"*(z) as any
function in H!(z; + &, ;41 — §) which is continuously joined with the functions w] and wf, , defined

in (7.8) and (7.9), i.e.
wi™(z; 4+ 6) = wi (z; + ) and w!"(x;4 —6) = wf+1(:17i+1 —-90) Vi=0,...,n,
and which satisfies, for some n > 0

lwi™(z)| >n >0, forany =€ (z;+ 0,241 — ).
Summarizing we have defined a function w € H}(0, L) that in any interval (z;,x;11), i =0, ...,n, is
given by

K] (z — @)™, z € (@i, z; + 0],
(7.10) w(z) = S wint(z), z € (z; + 6,241 — 0),

Kfy (@i — 2N, 2 € [z — G,ai41).
Finally we define the function g by

dw
7.11 = — —
(7.11) 9=
and we observe that w € H}(0, L) is a solution of problem (2.1)) in the sense of Definition [2.6{ with ¢
as datum.

We have proved the following result.

Proposition 7.3. Assume (2.2)—(2.3) and (2.10). For n € N, fix n points x1,...,x, such that
0= <71 < .ty < Tpy1 = L. For the internal points z;, i = 1,...,n, take X', N, satisfying

(7.6), and K7, K/ in R\{0}. For the external point xo = 0 and x,+1 = L, take N} and \., ., satisfying
(7.6), and K{ and K! | in R\ {0}. Finally assume that

KfoH >0, fori=0,...,n.
Then there exists w € H(0,L) solution of ([2.1) in the sense of Definition with datum g =

d
% — ¢(w) and such that w(x;) =0 fori=1,..,n.

(w) in D'(0, L),

Remark 7.4. Observe that the data g that we have built in the proof of Proposition [7.3]are in general
unbounded around each zero of the function w. Indeed, near each zero x; one has

% (2) ~ (x — )N and ¢(w(z)) ~ (x —x) N7, for x € (x4,2; +0),
and
dw A—1 —2¢
I (@) = (z; —x)" and @(w(w)) = (z; — )7, for x € (x; — 0,2;),
x

d
so that the function g = a(:v)d—w — ¢(w) behaves as the difference or the sum of two (in general
x

different) powers of (z — ;) or (z; — x), and therefore is, in general, unbounded around z;.
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Observe neverthless that, in case where

a(z) =a €R with ¢ >0 and ¢(s):L with ¢ > 0,

|s|”

the choice

1
w(x) = K|(E - xi|)‘71(x — iL’l) for = S (xl - (S,ZL'Z' + 5), with A = 1+

d
produces a function g = a2 _ ¢(w)which satisfies

dx
g=0for =€ (x; —d,z; +9).

This proves that there exist some cases where the function g can be bounded (or even be identically
zero) around a zero x; of some weak solution of problem in the sense of Definition

Note in contrast that it can be proven by an argument based on the proof of Lemma |4.3| above and
similar to the proof of Theorem that it is impossible for the function g to be bounded from below
around two consecutive zeros x; and x;41 of a weak solution of problem in the sense of Definition

Also observe that in this subsection we choose to present the construction for the model case of ¢
given by (7.5)). As a matter of fact this construction can be done for a general ¢ satisfying 7,

(5.5) and (5.6]) using the idea presented in Theorem [7.5| of Subsection
O

7.3. Obtaining solutions for any datum g by modifying it on [L — ¢, L]. In the previous
subsection we constructed a bunch of solutions of problem in the sense of Definition From
this construction we obtained by (]E a large class of data g for which there exist a solution of
problem in the sense of Definition E

In this subsection, we change viewpoint and we construct, for any fixed g € L?(0,L) and for any
d with 0 < § < L, a datum § which coincides with g on [0, L — 4] for which problem admits a
solution in the sense of Definition This construction uses an idea similar to the one used in the
previous subsection, but now exploits a shooting argument for backward solutions starting from x = L
on [L—46, L]. Moreover, this argument is presented here in the case of a general ¢ satisfying 7,

(5.5) and (5.6), and not only in the model case of ¢ given by (7.5).

Theorem 7.5. Assume that (2.2)) holds true, and that the data (a,$) satisfy hypotheses (2.3)), (2.5)—

2.6), (5.5)-(.6), and (.41)—(5.42). Then for any g € L*(0,L) and any § with 0 < § < L, there exist
gs in G such that gs = g in [0, L —§).

Proof. By Theorem there exists v such that

ve HY0,L), ¢(v) e L*0,L),
a(r)fo = 6() +g i D0,D),
v(0) =0.

By possibly changing § in a smaller one we can assume that v(L — §) # 0.
Let us assume for a moment that we know a function ws which satisfies

ws € HY(L —§,L), ¢(ws) € L*(L —6,L),
(7.12) ws(L —6) =v(L —9),

w(;(L) =0.
Then we define us and gs by

A v(xz)  for every z in [0, L — 4],
Us(z) = _
ws(z) for every x in (L — 6, L],
and
g(z) for a.e. z in (0,L —9),
9s(x) = dws

a(m)% — ¢(ws) for a.e. x in (L —46,L).
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Then s is a solution of problem ([2.1)) in the sense of Deﬁnition for the datum gs. This proves that
gs€G.

In order to prove Theorem it is then sufficient to construct a function ws satisfying (7.12)).

To simplify the argument we observe that, by mean of the change of variable y = L — x, the
construction of such a function w satisfying (7.12)) is equivalent to the construction of a function @
satisfying

w € HY(0,9), ¢(w) e L?(0,0),
(7.13) w(8) = v(L —6),
w(0) =0,

where, to ease the notation, we now omit the dependence on the parameter 9.
Assume first that v(L — d) > 0. We define the following function

(7.14) 52(5) = 9(s) — inf 9(s) + 1
it is easy to check that ¢@ also satisfies (2.5)—(2.6)), (5.5) and (5.6]), moreover
(7.15) #®(s) > 1 for any s € R.

Now, for a fixed K > 0 to be chosen later, Theorem [5.5|implies that there exists at least a solution
w® to
w® € H(0,9), ¢%(w®) e L*0,9),

(%]

W Ke*(w®) i D(0,L),
xr

w®(0) = 0;

by Proposition one has w® >0 on (0,9).
First observe that ¢(w®) € L?(0,9) if and only if ¢®(w®) € L%(0,9).
Now, in view of ([7.15)), we have

1 dw®
1 —— =K for a.e. .
(7.16) w8 dz or a.e. z € (0,9)
Now observe that
1
7.17 0< <1 for any s € R.
71 =000 - '

Hence, we define

s
C(s) = / S

and, using (7.15)), ¢ is strictly increasing on R, by (2.6)) one has ¢(0) = 0, and, recalling (5.6)), for any
1 > 0 there exists ¢;; > 0 such that

> — > O f()l a“y T 1n +()O)
D - 77? I
( ) C]

so that we deduce that
lim ((s) = +o0,

s5—+00
yielding in particular that ¢ : RT — R™T is a bijection.
Ultimately, by (7.16) one has

d
dxC(w®) =K forae z€(0,9),
¢(0) =0,

ie.,
C(w¥(z)) = Kz for a.e. x € (0,9),
that is, choosing
C(v(L —9))
6 )
one easily check that w® satisfies (7.13]) and we conclude.

K =
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In the case where v(L — J) < 0, we define
¢°(s) = ¢%(=s),
and we reason as before and we may pick a positive K > 0 and a solution w of

w e HY(0,0), ¢°(w) € L*(0,0),

d
= = K¢°(w) i D(0,L),
w(0) =0,
such that w(d) = —v(L — §). To conclude we define w® = —w and observing that

P(w®) € L*(0,8) <= ¢¥(w®) € L*(0,6) <= ¢°(w) € L*(0,0)
we get that w® satisfies (7.13)).

FIGURE 4. Gluing up v(z) and w(z)

8. STABILITY AND INSTABILITY OF THE SOLUTIONS OF APPROXIMATE EQUATIONS

The following Proposition shows that any solution of (2.1) in the sense of Definition is
not isolated, or, in other terms, can be obtained as a limit of solutions of convenient approximating
problems, each of those problems being different from the limit one.

Proposition 8.1. Assume that (2.2]) holds true, and that the data (a, g, d) satisfy hypotheses (12.3))—
(2.5). Assume also that there exists a weak solution u of problem ([2.1) in the sense of Definition (2.6
i.e. a function u which satisfies

ue HY0,L), ¢(u) e L*0,L),

(8.1)
d <a(:c du> __dolw) _dy in D'(0,L).

Cdx )% dx dx

Fiz any reasonable approximation ¢, of ¢, and assume that the sequence ¢, satisfies for some
positive constant C

(8.2) |pn(s)] < Clo(s)| Vs € R, Vn.
Then there exists a sequence g, satisfying
(8.3) gn € L*(0, L) with g, — g strongly in L*(0, L),

for which there exists a weak solution u, in the sense of Definition[2.6 of
Un € HY(O,L), $n(un) € L2(0, L),

(84) d d don(uy) d

_e Wn \ _ _GPn\Un)  GGn . oy

dx (a(:c) dx ) dx dz " Do.L),
such that

U, —u strongly in Hy(0,L).
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Proof. As u is a solution of problem (2.1]) in the sense of Definition the second line of ({8.1)) is
equivalent to the existence of some ¢ € R such that

d
a(@) 7= = ¢(u) +g+c in D'(0,L),
in view of Proposition [2.13
Let ¢,, be any reasonable approximation of ¢ which satisfies (8.2]). Define g,, by

gn = (rb(u) - ¢n(u) +g;
then u,, = u is a weak solution of (8.4) in the sense of Definition while g,, converges strongly to

g in L%(0, L) since ¢, is a reasonable approximation of ¢ which satisfies the condition of domination
(8.2). This proves Proposition O

Remark 8.2. Note that the approximation by truncation and the homographic approximation (defined
respectively in the first example and in the second example of Remark both satisfy
the condition of domination for the constant C' = 1.

Note also that choosing any sequence ¢,, of reasonable approximations of ¢ which satisfies (8.2) as
well as ¢,, # ¢ for every n proves that any weak solution of in the sense of Definition not
isolated in the sense defined above.

Finally, the reader could be disturbed by the fact u,, is equal to u for every n. This can be mitigated
in the following way: take any interval [A, B] with 0 < A < B < L for which u(x) > 4 on [A, B] (or
for which u(z) < —6 on [A, B]) for a certain § > 0, and replace u by

. :{u in [0, L]\(4, B),
" v, in [4, B],

where v,, € H'(A, B) is any sequence such that (v, —u) tends to 0 strongly in H}(A, B), with v, >
(or with v, < —n) for a certain n > 0.
(]

Proposition shows that, given any weak solution u of in the sense of Definition and
any reasonable approximation ¢, which satisfies the condition of domination (8.2]), one can find a
sequence g, which satisfies such that there exists a sequence of solutions 0 in the sense of
Definition [2.6| which converges to u in H}(0, L).

In contrast, the following Proposition[8:3]shows that a “bad choice” of g,, produces, for a subsequence
n/, approximated problems in which g, converges strongly to g while u, converges weakly to 0
in H}(0,L).

Let us stress that in Proposition [8.1] the sequence ¢,, can be any reasonable approximation of ¢ which
satisfies a condition of domination (in the sense of Lebesgue’s theorem), and that in Proposition
the sequence ¢,, can be any good approximation of ¢, but that in contrast, in both cases, the sequence
gn has to be chosen according to the choice of the sequence ¢,,.

Proposition 8.3. Assume that (2.2)) holds true, and that the data (a, g, d) satisfy hypotheses (2.3)—
(2.6). Assume also that there exists a weak solution u of problem ({2.1) in the sense of Definition (2.0
i.e. a function u which satisfies

uwe H(0,L), ¢(u) € L*0,L),

(8.5) d <a N du) __do(w) dg D'(0,L).

Cdx ( )% dx dx

Fixz any good approzimation ¢, of ¢. Then one can extract a subsequence n' and find a sequence
gne such that
gnr € L*(0,L)  gu — g strongly in L*(0, L),

for which for any sequence ., of classical weak solutions of the approximating problems
un € HY(0, L),

(8.6) d d A (un)  d
@ Uy _ n/ (Un’ o gn’ . /
dx (a(m) dx ) dx dz " DL,
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(such classical weak solutions exist in view of Proposition , one has
Up — 0 in Hy(0,L).
Proof. Fix any sequence g,, such that
G, € L*(0,L) with g, — g strongly in L?(0, L) .

For every fixed n € N, and for every k € N, Proposition [2.15] implies that there exists at least one
classical weak solution v¥ of

vk e H (0, L),

8.7) d dvF dor(vk)  dg
n k n n : /
4 Wn ) _ _9O9n)  DIn 3 pro, ).
dx (a(x) dx ) dx dz 0.L)
Moreover any classical weak solution v¥ of (8.7) satisfies (see (2.36]) above)
dvk 1
(88) %] < tmdeon <o,
dx 2o,

where the constant C' does not depend neither on n nor on k.
As n is fixed and g,, € L*(0, L), Theorems [3.4] and |4.1] imply that

(8.9) v¥ —~ 0 weakly in H}(0,L) as k — +oo,
and therefore strongly in L?(0,L). In particular, if &, is a sequence of positive constants which tend
to 0, for any fixed n one can pick some k*(n) such that

(8.10) vkl r2(0,0) < €n for any k> k*(n).

Choose a strictly increasing function & : N — N such that

k(n) > k*(n), for anyn € N,
and denote by N’ C N the image k(N) of the (strictly increasing) function k. Then k is a bijection
from N to N’, and its inverse EA is a (strictly increasing) bijection from N’ to N. Denote
[

)
(
k(n) and n = Eil(n’), Vn € N,

and set

_ T /
In' = Gn = ggfl(n/) ) Un = un(n) = ugfl(n,y M = &n = Eﬁfl(n/y vn' € N';

note that 7,, — 0 as n’ = +o00.
Then (8.7) with k = k(n) reads as
un € Hy(0,L),
(8.11)

d Ay, . d¢n’ (Un/) dgn' . ’ ’ /
- (a(m) das)__ i d in D'(0,L), ¥n €N,

and with k = k(n) reads as
lunllz2(0,0) < €n = Y0 € N/,
which implies, since u, is bounded in H{ (0, L) in view of , that one has
Up — 0 weakly in Hg(0,L) as n' — +oo.

Since g,/ (= g,,) converges strongly to g in L?(0, L), Proposition is proved.
O

Remark 8.4. In the proof of Propositions [8.1] and [8-3] one fixes the sequence ¢,,, and the choices of
the sequences g, and g, are made according to the choice of the given sequence ¢,. In contrast we

do not know how choose a sequence ¢,, if the sequence g, is given.
O
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