ON THE ALEXANDER POLYNOMIALS OF CONIC-LINE
ARRANGEMENTS

ALEXANDRU DIMCA, PIOTR POKORA, AND GABRIEL STICLARU

ABSTRACT. In the present paper we compute Alexander polynomials for certain
classes of conic-line arrangements in the complex projective plane which are related
to pencils. We prove two general results for curve arrangements coming from
Halphen pencils of index k > 2. Then we apply them to the Hesse arrangement of
conics and to some of its degenerations. The results are completed by computations
using computer algebra. In particular, we construct conic-line arrangements which
are non-reduced pencil-type arrangements and have as roots of their Alexander
polynomials roots of unity of order 7. Such roots are not known and are conjectured
not to exist in the class of line arrangements.

1. INTRODUCTION

Let S = Clz,y, 2] be the graded polynomial ring in the variables x,y, z with
the complex coefficients and let C' : f = 0 be a reduced curve of degree d in the
complex projective plane P? = PZ4. If the curve C is reducible, it is called a curve
arrangement. Let g1, g2 € S, be two homogeneous polynomials of degree m, without
common factor, and consider the associated pencil of degree m curves

P:sgl—i—th:O,

where (s : t) € P!. We assume that the generic member of P is irreducible. Such a
pencil is called a Halphen pencil of index k if one has g, = h* for an integer k > 1
and a polynomial h which is not a power of another polynomial. A curve C' is called
a reduced (resp. non-reduced) pencil-type arrangement associated with ¢ members of
P if there is a number ¢ > 3 of reduced members (resp. members with at least one
member having a multiple irreducible component) of the pencil P such that C' is
the union of these ¢ members (after replacing all the multiple components by their
reductions). For instance, the monomial arrangement

Mo (2™ —y™)(y™ = 2") (™ = 2") =0
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is a reduced pencil-type line arrangement with ¢ = 3 members associated to the
pencil P : s(z™ —y™) + t(y™ — 2™) = 0, while the full monomial arrangement

FMup s ayz(a™ —y™)(y" — 2") (@™ = 2") =0

is a non-reduced pencil-type line arrangement with ¢ = 3 associated to the pencil
P oosz™(a™ — y") + ta™(y"™ — 2™) = 0. We do not know if a curve C' can be a
reduced pencil-type arrangement and, in the same time, a non-reduced pencil-type
arrangement, possibly with respect to two distinct pencils. However, this fact does
not affect our results below.

Such pencil-type arrangements play a key role in the theory of line arrangements,
see for instance [211, [12], and their relation to the freeness was considered in [13] [41].

We consider the complement U = P2\ C and let F': f = 1 be the corresponding
Milnor fiber in C?, with the usual monodromy action h : F' — F. One can also
consider the characteristic polynomials of the monodromy, namely

(1.1) AL(t) = det(t - Id — B’ | HY(F, C)),
for j € {0,1,2}. Since the curve C is reduced, one has A% () =t — 1, and moreover
(1.2) AZOACH) T AL = (11 = D)X,

where x(U) denotes the Euler characteristic of the complement U, see for instance
[8, Proposition 4.1.21]. Let us recall that

(1.3) X(U) = (d=1)(d = 2) + 1 = p(C),

where 1(C') is the total Milnor number of C, which is the sum of the Milnor numbers
w(C, p) for all the singular points p of C'. It follows that the polynomial A(t) = AL(¢),
also called the Alexander polynomial of C' — see [23] 24] [33], determines the remaining
polynomial A%(t) if one knows pu(C).

When x(U) < 0, it is known that all the irreducible components C; of C' are
rational, see [22, 25| [42], and then A(%) tends to be quite large. If these components
C; are smooth, being rational means that they are either lines or conics, so C' is a
conic-line arrangement. However, it is easy to show that for any line arrangement C
with d = deg(C') > 5 and without points of multiplicity > d — 1 one has

(1.4) YU)>d—4>1,

see Proposition 2.3l Note that the arrangements of d lines having points of multi-
plicity > d — 1 or such that d < 5 are easy to describe, and their monodromy is
well-known. In fact, for most line arrangements C, the Alexander polynomial A} (¢)
is trivial, namely it satisfies

(1.5) Ap(t) = (t -1,

where r is the number of irreducible components of C, see for instance [5l, 27, 39].
Even when the Alexander polynomial A} (t) is non-trivial, possible roots of AL (t)
seem to be very restricted. For instance, we have the following conjecture by Pa-
padima and Suciu [29, Conjecture 1.9].
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Conjecture 1.1. Let o be a root of the Alexander polynomial A} (t) of a line
arrangement C', not a union of concurrent lines. If the order of o has the form p*,
with p a prime number and s > 0 an integer, then p® € {2,3,4}.

Moreover, all known examples of line arrangements with non trivial Alexander
polynomials come from pencil-type arrangements, see [21, [39] [40]. More precisely,
if a reduced pencil-type line arrangement consists of £ members of a pencil, then the
corresponding Alexander polynomial has as roots any primitive root of order ¢, see
Corollary [3.2l On the other hand, for a non-reduced pencil-type line arrangement
consisting of ¢ members, the roots of unity of order ¢ are not always roots of its
Alexander polynomial. For instance, for the full monomial arrangement F.M,, the
cubic roots of unity are roots of the Alexander polynomial if and only if m = 1
mod 3, see [15, Remark 3.4]. Since for any line arrangement of pencil-type, except
the union of concurrent lines, one has ¢ < 4, this was perhaps the motivation for
Conjecture[L.1] The first author has constructed in [14] some conic-line arrangements
C, related to Halphen pencils of conics of index 2, with x(U) < 1 and such that A} (¢)
admits as roots any root of unity of order d = deg(C'), see Remark for additional
information.

In this note we construct (reduced and non-reduced) pencil-type conic-line arrange-
ments related to pencils of conics and sextics, with non-trivial Alexander polynomial
AL(t) and such that x(U) > 0. For instance, the Hesse arrangement of conics
C = C12()\) from Theorem satisfies x(U) = 54, consists of ¢ = 4 reduced mem-
bers in a pencil of sextics, and AL (t) has roots of order 8. This arrangement has
non quasi-homogeneous singularities, but which are locally topological equivalent to
quasi-homogeneous singularities. It seems therefore that Conjecture has nothing
to do with the positivity of x(U) or the local topological properties of singularities,
but is likely to be a property specific to line arrangements.

It is an interesting question to see how the freeness of a curve C' is reflected in
the topological properties of U and F, see for instance [2]. In this note we show,
in particular, that some new free and nearly free conic-line arrangements lead to
arrangements with non-trivial Alexander polynomial A}(t). The freeness of conic-
line arrangements is also discussed in [3§], from a different perspective and with an
aim towards Terao’s freeness conjecture.

Let us briefly present an outline of our note. In Section 2, we review some basic
facts on the Alexander polynomials of curve arrangements C' and prove the inequality
in Proposition . In Section 3, we discuss the relation between Alexander
polynomials and pencil-type arrangements. We recall the basic facts in Theorem
[3.1] and prove two of our main results, namely Theorem [3.3] and Theorem [3.4] which
explain the additional information provided by Halphen pencils. Using these results,
we can predict the existence of certain roots of the Alexander polynomials in all the
cases discussed in this paper, see Remarks [1.9] and [6.5]

In Section 4, we consider conic-line arrangements associated to pencils of conics.
Their freeness, except from the case of the generic pencil of Type I, see Theorem [4.3]
is not a consequence of the results in [13, [41]. Both the freeness and the Alexander
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polynomials are computed using the algebra software Singular via the algorithms
developed in [16], 17, [I§], which are recalled in Section 2.

In Section 5, we discuss the main example of our paper, the 1-parameter family of
Hesse arrangements of conicdl| C1o(\) for

A€ C\ {2, —2w,—2w%0,1,w,w?}

with w? + w + 1 = 0, of 12 smooth conics in the plane [19, 26], which is both
free and has an interesting Alexander polynomial. In Section 6, we consider some
degenerations of the Hesse arrangement of conics Ci2(A), obtained by setting A = \g
for
Ao € {2, —2w, —2w?* 0,1, w,w?}

in the equation f(A) = 0 of the aforementioned 1-parameter family of Hesse ar-
rangements of conics. For each of these values of A, the defining equation f(\) =0
has 3 linear factors which occurs with multiplicity 2, hence f(\) = 0 is in fact a
multiarrangement C(\) formed by 9 smooth conics and 3 double lines — here by a
multiarrangement we understand an arrangement of curves such that not every ir-
reducible component is reduced. From the point of view of pencils of sextics, these
degenerations are union of 4 members (one double and 3 reduced) of a Halphen pen-
cil of sextics of index 2. We denote by A(\) the non-reduced pencil-type conic-line
arrangement with is obtained from C(\) by replacing the 3 double lines by the corre-
sponding reduced lines, and by B(\) the reduced pencil-type subarrangement of A(\)
consisting just of the 3 reduced members. These 14 new arrangements A(A) and
B(A) have very interesting properties themselves. For instance, Theorem says
that all the seven conic-line arrangements A(\) are free, and only three of the seven
conic arrangements B()), namely those corresponding to A3 = 1, are free. Finally,
Theorem and Theorem say that unit roots of order 6 (resp. 7) occur as roots
of the Alexander polynomial of the arrangements B(0) and B(1) (resp. .A(0) and
A(1)). It is an interesting fact that the combinatorics and the local type of singu-
larities of the arrangements A(0) and A(1) (resp. B(0) and B(1)) are very different,
but nevertheless one has

Aoy () = Al (1) and Ag (1) = Ap)(t).
One explanation of this fact comes by looking at the associated pencils of sextics:
both B(0) and B(1) consist of 3 reduced fibers, and A(0) and .A(1) are obtained by
adding the reduce curve coming from the double cubic in the pencil, which is in fact
a triangle.
We would like to thank the referees for their careful reading of the manuscript and
for their very useful suggestions to improve the presentation.

2. SOME GENERAL PROPERTIES OF ALEXANDER POLYNOMIALS OF CURVE
ARRANGEMENTS

In order to construct conic-line arrangements C' with non-trivial Alexander poly-
nomial A} (t), the following result is quite useful, see [9, Section 6.4]. We recall

ISometimes this arrangement is called as the Chilean arrangement of conics.
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that for any isolated plane curve singularity (X, 0), there is a Milnor fiber Fy and a
monodromy operator hgy : Fy — Fp, giving rise to a local Alexander polynomial

(2.1) Alyo)(t) = det(t - 1d — h} | H'(Fy, C)).

Theorem 2.1. Let C = Ui_,C; be a curve arrangement in P? such that the curve
C1 s irreducible. For any singular point p of C situated on Cy, let A%C,p) () be the
Alezander polynomial of the singularity (C,p). Then the following conditions hold.
(1) Any root of the Alexander polynomial AL(t) is a root of unity of order d =
deg(C).
(2) The Alexander polynomial Ap(t) divides the product ], A%C’p) (t), where p
runs through all the singularities of C situated on C1.

The claim (i) above is classical, going back to Zariski. For the claim (ii) we refer
to [9, Corollary 6.4.16].

Remark 2.2. Here are some examples of local Alexander polynomials. For the
simple singularity A, : u? + v"*! = 0, the corresponding Alexander polynomial is
tn+1 _ (_1)n+1
1 —
Bl ==
For an ordinary m-multiple point (X,,,0), that is when there are m smooth branches
meeting transversally in pairs at a given point, we have

Al o(t) = (E7 = 1) 2(t = 1).

To get these formulas, we refer to the proof of Theorem (3.4.10) in [§].

Theorem gives necessary conditions to get interesting eigenvalues for the mon-
odromy. However, these conditions are far from being sufficient. To make sure that
a root of unity a such that a? =1 is a root of the Alexander polynomial AL (t), we
can follow two approaches.

The first approach is to compute the Alexander polynomials of plane curves using
two Singular codes, which can be found at

https://math.unice.fr/~dimca/singular.html

The first one, the code monof3(ql,q2), computes the Alexander polynomial A} (¢)
for a free curve C' and is very rapid. Its construction is described in [16], 12], see also
[17, Remark 4.4].

The second one, the code mono3_wh (), described in [17, 12], computes the Alexan-
der polynomial A{(¢) for a any reduced curve C, i.e., we do not require the freeness,
etc. Moreover, it computes the total Milnor number 1(C') and then, using the equal-
ities and (1.3)), one can determine the Alexander polynomial AZ(t) as well
(which is in fact also given by this code). However, for this second code, make sure
that the coordinates z,y, z are chosen such that the line at infinity L : 2 = 0 con-
tains no singularities of the curve C'. This is achieved by making a linear substitution
z +— ax + by + z with a, b being general enough. Otherwise the computation of p(C)
gives a wrong value.
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More precisely, let
(2.2) a, = exp(—2mig/d)

be a root of unity of order d = degC, where 0 < ¢ < d and let m(«,) be the
multiplicity of o, as a root of the Alexander polynomial A} (t). One has ag = ag = 1
and

(2.3) m(1) = b(U) =r — 1,

where r is the number of irreducible components of C' and b, (U) denotes the first
Betti number of the complement U of C. The output of the code monof3(q1,q2)
with ¢1 = 3 and ¢2 = d is a Table, where the first column contains the values of
q from 3 to d, and the before last column contains the data ns(q). We set ny(0) =
n2(1) = ny(2) = 0. Then [I7, Remark 4.4] yields

(2.4) m(ay) = n2(q) + na(d — q) for any ¢ =0,...,d.

The output of the code mono3_wh (), when the curve has some non quasi-homogeneous
singularities, that is when 7(C') < u(C), is first the total Tjurina number 7(C) and
the total Milnor p(C). Then there is again a Table, where the first column contains
the values of ¢ from 3 to d, and the before last column contains the data H, ql. We set
H} = H! = H} = 0. Then [17, Remark 4.4] yields

(2.5) m(ay) = Hy + Hy_, for any ¢ =0,....d.

When all the singularities of C' are quasi-homogeneous, then there are additional
information in the output, but for the computation of m(«,) one can use the data
displayed in the first part of Table that is produced by the code mono3_wh () and the
formula (2.5)). In view of [I8, Proposition 2.2 (2)] and [I12, Remark 8.6], the numbers
nz(q) and H, have the following geometric interpretation

(2.6) ns(q) = dim Grip H'(F, C)a,,
when all the singularities of C' are quasi-homogeneous, and
(2.7) H; = dim GripH' (F,C),,,

otherwise, where Gr}. denotes the graded piece with respect to the Hodge filtration
on H'(F,C).

The interested reader can find alternative codes for the computation of Alexander
polynomials obtained by Morihiko Saito in [36], B37].

The second approach is to use the following formula for the multiplicity m(«) of «
as a root of the Alexander polynomial As(t), namely

(2.8) m(a) = dim H*(U, L,),

where L, is the rank one local system whose monodromy around each irreducible
component of C' is multiplication by «, see [12, Proposition 5.4]. This approach is
particularly useful when the curve C' is the union of some members in a pencil of
curves, as we explain in the next section.

We end this section with the following easy result.
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Proposition 2.3. Let C : f =0 be an arrangement of d lines in P?, without points
of multiplicity > d — 1. If d = deg(f) > 5 and U =P*\ C, then

xU)>d—-4>1

Proof. Since C' has no points of multiplicity > d — 1, one has r = mdr(f) > 2
(regarding 7, see discussion below Definition {4.1)). Furthermore, the singular points
of C are quasi-homogeneous, so we have

and this follows from [20]. Hence we have
xO)=d—-1)(d=2)+1—p(C)>(d—-1)(d—-2)+1—(d*—4d+7) =d— 4.
U

Note that the arrangements of d-lines having points of multiplicity > d —1 or such
that d < 5 are easily described, see for instance [12, Cor. 8.1 and Cor. 8.2], and
their monodromy is well-known.

3. PENCILS OF CURVES AND ALEXANDER POLYNOMIALS

Let g1,92 € S,, be two linearly independent homogeneous polynomials of degree
m, consider the associated pencil P : sg; + tgo = 0, and assume that the generic
member of P is irreducible. If the curve C' is a pencil-type arrangement associated
with € > 3 (reduced or non-reduced) members of P, then we have a regular mapping

(3.1) 0:U—=T, 0z,9,2) = (g1(x,y, 2) : g2(z,9,2)),

where T is obtained from P! by deleting the ¢ points corresponding to the ¢ members
of P used to construct C. Note that one has x(7') = 2 — £. We recall the following
key result, see [12, Theorem 6.9, Corollary 6.3 and Theorem 6.10]. For all the details
we refer to [10].

Theorem 3.1. Let L be a rank one local system on U and let F be the generic fiber
of 0. If Llp = Cr is the trivial local system, then for any rank one local system L'
on T one has

dim HY (U, L@ *L) > —x(T) =¢ -2 > 1.

The first inequality is strict when L is not the pull-back under 6 of a rank one local
system on T'.

Corollary 3.2. Any root of unity o of order ¢ is a root for the Alexander polynomial
of a reduced pencil-type arrangement associated with £ members of P and moreover
m(a) >0 —2.

Proof. 1t is enough to take in Theorem L = Cy and L’ the rank one local system
on T with monodromy about each deleted point a primitive root of unity of order
‘. O
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When P is a Halphen pencil of index £, then the map 6 has a multiple fiber, namely
Fy = 071(1:0), of order k. Then the following result shows the existence of roots
of Alexander polynomial of higher order and higher multiplicity for the associated
reduced pencil-type arrangements.

Theorem 3.3. Let P be a Halphen pencil of index k and let C' be a reduced pencil-type
arrangement associated with ¢ members of P. Then the Alexander polynomial Ac(t)
has, among its roots, any primitive root of unity o of order kl and its multiplicity
satisfies m(a) > € — 1.

Proof. We apply Theorem in the following way. Let « be any primitive root of
unity of order k¢ and consider the rank one local system £ on 7" =T\ {(1: 0)}
whose monodromies are as follows:

(1) About each of the ¢ points corresponding to the member of P which are in
C' the monodromy is multiplication by a.

(2) About the point (1 : 0) the monodromy is 8 = a~*.
Since the product of all these monodromies is equal to 1, this local system Lj is
well-defined. Let £] = 6*(L{) be the pull-back of £j, under the obvious restriction
of § to U’ = 6~1(T"). Each irreducible component C” of the multiple fiber Fj has a
multiplicity of the form ka for some integer a > 1. It follows that the monodromy
of the local system £} about C” is

/Bka — a—éka = 1.

It follows that the local system £ can be extended over the fiber Fj, that is, there
is a local system L, on U whose restriction to U’ is exactly £}. It is clear that this
local system L, satisfies the equality . On the other hand, £, is obviously not
the pull-back of a rank one local system on T'. The claims then follow from Theorem
3.1, where we take £ = L, and £’ = Cp. The property L|p = Cr holds since the
generic fiber of  is the same as the generic fiber of ' = 0|y.

O

We also have the following result on the simplest non-reduced pencil-type arrange-
ments.

Theorem 3.4. Let P be a Halphen pencil of index k given by P : sg1 +tgo = 0, with
g2 = h* and h a polynomial without multiple factors. Let C' be a non-reduced pencil-
type arrangement associated with ¢ — 1 > 2 reduced members of P and the reduced
curve h = 0. Then the Alexander polynomial Ac(t) has, among its roots, any root
of unity o of order n = k(¢ — 1) + 1 and its multiplicity satisfies m(a) > € — 2.

Proof. Let a be any root of unity of order n and consider the rank one local system
L' on T whose monodromies are as follows:

(1) About each of the £ — 1 points corresponding to the reduced members of P
which are in C' the monodromy is multiplication by «.

(2) About the point (1 : 0), corresponding to the multiple member, the mon-
odromy is multiplication by 38 = o!~*.
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We have % = af7* = o, which implies that 6*(£') = L,, with the notation from
(2.8). We conclude using Theorem for £ = Cy, the trivial rank one local system.
This gives in particular m(a) > —x(T) = ¢ — 2. O

Remark 3.5. If the map 6 : U — T associated to the pencil P : sg; +tgo = 0 as in
has a generic fiber ' which is not connected, then Stein Factorization Theorem
implies that the rational map 0 : P2 --» P! associated to P factors as a composition
P2 ——s P! — P!, where the rational map P2 --» P! comes from a lower-degree pencil
P’ with a connected generic fiber ! and 7 : P! — P! is a finite morphism. Since
any member of the pencil P is a union of members of the pencil P’, it follows that
any arrangement associated with P can be regarded as an arrangement associated
to P’. Hence our condition that I is connected is not really a restriction. To have an
example, if the pencil P has at least two fibers of multiplicity k, then one can take
g1 = h¥ and g, = h5. In this case, if say the curve h; = 0 is irreducible, then the
pencil P’ is given by shy + thy = 0 and 5 : P — P! is given by n(u : v) = (u* : v%).

4. FREE CURVES AND PENCILS OF CONICS

In this section we recall first the definition of free and nearly free curves. In the
sequel, many of the constructed curves have not only interesting Alexander polyno-
mials, but turn out to be either free or nearly free. Let C': f = 0 be a reduced curve
in P? of degree d defined by f € S. Denote by M(f) := S/J; the Milnor algebra,
where J; is the Jacobian ideal, i.e., the ideal spanned by the partials 0, f, 0, f,0.f.

Definition 4.1. We say that C' is m-syzygy when M (f) has the following minimal
graded free resolution

m—2 m
0= P S(—e) > @S —d—d;) = S (1L —d) =5 — M(f) =0
i=1 =1
withe; <ey < ... <ep oand 1 <d; <...<d,.

In the setting of the above definition, we define the minimal degree of the Jacobian
relations among the partial derivatives of f, namely

mdr(f) := d.

Definition 4.2. We say that

e Cisfreeif and only if m =2 and dy +dy =d — 1.

e ( is nearly-free if and only if m = 3, dy + dy = d, dy = d3.
In both cases, we call the pair (dy, dy) the exponents of the curve C'. Finally, for a re-
duced curve C' C PZ let us denote by 7(C') the total Tjurina number of C' and by u(C)
the total Milnor number of C'. If all the singularities of C' are quasi-homogeneous,
then, according to [35], one has 7(C) = u(C). There are characterizations of free
and nearly free curves in terms of the total Tjurina number — see [I1), 20] for all
necessary details.

In the remaining of this section we apply Theorem to curves coming from

pencils of conics. We start by recalling the classification of pencils of conics P :
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tq1 + sqz = 0 in P? which contain smooth conics. Let B : ¢ = g = 0 be the base
locus, regarded as a scheme in P2, and let s and s’ be the number of conics which are
union of two distinct lines in P, respectively the number of conics which are double
lines in P. We will use a rather standard convention of describing base loci, for
instance by B = p; + ps + p3s + ps we mean the base locus B consisting of 4 distinct
points. Then the following result is well-known, see [I, Section 3] or [30].

Theorem 4.3. With the above notation, the following 5 cases occur for a pencil of
conics P in P? which contains smooth conics.

(1) Type I (the generic case): B =p; +ps+p3+ps, s=3, s =0.
(2) Type II: B =2p, +py+p3, s=2,s =0.

(3) Type III: B=3p; +ps, s=1,5 =0.

(4) Type IV: B =2p; + 2py, s = s = 1.

(5) Type V: B=4p;, s=0, s = 1.

Remark 4.4. Here are some equations for each type of pencil of conics listed above,
see [30] for all types except Type I.

Typel:q =2 —y? ¢ =y — 2%,
and the third singular conic in this pencil is g3 = 2% — 22.
Typell : g1 = 2y, q2 = (x — y)(z + y + 2),
and the common tangent at the point p; = (0:0:1)is T : 2 —y = 0.
Typelll : q; = x(z — 2),qo = 2y — 2°.
TypelV:q = (z +y + 2)%, q2 = 2,
and the common tangents to the conics are 77 : z =0 and T : y = 0.
TypeV :q1 = 2%, o = xy — 2°.

Note that a pencil of Type IV is called a bitangent pencil and a pencil of Type V is
called a hyperosculating pencil, see for instance [3]. The monodromy of some conic-
line arrangements constructed using such pencils of Type IV and V has already been
discussed in [14].

Now we are ready to present our results devoted to pencils of conics and their
Alexander polynomials.

Proposition 4.5. Consider the conic-line arrangement
Cif=@"—y)y" —2")" =) - 2" +2%) =0

obtained from a conic pencil of Type I by putting together the 6 lines coming from
the 3 singular conics in the pencil, plus a smooth member. Then C is a free curve
with exponents (2,5) and one has 7(C) = u(C) = 39 and

AL(1) = (L - 1)t 1)
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Proof. The freeness of C follows from [13, 41]. The fact that 7(C) = u(C) = 39 can
be seen directly, since C' has 3 singularities A; and 4 ordinary singularities of order 4,
which are always quasi-homogeneous, see for instance [7, Exercise 7.31]. The formula
for the Alexander polynomial A} () is obtained using any of the two Singular codes
described above. From the point of view of pencil-type arrangements developed
above, here ¢ = 4 and hence x(T) = —2. We apply Theorem with £ = Cy the
trivial local system and £’ the rank one local system on 7" whose monodromy about
each deleted point is multiplication by «, a unity root of order 4, a # 1. It turns out
that the inequality in Theorem is in this case equality. ([l

The fact that the Alexander polynomial AL (t) is non-trivial does not depend on
the freeness of the curve C, as the following result shows.

Proposition 4.6. Consider the conic-line arrangement
C:f=W—-22)2*-2*)(* -2 +2%) =0

obtained from a conic pencil of Type I by putting together the 4 lines coming from
two of the 8 singular conics in the pencil, plus a smooth member. Then C' is a nearly
free curve with exponents (2,4) and one has 7(C) = pu(C) = 18 and

AL(L) = (- 1P — 1),

Proof. The nearly freeness is obtained by a direct computation using Singular.
For the rest, use the code mono3_wh(), but first perform again the substitution
2z +— x + 1y + z to make sure the line L : z = 0 does not contain any singularity of C'.
In this case we have ¢ = 3 and again it turns out that the inequality in Theorem
is an equality. O

Now we pass to the case of conic-line arrangements constructed using pencils of
Type II. Note that for conic-line arrangements constructed from pencils of type
different from Type I, the results in [13, 41] can no longer be used to prove the
freeness.

Proposition 4.7. Consider the conic-line arrangement
C:f=aylz—y)(z+y+2)(oy+2>—y* +2z—yz)=0

obtained from a conic pencil of Type II by putting together the 4 lines coming from
the 2 singular conics in the pencil, plus a smooth member. Then C is a free curve
with exponents (2,3), 7(C) =19 < u(C) = 20, and

AL() = (¢ — 1P(E* 1),

Proof. The freeness of C' is obtained by a direct computation using Singular, which
also gives 7(C') = 19. For the remaining claims we use the code mono3_wh(). The
only non quasi-homogeneous singularity is located at p = (0:0: 1). U

Finally we consider conic-line arrangements constructed using pencils of Type III.
The following result can be proved as above.
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Proposition 4.8. Consider the conic-line arrangement
C:f=a(—2)(zy—2)2* —zz+ay—2°)=0

obtained from a conic pencil of Type III by putting together the 2 lines coming from
the unique singular conic in the pencil, plus two smooth members. Then C' is a free
curve with exponents (2,3), 7(C) =19 < u(C) =21, and

AL(L) = (t - 1~ 1).

Remark 4.9. As we have seen, for all the Alexander polynomials AL(t) of the
conic-line arrangements C' discussed in this section, the existence of certain roots «
(but not their ezact multiplicity m(«)) of the Alexander polynomial can be obtained
from Corollary A similar remark applies for most of the conic-line arrangements
considered in [I4]. These conic-line arrangements are associated to conic pencils of
Type IV and V, which contain double lines, hence we have in fact Halphen pencils
of index 2. The reduced pencil-type arrangements Cy,, in [I4, Theorem 1.1], C,
in [14, Theorem 1.3] and C%, in [I4, Theorem 1.5] are covered by Theorem [3.3]
while the non-reduced arrangements Cy,,41 in [I4, Theorem 1.1] and CY,,., in [14]
Theorem 1.5] are covered by Theorem . However, to get the exact formulas for
the corresponding Alexander polynomials, one has to use a different approach, and

this is done in [14].

5. THE FAMILY OF THE HESSE ARRANGEMENTS OF CONICS

This construction is described in [19, 26] and we reproduce some of that paper’s
content here. Let A € {1,w,w?} with w? +w + 1 = 0. Consider the elliptic curve

Ey 2+ 93+ 2% —3\ayz =0,

whose j-invariant is given by the formula

6.1) i) =21 (M)

see for instance [32]. The dual curve C) of the elliptic curve F) is a 9 cuspidal
irreducible sextic, i.e., it has exactly 9 singularities of type A,. Let us denote the set
of these 9 cusps by Py(A). The coordinates of these points have the following shape:

pN)=A:1:1), ps(N) =N:w:w?), prN)=0\:w?:w)
(5.2) pa(N) = (1:X:1), ps(A\) = (w?: A:w), ps(\) = (w:\:w?)
p3(A) =(1:1: ), ps(N\) = (w:w?:N), po(A) = (w?:w:N).

It turns out that, for any fixed A & {—2, —2w, —2w? 0,1,w,w?}, that is for all
A € C such that the curve F) is smooth and j(E)) # 0, the set Pg(\) determines the
set of exactly 12 smooth conics, denoted here by C12()), see Proposition Each of
these 12 conics contains exactly 6 points from Py(A). Looking from the perspective
of point-conic configurations, we obtain a (9s, 126)-configuration, i.e., through each
point from Py(A) there are 8 conics from Cy2() passing through it, and on each conic
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from Ci2(\) there are exactly 6 points from Py(\). Using any algebra software, we
can find explicit equations of these 12 conics, namely

Q1(>\) = 01,2,3,4,5,6(/\) : fl(/\) = ZE2 + ()\ + 1)(wmy + CUZZL‘Z + yZ) + w2y2 + CUZZ = O,

Q2(N) = Crasrso(N) 0 fo(A) =22 + (A + 1) (w?zy + wrz + yz) + wy® + w?2? =0,
Qs(A\) = Croas78(N) : f3(A) =y —Az* =0,
Qi(N) = Craaeso(N) 1 fi(A) = 22 + (WA + 1) (zy + waz + wyz) + y* + w?2? =0,
Qs(\) = CraseroN) 1 fs(A) =22 + (WA + 1) (zy + w?zz + W?yz) + y? + w2? = 0,
Qs(N) = Crzass0()) i fo(A) = 2% + (WA + w?)(zy + yz + wzz) + wy? + 22 = 0,
Q7(N) = Cizapro(N) 0 fr(A) = = y? + 22 =0,
Qs(\) = Crzs678(N) 1 fs(A) = 22 + (WA + w)(zy + y2z + w?x2) + wy? + 22 = 0,
Qo(A) = Cozasro(N) o fo(N) = 2% + (A +w?)(zy + 22 + w?yz) + wy? + w2’ =0,
Qu(N) = Cogaprs(A) 1 fo(N) = 2% + (A +w)(zy + 22 + wyz) + W (y* + 2%) =0,
Qui(N) = Cazse80(N) 1 fri(A) = Aa? —yz =0,
Qi12(N) = Cussrso(N) + fz(A) = 2> + (A + 1) (wy + 22 +yz) +y* + 2° = 0,

where the indices ¢, j,...,m for the conic C;; ,,(\) mean that this conic contains

the 6 points ps(A) with s € {i,7,...,m} from Py(A).

Proposition 5.1. Let A = C\{—2, —2w, —2w?,0, 1, w,w?} and consider the following
curve arrangement

Ci2(A\) - f(A) = fiN) fa(A) - ..o« fra(A) = 0.
Then, for any A € A, the following two properties hold.

(1) All the conics Q;(N) for j =1,...,12 are smooth.

(2) At any point pi(X) € Po(N), any two distinct conics Q;(A) and Q;(N) pass-
ing through pr(A\) are transversal at pip(\). In particular, the singularity
(C12(N), pk(X)) is an ordinary singular point of multiplicity 8 and hence

1(C1a(A), pr(A)) = 49,

Proof. The claims follow by direct computations using, as in our case, Singular
[6]. The number of computations can be reduced using Remark [5.2] The condition
A € {1,w,w?} is necessary, since we want the curve E) to be smooth and the points
in to be distinct. Note that for A\ = 0, it is clear that each of the conics ()3,
7 and ()17 is not smooth, but union of two lines and the polynomial f has multiple
factors. For A = —2u, where u® = 1, a similar situation occurs, namely the conics
@1, Q2, Q12 are singular for u = 1, the conics Q5, Qg, Q10 are singular for u = w, and
the remaining conics Q4, Qs, Qg are singular for u = w?. These special values of A
are discussed in the next section. 0

The geometry of the Hesse arrangement of conics is very rich. It turns out that
the set X5 of 12 double intersection points of Ci2(\) determines a set of 9 lines such
that on each line we have exactly 4 points from ;5 — this is exactly the dual Hesse
line arrangement. The corresponding coordinates of points in X5 are

(1:1:1), (w:w?:1), (W :w:1),(1:0:0), (0:1:0), (w?:1:1),

(5:3) (1:w?:1), (w:1:1),(1:w:1), (W:w?:1),(0:0:1), (w:w:1).
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Remark 5.2. Let N be the cyclic group of order 3 generated by n : P2 — P2

n(z:y:z) = (xr:wy: w?2). Let H be the symmetric group acting on P? by

permuting the coordinates x, y, z. Then it is easy to check that the semidirect product
G=NxH

acts transitively on the set of points Py(A). As there is at most one conic passing
through 6 points, it is clear that the group G permutes the 12 conics in Ci2(A) and
hence the defining equation f(\) of Ci2(A) is invariant under G up to constants in C*.
As an example, the map n takes the set {1,2,3,4,5,6} into the set {4,5,6,7,8,9},
and hence the conic Q1(A) = Ci23456(A) : f1(A) = 0 is moved to

Q12(A) = Cuser89(N) : fi(A) on™! = 0.
It follows that f1(A) on~' = fi5(\) up to a constant in C*. As a result, all the
properties (e.g. Milnor number, Tjurina number, being an ordinary singularity) of
the singularity (C12(A), pj(A)) do not depend on j = 1,...,12. The group G acts also
on the set 315 of 12 points in ((5.3), and there are 4 G-orbits, namely
G-(1:1:1), G-(1:0:0), G- (1 :w:w)and G- (1:1:w).

Hence, to study any singularity (Ci2(A), q) for ¢ € X1, it is enough to consider just
one point ¢ in each of these four G-orbits.

Remark 5.3. The Hesse arrangement of conics Ci2(A) for any A € A, is a free curve
with exponents (7,16). The singular locus of Cjs consists of 9 ordinary points of
multiplicity 8 given in (5.2), and 12 double points given in above. Let us point
out here that the points of multiplicity 8, even if these are ordinary singularities,
they are not quasi-homogeneous since again computations preformed by Singular
give us that for every k € {1,...,12}

45 = 7(Cr2(A), pr(A)) < p(Cr2(A), pr(A)) = 49.

For all these results, please consult [31].

Recall that the Hesse arrangement of conics Cio(A) for any A € A is a pencil-type
arrangement associated with ¢ = 4 reduced members in a Halphen pencil of index 2,
see [19]. More precisely, define

s1 () = AL 2N fra(N) = 28 + 98 + 28 + (X3 +3X02 — 2) (2% + ¢°2% + 2°2%)
+(=3M% = 3\ (ztyz + zytz + wy2?) + (=303 + 9\ + 3)2%y? 22,
s2(A) = s\ fr AN fu(X) = =N (2% +4°2% + 2°2°) + Matyz + ay'z + 2y2?)
+(N® = D)a?y?2?,
s3(A) = fa(N) fs(N) fo(A) = s51(A) +3(1 — w?)s2(N)
and
$4(A) = fs(N) f6(A) fro(A) = s1(A) + 3(1 — w)s2(N).

Then each of the curves Fj : s;(A) = 0 is a union of 3 smooth conics, each two of
them meeting in 4 points, of which 3 are in Py(\) and one is in 315. Conics from two
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distinct F}’s meet in 4 points all in Py(A). As noted in [19], the 4 sextics Fy, Fy, F3
and F} are reduced members of the Halphen pencil of index 2 given by
(5.4) PA) s s1(N) +t- (A@® + %+ 2%) — (\ +2)zyz)* = 0.

It follows from [I9, Proposition 5.1] that one member of this pencil is a sextic with 9
cusps, and hence the generic member is irreducible. From now on, when discussing
this pencil, we set

g1 = 51(N) and g = A 43 + %) — (N + 2yaye)?
Our Theorem (resp. Corollary implies that the Alexander polynomial

AL, (v (t) admits any primitive root of unity a of order 8 (resp. any root of unity of

order 4) as a root with multiplicity m(a) > 3 (resp. m(a) > 2). The following result
makes this claim more precise.

Theorem 5.4. The Hesse arrangement of conics C12(A) : f(A) =0, for any A € A,
has the Alexander polynomial given by

Ap,oy) = =DME+ 1) + 1)t +1)°.

Proof. The reader unfamiliar with stratified sets and Thom’s Isotopy Lemmas can
have a look at the paper [34], where a proof similar to what follows is given and more
details are provided. Alternatively, see [8, Chapter 1]. Let X = A x P? and consider
the first projection
pr; : X — A
We stratify X using the following connected strata:
e 21 one-dimensional strata given by

X = [ p(V)
AEA
for k=1,...,9 and
Yy = A x p,
where p’ is one of the 12 points in (5.3).
e 12 two-dimensional strata

Zj = U{)\} x Qj(No,

AeA
where Q;(A)o = Q;(A) \ (Po(N) U X12), with X5 being the set of 12 points p
as in ((5.3)).

e a three-dimensional stratum W given by

W={(\[z:y:z]) e X | f(M)(2,y,2) # 0}

It is easy to check, using Proposition (2), that for any singular point p(\) €
C12(A) the singularity (C12(\), p(N)) gives rise to a p-constant family of singularities
with A varying in A. It is known that a p-constant family of isolated plane curve
singularities is in fact p*-constant, see for instance [§, Remark (1.2.15)], and hence
it gives rise to a Whitney regular stratification, [8, Theorem (1.2.13)]. It follows
that the 2-dimensional strata Z; are Whitney regular over the 1-dimensional strata,
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and hence the stratification of X described above is Whitney regular. Since the
projection pr, is clearly proper and submersive when restricted to any stratum, we
get a topologically trivial family via Thom’s First Isotopy Lemma, see for instance [8,
Theorem (1.3.5)]. It follows that the topological type of the pair (P2, Cy5(\)) does not
depend on A € A, and hence the same applies to the complement U()\) = P2\ Ci5(N).
Recall the definition of a, from (2.2). The multiplicity m(c,) of the root a; of
the Alexander polynomial Aém(/\) (t) can be computed using the formula (2.§)), with
a = o, and the local system L, denoted by L,(\) to stress the dependence on A.
It follows that the Alexander polynomial Aém(A) (t) is constant when A varies in A.
Indeed, for any two values A\, \' € A, there is a stratified homeomorphism

¢ : (P2, Cia(N) — (P%,Cra(N)),
which implies that the homeomorphism obtained by restriction
¢:UN) = UWN)

preserves the rank one local systems used to compute the multiplicity of the eigen-
values of the monodromy h, namely

‘Ca()‘> = ¢*(‘Ca(/\,))~

Since the cohomology groups H'(U()), L,()\)) behave well with respect to pull-back
and homotopy equivalence, see for instance [9, Remark 2.5.12], our claim that the
Alexander polynomial Ag () is constant follows.

Then we can take, for instance, A = 2, and the corresponding Alexander polyno-
mial Aéu@) (t) is obtained using the code monof3(ql,q2) with ¢l = 3 and ¢2 = 24,
since this curve is free by Remark [5.3] O

6. THE DEGENERATIONS OF THE FAMILY OF HESSE ARRANGEMENTS OF CONICS

We have seen in the previous section that there are 7 special values for A which
must be excluded in Theorem [5.4 As explained briefly in the proof of Proposition
, for each of these values of A, the defining equation f(A) = 0 has 3 linear factors
which occurs with exponents 2, hence f(\) = 0 is in fact a multiarrangement C(\)
formed by 9 smooth conics and 3 double lines. We denote in this section by A(\) the
non-reduced pencil type conic-line arrangement obtained from C(\) by replacing the
3 double lines by the corresponding reduced lines, and by B(A) the reduced pencil-
type subarrangement of A(\) consisting just of the 9 conics. These new arrangements
A(X) and B(\) can be regarded as degenerations of the Hesse arrangement of conics
Ci2 and they have very interesting properties themselves, as the following results
show.

Theorem 6.1. The degenerations A(N\) for A € {—2, —2w, —2w?,0,1,w,w?} of the
Hesse arrangement of conics are free conic-line arrangements with exponents (7,13).
Moreover, the degenerations B()\) for A € {1,w,w?} of the Hesse arrangement of
conics are free conic arrangements with exponents (7,10).
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Proof. To fix our ideas, consider the case A = 0. If we set A = 0 in the polynomial
f(A), we get C(0) : £(0) = 0, where f(0)(z,y,z) = 2°y*2* - g(z,y, 2) with
g9 = 51(0)53(0)s4(0).
Indeed, in this case s5(0) = —z?y?2%. Tt follows that one has
A0) s wyz - g(x,y,2) = 0 and B(0) : g(z,y,z) = 0.
The claim about the freeness of the arrangement A(0) follows using a direct compu-
tation via Singular. One can also check that the arrangement B(0) is neither free,

nor nearly free. The remaining 6 special values of A can be treated exactly in the
same way. O

It turns out that the new conic-line arrangements A(A) and B(A) have interesting
Alexander polynomials. As a sample of this claim, we have the following.

Theorem 6.2. The degeneration A(0) of the Hesse arrangement of conics has 9
ordinary singularities of multiplicity 7 and 12 nodes Ay. Moreover

T(A(0)) = 309 < 336 = u(A(0))
and its Alexander polynomial is given by
Ay (t) = (= 1)°(t" = 1)

The degeneration B(0) of the Hesse arrangement of conics has 9 ordinary singulari-
ties of multiplicity 6 and 9 nodes A;. Moreover

7(B(0)) = 216 < 234 = u(B(0))
and its Alexander polynomial is given by
Apy(t) = (t = )7 = 1)(#* + 1),
In particular, A}L\(O) (t) (resp. A%s(o) (t)) has as roots some roots of unity of order 7
(resp. 6).

Proof. The Alexander polynomial for the free conic-line arrangement A(0) can be
computed using the code monof3(ql,q2), with ¢l = 3 and ¢2 = deg.A(0) = 21.
The code mono3_wh() takes longer time, but also gives the value p(A(0)) = 336,
which can be obtained also by looking at the singularities of .A(0). The 9 ordinary
singularities of multiplicity 7 are exactly the points p;(0) for j = 1,...,12 from
and the 12 nodes A; are exactly the points in (5.3). The value 7(.A(0)) comes from
the freeness property in Theorem using [20], or from the code mono3_wh().

All claims relating to the conic arrangement B(0) can be derived using the code
mono3_wh(). The 9 ordinary singularities of multiplicity 6 are exactly the points
p;(0) for j =1,...,9 from and the 9 nodes A; are exactly the points in
except the points (1:0:0),(0:1:0) and (0:0:1). O

Remark 6.3. The existence of roots a of order 7 and resp. 6 in this case can
be seen using our approach with rank one local systems. Consider first the conic
arrangement B(0), which is the union of 3 reduced members in the pencil P(0) from
(5-4). 1t follows from [I9, Proposition 5.1] that one member of this pencil is a sextic
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with 9 cusps, and hence the generic member is irreducible. This pencil has a double
fiber F, given by x2y?2? = 0, hence it is still a Halphen pencil of index 2. To conclude,
it is enough to apply Theorem with ¢ = 3 and k = 2 and we get m(«) > 2. For
the conic-line arrangement .A(0), which is non-reduced, we conclude using Theorem

B4

Theorem 6.4. The degeneration A(1) of the Hesse arrangement of conics has three
singularities of multiplicity 11 and nine nodes Ay. Moreover

T(A(1)) = 309 < 363 = u(A(1))

and its Alexander polynomial is given by
Al(t) = (t=1)°(" = 1)

The degeneration B(1) of the Hesse arrangement of conics has three singularities of
multiplicity 9 and nine nodes A;. Moreover

T7(B(1)) = 216 < 255 = u(B(1))
and its Alexander polynomial is given by

Apyy(t) = (¢ =17 = 1) + 1)

In particular, A}4(1)(t) (resp. Ag(l)(t)) has as roots all the primitive roots of unity of
order 7 (resp. 6).
Proof. 1f we set A = 1 in the polynomial f()), since

s1(1) = (2° + y* + 2° — 32y2)?,
we get

f() (2, y,2) = (z+y+ 2)%(z + wy + w?2)*(z + W’y +w2)* - hz,y, 2)
with
h = s9(1)s3(1)s4(1).

It follows that one has
A1) (z+y+2)(r+wy+w?2)(r+w?y+w2)h(z,y, 2) =0 and B(1) : h(z,y,2) = 0.

The new features of this case are the following. First of all, when we set A = 1, the
9 points in (5.2)) collapse at 3 points, namely

a=(1:1:1)=p(1) =pa(1) = ps(1),

b= (w:w?:1)=ps(1) = ps(1) = ps(1),
and

c= (W2 tw 1) =pr(l) = ps(1) = po(1),
which form a G-orbit, and even an N-orbit, with the notation from Remark [5.2]
Next, three conics degenerate to double lines, namely

f1(1) = 63 with 01 = 2 + wy +w?z, fo(1) = €3 with £y = 2 + Wy + w2z,

and
fi2(1) = 2 with l3 =z 4y + 2.
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It follows that the 9 conics in B(1), which are Q);(1) for j ¢ {1,2,12}, pass all through
the points a, b and ¢, which become points of multiplicity 9 for the arrangement B(1).
They are points of multiplicity 11 for the arrangement A(1), since through each of
them pass two of the lines ¢, ¢y and ¢5. The 9 nodes A; in the arrangements A(1)
and B(1) are exactly the points in except the points a, b, c.

All the other claims follow by using the code mono3_wh(). In particular, the value
for u(A(1)) (resp. u(B(1))), shows that the three points of multiplicity 11 (resp. 9)
are not ordinary singularities. In fact, their Milnor numbers are

(A1), a) = p(A(1),0) = p(A(1),¢) = (u(A(1)) — 9)/3 = 118

and respectively

p(B(1),a) = p(B(1),0) = p(B(1),c) = (u(B(1)) — 9)/3 = 82.

Remark 6.5. The existence of roots a of order 7 and resp. 6 in this case can again
be seen using our approach with rank one local systems. First, consider the conic
arrangement B(1), which is the union of 3 reduced members in the pencil P(1) from
(5.4). Now this pencil has the double fiber Fy : (2% + y3 + 2* — 3zyz)? = 0, hence
it is still a Halphen pencil of index 2. It is easy to see that the generic member
is a sextic curve having exactly 3 ordinary triple points Dy, located at a,b and c.
A simple application of Bézout Theorem implies that such a sextic is irreducible.
To conclude, it is enough to apply Theorem with ¢ = 3 and k£ = 2 and we get
m(a) > 2. For the conic-line arrangement A(1), we conclude using Theorem [3.4]

Remark 6.6. All the singularities of a line arrangement in P? are both weighted ho-
mogeneous and ordinary multiple points. In fact, these singularities are homogeneous,
which implies that they are ordinary multiple points. The conic-line arrangements
constructed in [I4] have singularities which are not ordinary multiple points. On
the other hand, the conic-line arrangements constructed from conic pencils of Type
I in Propositions and have singularities which are homogeneous, and hence
ordinary multiple points. And the conic-line arrangements in Theorems and
have singularities which are ordinary multiple points, but some of them not weighted
homogeneous.

Finally, the conic arrangement B(1) and the conic-line arrangement A(1) have
some singularities which are not topologically equivalent to ordinary multiple points.
One way to see this using Alexander polynomials is as follows. Note that in the case
of the conic arrangement B(1), which has three singular points of multiplicity 9, the
Alexander polynomial has roots of order 6. The local Alexander polynomial of an
ordinary point of multiplicity 9 has only roots of order 9, as shown in Remark [2.2]
This property is preserved for a singularity which is topologically equivalent to an
ordinary point of multiplicity 9. Since the other singularities of B(1) are nodes Ay,
with trivial local Alexander polynomial, our claim follows from Theorem (2).
A similar approach proves the claim for the conic-line arrangement A(1), which has
three singular points of multiplicity 11.
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Remark 6.7. The conic-line arrangement A(1) can be called the Cremona—Hesse
arrangement for the following reason. Consider the projective plane P? with coordi-
nates (u : v : w), the Cremona birational morphism

¢: PP (u:v:w)— (vw:uw: uw),
and the Hesse line arrangement

(61) H : h(u7 v, w) = uvw ((US + U3 + U)S)S - 27u3v3w3) = 0.

The Hesse line arrangement plays a key role in hyperplane arrangement theory, being
the only known 4-net, see [2I]. It has 12 nodes and 9 points of multiplicity 4, it is
free with exponents (4,7) and the corresponding Alexander polynomial is

AL(t) = (t— 1 — 12,
see [4, 28] or [12, Theorem 8.19]. Note that
h(u, v, w) = vow(u + v + w)(u + wv + W) (v + w?v + ww)
(wu + v+ w)(u~+ wv+w)(u+ v+ ww)

(W?u +v+w)(u+ w?v +w)(u+ v+ w’w).
Consider the scheme pull-back C' = ¢~ (H) : W' (u, v, w) = 0, where

b (u,v,w) = h(vw : vw : uv).

Then the scheme C’ is projectively equivalent to the scheme C(1) : f(1) = 0 consid-
ered above, that is the two defining ideals map to each other under some automor-
phism of P2. More precisely, one has

(6.2) f()(z,y,2) = W(z+wy +wz, o+ w0y +wz,o+y+2).

It follows that the conic-line arrangement A(1) is projectively equivalent to the conic-
line arrangement C,_,, obtained from the scheme C’ by replacing the double lines by
reduced lines. In particular, the conic arrangement (1) is projectively equivalent to
a conic arrangement obtained by taking the 3 members of the pencil of sextics

s(zPy® + 922 + 2°2%) — StaPy?2?,
corresponding to s = 1 and 3 = 1.

Remark 6.8. Both conic-line arrangements A(0) and A(1) are not reduced pencil-
type arrangements, i.e., they are not unions of reduced members of a pencil. Since
deg A(0) = deg A(1) = 21, there are only two possibilities for A(0) or A(1) to be
reduced pencil-type arrangements, namely the following:

(1) A(0) or A(1) are union of 7 reduced members in a pencil of cubics. Since
A(0) or A(1) have only 3 lines, and no irreducible cubic as components, this
case is impossible.

(2) A(0) or A(1) are unions of 3 reduced members in a pencil of curves of degree
7. This would imply, using Theorem [3.1] that the corresponding Alexander
polynomials have as roots any cubic root of unity, which is not the case.
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