Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XX (2020), 1665-1695

Defect of compactness for Sobolev spaces on manifolds
with bounded geometry

LESZEK SKRZYPCZAK AND CYRIL TINTAREV

Abstract. Defect of compactness,relative to an embedding of two Banach spaces
E — F,is the difference between a weakly convergent sequence in E and its
weak limit, taken up to a remainder that vanishes in the norm of F. For a number
of known embeddings, Sobolev embeddings in particular, defect of compactness
takes form of a profile decomposition - a sum of clearly structured terms with
asymptotically disjoint supports, called elementary concentrations. In this pa-
per we construct a profile decomposition for the Sobolev space H 1’2(M) of a
Riemannian manifold with bounded geometry, in the form of a sum of elemen-
tary concentrations associated with concentration profiles defined on manifolds
induced by a limiting procedure at infinity, and thus different from M. The pro-
files satisfy an inequality of Plancherel type: the sum of the quadratic forms
of Laplace-Beltrami operators for the profiles on their respective manifolds is
bounded by the quadratic form of the Laplace-Beltrami operator of the sequence.
A similar relation, related to the Brezis—Lieb Lemma, holds for the L?-norms of
profiles on the respective manifolds.

Mathematics Subject Classification (2010): 46E35 (primary); 46B50, 58J99;
35B44,35A2S (secondary).

1. Introduction

Defect of compactness, relative to an embedding of two Banach spaces £ — F,
is a difference uy — u between a weakly convergent sequence uy — u in E and
its weak limit, taken up to a suitable remainder that vanishes in the norm of F.
In particular, if the embedding is compact and E is reflexive, the defect of com-
pactness is null. For many embeddings there exist well-structured representations
of the defect of compactness, known as profile decompositions. Best studied are
profile decompositions relative to Sobolev embeddings, which are sums of terms
with asymptotically disjoint supports, called elementary concentrations or bubbles.
Profile decompositions were originally motivated by studies of concentration phe-
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nomena in PDE in the early 1980’s by Uhlenbeck, Brezis, Coron, Nirenberg, Aubin
and Lions, and they play significant role in verification of convergence of functional
sequences in applied analysis, particularly when the information available via the
classical concentration compactness method is not enough detailed.

Profile decompositions are known to exist when the embedding £ — F is
cocompact relative to some group G of bijective isometries on E. An embedding
E < F is called G-cocompact if any sequence (uy) in E satisfying grup — 0 for
any sequence of operators (gx) in G vanishes in the norm of F. (It is easy to verify,
for example, that £°°(Z) is cocompactly embedded into itself relative to the group of
shifts G = {(ay) > (an+m)}mez.) The earliest cocompactness result for functional
spaces known to the authors is the proof of cocompactness of embedding of the
inhomogeneous Sobolev space H'"P(RN), N > p,into L9, g € (p, p*), where
p* = A‘;’—ivp, relative to the group of shifts u — u(- — y), y € RN, by E. Lieb [15]
(the term cocompactness itself appeared in literature only in the last decade). A
profile decomposition relative to a group G of bijective isometries represents defect

of compactness as a sum of elementary concentrations, or bubbles, ), eN g,i")w(”)

with some glin) € Gand w®™ € E,k € N, n € N. The elements w™, called

concentration profiles, are then obtained as weak limits of (glgn))_1 up as k — oo.

Typical examples of groups G, involved in profile decompositions, are the above
mentioned group of shifts and the rescaling group, which is a product group of
shifts and dilations u +— ¢ u(z-),t > 0, where r = % for HI’P(RN), N > p.

Existence of profile decompositions for general bounded sequences in
H'P(RV) equipped with the rescaling group was proved by Solimini [20], and
later, independently, but with a weaker form of asymptotics, in [11] and [14] ([14]
also extended the result to fractional Sobolev spaces). It was first observed in [16]
that profile decomposition (and thus concentration phenomena in general) can be
understood in functional-analytic terms, rather than in specific function spaces.
The result of [16] was extended in [21] to uniformly convex Banach spaces with
the Opial condition (without the Opial condition a profile decomposition still exists
but in terms of the less-known Delta convergence instead of weak convergence).
However, despite the general character of the statement in [21], it does not apply to
several known profile decompositions, in particular, when the space E is not reflex-
ive (e.g., [2]), when one has only a semigroup of isometries (e.g., [1]), or when the
profile decomposition can be expressed without a group (e.g., Struwe [22]).

The present paper follows the direction started by the work of Struwe, to study
profile decompositions in the Sobolev space of a non-compact Riemannian man-
ifold that possibly lacks a nontrivial isometry group. When the isometry group
Iso(M) of manifold M is sufficiently rich, namely, if

M = U nK for some compact set K C M, (1.1)
nelso(M)
it is shown in [8] that Sobolev embedding H“2(M) — LP(M),2 < p < %

N > 2, becomes cocompact relative to the action of Iso(M). In this case a profile
decomposition is immediate from the functional-analytic statement of [16].
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In what follows we use the standard invariant norm of H'2(M), |u|| 12 =

(fM(ldul2 + |u|2)dvg)1/2, where dv, is the Riemannian measure on M, and we
always assume that N > 2. We quote the result of [8], with the property of uncon-
ditional convergence added from the general profile decomposition in [21].

Theorem 1.1. Let M be a complete Riemannian manifold with a countable group
G of isometries satisfying (1.1), and let (uy) be a bounded sequence in H L2(M).

Then there exists w™ € H 1’2(M ), g,(cn) € G, k,n € N, such that for a renumbered
subsequence

-1
glgl) =id, (g,ﬁ") g,(cm))k is discrete for n # m, (1.2)

w®™ = w-limuy o g,i") (1.3)
> Iw ™3, < limsup luel} , (1.4)
neN
-1
we— Y wWog > 0inLP(M), 2 < p <2*, (1.5)
neN

and the series ), . W0 g,&") converges unconditionally and uniformly with respect
to k.

In particular, (1.1) holds, implying the assertion of the theorem, when Iso(M) is
transitive, i.e., M is homogeneous space, e.g., if M is RY or the hyperbolic space
HY . When a non-compact manifold M has no nontrivial isometries, it does not of
course mean that the Sobolev embedding H'“2(M) — LP(M),2 < p < 2% is
compact, as we demonstrate in the Example 2.3 below. Thus the question remains
if one can express the corresponding defect of compactness in a form similar to
profile decomposition of (1.5). In this paper we answer this question positively for
manifolds of bounded geometry, as defined below. Absence of a group of isometries
comes, however at some cost, which is transparent already from Struwe’s profile de-
composition in [22], where profiles are functions on the tangent space of M at the
points of concentration: in general, absence of a non-compact group G of isometries
that may produce blowup sequences of the form gw — 0, gx € G, corresponds to
emergence of concentration profiles w™ supported on metric structures different
from M. This is indeed the case in the present paper that deals with profile decom-
position relative to the embedding H L.2(M) < LP(M) when M is a Riemannian
manifold of bounded geometry.

The subject of the paper was proposed to one of the authors (C.T.) a number of
years ago by Richard Schoen [17].

The paper is organized as follows. In Section 2 we give an analog of the co-
compactness property expressed without invoking the isometry group, in terms of
the “spotlight vanishing” Lemma 2.4, which naturally requires the manifold to have
bounded geometry. This lemma motivates our construction of profile decomposi-
tion in the main result of the paper, Theorem 4.5, based on patching of local profiles
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moving along the manifold. In Section 3 we define the manifolds at infinity needed
to formulate Theorem 4.5. Manifolds at infinity play the same role in description
of elementary concentrations based on quasi-translations as the tangent space plays
in the descriptions of elementary concentrations based on dilations in [22]. In Sec-
tion 4 we state the main result, as well as provide construction of global profiles as
functions on the manifolds at infinity, rather than on the manifold M itself. Section
5 contains technical statements concerning reconstruction of the original sequence
from its local profiles. Proof of Theorem 4.5 is given in the Section 6. In Section
7 we show that if M satisfies (1.1), then Theorem 1.1 is a particular case of Theo-
rem 4.5. Appendix contains some elementary properties of manifolds of bounded
geometry, existence of a suitable uniform covering, and a gluing theorem used in
the construction of manifolds at infinity.

ACKNOWLEDGEMENTS. Cyril Tintarev expresses his gratitude to the Faculty of
Mathematics & Computer Science of Adam Mickiewicz University for warm hos-
pitality.

2. A “spotlight” lemma and preliminary discussion

Let M be a smooth, complete N-dimensional Riemannian manifold with metric
g and a positive injectivity radius r(M). In what follows B(x,r) will denote a
geodesic ball in M and €2, will denote the ball in R of radius r centered at the
origin. Let r € (0, r(M)) be fixed. Then the Riemannian exponential map exp, is
a diffeomorphism of {v € T\M : g,(v,v) < r} onto B(x,r). Foreachx € M
we choose an orthonormal basis for 7, M which yields an identification i, : RN —
T.M. Then ey : Q, — B(x,r) will denote geodesic normal coordinates at x given
by e, = exp, o iy. We do not require smoothness of the map 7, with respect to x,
since in the arguments x will be taken from a discrete subset of M.

From now on we assume that M is a connected non-compact manifold of
bounded geometry. The latter is defined as follows, e.g., cf. [18].

Definition 2.1. A smooth Riemannian manifold M is of bounded geometry if the
following two conditions are satisfied:

(i) The injectivity radius r (M) of M is positive;
(i) Every covariant derivative of the Riemann curvature tensor RMof M is bounded,
ie.,VEKRM ¢ L°°(M) for everyk =0,1,...

Note that a Riemannian manifold of bounded geometry is always complete. On
every paracompact manifold M one can define a Riemannian metric tensor g such
that (M, g) is a manifold of bounded geometry, cf. [12]. We refer the reader to the
appendix for elementary properties of manifolds of bounded geometry used in this
paper. Here we recall only the notion of the discretization of the manifold that is
crucial for our constructions.
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Definition 2.2. A subset Y of a Riemannian manifold M is called an e-discretiza-
tion of M, ¢ > 0, if the distance between any two distinct points of Y is greater
than or equal to £/2 and

M = U B(y, ¢).

yeY

Any connected Riemannian manifold M has an e-discretization for any ¢ > 0, and
if M is of bounded geometry then for any ¢t > 1 the covering {B(y, t&)|}yey is
uniformly locally finite, ¢f. Lemma 8.3.

Example 2.3. Let M be a non-compact manifold of bounded geometry, let w €
Cé (£2;) \ {0}, let (xx) be a discrete sequence on M, and let uy = w o ex_kl. Then
it is easy to see that u;y — O while |lu.||, is bounded away from zero by (8.4). In
other words, for non-compact manifolds of bounded geometry presence of a local
concentration profile w results in a nontrivial defect of compactness.

The main result of the paper, Theorem 4.5, is an analog of Theorem 1.1 based
on local concentration profiles in the spirit of Example 2.3. Once we subtract from
the sequence all suitably patched local “runaway bumps” of the form w o e;{l, the
remainder sequence (vy) is expected to have no nonzero local profiles left, in other
word, to satisfy v o ey, — 0 in Hl’z(Qp) with some p > 0. This is a condition
related to the one in the cocompactness [8, Lemma 2.6], and it implies that (vg)
vanishes in L?(M). In strict terms we have the following “spotliglht Valnishilng”

lemma. In what follows 2* denotes the Sobolev conjugate of 2, i.e., 5z = 53 — x-

Lemma 2.4 (’Spotlight lemma’). Let M be an N-dimensional Riemannian man-
ifold of bounded geometry and let Y C M be a r-discretization of M, r < r(M).
Let (uy) be a bounded sequence in HY2(M). Then, uy — 0 in LP(M) for any
p € (2,2%) ifand only if uy o ey, — O'in H'“2(,) for any sequence (), yx € Y.

Proof. Let us fix p € (2,2%) and assume that uy o ey, — 0 in H'“2(Q,) for any
sequence (Vx), yx € Y. The local Sobolev embedding theorem and the boundedness
of the geometry of M implies that there exists C > 0 independent of y € M such
that

1-2/p
f lu|Pdv, < c/ (1dugl? + i ) dvg (/ |uk|Pdvg> .
B(y.r) B(y,r) B(y.,r)

Adding the terms in left and right hand side over y € Y we have

1-2/p
/ lug|Pdvg < cf <|duk|2+ |uk|2) dvg sup (f |uk|pdvg> eR)
M M B(y,r)

yeYy

Boundedness of the sequence (uy) in H L2(M) implies that the supremum of the
right hand side is finite. So for any u; we can find a sequence y; € Y,k € N, such
that

P
sup/ lug|Pdv, < 2P—2/ lug|Pdv,. (2.2)
yeY JB(y,r) B(yk,r)
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By compactness of the Sobolev embedding H 1.2(Q,) — LP(,) and weak con-
vergence of the sequence in H'2(Q,) we have uy o ey, — 0in LP(R,), and thus,
fB(yk.r) |ug|Pdvg — 0. Combining this with (2.1) and (2.2) we have uy — 0 in
LP(M).

Assume now that uy — 0 in LP(M). Boundedness of the geometry of M
implies for any sequence (y) that uy o ey, — 0 in L?(£2;). On the other hand
boundedness of the sequence uy in H'2(M) and boundedness of geometry give us
boundedness of any sequence (u o ey, ) in H 1.2(Q,). By continuity of the embed-
ding H"2(Q,) < LP(Q,) we getuy o ey, — 01in H'2(Q;,). O

The main result of this paper, Theorem 4.5, requires a definition of a manifold
at infinity of M associated with a given discrete sequence (yi) in M, as well as a
proof that such manifold exists. These are given in Section 3. Thus we dedicate
the rest of this section to discussing the place of our settings (subcritical Sobolev
embedding, manifold of bounded geometry) in the context of existing or possible
results concerning profile decompositions in Sobolev spaces of Riemannian mani-
folds.

Struwe [22] (see also the exposition in the book [6]) provided a profile de-
composition for the limiting case p = 2* of the Sobolev embedding on a compact
manifold for a particular class of sequences, generalized in a recent paper [5] where
profile decomposition is given for any bounded sequence in H'? of a compact man-
ifold. By means of a finite partition of unity and the exponential map this profile
decomposition follows from the profile decomposition for the limiting Sobolev em-
bedding for the case of a bounded domain in RY . This, in turn, is a consequence
of the profile decomposition for the embedding H'Z(RN) < L2 (RN) based on
the rescaling group which is a product group of shifts u +— u(- — y), y € RV, and

S -2 .
dilations u +— ¢ 2 u(t-),t > 0. However, for sequences supported in a bounded
domain of R profile decomposition cannot contain shifts to infinity or deflations
N-2

u tkTu(tk-), tr — 0, or superpositions thereof, so it consists only of blowup
N=2

terms u — tkT u(ty-), ty — oo, with bounded (or, equivalently, modulo vanishing
remainder, constant) shifts.

By analogy with the case M =R" , one could expect that generalizing Struwe’s
profile decomposition to a non-compact manifold would mean finding a way to ex-
press loss of compactness with respect to shifts along the manifold in combina-
tion with changes of scale responsible for loss of compactness in the limiting case

p = 2*. While one can easily define a blowup of a local profile traveling along
N2 N=2

points y; € M as x > t, > w(txey! (1) byt 2 ur(ey, (') = win H2(Q,)
with #; — 00, this construction does not extend to the opposite end of scale, i.e.,
tx — 0 and has no simple counterpart in the non-Euclidean case: a putative deflat-
ing transformation must be substantially dependent on the geometry of the manifold
at every point.

In this paper we provide a profile decomposition only for subcritical Sobolev
embeddings, which in the Euclidean case involve only the group of shifts. We use
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the exponential map to define a local counterpart of translations “along” a sequence
of points yy € M, namely, a “spotlight” sequence uy o ey, : 2, — B(yx,r). Like
in [5,22], reconstruction of the original sequence from its concentration profiles
involves patching the (local) profiles, composed with the inversed exponential map,
by a partition of unity on M.

Without the assumption of bounded geometry, bounded sequences in H'-2(M)
do not admit, in general, a profile decomposition for the mere reason that there
might be no embedding H'?>(M) < LP”(M) except for the trivial case p = 2.
Even if the embedding exists, but the geometry is not bounded, local translations
along the manifold may induce complicated - nonlinear and anisotropic - changes
of scale, which are likely to affect the expression for the defect of compactness.
The critical case p = 2* of the problem has to cope not only with this difficulty,
as well as with the already mentioned issue of additional loss of compactness due a
putative non-Euclidean analog of deflations (the opposite end of scale to blowups)
in the Euclidean space.

3. Manifolds at infinity

In what follows we will consider the radius p < r(éw ) and p-discretization Y of M,

£ < p < p,and we will use the notation Ny ENU {0}.

Definition 3.1. Let (yx)xen be a sequence in Y that is an enumeration of an infinite
subset of Y. A countable family {(y.;)ken}ien, Of sequences on Y is called a
trailing system for (yi)ien if for every k € N (yi.;)ien, is an ordering of Y by the
distance from yy, that is, an enumeration of Y such that d (yx.;, yx) < d(Yk:i+1, Yk)
for alli € Ny. In particular, yx.o = y«.

Note that any enumeration of the infinite subset of ¥ admits a trailing system:
it can be constructed inductively, by starting with y;.o = yx and, given i € Np,
choosing yy.;+1 as any point y € Y\ {yk.0, - - ., Yx;i} with the least value of d(y, yx),
i € Np. The trailing system is generally not uniquely defined when for some k € N
there are several points of ¥ with the same distance from yy.

Lemma 3.2. Let (yi)reN be a sequence in a discretization Y that is an enumeration
of an infinite subset of Y and let (yi:i)reN, I € No, be its trailing system. There
exists a renamed subsequence of (yx)keN With the following property: for anyi €
Ny there exists a finite subset J; of No such that

B(Yk;is p) N B(Yk;j, p) #9 = j € J;. 3.1

Proof. Let us fix i. If the ball B(yy , p) intersects B(yyi, o) then B(yk¢, p/2) C
B(yk, d(Yk, yr:i) +3p) forany £ € {0, 1, ..., j}. The geometry of M is bounded
so the respective volumes of the balls B(y.¢, p/4) are bounded from bellow by
a constant depending on p but independent of the balls. Note that these balls are
pairwise disjoint. Moreover the Ricci curvature of M is bounded from below, so by
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the Bishop-Gromov volume comparison theorem the volume of any ball B(yx.¢, r)
can be estimated from above by the constant depending only on the radius. In
consequence

J
Cj =Y vol(BOuie. p/4) = vol(B(y. dk ) +3p)) < Ci (32)
=0

and the constant C; is independent of k. Let Ji.,; = {j : B(yr;i, o) N B(yk:j, p) #
@}. Then for any k we have Ji.; C [0, C;/C]. Therefore there exists a subsequence
ki,kp, -+ such that Ji, ; = Ji,; forany £ and v. We put J; = Jy, ;.

The assertion of the lemma follows now from the standard diagonalization
argument. 0

We will always assume throughout the paper that the sequence we work with
satisfies the above property. This can be done since passing to subsequence never
spoils our construction.

With a given trailing system {(y.i)xen}ien, We associate a manifold Mgk”' )
defined by gluing data that will be constructed below. In the construction we will
use definitions from the second part of Appendix.

When we define the manifold Mgk”') we assume that we work with a sequence
satisfying (3.1). The following subset of N(z) is essential for the construction:

K=J{Gh: jes}
i=0

If (i, j) € K, then passing to a subsequence for any &, n € Q>, we have

3r(M)
d(ey,. &, ey, < d(ey. &, yk:j) +d (Vi j, Vi) +dYksis ey m) < 6p < e

Therefore, on a subsequence, we may consider a diffeomorphism

def _j A 3
Vijk = ey, 0ey.; + Qop = Qa, a= Zr(M)'

To each pair (i, j) € K we associate a subset ji of €7, and a diffeomorphism ;
defined on 2 ;; whenever the latter is nonempty.

By boundedness of the geometry, ¢f. Lemma 8.2, and the Ascoli-Arzela the-
orem, there is a renamed subsequence of (¥;; x)ren that converges in C*°(£22,) to
some smooth function v;; : S_Zzp — 4, and, moreover, we may assume that the
same extraction of (¥ j; x)ren converges in C °°(S_22p) as well. Note that Lemma 8.2
gives that for any o € N{)V there exists a constant C,, > 0, such that

| D" (€)] < Cq Whenever i, j € No, & € Q).
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We define €;; of Yij(£2p) N Q. This set may generally be empty. Let us define a

set that we will invoke in our application of Corollary 8.10 that will follow:

K (G, j) e K1 @ # 9). (3.3)

To prove the cocycle condition for the gluing data we should extract subsequences
in a more restrictive way. First we consider a subsequence \”(}1, ¢ Of Yo1x that
converges to ¥o; and note that on the same subsequence we have convergence of
1/;110’ « 10 ¥10. Fix an enumeration n +— (i,, jn) of the set of all indices (i, j) € K,

i < j,and extract the convergent subsequence wi’z Zl « of the subsequence wi’; ok

from the previous extraction step, for £ =0, ..., n+ 1. Then the diagonal sequence
wikgjg,k will converge to v;, j, for any £ € N.

By the definition of £2;; and v;; we have V;; ov/;; = idon ;; and ¥rj; ovf;; =
id on ;. Therefore ¥ j; = 1//1.;1 in restriction to €2;;, and v; is a diffeomorphism
between 2;; and 2;;. Note that this construction gives that ¥;; = id , Q;; = 2,
for all i € Ny. Thus conditions (i-iii) of Corollary 8.10 are satisfied.

Note also that the second step of the constructions implies

Ve = lim e, oe, = lim e ! oe, oel! oe
D D60 e~ TVki T oSy ke T Yk T ke Yk
-1

_ . —1 . _ . B
- kli>ngo eyk;g 0 e)’k;j ° kliflgo eyk;j 0 eyk;i _ wél o 1p_]l’

and
Vi (S2i N Q) = Yij (Vi (2p) N Q2p N ($2,) N2p) = 25 N Qi

which proves condition (iv) of Corollary 8.10.

Let x € 9Q;; N Q,. Since 9%2;; C Y (2,) U 92, and 2, is open we
conclude that x € 0v;;(2,) = ¥;;(32,). Thus ¥;(x) € 9€2,. This proves the
condition (v) of Corollary 8.10.

We have thus proved the following proposition, ¢f. Corollary 8.10.

Proposition 3.3. Let M be a Riemannian manifold with bounded geometry and let
Y be its discretization.
For any trailing system {(yk.i)keN}ieN, related to the sequence (yi) in Y there

exists a smooth manifold Méi"”’) with an atlas {(U;, i)}ieN, such that:
D wUi) = Qp;
2) there exists a renamed subsequence of k such that for any two charts (U;, 1;)

and (Uj, tj) with U NU; # @ the corresponding transition map i : T;(U; N
U;)) — i (U; NU,) is given by the C*>°-limit

— i -1
vij = klifgo €yei © €kt
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For convenience we will also widely use the “inverse” charts ¢; = ri_l so that
§0j_1 op; = Vi Qij = Qji.

Now define the Riemannian metric on Mézk:i) in two steps as follows. First for
any i € Ng we define a metric tensor g on Q o and afterwards we pull it back onto
Ui = ¢i(2,) C M(gk;") via ¢;” Uand prove the compatibility conditions.

Tensor g¥) is defined as a C*°-limit on a suitable renamed subsequence:

~(i) def . N
g (v,w) = Aim g, (dey,, (v), dey, (W), § € Qpand v, w € RY. (34)

Existence of the limit follows from the boundedness of the geometry of the manifold
M since the coefficients of the tensors 8ey,., form a bounded family of functions in
the spaces C*°(2,,). Using the standard diagonalization procedure we can choose
the same subsequence for any i. Furthermore, g is a bilinear symmetric positive-
definite form. Since we used in the definition (3.4) normal coordinates, we have
§(()')(v, v) = |v|. In consequence, by the boundedness of geometry, §é’)[v, v] >

%|v|2 in Q, for all i € Ny, provided that p is fixed sufficiently small.

(Vk:i)

Now we can define a metric g on My, ' by the following relation

def ~(i)

Gw) S (de W), dg; ),

—l
" 3.5
x € ¢i(82p) C Mgk;i) and v, w € T, MY,

To prove that the Riemannian metric is well defined we should verify the compati-
bility relation on overlapping charts, i.e., that

(t)

~(j) -1 -1
—1( ) (d(pj v, d% U)),

—1
« (3.6)
if x€@i(R)Ne;j(R,) and v, w e TMEE.

(dey; vdw, w)—g

But (pj_l o @i = ¥ j;, so it suffices to prove that
7w =) o @yiv.dyjw),  with  vwe TR, (3)

Let eyk o ey, (§) = ni then ¥ i (§) = limg o0 Mk and ey, (§) = ey, (nr). In
conséquence

g, w) = lim g, e (dey,, v, dey, w) = (3.8)
k—o0 = Kl ’
= klggo ge.vk;j(’ik)(dey,z_lieyk:iv’ dey,:; 0 ey W) =

=gy, dYjiv, dyjiw).
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Definition 3.4. A manifold at infinity M2 of a manifold M with bounded geom-
etry, generated by a trailing system {(yk.;)keN}ieN, Of a sequence (yx) in Y, is the
differentiable manifold given by Theorem 8.10, supplied with a Riemannian metric
tensor g defined by (3.5).

For the given chart (£2,, t;) components of the metric tensor g are defined by
formula (3.4), ¢f. (3.5). Let § = 0. The maps ey, ; are normal coordinates systems,
so for any k components g¢ , of the metric tensor g satisfy g¢,,(0) = 8¢, and
0n8e.m(0) = 0. So by identity (3.4) we get

gem©0) =38¢,m  and  9.8¢m(0) =0.

Moreover the components g, are a bounded set in C*°(£2,) so all the set of Se.m
is also bounded in C*°(£2,).

For any k and i, (€2, ey, ;) is a normal coordinate system, so for any unit
vector v we have on that ball I'” Z(tv)vgvm =0,0 <t < p, where I'), , denotes
Christoffel symbols of a given Rlemanman metric on M. But Chrlstoffel symbols
can be expressed in terms of components of Riemannian metric tensor and their

derivatives, so the Christoffel symbols I , of the manifold M2 are limit values
in C* of the Christoffel symbols I') , of the manifold M. Therefore ¢ — tv,

0 <t < p, are geodesic curves also for Mgk:i) in the coordinates (£2,, ¢;). Thus

the injectivity radius of Méz"‘i ) is not smaller then p and (2, ¢;) is anormal system
of coordinates.

In terms of the definition above the argument of this subsection proves the
following statement.

Proposition 3.5. Let M be a Riemannian manifold with bounded geometry and let
Y be its p-discretization, % <p<p< %. Then for every discrete sequence
(yk) inY and its trailing system {(yk.i )ken}ieN, there exists a renamed subsequence
(yx) that generates a Riemannian manifold at infinity Mc()gk‘i) of the manifold M.

The manifold Mgk;i) has bounded geometry and its injectivity radius is greater or
equal than p.

Remark 3.6. Let M’ be another manifold such that M and M’ have respective
compact subsets Mo and M| such that M \ M is isometric to M"\ My, i. e. let M’
and M coincide up to a compact perturbation. Then their respective manifolds at
infinity for the same trailing systems coincide. From this follows that manifold at
infinity of the manifold M is not necessarily diffeomorphic to M.

4. Local and global profiles. Formulation of the main result
In this section we state our main result. We will use the notation introduced in the

last section. In particular we will work with discrete sequences of points and related
trailing systems described in Definition 3.1.
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Definition 4.1. Let M be a manifold of bounded geometry and Y be its discretiza-
tion. Let (ux) be a bounded sequence in H L2(M). Let (yx) be a sequence of points
in Y and let {(yx.;)ken}ien, be its trailing system. One says that w; € Hl’z(Qp)
is a local profile of (uy) relative to a trailing sequence (yx.;)keN, if, on a renamed
subsequence, ui o ey, — wj in Hl'z(Qp) as k — oo. If (yx) is a renamed (diago-
nal) subsequence such that uy o ey, ., — w; in Hl’z(Qp) ask — oo foralli € Ny,
then the family {w;};cn, is called an array of local profiles of (uy) relative to the
trailing system {(yi.i)keN}ien, of the sequence (y).

Proposition 4.2. Let M be a manifold of bounded geometry and let Y its discretiza-
tion. Let (uy) be a bounded sequence in H“2(M). Let {wi}ien, be an array of
local profiles of (uy) associated with a trailing system {(y.i)ken}ien, related to

the sequence (yi) in Y. Then there exists a function w : Mézk:i) — R such that

wog; = w;,i € No, where ¢; : Q, — Mgk”') are local coordinate maps ofMégk”').

Proof. Functions w; are defined on €2, that is a domain of definition of ¢;. Set

w & w; o (pl._l on (pi_l(Qp) and note that if x € (pl-_l(Qp) N w;l(Qp) for some

J € No, then ¢;(x) € Qjj, ¢j(x) € Qj;, and, using the a.e. convergence of
ug o ey, and uy o ey, ; to w; and w; respectively, and the uniform convergence of

_1 ..
€Y1 €k to ]/flj , we have

—1 . —1 . -1 —1
i O . = o . O . = o . O (] . O .
w; (,0] klifrolo Uk © €y, (pj klirgo Uk O €ypi © €y © Cyij g0]

= w; o Yijj Oﬁﬂj_l =wiog; ' og, 0<0j_1 =wjop]"
almost everywhere in ¢;” ! (2,)N goj_l(Q o). O

Definition 4.3. Let {w;};cn, be a local profile array of a bounded sequence (u) in

H"“2(M) relative to a trailing system {(yk.;)kenJ}ieN,. The function w : Mc(,zk;i) —
R given by Proposition 4.2 is called the global profile of the sequence (uy) relative
to (Vk:i)-

Let us fix a smooth partition of unity {xy}ycy subordinated to the uniformly
finite covering of M by geodesic balls {B(y, p)}ycy, given by Lemma 8 4.

Definition 4.4. Let M be a manifold of bounded geometry and let Y be its dis-

cretization. Let Mf,zk;") be a manifold at infinity of M generated by a trailing
system {(Vk.i)keN}ieN,- An elementary concentration associated with a function

w: Mgk;i) — R is a sequence (Wy)ien of functions M — R given by

Wi= Y xyswogpioe,, k € N. (4.1)

iENO

where ¢; are the local coordinate maps of manifold Mgk;i).
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In heuristic terms, after we find limits w;, i € Ny, of the sequence (u;) under
the “trailing spotlights” (ey, , ke, that follow different trailing sequences (Y )keN
of (yx), we give an approximate reconstruction Wy of uj “centered” on the moving
center yj of the “core spotlight”. We do that by first splitting w into local profiles
w o ¢;, i € Np, on the set ©,, casting them onto the manifold M in the vicinity
of y.; by composition with e;ﬁli, and patching all such compositions together by
the partition of unity on M. Such reconstruction approximates u; on geodesic balls
B(yx, R) with any R > 0, but it ignores the values of uy for k large on the balls
B(y,, R), with d(yk, y;) — oo, where uy is approximated by a different local
concentration. It has been shown in [8] for the case of manifold M with cocompact
action of a group of isometries (in particular, for homogeneous spaces) that a global
reconstruction of uy, up to a remainder vanishing in L” (M), is a sum of elementary
concentrations associated with all such mutually decoupled sequences.

Similarly, the profile decomposition theorem below, which is the main result
of this paper, says that any bounded sequence (1) in H'2(M) has a subsequence
that, up to a remainder vanishing in L (M), p € (2, 2*), equals a sum of decoupled
elementary concentrations.

In the theorem and next sections we will work with countable families of dis-
crete sequences of the set Y. To each sequence we assign a trailing system so in
consequence also a the manifold at infinity. To simplify the notation we will index
the sequences in Y, the related trailing systems the corresponding manifolds, con-

centration profiles on these manifolds, etc. by n, i.e., we will write y,ﬁ"), ylg’?i), ég),

w™ etc.

Theorem 4.5. Let M be a manifold of bounded geometry and let Y be its discretiza-
tion. Let (uy) be a sequence in H L2 weakly convergent to some function w©®
in HY2(M). Then there exists a renamed subsequence of (uy), sequences (y,E"))keN
in'Y , and associated with them global profiles w™ on the respective manifolds at
infinity Mg), n € N, such that d(ylgn), ylgm)) — 0o when n # m, and

we—w® =Y W = 0in LP(M), p e (2,2, 42)
neN
where W = > M OPIACI l ! trati (m)
& = ieNy Xi w Ogﬂi oey(n) are elemeniary concentrations, QDZ- are

k;i
the local coordinates of the manifolds Még) and { Xi(n)}iENo are the corresponding

partitions of unity satisfying (8.3). The series ),y Wk(")

unconditionally and uniformly in k € N. Moreover,

converges in H L2
© 2 N (n))12 ; 2
l 2y + D MW o) < Hmsup el gy, - (43)
n=1 o

and

o0
p ©0)p (mp
/Mluk| ddvg — /le | dvg+;/M$) W™ P dv g (4.4)
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5. Auxiliary statements concerning profile decomposition

In Sections 5, 6 and 7 we assume that conditions of Theorem 4.5 hold true. First
we prove the inequality for the norms introduced in Lemma 8.6.

Lemma 5.1. Let (uy) be a bounded sequence in HY2(M), let Méy)k") be a mani-
fold at infinity of M generated by a trailing system {(yi.i)keN}ieN,, and let w €

Hl’z(MéZk;i)) be the associated global profile of (uy). Then

([T
H12 (M)

Proof. Let {xy}yey be the partition of unity given by Lemma 8.4, and let us enu-
merate it for each k € N according to the enumeration {y.; };en, of Y, namely i
Xyir L € No. In other words, for every k the set {xy,.; }i.N, equals the set {)y}yey,
and only its enumeration depends on the given trailing system {(y.;)xeN}ien,- By
Ascoli—Arzela theorem, we can define for any i a function n; on ©, by the formula

.. 2
11m1nf|||l4k|||H1,2(M) > llw

ni = lim xy, . oey.,. 6.1
k— 00 ’ ’

The functions »; are smooth functions supported in £2,. Moreover, using the diag-
onalization argument if needed, we get

i -1 — 5. .
ni = klggo Xyksi © €y j © €y © €y = 1j O Vji-

Since ) xy,.,;© ey.; = lonQ, forany j € Ny, we have in the limit ) n;o
ieNg b ieNo: (i, j)eK
Yij = 1on Q,,cf. Lemma 3.2. So the family of the functions

:i) def — .

W Eniogr!, el (52)
is a partition of unity on M(gk;"), subordinated to the covering {¢;(2y)}ieN, of
M and it is easy to see that it satisfies (8.3).

Both the manifolds M and Mgk;i) have bounded geometry, and therefore

L. 2 R TI Z 2
1}32}:3;'” Uk |||H1~2(M) - l}crglorolf ” (ka;iuk) o eyk;i ||H1,2(]RN)

ieNy
.. 2

> Z lifgng(ka;i”k) O Cyi ”HLZ(]RN)

lENo

2

> > liwill g, (53)

ieNp

(y ;i) 2

= I w o gl

iEN()

2
>
- |||w|||H1~2(Mgk;i)) O
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Lemma 5.2. Let {(yi.i)ken}ieN, be a trailing system for a discrete sequence (yy)

and letw € H 1’2(M(§Z’“")). Then the elementary concentration Wk(y ki) associated

with this system belongs to HY2(M)). Moreover there is a positive constant C
independent of k and i such that

(Vk:i)
W N g2y < C llwll kY (5.4)

H12 (Mg

If (y,’c)keN is a discrete sequence such that d(yg, yl/c) — 00, then the elementary

concentration W(yk ) satisfies
W o ey — 0
in H'2(R)).
Proof. We recall that
W =3 gy wopioeyl (5.5)

tENo

¢f. (4.1). The functions xy,.; o ey, are smooth compactly supported functions on

Q, and the family {x,,.; o ey, } is a bounded set in C*°(£2,). By the boundedness
of the geometry, ¢f. Lemma 3.2 and Lemma 8.6, and using (5.2), we have

2 2
”ka;,' O €y, w o @i ”HI,Z(RN) =< C”ka;,' o eyk;,' o 'L','U)” 1,2( (yk;,-)

< C Z ||Xl(yk l) 2 ( (Vk l))

J:@,)ek

(5.6)

So using once more Lemma 8.6 we get
Oksi) 2 2
| Wy ”H1~2(M) = CZ”X)’ki Oy w0(pi||H1.2(RN)

<CZ Z (}kz) 1(Mé;:"‘i)) (5.7)

i j:(@, j)eK

<Clwl? ()

This proves (5.4).
Let € > 0. If follows from (5.7) that there exist N¢ € N independent of k such
that

2
D s oewgwonl? (2v) S € (5.8)
i>Ne
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By (5.5) we have
;i) _
ka"' oey = Z (Xywowio eyk;ll,) oey, (5.9)
iEIk

where I, = {i : B(y,’(, 0) N B(Yk.i, p) # ¥}. Since d (yx, yl’c) — 00, we have

sup d(Yi:i» i) = d (e, i) — 2Nep — 00

i<Ne
as k — o0, and thus B(y,/c, p) N Bk, p) = P foralli < N if k is sufficiently
large. Then ZlN; 1 Xy wowi)o e;{_li oey = 0 for all £ large, which together with
(5.8) proves the lemma. ]

Lemma 5.3. Let w be a profile of the sequence (uy), given by Proposition 4.2 rela-
tive to a trailing system {(Yk.i JkeN}ieN,, and let Wy be the associated concentration
sequence. The following holds true:

. _ 2
klggoWk’ W) w2 = ||w||H112(Mgk;,-))- (5.10)

Proof. We use for each k € N an enumeration of the covering {B(y, p)}ycy by the
points yi.; from the trailing system {(y.;)ken}ien,. Taking into account that, as
k — 00, U 0 Yk, j — wj,e;:i oey.; = Wij,and w; o ¥;; = w;, we have

Gtk W) 12001) = f X (O () We () dwg (1)
jeNy B(yx; J» ,0)
(5.11)
+ ) / Hon; (02 (g (x), d Wi (1)) dvg (),
jeNg Y BOkj:p)
and
L Ok
w0l o = 2 / 0 (o) () Pelvgan ()
o0 jeNg Y Bk j ﬂ)
(5.12)
+> / 15 (0 g (dw ), dw(x))dvgan (x),
jeNg ¥ BOkj»0)
(ykl

where the functions x ; are defined by the formulae (5.1)-(5.2) relative to the
trailing system {(yk;i)ken}ieN, -

Both coverings are uniformly locally finite, so it is sufficient to prove local
identities

lim Xyt (O (6) Wi () dvg (x) = 7 @) lw @) Pdvg () (5.13)
k=00 J B(yy. j.p) B(yk. P)
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and

lim Xy, )& (dug (x), dWi(x))dvg (x)
k=00 JB(yi. j.p)

(5.14)
= / X](.yk;i)(x)g(dw(x), dw(x))dvg,(n) (x).
B(yk;j,/))

In the first case we have and using the expression 0" (1) for any sequence of func-
tions that converges weakly to zero in H!?(Q 0)s

/Q Xops © €n, Eitg 0 ey, (€)

P

XY [y wogioey )] oey, (€)V/g(E) d&

iENO
= fQ Xyej © €y (E)wj + 0" (1)(E)
XY Ay © €y; Wi © (Wi + 0(1)E)V/g(E) dé
ieNp

= fﬂ Yoy © €3, EY W] + 0" (1)(E) (w; + 0(1)(E)
x /@ +o(D)E) ds —> fQ G o i )lw; 1 VEE) de

where the last equality follows from the identity ZIGNO Xyei © €y.; = 1on €,
¢f. Lemma 3.2. This proves (5.13).
To prove (5.14) we first note that

N
D gVHE) k0 ey, ) (E)VDu (Wi 0 ey, ) (E)

v,u=1

N
= Y gy (ug o ey ) (E)

v, pu=1

X 3#( Z[XYk;i wo ;o e;:l.)] ° ey"?f)@)

ieNy

N
= 2 g @n () +o" () oey, ) @)

v, pu=1

% 83 (s © €3, ©) wi 0 (Wi +0(1) ©)

N
= 3 @y 0" (D) oy, )€ () +0(1)) ©).

v,u=1
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In consequence

/Q Kooy © €y (€) Z 8" (E)3y (g 0 ey, ) (§)u (Wi 0 ey, )(6)V/5(E) dé

vul

=/Q oy 06 ) 3 R, ((wj+0"M)oey,)®

v, u=1

x 9 ((w; +o(1) 0 ey, ) €)VEE) +o() dt

N
_)/ (}k[)o(pj(%.) Z U (E)dyw 0 ¢ (§)dw 0 ¢ (§)V/Z(E) dE.

v, u=1

Combining the last calculations with (5.11)-(5.14) we arrive at (5.10). [

Lemma 5.4. Let w be a profile of the sequence uy, given by Proposition 4.2 relative
to a trailing system {(yi.i)keN}ieN,, and let Wy be the associated concentration
sequence. The following holds true:

hm ”Wk“HIZ(M) Hw”iIIJ(M(yi;k))‘ (5.15)

Proof. We can proceed in the similar way as in the proof of Lemma 5.3. Once more
we can reduce the argumentation to the local identities using (5.12) and

IWil31200) = / Ko W) Pdvg (x)
jeNy B(y; J» ,0)
(5.16)
+ Y f Xy ()& (A Wi (x)d Wi (x)) g (x).
jeNg Y BOk:j»0)

We have

fg Koy © €y (€) Z gV H(E)3, (We 0 ey, ) ()3 (Wi 0 ey, ) (6)/5(E) d§

vle

=/Q Xy, © €3y (€) Z g0, ((w;j +0(1))(®)

v,u=1

x 9 ((w; +0(1))VEE) + (D) dg

N
o /Q 1 00 €) D FHE) (w0 9;) ) (w 0 9))(€)VEE) db.

v, u=1
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Also as above,

/Q Xty © €5y ©) | 3Dt w091 0 € 0 ey, ) VE(E) de

IENO

= /Q Koy © s Y Xy © €y, €) wi 0 (Y + 0(D) ()| V2 () d&

IENO

= [ s o, @ + 0@ P VT o1)E)
— [ A 00w, ©F VF® de. _

Below we consider a countable family of trailing systems {(y,i"j)) keN}ieNo’

n € N, and will abbreviate the notation of the associated manifolds at infinity,

()
Mgk ’) , as Mg) . This convention will also extend to all other objects generated
by trailing systems {(yk ; )
as Xy,g’») .

X eN}z eNo? but not to objects indexed by points in Y, such

()
k;i )kEN}ieNo
)} such

Lemma 5.5. Assume that uy — 0. Assume that trailing systems { y
(n
i ieNy’

of discrete sequences (y,En) ) n € N, generate local profiles {w

keN’
thatd(y,in), y,ge)) — oo whenn # £. Then

Z 10 112 g, = T SUP k125 (5.17)

Proof. Consider for each n = 1, ..., m the elementary concentrations Wk(") =
Y ieN Xy wl.( " oe (}l), ) — <pl.("), where {@;, Qp}ieN, is the atlas of the
ki Vi

manifold at infinity Még) &of My Ok

inequality

, and let us expand by bilinearity the trivial

up — Z Wk(")

For convenience, the subscript in the Sobolev norm will be omitted for the rest of
this proof. We have then

> 0.
HL Z(M)

m
4
2> e W) - § WP < el + 3 (W wi). (5.18)
n=1 n=1 n#l
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Applying Lemmas 5.3 and 5.4 we have

E:Wﬁm@m@ND_W%H+§:WM)W“U+MD (5.19)
n=1 n#l

In order to prove the lemma it suffices therefore to show that (W(n) Wk(g)) —- 0
whenever n # £.
Since d(yk ,ykz)) — 00, we also have d(y,E”l), y,EZ;) — oo for any i, j € Np.

Let € > 0 and let N, € N be such that, in view of Lemma 5.1,

N
/ " E) D 8§, ™))
i>Ne

v,u=1

+lw©PleE)dE <e, n=1,....m

(5.20)

Let Wk(") Wk(n) + Wk(n) where

(n) _ (ny -1 (n)" _ n) -1
Weo = Z (Xylg'jl?wi Oeyg)) and W, = Z (Xylg’l?wi Oey,ﬁ’]})

i<Ne¢ i>Ne

and note that for all £ sufficiently large, Wk(")/ and W,ie)/ have disjoint supports.
Thus

(W, WOV < 28Ty + T2, (521)

where S = max,—i.__n» ||Wk("),|| and Ty = max,—i, _m ||Wk(")”||. The estimate for
Sk is readily provided by repeating verbally the argument of Lemma 5.4, which
gives

$2 < max [w®|?
P max 0

.....

+o(1),
so S is bounded by C|lux| + o(1) due to Lemma 5.1, while a similar adaptation

of Lemma 5.4 to summation for i > N, yields that Tk2 is bounded, up to vanishing
terms, by the left hand side of (5.20), and thus 7} < /€ + o(1). Thus from (5.21)

we have
(W, W) < Ce(lugll + Ve + o)),

which implies, in turn, that limsup,_, o, |(Wk("), W,EZ))l < C./¢, and since € is
arbitrary, we have (Wk("), Wk(g)) — 0 for n # £, which completes the proof. O

Before we begin the proof of Theorem 4.5, we introduce the following techni-
cal definition.
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Definition 5.6. Let (u;) be a bounded sequence in H L2(M). Let (y,ﬁz) ) L =

1,...,m,m € N, be discrete sequences of points in Y, satisfying d(y,ﬁ"), y,ﬁz)) —
oo for n # €, and generating global profiles wy, ..., wy, of a renamed subsequence
of (ux) in respective Sobolev spaces Hl’z(Mc(f))). A modulus v+ ((ylgl)), . ,(y,’C”))

of this subsequence is the supremum of the set of values lw|? 1 of all
H*Y

ki)
2 Moo'
global profiles w of the renamed subsequence (u;) generated by a trailing system

{(Vi:k)ken}ien, in Y satisfying d(yk;o, y,ﬁg)) — 00,f =1,...,m. If such set is

empty, we set v(“k)((ylgl)), el (ylgm))) def 0. For m = 0, v () is defined as the
corresponding unconstrained supremum.

6. Proof of Theorem 4.5.

Step 1. 1t suffices to prove Theorem 4.5 for sequences that weakly converge to
zero. Indeed, assume that the theorem is true in this case. A general bounded
sequence (ux) in H'2(M), it has a renamed subsequence weakly convergent to
some w® in H"2(M). Consider then conclusions of the theorem for the sequence
(ux —w®) . Since for any discrete sequence (y) in ¥, w® oey, — 0in H"2(Q))
by Lemma 5.1, sequences (uy) and (ux — w®) have identical local profiles under
the same trailing systems {(yl.(;" k) ) keN},- Ny’ identical manifolds at infinity and iden-

tical concentration terms Wk("), which yields (4.2). Relation (4.3) follows from the

elementary identity for Hilbert space norms,

©) ”2

2 0)2
lug* — 1w @* = Jlug — w@)? — 0,

and (4.3) for the sequence (uj — w©®). Relation (4.4) follows from Brezis-Lieb
Lemma ( [3]), which gives, in our settings,

/ |uk|1’dvg - / |w(0)|pdvg — / luy — w(0)|pdvg — 0,
M M M

combined with (4.4) for the sequence (uy — w@y,
From now on we assume that u; — 0.
Step 2. Let us give an iterative construction of sequences (v,ﬁ")) ey 0 H L2(M),n e

Np. We set v,EO) = uy, and choose (y,El) so that Hw(l) H ) > %v(”k)(@).
©0)

Assume that we have defined sequences (vk
lowing properties:

)keN Hl.z(MgQ

(m)

)keN" .. ,(vk )keN’ with the fol-

There exists, for a given m, a renamed subsequence of (uy), sequences

(ylgl))keN’ (YIEM))keN of points in ¥ such that d(y,", y"’) — oo when-

ever { # n, with trailing systems {(y,g?) keN}‘ o defining, on a subse-
’ 1€Ng

quence, for each respective n=1, ... ,m, an array of local profiles {wl.(") }l. N
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of (the mth extraction of) (ux), and, consequently, a Riemannian manifold at

infinity Még) and a global profile w™ € H 1’Q(MCEZ)). Assume, furthermore,
1 —1

that [w® 12, o) > o (M), ., V) =2,..., m (cf. Def-

inition 5.6). Let (Wk(n))keN, n = 1,...,m, be corresponding elementary
concentrations, and define

n
vlgn) dzefuk — ZW,EK), n=1,...m.
=1

Under the above assumptions we construct now a sequence v,imﬂ) that will also

satisfy these assumptions. Consider all sequences (yx) of points in ¥ such that

d(yg, ylge)) — ooforall £ =1, ..., m. We have three complementary cases:
case 1: for any such sequence one has v,im) oey, —~0in H L2 p) on a renamed
subsequence;
(0)

case 2: there exists a bounded sequence (yx) of points in Y (so that d(yk, Vi ) —

oo for all £ = 1,...,m) such that, on a renamed subsequence, U,Em) o
ey, — w #0;
case 3: there exists a discrete sequence (yx) of points in ¥ such that d (yk, y,ﬁz)) —
oo forall £ = 1,...,m,andv,£m) oey, —w #0.
Case 2 is in fact vacuous. Indeed, in this case (yx) would have a constant subse-
quence with some value z and uy o e, — w # 0, which contradicts the assumption
up — 0.

Consider case 1. We prove that in that case v,ﬁm)

o e;, — 0 for any sequence
(zx) in Y. By assumption we know that it is true if d(Zk, y,ﬁe)) — oo forall £ =

1,...,m. So let us assume that on a renamed subsequence, d(zk, y;EE)) is bounded
for some ¢ € {1,...m}. Then by the definition of the trailing system there exists

i € Np such that z; = y,g? on a renamed subsequence. So if u; oe;, — w # 0 then

w coincides with the local profile wi(e). Moreover d (Zk, y,gn)) —oxifl <n<m

and n # €. So by Lemma 5.2, Wk(") oe; — 0ifn # £ and Wk(é) oe; — wi.

In consequence v,i’m oe; — 0 Now by Lemma 2.4, vlgm) — 01in L?(M), which

means that the asymptotic relation (4.2) is proved with a finite sum of elementary

concentrations and we can take v,EmH) =0.

Consider now case 3. Now the modulus v(”k)((ylil)), R (y,T)) > 0 is posi-

(m+1) (m+1) _(£)
km ’d(ykm ’yk)

tive, cf. Definition 5.6). We may choose a sequence y — 00

forall £ =1, ..., m,in such a way that the corresponding global profile w1 of
(uy) satisfies

1
D ||i,1,z(M;g+l>) > Ev(uk)((ylgl))’ L (YJEm))) (6.1)
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Then using the local profiles wfm+1), i € Ny, we may define, for a renamed sub-

sequence, the associated global profile w ™+ (¢f. Proposition 4.2), and the corre-

sponding elementary concentration Wk(mH), and put

1
(m41) def £ W((f)
v = uy — E P
=1

U;Emﬂ))

It is easy to see that the sequence ( has the same properties as (v,i")), n=

0,...,m.

Step 3. By Lemma 5.5 we have

m
> ||w(")||21,2(M$>) < limsup ”uk”z"z(M)
n=1

for any m, which proves (4.3).

Step 4. In order to prove convergence of the series Y oo, W,f") note first that we
may assume without loss of generality that for each n € N, there exists r, > 0
such that supp Wk(") C B(y,i"), rn). Indeed, acting like in the proof of Lemma
5.5, from the calculations in the proof of Lemma 5.4 one can easily see that one
can approximate Wk(") in the H'-2-norm by restricting summation in (4.1) to a finite

number of terms, with the norm of the remainder bounded by, say, €2™" with a small
€ > 0. Then, for any m € N one can extract a subsequence (kg.m))jeN of (k)ren

such that d(y,E"), ylge)) > r, +rg whenever 1 < £ < n < m. Then on a diagonal

subsequence (k,%m))m o the elementary concentrations (Wk(")) will have

k=k{™ meN
pairwise disjoint supports. Together with (4.3) this proves that the convergence is

unconditional and uniform with respect to k.

Step 5. Now we prove that (ux — Y o Wk([)) oey, — 0in L? (M) for any sequence
yrinY.

Let first (yx) in Y be a bounded sequence. Since it has finitely many values,
on each constant subsequence we have uy o e, — 0 and Wk(e) o ey — 0, and thus
(ke = 2202, Wk([)) oey —0.

Let now (yg) be a discrete sequence in Y. If there is £ € N such that on a

renamed subsequence we have d (yk, yIEZ)) is bounded. Then on a renamed subse-

quence yy = ylgl) for some i, ¢f. Step 2. But then ugoey, — wi(e), Wk(e)oeyk — wl.(e)

and W o ey, — 0if n # £, cf. Lemma 5.2. Thus (ux — 352, W?) 0 ey, — 0.

Let (yr) be a discrete sequence in Y, such that d(y, ylge)) — oo for any

£ € Np. Assume that on a renamed subsequence (uk—z(gil Wéz))oeyk — wo # 0.
Then (yx) generates a profile w of (#x) on some manifold ar infinity My, of M that
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necessarily satisfies w120y, < v(”k)((ylgl)), ...,(y,Em))) for any m € N. By
(4.3) and (6.1) we have v(”k)((y,il)), e (ylgm))) — 0as m — oo, and therefore
w = 0, which implies wg = 0. This gives the contradiction.

‘We conclude that (uk — Zgil Wk(z)) oey, — 0 for any sequence (yx) in Y, and
by Lemma 2.4 (ux — Y oo, Wk(g)) oey, — 0in LP(M).

Step 6. It was proved in Step 4 that the series of elementary concentrations Wk(") is

convergent in H"2(M). So for any € > 0 the sum Sy of the elementary concentra-
tions can be approximated by the finite sum S}, i.e.,

el p = ISE | < [Hurllp = ISkl p| + 1Sk — Sg I 62)
<o(1) + ClISk — Sgll g2y < Ce +o(1). ’
Moreover similarly to Step 4, we may assume without loss of generality all w )
have compact support. In consequence we may assume that there exists m € N
such that w™ = 0 for all n > m, and that w™ have compact support if n < m.
Let us now evaluate || S || ,. Let us show first that

f |Wk(n)|pdvg - f . |w(n)|pdvg<n)- (6.3)
M Mg

Indeed, omitting for the sake of simplicity the superscript n and taking into account
that w; o e;m_ oey. = W), e;k}j oey. — Yji, and Xy © €y, —> Xj as in the
proof of Lemma 5.1, we have:

p
/ | Wi |Pdu,g :/ Z Xy Wi © €y | dug
M M iENO
P
-1
= Z/ Xyik,j © €yi:j Z Xyk;i Wi © €y oeyk;j\/gk:jdé
j€Np 2 ieNy
)4
_ Z ) -1 . >,
= / o) [ D xyeo €y, (wj+o(1)] /& +o(1) dé
Jj€Np p ieNy
— lw|Pdvg.
Moo

Note that the notation o(1) above refers to functions vanishing in the sense of C*°
and that all infinite sums contain uniformly finitely many terms.

Now, for all k sufficiently large, all elementary concentrations Wk(") in the sum

S} have pairwise disjoint supports, and, since ANy , taking into account (4.3),
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we have

2

p
@ Py~ | < QI
<n§>U/M§'£)|w | Ug<>) _nE>,,</Jt4éZ)|w 1P dvgm

)2
< ZCllw ”HLZ(MQZ)) — 0asv — oo.

n>v

Therefore (4.4) is immediate from (4.2), which completes the proof of Theorem 4.5.

7. Local and global profile decompositions on cocompact manifolds

Let M be now a smooth connected complete Riemannian manifold, cocompact rel-
ative to a subgroup G of its isometry group, that is, we assume that there exists an
open bounded set O such that UgeggO = M. Then M is obviously of bounded
geometry. It is then natural to ask if Theorem 4.5 yields Theorem 1.1 with the man-

ifolds Még) isometric to M. Below we consider this question in the case when G is
a discrete countable subgroup. Without loss of generality we may assume that O is
a geodesic ball.

Theorem 7.1. Let M be a smooth connected N -dimensional Riemannian manifold,
let p € (0, r(g[ )) and 7 € M, and assume that there exists a discrete countable
subgroup G of isometries on M such that { B(gz, p)}gec covers M with a uniformly

finite multiplicity. Then

1) one can choose the construction parameters of manifolds M("), so that the
)4 y
will coincide, up to isometry, with M ;

kel of elements in G, and functions wMeq!:2 M),
(n)

n € N, such that the sequences ([glge)]_lgk
ug o g — w™ in H'2(M),n € N, and

(i) there exist sequences (g,in))

) ren are discrete whenever £ # n,

—1
W,E") =w"o [g,(cn)] .

Proof. 1. Let us repeat the construction of the manifold at infinity relative to a
sequence (yx) in ¥ = {gz}gec. Fix a sequence h; € G, hg = id, such that
d(hi+1z,z) = d(hiz,z),i € Ny, and define the ith trailing sequence of (yx) by

Vi:i def grhiz, k € N. Recall that the normal coordinates at the points y € ¥ were
defined as exp, up to an arbitrarily fixed isometry on 7, M. For the present con-

. . def . ..
struction we set them specifically as e, = g o e;. Under such choice the transition

maps of Mg;k;") are characterized by elements of the group G:

L L -1 1 -1
wij:](]l)ngoe)’k;ioeyklj =lime_ " o[grhi]™ gkhjoe,=e. oh; hjoe,
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and the sequences above are in fact constant with respect to k. Consequently, the
transition maps v;; of the manifold Méi’“") are e, ! Ohi_l hjoe, - same as of M itself.

In other words, all the gluing data for Mgk” ) are taken from M, which suggests,
since Theorem 8.8 is based on a suitable list of properties of charts of a manifold
that will allow its reconstruction that Mgk;i) is isometric to M. We will, however,
apply Corollary 8.10 formally, as follows.

Manifold M has an atlas {(i(2,). ¢7")};ex,

‘Pfl‘pj =e lo h;lhj o e, while manifold M has an atlas, enumerated by h; € G,

{(B(hi(2), p), ez_l o hl._l)},-EN0 with the same transition maps as Ms,. Let T; def

with transition maps

hjoe; o goi_l : 9i(R) = M,i € Ny, and note that this defines a smooth map

T : Mgk:i) — M, since the values of 7; are consistent on intersections of sets
%i (R2p):

hioecog ' olhjoe 09 1™ =hioe oyijolhjoel™  (7.0)

=h,-oezoez_lohi_lhjoezoez_loh;1 =id. (7.2)

Furthermore, T is a diffeomorphism with 7~! = ¢; oe, ! oh;” h consistently defined
on B(giz, p),i € Ny. Note that (3.7) on Mgk‘i) holds because it holds on M with

the same transition map for every k, so the Riemannian metric on Mgk;i) in the
normal coordinates coincides with the Riemannian metric on M. In what follows
we will identify M35 as M.

2. Let now (uy) be a bounded sequence in H L.2(M) and note that its local
profile associated with the sequence (gx/;)ken 1s given by

w; = w-limuy o (ggh;) o ez,

and the global profile is by definition w = wiogoi_l = wioez_lohi_l = w-limugogy,
which coincides with the profile of (ux) as defined in Theorem 1.1 in (1.3) relative
to the sequence (gx). Consider now the elementary concentration defined by the
array {w;};ien, of local profiles:

-1
Wi = Z XgrhizWi © €y, .
ieNy
-1 -1 —1
= Z XgehizWioe;, oh; ogy
ieNy
—1
= Z XgrhizW © &

ieNy

=wogk_1,

which completes the proof. O
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8. Appendix

8.1. Manifolds of bounded geometry and covering lemma

In this appendix we give some elementary properties of manifolds of bounded ge-
ometry. All needed definitions can be found, e.g., in Chavel’s book [4]. Let M be
an N-dimensional Riemannian manifold of bounded geometry with a metric tensor
g. Let vy denote the Riemannian measure on M and let L%(M) be the correspond-
ing space of square integrable functions. For u — 3 : M — C we denote by
du —3 € T*M the covariant derivative of u, and by |du| the norm of du defined by
alocal chart, i.e., N
ldu — 31> = g 3;udju
where gij are the components of the inverse matrix of the metric matrix g = (g;;).
The Sobolev space H L2(M) is a completion of CS°(M) with respect to the norm
given by
1f W2 = 115+ 113

We start with the following lemma, and refer to [7] for the proof.

Lemma 8.1. Let M be a Riemannian manifold of bounded geometry and let 0 <
r < r(M). If k € N then there exists a constant Cy dependent on the curvature
bounds and r but independent of x € M, which bounds the C*-norm of components

8ij of the metric tensor g and its inverse g" in any normal coordinate system of
radius not exceeding r at any point x € M.

For any two points x € M and 0 <r < r(M) let
ey Q. — B(x,r)

denote a normal coordinate system at x defined on the euclidean ball €2, centered
at origin.

The boundedness of the derivatives of the Riemann curvature tensor is equiva-
lent to the following lemma, cf. [18],

Lemma 8.2. If the manifold M has bounded geometry and 0 < r < r(M) then for
any o € N(I)V there exists a constant Cy > 0, such that

ID‘)‘ey_1 oex(§)] < Cy whenever x,y € M,and B(x,r) N B(y,r) # .
The next two statements can be found is many places in literature, cf. eg. [13,18,19].

Lemma 8.3. Let M be an N-dimensional connected Riemannian manifold with
bounded geometry. Let p > 0. There exists an at most countable set Y € M such
that

d(y,y) > p/2 whenever y #y', v,y €7, 8.1

M = U B(y,r) forany r > p. (8.2)
yeY
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Moreover for any r > p the multiplicity of the covering {B(y, r)}yey is uniformly
finite.

Lemma 84. Let M, Y, p andr be as in Lemma 8.3. There exists a smooth partition
of unity {xy}yey on M, subordinated to the covering { B(y, p)}yey, such that for any
o€ Név there exists a constant Cy > 0, such that

D% xy| < Cq (8.3)
forally €Y.
The following corollary is the immediate consequence of Lemma 8.1 above.

Corollary 8.5. Let p € (0,00) andr € (0,r(M)). There exists a constant C > 1
such that for any x € M

CI/ lulPdv, 5/ lu oex|Pdx < C/ lulPdvg, (8.4)
B(x,r) Q B(x,r)

and
N
c1/ \du|?dv, < / > loiuoen)Pdx < c/ |du|?dv,.
B(x,r) r =1 B(x,r)

We finish this subsection by recalling a technical but useful equivalent norm in
H"“2(M), cf.[13] or [24, Chapter 7],

Lemma 8.6. Let {B(y;,r)} be a locally uniformly finite covering of an N-dimen-
sional manifold M with bounded geometry,r € (0, r(M)) and let { x;} be a partition
of unity subordinated to the covering {B(y;, r)} as in Lemma 8.4. Then

1/2
11 i n = (D2 i f o exp, @) 8.5)
l

is an equivalent norm in H L2(M). Moreover

1/2
1 s ~ S Wi ~ (2 W6 Wary) -
1

8.2. Gluing manifolds

We use a particular case of gluing theorem in Gallier et al., [10, Theorem 3.1]:

Definition 8.7 ([10, Definition 3.1], [9, Definition 8.1]). A ser of gluing data is a
triple ({Qi}ieNo, {Qij}i,jeNo’ {‘/fji}(i,j)eK) satisfying the following properties:

(1) For every i € Ny, the set §; is a nonempty open subset of R" and the sets
{Qi}ien, are pairwise disjoint;
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(2) For every pair i, j € Ny, the set ;; is an open subset of ;. Furthermore,
Q;; = Q; and Qj; # () if and only if 2;; # ;

(3) K=1{(, j) e Ng x No : @;; #0},¥;i : Qi; — Qj; is a diffeomorphism for
every (i, j) € K, and the following conditions hold:
(a) ¥ =id|g;,foralli € Ny,
(b) ¥ij = ;' forall G, j) € K,
(¢) Foralli, j, k € Ny, if jS N ij # (, then I/Il'j(jS N ij) = Qij N Qik,

and wki(x) = ij o wji(x),for all x € Qij N Qik;

(4) For every pair(i, j) € K, withi # j, for every x € 0Q;; N Q; and every
y € 082;; N 2}, there are open balls V, and Vy, centered at x and y so that no
point of V), N €2; is the image of any point of Vy N £2;; by ¥;.

Each set 2; is called parametrization domain or p-domain, each nonempty set €2;;
is called a gluing domain, and each map v;; is called transition map or gluing map.

Theorem 8.8 ([10, Theorem 3.1]). For every set of gluing data,

({QiYienys ()i, jeNos (Wit hek) »

there exists a N -dimensional smooth manifold M an atlas (U;, t;); of M such that
7;(Ui) = 2;, whose transition maps are T o rl-_] =i Qij — Qji. i, j € No.

Remark 8.9. Note that the theorem does not provide any specifics about the maps
7; which are obviously not uniquely defined.

Corollary 8.10. Let 0 < p < r < a and let Q, C Q- C 4 be balls in RY
centered at the origin with radius p, r and a respectively. Let {% i}i, jeN, be a family
of smooth open maps Jij 1 Qp — Q4. Assume that a family {j; = in I, b, jeNy
satisfies the following conditions:

() ¥i; =id, i € No;

(ii) ¥ j; is a diffeomorphism between ;; def Yij(R2p) N, and Qj;, i, j € Ny,
whenever Q j; # 0,

(i) yij = wj_il on Qj;, whenever Qj; #0,1, j € No;

(iv) ¥ij (25 NQjx) = Qij N Qik, and Yy (x) = Ygjoji (x) for all x € Q;; NQjy,
i, j, k e No,‘

) forall i, j) € K€ (GG, j) e No x No : Qij # 0} and all x € 32;; N L,
1//j,-(x) € BjS N 3Qp.

Then there exists a smooth differential manifold M with an atlas {(U;, 7;)}ien,.

such that 7;(U;) = Q, for any i € No and whose transition maps t; o ri_l are
wji : Qij — jS. i,j S No.
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. . . def
Proof. Fix an enumeration (z;);en, of the lattice 3aZN c RV . Set Q =z + Qp,

i €eNp,and Q;J. d=efS2,-j+Zi, Ilffj &ef ij(-—z)+zi,for (i, j) € K. The corollary is im-
mediate from Theorem 8.8 once we show that ({€2/};en. {Q;J-}i,jeNO, {W,-/j}(i,j)eK)

is a set of gluing data according to Definition 8.7. Conditions of the definition verify
as follows.

Condition (1): is immediate since 3a > 2p.

Condition (2): the sets €;; (and thus Q; j) are open since the maps ¥ ; are open.
The relation Q;j C Q: follows from 2;; C 2, in (ii). By (i) we have Q;; = Q,
and thus Q) = Q}. If SZ;/ # ), then Q;; # ¥, and since v;; is the inverse of ¥ ;,

def
Qj,‘ = Wji(Qp ﬁwijQ,o) = winji # (. Thus Qlji = 0.

Condition (3): properties (a), (b), and (c) are immediate, respectively, from (1), (iii),
and (iv).

Condition (4): let x € BQ;/. NQpy(z;)and y € BQ/ji NQy(z;). ThenX =x —z; €
0Q;iNQpandx = x—z; € 092N, (z;). By assumption (v) we have y # ; (X).
In consequence there exist Euclidean balls Q2 (¥, ) and Q2 (7, &) such that no point
of Q(y,€) N R, is an image of Q (X, &) N Q,. O
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