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Defect of compactness for Sobolev spaces on manifolds
with bounded geometry

LESZEK SKRZYPCZAK AND CYRIL TINTAREV

Abstract. Defect of compactness, relative to an embedding of two Banach spaces
E ,! F , is the difference between a weakly convergent sequence in E and its
weak limit, taken up to a remainder that vanishes in the norm of F . For a number
of known embeddings, Sobolev embeddings in particular, defect of compactness
takes form of a profile decomposition - a sum of clearly structured terms with
asymptotically disjoint supports, called elementary concentrations. In this pa-
per we construct a profile decomposition for the Sobolev space H1,2(M) of a
Riemannian manifold with bounded geometry, in the form of a sum of elemen-
tary concentrations associated with concentration profiles defined on manifolds
induced by a limiting procedure at infinity, and thus different from M . The pro-
files satisfy an inequality of Plancherel type: the sum of the quadratic forms
of Laplace-Beltrami operators for the profiles on their respective manifolds is
bounded by the quadratic form of the Laplace-Beltrami operator of the sequence.
A similar relation, related to the Brezis–Lieb Lemma, holds for the L p-norms of
profiles on the respective manifolds.

Mathematics Subject Classification (2010): 46E35 (primary); 46B50, 58J99;
35B44, 35A25 (secondary).

1. Introduction

Defect of compactness, relative to an embedding of two Banach spaces E ,! F ,
is a difference uk � u between a weakly convergent sequence uk * u in E and
its weak limit, taken up to a suitable remainder that vanishes in the norm of F .
In particular, if the embedding is compact and E is reflexive, the defect of com-
pactness is null. For many embeddings there exist well-structured representations
of the defect of compactness, known as profile decompositions. Best studied are
profile decompositions relative to Sobolev embeddings, which are sums of terms
with asymptotically disjoint supports, called elementary concentrations or bubbles.
Profile decompositions were originally motivated by studies of concentration phe-
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nomena in PDE in the early 1980’s by Uhlenbeck, Brezis, Coron, Nirenberg, Aubin
and Lions, and they play significant role in verification of convergence of functional
sequences in applied analysis, particularly when the information available via the
classical concentration compactness method is not enough detailed.

Profile decompositions are known to exist when the embedding E ,! F is
cocompact relative to some group G of bijective isometries on E . An embedding
E ,! F is called G-cocompact if any sequence (uk) in E satisfying gkuk * 0 for
any sequence of operators (gk) in G vanishes in the norm of F . (It is easy to verify,
for example, that `1(Z) is cocompactly embedded into itself relative to the group of
shifts G = {(an) 7! (an+m)}m2Z.) The earliest cocompactness result for functional
spaces known to the authors is the proof of cocompactness of embedding of the
inhomogeneous Sobolev space H1,p(RN ), N > p, into Lq , q 2 (p, p⇤), where
p⇤ = pN

N�p , relative to the group of shifts u 7! u(· � y), y 2 RN , by E. Lieb [15]
(the term cocompactness itself appeared in literature only in the last decade). A
profile decomposition relative to a group G of bijective isometries represents defect
of compactness as a sum of elementary concentrations, or bubbles,

P
n2N g

(n)
k w(n)

with some g(n)
k 2 G and w(n) 2 E , k 2 N, n 2 N. The elements w(n), called

concentration profiles, are then obtained as weak limits of (g(n)
k )�1uk as k ! 1.

Typical examples of groups G, involved in profile decompositions, are the above
mentioned group of shifts and the rescaling group, which is a product group of
shifts and dilations u 7! tr u(t ·), t > 0, where r = N�p

p for Ḣ1,p(RN ), N > p.
Existence of profile decompositions for general bounded sequences in

Ḣ1,p(RN ) equipped with the rescaling group was proved by Solimini [20], and
later, independently, but with a weaker form of asymptotics, in [11] and [14] ([14]
also extended the result to fractional Sobolev spaces). It was first observed in [16]
that profile decomposition (and thus concentration phenomena in general) can be
understood in functional-analytic terms, rather than in specific function spaces.
The result of [16] was extended in [21] to uniformly convex Banach spaces with
the Opial condition (without the Opial condition a profile decomposition still exists
but in terms of the less-known Delta convergence instead of weak convergence).
However, despite the general character of the statement in [21], it does not apply to
several known profile decompositions, in particular, when the space E is not reflex-
ive (e.g., [2]), when one has only a semigroup of isometries (e.g., [1]), or when the
profile decomposition can be expressed without a group (e.g., Struwe [22]).

The present paper follows the direction started by the work of Struwe, to study
profile decompositions in the Sobolev space of a non-compact Riemannian man-
ifold that possibly lacks a nontrivial isometry group. When the isometry group
Iso(M) of manifold M is sufficiently rich, namely, if

M =
[

⌘2Iso(M)

⌘K for some compact set K ⇢ M, (1.1)

it is shown in [8] that Sobolev embedding H1,2(M) ,! L p(M), 2 < p < 2N
N�2 ,

N � 2, becomes cocompact relative to the action of Iso(M). In this case a profile
decomposition is immediate from the functional-analytic statement of [16].
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In what follows we use the standard invariant norm of H1,2(M), kuk1,2 =
�R
M(|du|2 + |u|2)dvg

�1/2, where dvg is the Riemannian measure on M , and we
always assume that N � 2. We quote the result of [8], with the property of uncon-
ditional convergence added from the general profile decomposition in [21].

Theorem 1.1. Let M be a complete Riemannian manifold with a countable group
G of isometries satisfying (1.1), and let (uk) be a bounded sequence in H1,2(M).
Then there exists w(n) 2 H1,2(M), g(n)

k 2 G, k, n 2 N, such that for a renumbered
subsequence

g(1)
k = id,

⇣
g(n)
k

�1
g(m)
k

⌘

k
is discrete for n 6= m, (1.2)

w(n) = w-lim uk � g(n)
k (1.3)

X

n2N
kw(n)k21,2  lim sup kukk21,2 (1.4)

uk �
X

n2N
w(n) � g(n)

k
�1

! 0 in L p(M), 2 < p < 2⇤, (1.5)

and the series
P

n2N w � g(n)
k converges unconditionally and uniformly with respect

to k.

In particular, (1.1) holds, implying the assertion of the theorem, when Iso(M) is
transitive, i.e., M is homogeneous space, e.g., if M is RN or the hyperbolic space
HN . When a non-compact manifold M has no nontrivial isometries, it does not of
course mean that the Sobolev embedding H1,2(M) ,! L p(M), 2 < p < 2⇤, is
compact, as we demonstrate in the Example 2.3 below. Thus the question remains
if one can express the corresponding defect of compactness in a form similar to
profile decomposition of (1.5). In this paper we answer this question positively for
manifolds of bounded geometry, as defined below. Absence of a group of isometries
comes, however at some cost, which is transparent already from Struwe’s profile de-
composition in [22], where profiles are functions on the tangent space of M at the
points of concentration: in general, absence of a non-compact group G of isometries
that may produce blowup sequences of the form gkw * 0, gk 2 G, corresponds to
emergence of concentration profiles w(n) supported on metric structures different
from M . This is indeed the case in the present paper that deals with profile decom-
position relative to the embedding H1,2(M) ,! L p(M) when M is a Riemannian
manifold of bounded geometry.

The subject of the paper was proposed to one of the authors (C.T.) a number of
years ago by Richard Schoen [17].

The paper is organized as follows. In Section 2 we give an analog of the co-
compactness property expressed without invoking the isometry group, in terms of
the “spotlight vanishing” Lemma 2.4, which naturally requires the manifold to have
bounded geometry. This lemma motivates our construction of profile decomposi-
tion in the main result of the paper, Theorem 4.5, based on patching of local profiles
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moving along the manifold. In Section 3 we define the manifolds at infinity needed
to formulate Theorem 4.5. Manifolds at infinity play the same role in description
of elementary concentrations based on quasi-translations as the tangent space plays
in the descriptions of elementary concentrations based on dilations in [22]. In Sec-
tion 4 we state the main result, as well as provide construction of global profiles as
functions on the manifolds at infinity, rather than on the manifold M itself. Section
5 contains technical statements concerning reconstruction of the original sequence
from its local profiles. Proof of Theorem 4.5 is given in the Section 6. In Section
7 we show that if M satisfies (1.1), then Theorem 1.1 is a particular case of Theo-
rem 4.5. Appendix contains some elementary properties of manifolds of bounded
geometry, existence of a suitable uniform covering, and a gluing theorem used in
the construction of manifolds at infinity.

ACKNOWLEDGEMENTS. Cyril Tintarev expresses his gratitude to the Faculty of
Mathematics & Computer Science of Adam Mickiewicz University for warm hos-
pitality.

2. A “spotlight” lemma and preliminary discussion

Let M be a smooth, complete N -dimensional Riemannian manifold with metric
g and a positive injectivity radius r(M). In what follows B(x, r) will denote a
geodesic ball in M and �r will denote the ball in RN of radius r centered at the
origin. Let r 2 (0, r(M)) be fixed. Then the Riemannian exponential map expx is
a diffeomorphism of {v 2 TxM : gx (v, v) < r} onto B(x, r). For each x 2 M
we choose an orthonormal basis for TxM which yields an identification ix : RN !
TxM . Then ex : �r ! B(x, r) will denote geodesic normal coordinates at x given
by ex = expx � ix . We do not require smoothness of the map ix with respect to x ,
since in the arguments x will be taken from a discrete subset of M .

From now on we assume that M is a connected non-compact manifold of
bounded geometry. The latter is defined as follows, e.g., cf. [18].
Definition 2.1. A smooth Riemannian manifold M is of bounded geometry if the
following two conditions are satisfied:

(i) The injectivity radius r(M) of M is positive;
(ii) Every covariant derivative of the Riemann curvature tensor RMofM is bounded,

i.e., rk RM 2 L1(M) for every k = 0, 1, . . .

Note that a Riemannian manifold of bounded geometry is always complete. On
every paracompact manifold M one can define a Riemannian metric tensor g such
that (M, g) is a manifold of bounded geometry, cf. [12]. We refer the reader to the
appendix for elementary properties of manifolds of bounded geometry used in this
paper. Here we recall only the notion of the discretization of the manifold that is
crucial for our constructions.
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Definition 2.2. A subset Y of a Riemannian manifold M is called an "-discretiza-
tion of M , " > 0, if the distance between any two distinct points of Y is greater
than or equal to "/2 and

M =
[

y2Y
B(y, ").

Any connected Riemannian manifold M has an "-discretization for any " > 0, and
if M is of bounded geometry then for any t � 1 the covering {B(y, t")|}y2Y is
uniformly locally finite, cf. Lemma 8.3.
Example 2.3. Let M be a non-compact manifold of bounded geometry, let w 2
C10(�r ) \ {0}, let (xk) be a discrete sequence on M , and let uk = w � e�1xk . Then
it is easy to see that uk * 0 while kukkp is bounded away from zero by (8.4). In
other words, for non-compact manifolds of bounded geometry presence of a local
concentration profile w results in a nontrivial defect of compactness.

The main result of the paper, Theorem 4.5, is an analog of Theorem 1.1 based
on local concentration profiles in the spirit of Example 2.3. Once we subtract from
the sequence all suitably patched local “runaway bumps” of the form w � e�1yk , the
remainder sequence (vk) is expected to have no nonzero local profiles left, in other
word, to satisfy vk � eyk * 0 in H1,2(�⇢) with some ⇢ > 0. This is a condition
related to the one in the cocompactness [8, Lemma 2.6], and it implies that (vk)
vanishes in L p(M). In strict terms we have the following “spotlight vanishing”
lemma. In what follows 2⇤ denotes the Sobolev conjugate of 2, i.e., 12⇤ = 1

2 � 1
N .

Lemma 2.4 (”Spotlight lemma”). Let M be an N -dimensional Riemannian man-
ifold of bounded geometry and let Y ⇢ M be a r-discretization of M , r < r(M).
Let (uk) be a bounded sequence in H1,2(M). Then, uk ! 0 in L p(M) for any
p 2 (2, 2⇤) if and only if uk � eyk * 0 in H1,2(�r ) for any sequence (yk), yk 2 Y .

Proof. Let us fix p 2 (2, 2⇤) and assume that uk � eyk * 0 in H1,2(�r ) for any
sequence (yk), yk 2 Y . The local Sobolev embedding theorem and the boundedness
of the geometry of M implies that there exists C > 0 independent of y 2 M such
that
Z

B(y,r)
|uk |pdvg  C

Z

B(y,r)

⇣
|duk |2 + |uk |2

⌘
dvg

✓Z

B(y,r)
|uk |pdvg

◆1�2/p
.

Adding the terms in left and right hand side over y 2 Y we have
Z

M
|uk |pdvg  C

Z

M

⇣
|duk |2 + |uk |2

⌘
dvg sup

y2Y

✓Z

B(y,r)
|uk |pdvg

◆1�2/p
. (2.1)

Boundedness of the sequence (uk) in H1,2(M) implies that the supremum of the
right hand side is finite. So for any uk we can find a sequence yk 2 Y , k 2 N, such
that

sup
y2Y

Z

B(y,r)
|uk |pdvg  2

p
p�2

Z

B(yk ,r)
|uk |pdvg. (2.2)
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By compactness of the Sobolev embedding H1,2(�r ) ,! L p(�r ) and weak con-
vergence of the sequence in H1,2(�r ) we have uk � eyk ! 0 in L p(�r ), and thus,R
B(yk ,r) |uk |pdvg ! 0. Combining this with (2.1) and (2.2) we have uk ! 0 in
L p(M).

Assume now that uk ! 0 in L p(M). Boundedness of the geometry of M
implies for any sequence (yk) that uk � eyk ! 0 in L p(�r ). On the other hand
boundedness of the sequence uk in H1,2(M) and boundedness of geometry give us
boundedness of any sequence (uk � eyk ) in H1,2(�r ). By continuity of the embed-
ding H1,2(�r ) ,! L p(�r ) we get uk � eyk * 0 in H1,2(�r ).

The main result of this paper, Theorem 4.5, requires a definition of a manifold
at infinity of M associated with a given discrete sequence (yk) in M , as well as a
proof that such manifold exists. These are given in Section 3. Thus we dedicate
the rest of this section to discussing the place of our settings (subcritical Sobolev
embedding, manifold of bounded geometry) in the context of existing or possible
results concerning profile decompositions in Sobolev spaces of Riemannian mani-
folds.

Struwe [22] (see also the exposition in the book [6]) provided a profile de-
composition for the limiting case p = 2⇤ of the Sobolev embedding on a compact
manifold for a particular class of sequences, generalized in a recent paper [5] where
profile decomposition is given for any bounded sequence in H1,2 of a compact man-
ifold. By means of a finite partition of unity and the exponential map this profile
decomposition follows from the profile decomposition for the limiting Sobolev em-
bedding for the case of a bounded domain in RN . This, in turn, is a consequence
of the profile decomposition for the embedding Ḣ1,2(RN ) ,! L2⇤(RN ) based on
the rescaling group which is a product group of shifts u 7! u(· � y), y 2 RN , and
dilations u 7! t

N�2
2 u(t ·), t > 0. However, for sequences supported in a bounded

domain of RN profile decomposition cannot contain shifts to infinity or deflations

u 7! t
N�2
2

k u(tk ·), tk ! 0, or superpositions thereof, so it consists only of blowup

terms u 7! t
N�2
2

k u(tk ·), tk ! 1, with bounded (or, equivalently, modulo vanishing
remainder, constant) shifts.

By analogy with the case M=RN , one could expect that generalizing Struwe’s
profile decomposition to a non-compact manifold would mean finding a way to ex-
press loss of compactness with respect to shifts along the manifold in combina-
tion with changes of scale responsible for loss of compactness in the limiting case
p = 2⇤. While one can easily define a blowup of a local profile traveling along

points yk 2 M as x 7! t
N�2
2

k w(tke�1yk (x)) by t�
N�2
2

k uk(eyk (t
�1
k ·)) * w in H1,2(�r )

with tk ! 1, this construction does not extend to the opposite end of scale, i.e.,
tk ! 0 and has no simple counterpart in the non-Euclidean case: a putative deflat-
ing transformation must be substantially dependent on the geometry of the manifold
at every point.

In this paper we provide a profile decomposition only for subcritical Sobolev
embeddings, which in the Euclidean case involve only the group of shifts. We use
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the exponential map to define a local counterpart of translations “along” a sequence
of points yk 2 M , namely, a “spotlight” sequence uk � eyk : �r ! B(yk, r). Like
in [5, 22], reconstruction of the original sequence from its concentration profiles
involves patching the (local) profiles, composed with the inversed exponential map,
by a partition of unity on M .

Without the assumption of bounded geometry, bounded sequences in H1,2(M)
do not admit, in general, a profile decomposition for the mere reason that there
might be no embedding H1,2(M) ,! L p(M) except for the trivial case p = 2.
Even if the embedding exists, but the geometry is not bounded, local translations
along the manifold may induce complicated - nonlinear and anisotropic - changes
of scale, which are likely to affect the expression for the defect of compactness.
The critical case p = 2⇤ of the problem has to cope not only with this difficulty,
as well as with the already mentioned issue of additional loss of compactness due a
putative non-Euclidean analog of deflations (the opposite end of scale to blowups)
in the Euclidean space.

3. Manifolds at infinity

In what follows we will consider the radius ⇢ < r(M)
8 and ⇢̂-discretization Y of M ,

⇢
2 < ⇢̂ < ⇢, and we will use the notation N0 def= N [ {0}.
Definition 3.1. Let (yk)k2N be a sequence in Y that is an enumeration of an infinite
subset of Y . A countable family {(yk;i )k2N}i2N0 of sequences on Y is called a
trailing system for (yk)k2N if for every k 2 N (yk;i )i2N0 is an ordering of Y by the
distance from yk , that is, an enumeration of Y such that d(yk;i , yk)  d(yk;i+1, yk)
for all i 2 N0. In particular, yk;0 = yk .

Note that any enumeration of the infinite subset of Y admits a trailing system:
it can be constructed inductively, by starting with yk;0 = yk and, given i 2 N0,
choosing yk;i+1 as any point y 2 Y \{yk;0, . . . , yk;i }with the least value of d(y, yk),
i 2 N0. The trailing system is generally not uniquely defined when for some k 2 N
there are several points of Y with the same distance from yk .

Lemma 3.2. Let (yk)k2N be a sequence in a discretization Y that is an enumeration
of an infinite subset of Y and let (yk;i )k2N, i 2 N0, be its trailing system. There
exists a renamed subsequence of (yk)k2N with the following property: for any i 2
N0 there exists a finite subset Ji of N0 such that

B(yk;i , ⇢) \ B(yk; j , ⇢) 6= ; () j 2 Ji . (3.1)

Proof. Let us fix i . If the ball B(yk; j , ⇢) intersects B(yk;i , ⇢) then B(yk;`, ⇢/2) ⇢
B(yk, d(yk, yk;i ) + 3⇢) for any ` 2 {0, 1, . . . , j}. The geometry of M is bounded
so the respective volumes of the balls B(yk;`, ⇢/4) are bounded from bellow by
a constant depending on ⇢ but independent of the balls. Note that these balls are
pairwise disjoint. Moreover the Ricci curvature of M is bounded from below, so by
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the Bishop-Gromov volume comparison theorem the volume of any ball B(yk;`, r)
can be estimated from above by the constant depending only on the radius. In
consequence

C j 
jX

`=0
vol(B(yk;`, ⇢/4)  vol

⇣
B
�
yk, d(yk, yk;i ) + 3⇢

�⌘
 Ci , (3.2)

and the constant Ci is independent of k. Let Jk;i = { j : B(yk;i , ⇢) \ B(yk; j , ⇢) 6=
;}. Then for any k we have Jk;i ⇢ [0,Ci/C]. Therefore there exists a subsequence
k1, k2, · · · such that Jk`,i = Jk⌫ ,i for any ` and ⌫. We put Ji = Jk1,i .

The assertion of the lemma follows now from the standard diagonalization
argument.

We will always assume throughout the paper that the sequence we work with
satisfies the above property. This can be done since passing to subsequence never
spoils our construction.

With a given trailing system {(yk;i )k2N}i2N0 we associate a manifold M
(yk;i )
1

defined by gluing data that will be constructed below. In the construction we will
use definitions from the second part of Appendix.

When we define the manifold M(yk;i )
1 we assume that we work with a sequence

satisfying (3.1). The following subset of N20 is essential for the construction:

K =
1[

i=0

�
(i, j) : j 2 Ji

 
.

If (i, j) 2 K, then passing to a subsequence for any ⇠, ⌘ 2 �2⇢ we have

d(eyk; j ⇠, eyk;i⌘)  d(eyk; j ⇠, yk; j ) + d(yk; j , yk;i ) + d(yk;i , eyk;i⌘) < 6⇢ <
3r(M)

4
.

Therefore, on a subsequence, we may consider a diffeomorphism

 i j,k
def
= e�1yk;i � eyk; j : �̄2⇢ ! �a, a =

3
4
r(M).

To each pair (i, j) 2 K we associate a subset� j i of�2⇢ and a diffeomorphism  i j
defined on � j i whenever the latter is nonempty.

By boundedness of the geometry, cf. Lemma 8.2, and the Ascoli-Arzela the-
orem, there is a renamed subsequence of ( i j,k)k2N that converges in C1(�̄2⇢) to
some smooth function  i j : �̄2⇢ ! �a , and, moreover, we may assume that the
same extraction of ( j i,k)k2N converges in C1(�̄2⇢) as well. Note that Lemma 8.2
gives that for any ↵ 2 NN

0 there exists a constant C↵ > 0, such that

|D↵ i j (⇠)|  C↵ whenever i, j 2 N0, ⇠ 2 �⇢ .
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We define �i j
def
=  i j (�⇢) \�⇢ . This set may generally be empty. Let us define a

set that we will invoke in our application of Corollary 8.10 that will follow:

K def
= {(i, j) 2 K : �i j 6= ;}. (3.3)

To prove the cocycle condition for the gluing data we should extract subsequences
in a more restrictive way. First we consider a subsequence  101,k of  01,k that
converges to  01 and note that on the same subsequence we have convergence of
 110,k to  10. Fix an enumeration n 7! (in, jn) of the set of all indices (i, j) 2 K,
i < j , and extract the convergent subsequence  n+1

i` j`,k of the subsequence  
n
i` j`,k

from the previous extraction step, for ` = 0, . . . , n+1. Then the diagonal sequence
 k
i` j`,k will converge to  i` j` for any ` 2 N.
By the definition of�i j and  i j we have  i j � j i = id on�i j and  j i � i j =

id on � j i . Therefore  j i =  �1
i j in restriction to �i j , and  j i is a diffeomorphism

between �i j and � j i . Note that this construction gives that  i i = id , �i i = �⇢
for all i 2 N0. Thus conditions (i-iii) of Corollary 8.10 are satisfied.

Note also that the second step of the constructions implies

 `i = lim
k!1

e�1yk;` � eyk;i = lim
k!1

e�1yk;` � eyk; j � e�1yk; j � eyk;i

= lim
k!1

e�1yk;` � eyk; j � lim
k!1

e�1yk; j � eyk;i =  `j �  j i ,

and

 i j (� j i \� jk) =  i j ( j i (�⇢) \�⇢ \  jk(�⇢) \�⇢) = �i j \�ik,

which proves condition (iv) of Corollary 8.10.
Let x 2 @�i j \ �⇢ . Since @�i j ⇢ @ i j (�⇢) [ @�⇢ and �⇢ is open we

conclude that x 2 @ i j (�⇢) =  i j (@�⇢). Thus  j i (x) 2 @�⇢ . This proves the
condition (v) of Corollary 8.10.

We have thus proved the following proposition, cf. Corollary 8.10.

Proposition 3.3. Let M be a Riemannian manifold with bounded geometry and let
Y be its discretization.

For any trailing system {(yk;i )k2N}i2N0 related to the sequence (yk) in Y there
exists a smooth manifold M(yk;i )

1 with an atlas {(Ui , ⌧i )}i2N0 such that:

1) ⌧i (Ui ) = �⇢;
2) there exists a renamed subsequence of k such that for any two charts (Ui , ⌧i )

and (Uj , ⌧ j ) with Ui \Uj 6= ; the corresponding transition map  i j : ⌧ j (Uj \
Ui ) ! ⌧i (Uj \Ui ) is given by the C1-limit

 i j = lim
k!1

e�1yk;i � eyk; j .
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For convenience we will also widely use the ”inverse” charts 'i = ⌧�1
i so that

'�1
j � 'i =  j i : �i j ! � j i .

Now define the Riemannian metric on M(yk;i )
1 in two steps as follows. First for

any i 2 N0 we define a metric tensor g(i) on�⇢ and afterwards we pull it back onto
Ui = 'i (�⇢) ⇢ M(yk;i )

1 via '�1
i and prove the compatibility conditions.

Tensor g(i) is defined as a C1-limit on a suitable renamed subsequence:

eg(i)
⇠ (v,w)

def
= lim

k!1
geyk;i (⇠)

�
deyk;i (v), deyk;i (w)

�
, ⇠ 2 �⇢ and v,w 2 RN . (3.4)

Existence of the limit follows from the boundedness of the geometry of the manifold
M since the coefficients of the tensors geyk;i form a bounded family of functions in
the spaces C1(�⇢). Using the standard diagonalization procedure we can choose
the same subsequence for any i . Furthermore,eg(i) is a bilinear symmetric positive-
definite form. Since we used in the definition (3.4) normal coordinates, we have
eg(i)
0 (v, v) = |v|2. In consequence, by the boundedness of geometry, eg(i)

⇠ [v, v] �
1
2 |v|2 in �⇢ for all i 2 N0, provided that ⇢ is fixed sufficiently small.

Now we can define a metriceg on M(yk;i )
1 by the following relation

egx (v,w)
def
= eg(i)

'�1
i (x)

�
d'�1

i (v), d'�1
i (w)

�
,

x 2 'i (�⇢) ⇢ M(yk;i )
1 and v,w 2 TxM

(yk;i )
1 .

(3.5)

To prove that the Riemannian metric is well defined we should verify the compati-
bility relation on overlapping charts, i.e., that

eg(i)
'�1
i (x)

(d'�1
i v,d'�1

i w) = eg( j)
'�1
j (x)

(d'�1
j v, d'�1

i w),

if x 2 'i (�⇢) \ ' j (�⇢) and v,w 2 TxM
(yk;i )
1 .

(3.6)

But '�1
j � 'i =  j i , so it suffices to prove that

eg(i)
⇠ (v,w) = eg( j)

 j i (⇠)
(d j iv, d j iw), with v,w 2 T⇠�⇢ . (3.7)

Let e�1yk; j � eyk;i (⇠) = ⌘k then  j,i (⇠) = limk!1 ⌘k and eyk;i (⇠) = eyk; j (⌘k). In
consequence

eg(i)
⇠ (v,w) = lim

k!1
geyk;i (⇠)(deyk;i v, deyk;iw) = (3.8)

= lim
k!1

geyk; j (⌘k)(dey�1
k; j
eyk;i v, dey�1

k; j
� eyk;iw) =

= g j,i (⇠)(d j iv, d j iw).
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Definition 3.4. Amanifold at infinity M(yk;i )
1 of a manifold M with bounded geom-

etry, generated by a trailing system {(yk;i )k2N}i2N0 of a sequence (yk) in Y , is the
differentiable manifold given by Theorem 8.10, supplied with a Riemannian metric
tensoreg defined by (3.5).

For the given chart (�⇢, ⌧i ) components of the metric tensoreg are defined by
formula (3.4), cf. (3.5). Let ⇠ = 0. The maps eyk;i are normal coordinates systems,
so for any k components g`,m of the metric tensor g satisfy g`,m(0) = �`,m and
@ng`,m(0) = 0. So by identity (3.4) we get

eg`,m(0) = �`,m and @neg`,m(0) = 0 .

Moreover the components g`,m are a bounded set in C1(�⇢) so all the set ofeg`,m
is also bounded in C1(�⇢).

For any k and i , (�⇢, eyk;i ) is a normal coordinate system, so for any unit
vector v we have on that ball 0nm,`(tv)v`vm = 0, 0  t  ⇢, where 0nm,` denotes
Christoffel symbols of a given Riemannian metric on M . But Christoffel symbols
can be expressed in terms of components of Riemannian metric tensor and their
derivatives, so the Christoffel symbolse0nm,` of the manifold M

(yk;i )
1 are limit values

in C1 of the Christoffel symbols 0nm,` of the manifold M. Therefore t 7! tv,
0  t  ⇢, are geodesic curves also for M(yk;i )

1 in the coordinates (�⇢,'i ). Thus
the injectivity radius of M(yk:i )

1 is not smaller then ⇢ and (�⇢,'i ) is a normal system
of coordinates.

In terms of the definition above the argument of this subsection proves the
following statement.

Proposition 3.5. Let M be a Riemannian manifold with bounded geometry and let
Y be its ⇢̂-discretization, ⇢2 < ⇢̂ < ⇢ < r(M)

8 . Then for every discrete sequence
(yk) in Y and its trailing system {(yk;i )k2N}i2N0 there exists a renamed subsequence
(yk) that generates a Riemannian manifold at infinity M

(yk;i )
1 of the manifold M .

The manifold M(yk;i )
1 has bounded geometry and its injectivity radius is greater or

equal than ⇢.

Remark 3.6. Let M 0 be another manifold such that M and M 0 have respective
compact subsets M0 and M 0

0 such that M \ M0 is isometric to M 0 \ M 0
0, i. e. let M

0

and M coincide up to a compact perturbation. Then their respective manifolds at
infinity for the same trailing systems coincide. From this follows that manifold at
infinity of the manifold M is not necessarily diffeomorphic to M .

4. Local and global profiles. Formulation of the main result

In this section we state our main result. We will use the notation introduced in the
last section. In particular we will work with discrete sequences of points and related
trailing systems described in Definition 3.1.
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Definition 4.1. Let M be a manifold of bounded geometry and Y be its discretiza-
tion. Let (uk) be a bounded sequence in H1,2(M). Let (yk) be a sequence of points
in Y and let {(yk;i )k2N}i2N0 be its trailing system. One says that wi 2 H1,2(�⇢)
is a local profile of (uk) relative to a trailing sequence (yk;i )k2N, if, on a renamed
subsequence, uk � eyk;i * wi in H1,2(�⇢) as k ! 1. If (yk) is a renamed (diago-
nal) subsequence such that uk � eyk;i * wi in H1,2(�⇢) as k ! 1 for all i 2 N0,
then the family {wi }i2N0 is called an array of local profiles of (uk) relative to the
trailing system {(yk;i )k2N}i2N0 of the sequence (yk).

Proposition 4.2. Let M be a manifold of bounded geometry and let Y its discretiza-
tion. Let (uk) be a bounded sequence in H1,2(M). Let {wi }i2N0 be an array of
local profiles of (uk) associated with a trailing system {(yk;i )k2N}i2N0 related to
the sequence (yk) in Y . Then there exists a function w : M(yk;i )

1 ! R such that
w�'i = wi , i 2 N0, where 'i : �⇢ ! M(yk;i )

1 are local coordinate maps of M(yk;i )
1 .

Proof. Functions wi are defined on �⇢ that is a domain of definition of 'i . Set
w

def
= wi � '�1

i on '�1
i (�⇢) and note that if x 2 '�1

i (�⇢) \ '�1
j (�⇢) for some

j 2 N0, then 'i (x) 2 �i j , ' j (x) 2 � j i , and, using the a.e. convergence of
uk � eyk;i and uk � eyk; j to wi and w j respectively, and the uniform convergence of
e�1yk;i eyk; j to  i j , we have

w j � '�1
j = lim

k!1
uk � eyk; j � '�1

j = lim
k!1

uk � eyk;i � e�1yk;i � eyk; j � '�1
j

= wi �  i j � '�1
j = wi � '�1

i � ' j � '�1
j = wi � '�1

i

almost everywhere in '�1
i (�⇢) \ '�1

j (�⇢).

Definition 4.3. Let {wi }i2N0 be a local profile array of a bounded sequence (uk) in
H1,2(M) relative to a trailing system {(yk;i )k2N}i2N0 . The function w : M(yk;i )

1 !
R given by Proposition 4.2 is called the global profile of the sequence (uk) relative
to (yk;i ).

Let us fix a smooth partition of unity {�y}y2Y subordinated to the uniformly
finite covering of M by geodesic balls {B(y, ⇢)}y2Y , given by Lemma 8.4.
Definition 4.4. Let M be a manifold of bounded geometry and let Y be its dis-
cretization. Let M(yk;i )

1 be a manifold at infinity of M generated by a trailing
system {(yk;i )k2N}i2N0 . An elementary concentration associated with a function
w : M(yk;i )

1 ! R is a sequence (Wk)k2N of functions M ! R given by

Wk =
X

i2N0
�yk;iw � 'i � e�1yk;i , k 2 N. (4.1)

where 'i are the local coordinate maps of manifold M
(yk;i )
1 .
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In heuristic terms, after we find limits wi , i 2 N0, of the sequence (uk) under
the “trailing spotlights” (eyk;i )k2N0 that follow different trailing sequences (yk;i )k2N
of (yk), we give an approximate reconstruction Wk of uk “centered” on the moving
center yk of the “core spotlight”. We do that by first splitting w into local profiles
w � 'i , i 2 N0, on the set �⇢ , casting them onto the manifold M in the vicinity
of yk;i by composition with e�1yk;i , and patching all such compositions together by
the partition of unity on M . Such reconstruction approximates uk on geodesic balls
B(yk, R) with any R > 0, but it ignores the values of uk for k large on the balls
B(y0

k, R), with d(yk, y0
k) ! 1, where uk is approximated by a different local

concentration. It has been shown in [8] for the case of manifold M with cocompact
action of a group of isometries (in particular, for homogeneous spaces) that a global
reconstruction of uk , up to a remainder vanishing in L p(M), is a sum of elementary
concentrations associated with all such mutually decoupled sequences.

Similarly, the profile decomposition theorem below, which is the main result
of this paper, says that any bounded sequence (uk) in H1,2(M) has a subsequence
that, up to a remainder vanishing in L p(M), p 2 (2, 2⇤), equals a sum of decoupled
elementary concentrations.

In the theorem and next sections we will work with countable families of dis-
crete sequences of the set Y . To each sequence we assign a trailing system so in
consequence also a the manifold at infinity. To simplify the notation we will index
the sequences in Y , the related trailing systems the corresponding manifolds, con-
centration profiles on these manifolds, etc. by n, i.e., we will write y(n)

k , y(n)
k;i , M

(n)
1 ,

w(n), etc.
Theorem 4.5. Let M be a manifold of bounded geometry and let Y be its discretiza-
tion. Let (uk) be a sequence in H1,2(M) weakly convergent to some function w(0)

in H1,2(M). Then there exists a renamed subsequence of (uk), sequences (y(n)
k )k2N

in Y , and associated with them global profiles w(n) on the respective manifolds at
infinity M(n)

1 , n 2 N, such that d(y(n)
k , y(m)

k ) ! 1 when n 6= m, and

uk � w(0) �
X

n2N
W (n)
k ! 0 in L p(M), p 2 (2, 2⇤), (4.2)

whereW (n)
k =

P
i2N0 �

(n)
i w(n) �'(n)

i �e�1
y(n)
k;i
are elementary concentrations, '(n)

i are

the local coordinates of the manifolds M(n)
1 and {� (n)

i }i2N0 are the corresponding
partitions of unity satisfying (8.3). The series

P
n2N W

(n)
k converges in H1,2(M)

unconditionally and uniformly in k 2 N. Moreover,

kw(0)k2H1,2(M)
+

1X

n=1
kw(n)k2

H1,2(M(n)
1 )

 lim sup kukk2H1,2(M)
, (4.3)

and Z

M
|uk |pddvg !

Z

M
|w(0)|pdvg +

1X

n=1

Z

M(n)
1

|w(n)|pdvg(n) . (4.4)
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5. Auxiliary statements concerning profile decomposition

In Sections 5, 6 and 7 we assume that conditions of Theorem 4.5 hold true. First
we prove the inequality for the norms introduced in Lemma 8.6.

Lemma 5.1. Let (uk) be a bounded sequence in H1,2(M), let M(yk;i )
1 be a mani-

fold at infinity of M generated by a trailing system {(yk;i )k2N}i2N0 , and let w 2

H1,2(M(yk;i )
1 ) be the associated global profile of (uk). Then

lim inf |||uk |||2H1,2(M)
� |||w|||2

H1,2
�
M

(yk;i )
1

�.

Proof. Let {�y}y2Y be the partition of unity given by Lemma 8.4, and let us enu-
merate it for each k 2 N according to the enumeration {yk;i }i2N0 of Y , namely i 7!
�yk;i , i 2 N0. In other words, for every k the set {�yk;i }i2N0 equals the set {�y}y2Y ,
and only its enumeration depends on the given trailing system {(yk;i )k2N}i2N0 . By
Ascoli–Arzela theorem, we can define for any i a function ⌘i on �⇢ by the formula

⌘i = lim
k!1

�yk;i � eyk;i . (5.1)

The functions ⌘i are smooth functions supported in �⇢ . Moreover, using the diag-
onalization argument if needed, we get

⌘i = lim
k!1

�yk;i � eyk; j � e�1yk; j � eyk;i = ⌘ j �  j i .

Since
P

i2N0
�yk;i � eyk; j = 1 on�⇢ for any j 2 N0, we have in the limit

P

i2N0: (i, j)2K
⌘i �

 i j = 1 on �⇢ , cf. Lemma 3.2. So the family of the functions

�
(yk;i )
i

def
= ⌘i � '�1

i , i 2 N0 (5.2)

is a partition of unity on M(yk;i )
1 , subordinated to the covering {'i (�⇢)}i2N0 of

M(yk;i )
1 , and it is easy to see that it satisfies (8.3).
Both the manifolds M and M(yk;i )

1 have bounded geometry, and therefore

lim inf
k!1

||| uk |||2H1,2(M)
= lim inf

k!1

X

i2N0
k
�
�yk;i uk

�
� eyk;i k

2
H1,2(RN )

�
X

i2N0
lim inf
k!1

k
�
�yk;i uk

�
� eyk;i k

2
H1,2(RN )

�
X

i2N0
k⌘iwik

2
H1,2(RN )

=
X

i2N0
k�

(yk;i )
i w � 'ik

2
H1,2(RN )

� |||w |||2
H1,2

�
M

(yk;i )
1

�

(5.3)
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Lemma 5.2. Let {(yk;i )k2N}i2N0 be a trailing system for a discrete sequence (yk)
and let w 2 H1,2(M(yk;i )

1 ). Then the elementary concentration W (yk;i )
k associated

with this system belongs to H1,2(M)). Moreover there is a positive constant C
independent of k and i such that

kW (yk;i )
k kH1,2(M)  C kwk

H1,2
�
M

(yk;i )
1

�. (5.4)

If (y0
k)k2N is a discrete sequence such that d(yk, y0

k) ! 1, then the elementary
concentration W (yk;i )

k satisfies

W (yk;i )
k � ey0

k
! 0

in H1,2(�⇢).

Proof. We recall that

W (yk;i )
k =

X

i2N0
�yk;i w � 'i � e�1yk;i , (5.5)

cf. (4.1). The functions �yk;i � eyk;i are smooth compactly supported functions on
�⇢ and the family

�
�yk;i � eyk;i

 
is a bounded set in C1(�⇢). By the boundedness

of the geometry, cf. Lemma 3.2 and Lemma 8.6, and using (5.2), we have

k�yk;i � eyk;i w � 'ik
2
H1,2(RN )

 Ck�yk;i � eyk;i � ⌧iwk2
H1,2

�
M

(yk;i )
1

�

 C
X

j : (i, j)2K
k�

(yk;i )
i wk2

H1,2
�
M

(yk;i )
1

�.
(5.6)

So using once more Lemma 8.6 we get

kW (yk;i )
k k2H1,2(M)

 C
X

i
k�yk;i � eyk;i w � 'ik

2
H1,2

�
RN
�

 C
X

i

X

j : (i, j)2K
k�

(yk;i )
j wk2

H1,2
�
M

(yk;i )
1

�

 Ckwk2
H1,2

�
M

(yk;i )
1

�.

(5.7)

This proves (5.4).
Let ✏ > 0. If follows from (5.7) that there exist N✏ 2 N independent of k such

that X

i�N✏

k�yk;i � eyk;i w � 'ik
2
H1,2

�
RN
�  ✏. (5.8)
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By (5.5) we have

W (yk;i )
k � ey0

k
=
X

i2Ik

�
�yk;iw � 'i � e�1yk;i

�
� ey0

k
, (5.9)

where Ik = {i : B(y0
k, ⇢) \ B(yk;i , ⇢) 6= ;}. Since d(yk, y0

k) ! 1, we have

sup
iN✏

d(yk;i , y0
k) � d(yk, y0

k) � 2N✏⇢ ! 1

as k ! 1, and thus B(y0
k, ⇢) \ B(yk;i , ⇢) = ; for all i  N✏ if k is sufficiently

large. Then
PN✏

i=1(�yk;iw � 'i ) � e�1yk;i � ey0
k

= 0 for all k large, which together with
(5.8) proves the lemma.

Lemma 5.3. Let w be a profile of the sequence (uk), given by Proposition 4.2 rela-
tive to a trailing system {(yk;i )k2N}i2N0 , and letWk be the associated concentration
sequence. The following holds true:

lim
k!1

huk,WkiH1,2(M) = kwk2
H1,2

�
M

(yk;i )
1

�. (5.10)

Proof. We use for each k 2 N an enumeration of the covering {B(y, ⇢)}y2Y by the
points yk;i from the trailing system {(yk;i )k2N}i2N0 . Taking into account that, as
k ! 1, uk � yk; j * w j , e�1yk;i � eyk; j !  i j , and wi �  i j = w j , we have

huk,WkiH1,2(M) =
X

j2N0

Z

B(yk; j ,⇢)
�yk; j (x)uk(x)Wk(x)dvg(x)

+
X

j2N0

Z

B(yk; j ,⇢)
�yk; j (x)g

�
duk(x), dWk(x)

�
dvg(x),

(5.11)

and

kwk2
H1,2(M

(yk;i )
1 )

=
X

j2N0

Z

B(yk; j ,⇢)
�

(yk; j )
j (x)|w(x)|2dvg̃(n) (x)

+
X

j2N0

Z

B(yk; j ,⇢)
�

(yk;i )
j (x)g

�
dw(x), dw(x)

�
dvg̃(n) (x),

(5.12)

where the functions � (yk;i )
j are defined by the formulae (5.1)-(5.2) relative to the

trailing system {(yk;i )k2N}i2N0 .
Both coverings are uniformly locally finite, so it is sufficient to prove local

identities

lim
k!1

Z

B(yk; j ,⇢)
�yk; j (x)uk(x)Wk(x)dvg(x)=

Z

B(yk; j ,⇢)
�

(yk;i )
j (x)|w(x)|2dvg̃(n) (x) (5.13)
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and
lim
k!1

Z

B(yk; j ,⇢)
�yk; j (x)g

�
duk(x), dWk(x)

�
dvg(x)

=
Z

B(yk; j ,⇢)
�

(yk;i )
j (x)g

�
dw(x), dw(x)

�
dvg̃(n) (x).

(5.14)

In the first case we have and using the expression ow(1) for any sequence of func-
tions that converges weakly to zero in H1,2(�⇢),

Z

�⇢

�yk; j � eyk; j (⇠)uk � eyk; j (⇠)

⇥
X

i2N0
[�yk;i w � 'i � e�1yk;i )] � eyk; j (⇠)

p
g(⇠) d⇠

=
Z

�⇢

�yk; j � eyk; j (⇠)(w j + ow(1))(⇠)

⇥
X

i2N0
�yk;i � eyk; j wi � ( i j + o(1))(⇠)

p
g(⇠) d⇠

=
Z

�⇢

�yk; j � eyk; j (⇠)(w j + ow(1))(⇠) (w j + o(1))(⇠)

⇥
p

(eg + o(1))(⇠) d⇠ �!
Z

�⇢

�
(yk; j )
j � ' j (⇠)|w j |

2 peg(⇠) d⇠ ,

where the last equality follows from the identity
P

i2N0 �yk;i � eyk; j = 1 on �⇢ ,
cf. Lemma 3.2. This proves (5.13).

To prove (5.14) we first note that

NX

⌫,µ=1
g⌫,µ(⇠)@⌫(uk � eyk; j )(⇠)@µ(Wk � eyk; j )(⇠)

=
NX

⌫,µ=1
g⌫,µ(⇠)@⌫(uk � eyk; j )(⇠)

⇥ @µ

⇣X

i2N0
[�yk;i w � 'i � e�1yk;i )] � eyk; j

⌘
(⇠)

=
NX

⌫,µ=1
g⌫,µ(⇠)@⌫

⇣
(w j + ow(1)) � eyk; j

⌘
(⇠)

⇥ @µ

⇣
�yk;i � eyk; j (⇠) wi � ( i j + o(1))

⌘
(⇠)

=
NX

⌫,µ=1
g⌫,µ(⇠)@⌫

⇣
(w j + ow(1)) � eyk; j

⌘
(⇠)@µ

⇣
w j + o(1))

⌘
(⇠).
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In consequence

Z

�⇢

�yk; j � eyk; j (⇠)
NX

⌫,µ=1
g⌫,µ(⇠)@⌫(uk � eyk; j )(⇠)@µ(Wk � eyk; j )(⇠)

p
g(⇠) d⇠

=
Z

�⇢

�yk; j � eyk; j (⇠)
NX

⌫,µ=1
g⌫,µ(⇠)@⌫

⇣
(w j + ow(1)) � eyk; j

⌘
(⇠)

⇥ @µ

⇣
(w j + o(1)) � eyk; j

⌘
(⇠)
p
eg(⇠) + o(1) d⇠

�!
Z

�⇢

�
(yk;i )
j � ' j (⇠)

NX

⌫,µ=1
eg⌫,µ(⇠)@⌫w � ' j (⇠)@µw � ' j (⇠)

p
eg(⇠) d⇠.

Combining the last calculations with (5.11)-(5.14) we arrive at (5.10).

Lemma 5.4. Letw be a profile of the sequence uk , given by Proposition 4.2 relative
to a trailing system {(yk;i )k2N}i2N0 , and let Wk be the associated concentration
sequence. The following holds true:

lim
k!1

kWkk
2
H1,2(M)

= kwk2
H1,2

�
M

(yi;k )
1

�. (5.15)

Proof. We can proceed in the similar way as in the proof of Lemma 5.3. Once more
we can reduce the argumentation to the local identities using (5.12) and

kWkk
2
H1,2(M)

=
X

j2N0

Z

B(yk; j ,⇢)
�yk; j (x)|Wk(x)|2dvg(x)

+
X

j2N0

Z

B(yk; j ,⇢)
�yk; j (x)g

�
dWk(x)dWk(x)

�
dvg(x).

(5.16)

We have

Z

�⇢

�yk; j � eyk; j (⇠)
NX

⌫,µ=1
g⌫,µ(⇠)@⌫

�
Wk � eyk; j

�
(⇠)@µ

�
Wk � eyk; j

�
(⇠)
p
g(⇠) d⇠

=
Z

�⇢

�yk; j � eyk; j (⇠)
NX

⌫,µ=1
g⌫,µ(⇠)@⌫

⇣
(w j + o(1))

⌘
(⇠)

⇥ @µ

⇣
(w j + o(1))

⌘p
eg(⇠) + o(1) d⇠

�!
Z

�⇢

�
(yk;i )
j � ' j (⇠)

NX

⌫,µ=1
eg⌫,µ(⇠)@⌫

�
w � ' j

�
(⇠)@µ

�
w � ' j

�
(⇠)
p
eg(⇠) d⇠.
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Also as above,
Z

�⇢

�yk; j � eyk; j (⇠)
�
�
X

i2N0
[�yk;i w � 'i � e�1yk;i )] � eyk; j (⇠)

�
�2pg(⇠) d⇠

=
Z

�⇢

�yk; j � eyk; j (⇠)
�
�
X

i2N0
�yk;i � eyk; j (⇠) wi � ( i j + o(1))(⇠)

�
�pg(⇠) d⇠

=
Z

�⇢

�yk; j � eyk; j (⇠)|(w j + o(1))(⇠)|2
p

(eg + o(1))(⇠) d⇠

�!
Z

�⇢

�
(yk;i )
j � ' j (⇠)|(w j (⇠)|

2peg(⇠) d⇠.

Below we consider a countable family of trailing systems
��
y(n)
k; j
�
k2N

 
i2N0 ,

n 2 N, and will abbreviate the notation of the associated manifolds at infinity,

M
�
y(n)
k; j

�

1 , as M(n)
1 . This convention will also extend to all other objects generated

by trailing systems
��
y(n)
k;i
�
k2N

 
i2N0 , but not to objects indexed by points in Y , suchas �y(n)

k;i
.

Lemma 5.5. Assume that uk * 0. Assume that trailing systems
��
y(n)
k;i
�
k2N

 
i2N0

of discrete sequences
�
y(n)
k
�
k2N, n 2 N, generate local profiles

�
w

(n)
i
 
i2N0 , such

that d
�
y(n)
k , y(`)

k
�

! 1 when n 6= `. Then

mX

n=1
kw(n)k2

H1,2(M(n)
1 )

 lim sup kukk2H1,2(M)
. (5.17)

Proof. Consider for each n = 1, . . . ,m the elementary concentrations W (n)
k =

P
i2N0 �y(n)

k;i
w

(n)
i � e�1

y(n)
k;i
, w(n)

i = w(n) � '(n)
i , where {'i ,�⇢}i2N0 is the atlas of the

manifold at infinity M(n)
1

def
= M

(y(n)
k;i )

1 , and let us expand by bilinearity the trivial
inequality

�
�
�
�
�
uk �

mX

n=1
W (n)
k

�
�
�
�
�

2

H1,2(M)

� 0.

For convenience, the subscript in the Sobolev norm will be omitted for the rest of
this proof. We have then

2
mX

n=1

⌦
uk,W (n)

k
↵
�

mX

n=1
kW (n)

k k2  kukk2 +
X

n 6=`

⌦
W (n)
k ,W (`)

k
↵
. (5.18)
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Applying Lemmas 5.3 and 5.4 we have

mX

n=1
kw(n)k2

H1,2
�
M(n)

1

�  kukk2 +
X

n 6=`

⌦
W (n)
k ,W (`)

k
↵
+ o(1). (5.19)

In order to prove the lemma it suffices therefore to show that
⌦
W (n)
k ,W (`)

k
↵

! 0
whenever n 6= `.

Since d(y(n)
k , y(`)

k ) ! 1, we also have d(y(n)
k;i , y

(`)
k; j ) ! 1 for any i, j 2 N0.

Let ✏ > 0 and let N✏ 2 N be such that, in view of Lemma 5.1,

X

i�N✏

Z

�⇢
�

(n)
i (⇠)

NX

⌫,µ=1
g⌫µ(⇠)@n(w

(n)
i )(⇠)@µ(w

(n)
i )(⇠))

+ |w(n)
i (⇠)|2]

p
g(⇠)d⇠  ✏, n = 1, . . . ,m.

(5.20)

Let W (n)
k = W (n)0

k + W (n)00
k where

W (n)0
k =

X

i<N✏

✓
�y(n)

k;i
w

(n)
i � e�1

y(n)
k;i

◆
and W (n)00

k =
X

i�N✏

✓
�y(n)

k;i
w

(n)
i � e�1

y(n)
k;i

◆

and note that for all k sufficiently large, W (n)0
k and W (`)0

k have disjoint supports.
Thus �

�⌦W (n)
k ,W (`)

k
↵��  2SkTk + T 2k , (5.21)

where Sk = maxn=1,...m kW (n)0
k k and Tk = maxn=1,...m kW (n)00

k k. The estimate for
Sk is readily provided by repeating verbally the argument of Lemma 5.4, which
gives

S2k  max
n=1,...,m

kw(n)k2
H1,2

�
M(n)

1

� + o(1),

so Sk is bounded by Ckukk + o(1) due to Lemma 5.1, while a similar adaptation
of Lemma 5.4 to summation for i � N✏ yields that T 2k is bounded, up to vanishing
terms, by the left hand side of (5.20), and thus Tk 

p
✏ + o(1). Thus from (5.21)

we have �
�⌦W (n)

k ,W (`)
k
↵��  C

p
✏
�
kukk +

p
✏ + o(1)

�
,

which implies, in turn, that lim supk!1 |hW (n)
k ,W (`)

k i|  C
p
✏, and since ✏ is

arbitrary, we have hW (n)
k ,W (`)

k i ! 0 for n 6= `, which completes the proof.

Before we begin the proof of Theorem 4.5, we introduce the following techni-
cal definition.
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Definition 5.6. Let (uk) be a bounded sequence in H1,2(M). Let
�
y(`)
k
�
, ` =

1, . . . ,m, m 2 N, be discrete sequences of points in Y , satisfying d
�
y(n)
k , y(`)

k
�

!
1 for n 6= `, and generating global profiles w1, . . . , wm of a renamed subsequence
of (uk) in respective Sobolev spaces H1,2

�
M(`)

1
�
. A modulus ⌫(uk)

�
(y(1)
k ), . . . ,(ymk )

�

of this subsequence is the supremum of the set of values kwk2
H1,2

�
M

(yk;i )
1

� of all

global profiles w of the renamed subsequence (uk) generated by a trailing system
{(yi;k)k2N}i2N0 in Y satisfying d

�
yk;0, y

(`)
k
�

! 1, ` = 1, . . . ,m. If such set is
empty, we set ⌫(uk)

�
(y(1)
k ), . . . , (y(m)

k )
� def

= 0. For m = 0, ⌫(uk)(;) is defined as the
corresponding unconstrained supremum.

6. Proof of Theorem 4.5.

Step 1. It suffices to prove Theorem 4.5 for sequences that weakly converge to
zero. Indeed, assume that the theorem is true in this case. A general bounded
sequence (uk) in H1,2(M), it has a renamed subsequence weakly convergent to
some w(0) in H1,2(M). Consider then conclusions of the theorem for the sequence
(uk �w(0)) . Since for any discrete sequence (yk) in Y , w(0) �eyk * 0 in H1,2(�⇢)
by Lemma 5.1, sequences (uk) and (uk � w(0)) have identical local profiles under
the same trailing systems

�
(y(n)
i;k )k2N

 
i2N0 , identical manifolds at infinity and iden-

tical concentration terms W (n)
k , which yields (4.2). Relation (4.3) follows from the

elementary identity for Hilbert space norms,

kukk2 � kw(0)k2 � kuk � w(0)k2 ! 0,

and (4.3) for the sequence (uk � w(0)). Relation (4.4) follows from Brezis-Lieb
Lemma ( [3]), which gives, in our settings,

Z

M
|uk |pdvg �

Z

M
|w(0)|pdvg �

Z

M
|uk � w(0)|pdvg ! 0,

combined with (4.4) for the sequence (uk � w(0)).
From now on we assume that uk * 0.

Step 2. Let us give an iterative construction of sequences
�
v

(n)
k
�
k2N in H

1,2(M), n 2

N0. We set v(0)
k = uk and choose

�
y(1)
k
�
k2N so that

�
�w(1)��

H1,2
�
M(1)

1

� � 1
2⌫

(uk)(;).

Assume that we have defined sequences
�
v

(0)
k
�
k2N,. . . ,

�
v

(m)
k
�
k2N, with the fol-

lowing properties:

There exists, for a given m, a renamed subsequence of (uk), sequences�
y(1)
k
�
k2N, . . . ,

�
y(m)
k
�
k2N of points in Y such that d

�
y(`)
k , y(n)

k
�

! 1 when-
ever ` 6= n, with trailing systems

n�
y(n)
k;i
�
k2N

o

i2N0
, defining, on a subse-

quence, for each respective n=1, . . . ,m, an array of local profiles
�
w

(n)
i
 
i2N0
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of (the mth extraction of) (uk), and, consequently, a Riemannian manifold at
infinity M(n)

1 and a global profile w(n) 2 H1,2(M(n)
1 ). Assume, furthermore,

that kw(n)k2
H1,2(M(n)

1 )
� 1

2⌫
(uk)
��
y(1)
k
�
, . . . ,

�
y(n�1)
k

��
, n = 2, . . . ,m (cf. Def-

inition 5.6). Let (W (n)
k )k2N, n = 1, . . . ,m, be corresponding elementary

concentrations, and define

v
(n)
k

def
= uk �

nX

`=1
W (`)
k , n = 1, . . .m.

Under the above assumptions we construct now a sequence v
(m+1)
k that will also

satisfy these assumptions. Consider all sequences (yk) of points in Y such that
d(yk, y(`)

k ) ! 1 for all ` = 1, . . . ,m. We have three complementary cases:

case 1: for any such sequence one has v
(m)
k � eyk * 0 in H1,2(�⇢) on a renamed

subsequence;
case 2: there exists a bounded sequence (yk) of points in Y (so that d

�
yk, y(`)

k
�

!

1 for all ` = 1, . . . ,m) such that, on a renamed subsequence, v
(m)
k �

eyk * w 6= 0;
case 3: there exists a discrete sequence (yk) of points in Y such that d

�
yk, y(`)

k
�

!

1 for all ` = 1, . . . ,m, and v
(m)
k � eyk * w 6= 0.

Case 2 is in fact vacuous. Indeed, in this case (yk) would have a constant subse-
quence with some value z and uk � ez * w 6= 0, which contradicts the assumption
uk * 0.

Consider case 1. We prove that in that case v
(m)
k � ezk * 0 for any sequence

(zk) in Y . By assumption we know that it is true if d
�
zk, y(`)

k
�

! 1 for all ` =

1, . . . ,m. So let us assume that on a renamed subsequence, d
�
zk, y(`)

k
�
is bounded

for some ` 2 {1, . . .m}. Then by the definition of the trailing system there exists
i 2 N0 such that zk = y(`)

k;i on a renamed subsequence. So if uk � ezk * w 6= 0 then
w coincides with the local profile w

(`)
i . Moreover d

�
zk, y(n)

k
�

! 1 if 1  n  m
and n 6= `. So by Lemma 5.2, W (n)

k � ezk * 0 if n 6= ` and W (`)
k � ezk * wi .

In consequence v
(m)
k � ezk * 0 Now by Lemma 2.4, v(m)

k ! 0 in L p(M), which
means that the asymptotic relation (4.2) is proved with a finite sum of elementary
concentrations and we can take v

(m+1)
k = 0.

Consider now case 3. Now the modulus ⌫(uk)
��
y(1)
k
�
, . . . ,

�
ymk
��

> 0 is posi-
tive, cf. Definition 5.6). We may choose a sequence y(m+1)

k , d
�
y(m+1)
k , y(`)

k
�

! 1
for all ` = 1, . . . ,m, in such a way that the corresponding global profile w(m+1) of
(uk) satisfies

�
�w(m+1)��2

H1,2
�
M(m+1)

1

� �
1
2
⌫(uk)

��
y(1)
k
�
, . . . ,

�
y(m)
k
��

. (6.1)



DEFECT OF COMPACTNESS 1687

Then using the local profiles w
(m+1)
i , i 2 N0, we may define, for a renamed sub-

sequence, the associated global profile w(m+1) (cf. Proposition 4.2), and the corre-
sponding elementary concentration W (m+1)

k , and put

v
(m+1)
k

def
= uk �

m+1X

`=1
W (`)
k .

It is easy to see that the sequence
�
v

(m+1)
k

�
has the same properties as

�
v

(n)
k
�
, n =

0, . . . ,m.

Step 3. By Lemma 5.5 we have

mX

n=1
kw(n)k2

H1,2(M(n)
1 )

 lim sup kukk2H1,2(M)

for any m, which proves (4.3).

Step 4. In order to prove convergence of the series
P1

n=1W
(n)
k note first that we

may assume without loss of generality that for each n 2 N, there exists rn > 0
such that supp W (n)

k ⇢ B
�
y(n)
k , rn

�
. Indeed, acting like in the proof of Lemma

5.5, from the calculations in the proof of Lemma 5.4 one can easily see that one
can approximateW (n)

k in the H1,2-norm by restricting summation in (4.1) to a finite
number of terms, with the norm of the remainder bounded by, say, ✏2�n with a small
✏ > 0. Then, for any m 2 N one can extract a subsequence

�
k(m)
j
�
j2N of (k)k2N

such that d
�
y(n)
k , y(`)

k
�

> rn + r` whenever 1  ` < n  m. Then on a diagonal
subsequence

�
k(m)
m
�
m2N the elementary concentrations

�
W (n)
k
�
k=k(m)

m ,m2N will have
pairwise disjoint supports. Together with (4.3) this proves that the convergence is
unconditional and uniform with respect to k.

Step 5. Now we prove that (uk�
P1
`=1W

(`)
k )�eyk ! 0 in L p(M) for any sequence

yk in Y .
Let first (yk) in Y be a bounded sequence. Since it has finitely many values,

on each constant subsequence we have uk � ey * 0 and W (`)
k � ey * 0, and thus

�
uk �

P1
`=1W

(`)
k
�
� eyk * 0.

Let now (yk) be a discrete sequence in Y . If there is ` 2 N such that on a
renamed subsequence we have d

�
yk, y(`)

k
�
is bounded. Then on a renamed subse-

quence yk = y(`)
k;i for some i , cf. Step 2. But then uk�eyk * w

(`)
i ,W

(`)
k �eyk * w

(`)
i

and W (n)
k � eyk * 0 if n 6= `, cf. Lemma 5.2. Thus

�
uk �

P1
`=1W

(`)
k
�
� eyk * 0.

Let (yk) be a discrete sequence in Y , such that d
�
yk, y(`)

k
�

! 1 for any
` 2 N0. Assume that on a renamed subsequence

�
uk�

P1
`=1W

(`)
k
�
�eyk * w0 6= 0.

Then (yk) generates a profile w of (uk) on some manifold ar infinity M1 of M that
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necessarily satisfies kwkH1,2(M1)  ⌫(uk)
��
y(1)
k ), . . . , (y(m)

k
��
for any m 2 N. By

(4.3) and (6.1) we have ⌫(uk)
��
y(1)
k ), . . . , (y(m)

k
��

! 0 as m ! 1, and therefore
w = 0, which implies w0 = 0. This gives the contradiction.

We conclude that
�
uk �

P1
`=1W

(`)
k
�
�eyk * 0 for any sequence (yk) in Y , and

by Lemma 2.4
�
uk �

P1
`=1W

(`)
k
�
� eyk ! 0 in L p(M).

Step 6. It was proved in Step 4 that the series of elementary concentrations W (n)
k is

convergent in H1,2(M). So for any ✏ > 0 the sum Sk of the elementary concentra-
tions can be approximated by the finite sum S✏k , i.e.,

�
�kukkp � kS✏kkp

�
� 

�
�kukkp � kSkkp

�
�+ kSk � S✏kkp

 o(1) + CkSk � S✏kkH1,2(M)  C✏ + o(1).
(6.2)

Moreover similarly to Step 4, we may assume without loss of generality all w(n)

have compact support. In consequence we may assume that there exists m 2 N
such that w(n) = 0 for all n > m, and that w(n) have compact support if n  m.

Let us now evaluate kS✏kkp. Let us show first that

Z

M
|W (n)

k |pdvg !
Z

M(n)
1

|w(n)|pdveg(n) . (6.3)

Indeed, omitting for the sake of simplicity the superscript n and taking into account
that wi � e�1yk;i � eyk; j ! w j , e�1yk; j � eyk;i !  j i , and �yk; j � eyk; j ! � j as in the
proof of Lemma 5.1, we have:

Z

M
|Wk |

pdvg =
Z

M

�
�
�
�
�

X

i2N0
�yk;iwi � eyk;i

�
�
�
�
�

p

dvg

=
X

j2N0

Z

�⇢

�yk; j � eyk; j

�
�
�
�
�

X

i2N0
�yk;iwi � eyk;i

�
�
�
�
�

p

� e�1yk; j
pgk; jd⇠

=
X

j2N0

Z

�⇢

(� j+o(1))

�
�
�
�
�

X

i2N0
�yk;i � e

�1
yk; j (w j+o(1))

�
�
�
�
�

pq
eg j+o(1) d⇠

!
Z

M1

|w|pdveg.

Note that the notation o(1) above refers to functions vanishing in the sense of C1

and that all infinite sums contain uniformly finitely many terms.
Now, for all k sufficiently large, all elementary concentrations W (n)

k in the sum
S✏k have pairwise disjoint supports, and, since `

1 ,! `
p
2 , taking into account (4.3),
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we have
 
X

n�⌫

Z

M(n)
1

|w(n)|pdveg(n)

! 2
p


X

n�⌫

✓Z

M(n)
1

|w(n)|pdveg(n)

◆ 2
p


X

n�⌫
Ckw(n)k2

H1,2(M(n)
1 )

! 0 as ⌫ ! 1.

Therefore (4.4) is immediate from (4.2), which completes the proof of Theorem 4.5.

7. Local and global profile decompositions on cocompact manifolds

Let M be now a smooth connected complete Riemannian manifold, cocompact rel-
ative to a subgroup G of its isometry group, that is, we assume that there exists an
open bounded set O such that [g2GgO = M . Then M is obviously of bounded
geometry. It is then natural to ask if Theorem 4.5 yields Theorem 1.1 with the man-
ifolds M(n)

1 isometric to M . Below we consider this question in the case when G is
a discrete countable subgroup. Without loss of generality we may assume thatO is
a geodesic ball.

Theorem 7.1. Let M be a smooth connected N -dimensional Riemannian manifold,
let ⇢ 2 (0, r(M)

8 ) and z 2 M , and assume that there exists a discrete countable
subgroup G of isometries on M such that {B(gz, ⇢)}g2G covers M with a uniformly
finite multiplicity. Then

(i) one can choose the construction parameters of manifolds M(n)
1 , so that they

will coincide, up to isometry, with M;
(ii) there exist sequences

�
g(n)
k
�
k2N, of elements inG, and functionsw(n)2H1,2(M),

n 2 N, such that the sequences
�
[g(`)
k ]�1g(n)

k
�
k2N are discrete whenever ` 6= n,

uk � g(n)
k * w(n) in H1,2(M), n 2 N, and

W (n)
k = w(n) �

h
g(n)
k

i�1
.

Proof. 1. Let us repeat the construction of the manifold at infinity relative to a
sequence (yk) in Y = {gz}g2G . Fix a sequence hi 2 G, h0 = id, such that
d(hi+1z, z) � d(hi z, z), i 2 N0, and define the i th trailing sequence of (yk) by
yk;i

def
= gkhi z, k 2 N. Recall that the normal coordinates at the points y 2 Y were

defined as expy up to an arbitrarily fixed isometry on TyM . For the present con-

struction we set them specifically as egz
def
= g � ez . Under such choice the transition

maps of M(yk;i )
1 are characterized by elements of the group G:

 i j = lim
k!1

e�1yk;i � eyk; j = lim e�1z � [gkhi ]�1gkh j � ez = e�1z � h�1
i h j � ez,
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and the sequences above are in fact constant with respect to k. Consequently, the
transition maps i j of the manifold M

(yk;i )
1 are e�1z �h�1

i h j �ez - same as of M itself.
In other words, all the gluing data for M(yk;i )

1 are taken from M , which suggests,
since Theorem 8.8 is based on a suitable list of properties of charts of a manifold
that will allow its reconstruction that M(yk;i )

1 is isometric to M . We will, however,
apply Corollary 8.10 formally, as follows.

Manifold M(yk;i )
1 has an atlas

��
'i (�⇢),'

�1
i
� 
i2N0 with transition maps

'�1
i ' j = e�1z � h�1

i h j � ez , while manifold M has an atlas, enumerated by hi 2 G,
{(B(hi (z), ⇢), e�1z � h�1

i )}i2N0 with the same transition maps as M1. Let Ti
def
=

hi � ez � '�1
i : 'i (�⇢) ! M , i 2 N0, and note that this defines a smooth map

T : M(yk;i )
1 ! M , since the values of Ti are consistent on intersections of sets

'i (�⇢):

hi � ez � '�1
i � [h j � ez � '�1

j ]�1 = hi � ez �  i j � [h j � ez]�1 (7.1)

= hi � ez � e�1z � h�1
i h j � ez � e�1z � h�1

j = id. (7.2)

Furthermore, T is a diffeomorphism with T�1 = 'i �e�1z �h�1
i , consistently defined

on B(gi z, ⇢), i 2 N0. Note that (3.7) on M
(yk;i )
1 holds because it holds on M with

the same transition map for every k, so the Riemannian metric on M(yk;i )
1 in the

normal coordinates coincides with the Riemannian metric on M . In what follows
we will identify M(yk;i )

1 as M .
2. Let now (uk) be a bounded sequence in H1,2(M) and note that its local

profile associated with the sequence (gkhi )k2N is given by

wi = w-lim uk � (gkhi ) � ez,

and the global profile is by definitionw = wi�'
�1
i = wi�e�1z �h�1

i = w-lim uk�gk ,
which coincides with the profile of (uk) as defined in Theorem 1.1 in (1.3) relative
to the sequence (gk). Consider now the elementary concentration defined by the
array {wi }i2N0 of local profiles:

Wk =
X

i2N0
�gkhi zwi � e�1yk;i

=
X

i2N0
�gkhi zwi � e�1z � h�1

i � g�1
k

=
X

i2N0
�gkhi zw � g�1

k

= w � g�1
k ,

which completes the proof.
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8. Appendix

8.1. Manifolds of bounded geometry and covering lemma

In this appendix we give some elementary properties of manifolds of bounded ge-
ometry. All needed definitions can be found, e.g., in Chavel’s book [4]. Let M be
an N -dimensional Riemannian manifold of bounded geometry with a metric tensor
g. Let vg denote the Riemannian measure on M and let L2(M) be the correspond-
ing space of square integrable functions. For u � 3 : M ! C we denote by
du� 3 2 T ⇤M the covariant derivative of u, and by |du| the norm of du defined by
a local chart, i.e.,

|du � 3|2 = gi j@i u@ j u

where gi j are the components of the inverse matrix of the metric matrix g = (gi j ).
The Sobolev space H1,2(M) is a completion of C1

o (M) with respect to the norm
given by

k f k2H1,2 = kd f k22 + k f k22.
We start with the following lemma, and refer to [7] for the proof.

Lemma 8.1. Let M be a Riemannian manifold of bounded geometry and let 0 <
r < r(M). If k 2 N then there exists a constant Ck dependent on the curvature
bounds and r but independent of x 2 M , which bounds the Ck-norm of components
gi j of the metric tensor g and its inverse gi j in any normal coordinate system of
radius not exceeding r at any point x 2 M .

For any two points x 2 M and 0 < r < r(M) let

ex : �r ! B(x, r)

denote a normal coordinate system at x defined on the euclidean ball �r centered
at origin.

The boundedness of the derivatives of the Riemann curvature tensor is equiva-
lent to the following lemma, cf. [18],

Lemma 8.2. If the manifold M has bounded geometry and 0 < r < r(M) then for
any ↵ 2 NN

0 there exists a constant C↵ > 0, such that

|D↵e�1y � ex (⇠)|  C↵ whenever x, y 2 M, and B(x, r) \ B(y, r) 6= ;.

The next two statements can be found is many places in literature, cf. eg. [13,18,19].

Lemma 8.3. Let M be an N -dimensional connected Riemannian manifold with
bounded geometry. Let ⇢ > 0. There exists an at most countable set Y 2 M such
that

d(y, y0) � ⇢/2 whenever y 6= y0, y, y0 2 Y, (8.1)

M =
[

y2Y
B(y, r) for any r > ⇢ . (8.2)
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Moreover for any r > ⇢ the multiplicity of the covering {B(y, r)}y2Y is uniformly
finite.

Lemma 8.4. Let M , Y , ⇢ and r be as in Lemma 8.3. There exists a smooth partition
of unity {�y}y2Y on M , subordinated to the covering {B(y, ⇢)}y2Y , such that for any
↵ 2 NN

0 there exists a constant C↵ > 0, such that

|D↵�y|  C↵ (8.3)

for all y 2 Y .

The following corollary is the immediate consequence of Lemma 8.1 above.

Corollary 8.5. Let p 2 (0,1) and r 2 (0, r(M)). There exists a constant C > 1
such that for any x 2 M

C�1
Z

B(x,r)
|u|pdvg 

Z

�r

|u � ex |pdx  C
Z

B(x,r)
|u|pdvg, (8.4)

and

C�1
Z

B(x,r)
|du|2dvg 

Z

�r

NX

i=1
|@i (u � ex )|2dx  C

Z

B(x,r)
|du|2dvg.

We finish this subsection by recalling a technical but useful equivalent norm in
H1,2(M), cf. [13] or [24, Chapter 7],

Lemma 8.6. Let {B(yi , r)} be a locally uniformly finite covering of an N-dimen-
sional manifold M with bounded geometry, r 2 (0, r(M)) and let {�i } be a partition
of unity subordinated to the covering {B(yi , r)} as in Lemma 8.4. Then

||| f |||H1,2(M) =
⇣X

i
k�i f � expyi k

2
H1,2(RN )

⌘1/2
(8.5)

is an equivalent norm in H1,2(M). Moreover

k f kH1,2(M) ⇠ ||| f |||H1,2(M) ⇠
⇣X

i
k�i f k2H1,2(M)

⌘1/2
.

8.2. Gluing manifolds

We use a particular case of gluing theorem in Gallier et al., [10, Theorem 3.1]:
Definition 8.7 ([10, Definition 3.1], [9, Definition 8.1]). A set of gluing data is a
triple ({�i }i2N0, {�i j }i, j2N0, { j i }(i, j)2K) satisfying the following properties:

(1) For every i 2 N0, the set �i is a nonempty open subset of RN and the sets
{�i }i2N0 are pairwise disjoint;
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(2) For every pair i, j 2 N0, the set �i j is an open subset of �i . Furthermore,
�i i = �i and � j i 6= ; if and only if �i j 6= ;;

(3) K = {(i, j) 2 N0 ⇥ N0 : �i j 6= ;},  j i : �i j ! � j i is a diffeomorphism for
every (i, j) 2 K, and the following conditions hold:
(a)  i i = id|�i , for all i 2 N0,
(b)  i j =  �1

j i , for all (i, j) 2 K,
(c) For all i, j, k 2 N0, if � j i \� jk 6= ;, then  i j (� j i \� jk) = �i j \�ik ,

and  ki (x) =  k j �  j i (x), for all x 2 �i j \�ik ;

(4) For every pair(i, j) 2 K, with i 6= j , for every x 2 @�i j \ �i and every
y 2 @� j i \� j , there are open balls Vx and Vy centered at x and y so that no
point of Vy \� j i is the image of any point of Vx \�i j by  j i .

Each set �i is called parametrization domain or p-domain, each nonempty set �i j
is called a gluing domain, and each map  i j is called transition map or gluing map.

Theorem 8.8 ([10, Theorem 3.1]). For every set of gluing data,
�
{�i }i2N0, {�i j }i, j2N0, { j i }(i, j)2K

�
,

there exists a N -dimensional smooth manifold M an atlas (Ui , ⌧i )i of M such that
⌧i (Ui ) = �i , whose transition maps are ⌧ j � ⌧�1

i =  j i : �i j ! � j i . i, j 2 N0.

Remark 8.9. Note that the theorem does not provide any specifics about the maps
⌧i which are obviously not uniquely defined.

Corollary 8.10. Let 0 < ⇢ < r < a and let �⇢ ⇢ �r ⇢ �a be balls in RN

centered at the origin with radius ⇢, r and a respectively. Let {e i j }i, j2N0 be a family
of smooth open maps e i j : �r ! �a . Assume that a family { j i = e j i |�⇢ }i, j2N0
satisfies the following conditions:

(i)  i i = id, i 2 N0;
(ii)  j i is a diffeomorphism between �i j

def
=  i j (�⇢) \ �⇢ and � j i , i, j 2 N0,

whenever � j i 6= ;;
(iii)  i j =  �1

j i on � j i , whenever � j i 6= ;, i, j 2 N0;
(iv)  i j (� j i \� jk) = �i j \�ik , and  ki (x) =  k j � j i (x) for all x 2 �i j \�ik ,

i, j, k 2 N0;
(v) for all (i, j) 2 K def

= {(i, j) 2 N0 ⇥ N0 : �i j 6= ;} and all x 2 @�i j \ �⇢
 j i (x) 2 @� j i \ @�⇢ .

Then there exists a smooth differential manifold M with an atlas {(Ui , ⌧i )}i2N0 ,
such that ⌧i (Ui ) = �⇢ for any i 2 N0 and whose transition maps ⌧ j � ⌧�1

i are
 j i : �i j ! � j i . i, j 2 N0.
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Proof. Fix an enumeration (zi )i2N0 of the lattice 3aZN ⇢ RN . Set �0
i
def
= zi +�⇢ ,

i 2N0, and�0
i j
def
=�i j+zi , 0

i j
def
= i j (·�z j )+zi , for (i, j) 2 K. The corollary is im-

mediate from Theorem 8.8 once we show that ({�0
i }i2N0, {�

0
i j }i, j2N0, { 

0
i j }(i, j)2K)

is a set of gluing data according to Definition 8.7. Conditions of the definition verify
as follows.

Condition (1): is immediate since 3a > 2⇢.

Condition (2): the sets �i j (and thus �0
i j ) are open since the maps  j i are open.

The relation �0
i j ⇢ �0

i follows from �i j ⇢ �⇢ in (ii). By (i) we have �i i = �⇢
and thus �0

i i = �0
i . If �

0
i j 6= ;, then �i j 6= ;, and since  i j is the inverse of  j i ,

� j i
def
=  j i (�⇢ \  i j�⇢) =  j i� j i 6= ;. Thus �0

j i 6= ;.

Condition (3): properties (a), (b), and (c) are immediate, respectively, from (i), (iii),
and (iv).

Condition (4): let x 2 @�0
i j \�⇢(zi ) and y 2 @�0

j i \�⇢(z j ). Then x̃ = x � zi 2
@�i j\�⇢ and x̃ = x�z j 2 @� j i\�⇢(z j ). By assumption (v)we have ỹ 6=  j i (x̃).
In consequence there exist Euclidean balls �(x̃, ") and �(ỹ, ") such that no point
of �(ỹ, ") \�⇢ is an image of �(x̃, ") \�⇢ .
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