PRECISE ESTIMATES FOR CERTAIN DISTANCES IN R¢

MATTEO FIACCHI, NIKOLAI NIKOLOV

ABSTRACT. We provide sharp estimates for the intrinsic distances of Finsler metrics with pre-
cise boundary estimates. These metrics include the Kobayashi-Hilbert metric near strongly
convex points, the minimal metric near convex and strongly minimally convex points, and the
k-quasi hyperbolic metric in k-strongly convex domains. Finally, we prove a characterization
result in convex geometry for the k-quasi hyperbolic metric.

1. INTRODUCTION

In their famous paper [I], Balogh and Bonk proved the Gromov hyperbolicity of the
Kobayashi distance kp in strongly pseudoconvex domains, establishing the following estimates
for the Kobayashi distance: if D C C? is a strongly pseudoconvex domain, then there exists
B > 0 such that

gp(z,w) — B <kp(z,w) <gp(z,w)+ B, z,wéE€D (1.1)

where gp is a function derived from the Carnot-Carathéodory metric on the boundary 9D.
This estimate, while sufficient to prove Gromov hyperbolicity, does not provide useful infor-
mation about the distance when the points are close to each other. The estimates were
recently improved in [I0] in the case of strongly pseudoconvex domains with C*“-smooth
boundary.

A similar situation arises in the real case, where the first named author in [5] proved
the Gromov hyperbolicity of the minimal distance pp (analogous to the Kobayashi metric in
the theory of minimal surfaces) in strongly minimally convex domains by showing estimates
similar to those of Balogh and Bonk: if D C R? is strongly minimally convex domain, then
there exists A > 1 and B > 0 such that

AildD(x7y)_B§pD($7y) SAdD(l',y)‘f‘B, xaQED

where

h(z)h(y)

m: D — 9D is such that ||7(z) — z|| = dpuc(z,0D) and h(z) := \/dgyuc(x,0D). Also in this
case, the estimates were sufficient to prove Gromov hyperbolicity.

db(@.1) = 2log <||7r<x> — 7 (y)|| + h(z) v h<y>> | 12

The main goal of this paper is to improve the previous estimate in a way that can be
applied to various distances naturally defined in real domains. These distances are all defined
through a Finsler metric (see Subsection for a brief introduction), with behavior at the
boundary that is asymptotic to 1/(26p) in the normal component and comparable to 1/ 5]13/2
in the tangential component, where dp(-) := dgyc(-, 0D).
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Let us now delve into the details. Let D C R? be a domain and ¢ € 9D be a C?-smooth
boundary point, then there exists a neighborhood U of £ such that 7: U — 9D is a well
defined C?-smooth function. Set for z,y € DN U

m(x) —7 + h(z)V h
wn(ong) o IT@ =TI+ @) V)
h(z)h(y)
and, for ¢ > 0, consider the quasi-distance defined as
d%)(xa y) = 210g(1 + CCLD(.’L', y))

Note that d}) is exactly the function that appears in (|1.2]).

Let 2 € D and v € R%. If z is sufficiently close to a C2-smooth boundary point, we can
decompose the vector v into its normal component vy and its tangential component vy at
the boundary point m(x).

The main result of the paper is the following.

Theorem 1.1. Let D C R? (d > 2) be a domain and £ € OD be a C?-smooth boundary point.
Let F: D xR% — [0,400) be a Finsler metric on D and assume there exist a neighborhood U
of € and 0 < ¢ < Cy such that for allz € DNU and v € RY

max {(1 — W) 2'(%') o 51)”;’;'1' - } < F,v) < (14 w(n()) 2'(';1{:'2) Lo 51)”(1;?)'1' -

(1.3)
where w: [0,e] — R is a measurable function with foe #du < 4oo. Let d be the intrinsic
distance of F', then there exist a neighborhood V. .CC U of £ and 0 < co < 1 < Cy such that
forallz,y e DNV

d3(z,y) < d(z,y) < dP(z,y). (1.4)

The estimates of the main theorem are in the spirit of [10], and they are effective regardless
of the relative positions of the two points.

In the second part of the paper, we will prove the estimates (|1.3)) for various Finsler metrics
(1) Kobayashi-Hilbert metric near strongly convex points (Subsection 4.1);
(2) minimal metric near convex and strongly minimally convex points (Subsection [4.2]);
(3) k-quasi hyperbolic metric in k-strongly convex domains (Subsection [4.3)).

As a consequence, we obtain the estimates ((1.4) for the associated intrinsic distances.

The paper concludes with a rigidity theorem for k-quasi-hyperbolic metrics (Theorem [5.1)).
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2. PRELIMINARIES

Notations:

e For x € R let ||z|| denote the standard Euclidean norm of z.

e For u,v € R% let (u,v) denote the Euclidean scalar product of R%.
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e Let D:= {x € R?: ||z|| < 1} be the unit disk in R2.
e For z,y € R let

(2,y) == {ta+ (1 - t)y : t € (0,1)}
be the open segment between x and y, and
[z,y] == {te + (1 —t)y : t € [0, 1]}

be the closed segment between x and y.
e For x € R% and r > 0 we denote with

B(z,r) ={y e R |lz —y|| <}

the Euclidean ball with center x and radius r.
e For A, B C R? nonempty let denote

dpuc(A, B) :=inf{||lx —y|| : x € A,y € B},

the Euclidean distance between A and B. If A = {z} is a singleton, we simply write
dEuc(l'a ) = dEuc({:L'}a )
o If D C R? is a domain and = € R? let

op(x) := dpyc(z,0D),

be the distance to the boundary.
e Let a,b € R, let denote a A b := min{a, b} and a V b := max{a, b}.

2.1. Finsler metric. In this section, we recall the definition of the Finsler metric.
Let D C R? be a domain, a Finsler metric is a function F: D x R? ~ TD — [0, +-00) with
the following properties

(1) F is upper semicontinuous on D x R%;
(2) Forallz € D,veR%and t € R
F(z,tv) = [t|F(z,v).

Given a Finsler metric F' on D and a piecewise Cl-smooth curve 7: [a,b] — D, we can
define the length of v with respect to the metric F'

b
e) = [ FG0.50)de
a
Finally, the intrinsic pseudodistance associated with F' is defined as

d(z,y) = igffF(V), zr,ye D

where the infimum is over all piecewise Cl-smooth curve v: [0,1] — D with v(0) = = and
(1) =y.

2.2. C2-smooth boundary point. In this section, we will review some results on the geom-
etry of the domain near a C2-smooth boundary point.

Let D C R? be a domain and &€ € D be a boundary point. We say that £ is a C2-smooth
boundary point if there exists a C?-smooth local defining function p near &, i.e., there exists a
neighborhood U of ¢ and p: U — R a C2-smooth function, such that

(1) DNU ={z €U :p(x) <0}

(2) Vp#0in 0DNU ={zx € U : p(x) = 0}.
3



The vector
V()

"IVl

is called unit outer normal at &. It does not depend on the choice of the C?-smooth local
defining function p.

We now state the local version of a well-known lemma.

Lemma 2.1. Let D C R? (d > 2) be a domain and & € dD be a C*-smooth boundary point.
Then there exists r,e > 0 such that if we set

U:={z € R?: dgu(z,0D N B(&, 7)) < €}
we have

(1) every point £ € 0D NU is a C*-smooth boundary point;
(2) for every x € U there exists a unique w(x) € 0D NU with ||x — w(x)|| = op(z);
(3) the signed distance to the boundary p: RY — R given by

- —op(x) ifxeD
PO = o) ifedD

is C%-smooth on U;
(4) the fibers of the map w: U — dD NU are

7€) = {€ +tng : |t < €}

where ng is the outer unit normal vector of 0D at { € 0D NU;
(5) the gradient of p satisfies for all x € U

vp(‘r) = Nr(z);
(6) the projection map w: U — D is C'-smooth.

(7) if v: [0,1] = DNU is a C'-smooth curve and o := wo~y: [0,1] — dDNU its projection
to the boundary, then for all t € [0,1]

1
SNE@) 7l = lla@)Il = 2([(7(©)zll-
Proof. See [1, Lemma 2.1] and [5, Lemma 4.1]. O

Now we have the preliminary results to give a precise meaning to the decomposition into
the normal and tangential parts of a vector presented in ([1.3)).

Let D C R? (d > 2) be a domain and & € 9D be a C2-smooth boundary point. Let U be the
neighborhood of ¢ given by the previous Lemma. Then for 2 € DNU and v € R?, we consider
the orthogonal decomposition of v = vy + v at (unique) projection point 7(x) € 9D NU,
where

UN ‘= <1},7”L7r(x)>nﬂ.(x), Vr ‘= U — UN.

3. PROOF OF THE MAIN THEOREM

In this section, we will prove the main result, namely Theorem [I.I] In order to make the
reading smoother, we will denote all multiplicative constants by A, without distinguishing
them with other symbols. The same will be done for additive constants, denoted by B.

We begin by recalling the function df, mentioned earlier in the introduction.
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Let D € R? be a domain and & € 9D a C%*smooth boundary point. Let U be the
neighborhood of ¢ given by the Lemma For z,y € U, set
_ lm(@) = 7wl + h(x) V h(y)

op(ey) = B()h(y) B

where h(-) := dp(-)"/2. Let ¢ > 0 and define
dp(z,y) = 2log(1l + cap(x,y)). (3.1)
We begin by listing the properties of these functions.
Proposition 3.1. Let df, be the function defined in (31l). Then
(1) If 0 < e1 < ca, then for all z,y € U
d3(w,y) < dB(z,y) < ¢ lead (2, y);
(2) If ¢ > 1, d, is a distance on U;

(3) For all ¢ > 0, df, is a quasi-distance on U, i.e., there exists A > 1 such that for all
z,y,z €U

dp(z,y) < A(dp(z,2) +dp(z,9)).

In the following lemmas, we will be under the assumptions of Theorem Without loss
of generality, we can assume that the neighborhood U is the same as in Lemma possibly
after shrinking it.

Lemma 3.2. There erists B > 0 such that for all piecewise C*-smooth curve y: [0,1] — DNU

with endpoints x,y we have
h(z)
Cp(y) > ‘log <>
™ h(y)

Moreover, if v: [0,1] — DN U is a straight segment contained in 71 (€) with € € 9D N U,
then

lr(y) < 'log <Z§B) ’ + B.

Proof. By (4) in Lemma for those t € [0,1] for which () exists we have |%5D(fy(t))| =
[|(5(t))n ||, so by the lower estimates of F'

X .
KF(’Y)E/O (1—w(5D(’Y(t))))mdt
h 1£600/1)
_/0 (1 —w(@p(v(¥))) 250 (7(1))

1450 (~(t)) 1 L w(p(y(t)Lop(y(t))
di d
> /O dt /0

2p(v(1) 2

()5 20

that implies that statement since by hypothesis fos #du < +o00.

>

Finally, if v is a straight line segment, using the upper estimates of F' we obtain with a

similar computation
h(m))‘ 1 /5 w(u)
log < + = ——=du.
h(y) 2Jo w

5

lp(y) <




O
Lemma 3.3. There exists A > 1 such that for all piecewise Ct-smooth curve v: [0,1] — DNU
with endpoints x,y we have
(o) > -1 1T@) = T

5/

where 6, := maxe(o1] Op(Y(t)). Moreover, for all z,y € DNU with dp(x) = dp(y) =: do there
exists v: [0,1] = D NU with endpoints x,y and 0p(y(t)) = do such that

(et < Aot é—/;(y)\y

Proof. Set o = mo~. By (7) in Lemma [2.1] for those ¢ € [0, 1] for which 5(¢) exists we have

la@)] < 2/ (3(@)zll-
Clearly we have fol |la(t)||dt > ||m(z) — 7(y)], so

PGzl

)
2 Jo 5D(’Y(t)
o Jo lla(®)1dt
2

c|m(z) —=(y)l
2 gz

Y

For the second part, since 0D NU = DN B (o, ), the intrinsic and extrinsic distances are
bi-Lipschitz, that is there exists A > 1 such that for all £;,& € dDNU we may find a piecewise
Cl-smooth curve a: [0,1] — dD NU connecting them with fol |la(t)||dt < Al|& — &|. Let «
such curve for 7(z), m(y) € 0D NU, and consider ¥(t) := a(t) — dong - Clearly moy = a and
dp(y(t)) = dp. Noticing that (v(¢))ny = 0, again by (7) in Lemma we have

1 .
EF(’)/) S Cl/o H(/is(lt/)Q)T”dt
0

i ()| dt
S 201T
0
I (x) — 7 (y)|
0

Let us now combine the two previous lemmas.

Lemma 3.4. There exists B > 0 such that for all piecewise C'-smooth curve y: [0,1] — DNU
with endpoints x,y we have

tr(7) > 2log <||7r<x> — ()| +h() vh<y>> B

h(z)h(y)
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Proof. The proof is based on a dyadic decomposition similar to the one in [I, Theorem 1.1].
If m(x) = w(y) the estimate follows from Lemma so we may assume 7(x) # 7(y).
Set H := maxyc[,1) h(7(t)) and to = min{t € [0,1] : h(y(t)) = H}. We divide the curve in
two parts, 1 = fy][o,to] and vy = ’y\[to,l]. We will study ~1 and o separately, starting with
the first.

Since h(z) < H there exists k > 1 such that 27 *H < h(z) < 2= "D H. Define 0 = 59 <
51 < -+ < sp < tg as follows. Let s9 = 0 and s; = min{s € [0,to] : h(y(s)) = 2= *=DH} for
j=1,...,k. Define z; = y(s;) for j =0,...,k. We divide the problem into two cases.

Case 1.1: there exist [ € {1,...,k}

—(k=0)

() = 7 ()]l

Since 6p(v(t)) < 2-F=DH for all t € [s;_1, 5], by Lemma

7 (z11) = ()| >

_illm(zi—y) — m(a) || 7 (z) = 7 (y)|]
EF(/Yhslfl,sl]) > A 2_(k_l)H > A ?

So by Lemma [3.2]

Cr(m) = Lr(Vo,s_11) +€r (Vs _1,80) +€F (Y [s,,t0])
> log (h(mz—1)> +A71||7T($)—7T(y)|| +log( H )—B
h(z;)

- h(z) H
> log (h—(ch)) + Alw - B.

We retain this estimate and move on to the other case.
Case 1.2: forall j =1,...k

9—(k—j)
7 (2j—1) = m(@j)ll < —g— () ==y
This implies that if we set t1 = s
k
(@) = e (y(E ) < D lIm(@j—1) = w(ay)] < illﬂ(fﬁ) —m(y)ll-
j=1

Moreover, again by Lemma [3.2

Cr(Vjo,1)) = log (}fﬂj)) _ B

Now we address 79: reasoning in the same way, we have two cases.
Case 2.1:

Case 2.2: there exists t2 € [to, 1] such that

I ((t2)) =7 ()|l < illﬂ(x) — ()l

and

tr(Yltp,1)) = log <ffy)> -
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We now need to consider all four combinations. If Case 1.2 and Case 2.2 occur simultaneously,
we have

[ (v(t1)) =m(v(t2)) | = 7 (2) =7 (y)|| =7 (2) =7 (@) = 7 (v (E2)) =7 ()| = %Hﬂ(l‘)—ﬂ(y)”:
so by Lemma [3.3]
Cr(y) = Lr (Vo) + €F (Vs 1) + €F (Vo 1))

> o (1) 4 OOy (LY

a 1l (@) = 7 (y)l

In the other three combinations, it is easy to see that we still obtain

) L ylr@ =Tl

H

lp(y) > 2log (h(x)h(y)

Now the minimum of the function

u (@) — 7wy
u +— 2log (h(a:)h(y)) +A —

is at u = AQ_I |m(x) —m(y)]| > 0, so
lp(y) > 2log (HW(?(:U);((;))H> _
Finally, combining with Lemma [3.2] we have
|7 (x) — ()]l h(z) V h(y)
/ max { 2log | ———+ | ,2log | ——= _ B
= { ¢ ( A@h) ) ; <\/h<x>h<y>> }

(@) = 7@l hz) v hy)
= 2log [ max , - B
g( { V@) | VR@h() }>

 1og [ IF@ = 7@ +h@) VW) _
) h@h(y) |

From the previous lemma, we easily obtain the following corollary.

Corollary 3.5. For all V CC U, there exists B > 0 such that for allx € DNV

1 1
inf d > -1 - B.
iy ) 2 g lo8 <5D(~’C))

Proof. Let v: [0,1] — D be a piecewise C'-smooth curve with v(0) =z € DNV and (1) €
D\U. Consider t* := inf{t € [0,1] : v(¢t) € D\U} and set y = y(¢*), then by Lemma [3.4] there
exists B > 0 such that

() 2 Cr(rlop) > 2log <||7r<x> — ()| + (@) v h(y)) s

h(z)h(y)

1 |7 (z) — 7 (y)l + h(z) vV h(y)
log( > +2log( 0 ) — B.
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Since V is relatively compact in U we may find B > 0 such that

log <||7r<m> — 7 (W) + h(z) v h(y)) .

h(y)
obtaining
lp(v) = 1log< : ) - B
2 op(x)
We conclude taking the infimum over all piecewise C'-smooth curves. ([l

We are now ready to prove the main theorem.

Proof of Theorem[1.1l Let V be a neighborhood of ¢ relatively compact in U and let z,y €
D NV. We divide the proof into two cases, depending on whether the points are ”close” or
" far”.

Case 1: ap(z,y) << 1.

We want to prove that there exists A > 1 such that for all z € DN U and v € R? we have

1
W < AF(z,0). (3.2)

lim sup
t—0

Since log(1 +t) ~ t if ¢ is small, we need to study

lim sup <H7T( x) — m(x +tv)|| + h(z) V h(z + tv) _1>'

=0 h(z)h(z + tv)
Now by (7) in Lemma

— t
i sup 17 (@) = T+ 20)]
t—0 t

|7 (2) — m(z + t)] [or ||
e ( W)z + tv) > = @)

< 2[vr|,

SO

For the second part, notice that
h(:c)vh(:c+tv)_1:\/h()\/ha:+tv Vh(z) /\hx+tv)
h(z)h(x + tv) Vh(z) A h(z + tv)
Moreover, by (5) in Lemma [2.1| we have

Vh(z) V h(z + tv) — /h(z) A h(z + tv) |\/h(:1:+tv)—\/h(:c)|:%th(a})_%HUNH-FO(t),

and so

1m2 h(z)V h(z +tv) 1) = lon]]
=0 t h(z)h(z + tv) 26p(z)
Finally, we can find A > 1 such that for all x,y € DNU

[n]] oz ||
4 < AF
20p@) T Ay = AF@ ),

and so we proved (3.2)). By [12, Theorem 1.3], this implies that for all z,y € DN U
dp(z,y) < Ad(z,y)

and so by (1) in Proposition

d(z,y) > A~ Vdh(2,y) > db (2, y).
9



For the upper bound, we may assume h(y) > h(z). Consider ' = m(x) — h(y)*ny ) € DNU.
Clearly we have d(z,2') < Alog (%), o

d(z,y) < d(z,2') +d(2,y) < Alog (h(y)> 4 allm@) =7l

h(z) h(y)

Finally, since there exists C' > 0 such that ¢t < log(1 + Ct) for 0 < t << 1, we have

d(z,y) < 2Alog< ZE:ZZ;) +AH7r($)h(—y)7r(y)H

hy) o Im(@) =7l
S2A< M) s E@ﬁ@))
=2Aap(z,y)

<2log(1+ ACap(x,y))

= dp°(z,y).

Case 2: ap(z,y) >> 1.

For the upper bound, let ¢ be the constant of Lemma We set h = (||n(z) — 7(y)|| +
h(z) V h(y)) A e'/? and we consider 2/ = 7(x) — W2y, § = 7(y) — h®ng,. Since U has
finite diameter, there exists A > 1 such that ||7(z) — 7(y)|| < Ah. Now, by Lemmas and
we have

d(z,y) < d(z,2") +d(@', ') +d(y',y)

<o (1) Al ()

h () — 7(y)]
0 A
S”g< mmmw>+ B
l(a) = w()]| + h(z) V ()
Sm%( h@)h(y) )+B

— 2log(A + Aap(, 1))
< 2log(1 + Aap(, y))

= d‘g(x,y).

For the lower bound, let v: [0,1] — D be a C! piecewise curve with endpoints z,y € DNV
Assume again h(y) > h(z). If ¥([0,1]) C DN U, by Lemma[3.4]

lr(7) = 2log(1 + ap(x,y)) — B
> 2log(1+ A ap(z,y))

1
=dp (z,9).
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In the other case, set t; := inf{t € [0,1] : v(¢t) ¢ U} and to = sup{t € [0,1] : v(t) ¢ U}.
By definition v[jg;,) € DN U and 7|y, € DN U. Finally, by Corollary 3.5

() = r(Vjo,1) + LF(Vjta1))
> d(z,v(t1)) + d(v(t2),y)

1
= 2los (wu) -7

> 2log(1+ ap(z,y)) — B
> 2log(1+ A 'ap(z,y))
=dp (z,y).

So in both cases, if we take the infimum over all piecewise C'-smooth curves connecting x

with y we obtain the lower bound

d(z,y) > dp  (z,y).

This completes the proof. O

We conclude the section by noticing that the estimate ([1.4)) holds in a neighborhood of
the boundary if all the boundary points satisfy the assumptions of the main theorem.

Corollary 3.6. Let D C R? be a bounded domain. Let F: D x RY — [0, +00) be a Finsler
metric on D and assume that for all £ € 0D there exists a neighborhood U such that (L3))
holds. Then there exist a neighborhood U of 9D and 0 < ¢ < 1 < C such that for all
z,y e DNU

d$(z,y) < d(z,y) < d(z,y).

4. FINSLER METRICS THAT SATISFY THE ASSUMPTIONS OF THEOREM [I.1]

In this section, we prove that several natural metrics in domains of R? satisfy the assump-
tions of Theorem [I.1] including the Kobayashi-Hilbert minimal metric in strongly convex
points, the minimal metric in convex and strongly minimally convex points, and the k-quasi-
hyperbolic metric metric, recently introduced by Zimmer and Wang in [13], in k-strongly
convex domains.

The upper bounds for these metrics all arise from the C? regularity of the boundary and
the decreasing property with respect to the Beltrami-Klein metric of the ball: let B¢ C R? be
the unit ball, then the Beltrami-Klein metric of B is

(=[Pl + [z o) PN el (@, o) \"?
C’Cﬁd(“”“)‘( TEERE ) _<1—chll2+(1—\lw!\2)2>'

By composing a translation and a dilation, we obtain the Beltrami-Klein metric for a
general Euclidean ball.

Proposition 4.1. Let D C R? (d > 2) be a domain and & € OD be a C*-smooth boundary
point. Let F: D x RY — [0,4+00) be a Finsler metric on D with the property that if B is an
Fuclidean ball contained in D then

F(z,v) <CKp(z,v), VxeBCDveR%
11



Then there exists U neighborhood of & and Cv,Cs > 0 such that

lowl? o, lorl*) "2
40p(x)2 " Popla))

F(z,v) < <(1 + C1op(a))

The proposition follows immediately from the following upper bound estimate in the ball.

Lemma 4.2. Let B, C R? (d > 2) be an Euclidean ball of radius r > 0. Then for all x € B,
different from the center and v € R* we have
lonf?

CKp, (z,v) < ((1 + 37“7153T(x))m + 1+t (2))

1 Jor)>\"?
2r ép, () ’

Proof. First of all, CKga can be rewritten in the following way if x is not the origin

/2
(0 ow]? ozl
CKpalz,v) = ((1 e o)

So

1/2
r2 [ENE 1 ||vT||2>/
22 = l2)2 "+ el 7 = ]

. 2

Now, since (;%P <1+2(r—t)and %—&—t < 1+ L(r—1t)) for t €0, 7], we have
1 for|2 )"
2rép,.(x) '

CKp,(z,v) = r'CKga(r~ta,v) = <

2
CKp,(z,v) < ((1 + 37‘1(53r(x))4(|5’:\7(!;)2 +(1+ riléBT(:c))

|

Proof of Proposition[{.1l Let U and ¢ be as in Lemmal[2.1] For every € U, the ball B(w(z)—
Ene,€) is internally tangent at 7(x), and moreover x € B. Since dg(x) = dp(x), the estimate

follows from the assumptions and from Lemma O

4.1. Kobayashi-Hilbert metric. In [9], Kobayashi introduced a projectively invariant met-
ric in the domains of R?, generalizing the well-known Hilbert metric in the convex domains
of R,

Let I := (—1,1) and D C R? be a domain. The Kobayashi-Hilbert metric is the Finsler
metric kp: D x R — [0, +-00) defined as

kp(x,v) :==inf{1/|r|: f: [ — D projective map, f(0) = x, f'(0) = rv}.
The Kobayashi-Hilbert pseudodistance Kp of D is the intrinsic distance of kp.

The Kobayashi-Hilbert pseudodistance can also be characterized in the following way: it
is the largest pseudodistance such that for every projective map f: I — D we have for all
s,tel

s—1 t—1
Notice that from the definition that the Kobayashi-Hilbert metric has the decreasing property,
i.e., if D1 C Do, then

Ko (). 1(0) < Hr(s.0) = g flos (251 151 )]

kD2 (CC,’U) < kD1 (.T,U)
for all z € Dy and v € R4,

It turns out that Kobayashi-Hilbert metric has an explicit expression: set

Funk(x,v) :=sup{t >0: 2+t 'v ¢ D}
12



with the notation sup @ = 0, then
1
kp(z,v) = i(Funk(:U, v) + Funk(z, —v)).

As happens in complex geometry with the Kobayashi and Carathéodory metrics, we can
dualize the definition of Kobayashi-Hilbert distance and introduce the Carathéodory-Hilbert
distance in the following way

Cp(z,y) :=sup{H(f(z), f(y)) : f: D — I projective map}.

From Schwarz’s lemma from projective self-maps on I, it follows that Cp < Kp. Moreover,
if we denote by D the convex hull of D, then

Cp = Cp.

Finally, if D is convex, the two distances coincide and are equal to the Hilbert metric.

In order to obtain estimates for the Kobayashi-Hilbert metric near strongly convex points,
we need a good lower bound in the case of the ball. Recall that the Hilbert metric in the ball
coincides with the Beltrami-Klein metric.

Lemma 4.3. Let B, C R? (d > 2) be an Euclidean ball of radius r > 0. Then for all x € B,
that is not the center and v € R% we have
lon]? | 1 ||vTu2>”2

CKp,(z,v) > (W + 2r ép(x)

Proof. It easily follows from the calculations in the proof of Lemma [4.2 O

We can now prove the lower estimates at strongly convex points, assuming that the domain
is convex and bounded.

We recall that, given a domain D C R%, a boundary point ¢ € 9D is said to be strongly
convez if, there exists a (or equivalently, for all) C2-smooth local defining function p: U — R

at £ such that Hess¢(p), the Hessian of p at &, is positive definite on the tangent space
T¢0D := {v € R?: (v,n¢) = 0}.

Proposition 4.4. Let D C R? (d > 2) be a bounded convex domain and & € D a strongly
convexr boundary point. Then there exist a meighborhood U of & and ¢ > 0 such that all

ze DNU and v € R?
/2
lonl> . Jor)?\!
> .
kp(z,v) > (45[)(1’)2 +65D(:1:)

Proof. Since D is bounded convex and £ is strongly convex, it is contained in a Euclidean
ball Br of radius R tangent at £. The estimate follows immediately from Lemma [4.3 and the
decreasing property of the Kobayashi-Hilbert metric. ([l

In order to obtain a lower estimate in the case where we do not assume global convexity,
we need the following strong localization result. If D C R? is a convex domain, we say that a
boundary point & € 9D is strictly convex if for all n € OD\{{} the segment (£,n) is contained
in D. Moreover, we define

Op(z,v) = dguc(z, (x + Rv) N dD).
13



Proposition 4.5 (Strong localization of Kobayashi-Hilbert metric). Let D C R? be a domain
and & € OD be a boundary point. Assume there exists a neighborhood U of £ such that DNU
is convex and £ is a strictly convexr for D NU. Then there exists a neighborhood V. .CC U of
¢ and C > 0 such that for allz € DNV and v € R¢

kpnu(z,v) < (14 Cép(x))kp(z,v). (4.1)

Proof. Let S%~1 denote the unit sphere in R?. Set D’ = DNU. Let z € D' and v € S1,
then if the two intersections of x + Rv with 9D’ are both in 9D, then kp(x,v) = kp/(x,v),
and therefore (4.1)) holds.

For this reason we focus on the case where at least one of the two intersections is not in
oD.

Claim 1: There exists V; CC U neighborhood of € such that for all x € D N V; and
v € §1 we have 6p(z,v) = dpr(x,v).

Proof. By contradiction, there exists a sequence of points z, in D converging to £ and a
sequence of lines [, passing through z;,, such that their intersections with 9D’ (which we
denote by a, and b,) are both in OU.

Up to subsequences, we can assume that a, — ax and b, — bo. Notice that as, by and
¢ are distinct. This means that the segment [aoo, boo| is contained in dD’; but £ € (a0, bso),
violating the strict convexity of £. ([l

Let 7(xz) € OD’ be a closest point (not necessarily unique), and set n, := Wm and
UN = (U, Ng)Ng.

Claim 2: There exist V5 C Vi neighborhood of £ and ¢; > 0 such that if x € D N V5 and
v € S%71, then if at least one of the two intersections of x + Rv with 9D’ is not in 0D, then
|lon]] > 1 > 0.

Proof. By contradiction, there exists x, — ¢ and v, € S¥~! with |(v,)n|| — 0 such that one
of the intersections of I, := z, + Ruv, with 9D’ is not in D (let us denote it by a,). Up
to subsequence, we can suppose that a, — as € D' and v, — v € S¥"1. In this way, I,
converges to a line I, given by £ + Ruv,. Notice that I, is a line tangent at &, since is the
limit of tangent lines 7(x,) + R(v, — (v,)n). Finally, since aoo € loo and ao, # &, the segment
[€, aco) 1s contained in D', violating the strict convexity of &. O

Claim 3: For all z € V5 and v € S%1 we have

5D’ (l’)

(0 = 1

Proof. Consider the half-space tangent at 7(x)
H:={yeR®: (y —n(z),z — n(x)) > 0}.

Since D' C H and dp/(z) = dy(x), we have

dpr(x) Op ()
opr(z,v) = dp(x,v

7= [on |l

14



Let 2 € Vo and v € S 1. If least one of the two intersections of z + Rv with 9D’ is not
in 0D, by Claim 2 |luy|| > ¢1 > 0, then if we set ca := dgy.(D N Vo, D\U) > 0 we have by

Claim 3
1 1
<5D’(xvv) " C2>
1 1
<5D/($,’l}) + ClcQHUNH>

(50/ (lx, 0t cllcQ 66DD(a(sx1)1)>

—(1+ C5D’($))W

— 1+ CéD'(x))%D(ll’U)

< (1+Cop(x))kp(x,v).

kD’(«T,U) <

(VAN
N~ N~ N

O

Remark 4.6. If, under the assumptions of the previous proposition, we add the further
assumption that D is hyperbolic (that is, does not contain affine lines), then we have (4.1
for every relatively compact V in U (with the constant C' that depends on V).

Finally, by combining the localization result with Proposition [4.4] we obtain.

Proposition 4.7. Let D C R? (d > 2) be a domain and & € OD be a strongly convex boundary
point. Then there exist a neighborhood U of & and c1,ca > 0 such that all x € DNU and
v e R?

lenl® |, . llorl®"?
p(a)? " Pop(z))

Similarly to [I, Proposition 1.2], one may prove a more precise estimate.

kp(xz,v) > ((1 —c10p(x))

Proposition 4.8. Let D C R? (d > 2) be a domain and & € OD be a strongly convex boundary
point. For any e € (0,1) there exist a neighborhood of U of & and ¢ > 0 such that for all
reDNU and v € RY

v 2 TL), U 1/2
(1= bl el + = T < (o)

40p(x)?
o |12 () o)\ 2
< <(1+65D($))4‘(‘SD]\([’1")2 + (1+6)W> ’

where H(m(x);-) is the Hessian of the signed distance to the boundary at w(x).

4.2. Minimal metric. In real Euclidean space, Forstneri¢ and Kalaj in [7] defined the min-
imal metric, the analog of the Kobayashi metric in the theory of minimal surfaces.

A map f: D — R? (d > 2) is said to be conformal if for all ¢ € D we have
f2(OI = [1£y (Ol and (f2(C), f,(C)) =0

where ¢ = (x,%) are the coordinates of D C R2. Moreover, we say that f is harmonic if every
component of f is harmonic. If D € R? (d > 3) is a domain we denote by CH(ID, D) the space

of conformal harmonic maps f: D — D.
15



The minimal metric of D is the Finsler metric given by
gp(z,v) =inf{1/r: f € CH(D, D), f(0) = z, f,(0) = rv}, =z € D,veR?,

and the associated intrinsic distance pp: D x D — [0, +00) is called minimal pseudodistance.
As is clearly evident from the definition, the minimal metric also satisfies the decreasing
property.
We now introduce the concept of a strongly minimal convex point, which is the ana-
logue in minimal surface theory of strongly convex points in Hilbert geometry and strongly
pseudoconvex points in complex analysis.

Definition 4.9 (Minimal strongly convex). Let D C R? (d > 3) be a domain. The boundary
point £ € D is called strongly minimally convex if there exists (or equivalently, for all) C%-
smooth local defining function p: U — R at £ such that the smallest two eigenvalues A\; and
A2 of Hess¢(p)|r.op satisfies

A1+ Ay > 0.

Note that a strongly convex boundary point is strongly minimally convex.

For bounded strongly minimally convex domains (i.e., every boundary point is strongly
minimally convex), Drinovec-Drnovsek and Forstneri¢ have shown in [4] that we have the
following lower estimate for the minimal metric: let D C R? bounded strongly minimally
convex, then there exists ¢; > 0 such that for all z € D and v € R?

[[o]]

o) (4.2)

gp(z,v) 2 1

Moreover, there exist ¢a > 0 such that for all z € D close to 9D and v € R? we have

The previous estimates were sufficient for the first author to prove the Gromov hyperbolic-
ity of bounded strongly minimally convex domains (see [5]). However, for the second estimate
(in the normal direction), it is not clear how to improve it to fall within the hypothesis of
Theorem For this reason, we restricted ourselves to the convex and locally convex case.

Note that at a locally convexr boundary point £ € 9D, that is, there exists a neighborhood U
of & such that DNU is convex,  is strongly minimally convex if and only if then Hess¢(p) ’Tga D
has at least d — 2 positive eigenvalues, i.e., it is 2-strongly convex in the sense of Definition

4.12)

Proposition 4.10. Let D C R? (d > 3) be a convex domain and & € dD be a point strongly
minimally convez, then there exist a neighborhood U of € and ¢ > 0 such that for allx € DNU
and v € R? we have

[on |l [or | } ‘

250 () 2 op(x) L2

gp(z,v) > max {

Proof. The tangential component easy follows from (4.2) and the localization result [4, The-
orem 8.5].

For the normal component, let z € D close to £, and consider the half-space

H:={zcR: (z - m(2), Nr(z)) < 0}
16



By convexity D C H, the decreasing property of the minimal metric and [5, Lemma 5.3]

el
20p(x)’

gD(x7U) > gH(.T,’U)

O

Finally, from the strong localization result in [4, Theorem 8.5], we can slightly relax the
convexity assumption, passing from global to local convexity.

Proposition 4.11. Let D C R? be a domain and € € 0D be a strongly minimally convex and
locally convex boundary point. Then there exist a neighborhood U of & and c1,co > 0 such that
forallz € DNU and v € R we have

gp(x,v) > max {(1 —c19p(x))

[on] [[or | }

200 (x)" P op(z)1/?

4.3. k-quasi-hyperbolic metric. In this last subsection, we study a metric recently intro-
duced by Wang and Zimmer in [I3]. Let D C R? be a domain and let k € {1,...,d}. For all
xz € D and v € R?, define

5%” (z,v) = sup{dpuc(z, (z+V)NAD) : V C R? a k-dimensional linear subspace with v € V}.
Then the (generalized) k-quasi-hyperbolic metric on D is defined by

[v]]

25g€) (x,v) ,

¢ (2, 0) ==

where 2 € D and v € R%. We denote with dg) the associated intrinsic distance.

Note that, compared to the initial definition by Wang and Zimmer, we normalize the
metric with a multiplicative factor %, since our goal is to prove estimates as in the hypothesis
of Theorem [l

The k-quasi-hyperbolic metric has a strong relationship with several important metrics

(1) qgl) is the quasi-hyperbolic metric;
(2) qg) is bi-Lipschitz to the Kobayashi-Hilbert metric;

(3) D is convex and d > 3, qg) is bi-Lipschitz to the the minimal metric (see [13, Propo-
sition 10.1]).

Let us now introduce the natural domains where we study the k-quasi-hyperbolic metric.

Definition 4.12 (k-strongly convex domains). Let D C R? (d > 2) be a domain. The
boundary point & € 9D is called k-strongly convex boundary point if it is locally convex and
if there exists (or equivalently, for all) C2-smooth local defining function p: U — R at & such
that Hess¢(p)|T.op has at least d — k positive eigenvalues.

Remark 4.13. The condition on the Hessian mentioned above is equivalent to requiring that
the local defining function is strongly k-plurisubharmonic in the sense of [8, [6].

Notice that a boundary point is 1-strongly convex boundary point if and only if is strongly
convex, and it is 2-strongly convex if and only if it is locally convex and strongly minimally
convex.

The following property can be viewed as the real and k-dimensional analogue of 2-convexity

in the sense of Mercer [I1].
17



Proposition 4.14. Let D C R? (d > 2) be a convex domain and & € OD be k-strongly convex
boundary point, then there exist a neighborhood U of & and C > 0 such that for alx € DNU,
v e R?

8 (2,v) < Cop(z)'/2,

Proof. Since k-strong convexity is an open condition, we can find a neighborhood U of £ such
that 7(z) is k-strongly convex for all x € U. Let 2 € DNU. By the k-strong convexity, there
exist A1(x), ..., Ag—x(z) positive eigenvalues and vi(z),...,vg—i(z) orthonormal eigenvectors
of HesSq(z)(p)|1,, oD By compactness we can find A > 0 such that A < A;(z) for allz € DNU
and j =1,...,d— k. This means that

\ d—k

D C DTr(J:) =qYE Rd : <y - 7T(£)7”7r(x)> + 5 Z<y - W(.%'),’Uj(.%’))2 <0
j=1

Notice that ép(z) = ép,, (z). Finally, a simple calculation shows that there exists C' > 0
such that for all v € R?

5

w8 0) < Cop ) (2)"/?,

and so
k k
557)(9377)) < 5(Dw)(x)(xa v) < CdDw(z)($)1/2 = Cop(x)'/2.

O

Let us now study the case of the Euclidean ball, showing that all the metrics coincide
(except for the quasi-hyperbolic one).

Remark 4.15. Let D C R (d > 2) be a domain, then by definition for all 1 < ky < kg < d,
we have for z € D and v € R¢

k k
qul)(x, v) < q§32)(:v, v).

Proposition 4.16. Let d > 2. For all k € {1,...,d — 1} we have
(k) _ (1)

qu = Q]Bd .
Proof. Since for all z € B and v € R?
k d—
al (@,0) < o < gl (@) < - < gy Vv,

it is sufficient to prove that
dha ' (2,0) < g (@,0).
The result is obvious if v = 0, so we may assume v # 0. Let ¢ € 9B? be a boundary point
such that 5];) (xz,v) = ||z — &||. Let I be the line joining x with &.
If [ passes through the origin O, let H any hyperplane containing [, then B¢ N H is a ball
of dimension d — 1 centered at O. Since O, x and & are collinear, we have

5](3‘2_1)(33, v) > dpye(z, (z + H) N OBY) = ||z — &|| = (51(81(1)(30,1)),
(1)

and so qI(Bi_l)(x, v) < qud (x,v).

If, on the other hand, [ does not pass through the origin, let O’ tlﬂrojection of O onto [.
Now let H be the affine hyperplane containing { and orthogonal to OO’. Notice that B¢ N H
is a ball of dimension d — 1, centered at O’. Since O’, x and £ are collinear, we obtain again

q]gi_l)(m, v) < qléld) (x,v). O

18



(k)

a Mmetrics in the half-

From an explicit calculation, we can obtain the expression of the ¢
space He.

Proposition 4.17. Let H? := {x € R? : 2y > 0} (d > 2) be the half-space. Then for all
Ee{l,....,d =1}, 2 = (21,...,2q) € H? and v = (v1,...,v4) € R, we have

(k) _ |ul
qu (x7 U) 21;1 *

Finally, we can prove the necessary estimates for Theorem at k-strongly convex points.

Proposition 4.18. Let D C R¢ (d > 2) be a convex domain and let € € OD be a k-strongly
convez boundary point, then there exist c,C1,Co > 0 and a neighborhood U of & such that for
allz € DNU and v € R? we have

v (% v 2 (% 2\ 1/2
max { 2’(’51;?9‘5')’05[1'(31‘/2} < q®(z,0) < ((1 + C1op(2))) 4|(|5Dﬂ)2 +Co !DT(@‘«)) .

Proof. Upper bound: Let B be an Euclidean ball. Then by Proposition and [13| Propo-
tision 10.1] for all z € B and v € R? we have (being careful with the different normalization

of qg))

a’(2,0) = g (w,v) < CKp(a,0).
So the upper estimate follows from Proposition

Lower bound: First of all, by Proposition there exists ¢ > 0 such that for all z € D
and v € R?

(k) o] o]
ap (z,v) = zc .
b 25(Dk)(x, v) dp(x)1/?
For the normal component, it is sufficient to reason as in Proposition U

The estimates from the main theorem immediately imply the Gromov hyperbolicity of
the k-quasi hyperbolic metric in k-strongly conver domains, which are bounded convex do-
mains where all the boundary points are k-strongly convex. For more details on Gromov
hyperbolicity, see [2].

Corollary 4.19. Letd > 2 and k € {1,--- ,d—1}. If D C R? is a k-strongly convex domain,
then (D,dg)) is Gromouv hyperbolic.

Proof. From Corollary there exists a neighborhood U of the boundary such that ([1.4))
holds. This implies that there exists B > 0 such that for all x,y € DNU

7 (z) = ()l + ~(z) V h(y) | _ (), og [ Im(@) = 7(@)| + h(z) V h(y)
210g< h@h() > B < dp’( ’y)§21g< ) )+B.
The proof concludes as in [I, Theorem 1.4] and [5, Proposition 4.4]. O

Note that the Gromov hyperbolicity for the k-quasi hyperbolic metric in convex domains
has been characterized by Wang and Zimmer in [I3, Theorem 1.5].

We conclude with a remark.

Remark 4.20. Let D C R? be a k;-strongly-convex domain, then for all k; < ks < d — 1
there exists A > 1 such that for all z € D and v € R?¢

g% (,0) < g5 (2,0) < Agl (2, v).

This is a consequence of the Theorem [I.1] and Proposition
19



5. A RIGIDITY RESULT IN CONVEX GEOMETRY

In this section, we will characterize convex domains D C R? where
58)(:5,1)) = (5%1_1)(3;, v), Vze& D,veR% (5.1)

Let us begin with some basic notions of convex geometry.

Let D C R? be a convex domain. Let a € dD. An affine hyperplane H passing at a is
a supporting hyperplane at a if D N H = @. A normal line at a is a line passing through a,
orthogonal to a supporting hyperplane at a. A face is the convex subset D N H, where H is
a supporting hyperplane.

Let a € R? and v € R? non zero. A half-space is a domain of the form
{z eR?: (z —a,v) <0}

A slab is a domain of the form
{z eRY: [(x —a,v)| < 1}.

We can now state the main result of this section

Theorem 5.1. Let D C R? (d > 3) be a conver domain. Then (B11) holds if and only if D is
either

(1) an Euclidean ball;
(2) a half-space;
(3) a slab.

Proof. We already proved that in the Euclidean balls (5.1)) holds (see Proposition [4.16)). It is
not difficult to see that the same is true for the half-spaces and slabs.

For the other direction, let D C R¢ be a convex domain such that (5.1)) holds. We divide
the proof in several parts.

First of all notice that if D has at most 2 faces, then it is either a half-space or slab, so
we may assume that D has at least 3 faces.

Part 1: Let a,b € 0D not on the same face, and let I, [, be two normal lines at a and b
respectively. Then [, and [, are coplanar.

Since a and b are not in the same face, (a,b) C D. Let H, and Hj, be two supporting
hyperplanes at a and b orthogonal to the lines [, and [ respectively. Consider m = “TH’ the

midpoint between a and b, and v = %. By 1) we have
55 (m.v) = 635 (m,v).

which means that there exists an affine hyperplane H passing through a and b such that

B(m,@)ﬂHCD.

This implies that H,NH and H,NH are parallel. Moreover, ab L (H,NH) and ab L (HyNH).
Consequently, I, L (H,NH) and I, L (HyNH), so since codim(H,NH) = codim(H,NH) = 2,
the two lines [, and [, are coplanar.

Part 2: Each point on the boundary is an extreme point, meaning that all the faces are

singletons.
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By contradiction, let a,b € 0D be two distinct boundary points in the same face F' of
D. By definition, there exists an hyperplane H such that F = 0D N H. Let [, and [ be
the two lines perpendicular to H, passing through a and b, respectively. Clearly, I, and [
are coplanar, so there exists a plane II that contains them. Now since d > 3 we can find a
boundary point ¢ € 0D\(F UII) and a normal line /. at ¢ that is not parallel at II. Such a
line exists because otherwise D is a cylinder over I, and it is not difficult to see that the only
cylinders where holds are half-spaces and slabs.

Since I, and [, are coplanar but not parallel, they intersect at one point. The same is true
for I and [, and this implies that [. lies in the plane II, leading to a contradiction.

Part 3: All the normal lines intersect at one point O.

Let a,b € 0D be two distinct boundary points with normal lines [, and [;. From Part 1,
there exists a plane II that contains I, and l;. Consider ¢ € 9D\II and a normal line [, at ¢
that is not parallel to II. We conclude as in Part 2.

Part 4: Each point a € 9D\{O} has a unique supporting hyperplane, which implies that
dD\{O} is Cl-smooth hypersurface.

Suppose that there exist two distinct normal lines at ag € 0D. This implies ag is the
point O of Part 2, and thus, every point a € 9D\{O} has a unique supporting hyperplane. A
classic result from convex geometry (see, for example, [3]) ensures that D is C'-smooth.

Part 5: D is an Euclidean ball.

Up to a translation, we can suppose that the point O of Part 2 is the origin. Let f: R? — R
the function given by f(x) := ||z||. Let a € 9D\{O}, since the (unique) normal line at a passes
through the origin,

T,0D = {v e R?: (x,a) = 0} = (Ra)™.

Now dfa|7,0p = 0, which means that f is constant in 9D\{O}, and so 0D is a sphere centered
at the origin. O
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