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Abstract

In this paper we study qualitative properties of initial traces of solutions to the porous
medium equation with power nonlinearity, and obtain necessary conditions for the existence
of solutions to the corresponding Cauchy problem. Furthermore, we establish sharp sufficient
conditions for the existence of solutions to the Cauchy problem using uniformly local Morrey
spaces and their variations, and identify the optimal singularities of the initial data for the
solvability of the Cauchy problem.
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1 Introduction

Let u be a nonnegative solution to the porous medium equation with power nonlinearity

{ Ou = Au™ + uP in RN x (0,7),

E
u>0 in RN x (0,7), ()

where N > 1,1 <m < p, T € (0,00], and 9; := 9/9t. In this paper we study qualitative
properties of initial traces of the solution u, and obtain necessary conditions for the existence of
solution to the Cauchy problem

Oyu = Au™ + uP in RY x (0,7), P)
u(-,0) = p in RV,

where y is a nonnegative Radon measure in RY. Furthermore, we establish sharp sufficient

conditions for the existence of nonnegative solutions to problem (P), and identify the optimal

singularities of the initial data for the solvability of problem (P).

Let M denote the set of nonnegative Radon measures in RY, and £ denote the set of
nonnegative locally integrable functions in RY. We often identify du = u(z) dx in M for u € L.
For any measurable set F in R? where d = 1,2,..., let £L(E) be the d-dimensional Lebesuge
measure of E. For any f € £, z € RY, and r > 0, set

1
dr = ——— / du,
]é(z,r) f 'CN(B(Zv T)) B(z,r) f

where B(z,r):={x ¢ RN : |z — 2| <r}. Set

Pm ::m—{—%, 0 = %, 0 ::;ZQZ(QP_WIL). (1.1)
The study of initial traces of nonnegative solutions to the Cauchy problem for parabolic
equations is a classical subject, and qualitative properties of initial traces have been studied for
various parabolic equations. See e.g., [4] for linear parabolic equations, [5,21] for porous medium
equations, [10,11] for parabolic p-Laplace equations, [27,29,49] for doubly nonlinear parabolic
equations, [9] for fractional diffusion equations, [1] for Finsler heat equations, [3,14,16,22-25,
28,45] for parabolic equations with source nonlinearity (positive nonlinearity), [7,8,33-35] for
parabolic equations with absorption nonlinearity (negative nonlinearity).
Let us recall some results on initial traces of solutions to problem (E) with m = 1. See e.g.,
[6,23,28].

(A) (1) Assume that problem (E) with m = 1 possesses a solution u in RV x (0,7 for some
T € (0,00). Then there exists a unique v € M such that

ess lim u(t)y dy = / Ydv(y), € C(RY).
t—>+0 JrN RN
Furthermore, there exists C; = C1(V,p) > 0 such that

2

Cio™ r T if p#p,

N\
log <e+f>] if p=np,
g

S

sup v(B(z,0)) <
2€RN o)

for o € (0,V/T).
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(2) Let u be a solution to problem (P) with m = 1. Then u is a solution to problem (E)
and the initial trace of u coincides with the initial data of v in M.

We remark that assertion (A) gives necessary conditions for the existence of solutions to prob-
lem (P) with m = 1. Sufficient conditions for the existence of solutions to problem (P) with
m = 1 have been studied in many papers, and the following assertion holds for m = 1.

(B) Let m =1.
(1) Let 1 < p < p1. Then problem (P) possesses a local-in-time solution if and only if

sup u(B(z,1)) < oo.
z€RN

(See assertion (A) and e.g., [47,48].)
(2) Let p = py. For any a > 0, there exists €; = €1 (N, ) > 0 such that if u € L satisfies

sup sup 7 (0> gt ][ v (Tp%lu) dy | <e
ZERN UG(O,\/T) \/T B(Z,O’)
for some T € (0, 00), then problem (P) possesses a solution in R™ x (0,7"), where

N

U(s) i sllog(c + 5)]%,  nls) = sV [log<e + i)] .

See e.g., [16,23,28]. (See also [26] for another sufficient condition.)

(3) Let p > p1. For any B > 1, there exists ea = ea2(N,p,3) > 0 such that if p € £

satisfies )

) B
sup  sup o7l ][ wfPdy | <e
z€RN 5¢(0,v/T) B(z,0)

for some T € (0, 00, then problem (P) possesses a solution in RY x (0,T). See e.g.,
[16,23,31,40).

We remark that assertion (B)-(2) with a = 0 and assertion (B)-(3) with 5 = 1 do not hold. (See
Remark 1.2 for details.) Combining the results in (A) and (B), we have the following assertion.

(C) Let p > py. For any ¢ > 0, set

1\ 2"
c\x|N[log<e+|$’>] if p=np1,

2
clx| P1 if p>p1,

pe(T) =

for a.a. z € RY.

(1) Problem (P) possesses a local-in-time solution for ¢ > 0 small enough;

(2) Problem (P) possesses no local-in-time solutions for ¢ > 0 large enough.

Furthermore, if p > p; and ¢ > 0 is small enough, then problem (P) possesses a global-in-
time solution.
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The results in (C) show that the “strength” of the singularity at the origin of the functions .
is the critical threshold for the local solvability of problem (P). We term such a singularity in
the initial data an optimal singularity of initial data for the solvability of problem (P). (See e.g.,
[15] for further details of optimal singularities of initial data.) We easily see that, by translation
invariance the singularity could be located at any point of RY.

On the other hand, in the case of m > 1, much less is known about the solvability of
problem (P), in particular, the optimal singularity of the initial data for the solvability of
problem (P). Andreucci and DiBenedetto [3] proved the existence and the uniqueness of initial
traces of solutions to problem (E). Furthermore, they obtained qualitative properties of initial
traces of solutions and studied necessary conditions and sufficient conditions for the existence
of solutions to problem (P). More precisely, they obtained the following assertion.

(D) Let 1 <m < p.

(1) Assume that problem (E) possesses a solution u in RY x (0,7) for some T € (0, 00).
Then there exists a unique v € M such that

ess lim u(t)y dy = /]RN Ydu(y), € C(RY).

t——+0 RN

Furthermore, there exists Cy = C2(IN,m,p) > 0 such that
2

sup v(B(z,0)) < Cyo’ #m
z€RN

for o € (0,T9).
(2) Let m < p < pp,. Then problem (P) possesses a local-in-time solution if and only if

sup u(B(z,1)) < oo.
2€RN

(3) Let p > py,. Then, for any r > N(p — m)/2, there exists e3 = e3(IN,m,p,r) > 0 such
that if y € £ satisfies

1 T
17 s (fray) <
zeRN \ JB(2,T?)

for some T € (0,00), then problem (P) possesses a solution in R x (0,7).

Subsequently, the following sufficient conditions were established in [2] and [42] for the super-
critical case p > pp,.

(D) Let p > pp.

(3’) If u € M satisfies

2
sup sup ap—m_N+’\u(B(z,J)) < 00

2€RN 0<o<1

for some A € (0, N(p —m)/2), then problem (P) possesses a local-in-time solution
(see [2, Remark 2]).
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(37) Then there exists €4 = e4(NN,m,p) > 0 such that if u € L satisfies

2
1 N(p—m) N(p=m)
T»T sup |z dy <e
ZGRN B(ZzTg)

for some T € (0, 00), then problem (P) possesses a solution in RY x (0,T) (see [42]).

Unfortunately, the results in (D) are not enough to identify the optimal singularity of the initial
data for the solvability of problem (P) in the case of p > py,. In particular, assertions (D)-(3),
(3”), and (3”) do not allow the treatment of initial data with a singularity like that of |z|~2/(P—™)
in the case of p > p,,,. Moreover, we note that, due to the result by Takahashi [44], it does not
appear to be possible to take A = 0 in assertion (D)-(3’) (see Remark 1.2). Therefore, if we
consider initial data with a singularity like that of \az|_2/ (p=m) it seems more appropriate to
adopt a formulation similar to those in assertions (B)-(2) and (3), which use Morrey norms and
their variations.

In this paper we give refinements of assertions (D)-(1), (3), and (3”), and extend asser-
tions (A), (B), and (C) to the case m > 1. More precisely:

e we improve qualitative properties of initial traces of solutions to problem (E) with p = py,,
and establish sharp necessary condition for the existence of solutions to problem (P) (see
Theorem 1.1);

e we give sharp sufficient conditions for the existence of solutions to problem (P) with p > p,
using uniformly local Morrey spaces and their variations (see Theorems 1.2 and 1.3).

Our necessary conditions and sufficient conditions enable us to identify the optimal singularity
of initial data for the solvability for problem (P) with p > p,, (see Corollary 1.1).

We formulate definitions of solutions to problems (E) and (P).

Definition 1.1 Let 1 < m < p, T € (0,00], and u € LV

P (RY x [0,T)) be nonnegative in
RN x (0,7).

(1) We say that u is a solution to problem (E) in RN x (0,T) if u satisfies

T
/ / (—udip —u™Ap —uP@) dxdt = / u(z, 7)p(z, 7) dz (1.2)
T JRN RN
Jor ¢ € CFL RN x [0,T)) and almost all (a.a.) 7 € (0,T).
(2) For any pn € M, we say that u is a solution to problem (P) in RN x (0,T) if u satisfies

T

| [ oo - umso - woydsdr = [ oe.0)duo
0 RN RN

for ¢ € CZLRYN % [0,7)).

We introduce some notation. For any positive functions f and g in a set X, we say that
f X g for x € X or equivalently that g = f for x € X if there exists C' > 0 such that

f(z) <Cg(x) forxe X.
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If f<gand g <X f for z € X, we say that f < g for x € X. In all that follows we will use
C' to denote generic positive constants and point out that C may take different values within a
calculation.

Let ® be a nonnegative, convex, and strictly increasing function in [0, c0) such that ®(0) = 0.
Let p be a nonnegative, non-decreasing, and continuous function in [0,00). Then, for any f € £
and R € (0, 00], set

./ 1llp@:r := sup  sup {P(U)‘I’_l (][ o(f) dl‘)}-
z€RN 0€(0,R) B(z,0)

For any ¢ € [1,00) and a € [1,00), if ®(§) = £ and p(§) = 5% for £ € [0, 00), we write

1
N e
p®:R = SUDp Sup { 0 ¢ ][ |f]¢ da
2€RN 0€(0,R) B(z,0)

for simplicity. In particular, if R = 1, then ||| - [||4,a;1 coincides with the norm of uniformly local
Morrey spaces (see e.g., [31, Definition 0.1]).

11105 = [l f1]

Now we are ready to state the main results of this paper. The first theorem concerns with
qualitative properties of initial traces of solutions to problem (E).

Theorem 1.1 Let N > 1 and 1 < m < p.
(1) Let u be a solution to problem (E) in RN x (0,T), where T € (0,00). Then there exists a
unique v € M such that

ess lim u(t)yde = Ydv(z), ¢ e C.(RY). (1.3)
t——+0 RN RN

Furthermore, there exists C = C(N, m,p) > 0 such that

Co v if D% Pm,
sup v(B(z,0)) < 70 - (1.4)
B\ .
o

for o € (0,T%), where p,, and 0 are defined as in (1.1).

(2) Let u be a solution to problem (P). Then u is a solution to problem (E) and the initial
trace of u coincides with the initial data of u in M.

Similarly to assertion (A), Theorem 1.1 gives a necessary condition for the existence of solutions
to problem (P).
Remark 1.1 (1) Let u be a solution to problem (E) in RN x (0,T), where T € (0,00]. For any
A>0, set
2 /
up(z,t) == Amu(Az, A1), (x,t) e RY x (0,T)),
where Ty := X" T. Then uy is a solution to problem (E) in RN x (0,Ty).
(2) Let 1 <m < p < pm and p € M. Then, since N —2/(p—m) <0, the relation
2

sup w(B(z,0)) < Co™ om
2€RN
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holds for o € (0,T?) if and only if

sup u(B(z,T%)) < orN0i

2€RN
(3) If m < p < pm, then problem (P) possesses no nontrivial global-in-time solutions (see
[12,17,18,38,39,41,43]). This fact immediately follows from Theorem 1.1. Indeed, assume
that problem (P) possesses a nontrivial global-in-time solution w. Then, for a.a. T > 0, setting
ur(x,t) == u(x,t +7) for a.a. (z,t) € RN x (0,00), we see that u, is a global-in-time solution
to problem (P) with initial data p = u(7). Combining this fact with Theorem 1.1, we have

sup / u(r)dy < CTNH_ﬁ =0 if p<pm,
B(2,T?)

z€RN

_N
sup / ) u(T)dyﬁC{log(e+Tg)} 50 if p=pm,
2€RN JB(2,T72)

as T — 0o. These imply that u(x,7) = 0 for a.a. (x,7) € RY x (0,00), which is a contradiction.
Thus problem (P) possesses no nontrivial global-in-time solutions if m < p < pp,. See also e.g.,
[20,36,37] for related results on Riemannian manifolds and in the Euclidean weighted setting.

In the second and third theorems we obtain sharp sufficient conditions for the existence of
solutions to problem (P) with p = p,, and p > p,,, respectively. We remark that problem (P)
possesses a global-in-time solution for some initial data p € £ if and only if p > p,, (see
Remark 1.1-(3)).

Theorem 1.2 Let N > 1, m>1, p=py, =m+2/N, and o > 0. Let
N
2

v = cliogle+ O, n(e) = ¢ og(e+ ¢ )| (15)

for & € [0,00). Then there exist €5 = e5(N,m,a) > 0 and C = C(N,m,«a) > 0 such that if
W € L satisfies

o _1 1
sup sup (=¥ ][ U (TrTu)dy | <es (1.6)
2€RN o€(0,T%) <T0) ( B(z,0) < )

for some T € (0,00), then problem (P) possesses a solution u in RN x (0,T), with u satisfying

1 T Til
sup tp-1 [log <€+t>] (@) || oo ()

te(0,T)

o 1
+ sup sup sup 7= ) P! ][ U (TP Tu(t)) dy
t€(0,T) zeRN ¢e(0,T9) (T9> ( B(z,0) < >

o\ . NG T2
<C sup sup Nl= )Y~ ][ U (Tr1pu) dy ,
2€RN 4e(0,T9) (Te) B(20) ( )

where 6 is defined as in (1.1).

Theorem 1.3 Let N > 1, m>1, p>pn=m+2/N, and 1 < < N(p—m)/2. Then there
exist €g = €6(N, m,p, ) > 0 and C = C(N,m,p,5) > 0 such that if p € L satisfies

el 5o 5. 70 < €6 (1.7)

7
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for some T € (0, 00|, then problem (P) possesses a solution u in RN x (0,T), with u satisfying

28

< Clllulll vgom

1
sup t7=1||u(t)||pe + sup |||U(t)||‘N(P*m>,5;T9 = M,B;TW

te(0,T) te(0,T) 2

where 6 is defined as in (1.1). In particular, if p € L satisfies

1
B
_2
[P —— (f m%) < e
2 z€ERN 0>0 B(z,0)

then problem (P) possesses a global-in-time solution.

Necessary conditions in Theorem 1.1 and sufficient conditions in Theorems 1.2 and 1.3 are
sharp. Indeed, Theorems 1.1-1.3 enable us to identify an optimal singularity of the initial data
for the solvability of problem (P) with p > py,.

Corollary 1.1 Let N > 1, m > 1, and p > pp,. For any ¢ > 0, set

1\ 2!
cla] [log ( ; )} i D= pm,

p () = 21

cla| 7 if p>pm,
for a.a. v € RV,
(1) Problem (P) possesses a local-in-time solution for ¢ > 0 small enough;
(2) Problem (P) possesses no local-in-time solutions for ¢ > 0 large enough.

Furthermore, if p > py, and ¢ > 0 is small enough, then problem (P) possesses a global-in-time
solution.

Remark 1.2 Takahashi [44] proved that if m =1, p > p1, and p € M satisfies

. _N4+-2 1 A
limsup o r=1 | log ( e+ — sup pu(B(z,0)) < o0 (1.8)
o\0 o z€RN
for some X\ > 0, then problem (P) with m = 1 possesses a local-in-time solution (see [44,

Theorem 1.1] for more details). Moreover, he also proved that there exists u € L satisfying (1.8)
with A = 0 such that problem (P) possesses no local-in-time solutions. In particular, this implies
that assertion (B)-(2) with o = 0 and assertion (B)-(3) with 8 =1 do not hold.

In the proof of Theorem 1.1 we modify arguments in [45] to find suitable cut-off functions to
obtain estimates of solvable initial data of problem (P) (see Proposition 2.1). Here we require
delicate choice of parameters of cut-off functions (see Steps 3 and 4 in the proof of Proposi-
tion 2.1). Then we follow arguments in [23] to complete the proof of Theorem 1.1.

If m = 1, the results in Theorems 1.2 and 1.3 coincide with assertion (B)-(2) in [23,26, 28]
and assertion (B)-(3) in [23,31,40], respectively. However, since the proofs of these papers rely
on the representation formula of solutions via Duhamel’s principle, the same method does not
appear to be extendable to the case m > 1 due to the nonlinearity of the principal term Au™.
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One of the main ingredients of this paper is to give new energy estimates involving Morrey
norms and its variations (see Lemmata 3.1 and 3.2). The proofs of these lemmata are inspired by
the argument in [32], which proved improved Sobolev inequalities via weak-type estimates and
pseudo-Poincaré inequalities. These energy estimates together with L°-estimates of solutions
to problem (P) lead a priori estimates for classical solutions to problem (P). Combining these
estimates with regularity theorems for solutions to problem (P), we construct a solution to
problem (P) as the limit of classical solutions to problem (P), where initial data are given by the
lifting and the truncation of p (see (4.6)). We emphasize that this approach is new even in the
case m = 1 because we provide a priori estimates involving Morrey norms and their variations
without relying on the integral representation of solutions to problem (P) with m = 1.

The rest of this paper is organized as follows. In Section 2 we modify the arguments in [45]
to prove Theorem 1.1. In Section 3 we obtain energy estimates of solutions. In Sections 4 and 5
we prove Theorems 1.2 and 1.3, respectively. In Section 6 we apply Theorems 1.1-1.3 to prove
Corollary 1.1.

Acknowledgment. The authors of this paper are grateful to the anonymous referees for
their valuable suggestions. They would also like to thank Professor Ryo Takada for his useful
comments. K. I. was supported in part by JSPS KAKENHI Grant Number 19H05599. N. M.
was supported in part by JSPS KAKENHI Grant Numbers 22KJ0719 and 24K16944. R. S. was
supported in part by JSPS KAKENHI Grant Number 21KK0044.

2 Proof of Theorem 1.1

In this section we modify arguments in [45] to study necessary conditions for the existence
of solutions to problem (P). Furthermore, we obtain qualitative properties of initial traces of
solutions to problem (E), and prove Theorem 1.1.

Proposition 2.1 Let N > 1, m > 1, and p > m. Let u be a solution to problem (P) in
RN x [0,T), where T € (0,00). Then there exists C = C(N,m,p) > 0 such that

N— .
Co™pmm if pF# pm,

N
2

sup u(B(z,0)) < O\~
S .
o

for o € (0,T%), where p,, and 0 are defined as in (1.1).

Proof. The proof is divided into several steps. Let u be a solution to problem (P) in RY x (0,7,
where T € (0, 00).

Step 1: Let ¢ € CZY(RY x [0,T)) be chosen later such that 0 < ¢ < 1 in RN x [0,7). Let
k € N, and set ¢ = 9*. Then it follows from Definition 1.1-(2) and Hélder’s inequality that

T T
90 duz) + /0 /R wgdrdi = - /0 /]R (06 +u"AG) dar i

R
= ' uP ¢ dax dt g ' %p%gbdxdt i

([ fosalf([ i owa)

+</()T/RN“p¢da:dt>”</OT/RN éj}’pmsﬁdxdtyp

9
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r T _p_ 1 _p __m
g/ / upqﬁda:dt—i-C/ / (]&qﬁ]zﬂqﬁ P T 4 |Ag|T p,m) de dt
0 RN 0 RN

and hence
T
p___1_ _p_ __m_
6O du@) <C [ [ (100677 480l dede. (21)
RN 0o JRN
Since ¢ < 1 in RV x [0,00) and p > m > 1, taking k > 1 large enough, we see that
P _ 1 _p_ k(=D-p .
Opp|p=1¢ »=1 < ClOpp|r—Typ »=1 < Clop|?-T,

P k(p—m)—p

A[77 "7 < ClAY|Trg = 4| Vy|7=my 7

k(p—m)—2p

w < ClAY[TE 4 Oyl

which together with (2.1) imply that

T _p_ _p _2p
/ du() < c/ / (1900177 + | {7 + [V ) dr
{zeRN :¢(x,0)=1} 0 JRN (22)

<o [ (0wt + (201 + 19wy ) dra

Step 2: Let ¢ € C*°(R) be such that 0 < ( < 1inR, ( =1in [1,00), ( =0 in (—00,0], and
I/l <2inR. Let z € RY, a >0, and § > 0. For any F' € C*((0,00)) with F' < 0 in [aT/2, 00),
set

W(z,t) = C(F(r(z,t) with r(z,t) =]z —2|" +at+0
for (z,t) € RY x [0,T), where ¢ is defined as in (1.1). Then 1y € C2(RY x [0,T)). Since
9 — 2(p—1)
p—m
O = C(F(r)F'(r)oyr, Vi = (' (F(r))F'(r)Vr,
Ay = C"(F(r))F'(r)*|Vr|* + ¢ (F(r) E" (r)[Vr|* + ¢ (F () F'(r) Ar,

> 2

we have

Oy < CalF'(r
V[P < CF/()?|le — 2D < CF/(r)*r*7,
|AY| < CF' (12| — 220D + C|F" (r)||x — 229D + C|F'(r)||& — 2”2
)

)
|
(r)°]

< CF/(T 27,2720 + C|F//(r)’7,2720 + C‘F/(T)MJ*ZG.

These together with (2.2) imply that

/ o =cf g(r(w, 1)) dzdt,
(2ERN : F(|z—2|0' +8)>1} {(2,£)€RN x[0,T) : 0< F(r(,£)) <1}

where

9(€) = aP TP ()77 + (IF/(©PE™ + [F()| + |F'(©g) " (23)

10



Porous medium equation with power nonlinearity

Then we obtain

sup [ ()
RN J(2€RN : F(la—2|?' +6)>1}

< sup g(lz — 2" + at + ) dzdt

2€RN /A(x,t)eRNX[O,oo) (0<F(|z—z]% +at+68)<1}

=Ca™? // g(r? +t+&)rNtdrdt
{(r,t)€[0,00) x[0,00) : 0 F (0’ +t+8)<1}

(2.4)
=Ca™! // g(s* + 7% 4 6)sP VD020 45 qr
{(s,7)€[0,00) X [0,00) : 0 F(s2+72+4)<1}
=Ca! / g(C? 4 6)¢2No+1 dC/2 (cosw) V0L sin w dw
{¢0:0<F(¢>+6)<1} 0
—cat [ g(¢ + 9)eV de.
{€20:0<F(e+9)<1}
Step 3: Let b, ¢, and d > 0 be constants to be chosen later such that
al d
> 2.
2 T et—-1 ( 5)
Set
1 d
F(¢) = 5 <log <1 + 5) - c> for ¢ € (0,00).
Then
F(&) >1 if and only if <Ry := d
() >1 ifandonlyif ¢ < L= e
F(§) >0 ifandonlyif &< Ryi= —— (2.6)
FE) <0 if ¢&>aT/2.
Furthermore,
1 d\'d| d 1 1
pror=| 3 (e d) 84 123
d 1 d 1 1 d(§+d)+dg 1
F// - s P S R A R G
PO e e a T era? T @ra? S
for £ € (0,00). Letting 6 — 0 and applying (2.4), by (2.3), (2.6), and (2.7) we obtain
sup u(B(z, RY))
2z€RN
1, B P _2p __p Ry No— P
< Cia H(arTb P T 4 b o 4 b o) &7 r 1 d (2.8)

Ry

No—-L p__p_ _ 2 __p_ R2/Ra __p_
=CiR, pfla_l(ap—lb =1 4 h p-m b p—m)/ gNG 71 dE,
1
where C is a positive constant independent of a, b, ¢, and d.

11
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Let o > 0. Let d > 0 be such that

d \
”Z(em_J = Iy

Then it follows from (2.5) and (2.8) that

sup (u(B(z,0)) < Cuo™N " 7ma= (a7 Th 5T 4 b o 4 b ) / VO35 e
2€RN 1

for a, b, ¢, and o > 0 with
aT(e¢ —1) 0
O<o< | 7775 .
" <2<eb+c - 1))
Letting ¢ — oo, we get
2

2 e’
sup u(B(z,0)) < C*UN_ma_l(a%b_% FbTE 4 b_P*pm) / fNG_% d¢ (2.9)
z€RN 1

for a, b, and o > 0 with 0 < o < (aT'/2¢%)?.

Step 4: We choose suitable a and b > 0 to complete the proof of Proposition 2.1. In the case of
P # Pm, by (2.9) with a = 2e and b = 1 we obtain

2

w(B(z,0)) < Co v m  for o€ (0,T7).

Thus Proposition 2.1 follows in the case of p # py,.
m—1

Consider the case of p =p,,,. Let £ > 1 and b > 1, and set a = £b »—m. Since

D
P

Pt e (gb—pfiz)”j e =

-1 1 N
N@—L:—l, m - P +1:_7:_77
p—1 p—m p—m p—m 2
it follows from (2.9) that
sup u(B(z,0)) < CrPFig i m T = oy ¥ (2.10)
2€RN
for b >1 and o > 0 with ,
0<o< er
25 b
Let L > e, and set
N(m—1)

T T\]| 2
b = log <L+09,> [log <L+09'>]

Taking L large enough if necessary, we see that b > 1. Since

T
b§10g(L+9,) for o > 0,
o

12



Porous medium equation with power nonlinearity

we have

T N(m—1) T T _ N(m-1) T T
— 2 2
b < [log <L+9,>] <L+9,> [log <L+9,>] =L+ 5 <C
g ag g ag g

for o € (0,T%). Then, taking £ > 1 large enough if necessary, we obtain

r L

I
N(m-—1) -
%5 b C

o >o% for o€ (0,17,

which implies that
0
LT
T Nm—1) >0 for o€ (O,Tg)
20— = eb

Then we deduce from (2.10) that

T TN\ |
sup p(B(z,0)) <C |log | | L+ —5 | [log | L +
o
3

97
2€RN g

<l (e Z)] " <efos(c+ D]

for o € (0,7%). Thus Proposition 2.1 follows in the case of p = p,,, and the proof of Proposi-
tion 2.1 is complete. O

Remark 2.1 As mentioned, the proof of Proposition 2.1 is based on the arguments in [45].
One of the main differences between the proof in [45] and our approach is the appearance of
the additional parameter a > 0 (see Step 2 in the proof of Proposition 2.1). This parameter is
necessary to treat the case p = py, in order to obtain (2.10).

Proof of Theorem 1.1. Let u be a solution to problem (E) in RY x (0,T), where T' € (0, c0).
Then there exists a measurable set I C (0,7) with £1((0,T) \ I) = 0 such that (1.2) holds for
7 € 1. For any 7 € I, setting u,(z,t) := u(x,t +7) for a.a. (z,t) € RY x (0,7 — 7), we see that
u, is a solution to problem (P) in RY x (0,7 — 7) with u = u(7). Then, by Proposition 2.1 we
see that

2

C*O'N_p_m if b 7é Pm,

sup/ u(r)de < O\~
2eBN JB(z.0) c, [10g< ﬂ

e+ —
o

ol

(2.11)

for o € (0,(T — 7)?) and 7 € I, where C, is a positive constant depending only on N, p, and
m, and 6 is defined as in (1.1). Applying the weak compactness of Radon measures (see e.g.,
[13, Section 1.9]), we find a sequence {7;} C I with lim; ,o 7; = 0 and v € M such that

lim u(rj)pde = [ dv(z), € C(RY). (2.12)
RN

Jj—o0 JRN

We show that (1.3) holds. Let {s;} C I with lim; ,o, s; =0 and v/ € M such that

lim [ u(s;)ede = /RN Y (@), b€ Co®RY). (2.13)

Jj—00 JRN

13



Porous medium equation with power nonlinearity

Let 1 € C(RY). Let ¢ € C(RN x [0,T)) be such that ¢(z,t) = ¢(z) for (x,t) € RN x [0, 4]
for some § € (0,7"). Then, by (1.2), (2.12), and (2.13) we see that

T
/ / (—udip —u" AP — uPp)drdt = lim u(tj)p(rj) de = / ¥ dv(x)
0 RN

J]—00 RN RN
—tim [ uls)ols)de = [ vdv(a)

J—00 RN RN
This implies that v = v/ in M. Then, since {s;} C I is arbitrary, we see that v satisfies (1.3).
Furthermore, the uniqueness of the initial trace of solution w also follows.

It remains to prove (1.4). Let 2 € RN, § € (0,T), o € (0,(T —§)?), and € € (0,0). Let

Y € C.(RY) be such that 0 < ¢ < 1in RY, ¢ =1 in B(z,0 — ¢€), and suppt C B(z,0). Then
it follows from (2.11) that

W(Bo—) < [ wdu(e) =lim [ urids
RN Jj—0 JrN
N——2_ .
Cio’  p—m if p#pm,

0 2
C, [log <e + T)] if p=pm.
o

Since € € (0,0) and 0 € (0,7) are arbitrary, we obtain (1.4). Thus Theorem 1.1 follows. O

2

<

3 Energy estimates of solutions

In this section we obtain energy estimates of solutions to problem (P), which are crucial in the
proofs of Theorems 1.2 and 1.3. We often use the following property:

e there exists m, > 1 such that
sup / fdx <m, sup / fdx (3.1)
2€RN J B(z,20) 2€RN J B(z,0)
for f € £ and 0 > 0 (see e.g., [30, Lemma 2.1]).
We first give an energy estimate of solutions to problem (P) with p = py,.

Lemma 3.1 Let N>1,m>1,p=pn=m+2/N, p€ LNL®RY), T € (0,00), and o > 0.
Let u be a positive classical solution to problem (P) in RN x (0,T) such that

sup [lu(t) || oo rvy < 0. (3.2)
0,7
Let ¥ and n be as in (1.5). Then
¢
sup / / ™I (0) | Vul? dz ds < oo (3.3)
z€RN JO 2,0

fort € (0,T) and o > 0. Furthermore, there ezists C = C(N,m,«) > 0 such that

sup sup/ U(u(s))dx + sup// u™ N (0)|Vul? dz ds
s€(0,t] zeRN J B(z,0) 2€RN B(z,0)

< C sup / U(p)dz 4+ Co~? sup / / ™ (u) dz ds (3.4)
2€RN 2€RN B(z,0)

+ C sup / / u)dx ds + CMy[u](t)P™™ sup / / u™ N (u)| Vul? dz ds
2€RN (2,0) 2€RN (z,0)

14
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forte (0,T) and o > 0 if

My[u](t) := sup sup sup {77(7“)\1/1 <][ lIl(u(s))dy>} <1. (3.5)
s€(0,t] zeRN re(0,0] B(z,r)

Proof. Let u be a positive classical solution to problem (P) in RY x (0,T), where T € (0, c0),
and assume (3.2). Let z € RN, ¢t € (0,T), and o > 0. Let ¢ € C°(RY) be such that

(=1in B(z,0), ¢(=0inRY\ B(2,20), 0<¢<1inR",

IV¢i <2071, [V2C]|p < 402 (36)
Let W and 7 be as in (1.5). Then
V(0)>0, 0< WO 36O G, ¥E0 < 1) o
() >0, 7(26) = 7(6),
hold for € € (0,00). In addition, it follows from (3.7) that
@) >0, (>0, (BN <0, v =L, (3

hold for & € (0, c0).
Step 1. Let k£ > 1 and ¢ > 1 be large enough to be chosen later. Let ¢ € (0,7"). We multiply the
equation
du—Au™ —uP =0 in RY x(0,7)
by ¥ (u¢?)¢*+* and integrate it in R x (0,¢). Since

/ t ol (u¢)CF da ds

/ ds /RN W(u¢)¢h dv ds _/ (u(t)Ce)Ck dz — /RN U (uch) ek de

0 JRN
t
=m / / u™ V- <\1J”(ugf)g’f+f(vudMugf—lvg)+(k+f)\1ﬂ(ug€)gk+f—1v<) dz ds
0 JRN
= m/t/ u" IV - <\Il”(uC£)Ck+£(VuC£—}—Eu{e_lvg)) dxds
0 JRN
t
— (k420 / /R N umdiv<\1ﬂ(u<’f)gk+£—1vg> dz ds
_ m 1,/ 4 k+2¢ m " N ~k+20—1 .
m/ /]RN U (u¢h) | Vul*¢ dxds—i—mE/ / U (uC*)¢ Vu-V({dxrds
—(k+10) / / \11” (uCHCFH (V- VE+ ¢ | V¢ )) dz ds
RN

—// u™ (uCHACHH da ds
0 JRN
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Porous medium equation with power nonlinearity

t
> m/ / Um_l\I’N(uCZ)|V’LL|2Ck+% dax ds
RN

_ C/ / m-l—l\p// ucé)<k+2£ 2|VC‘2 dads — / / UCE |A<k+€| dx dS
RN

we have

t
/RN U (u(t)¢)¢F de + % /0 /RN u™ N () V2R da ds
t
N N Ak m—l—l\IJl/ O\ fk420—2 2
< [ vehctanre [ ] a2 we as ds

¢ t
—I—/ / um\IJ'(uCK)|ACk+£|dmd8—l—/ / P (u¢h)¢CF dz ds.
0 JRN 0o JRN

Taking k£ > 1 large enough so that k£ > (p — 1)¢, by (3.6) and (3.7) we have

(p
/ dm+/ / W () |Vl da ds
B(z,0) (z,0)
<C/ p)dz + Co™ // u™ N (u) dz ds
B(z,20) B(z,20)

+ C’/ /RN(ugf)pl\If(uc@) dz ds

for z € RN, t € (0,T), and ¢ > 0. Then, by (3.1) we have

sup sup/ U(u(s))dx + sup // ™I (w) | Vul? da ds
B(z,0) (2,0)

s€(0,t] zeRN 2z€RN
< C sup / U(p)dz + Co~? sup / / ™ N (u) dz ds (3.9)
2€RN JB(z,0 2€RN (2,0)

+ C sup / / (u¢HP 10 (u¢t) dz ds
RN

2€RN
for t € (0,T) and o > 0. Furthermore, it follows from p € L®(RY), (3.2), and (3.9) that (3.3)
holds for ¢ € (0,7") and o > 0.

Step 2. In this step we employ arguments in [32] to obtain an estimate of the last term of (3.9).
Set

v(z,s) = u(z,s)i¢(x), (x,8) € RY x (0,1). (3.10)
Then the layer cake representation (see e.g., [19, (1.1.7)]) together with (3.7) implies that

// (u¢HP1 0 (u¢t) dz ds
/ / ‘) de ds

/ / LV({z e RN ¢ v(a,s) >A})iA (A‘“Pf%(%)) dAds (3.11)
N N . T, L(p—1)—1 J4 S
C’// LY ({z e RY : v(z,s) > A})A (M) drad

< Clp(t; 2,0) + CANP~ 1)/ / Y dx ds

16



Porous medium equation with power nonlinearity

for z € RN, t € (0,T), 0 >0, and A > 0, where

t e’}
In(t; 2, 0) ::/ / LY ({z € RY @ w(a, ) > AN AP-D 1w (A drds.
0 JA

(3.12)
We obtain an estimate of I(¢;z,0). For any A > A and (z,s) € RY x (0,1), set
0 if w(z,s) < %,
A A
ua(z,s) == ¢ v(x,s)— 5 if 5 < v(z,s) <2, (3.13)
A if wv(x,s) > 2.
We claim that
1
My Mg [u] (f)> ‘
ua(y,s)dy < <
]{B@c,r) s n(r) (3.14)

for € RN, r € (0,00), A > A, and s € (0, 1],

where m, > 11is as in (3.1). By (3.5), (3.6), (3.10), and (3.13) we apply Jensen’s inequality to
obtain

][B(I’” ns ]{sw v d = (J{su,r) u(y, ) dy> |
: (f&%’v v (]{B(Zyr)\IJ(U(y,s))dy>>e - <]\Jg[u](t)>[

—\ ()

for € RN, r € (0,0), A > A, and s € (0,#]. This implies that (3.14) holds if r € (0,5). On the
other hand, since ¢ = 0 in RV \ B(z,20), by Jensen’s inequality we have

1
oAy, s dySJ[ v(y,s)dy < SUP/ u(y, s)dy
][B(:v,r) )\( ) B(z,r) ( ) <‘CN(B(O’T)> B(z,20) ( )

=

2€RN

for z € RY, r € (0,00), A > A, and s € (0,¢]. Then, by (3.1) and (3.5) we apply Jensen’s
inequality again to obtain

Z
M
oA(y,s)dy < sup/ u(y,s)dy
]i’(z,r) )\( ) (‘CN(B(()?T)) B(z,0) ( ) )

[un

2€RN

mLY(B(0, 7)) i
B ( EN(B(()? T)) zsel]g])\’ ]é(z,a) U(y, 8) dy)

< (m* ((;)ste%rjv gt (é(w) W(U(%S)N@/))

for x € RN r € (0,00), A > A, and s € (0,t]. Since 0~ Nn(c) > r~Nn(r) for r € (0,00), we see
that (3.14) holds if r € (¢, 00). Thus (3.14) is valid.

=
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Porous medium equation with power nonlinearity

Since 7(0) = 0 and lim¢_on(§) = oo, for any A > A, we apply the intermediate value
theorem to find r, = r,(\) > 0 such that

n(r«(A) = I\ (3.15)
This together with (3.14) implies that
MM, [u] (t)) rA
vy, s)dy < ( = -
][B(a:,r*()\)) A(w:9) n(r«(A)) 4
for z € RV, A > A, and s € (0,¢]. Then, by (3.13) we see that
LY ({z e RN @ v(2,8) > A})
<V <{x eRY : uy(z,s) > 2})
< L’N({x cRY : |uy(x, s) —][ ua(y, s) dy' > A}) (3.16)
Bz, (V) 4
16 2
<o [ n@s - nwsdy| do
A Jrw B(z,re(N))
for A > A and s € (0,¢]. Furthermore, we have
2
n@s) - f ns)dy| =L (o) - oaes) dy
B(z,r«(\)) B(z,rx (X))
2
- : [ [ S -eusensaca
LN (B, r: O | Jpray Jo A€ ’
2
1 / /1 (3.17)
< Vor((1 =&y +Ex, s)||lz —y|dEdy
LN(B(z,74())))? ( Bare(A) J0 [Voal( ) )l | )
re(A)? / /1 2
< Vur((1 = &)y + &x, s)|7dEdy
LN (B(z,m+(N)) JB@r. ) Jo Vor( =) )
(M)’ /1/ 2
= Vour((1 = &)y + x,s)|” dy d€.
E B0 o Joory TV
Then, by (3.16) and (3.17) we obtain
LY ({z e RN @ v(x,5) > A})
167, (N)? /1/ / 2
< Voa((1 =&y + x,s)|" dedydé
VLV BO. N Jo Joor.on Jav ¥ NI FE)
2 3.18
= 16T*()‘)/ |Vv,\(ﬂc,s)|2 dr ( )
IV
1674 (\)?

5 / \Vo(z, s)|* dz
A {z€RN : \/2<v(z,5) <27}
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Porous medium equation with power nonlinearity

for A > A and s € (0,t]. Since ¥(2§) < ¥(§) for £ € (0,00) (see (3.7)), we observe from (3.12)
and (3.18) that

Iz(t;2z,0)

< C’/ / </ \Vv(s)\zdx> ME=D=1y (A drds
{zeRN : \/2<v(s) <27}

_o/ / AP=DE3, (2252 (/ ]Vv(s)\de) d\ds
{zeRN : \/2<v(s) <27}

) s e (3.19)
—C// V() P X fu(s)>a 2} () /() AP re(A)2T N dX | dzds

<c / | (@ 219upe 4 ufwe?)
0 JRN

2
x pfP=D=2 () < sup r*()\)> X{u(s)>A/2} (x) dz ds
AEe(v(s)/2,2v(s))

for ¢ RV, t € (0,T), and o > 0.
Step 3. Assume that M, [u](t) < 1. Since 7 is strictly increasing in (0,00) (see (3.7)) and

N =

L) = ¢ [log <+2)} £ € (0,00),

it follows from (3.15) that

(Lot ) = (L))
v(s)’ ] (3.20)

< MLl F () ¥ [tog (e + gt s

< CM, [u)(1)" " o(s)"" =) [1og (e + v(s)" ) | 1

for A € (0, 00).
On the other hand, for any fixed a > 0 and b € R, taking L > e large enough so that the
function [0,00) 2 & = £%[log(L + £)]° is increasing, we have

&t llog(e + &))" = €1 [log(L + &))" < &flog(L + &))" = & [log(e + &))" (3.21)

for &1, & € [0,00) with & < &. Then, taking ¢ > 1 large enough so that m —2/¢ > 0, we
observe from (3.20) that

2
v(s) P2 (u(s)") ( sup 7‘*(/\)>
()

Ae(v(s)/2,2v
a—1

< O M, [u] (t)Pv(s) M2 [1og <e + v(s)f)}
< CMy[u)(t)P™u(s)™ 7 log (e + u(s))]* "
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Porous medium equation with power nonlinearity

for s € (0,t). This together with (3.1) and (3.19) implies that

In(t;2,0)
= COMeleler™ m/ / *log (e +u)] " @ (“)WUFX{@L(S)M/Q}(Q:) dzds
B(z,20)
+ OMo[u](t)" ™™o 2/ / u™ M (u) dz ds
B(z,20) ) <322)
- CMU[ o e / / log )]_1\11(u)|vu|2X{u(s)>A/2}(fL‘) dzds
z€RN B(ZU

Co~2 sup// w1 (u) dz ds
2€RN B(z,0)

for z € RN, t € (0,7), and o > 0. Since
£ % [log(e + )] 71W(E) 2 W(€) for £ € [1,00),
by (3.1), (3.11), and (3.22) with A = 2 we obtain

/t /RN (u¢HP~ 10 (u¢h) dz ds
<C/ /RN Ydzds + Cly(t; 2,0)

t
< C sup / / u)dx ds + CMy[u](t)P™™ sup / / u™ N (1) | Vul? dz ds
zg) 0 B(Z,G’)

2€RN 2€RN

+ Co™? sup // ™ (u) dz ds
2€RN JO JB(z,0)

for z € RV, ¢t € (0,T), and ¢ > 0. This together with (3.9) implies (3.4). Thus Lemma 3.1
follows. O
Similarly, we obtain an energy estimate of solutions to problem (P) with p > py,.

Lemma 3.2 Let N> 1, m>1,p>pn=m+2/N, p€ LNLP®RYN), T € (0,00], and B > 1.
Let u be a positive classical solution to problem (P) in RN x (0,T) satisfying (3.2). Then

t
sup / / w3 V2 deds < oo (3.23)

z€RN JO

fort € (0,T) and o > 0. Furthermore, there ezists C = C(N,m,p, ) > 0 such that

sup sup/ u(s)? dz + sup // ™3|Vl de ds
s€(0,t] zeRN J B(z,0) 2z€RN B(z,0)

< C sup / p’ dax
2€RN J B(z,0)

+c<1+ sup [[u(s)1Bes ) - p// u P dr ds
s€(0,t) 2€RN (2,0)

+0( sup lu)lngmm 5, | su / / 3| da ds
s€(0,t) 7 z€RN (2,0)

fort e (0,T) and o > 0.

(3.24)

20



Porous medium equation with power nonlinearity

Proof. Setting ¥(¢) = &5 and n(¢) = 510*% for £ € [0,00), we apply the same arguments as in
the proof of Lemma 3.1. Then we have

sup/ Fdz + sup // u™ P8 V2 da ds
2ERN B(z,o) 2ERN B(z,0)

<Csup/ pPdx + Co~? sup // u™ P dg ds (3.25)
(2,0 (2,0)

2z€RN JB 2€RN

+C sup// qu P g ds
2€RN RN

for t € (0,T) and o > 0, instead of (3.9). This together with (3.2) implies (3.23).
Let Ip, v, and r, be as in the proof of Lemma 3.1. It follows from (3.15) that

2 ém* o U
o7t = Al ()

and hence

2
( sup m(A)) < CM[u]()P " (ugh) =™
AE(v(8)/2,2v(s))

Then, taking ¢ > 1 large enough if necessary, by (3.19) with A = 0 we obtain

/t/ (u¢HP~ 10 (u¢h) de ds = Iy(t; 2, 0)
0 JRN

< C My [u](t)P~ m/ / ™3 (u) | Vul? de ds
B(z,20)

+ CM,[u] ()P~ "o 2// u™ N (u) dz ds (3.26)
B(z,20)
< CMylul(t)P™™ sup// u™ 3 (u) |Vl do ds
z€RN (2,0)
+ C M, [u)(t)P - sup// ™ (u) dz ds
2ERN B(z,0)

for z € RN, ¢ € (0,7T), and ¢ > 0. Since

Mo [u](t) = sup |[[u(s)]| vw-m) 4.,
s€(0,t) 2

for t € (0,7), by (3.25) and (3.26) we obtain (3.24). Thus Lemma 3.2 follows. O

At the end of this section we recall decay estimates of solutions to problem (P). See [3,
Proposition 7.1]. (See also [42, Proposition 3.2].)

Lemma 3.3 Let N > 1, m > 1,p > m, r > 1, and T € (0,00). Let u be a solution to
problem (P) in RY x (0,T). Then there exists C = C(N,m,p,r) > 0 such that

[w()|| oo mry < Ct™ = sup (/ / u da;ds)
2€RN t/2 J B(z,20)

fort € (0,T), where k, := N(m — 1)+ 2r and

7, o= sup {7 € (0,7) + 0 2uls) 7= o, + ()5 gn) <257 fors € 0.7}
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Porous medium equation with power nonlinearity

4 Proof of Theorem 1.2

In this section we study sufficient conditions for the existence of solutions to problem (P) with
P = pm, and prove Theorem 1.2.
Let ¥ and 7 be as in Theorem 1.2. Define a C''-function v in [0, 1] by

(&) 1
/ sn(s)™tds=C,¢ for € €[0,1], where O, = / sn(s)™ ! ds. (4.1)
0 0

Then 4/ > 0 in [0,1], v(0) = 0, and (1) = 1. Since

N(m—1)

7(&) 7(8) 1\N1— =2
_ m-1 73, _ 1+N(m—1) 1
Ché /0 sn(s) ds /0 s {log <e + s)] ds
N(m—1)
= 24N (m—1) 1)] 2 2 m—1
1(©) o (e + 1)
for £ € [0, 1], we see that
V&)™ = ¢ for £el0,1]. (4.2)

We prove a lemma on the function ~.

Lemma 4.1 Let N > 1, m > 1, and p = p,, = m + 2/N. The function v defined by (4.1)
satisfies the following properties:

Y(€) <y (g) ;o n(v(€) xn <7 (g)) : (4.3)
n(y(€)) = €71, (4.4)
/0 " H3()=0" D ds = (), (4.5)

for & €10,1].

Proof. We prove (4.3). Taking k£ > 1 large enough, by (4.1) and the monotonicity of n we
obtain

This together with the monotonicity of v and the relation that 7(2£) =< (&) for £ € (0,00) (see
(3.7)) implies (4.3).
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Porous medium equation with power nonlinearity

We prove (4.4). Since n(&) > &N = €2/(t=m) for ¢ € [0, 00), it follows from (4.1) that

2(m—1) 2(p—1)

7(€) (m—1)
Cné 2 C/ S ds = Oy e = Oyle)
0

for € € [0,1]. This together with (4.2) implies that

1 1 2

n(v(&) = (Ev(&) )™t = gmt ((%)’"71 — ¢ for £e0,1].

Thus (4.4) holds.
It remains to prove (4.5). It follows from (4.1) that

HEE) n(y(€)™ ! = Cy for £ €[0,1],

that is,
d—gwaf = 2C,n(y(£)) Y.

This together with v(0) = 0 implies that

13
A€ =20, /0 n(3(s) "™V ds, €€ [0,1].

Thus (4.5) holds, and the proof of Lemma 4.1 is complete. O

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Remark 1.1-(1) it suffices to consider the case of T = 1. Let
p=pmand p € L. Let ¥ and n be as in Theorem 1.2. Let €5 > 0 be small enough, and assume
(1.6). For any 4, j = 1,2,..., let u;; be a solution to problem (P) with initial data p replaced
by

() == min{p(z),i} + 571, aa xRV, (4.6)

By arguments in [3] we find a unique classical solution u;; to problem (P) in RY x (0,7;;) such
that

wij(z,t) > j7t for (z,t) e RN x (0,T3j), (4.7)
sup HUij(t)”Loo(RN) <oo forT e (O,Tij), (4.8)

te(0,T)

limsgp ”uij(t)HLOO(RN) = 00, (4.9)

]

where T}; is the maximal existence time of u;;. Since W~ is Lipschitz continuous on [0, 00) (see
(3.8)), by (3.7) and (3.8) we find j. = j.«(e5) € N such that

iglllwa < sup sup (o) ¥ <][ ‘I’(N+J’_1)d$>
2€RN ¢€(0,1] B(z,0)

< C sup sup n(o)¥! <][ U(p) dm+j_1) (4.10)
B(z,0)

2€RN 0€(0,1]

< C sup sup n(c)¥? <][ U(p) dm) +Cj7 < Ces
B(z,0)

2€RN 0€(0,1]
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Porous medium equation with power nonlinearity

fori > 1 and j > j,.
Step 1. Let 01, 62 € (0,1). Set

T% ;= sup {T € (0,T35) : sup n(’y(t))”uij(t)”Loo(]RN) < 51} , (4.11)
te(0,T)

T}, := sup {T €(0,T35) = sup ||[us;(@)[llnwn < 52} : (4.12)
te(0,T)

Under suitable choices of d; and s, taking e5 > 0 small enough if necessary, we show that

T = min{T%-,T%,l} =1 fori>1andj> j..
In the proof of Theorem 1.2, the constants C' are independent of ¢ > 1 and j > j..

We first show that 73 > 0. Since Tzlj > 0 immediately follows from (4.8), it suffices to show
that T > 0. Set cjj 1= supye(o,1,,/2) [4ij(5)|| Lo () < 0o and take t;; € (0, min{7};/2,1})
satisfying

1/4 92

nty; )eij < > and tl/Q(C?ij—1+cp

-1
; Py < (4.13)

for i > 1 and j > j.. Then we have

sup sup sup 7(o)¥! <][ \I!(uij(s))dy>
s0) 2R ot e L
_ 1/4 2
< swp s sup (@) (W (Jluy () ) < ity ey < 5
s€(0.ti5) 2€RN ge (0,14
for ¢ > 1 and j > j.. On the other hand, similarly to the argument in Step.l in the proof of
Lemma 3.1 (see (3.9)), it follows from (4.13) that

sup sup / U(u;i(s)) de
B(z,0)

s€(0,t] zeRN
t
< C sup / \If(uij)dx—l—C(a*QcZ?_l —|—c§’j_1) sup / / U(ui;) deds
2€RN J B(z,0) z€RN JO JB(z,0)

t
< C sup / \If(uij)dx—FC'ti_jl sup / / U(u;j)deds
2€RN J B(z,0) 2€RN JO JB(z,0)
for t € (O,tij), o c (t;‘/{

that

1],4 > 1, and j > j.. This together with Gronwall’s inequality implies

sup Sup][ U(ugj(s))de < Cellii't sup][ U(pij)de < C sup][ U (pi5) doe
s€(0,t] zeRN J B(z,0) z€RN J B(z,0) 2€RN J B(z,0)

for t € (0,t5), 0 € (tij/ll,l], i >1,and j > j.. Since U=1(2¢) < UL(¢) for £ € (0,00) (see

(3.8)), it follows from (4.10) that

sup sup sup n(o)¥! <][ \If(uij(s))dx> < Ces
s€(0,t;5] zeRN OE(t}j/‘l,l] B(z,0)
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Porous medium equation with power nonlinearity

for i > 1 and j > j.. This together with (4.14) implies that, taking e5 > 0 small enough if
necessary, we obtain TZ% > ti; > 0.
By Lemma 3.1 and d2 € (0,1) (see (4.12)) we obtain

sup sup/ U(u;j(s)) de + sup // up 1\11" (uij)|Vui;|* de ds
B(z,0) (z,0)

s€(0,t] zeRN 2€RN
< C sup / U(p;) da 4+ Co2 sup / / up 1\11 (ui5)dzds
z€RN zeRN (2,0)
+ C sup / / U(uj;) deds + C65™ sup / / ut 1\1’" (uij)|Vuj|? dz ds,
2zERN (2,0) zERN B(z,0)
for t € (O,T;;) € (0,1], 7 > 1, and j > j.. Then, taking d2 > 0 small enough if necessary, we
have

sup / U(uy;(t))de
B(z,0)

2€RN

t
< C sup / U(p;) da 4+ Co™2 sup / /B( )ug‘*lllf(uij)d$ds
0 2,0

2€RN J B( 2z€RN

¢
+ C sup // VU (ui;) deds
z€RN JO JB(z,0)

for t € (0,7}5), 0 € (0,1], 4 > 1, and j > j.. This together with (4.11) implies that

2€RN

t t
Xij(t) < C sup ][ ‘IJ(M”) dz + 00_2/ Hu”(s)\ ?;gRN)Xij(S) ds + C/ Xij(S) ds
B(z,0) 0 0

t t
< C sup ]{B( )‘lf(uij)da: + 00_2/0 n(v(s))_(m_l)Xij(s) ds + C/o Xij(s)ds

2€RN

for t € (0,7};), 0 € (0,1], i > 1, and j > ji, where

Xij(t) :== sup ]{B( )\I/(uij(t))dx.

Then Gronwall’s inequality together with (4.5) implies that

t
Xij(t) < Cexp <CO'_2/O n(y(s)) "M ds 4 Ct> sup ][( )\I/(mj)dx

2€RNJB

< Cexp (Co™?y(t)?) sup ][ WU (pij)dr < C sup ][ W (pij)dz
2€RN J B(z,0) z€RN J B(z,0)

for t € (0,77;), o € [v(?),1], i > 1, and j > j.. Then, since U1(26) < UL(¢€) for € € (0,00)

(see (3.8)), we obtain

sup U1 ][ U(u;;(t))dz | < C sup U1 ][ U (p5) de
z€RN B(z,0) 2z€RN B(z,0)
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Porous medium equation with power nonlinearity

for t € (0,T%), o € [v(t),1], i > 1, and j > j.. Therefore, thanks to (4.10), we obtain

) 1]
sup sup sup 7(o)¥! ][ U (uij(s)) de
5€(0,t) zERN o€[y(s),1] B(z,0)

< Csup sup 7(o)¥! <][ \P(Mij)dx> = C|||uijl[lnw;1 < Ces
2€RN 0€(0,1] B(z,0)

(4.15)

fort e (O,Tz’;) 1>1, and 7 > j,.

On the other hand, taking §; > 0 small enough, by (4.2), (4.4), and (4.11) we have

—2
(s _ _
(%) o) ngRN s
< 4571 () (7))~ 4 87 ()0
<o tsTh oot isT <257t

for s € (0,77), 3> 1, and j > j.. Then, by Lemma 3.3 with ¢ = y(s)/2 and r = 1 we have

71]
NA+2 Kl
ot ()| ey < €5 [ sup / / e
2€RN Jt/2 J B(z,y(¢)
2

_N 2N 1
<Ct my(t)s sup sup ][ uij(s) dx
sE(t/2,t) zeRN B(z,7(t))
fort € (0,77;),4 > 1, and j > j.. This together with Jensen’s inequality, (4.2), and (4.3) implies
that
n(y () [wiz (B oo mv)

2

< Ct R n((E)F sup sup ln(v(t))‘l’_l (f \D(ums))dx)r
(zv(t))

s€(t/2,t) zeRN
M (4.16)
(o) ][ W(uij(s)) dz
B(z,0)

2

< (C sup sup sup

w e (- w(s))do
s€(0,t) zeRN o€elv(s),1] B(z,0)

for t € (0,T};), i > 1, and j > ji. Therefore, by (4.15) and (4.16), taking €5 > 0 small enough if

necessary, we obtain

N
< C (¢ ()Pn(y(t)" )" sup sup  sup
5€(0,t) zERN oely(s),1]

2

= 0
n(y () [wig (O] poe @y < Clllpigll]g < Cfsl S5 (4.17)

fort € (O,Tz’;) i > 1, and j > j,. Furthermore, we observe from (4.17) that

sup sup  sup n(o)¥ <]{3( )‘If(uz'j(S))dy>

s€(0,t) zeRN o€(0,7(s))

< sup sup (o)W (W (Jlusg () |zmn ) ) = s () i (6) ey (419)
s€(0,t) o€(0,v(s)) s€(0,t)
2 2

< C|||N@JH|77\1;1 < Cey!
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Porous medium equation with power nonlinearity

for t € (0,73;), i > 1, and j > j.. Combining (4.15) and (4.18) and taking €5 > 0 small enough

if necessary, we obtain
2

2z %
pwa < Ces + Ceft < 52 (4.19)

sup |||ui;(s)]|
s€(0,t)

for t € (0,77;), i > 1, and j > j.. Then, thanks to (4.17) and (4.19), by the definition of T7; we
see that T}; =1 for i > 1 and j > j.. Furthermore, repeating the arguments in (4.10), (4.15),

(4.17), and (4.18), we obtain

2
nwit < C (|llulllpwa +571) = (4.20)

sup 1(v(8))||uij(s)|| oo mry + sup |[[ui;(s)]
s€(0,1) s€(0,1)

for i > 1 and j > j.. On the other hand, it follows from (4.2) that
2

N((€)) = EmTy(¢) T, (4.21)

N(m-—1)

y(€)Nm=1)+2 [log <e + ng)ﬂ T, (4.22)

for £ € (0,1). Then, by (4.22) we have

v(€) < gm [log <e + é)} e for £ € (0,1).

This together with (4.21) implies that

n(y(e)) = e (v [log <e + 2)] o

S L (4.23)
N 1 N(m—1)+2 1 1 p—1
i ] )]
§ §
for € € (0,1). We deduce from (4.20) and (4.23) that
_1
1 1 p—1
sup 577 Jiog (e+ )| sl + 50w [l
s€(0,1) S 5€(0,1) (4.24)

2
K1

< C (llllnwsa +377)

fori>1and j > j..

Step 2. We complete the proof of Theorem 1.2. By (4.20) we apply [46, Theorem 7.1] to obtain
the following:

e for any compact set K C RY x (0,1), there exist C' > 0 and w € (0,1) such that
Juij (1, t1) = uij(z2, 2)| < C (‘1’1 — x| + [ty — t2’%)

for (z1,t1), (x9,t2) € K, 4> 1, and j > j,.
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Porous medium equation with power nonlinearity

By the Arzela-Ascoli Theorem and the diagonal argument we find a subsequence {u;;} of {u;;}
and a Holder continuous function u in RV x (0, 1) such that

. / o
Z}gnoo l[wij — wll oo (i) = 0

)

for any compact set K of RY x (0,1). Then we observe from (3.7), (3.21), and (4.24) that

lim ui;j(t)P doe = / u(t)P de,
B(z,1) B(z,1)

1,]—00
/ uij(t)P do < sup {wij(z, t)P~ Y (log (e + wij(z,t)) / U(u;i(t)) de
B(z,1) zERN
< Cllusg O gy (108 (e + s Ollemyy) ) ¥ Ul Ollwir)

_ 1\] '@ 2(p—1)
<ortfiog (e )| Ul + 05w Ul + 1)

for € RV, t € (0,1),4 > 1, and j > j.. Therefore, by Definition 1.1-(2), (4.6), and (4.24) we
apply the Lebesgue dominated convergence theorem to see that u is a solution to problem (P)
in RY x (0,1) satisfying

1

1 p—1 2
sup 577 Jtog (e 3 )| o) g+ sup (6l < Cllell
s€(0,1) s€(0,1)

Thus Theorem 1.2 follows. O

5 Proof of Theorem 1.3

In this section we modify arguments in Section 4 to study sufficient conditions for the existence
of solutions to problem (P) with p > p,,, and prove Theorem 1.3.

Proof of Theorem 1.3. Let p > pyp, 1 < 8 < N(p—m)/2, T € (0,00, and p € L. Let
€6 € (0,1) be small enough, and assume (1.7). For any i, j = 1,2,..., let u;; be a solution to
problem (P) with initial data u replaced by (4.6). Then, for any n > 1, we find j. = j.«(n,€s)
such that

_20
pm -—1

|H:U’ZJH’N(P m) 9<|HNH’N(P m) o +1Tn
5T T (5.1)

<l gm0 + 07T < 26

for i > 1 and j > j,, where T}, := min{7T,n} and 0 is defined as in (1.1). Similarly to the proof
of Theorem 1.2, by arguments in [3] we find a unique classical solution u;; to problem (P) in
RY x (0,T;5), with u;; satisfying (4.7), (4.8), and (4.9), where T}; is the maximal existence time
of Usj -

Step 1. Let n =1,2,..., and fix it. Let 01, d2 € (0,1). Set

_1
TE := sup {t € (0,T35) - s1(10p) sP 1 [[uij(8) | oo mvy < 51} ; (5.2)
se(0,t
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Porous medium equation with power nonlinearity

s€(0,t

Té = sup {t € (0,Ti;) : sup |‘|uij(s)"|N(p;m)7ﬂ;Tng < (52} . (5.3)

Under suitable choices of §; and §, taking e > 0 small enough if necessary, we show that

Ty = min{T}, 77, T,} =T, fori>1andj > j,.

In the proof of Theorem 1.3, the constants C' are independent of n, ¢ > 1, and j > j,.
Similarly to the argument in the proof of Theorem 1.2, we see that 77; > 0 for ¢ > 1 and
j > jx. By Lemma 3.2 and (5.3) we have

t
sup / / u?}+5_3|Vui]’|2dxds < 00,
z,0

z€RN
sup sup / uij(s)? da + sup / / m+6 3\Vuij\2da:ds
s€(0,t] zeRN J B(z,0) 2€RN (2,0)

< C sup / MU dz + Co~? sup / / m+5 Ldz ds
z€RN J B(z,0) 2€RN (z,0)

+ o~ msup// m+’3 3| V|2 d ds,
B(z,0)

2€RN
for t € (0,7%), 0 > 0,47 > 1, and j > j,. Taking d, > 0 small enough if necessary, by (5.2) we

9y 1]
obtain

Yii(t) < C sup][ ,uw dx + Co™ / l|luij(s) an(lRN)Y (s)ds
B(z,0)

2€RN

t _
< C sup ][ ,uw doz +Co™ / S_FIIYU(S) ds
B(z,0) 0

2€RN

for t € (0,1};), 0 > 0,4 >1, and j > ji, where

Yi;(t) := sup ][ u;j(t)P da.
B(z,0)

Then Gronwall’s inequality implies that

t m—1
Yii(t) < Cexp <O'_2/ s p1 ds) sup ][ ufj dx
0 2€RN J B(z,0)
< Cexp (0'_2t%> sup ][ uw dx < C sup ][ MZ] dx
2€RN JB(z,0) 2€RN J B(z,0)

fort € (0,T75), 0 > t? i >1, and j > j.. Therefore we deduce from (5.1) that

2

sup sup sup opr—m <][( )uij(s)ﬂ dx) < O”|Mij‘||N(p;m) 810 < Ceg (5.4)
B(z,0 Pidn

s€(0,t) zeRN o€[s?,TY)

fort € (0,775), i > 1, and j > j..
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On the other hand, taking §; > 0 small enough if necessary, by (5.2) we have

o\ —2
s -1 -1
(5) Toofon, + s
—m m—1
< 4(5{”_18_2—1 § p-1 4 (5{’_15_1 < 0(5{”_13_1 + C’(Sf_ls_l <2571

for s € (O,TZ»’;»), i >1,and j > j.. Then, by Lemma 3.3 with 0 = t//2 and r = 3, taking eg > 0
small enough if necessary, by (5.1) and (5.4) we have
2

1 N "B
T Oy < 7T (s [l ayas
2€RN Jt/2 J B(2,t9)

2

1 N 2N6 =8
< CtP1RBtRs sup  sup ][ uij(s)” dy
s€(t/2,t) zeRN B(z,t%)

1 N [ 2NO__20 2B 0
< Ot + "5 PTTRS sup  sup tpim (][ uij(s)ﬂ dy) (5.5)
sE(t/2,t) zeRN B(z,t9)

5"
2
<C sup sup sup |or—m (][ uij(s)ﬁ dy>
B(

s€(0,t) zeRN oe[s?,T9) 2,0)
28 28
<C <o <
|H/’LZJH|N(P m)ﬂTgi €6 *5

for t € (0,775), i > 1, and j > j.. Here we used the relations that 6§ = (p —m)/2(p — 1) and
kg = N(m — 1) + 2. Furthermore, we observe from (5.1) and (5.5) that

1

2
sup sup Sup opr—m™ ][ uz-j(s)ﬁdy
5€(0,t) zeRN 5€(0,s9) B(z,0)
28 28

1 e
< sup 57T iy (3)]| e ey < Ollbiill Vo 7 < C6”
s€(0,t)

(5.6)

for t € (0,775), i > 1, and j > ji.. By (5.4) and (5.6), taking €5 > 0 small enough if necessary,
we obtain
28 5

sup ||| ($)|[| vp=m) < Ces+ Ce.’ <=
scor) BT 6 2

(5.7)

fort € (0,7};), i > 1, and j > j.. Therefore, thanks to (5.5) and (5.7), by the definition of T},
for any n = 1,2,..., we see that T}; = T, for i > 1 and j > j.. Furthermore, by (5.1), (5.4),

(5.5), and (5.6) we have

_1
sup  s71 ||ugj(s) ooy + sup |[|uij(s)|ll xw=m) g0
$€(0,T0) $€(0,T) 7 Pn
283

< O (Ilulll vz gpg +077574)
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fori > 1 and j > j,.

Step 2. We complete the proof of Theorem 1.3. By (5.8) we apply [46, Theorem 7.1] to obtain
the following:

e for any compact set K C RY x (0,7,,), there exist C > 0 and w € (0, 1) such that
|uij(z1,t1) — wij(xe,t2)] < C (m — Tl + [t — t2|%)

for (z1,t1), (x2,t2) € K, i > 1, and j > j,.
By the Arzela-Ascoli Theorem and the diagonal argument we find a subsequence {u;;} of {u;;}
and a Holder continuous function u in R x (0,7},) such that

dim g — ul| gy = 0
1,j—>00

)

for any compact set K of RV x (0,7},). Then we observe from Jensen’s inequality and (5.8) that
lim ui(t)P de = / u(t)P de,
W7o JB(2,T) B(z17)

%
/ uij(t)p dx S Té\f& ][ uij(t)ﬁ dx
B(2,T9) B(z,T%)

No- P
STTL P 1”‘“”&7( )‘Hp (p— m>5T0

2Bp

NG—% L K .
<CT 7 (Il smm gy +777) i 1<p<B,
2 Tt n

[ wiorde < ugO Ly [ w0 ds
B(z,1?) B(=,T?

»tn

No—-L- _
< OTw g O g g (Ol 3o my 1o
2 Wt n

28p

NO— él —1+ 1 K .
<CTy T (llll s g +07T) i 1<B<p,

for € RN, t € (0,T},), i > 1, and j > j.. Therefore, by Definition 1.1-(2), (4.6), and (5.8) we
apply the Lebesgue dominated convergence theorem to see that u is a solution to problem (P)
in RN x (0,7,) satisfying
213
sup [[u(s)||| xom gpe+ SUp 57T [[u(s)]| ooy < ClIllI N (5.9)
e (0.7) p=m) g.T8 s€(0.T) ( Ne—m) 570

for t € (0,7,). Since n is arbitrary, (5.9) holds with 7}, replaced by T. Thus u is our desired
solution to problem (P), and Theorem 1.3 follows. O

6 Proof of Corollary 1.1: Optimal singularity

In this section, applying Theorems 1.1-1.3, we prove Corollary 1.1.
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Proof of Corollary 1.1. Let p = p,,, @ € (0, N/2), and

/Ax)=|ﬂN[bg<e+|;>]gl

for a.a. # € RV. Let ¥ be as in Theorem 1.2. Then, by (3.21) we have

W(ep()) = (cp(x))? (eu())? [log (e + cu(@))]® < ¢z pu(x) [log (e + p(x))]®

o o (e+ 2] o

for a.a. € RY and ¢ € (0,1). This implies that

][ U(cp(x))de j][ U(cp(z))dr < croN [log <e + 1)]
B(z,0) B(0,30) o
for z € B(0,20), 0 € (0,1), and ¢ € (0,1). Thus we have

[NIES

<c

N
a—3

N
2

gl (]é(w) U(cu(z)) dx) < cig N [log <e + i)] (o) (6.2)

for z € B(0,20), 0 € (0,1), and ¢ € (0,1). On the other hand,

_N
2

1
v (J{B( )\Il(cu(x))dx) = cflullze B0y = co™ [bg (e + U)} = (o)™t (6.3)

for € RN\ B(0,20), o € (0,1), and ¢ € (0,1). By (6.2) and (6.3) we apply Theorem 1.2 with
T = 1 to see that problem (P) possesses a solution in R x (0, 1) if ¢ is small enough. Thus
assertion (1) holds if p = py,.

On the other hand, we have

][ cu(y) dy = co™N [log <e + 1)]
B(0,0) o

for 0 € (0,1). Then it follows from Theorem 1.1 that problem (P) possesses no local-in-time
solution if ¢ is large enough. Thus assertion (2) holds if p = p,,. Assertions in the case of
p > pm follows from similar arguments to those in the case of p = p,,. Therefore the proof of
Corollary 1.1 is complete. O

vl
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