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Abstract

In this paper we study qualitative properties of initial traces of solutions to the porous
medium equation with power nonlinearity, and obtain necessary conditions for the existence
of solutions to the corresponding Cauchy problem. Furthermore, we establish sharp sufficient
conditions for the existence of solutions to the Cauchy problem using uniformly local Morrey
spaces and their variations, and identify the optimal singularities of the initial data for the
solvability of the Cauchy problem.
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1 Introduction

Let u be a nonnegative solution to the porous medium equation with power nonlinearity{
∂tu = ∆um + up in RN × (0, T ),

u ≥ 0 in RN × (0, T ),
(E)

where N ≥ 1, 1 ≤ m < p, T ∈ (0,∞], and ∂t := ∂/∂t. In this paper we study qualitative
properties of initial traces of the solution u, and obtain necessary conditions for the existence of
solution to the Cauchy problem{

∂tu = ∆um + up in RN × (0, T ),

u(·, 0) = µ in RN ,
(P)

where µ is a nonnegative Radon measure in RN . Furthermore, we establish sharp sufficient
conditions for the existence of nonnegative solutions to problem (P), and identify the optimal
singularities of the initial data for the solvability of problem (P).

Let M denote the set of nonnegative Radon measures in RN , and L denote the set of
nonnegative locally integrable functions in RN . We often identify dµ = µ(x) dx in M for µ ∈ L.
For any measurable set E in Rd, where d = 1, 2, . . . , let Ld(E) be the d-dimensional Lebesuge
measure of E. For any f ∈ L, z ∈ RN , and r > 0, set

−
∫
B(z,r)

f dx :=
1

LN (B(z, r))

∫
B(z,r)

f dx,

where B(z, r) := {x ∈ RN : |x− z| < r}. Set

pm := m+
2

N
, θ :=

p−m

2(p− 1)
, θ′ :=

1

θ
=

2(p− 1)

p−m
. (1.1)

The study of initial traces of nonnegative solutions to the Cauchy problem for parabolic
equations is a classical subject, and qualitative properties of initial traces have been studied for
various parabolic equations. See e.g., [4] for linear parabolic equations, [5,21] for porous medium
equations, [10, 11] for parabolic p -Laplace equations, [27, 29, 49] for doubly nonlinear parabolic
equations, [9] for fractional diffusion equations, [1] for Finsler heat equations, [3, 14, 16, 22–25,
28, 45] for parabolic equations with source nonlinearity (positive nonlinearity), [7, 8, 33–35] for
parabolic equations with absorption nonlinearity (negative nonlinearity).

Let us recall some results on initial traces of solutions to problem (E) with m = 1. See e.g.,
[6, 23,28].

(A) (1) Assume that problem (E) with m = 1 possesses a solution u in RN × (0, T ) for some
T ∈ (0,∞). Then there exists a unique ν ∈ M such that

ess lim
t→+0

∫
RN

u(t)ψ dy =

∫
RN

ψ dν(y), ψ ∈ Cc(RN ).

Furthermore, there exists C1 = C1(N, p) > 0 such that

sup
z∈RN

ν(B(z, σ)) ≤


C1σ

N− 2
p−1 if p 6= p1,

C1

[
log

(
e+

√
T

σ

)]−N
2

if p = p1,

for σ ∈ (0,
√
T ).
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(2) Let u be a solution to problem (P) with m = 1. Then u is a solution to problem (E)
and the initial trace of u coincides with the initial data of u in M.

We remark that assertion (A) gives necessary conditions for the existence of solutions to prob-
lem (P) with m = 1. Sufficient conditions for the existence of solutions to problem (P) with
m = 1 have been studied in many papers, and the following assertion holds for m = 1.

(B) Let m = 1.

(1) Let 1 < p < p1. Then problem (P) possesses a local-in-time solution if and only if

sup
z∈RN

µ(B(z, 1)) <∞.

(See assertion (A) and e.g., [47, 48].)

(2) Let p = p1. For any α > 0, there exists ϵ1 = ϵ1(N,α) > 0 such that if µ ∈ L satisfies

sup
z∈RN

sup
σ∈(0,

√
T )

η

(
σ√
T

)
Ψ−1

(
−
∫
B(z,σ)

Ψ
(
T

1
p−1µ

)
dy

)
≤ ϵ1

for some T ∈ (0,∞), then problem (P) possesses a solution in Rn × (0, T ), where

Ψ(s) := s[log(e+ s)]α, η(s) := sN
[
log

(
e+

1

s

)]N
2

.

See e.g., [16, 23,28]. (See also [26] for another sufficient condition.)

(3) Let p > p1. For any β > 1, there exists ϵ2 = ϵ2(N, p, β) > 0 such that if µ ∈ L
satisfies

sup
z∈RN

sup
σ∈(0,

√
T )

σ
2

p−1

(
−
∫
B(z,σ)

|µ|β dy

) 1
β

≤ ϵ2

for some T ∈ (0,∞], then problem (P) possesses a solution in RN × (0, T ). See e.g.,
[16, 23,31,40].

We remark that assertion (B)-(2) with α = 0 and assertion (B)-(3) with β = 1 do not hold. (See
Remark 1.2 for details.) Combining the results in (A) and (B), we have the following assertion.

(C) Let p ≥ p1. For any c > 0, set

µc(x) :=


c|x|−N

[
log

(
e+

1

|x|

)]−N
2
−1

if p = p1,

c|x|−
2

p−1 if p > p1,

for a.a. x ∈ RN .

(1) Problem (P) possesses a local-in-time solution for c > 0 small enough;

(2) Problem (P) possesses no local-in-time solutions for c > 0 large enough.

Furthermore, if p > p1 and c > 0 is small enough, then problem (P) possesses a global-in-
time solution.
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The results in (C) show that the “strength” of the singularity at the origin of the functions µc
is the critical threshold for the local solvability of problem (P). We term such a singularity in
the initial data an optimal singularity of initial data for the solvability of problem (P). (See e.g.,
[15] for further details of optimal singularities of initial data.) We easily see that, by translation
invariance the singularity could be located at any point of RN .

On the other hand, in the case of m > 1, much less is known about the solvability of
problem (P), in particular, the optimal singularity of the initial data for the solvability of
problem (P). Andreucci and DiBenedetto [3] proved the existence and the uniqueness of initial
traces of solutions to problem (E). Furthermore, they obtained qualitative properties of initial
traces of solutions and studied necessary conditions and sufficient conditions for the existence
of solutions to problem (P). More precisely, they obtained the following assertion.

(D) Let 1 ≤ m < p.

(1) Assume that problem (E) possesses a solution u in RN × (0, T ) for some T ∈ (0,∞).
Then there exists a unique ν ∈ M such that

ess lim
t→+0

∫
RN

u(t)ψ dy =

∫
RN

ψ dν(y), ψ ∈ Cc(RN ).

Furthermore, there exists C2 = C2(N,m, p) > 0 such that

sup
z∈RN

ν(B(z, σ)) ≤ C2σ
N− 2

p−m

for σ ∈ (0, T θ).

(2) Let m < p < pm. Then problem (P) possesses a local-in-time solution if and only if

sup
z∈RN

µ(B(z, 1)) <∞.

(3) Let p ≥ pm. Then, for any r > N(p−m)/2, there exists ϵ3 = ϵ3(N,m, p, r) > 0 such
that if µ ∈ L satisfies

T
1

p−1 sup
z∈RN

(
−
∫
B(z,T θ)

|µ|r dy

) 1
r

≤ ϵ3

for some T ∈ (0,∞), then problem (P) possesses a solution in RN × (0, T ).

Subsequently, the following sufficient conditions were established in [2] and [42] for the super-
critical case p > pm.

(D) Let p > pm.

(3’) If µ ∈ M satisfies

sup
z∈RN

sup
0<σ≤1

σ
2

p−m
−N+λ

µ(B(z, σ)) <∞

for some λ ∈ (0, N(p − m)/2), then problem (P) possesses a local-in-time solution
(see [2, Remark 2]).
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(3”) Then there exists ϵ4 = ϵ4(N,m, p) > 0 such that if µ ∈ L satisfies

T
1

p−1 sup
z∈RN

(
−
∫
B(z,T θ)

|µ|
N(p−m)

2 dy

) 2
N(p−m)

≤ ϵ4

for some T ∈ (0,∞), then problem (P) possesses a solution in RN × (0, T ) (see [42]).

Unfortunately, the results in (D) are not enough to identify the optimal singularity of the initial
data for the solvability of problem (P) in the case of p ≥ pm. In particular, assertions (D)-(3),
(3’), and (3”) do not allow the treatment of initial data with a singularity like that of |x|−2/(p−m)

in the case of p > pm. Moreover, we note that, due to the result by Takahashi [44], it does not
appear to be possible to take λ = 0 in assertion (D)-(3’) (see Remark 1.2). Therefore, if we
consider initial data with a singularity like that of |x|−2/(p−m), it seems more appropriate to
adopt a formulation similar to those in assertions (B)-(2) and (3), which use Morrey norms and
their variations.

In this paper we give refinements of assertions (D)-(1), (3), and (3”), and extend asser-
tions (A), (B), and (C) to the case m > 1. More precisely:

• we improve qualitative properties of initial traces of solutions to problem (E) with p = pm,
and establish sharp necessary condition for the existence of solutions to problem (P) (see
Theorem 1.1);

• we give sharp sufficient conditions for the existence of solutions to problem (P) with p ≥ pm
using uniformly local Morrey spaces and their variations (see Theorems 1.2 and 1.3).

Our necessary conditions and sufficient conditions enable us to identify the optimal singularity
of initial data for the solvability for problem (P) with p ≥ pm (see Corollary 1.1).

We formulate definitions of solutions to problems (E) and (P).

Definition 1.1 Let 1 ≤ m < p, T ∈ (0,∞], and u ∈ Lploc(R
N × [0, T )) be nonnegative in

RN × (0, T ).

(1) We say that u is a solution to problem (E) in RN × (0, T ) if u satisfies∫ T

τ

∫
RN

(−u∂tϕ− um∆ϕ− upϕ) dx dt =

∫
RN

u(x, τ)ϕ(x, τ) dx (1.2)

for ϕ ∈ C2;1
c (RN × [0, T )) and almost all (a.a.) τ ∈ (0, T ).

(2) For any µ ∈ M, we say that u is a solution to problem (P) in RN × (0, T ) if u satisfies∫ T

0

∫
RN

(−u∂tϕ− um∆ϕ− upϕ) dx dt =

∫
RN

ϕ(x, 0) dµ(x)

for ϕ ∈ C2;1
c (RN × [0, T )).

We introduce some notation. For any positive functions f and g in a set X, we say that
f � g for x ∈ X or equivalently that g � f for x ∈ X if there exists C > 0 such that

f(x) ≤ Cg(x) for x ∈ X.
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If f � g and g � f for x ∈ X, we say that f � g for x ∈ X. In all that follows we will use
C to denote generic positive constants and point out that C may take different values within a
calculation.

Let Φ be a nonnegative, convex, and strictly increasing function in [0,∞) such that Φ(0) = 0.
Let ρ be a nonnegative, non-decreasing, and continuous function in [0,∞). Then, for any f ∈ L
and R ∈ (0,∞], set

|||f |||ρ,Φ;R := sup
z∈RN

sup
σ∈(0,R)

{
ρ(σ)Φ−1

(
−
∫
B(z,σ)

Φ(f) dx

)}
.

For any q ∈ [1,∞) and α ∈ [1,∞), if Φ(ξ) = ξα and ρ(ξ) = ξ
N
q for ξ ∈ [0,∞), we write

|||f |||q,α;R := |||f |||ρ,Φ;R = sup
z∈RN

sup
σ∈(0,R)

σN
q

(
−
∫
B(z,σ)

|f |α dx

) 1
α


for simplicity. In particular, if R = 1, then ||| · |||q,α;1 coincides with the norm of uniformly local
Morrey spaces (see e.g., [31, Definition 0.1]).

Now we are ready to state the main results of this paper. The first theorem concerns with
qualitative properties of initial traces of solutions to problem (E).

Theorem 1.1 Let N ≥ 1 and 1 ≤ m < p.

(1) Let u be a solution to problem (E) in RN × (0, T ), where T ∈ (0,∞). Then there exists a
unique ν ∈ M such that

ess lim
t→+0

∫
RN

u(t)ψ dx =

∫
RN

ψ dν(x), ψ ∈ Cc(RN ). (1.3)

Furthermore, there exists C = C(N,m, p) > 0 such that

sup
z∈RN

ν(B(z, σ)) ≤


Cσ

N− 2
p−m if p 6= pm,

C

[
log

(
e+

T θ

σ

)]−N
2

if p = pm,
(1.4)

for σ ∈ (0, T θ), where pm and θ are defined as in (1.1).

(2) Let u be a solution to problem (P). Then u is a solution to problem (E) and the initial
trace of u coincides with the initial data of u in M.

Similarly to assertion (A), Theorem 1.1 gives a necessary condition for the existence of solutions
to problem (P).

Remark 1.1 (1) Let u be a solution to problem (E) in RN × (0, T ), where T ∈ (0,∞]. For any
λ > 0, set

uλ(x, t) := λ
2

p−mu(λx, λθ
′
t), (x, t) ∈ RN × (0, Tλ),

where Tλ := λ−θ
′
T . Then uλ is a solution to problem (E) in RN × (0, Tλ).

(2) Let 1 ≤ m < p < pm and µ ∈ M. Then, since N − 2/(p−m) < 0, the relation

sup
z∈RN

µ(B(z, σ)) ≤ Cσ
N− 2

p−m
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holds for σ ∈ (0, T θ) if and only if

sup
z∈RN

µ(B(z, T θ)) ≤ CT
Nθ− 1

p−1 .

(3) If m < p ≤ pm, then problem (P) possesses no nontrivial global-in-time solutions (see
[12, 17, 18, 38, 39, 41, 43]). This fact immediately follows from Theorem 1.1. Indeed, assume
that problem (P) possesses a nontrivial global-in-time solution u. Then, for a.a. τ > 0, setting
uτ (x, t) := u(x, t + τ) for a.a. (x, t) ∈ RN × (0,∞), we see that uτ is a global-in-time solution
to problem (P) with initial data µ = u(τ). Combining this fact with Theorem 1.1, we have

sup
z∈RN

∫
B(z,T θ)

u(τ) dy ≤ CT
Nθ− 1

p−1 → 0 if p < pm,

sup
z∈RN

∫
B(z,T

θ
2 )
u(τ) dy ≤ C

[
log
(
e+ T

θ
2

)]−N
2 → 0 if p = pm,

as T → ∞. These imply that u(x, τ) = 0 for a.a. (x, τ) ∈ RN × (0,∞), which is a contradiction.
Thus problem (P) possesses no nontrivial global-in-time solutions if m < p ≤ pm. See also e.g.,
[20, 36,37] for related results on Riemannian manifolds and in the Euclidean weighted setting.

In the second and third theorems we obtain sharp sufficient conditions for the existence of
solutions to problem (P) with p = pm and p > pm, respectively. We remark that problem (P)
possesses a global-in-time solution for some initial data µ ∈ L if and only if p > pm (see
Remark 1.1-(3)).

Theorem 1.2 Let N ≥ 1, m ≥ 1, p = pm ≡ m+ 2/N , and α > 0. Let

Ψ(ξ) := ξ[log(e+ ξ)]α, η(ξ) := ξN
[
log

(
e+

1

ξ

)]N
2

, (1.5)

for ξ ∈ [0,∞). Then there exist ϵ5 = ϵ5(N,m,α) > 0 and C = C(N,m,α) > 0 such that if
µ ∈ L satisfies

sup
z∈RN

sup
σ∈(0,T θ)

η
( σ
T θ

)
Ψ−1

(
−
∫
B(z,σ)

Ψ
(
T

1
p−1µ

)
dy

)
≤ ϵ5 (1.6)

for some T ∈ (0,∞), then problem (P) possesses a solution u in RN × (0, T ), with u satisfying

sup
t∈(0,T )

t
1

p−1

[
log

(
e+

T

t

)] 1
p−1

‖u(t)‖L∞(RN )

+ sup
t∈(0,T )

sup
z∈RN

sup
σ∈(0,T θ)

η
( σ
T θ

)
Ψ−1

(
−
∫
B(z,σ)

Ψ
(
T

1
p−1u(t)

)
dy

)

≤ C sup
z∈RN

sup
σ∈(0,T θ)

{
η
( σ
T θ

)
Ψ−1

(
−
∫
B(z,σ)

Ψ
(
T

1
p−1µ

)
dy

)} 2
N(m−1)+2

,

where θ is defined as in (1.1).

Theorem 1.3 Let N ≥ 1, m ≥ 1, p > pm ≡ m + 2/N , and 1 < β < N(p −m)/2. Then there
exist ϵ6 = ϵ6(N,m, p, β) > 0 and C = C(N,m, p, β) > 0 such that if µ ∈ L satisfies

|||µ|||N(p−m)
2

,β;T θ ≤ ϵ6 (1.7)
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for some T ∈ (0,∞], then problem (P) possesses a solution u in RN × (0, T ), with u satisfying

sup
t∈(0,T )

t
1

p−1 ‖u(t)‖L∞ + sup
t∈(0,T )

|||u(t)|||N(p−m)
2

,β;T θ ≤ C|||µ|||
2β

N(m−1)+2β

N(p−m)
2

,β;T θ
,

where θ is defined as in (1.1). In particular, if µ ∈ L satisfies

|||µ|||N(p−m)
2

,β;∞ = sup
z∈RN

sup
σ>0

σ 2
p−m

(
−
∫
B(z,σ)

|µ|β dy

) 1
β

 ≤ ϵ6,

then problem (P) possesses a global-in-time solution.

Necessary conditions in Theorem 1.1 and sufficient conditions in Theorems 1.2 and 1.3 are
sharp. Indeed, Theorems 1.1–1.3 enable us to identify an optimal singularity of the initial data
for the solvability of problem (P) with p ≥ pm.

Corollary 1.1 Let N ≥ 1, m ≥ 1, and p ≥ pm. For any c > 0, set

µmc (x) :=


c|x|−N

[
log

(
e+

1

|x|

)]−N
2
−1

if p = pm,

c|x|−
2

p−m if p > pm,

for a.a. x ∈ RN .

(1) Problem (P) possesses a local-in-time solution for c > 0 small enough;

(2) Problem (P) possesses no local-in-time solutions for c > 0 large enough.

Furthermore, if p > pm and c > 0 is small enough, then problem (P) possesses a global-in-time
solution.

Remark 1.2 Takahashi [44] proved that if m = 1, p ≥ p1, and µ ∈ M satisfies

lim sup
σ↘0

σ
−N+ 2

p−1

(
log

(
e+

1

σ

)) 1
p−1

+λ

sup
z∈RN

µ(B(z, σ)) <∞ (1.8)

for some λ > 0, then problem (P) with m = 1 possesses a local-in-time solution (see [44,
Theorem 1.1] for more details). Moreover, he also proved that there exists µ ∈ L satisfying (1.8)
with λ = 0 such that problem (P) possesses no local-in-time solutions. In particular, this implies
that assertion (B)-(2) with α = 0 and assertion (B)-(3) with β = 1 do not hold.

In the proof of Theorem 1.1 we modify arguments in [45] to find suitable cut-off functions to
obtain estimates of solvable initial data of problem (P) (see Proposition 2.1). Here we require
delicate choice of parameters of cut-off functions (see Steps 3 and 4 in the proof of Proposi-
tion 2.1). Then we follow arguments in [23] to complete the proof of Theorem 1.1.

If m = 1, the results in Theorems 1.2 and 1.3 coincide with assertion (B)-(2) in [23, 26, 28]
and assertion (B)-(3) in [23, 31, 40], respectively. However, since the proofs of these papers rely
on the representation formula of solutions via Duhamel’s principle, the same method does not
appear to be extendable to the case m > 1 due to the nonlinearity of the principal term ∆um.

8



Porous medium equation with power nonlinearity

One of the main ingredients of this paper is to give new energy estimates involving Morrey
norms and its variations (see Lemmata 3.1 and 3.2). The proofs of these lemmata are inspired by
the argument in [32], which proved improved Sobolev inequalities via weak-type estimates and
pseudo-Poincaré inequalities. These energy estimates together with L∞-estimates of solutions
to problem (P) lead a priori estimates for classical solutions to problem (P). Combining these
estimates with regularity theorems for solutions to problem (P), we construct a solution to
problem (P) as the limit of classical solutions to problem (P), where initial data are given by the
lifting and the truncation of µ (see (4.6)). We emphasize that this approach is new even in the
case m = 1 because we provide a priori estimates involving Morrey norms and their variations
without relying on the integral representation of solutions to problem (P) with m = 1.

The rest of this paper is organized as follows. In Section 2 we modify the arguments in [45]
to prove Theorem 1.1. In Section 3 we obtain energy estimates of solutions. In Sections 4 and 5
we prove Theorems 1.2 and 1.3, respectively. In Section 6 we apply Theorems 1.1–1.3 to prove
Corollary 1.1.

Acknowledgment. The authors of this paper are grateful to the anonymous referees for
their valuable suggestions. They would also like to thank Professor Ryo Takada for his useful
comments. K. I. was supported in part by JSPS KAKENHI Grant Number 19H05599. N. M.
was supported in part by JSPS KAKENHI Grant Numbers 22KJ0719 and 24K16944. R. S. was
supported in part by JSPS KAKENHI Grant Number 21KK0044.

2 Proof of Theorem 1.1

In this section we modify arguments in [45] to study necessary conditions for the existence
of solutions to problem (P). Furthermore, we obtain qualitative properties of initial traces of
solutions to problem (E), and prove Theorem 1.1.

Proposition 2.1 Let N ≥ 1, m ≥ 1, and p > m. Let u be a solution to problem (P) in
RN × [0, T ), where T ∈ (0,∞). Then there exists C = C(N,m, p) > 0 such that

sup
z∈RN

µ(B(z, σ)) ≤


Cσ

N− 2
p−m if p 6= pm,

C

[
log

(
e+

T θ

σ

)]−N
2

if p = pm,

for σ ∈ (0, T θ), where pm and θ are defined as in (1.1).

Proof. The proof is divided into several steps. Let u be a solution to problem (P) in RN×(0, T ),
where T ∈ (0,∞).

Step 1: Let ψ ∈ C2;1
c (RN × [0, T )) be chosen later such that 0 ≤ ψ ≤ 1 in RN × [0, T ). Let

k ∈ N, and set ϕ = ψk. Then it follows from Definition 1.1-(2) and Hölder’s inequality that∫
RN

ϕ(0) dµ(x) +

∫ T

0

∫
RN

upϕ dx dt = −
∫ T

0

∫
RN

(u∂tϕ+ um∆ϕ) dx dt

≤
(∫ T

0

∫
RN

upϕ dx dt

) 1
p
(∫ T

0

∫
RN

∣∣∣∣∂tϕϕ
∣∣∣∣ p
p−1

ϕ dx dt

)1− 1
p

+

(∫ T

0

∫
RN

upϕ dx dt

)m
p
(∫ T

0

∫
RN

∣∣∣∣∆ϕϕ
∣∣∣∣ p
p−m

ϕ dx dt

)1−m
p
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≤
∫ T

0

∫
RN

upϕ dx dt+ C

∫ T

0

∫
RN

(
|∂tϕ|

p
p−1ϕ

− 1
p−1 + |∆ϕ|

p
p−mϕ

− m
p−m

)
dx dt

and hence ∫
RN

ϕ(0) dµ(x) ≤ C

∫ T

0

∫
RN

(
|∂tϕ|

p
p−1ϕ

− 1
p−1 + |∆ϕ|

p
p−mϕ

− m
p−m

)
dx dt. (2.1)

Since ψ ≤ 1 in RN × [0,∞) and p > m ≥ 1, taking k ≥ 1 large enough, we see that

|∂tϕ|
p

p−1ϕ
− 1

p−1 ≤ C|∂tψ|
p

p−1ψ
k(p−1)−p

p−1 ≤ C|∂tψ|
p

p−1 ,

|∆ϕ|
p

p−mϕ
− m

p−m ≤ C|∆ψ|
p

p−mψ
k(p−m)−p

p−m + |∇ψ|
2p

p−mψ
k(p−m)−2p

p−m ≤ C|∆ψ|
p

p−m + C|∇ψ|
2p

p−m ,

which together with (2.1) imply that∫
{x∈RN :ψ(x,0)=1}

dµ(x) ≤ C

∫ T

0

∫
RN

(
|∂tψ|

p
p−1 + |∆ψ|

p
p−m + |∇ψ|

2p
p−m

)
dx dt

≤ C

∫ T

0

∫
RN

(
|∂tψ|

p
p−1 + (|∆ψ|+ |∇ψ|2)

p
p−m

)
dx dt.

(2.2)

Step 2: Let ζ ∈ C∞(R) be such that 0 ≤ ζ ≤ 1 in R, ζ ≡ 1 in [1,∞), ζ ≡ 0 in (−∞, 0], and

|ζ ′| ≤ 2 in R. Let z ∈ RN , a > 0, and δ > 0. For any F ∈ C∞((0,∞)) with F ≤ 0 in [aT/2,∞),
set

ψ(x, t) := ζ(F (r(x, t))) with r(x, t) := |x− z|θ′ + at+ δ

for (x, t) ∈ RN × [0, T ), where θ′ is defined as in (1.1). Then ψ ∈ C2
c (RN × [0, T )). Since

θ′ =
2(p− 1)

p−m
> 2,

∂tψ = ζ ′(F (r))F ′(r)∂tr, ∇ψ = ζ ′(F (r))F ′(r)∇r,
∆ψ = ζ ′′(F (r))F ′(r)2|∇r|2 + ζ ′(F (r))F ′′(r)|∇r|2 + ζ ′(F (r))F ′(r)∆r,

we have

|∂tψ| ≤ Ca|F ′(r)|,

|∇ψ|2 ≤ CF ′(r)2|x− z|2(θ′−1) ≤ CF ′(r)2r2−2θ,

|∆ψ| ≤ CF ′(r)2|x− z|2(θ′−1) + C|F ′′(r)||x− z|2(θ′−1) + C|F ′(r)||x− z|θ′−2

≤ CF ′(r)2r2−2θ + C|F ′′(r)|r2−2θ + C|F ′(r)|r1−2θ.

These together with (2.2) imply that∫
{x∈RN :F (|x−z|θ′+δ)≥1}

dµ(x) ≤ C

∫∫
{(x,t)∈RN×[0,T ) : 0≤F (r(x,t))≤1}

g(r(x, t)) dx dt,

where

g(ξ) := a
p

p−1 |F ′(ξ)|
p

p−1 +
(
|F ′(ξ)|2ξ2−2θ + |F ′′(ξ)|ξ2−2θ + |F ′(ξ)|ξ1−2θ

) p
p−m

. (2.3)
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Porous medium equation with power nonlinearity

Then we obtain

sup
z∈RN

∫
{x∈RN :F (|x−z|θ′+δ)≥1}

dµ(x)

≤ sup
z∈RN

∫∫
{(x,t)∈RN×[0,∞) : 0≤F (|x−z|θ′+at+δ)≤1}

g(|x− z|θ′ + at+ δ) dx dt

= Ca−1

∫∫
{(r,t)∈[0,∞)×[0,∞) : 0≤F (rθ′+t+δ)≤1}

g(rθ
′
+ t+ δ)rN−1 dr dt

= Ca−1

∫∫
{(s,τ)∈[0,∞)×[0,∞) : 0≤F (s2+τ2+δ)≤1}

g(s2 + τ2 + δ)s2(N−1)θ+2θ−1τ ds dτ

= Ca−1

∫
{ζ≥0 : 0≤F (ζ2+δ)≤1}

g(ζ2 + δ)ζ2Nθ+1 dζ

∫ π
2

0
(cosω)2Nθ−1 sinω dω

= Ca−1

∫
{ξ≥0 : 0≤F (ξ+δ)≤1}

g(ξ + δ)ξNθ dξ.

(2.4)

Step 3: Let b, c, and d > 0 be constants to be chosen later such that

aT

2
≥ d

ec − 1
. (2.5)

Set

F (ξ) :=
1

b

(
log

(
1 +

d

ξ

)
− c

)
for ξ ∈ (0,∞).

Then

F (ξ) ≥ 1 if and only if ξ ≤ R1 :=
d

eb+c − 1
,

F (ξ) ≥ 0 if and only if ξ ≤ R2 :=
d

ec − 1
,

F (ξ) ≤ 0 if ξ ≥ aT/2.

(2.6)

Furthermore,

|F ′(ξ)| =

∣∣∣∣∣−1

b

(
1 +

d

ξ

)−1 d

ξ2

∣∣∣∣∣ = d

bξ

1

ξ + d
≤ 1

bξ
,

|F ′′(ξ)| = d

bξ2
1

ξ + d
+

d

bξ

1

(ξ + d)2
=

1

bξ2
d(ξ + d) + dξ

(ξ + d)2
≤ 1

bξ2
,

(2.7)

for ξ ∈ (0,∞). Letting δ → 0 and applying (2.4), by (2.3), (2.6), and (2.7) we obtain

sup
z∈RN

µ(B(z,Rθ1))

≤ C∗a
−1
(
a

p
p−1 b

− p
p−1 + b

− 2p
p−m + b

− p
p−m

) ∫ R2

R1

ξ
Nθ− p

p−1 dξ

= C∗R
Nθ− 1

p−1

1 a−1
(
a

p
p−1 b

− p
p−1 + b

− 2p
p−m + b

− p
p−m

) ∫ R2/R1

1
ξ
Nθ− p

p−1 dξ,

(2.8)

where C∗ is a positive constant independent of a, b, c, and d.

11



Porous medium equation with power nonlinearity

Let σ > 0. Let d > 0 be such that

σ =

(
d

eb+c − 1

)θ
= Rθ1.

Then it follows from (2.5) and (2.8) that

sup
z∈RN

µ(B(z, σ)) ≤ C∗σ
N− 2

p−ma−1
(
a

p
p−1 b

− p
p−1 + b

− 2p
p−m + b

− p
p−m

) ∫ eb+c−1
ec−1

1
ξ
Nθ− p

p−1 dξ

for a, b, c, and σ > 0 with

0 < σ ≤
(
aT (ec − 1)

2(eb+c − 1)

)θ
.

Letting c→ ∞, we get

sup
z∈RN

µ(B(z, σ)) ≤ C∗σ
N− 2

p−ma−1
(
a

p
p−1 b

− p
p−1 + b

− 2p
p−m + b

− p
p−m

) ∫ eb

1
ξ
Nθ− p

p−1 dξ (2.9)

for a, b, and σ > 0 with 0 < σ ≤ (aT/2eb)θ.

Step 4: We choose suitable a and b > 0 to complete the proof of Proposition 2.1. In the case of
p 6= pm, by (2.9) with a = 2e and b = 1 we obtain

µ(B(z, σ)) ≤ Cσ
N− 2

p−m for σ ∈ (0, T θ).

Thus Proposition 2.1 follows in the case of p 6= pm.

Consider the case of p = pm. Let ℓ ≥ 1 and b ≥ 1, and set a = ℓb
−m−1

p−m . Since

a
p

p−1 b
− p

p−1 =
(
ℓb

− p−1
p−m

) p
p−1

= ℓ
p

p−1 b
− p

p−m ,

Nθ − p

p− 1
= −1,

m− 1

p−m
− p

p−m
+ 1 = − 1

p−m
= −N

2
,

it follows from (2.9) that

sup
z∈RN

µ(B(z, σ)) ≤ Cℓ
p

p−1a−1b
− p

p−m
+1

= Cℓ
1

p−1 b−
N
2 (2.10)

for b ≥ 1 and σ > 0 with

0 < σ ≤

(
ℓT

2b
N(m−1)

2 eb

)θ
.

Let L ≥ e, and set

b = log

(L+
T

σθ′

)[
log

(
L+

T

σθ′

)]−N(m−1)
2

 .

Taking L large enough if necessary, we see that b ≥ 1. Since

b ≤ log

(
L+

T

σθ′

)
for σ > 0,

12



Porous medium equation with power nonlinearity

we have

b
N(m−1)

2 eb ≤
[
log

(
L+

T

σθ′

)]N(m−1)
2

(
L+

T

σθ′

)[
log

(
L+

T

σθ′

)]−N(m−1)
2

= L+
T

σθ′
≤ C

T

σθ′

for σ ∈ (0, T θ). Then, taking ℓ ≥ 1 large enough if necessary, we obtain

ℓT

2b
N(m−1)

2 eb
≥ ℓ

C
σθ

′ ≥ σθ
′

for σ ∈ (0, T θ),

which implies that (
ℓT

2b
N(m−1)

2 eb

)θ
≥ σ for σ ∈ (0, T θ).

Then we deduce from (2.10) that

sup
z∈RN

µ(B(z, σ)) ≤ C

log
(L+

T

σθ′

)[
log

(
L+

T

σθ′

)]−N(m−1)
2

−N
2

≤ C

[
log

(
L+

T

σθ′

)]−N
2

≤ C

[
log

(
e+

T θ

σ

)]−N
2

for σ ∈ (0, T θ). Thus Proposition 2.1 follows in the case of p = pm, and the proof of Proposi-
tion 2.1 is complete. 2

Remark 2.1 As mentioned, the proof of Proposition 2.1 is based on the arguments in [45].
One of the main differences between the proof in [45] and our approach is the appearance of
the additional parameter a > 0 (see Step 2 in the proof of Proposition 2.1). This parameter is
necessary to treat the case p = pm in order to obtain (2.10).

Proof of Theorem 1.1. Let u be a solution to problem (E) in RN × (0, T ), where T ∈ (0,∞).
Then there exists a measurable set I ⊂ (0, T ) with L1((0, T ) \ I) = 0 such that (1.2) holds for
τ ∈ I. For any τ ∈ I, setting uτ (x, t) := u(x, t+ τ) for a.a. (x, t) ∈ RN × (0, T − τ), we see that
uτ is a solution to problem (P) in RN × (0, T − τ) with µ = u(τ). Then, by Proposition 2.1 we
see that

sup
z∈RN

∫
B(z,σ)

u(τ) dx ≤


C∗σ

N− 2
p−m if p 6= pm,

C∗

[
log

(
e+

T θ

σ

)]−N
2

if p = pm,
(2.11)

for σ ∈ (0, (T − τ)θ) and τ ∈ I, where C∗ is a positive constant depending only on N , p, and
m, and θ is defined as in (1.1). Applying the weak compactness of Radon measures (see e.g.,
[13, Section 1.9]), we find a sequence {τj} ⊂ I with limj→∞ τj = 0 and ν ∈ M such that

lim
j→∞

∫
RN

u(τj)ψ dx =

∫
RN

ψ dν(x), ψ ∈ Cc(RN ). (2.12)

We show that (1.3) holds. Let {sj} ⊂ I with limj→∞ sj = 0 and ν ′ ∈ M such that

lim
j→∞

∫
RN

u(sj)ψ dx =

∫
RN

ψ dν ′(x), ψ ∈ Cc(RN ). (2.13)
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Porous medium equation with power nonlinearity

Let ψ ∈ C∞
c (RN ). Let ϕ ∈ C∞

c (RN × [0, T )) be such that ϕ(x, t) = ψ(x) for (x, t) ∈ RN × [0, δ]
for some δ ∈ (0, T ). Then, by (1.2), (2.12), and (2.13) we see that∫ T

0

∫
RN

(−u∂tϕ− um∆ϕ− upϕ) dx dt = lim
j→∞

∫
RN

u(τj)ϕ(τj) dx =

∫
RN

ψ dν(x)

= lim
j→∞

∫
RN

u(sj)ϕ(sj) dx =

∫
RN

ψ dν ′(x).

This implies that ν = ν ′ in M. Then, since {sj} ⊂ I is arbitrary, we see that ν satisfies (1.3).
Furthermore, the uniqueness of the initial trace of solution u also follows.

It remains to prove (1.4). Let z ∈ RN , δ ∈ (0, T ), σ ∈ (0, (T − δ)θ), and ϵ ∈ (0, σ). Let
ψ ∈ Cc(RN ) be such that 0 ≤ ψ ≤ 1 in RN , ψ = 1 in B(z, σ − ϵ), and suppψ ⊂ B(z, σ). Then
it follows from (2.11) that

µ(B(z, σ − ϵ)) ≤
∫
RN

ψ dµ(x) = lim
j→0

∫
RN

u(τj)ψ dx

≤


C∗σ

N− 2
p−m if p 6= pm,

C∗

[
log

(
e+

T θ

σ

)]−N
2

if p = pm.

Since ϵ ∈ (0, σ) and δ ∈ (0, T ) are arbitrary, we obtain (1.4). Thus Theorem 1.1 follows. 2

3 Energy estimates of solutions

In this section we obtain energy estimates of solutions to problem (P), which are crucial in the
proofs of Theorems 1.2 and 1.3. We often use the following property:

• there exists m∗ ≥ 1 such that

sup
z∈RN

∫
B(z,2σ)

f dx ≤ m∗ sup
z∈RN

∫
B(z,σ)

f dx (3.1)

for f ∈ L and σ > 0 (see e.g., [30, Lemma 2.1]).

We first give an energy estimate of solutions to problem (P) with p = pm.

Lemma 3.1 Let N ≥ 1, m ≥ 1, p = pm ≡ m+ 2/N , µ ∈ L ∩ L∞(RN ), T ∈ (0,∞), and α > 0.
Let u be a positive classical solution to problem (P) in RN × (0, T ) such that

sup
t∈(0,T )

‖u(t)‖L∞(RN ) <∞. (3.2)

Let Ψ and η be as in (1.5). Then

sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ′′(u)|∇u|2 dx ds <∞ (3.3)

for t ∈ (0, T ) and σ > 0. Furthermore, there exists C = C(N,m,α) > 0 such that

sup
s∈(0,t]

sup
z∈RN

∫
B(z,σ)

Ψ(u(s)) dx+ sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ′′(u)|∇u|2 dx ds

≤ C sup
z∈RN

∫
B(z,σ)

Ψ(µ) dx+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ(u) dx ds

+ C sup
z∈RN

∫ t

0

∫
B(z,σ)

Ψ(u) dx ds+ CMσ[u](t)
p−m sup

z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ′′(u)|∇u|2 dx ds

(3.4)
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Porous medium equation with power nonlinearity

for t ∈ (0, T ) and σ > 0 if

Mσ[u](t) := sup
s∈(0,t]

sup
z∈RN

sup
r∈(0,σ]

{
η(r)Ψ−1

(
−
∫
B(z,r)

Ψ(u(s)) dy

)}
≤ 1. (3.5)

Proof. Let u be a positive classical solution to problem (P) in RN × (0, T ), where T ∈ (0,∞),
and assume (3.2). Let z ∈ RN , t ∈ (0, T ), and σ > 0. Let ζ ∈ C∞

c (RN ) be such that

ζ ≡ 1 in B(z, σ), ζ ≡ 0 in RN \B(z, 2σ), 0 ≤ ζ ≤ 1 in RN ,
‖∇ζ‖L∞ ≤ 2σ−1, ‖∇2ζ‖L∞ ≤ 4σ−2.

(3.6)

Let Ψ and η be as in (1.5). Then

Ψ′(0) > 0, 0 < Ψ′′(ξ) � ξ−1Ψ′(ξ) � ξ−2Ψ(ξ), Ψ(2ξ) � Ψ(ξ),

η′(ξ) > 0, η(2ξ) � η(ξ),
(3.7)

hold for ξ ∈ (0,∞). In addition, it follows from (3.7) that

(Ψ−1)′(0) > 0, (Ψ−1)′(ξ) > 0, (Ψ−1)′′(ξ) < 0, Ψ−1(2ξ) � Ψ−1(ξ), (3.8)

hold for ξ ∈ (0,∞).

Step 1. Let k ≥ 1 and ℓ ≥ 1 be large enough to be chosen later. Let t ∈ (0, T ). We multiply the
equation

∂tu−∆um − up = 0 in RN × (0, T )

by Ψ′(uζℓ)ζk+ℓ and integrate it in RN × (0, t). Since∫ t

0

∫
RN

∂tuΨ
′(uζℓ)ζk+ℓ dx ds

=

∫ t

0

d

ds

∫
RN

Ψ(uζℓ)ζk dx ds =

∫
RN

Ψ
(
u(t)ζℓ

)
ζk dx−

∫
RN

Ψ(µζℓ)ζk dx

and

−
∫ t

0

∫
RN

∆(um)Ψ′(uζℓ)ζk+ℓ dx ds

= m

∫ t

0

∫
RN

um−1∇u ·
(
Ψ′′(uζℓ)ζk+ℓ(∇uζℓ + ℓuζℓ−1∇ζ) + (k + ℓ)Ψ′(uζℓ)ζk+ℓ−1∇ζ

)
dx ds

= m

∫ t

0

∫
RN

um−1∇u ·
(
Ψ′′(uζℓ)ζk+ℓ(∇uζℓ + ℓuζℓ−1∇ζ)

)
dx ds

− (k + ℓ)

∫ t

0

∫
RN

umdiv

(
Ψ′(uζℓ)ζk+ℓ−1∇ζ

)
dx ds

= m

∫ t

0

∫
RN

um−1Ψ′′(uζℓ)|∇u|2ζk+2ℓ dx ds+mℓ

∫ t

0

∫
RN

umΨ′′(uζℓ)ζk+2ℓ−1∇u · ∇ζ dx ds

− (k + ℓ)

∫ t

0

∫
RN

um
(
Ψ′′(uζℓ)ζk+ℓ−1(ζℓ∇u · ∇ζ + ℓζℓ−1u|∇ζ|2)

)
dx ds

−
∫ t

0

∫
RN

umΨ′(uζℓ)∆ζk+ℓ dx ds
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Porous medium equation with power nonlinearity

≥ m

2

∫ t

0

∫
RN

um−1Ψ′′(uζℓ)|∇u|2ζk+2ℓ dx ds

− C

∫ t

0

∫
RN

um+1Ψ′′(uζℓ)ζk+2ℓ−2|∇ζ|2 dx ds−
∫ t

0

∫
RN

umΨ′(uζℓ)|∆ζk+ℓ| dx ds,

we have ∫
RN

Ψ
(
u(t)ζℓ

)
ζk dx+

m

2

∫ t

0

∫
RN

um−1Ψ′′(uζℓ)|∇u|2ζk+2ℓ dx ds

≤
∫
RN

Ψ(µζℓ)ζk dx+ C

∫ t

0

∫
RN

um+1Ψ′′(uζℓ)ζk+2ℓ−2|∇ζ|2 dx ds

+

∫ t

0

∫
RN

umΨ′(uζℓ)|∆ζk+ℓ| dx ds+
∫ t

0

∫
RN

upΨ′(uζℓ)ζk+ℓ dx ds.

Taking k ≥ 1 large enough so that k ≥ (p− 1)ℓ, by (3.6) and (3.7) we have∫
B(z,σ)

Ψ(u(t)) dx+

∫ t

0

∫
B(z,σ)

um−1Ψ′′(u)|∇u|2 dx ds

≤ C

∫
B(z,2σ)

Ψ(µ)dx+ Cσ−2

∫ t

0

∫
B(z,2σ)

um−1Ψ(u) dx ds

+ C

∫ t

0

∫
RN

(uζℓ)p−1Ψ(uζℓ) dx ds

for z ∈ RN , t ∈ (0, T ), and σ > 0. Then, by (3.1) we have

sup
s∈(0,t]

sup
z∈RN

∫
B(z,σ)

Ψ(u(s)) dx+ sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ′′(u)|∇u|2 dx ds

≤ C sup
z∈RN

∫
B(z,σ)

Ψ(µ)dx+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ(u) dx ds

+ C sup
z∈RN

∫ t

0

∫
RN

(uζℓ)p−1Ψ(uζℓ) dx ds

(3.9)

for t ∈ (0, T ) and σ > 0. Furthermore, it follows from µ ∈ L∞(RN ), (3.2), and (3.9) that (3.3)
holds for t ∈ (0, T ) and σ > 0.

Step 2. In this step we employ arguments in [32] to obtain an estimate of the last term of (3.9).
Set

v(x, s) := u(x, s)
1
` ζ(x), (x, s) ∈ RN × (0, t). (3.10)

Then the layer cake representation (see e.g., [19, (1.1.7)]) together with (3.7) implies that∫ t

0

∫
RN

(uζℓ)p−1Ψ(uζℓ) dx ds

=

∫ t

0

∫
RN

vℓ(p−1)Ψ(vℓ) dx ds

=

∫ t

0

∫ ∞

0
LN
(
{x ∈ RN : v(x, s) > λ}

) d

dλ

(
λℓ(p−1)Ψ(λℓ)

)
dλ ds

≤ C

∫ t

0

∫ ∞

0
LN
(
{x ∈ RN : v(x, s) > λ}

)
λℓ(p−1)−1Ψ(λℓ) dλ ds

≤ CIΛ(t; z, σ) + CΛℓ(p−1)

∫ t

0

∫
RN

Ψ(vℓ) dx ds

(3.11)
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for z ∈ RN , t ∈ (0, T ), σ > 0, and Λ ≥ 0, where

IΛ(t; z, σ) :=

∫ t

0

∫ ∞

Λ
LN
(
{x ∈ RN : v(x, s) > λ}

)
λℓ(p−1)−1Ψ(λℓ) dλ ds. (3.12)

We obtain an estimate of IΛ(t; z, σ). For any λ > Λ and (x, s) ∈ RN × (0, t), set

vλ(x, s) :=


0 if v(x, s) ≤ λ

2
,

v(x, s)− λ

2
if

λ

2
< v(x, s) ≤ 2λ,

3

2
λ if v(x, s) > 2λ.

(3.13)

We claim that

−
∫
B(x,r)

vλ(y, s) dy ≤
(
m∗Mσ[u](t)

η(r)

) 1
`

for x ∈ RN , r ∈ (0,∞), λ > Λ, and s ∈ (0, t],

(3.14)

where m∗ ≥ 1 is as in (3.1). By (3.5), (3.6), (3.10), and (3.13) we apply Jensen’s inequality to
obtain

−
∫
B(x,r)

vλ(y, s) dy ≤ −
∫
B(x,r)

v(y, s) dy ≤

(
−
∫
B(x,r)

u(y, s) dy

) 1
`

≤

(
sup
z∈RN

Ψ−1

(
−
∫
B(z,r)

Ψ(u(y, s)) dy

)) 1
`

≤
(
Mσ[u](t)

η(r)

) 1
`

for x ∈ RN , r ∈ (0, σ), λ > Λ, and s ∈ (0, t]. This implies that (3.14) holds if r ∈ (0, σ). On the
other hand, since ζ ≡ 0 in RN \B(z, 2σ), by Jensen’s inequality we have

−
∫
B(x,r)

vλ(y, s) dy ≤ −
∫
B(x,r)

v(y, s) dy ≤

(
1

LN (B(0, r))
sup
z∈RN

∫
B(z,2σ)

u(y, s) dy

) 1
`

for x ∈ RN , r ∈ (σ,∞), λ > Λ, and s ∈ (0, t]. Then, by (3.1) and (3.5) we apply Jensen’s
inequality again to obtain

−
∫
B(x,r)

vλ(y, s) dy ≤

(
m∗

LN (B(0, r))
sup
z∈RN

∫
B(z,σ)

u(y, s) dy

) 1
`

=

(
m∗LN (B(0, σ))

LN (B(0, r))
sup
z∈RN

−
∫
B(z,σ)

u(y, s) dy

) 1
`

≤

(
m∗

(σ
r

)N
sup
z∈RN

Ψ−1

(
−
∫
B(z,σ)

Ψ(u(y, s)) dy

)) 1
`

≤
(
m∗

(σ
r

)N Mσ[u](t)

η(σ)

) 1
`

for x ∈ RN , r ∈ (σ,∞), λ > Λ, and s ∈ (0, t]. Since σ−Nη(σ) ≥ r−Nη(r) for r ∈ (σ,∞), we see
that (3.14) holds if r ∈ (σ,∞). Thus (3.14) is valid.
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Porous medium equation with power nonlinearity

Since η(0) = 0 and limξ→∞ η(ξ) = ∞, for any λ > Λ, we apply the intermediate value
theorem to find r∗ = r∗(λ) > 0 such that

η(r∗(λ)) =
4ℓm∗Mσ[u](t)

λℓ
. (3.15)

This together with (3.14) implies that

−
∫
B(x,r∗(λ))

vλ(y, s) dy ≤
(
m∗Mσ[u](t)

η(r∗(λ))

) 1
`

=
λ

4

for x ∈ RN , λ > Λ, and s ∈ (0, t]. Then, by (3.13) we see that

LN
(
{x ∈ RN : v(x, s) > λ}

)
≤ LN

({
x ∈ RN : vλ(x, s) >

λ

2

})
≤ LN

({
x ∈ RN :

∣∣∣∣ vλ(x, s)−−
∫
B(x,r∗(λ))

vλ(y, s) dy

∣∣∣∣ > λ

4

})
≤ 16

λ2

∫
RN

∣∣∣∣ vλ(x, s)−−
∫
B(x,r∗(λ))

vλ(y, s) dy

∣∣∣∣2 dx
(3.16)

for λ > Λ and s ∈ (0, t]. Furthermore, we have∣∣∣∣∣ vλ(x, s)−−
∫
B(x,r∗(λ))

vλ(y, s) dy

∣∣∣∣∣
2

=

∣∣∣∣∣−
∫
B(x,r∗(λ))

(vλ(x, s)− vλ(y, s)) dy

∣∣∣∣∣
2

=
1

LN (B(x, r∗(λ)))2

∣∣∣∣∣
∫
B(x,r∗(λ))

∫ 1

0

d

dξ
vλ((1− ξ)y + ξx, s) dξ dy

∣∣∣∣∣
2

≤ 1

LN (B(x, r∗(λ)))2

(∫
B(x,r∗(λ))

∫ 1

0
|∇vλ((1− ξ)y + ξx, s)||x− y| dξ dy

)2

≤ r∗(λ)
2

LN (B(x, r∗(λ)))

∫
B(x,r∗(λ))

∫ 1

0
|∇vλ((1− ξ)y + ξx, s)|2 dξ dy

=
r∗(λ)

2

LN (B(x, r∗(λ)))

∫ 1

0

∫
B(0,r∗(λ))

|∇vλ((1− ξ)y + x, s)|2 dy dξ.

(3.17)

Then, by (3.16) and (3.17) we obtain

LN
(
{x ∈ RN : v(x, s) > λ}

)
≤ 16r∗(λ)

2

λ2LN (B(0, r∗(λ)))

∫ 1

0

∫
B(0,r∗(λ))

∫
RN

|∇vλ((1− ξ)y + x, s)|2 dx dy dξ

=
16r∗(λ)

2

λ2

∫
RN

|∇vλ(x, s)|2 dx

=
16r∗(λ)

2

λ2

∫
{x∈RN :λ/2≤v(x,s)≤2λ}

|∇v(x, s)|2 dx

(3.18)
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Porous medium equation with power nonlinearity

for λ > Λ and s ∈ (0, t]. Since Ψ(2ξ) � Ψ(ξ) for ξ ∈ (0,∞) (see (3.7)), we observe from (3.12)
and (3.18) that

IΛ(t; z, σ)

≤ C

∫ t

0

∫ ∞

Λ

r∗(λ)
2

λ2

(∫
{x∈RN :λ/2≤v(s)≤2λ}

|∇v(s)|2 dx

)
λℓ(p−1)−1Ψ(λℓ) dλ ds

= C

∫ t

0

∫ ∞

Λ
λ(p−1)ℓ−3r∗(λ)

2Ψ(λℓ)

(∫
{x∈RN :λ/2≤v(s)≤2λ}

|∇v(s)|2 dx

)
dλ ds

= C

∫ t

0

∫
RN

|∇v(s)|2χ{v(s)>Λ/2}(x)

(∫ 2v(s)

1
2
v(s)

λ(p−1)ℓ−3r∗(λ)
2Ψ(λℓ) dλ

)
dx ds

≤ C

∫ t

0

∫
RN

(
u

2
`
−2|∇u|2ζ2 + u

2
` |∇ζ|2

)
× vℓ(p−1)−2Ψ(vℓ)

(
sup

λ∈(v(s)/2,2v(s))
r∗(λ)

)2

χ{v(s)>Λ/2}(x) dx ds

(3.19)

for z ∈ RN , t ∈ (0, T ), and σ > 0.

Step 3. Assume that Mσ[u](t) ≤ 1. Since η is strictly increasing in (0,∞) (see (3.7)) and

η−1(ξ) � ξ
1
N

[
log

(
e+

1

ξ

)]− 1
2

, ξ ∈ (0,∞),

it follows from (3.15) that(
sup

λ∈(v(s)/2,2v(s))
r∗(λ)

)2

=

[
η−1

(
8ℓm∗Mσ[u](t)

v(s)ℓ

)]2
≤ CMσ[u](t)

2
N v(s)−

2`
N

[
log

(
e+

v(s)ℓ

8ℓm∗Mσ[u](t)

)]−1

≤ CMσ[u](t)
p−mv(s)−ℓ(p−m)

[
log
(
e+ v(s)ℓ

)]−1

(3.20)

for λ ∈ (0,∞).
On the other hand, for any fixed a > 0 and b ∈ R, taking L ≥ e large enough so that the

function [0,∞) 3 ξ 7→ ξa[log(L+ ξ)]b is increasing, we have

ξa1 [log(e+ ξ1)]
b � ξa1 [log(L+ ξ1)]

b ≤ ξa2 [log(L+ ξ2)]
b � ξa2 [log(e+ ξ2)]

b (3.21)

for ξ1, ξ2 ∈ [0,∞) with ξ1 ≤ ξ2. Then, taking ℓ ≥ 1 large enough so that m − 2/ℓ > 0, we
observe from (3.20) that

v(s)ℓ(p−1)−2Ψ(v(s)ℓ)

(
sup

λ∈(v(s)/2,2v(s))
r∗(λ)

)2

≤ CMσ[u](t)
p−mv(s)ℓm−2

[
log
(
e+ v(s)ℓ

)]α−1

≤ CMσ[u](t)
p−mu(s)m− 2

` [log (e+ u(s))]α−1
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Porous medium equation with power nonlinearity

for s ∈ (0, t). This together with (3.1) and (3.19) implies that

IΛ(t; z, σ)

≤ CMσ[u](t)
p−m

∫ t

0

∫
B(z,2σ)

um−3 [log (e+ u)]−1Ψ(u)|∇u|2χ{u(s)>Λ/2}(x) dx ds

+ CMσ[u](t)
p−mσ−2

∫ t

0

∫
B(z,2σ)

um−1Ψ(u) dx ds

≤ CMσ[u](t)
p−m sup

z∈RN

∫ t

0

∫
B(z,σ)

um−3[log(e+ u)]−1Ψ(u)|∇u|2χ{u(s)>Λ/2}(x) dx ds

+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ(u) dx ds

(3.22)

for z ∈ RN , t ∈ (0, T ), and σ > 0. Since

ξ−2[log(e+ ξ)]−1Ψ(ξ) � Ψ′′(ξ) for ξ ∈ [1,∞),

by (3.1), (3.11), and (3.22) with Λ = 2 we obtain∫ t

0

∫
RN

(uζℓ)p−1Ψ(uζℓ) dx ds

≤ C

∫ t

0

∫
RN

Ψ(vℓ) dx ds+ CI2(t; z, σ)

≤ C sup
z∈RN

∫ t

0

∫
B(z,σ)

Ψ(u) dx ds+ CMσ[u](t)
p−m sup

z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ′′(u)|∇u|2 dx ds

+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ(u) dx ds

for z ∈ RN , t ∈ (0, T ), and σ > 0. This together with (3.9) implies (3.4). Thus Lemma 3.1
follows. 2

Similarly, we obtain an energy estimate of solutions to problem (P) with p > pm.

Lemma 3.2 Let N ≥ 1, m ≥ 1, p > pm ≡ m+ 2/N , µ ∈ L ∩ L∞(RN ), T ∈ (0,∞], and β > 1.
Let u be a positive classical solution to problem (P) in RN × (0, T ) satisfying (3.2). Then

sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−3|∇u|2 dx ds <∞ (3.23)

for t ∈ (0, T ) and σ > 0. Furthermore, there exists C = C(N,m, p, β) > 0 such that

sup
s∈(0,t]

sup
z∈RN

∫
B(z,σ)

u(s)β dx+ sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−3|∇u|2 dx ds

≤ C sup
z∈RN

∫
B(z,σ)

µβ dx

+ C

(
1 + sup

s∈(0,t)
|||u(s)|||p−mN(p−m)

2
,β;σ

)
σ−2 sup

z∈RN

∫ t

0

∫
B(z,σ)

um+β−1 dx ds

+ C

(
sup
s∈(0,t)

|||u(s)|||N(p−m)
2

,β;σ

)p−m
sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−3|∇u|2 dx ds

(3.24)

for t ∈ (0, T ) and σ > 0.
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Porous medium equation with power nonlinearity

Proof. Setting Ψ(ξ) = ξβ and η(ξ) = ξ
2

p−m for ξ ∈ [0,∞), we apply the same arguments as in
the proof of Lemma 3.1. Then we have

sup
z∈RN

∫
B(z,σ)

u(t)β dx+ sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−3|∇u|2 dx ds

≤ C sup
z∈RN

∫
B(z,σ)

µβdx+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−1 dx ds

+ C sup
z∈RN

∫ t

0

∫
RN

(uζℓ)p+β−1 dx ds

(3.25)

for t ∈ (0, T ) and σ > 0, instead of (3.9). This together with (3.2) implies (3.23).
Let IΛ, v, and r∗ be as in the proof of Lemma 3.1. It follows from (3.15) that

r∗(λ)
2

p−m =
4ℓm∗Mσ[u](t)

λℓ

and hence (
sup

λ∈(v(s)/2,2v(s))
r∗(λ)

)2

≤ CMσ[u](t)
p−m(uζℓ)−(p−m).

Then, taking ℓ ≥ 1 large enough if necessary, by (3.19) with Λ = 0 we obtain∫ t

0

∫
RN

(uζℓ)p−1Ψ(uζℓ) dx ds = I0(t; z, σ)

≤ CMσ[u](t)
p−m

∫ t

0

∫
B(z,2σ)

um−3Ψ(u)|∇u|2 dx ds

+ CMσ[u](t)
p−mσ−2

∫ t

0

∫
B(z,2σ)

um−1Ψ(u) dx ds

≤ CMσ[u](t)
p−m sup

z∈RN

∫ t

0

∫
B(z,σ)

um−3Ψ(u)|∇u|2 dx ds

+ CMσ[u](t)
p−mσ−2 sup

z∈RN

∫ t

0

∫
B(z,σ)

um−1Ψ(u) dx ds

(3.26)

for z ∈ RN , t ∈ (0, T ), and σ > 0. Since

Mσ[u](t) = sup
s∈(0,t)

|||u(s)|||N(p−m)
2

,β;σ

for t ∈ (0, T ), by (3.25) and (3.26) we obtain (3.24). Thus Lemma 3.2 follows. 2

At the end of this section we recall decay estimates of solutions to problem (P). See [3,
Proposition 7.1]. (See also [42, Proposition 3.2].)

Lemma 3.3 Let N ≥ 1, m ≥ 1, p > m, r ≥ 1, and T ∈ (0,∞). Let u be a solution to
problem (P) in RN × (0, T ). Then there exists C = C(N,m, p, r) > 0 such that

‖u(t)‖L∞(RN ) ≤ Ct−
N+2
κr sup

z∈RN

(∫ t

t/2

∫
B(z,2σ)

ur dx ds

) 2
κr

for t ∈ (0, T∗), where κr := N(m− 1) + 2r and

T∗ := sup
{
τ ∈ (0, T ) : σ−2‖u(s)‖m−1

L∞(RN )
+ ‖u(s)‖p−1

L∞(RN )
≤ 2s−1 for s ∈ (0, τ)

}
.
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4 Proof of Theorem 1.2

In this section we study sufficient conditions for the existence of solutions to problem (P) with
p = pm, and prove Theorem 1.2.

Let Ψ and η be as in Theorem 1.2. Define a C1-function γ in [0, 1] by∫ γ(ξ)

0
sη(s)m−1 ds = Cηξ for ξ ∈ [0, 1], where Cη :=

∫ 1

0
sη(s)m−1 ds. (4.1)

Then γ′ > 0 in [0, 1], γ(0) = 0, and γ(1) = 1. Since

Cηξ =

∫ γ(ξ)

0
sη(s)m−1 ds =

∫ γ(ξ)

0
s1+N(m−1)

[
log

(
e+

1

s

)]N(m−1)
2

ds

� γ(ξ)2+N(m−1)

[
log

(
e+

1

γ(ξ)

)]N(m−1)
2

= γ(ξ)2η(γ(ξ))m−1

for ξ ∈ [0, 1], we see that

γ(ξ)2η(γ(ξ))m−1 � ξ for ξ ∈ [0, 1]. (4.2)

We prove a lemma on the function γ.

Lemma 4.1 Let N ≥ 1, m ≥ 1, and p = pm ≡ m + 2/N . The function γ defined by (4.1)
satisfies the following properties:

γ(ξ) � γ

(
ξ

2

)
, η(γ(ξ)) � η

(
γ

(
ξ

2

))
, (4.3)

η(γ(ξ)) � ξ
1

p−1 , (4.4)∫ ξ

0
η(γ(s))−(m−1) ds � γ(ξ)2, (4.5)

for ξ ∈ [0, 1].

Proof. We prove (4.3). Taking k ≥ 1 large enough, by (4.1) and the monotonicity of η we
obtain ∫ k−1γ(ξ)

0
sη(s)m−1 ds = k−2

∫ γ(ξ)

0
sη(k−1s)m−1 ds

≤ Ck−2

∫ γ(ξ)

0
sη(s)m−1 ds = Ck−2Cηξ ≤

ξ

2
Cη.

Then we observe from (4.1) that

k−1γ(ξ) ≤ γ

(
ξ

2

)
, ξ ∈ [0, 1].

This together with the monotonicity of γ and the relation that η(2ξ) � η(ξ) for ξ ∈ (0,∞) (see
(3.7)) implies (4.3).
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We prove (4.4). Since η(ξ) ≥ ξN = ξ2/(p−m) for ξ ∈ [0,∞), it follows from (4.1) that

Cηξ ≥ C

∫ γ(ξ)

0
s
1+

2(m−1)
p−m ds = Cγ(ξ)

2+
2(m−1)
p−m = Cγ(ξ)

2(p−1)
p−m

for ξ ∈ [0, 1]. This together with (4.2) implies that

η(γ(ξ)) �
(
ξγ(ξ)−2

) 1
m−1 � ξ

1
m−1

(
ξ
− p−m

2(p−1)

) 2
m−1

= ξ
1

p−1 for ξ ∈ [0, 1].

Thus (4.4) holds.
It remains to prove (4.5). It follows from (4.1) that

γ(ξ)γ(ξ)′η(γ(ξ))m−1 = Cη for ξ ∈ [0, 1],

that is,
d

dξ
γ(ξ)2 = 2Cηη(γ(ξ))

−(m−1).

This together with γ(0) = 0 implies that

γ(ξ)2 = 2Cη

∫ ξ

0
η(γ(s))−(m−1) ds, ξ ∈ [0, 1].

Thus (4.5) holds, and the proof of Lemma 4.1 is complete. 2

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Remark 1.1-(1) it suffices to consider the case of T = 1. Let
p = pm and µ ∈ L. Let Ψ and η be as in Theorem 1.2. Let ϵ5 > 0 be small enough, and assume
(1.6). For any i, j = 1, 2, . . . , let uij be a solution to problem (P) with initial data µ replaced
by

µij(x) := min{µ(x), i}+ j−1, a.a. x ∈ RN . (4.6)

By arguments in [3] we find a unique classical solution uij to problem (P) in RN × (0, Tij) such
that

uij(x, t) ≥ j−1 for (x, t) ∈ RN × (0, Tij), (4.7)

sup
t∈(0,T )

‖uij(t)‖L∞(RN ) <∞ for T ∈ (0, Tij), (4.8)

lim sup
t↗Tij

‖uij(t)‖L∞(RN ) = ∞, (4.9)

where Tij is the maximal existence time of uij . Since Ψ−1 is Lipschitz continuous on [0,∞) (see
(3.8)), by (3.7) and (3.8) we find j∗ = j∗(ϵ5) ∈ N such that

|||µij |||η,Ψ;1 ≤ sup
z∈RN

sup
σ∈(0,1]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(µ+ j−1) dx

)

≤ C sup
z∈RN

sup
σ∈(0,1]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(µ) dx+ j−1

)

≤ C sup
z∈RN

sup
σ∈(0,1]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(µ) dx

)
+ Cj−1 ≤ Cϵ5

(4.10)
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for i ≥ 1 and j ≥ j∗.

Step 1. Let δ1, δ2 ∈ (0, 1). Set

T 1
ij := sup

{
T ∈ (0, Tij) : sup

t∈(0,T )
η(γ(t))‖uij(t)‖L∞(RN ) ≤ δ1

}
, (4.11)

T 2
ij := sup

{
T ∈ (0, Tij) : sup

t∈(0,T )
|||uij(t)|||η,Ψ;1 ≤ δ2

}
. (4.12)

Under suitable choices of δ1 and δ2, taking ϵ5 > 0 small enough if necessary, we show that

T ∗
ij := min{T 1

ij , T
2
ij , 1} = 1 for i ≥ 1 and j ≥ j∗.

In the proof of Theorem 1.2, the constants C are independent of i ≥ 1 and j ≥ j∗.
We first show that T ∗

ij > 0. Since T 1
ij > 0 immediately follows from (4.8), it suffices to show

that T 2
ij > 0. Set cij := sups∈(0,Tij/2) ‖uij(s)‖L∞(RN ) < ∞ and take tij ∈ (0,min{Tij/2, 1})

satisfying

η(t
1/4
ij )cij ≤

δ2
2

and t
1/2
ij (cm−1

ij + cp−1
ij ) ≤ 1 (4.13)

for i ≥ 1 and j ≥ j∗. Then we have

sup
s∈(0,tij)

sup
z∈RN

sup
σ∈(0,t1/4ij ]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(s)) dy

)

≤ sup
s∈(0,tij)

sup
z∈RN

sup
σ∈(0,t1/4ij ]

η(σ)Ψ−1
(
Ψ
(
‖uij(s)‖L∞(RN )

))
≤ η(t

1/4
ij )cij ≤

δ2
2

(4.14)

for i ≥ 1 and j ≥ j∗. On the other hand, similarly to the argument in Step.1 in the proof of
Lemma 3.1 (see (3.9)), it follows from (4.13) that

sup
s∈(0,t]

sup
z∈RN

∫
B(z,σ)

Ψ(uij(s)) dx

≤ C sup
z∈RN

∫
B(z,σ)

Ψ(µij) dx+ C(σ−2cm−1
ij + cp−1

ij ) sup
z∈RN

∫ t

0

∫
B(z,σ)

Ψ(uij) dx ds

≤ C sup
z∈RN

∫
B(z,σ)

Ψ(µij) dx+ Ct−1
ij sup

z∈RN

∫ t

0

∫
B(z,σ)

Ψ(uij) dx ds

for t ∈ (0, tij), σ ∈ (t
1/4
ij , 1], i ≥ 1, and j ≥ j∗. This together with Gronwall’s inequality implies

that

sup
s∈(0,t]

sup
z∈RN

−
∫
B(z,σ)

Ψ(uij(s)) dx ≤ CeCt
−1
ij t sup

z∈RN

−
∫
B(z,σ)

Ψ(µij) dx ≤ C sup
z∈RN

−
∫
B(z,σ)

Ψ(µij) dx

for t ∈ (0, tij), σ ∈ (t
1/4
ij , 1], i ≥ 1, and j ≥ j∗. Since Ψ−1(2ξ) � Ψ−1(ξ) for ξ ∈ (0,∞) (see

(3.8)), it follows from (4.10) that

sup
s∈(0,tij ]

sup
z∈RN

sup
σ∈(t1/4ij ,1]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(s)) dx

)
≤ Cϵ5
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for i ≥ 1 and j ≥ j∗. This together with (4.14) implies that, taking ϵ5 > 0 small enough if
necessary, we obtain T 2

ij ≥ tij > 0.
By Lemma 3.1 and δ2 ∈ (0, 1) (see (4.12)) we obtain

sup
s∈(0,t]

sup
z∈RN

∫
B(z,σ)

Ψ(uij(s)) dx+ sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1
ij Ψ′′(uij)|∇uij |2 dx ds

≤ C sup
z∈RN

∫
B(z,σ)

Ψ(µij) dx+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1
ij Ψ(uij) dx ds

+ C sup
z∈RN

∫ t

0

∫
B(z,σ)

Ψ(uij) dx ds+ Cδp−m2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1
ij Ψ′′(uij)|∇uij |2 dx ds,

for t ∈ (0, T ∗
ij), σ ∈ (0, 1], i ≥ 1, and j ≥ j∗. Then, taking δ2 > 0 small enough if necessary, we

have

sup
z∈RN

∫
B(z,σ)

Ψ(uij(t)) dx

≤ C sup
z∈RN

∫
B(z,σ)

Ψ(µij) dx+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um−1
ij Ψ(uij) dx ds

+ C sup
z∈RN

∫ t

0

∫
B(z,σ)

Ψ(uij) dx ds

for t ∈ (0, T ∗
ij), σ ∈ (0, 1], i ≥ 1, and j ≥ j∗. This together with (4.11) implies that

Xij(t) ≤ C sup
z∈RN

−
∫
B(z,σ)

Ψ(µij) dx+ Cσ−2

∫ t

0
‖uij(s)‖m−1

L∞(RN )
Xij(s) ds+ C

∫ t

0
Xij(s) ds

≤ C sup
z∈RN

−
∫
B(z,σ)

Ψ(µij) dx+ Cσ−2

∫ t

0
η(γ(s))−(m−1)Xij(s) ds+ C

∫ t

0
Xij(s) ds

for t ∈ (0, T ∗
ij), σ ∈ (0, 1], i ≥ 1, and j ≥ j∗, where

Xij(t) := sup
z∈RN

−
∫
B(z,σ)

Ψ(uij(t)) dx.

Then Gronwall’s inequality together with (4.5) implies that

Xij(t) ≤ C exp

(
Cσ−2

∫ t

0
η(γ(s))−(m−1) ds+ Ct

)
sup
z∈RN

−
∫
B(z,σ)

Ψ(µij)dx

≤ C exp
(
Cσ−2γ(t)2

)
sup
z∈RN

−
∫
B(z,σ)

Ψ(µij)dx ≤ C sup
z∈RN

−
∫
B(z,σ)

Ψ(µij)dx

for t ∈ (0, T ∗
ij), σ ∈ [γ(t), 1], i ≥ 1, and j ≥ j∗. Then, since Ψ−1(2ξ) � Ψ−1(ξ) for ξ ∈ (0,∞)

(see (3.8)), we obtain

sup
z∈RN

Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(t)) dx

)
≤ C sup

z∈RN

Ψ−1

(
−
∫
B(z,σ)

Ψ(µij) dx

)
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for t ∈ (0, T ∗
ij), σ ∈ [γ(t), 1], i ≥ 1, and j ≥ j∗. Therefore, thanks to (4.10), we obtain

sup
s∈(0,t)

sup
z∈RN

sup
σ∈[γ(s),1]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(s)) dx

)

≤ C sup
z∈RN

sup
σ∈(0,1]

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(µij) dx

)
= C|||µij |||η,Ψ;1 ≤ Cϵ5

(4.15)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗.

On the other hand, taking δ1 > 0 small enough, by (4.2), (4.4), and (4.11) we have(
γ(s)

2

)−2

‖uij(s)‖m−1
L∞(RN )

+ ‖uij(s)‖p−1
L∞(RN )

≤ 4δm−1
1 γ(s)−2η(γ(s))−(m−1) + δp−1

1 η(γ(s))−(p−1)

≤ Cδm−1
1 s−1 + Cδp−1

1 s−1 ≤ 2s−1

for s ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Then, by Lemma 3.3 with σ = γ(s)/2 and r = 1 we have

‖uij(t)‖L∞(RN ) ≤ Ct
−N+2

κ1

(
sup
z∈RN

∫ t

t/2

∫
B(z,γ(t))

uij dx ds

) 2
κ1

≤ Ct
− N

κ1 γ(t)
2N
κ1 sup

s∈(t/2,t)
sup
z∈RN

(
−
∫
B(z,γ(t))

uij(s) dx

) 2
κ1

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. This together with Jensen’s inequality, (4.2), and (4.3) implies

that

η(γ(t))‖uij(t)‖L∞(RN )

≤ Ct
− N

κ1 γ(t)
2N
κ1 η(γ(t))

1− 2
κ1 sup

s∈(t/2,t)
sup
z∈RN

[
η(γ(t))Ψ−1

(
−
∫
B(z,γ(t))

Ψ(uij(s)) dx

)] 2
κ1

≤ C
(
t−1γ(t)2η(γ(t))m−1

) N
κ1 sup

s∈(0,t)
sup
z∈RN

sup
σ∈[γ(s),1]

[
η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(s)) dx

)] 2
κ1

≤ C sup
s∈(0,t)

sup
z∈RN

sup
σ∈[γ(s),1]

[
η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(s)) dx

)] 2
κ1

(4.16)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Therefore, by (4.15) and (4.16), taking ϵ5 > 0 small enough if

necessary, we obtain

η(γ(t))‖uij(t)‖L∞(RN ) ≤ C|||µij |||
2
κ1
η,Ψ;1 ≤ Cϵ

2
κ1
5 ≤ δ1

2
(4.17)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Furthermore, we observe from (4.17) that

sup
s∈(0,t)

sup
z∈RN

sup
σ∈(0,γ(s))

η(σ)Ψ−1

(
−
∫
B(z,σ)

Ψ(uij(s)) dy

)
≤ sup

s∈(0,t)
sup

σ∈(0,γ(s))
η(σ)Ψ−1

(
Ψ
(
‖uij(s)‖L∞(RN )

))
= sup

s∈(0,t)
η(γ(s))‖uij(s)‖L∞(RN )

≤ C|||µij |||
2
κ1
η,Ψ;1 ≤ Cϵ

2
κ1
5

(4.18)
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for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Combining (4.15) and (4.18) and taking ϵ5 > 0 small enough

if necessary, we obtain

sup
s∈(0,t)

|||uij(s)|||η,Ψ;1 ≤ Cϵ5 + Cϵ
2
κ1
5 ≤ δ2

2
(4.19)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Then, thanks to (4.17) and (4.19), by the definition of T ∗

ij we
see that T ∗

ij = 1 for i ≥ 1 and j ≥ j∗. Furthermore, repeating the arguments in (4.10), (4.15),
(4.17), and (4.18), we obtain

sup
s∈(0,1)

η(γ(s))‖uij(s)‖L∞(RN ) + sup
s∈(0,1)

|||uij(s)|||η,Ψ;1 ≤ C
(
|||µ|||η,Ψ;1 + j−1

) 2
κ1 (4.20)

for i ≥ 1 and j ≥ j∗. On the other hand, it follows from (4.2) that

η(γ(ξ)) � ξ
1

m−1 γ(ξ)−
2

m−1 , (4.21)

γ(ξ)N(m−1)+2

[
log

(
e+

1

γ(ξ)

)]N(m−1)
2

� ξ, (4.22)

for ξ ∈ (0, 1). Then, by (4.22) we have

γ(ξ) � ξ
1

N(m−1)+2

[
log

(
e+

1

ξ

)]−m−1
2

N
N(m−1)+2

for ξ ∈ (0, 1).

This together with (4.21) implies that

η(γ(ξ)) � ξ
1

m−1

(
1− 2

N(m−1)+2

) [
log

(
e+

1

ξ

)] N
N(m−1)+2

= ξ
N

N(m−1)+2

[
log

(
e+

1

ξ

)] N
N(m−1)+2

= ξ
1

p−1

[
log

(
e+

1

ξ

)] 1
p−1

(4.23)

for ξ ∈ (0, 1). We deduce from (4.20) and (4.23) that

sup
s∈(0,1)

s
1

p−1

[
log

(
e+

1

s

)] 1
p−1

‖uij(s)‖L∞(RN ) + sup
s∈(0,1)

|||uij(s)|||η,Ψ;1

≤ C
(
|||µ|||η,Ψ;1 + j−1

) 2
κ1

(4.24)

for i ≥ 1 and j ≥ j∗.

Step 2. We complete the proof of Theorem 1.2. By (4.20) we apply [46, Theorem 7.1] to obtain
the following:

• for any compact set K ⊂ RN × (0, 1), there exist C > 0 and ω ∈ (0, 1) such that

|uij(x1, t1)− uij(x2, t2)| ≤ C
(
|x1 − x2|ω + |t1 − t2|

ω
2

)
for (x1, t1), (x2, t2) ∈ K, i ≥ 1, and j ≥ j∗.
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By the Arzelà-Ascoli Theorem and the diagonal argument we find a subsequence {u′ij} of {uij}
and a Hölder continuous function u in RN × (0, 1) such that

lim
i,j→∞

‖u′ij − u‖L∞(K) = 0

for any compact set K of RN × (0, 1). Then we observe from (3.7), (3.21), and (4.24) that

lim
i,j→∞

∫
B(z,1)

uij(t)
p dx =

∫
B(z,1)

u(t)p dx,∫
B(z,1)

uij(t)
p dx ≤ sup

x∈RN

{
uij(x, t)

p−1 (log (e+ uij(x, t)))
−α}∫

B(z,1)
Ψ(uij(t)) dx

≤ C‖uij(t)‖p−1
L∞(RN )

(
log
(
e+ ‖uij(t)‖L∞(RN )

))−α
Ψ(|||uij(t)|||η,Ψ;1)

≤ Ct−1

[
log

(
e+

1

t

)]−1−α
(|||µ|||η,Ψ;1 + 1)

2(p−1)
κ1 Ψ(|||µ|||η,Ψ;1 + 1)

for z ∈ RN , t ∈ (0, 1), i ≥ 1, and j ≥ j∗. Therefore, by Definition 1.1-(2), (4.6), and (4.24) we
apply the Lebesgue dominated convergence theorem to see that u is a solution to problem (P)
in RN × (0, 1) satisfying

sup
s∈(0,1)

s
1

p−1

[
log

(
e+

1

s

)] 1
p−1

‖u(s)‖L∞(RN ) + sup
s∈(0,1)

|||u(s)|||η,Ψ;1 ≤ C|||µ|||
2
κ1
η,Ψ;1.

Thus Theorem 1.2 follows. 2

5 Proof of Theorem 1.3

In this section we modify arguments in Section 4 to study sufficient conditions for the existence
of solutions to problem (P) with p > pm, and prove Theorem 1.3.

Proof of Theorem 1.3. Let p > pm, 1 < β < N(p − m)/2, T ∈ (0,∞], and µ ∈ L. Let
ϵ6 ∈ (0, 1) be small enough, and assume (1.7). For any i, j = 1, 2, . . . , let uij be a solution to
problem (P) with initial data µ replaced by (4.6). Then, for any n ≥ 1, we find j∗ = j∗(n, ϵ6)
such that

|||µij |||N(p−m)
2

,β;T θ
n
≤ |||µ|||N(p−m)

2
,β;T θ + T

2θ
p−m
n j−1

≤ |||µ|||N(p−m)
2

,β;T θ + n
1

p−1 j−1 ≤ 2ϵ6

(5.1)

for i ≥ 1 and j ≥ j∗, where Tn := min{T, n} and θ is defined as in (1.1). Similarly to the proof
of Theorem 1.2, by arguments in [3] we find a unique classical solution uij to problem (P) in
RN × (0, Tij), with uij satisfying (4.7), (4.8), and (4.9), where Tij is the maximal existence time
of uij .

Step 1. Let n = 1, 2, . . . , and fix it. Let δ1, δ2 ∈ (0, 1). Set

T 1
ij := sup

{
t ∈ (0, Tij) : sup

s∈(0,t)
s

1
p−1 ‖uij(s)‖L∞(RN ) ≤ δ1

}
, (5.2)
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T 2
ij := sup

{
t ∈ (0, Tij) : sup

s∈(0,t)
|||uij(s)|||N(p−m)

2
,β;T θ

n
≤ δ2

}
. (5.3)

Under suitable choices of δ1 and δ2, taking ϵ6 > 0 small enough if necessary, we show that

T ∗
ij := min{T 1

ij , T
2
ij , Tn} = Tn for i ≥ 1 and j ≥ j∗.

In the proof of Theorem 1.3, the constants C are independent of n, i ≥ 1, and j ≥ j∗.
Similarly to the argument in the proof of Theorem 1.2, we see that T ∗

ij > 0 for i ≥ 1 and
j ≥ j∗. By Lemma 3.2 and (5.3) we have

sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−3
ij |∇uij |2 dx ds <∞,

sup
s∈(0,t]

sup
z∈RN

∫
B(z,σ)

uij(s)
β dx+ sup

z∈RN

∫ t

0

∫
B(z,σ)

um+β−3
ij |∇uij |2 dx ds

≤ C sup
z∈RN

∫
B(z,σ)

µβij dx+ Cσ−2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−1
ij dx ds

+ Cδp−m2 sup
z∈RN

∫ t

0

∫
B(z,σ)

um+β−3
ij |∇uij |2 dx ds,

for t ∈ (0, T ∗
ij), σ > 0, i ≥ 1, and j ≥ j∗. Taking δ2 > 0 small enough if necessary, by (5.2) we

obtain

Yij(t) ≤ C sup
z∈RN

−
∫
B(z,σ)

µβij dx+ Cσ−2

∫ t

0
‖uij(s)‖m−1

L∞(RN )
Yij(s) ds

≤ C sup
z∈RN

−
∫
B(z,σ)

µβij dx+ Cσ−2

∫ t

0
s
−m−1

p−1 Yij(s) ds

for t ∈ (0, T ∗
ij), σ > 0, i ≥ 1, and j ≥ j∗, where

Yij(t) := sup
z∈RN

−
∫
B(z,σ)

uij(t)
β dx.

Then Gronwall’s inequality implies that

Yij(t) ≤ C exp

(
σ−2

∫ t

0
s
−m−1

p−1 ds

)
sup
z∈RN

−
∫
B(z,σ)

µβij dx

≤ C exp
(
σ−2t

p−m
p−1

)
sup
z∈RN

−
∫
B(z,σ)

µβij dx ≤ C sup
z∈RN

−
∫
B(z,σ)

µβij dx

for t ∈ (0, T ∗
ij), σ ≥ tθ, i ≥ 1, and j ≥ j∗. Therefore we deduce from (5.1) that

sup
s∈(0,t)

sup
z∈RN

sup
σ∈[sθ,T θ

n)

σ
2

p−m

(
−
∫
B(z,σ)

uij(s)
β dx

) 1
β

≤ C|||µij |||N(p−m)
2

,β;T θ
n
≤ Cϵ6 (5.4)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗.
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On the other hand, taking δ1 > 0 small enough if necessary, by (5.2) we have(
sθ

2

)−2

‖uij(s)‖m−1
L∞(RN )

+ ‖uij(s)‖p−1
L∞(RN )

≤ 4δm−1
1 s

− p−m
p−1 s

−m−1
p−1 + δp−1

1 s−1 ≤ Cδm−1
1 s−1 + Cδp−1

1 s−1 ≤ 2s−1

for s ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Then, by Lemma 3.3 with σ = tθ/2 and r = β, taking ϵ6 > 0

small enough if necessary, by (5.1) and (5.4) we have

t
1

p−1 ‖uij(t)‖L∞(RN ) ≤ Ct
1

p−1
−N+2

κβ

(
sup
z∈RN

∫ t

t/2

∫
B(z,tθ)

uβij dy ds

) 2
κβ

≤ Ct
1

p−1
− N

κβ t
2Nθ
κβ sup

s∈(t/2,t)
sup
z∈RN

(
−
∫
B(z,tθ)

uij(s)
β dy

) 2
κβ

≤ Ct
1

p−1
− N

κβ
+ 2Nθ

κβ
− 2θ

p−m
2β
κβ sup

s∈(t/2,t)
sup
z∈RN

t 2θ
p−m

(
−
∫
B(z,tθ)

uij(s)
β dy

) 1
β


2β
κβ

≤ C sup
s∈(0,t)

sup
z∈RN

sup
σ∈[sθ,T θ

n)

σ 2
p−m

(
−
∫
B(z,σ)

uij(s)
β dy

) 1
β


2β
κβ

≤ C|||µij |||
2β
κβ
N(p−m)

2
,β;T θ

n

≤ Cϵ

2β
κβ

6 ≤ δ1
2

(5.5)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Here we used the relations that θ = (p −m)/2(p − 1) and

κβ = N(m− 1) + 2β. Furthermore, we observe from (5.1) and (5.5) that

sup
s∈(0,t)

sup
z∈RN

sup
σ∈(0,sθ)

σ
2

p−m

(
−
∫
B(z,σ)

uij(s)
β dy

) 1
β

≤ sup
s∈(0,t)

s
1

p−1 ‖uij(s)‖L∞(RN ) ≤ C|||µij |||
2β
κβ
N(p−m)

2
,β;T θ

n

≤ Cϵ

2β
κβ

6

(5.6)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. By (5.4) and (5.6), taking ϵ6 > 0 small enough if necessary,

we obtain

sup
s∈(0,t)

|||uij(s)|||N(p−m)
2

,β;T θ
n
≤ Cϵ6 + Cϵ

2β
κβ

6 ≤ δ2
2

(5.7)

for t ∈ (0, T ∗
ij), i ≥ 1, and j ≥ j∗. Therefore, thanks to (5.5) and (5.7), by the definition of T ∗

ij ,
for any n = 1, 2, . . . , we see that T ∗

ij = Tn for i ≥ 1 and j ≥ j∗. Furthermore, by (5.1), (5.4),
(5.5), and (5.6) we have

sup
s∈(0,Tn)

s
1

p−1 ‖uij(s)‖L∞(RN ) + sup
s∈(0,Tn)

|||uij(s)|||N(p−m)
2

,β;T θ
n

≤ C
(
|||µ|||N(p−m)

2
,β;T θ

n
+ n

1
p−1 j−1

) 2β
κβ

(5.8)
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for i ≥ 1 and j ≥ j∗.

Step 2. We complete the proof of Theorem 1.3. By (5.8) we apply [46, Theorem 7.1] to obtain
the following:

• for any compact set K ⊂ RN × (0, Tn), there exist C > 0 and ω ∈ (0, 1) such that

|uij(x1, t1)− uij(x2, t2)| ≤ C
(
|x1 − x2|ω + |t1 − t2|

ω
2

)
for (x1, t1), (x2, t2) ∈ K, i ≥ 1, and j ≥ j∗.

By the Arzelà-Ascoli Theorem and the diagonal argument we find a subsequence {u′ij} of {uij}
and a Hölder continuous function u in RN × (0, Tn) such that

lim
i,j→∞

‖u′ij − u‖L∞(K) = 0

for any compact set K of RN × (0, Tn). Then we observe from Jensen’s inequality and (5.8) that

lim
i,j→∞

∫
B(z,T θ

n)
uij(t)

p dx =

∫
B(z,T θ

n)
u(t)p dx,

∫
B(z,T θ

n)
uij(t)

p dx ≤ TNθn

(
−
∫
B(z,T θ

n)
uij(t)

β dx

) p
β

≤ T
Nθ− p

p−1
n |||uij(t)|||pN(p−m)

2
,β;T θ

n

≤ CT
Nθ− p

p−1
n

(
|||µ|||N(p−m)

2
,β;T θ

n
+ n

1
p−1

) 2βp
κβ if 1 < p ≤ β,∫

B(z,T θ
n)
uij(t)

p dx ≤ ‖uij(t)‖p−βL∞(RN )

∫
B(z,T θ

n)
uij(t)

β dx

≤ CT
Nθ− β

p−1
n ‖uij(t)‖p−βL∞(RN )

|||uij(t)|||βN(p−m)
2

,β;T θ
n

≤ CT
Nθ− β

p−1
n t

−1+β−1
p−1

(
|||µ|||N(p−m)

2
,β;T θ

n
+ n

1
p−1

) 2βp
κβ if 1 < β < p,

for z ∈ RN , t ∈ (0, Tn), i ≥ 1, and j ≥ j∗. Therefore, by Definition 1.1-(2), (4.6), and (5.8) we
apply the Lebesgue dominated convergence theorem to see that u is a solution to problem (P)
in RN × (0, Tn) satisfying

sup
s∈(0,Tn)

||u(s)|||N(p−m)
2

,β;T θ
n
+ sup
s∈(0,Tn)

s
1

p−1 ‖u(s)‖L∞(RN ) ≤ C|||µ|||
2β
κβ
N(p−m)

2
,β;T θ

n

(5.9)

for t ∈ (0, Tn). Since n is arbitrary, (5.9) holds with Tn replaced by T . Thus u is our desired
solution to problem (P), and Theorem 1.3 follows. 2

6 Proof of Corollary 1.1: Optimal singularity

In this section, applying Theorems 1.1–1.3, we prove Corollary 1.1.
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Proof of Corollary 1.1. Let p = pm, α ∈ (0, N/2), and

µ(x) = |x|−N
[
log

(
e+

1

|x|

)]−N
2
−1

for a.a. x ∈ RN . Let Ψ be as in Theorem 1.2. Then, by (3.21) we have

Ψ(cµ(x)) = (cµ(x))
1
2 (cµ(x))

1
2 [log (e+ cµ(x))]α � c

1
2µ(x) [log (e+ µ(x))]α

� c
1
2 |x|−N

[
log

(
e+

1

|x|

)]α−N
2
−1 (6.1)

for a.a. x ∈ RN and c ∈ (0, 1). This implies that

−
∫
B(z,σ)

Ψ(cµ(x)) dx � −
∫
B(0,3σ)

Ψ(cµ(x)) dx � c
1
2σ−N

[
log

(
e+

1

σ

)]α−N
2

for z ∈ B(0, 2σ), σ ∈ (0, 1), and c ∈ (0, 1). Thus we have

Ψ−1

(
−
∫
B(z,σ)

Ψ(cµ(x)) dx

)
� c

1
2σ−N

[
log

(
e+

1

σ

)]−N
2

= c
1
2 η(σ)−1 (6.2)

for z ∈ B(0, 2σ), σ ∈ (0, 1), and c ∈ (0, 1). On the other hand,

Ψ−1

(
−
∫
B(z,σ)

Ψ(cµ(x)) dx

)
� c‖µ‖L∞(B(z,σ)) � cσ−N

[
log

(
e+

1

σ

)]−N
2

� cη(σ)−1 (6.3)

for z ∈ RN \B(0, 2σ), σ ∈ (0, 1), and c ∈ (0, 1). By (6.2) and (6.3) we apply Theorem 1.2 with
T = 1 to see that problem (P) possesses a solution in RN × (0, 1) if c is small enough. Thus
assertion (1) holds if p = pm.

On the other hand, we have

−
∫
B(0,σ)

cµ(y) dy � cσ−N
[
log

(
e+

1

σ

)]−N
2

for σ ∈ (0, 1). Then it follows from Theorem 1.1 that problem (P) possesses no local-in-time
solution if c is large enough. Thus assertion (2) holds if p = pm. Assertions in the case of
p > pm follows from similar arguments to those in the case of p = pm. Therefore the proof of
Corollary 1.1 is complete. 2
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