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Weak solutions to mean curvature flow respecting obstacles

MELANIE RUPFLIN AND OLIVER C. SCHNÜRER

Abstract. We consider the problem of evolving hypersurfaces by mean curvature
flow in the presence of obstacles, that is domains which the flow is not allowed
to enter. In this paper, we treat the case of complete graphs and explain how the
approach of M. Sáez and the second author [19] yields a global weak solution to
the original problem for general initial data and onesided obstacles.
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1. Introduction

Given a hypersurface in Euclidean space we investigate how one can evolve this
hypersurface by mean curvature flow if there are parts of space, so called obstacles,
that the hypersurface is forbidden from entering.

To be more precise, let P be an open non-empty set in Euclidean space, not
necessarily connected, nor bounded or regular and let N0 be an initial hypersurface
which is disjoint from P . We then would like to evolve N0 by a family of hypersur-
faces (Nt )t , locally described by parametrisations Ft , moving in normal direction,
in such a way that:
(1) Nt satisfies (a weak form of) mean curvature flow

d
dt
F = �H⌫

on the complement of the obstacle P;
(2) Nt remains disjoint from the obstacle, Nt \ P = ;;
(3) In points where the hypersurface touches the (closure of the) obstacle, the hy-

persurface evolves by mean curvature flow if this makes the hypersurfaces lift
off the obstacle, but remains stationary otherwise, i.e. for p 2 P̄ \ Nt we
would like to ask that

d
dt
F = h�H⌫, ⌫Pi+ · ⌫P = (�H)+⌫,
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where ⌫P denotes the outwards pointing unit normal to @P (where defined)
and ha, bi+ = max(ha, bi, 0).

A first approach to mean curvature flow with obstacles was carried out by L. Al-
meida, A. Chambolle, and M. Novaga [1] who constructed solutions based on a
time-discretisation scheme for the corresponding partial differential inequality and
obtained in particular short-time existence of C1,1-solutions in certain settings. Fur-
thermore, E. Spadaro [20] considered mean curvature flow with obstacles in order
to investigate properties of mean convex sets. He used a time-discretisation to ob-
tain a weak mean curvature flow of Caccioppoli sets and the focus of his work is on
the properties of the limits as t ! 1 of such weak solutions.

In the present paper we show that the ideas of M. Sáez and the second author
[19] introduced for the study of standard mean curvature flow can be used to obtain
a new approach for mean curvature flow with obstacles that avoids the study of
singularities completely but allows us to show global existence of weak solutions
for essentially all (reasonable) initial data and onesided obstacles.

The basic idea of the construction is the following: Given any initial (n-dimen-
sional) hypersurface N0 ⇢ Rn+1 and an obstacle P ⇢ Rn+1 we lift the problem
to one dimension higher by building complete graphs over both the obstacle and
the region enclosed by the initial hypersurface N0 which contains the obstacle, see
Figure 1.1.

Figure 1.1. Graphical initial hypersurface M0 and obstacle @O in Rn+2 associated with
the original data N0 and P .

We then consider the new and simpler problem of flowing a graphical hypersurface
M0 in the presence of a graphical obstacle O for which we prove long-time exis-
tence of a viscosity solution. This solution of the graphical problem is obtained as
a limit of flows that do not prohibit the penetration of the obstacle but only penalise
it appropriately. A key part of the analysis of these approximate solutions carried
out later on is to prove that they satisfy locally uniform spatial C2-estimates. This
implies in particular that the viscosity solution that we obtain is of class C1,1 which,
in view of the analysis of the corresponding stationary problem of C. Gerhardt [8],
is optimal.
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Similarly to [19], one can interpret the projection of this graphical flow (Mt )t
in Rn+2 to Rn+1 as a weak solution (Nt )t for the original problem of evolving by
mean curvature flow in Rn+1 respecting the obstacle P .

We note that the problem of evolving hypersurfaces by mean curvature in the
presence of obstacles has been considered independently in the interesting papers
[18] by G. Mercier and M. Novaga and [17] by G. Mercier that were first published
at the same time as the present paper. The paper [18] also deals with the evolution
of graphical hypersurfaces, though the employed techniques are very different from
our approach and the focus of [18] is on the evolution of entire graphs that then form
the basis for the construction of level set solutions in [17], rather then of complete
graphs over time-dependent domains as needed in the present paper.

Since this paper was first published in September 2014 there have been fur-
ther interesting developments related to the problem studied in the present paper:
P. Logaritsch studied boundary value problems for graphical mean curvature flow
with obstacles using time-discretisation in [15], while W. Maurer [16] generalised
the methods of [19] to Dirichlet boundary value problems and graphs that are un-
bounded from both above and below.

2. Definition of a solution

Definition 2.1 (Initial data). Given an open, possibly disconnected setP ⇢ Rn+1,
we consider an initial hypersurface N0 ⇢ Rn+1 which is disjoint from P ⇢ Rn+1

and an open, possibly unbounded and disconnected, set �0 ⇢ Rn+1, such that

@�0 = N0 and P ⇢ �0.

For the lifted problem inRn+2 we then consider initial data consisting of an obstacle
O and an initial hypersurface M0 with the following properties.

(i) The obstacleO ⇢ Rn+2 is given as

O =
n⇣
x̂, xn+2

⌘
2 Rn+2 : xn+2 <  (x̂)

o

for a function  2 C1,1loc (P) which is proper and bounded above.
In particular,  (x̂) ! �1 for x̂ ! @P or |x̂ | ! 1;

(ii) The initial hypersurface M0 ⇢ Rn+2 is given as

M0 = graph u0

for a locally Lipschitz function u0 : �0 ! R which is proper, bounded above
and fulfils

u0 �  in P ⇢ �0.
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We remark that there is no need to impose any regularity assumptions on either P
or @�0 in order to obtain such lifted initial data O and M0. Furthermore, O can
and will be chosen so that @O has uniformly bounded second fundamental form if
@P has uniformly bounded second fundamental form and a tubular neighbourhood
with thickness uniformly bounded below. An analogous statement holds for M0 and
N0 = @�0.

We adapt the definition of a solution to graphical mean curvature flow from
[19] to the situation with obstacles. We follow the convention that the obstacle lies
below the solution, see, e.g., [8], and therefore have to reflect the setting in [19]. In
particular the evolving hypersurface Mt = graph u(·, t)|�t will be represented by a
pair (�, u), where � ⇢ Rn+1 ⇥ [0,1) is a subset of space-time, u(x, t) is defined
for (x, t) 2 � and�t ⇢ Rn+1 is a time-slice of the space-time domain� as defined
below. We refer to [19] for a more in depth discussion of the motivation behind the
definition.

In the following definition we use standard notation: H denotes the mean cur-
vature of Mt and v = h⌫, en+2i�1. For details we refer to Section 4.
Definition 2.2 (Graphical mean curvature flow with obstacle).

(i) Domain of definition: Let � ⇢ Rn+1 ⇥ [0,1) be a (relatively) open set.
Set �t := ⇡Rn+1

�
� \

�
Rn+1 ⇥ {t}

��
, where ⇡Rn+1 : Rn+2 ! Rn+1 is the

orthogonal projection to the first n + 1 components. We require that P ⇢ �t
for every t 2 [0,1);

(ii) The solution: A function u : � ! R is called a solution to graphical mean
curvature flow in � with initial value u0 : �0 ! R and obstacle (P, ) or O,
if u 2 C0loc(�) satisfies
8
><

>:

min

(

u̇ �
q
1+ |Du|2 · div

 
Du

p
1+ |Du|2

!

, u �  

)

= 0 in �,

u(·, 0) = u0 in �0,
(2.1)

in the viscosity sense;
(iii) Maximality condition: A function u : � ! R fulfils the maximality con-

dition if u  c for some c 2 R and if u|�\(Rn+1⇥[0,T ]) is proper for every
T > 0. An initial value u0 : �0 ! R, �0 ⇢ Rn+1, is said to fulfil the maxi-
mality condition if w : �0 ⇥ [0,1) ! R defined by w(x, t) := u0(x) fulfils
the maximality condition;

(iv) Singularity resolving solution: (�,u), or equivalently (Mt )t�0 given by Mt =
graph u(·, t)|�t ⇢ Rn+2, is called a singularity resolving solution to mean cur-
vature flow respecting the obstacleO if the conditions ((i))-((iii)) are fulfilled.

The formulation involving the minimum in (2.1) is a standard description for vis-
cosity solutions to obstacle problems cf. [3, Example 1.7]. We remark that the above
definition immediately implies that u �  and that u̇ +

p
1+ |Du|2 · H = 0 in the

viscosity sense wherever u >  . Furthermore:
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Remark 2.3. For a C2;1-function u, the equation (2.1) is fulfilled if and only if u
is a solution to
8
>>>><

>>>>:

u̇ =
p
1+ |Du|2 · div

0

@ Duq
1+ |Du|2

1

A ⌘ �v · H in � \ ((�0 ⇥ {0}) [ 0),

u̇ = v · (�H)+ in (� \ (�0 ⇥ {0})) \ 0,

u(·, 0) = u0 �  in �0,

where
0 := {(x, t) 2 � : u(x, t) =  (x)}

is the contact set between the evolving hypersurface and the obstacle.
In C2;1 and more generally for parabolic Hölder spaces, the first exponent refers to
regularity in spatial and the second in time directions.

3. Main results and overview of the proof

We prove:

Theorem 3.1. Let O, �0 and u0 be an obstacle and an initial datum as in Defini-
tion 2.1. Then there exists a singularity resolving solution (�, u) with

u 2 C1,1;0,1loc (� \ (�0 ⇥ {0})) \ C0loc(�)

of mean curvature flow respecting the obstacleO for all times.
Furthermore, the evolving hypersurface Mt := graph u(·, t) is controlled in

halfspaces of the form
�
xn+2 > `

 
for arbitrary ` 2 R in the sense that v =

h⌫, en+2i�1 and the second fundamental form A of M`
t := Mt \

�
xn+2 > `

 
satisfy

kvkL1
�
M`
t
� +

p
t · kAkL1

�
M`
t
�  C(u0,O, `). (3.1)

Furthermore, if the initial hypersurface M0 is C1,1loc , then M
`
t has uniformly con-

trolled second fundamental form kAkL1
�
M`
t
�  C(u0,O, `) up to time t = 0.

In addition, for positive times, u is smooth away from the contact set.

Remark 3.2.
(i) The regularity statement of Theorem 3.1 can be seen as the analogue of C.
Gerhardt’s C1,1-regularity result [8] for solutions of the stationary obstacle
problem. The simple example of a rope spanned over a circle illustrates in
both cases that the spatial C1,1-regularity is optimal;

(ii) As C1,1-functions are twice differentiable almost everywhere, the second fun-
damental form is defined almost everywhere and the above L1-bounds on the
second fundamental form and the gradient are equivalent to local C1,1-bounds.
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As it is of interest to consider not only complete but also entire graphs, we prove
additionally:

Theorem 3.3. Let u0 : Rn+1 ! R be bounded and Lipschitz continuous. Assume
that u0 is constant outside a compact subset of Rn+1. Let  : Rn+1 ! R be a
function describing an obstacle as in Definition 2.1. Assume furthermore that u0 �
 . Then there exists a uniformly continuous viscosity solution u : Rn+1⇥[0,1) !
R of mean curvature flow with obstacle

min

(

u̇ �
q
1+ |Du|2 · div

 
Du

p
1+ |Du|2

!

, u �  

)

= 0

with u(·, 0) = u0. Furthermore:

kukL1(Mt ) + kvkL1(Mt ) +
p
t · kAkL1(Mt )  C(u0, ).

Theorem 3.3 could be used to construct viscosity solutions for mean curvature flow
with obstacles based on the level set approach. Such solutions were recently con-
structed in [17].

Of course, in the absence of an obstacle, this result is a special case of [5].
The approach we use to construct a solution of mean curvature flow with ob-

stacles in the graphical setting is by penalisation. We obtain the desired viscosity
solution as a limit of solutions to problems which allow a penetration of the obsta-
cle, but penalise it by stronger and stronger normal vector fields trying to push the
hypersurface back out of the obstacle.

More precisely, we fix a function � 2 C1(R, [0,1)), supported in (�1, 0]
with � 00 non-increasing, and thus in particular satisfying � 00 > 0 whenever � > 0,
and consequently also � 0 < 0.

We furthermore define dist@O to be the signed distance function to the bound-
ary ofO chosen so that dist@O is negative inO.

Given " > 0 we then consider the flow

d
dt
F = �(H � ↵") · ⌫ = 1F + ↵"⌫, (3.2)

where
↵"(p) := �"

�
dist@O(p)

�
, �"(s) = �

⇣ s
"

⌘

and where 1 is the Laplacian on the evolving submanifold so that �H⌫ = 1F .
We stress that our penalisation depends on the Euclidean distance to @O ⇢

Rn+2 and not on the graphical one, i.e. not on u(x, t) �  (x). This feature of the
construction is crucial in order to be able to deal with complete graphs over possibly
bounded domains.

While solutions to the penalised flow can sink into the obstacle, we shall show
in Section 6 that the depth of this penetration is of order O("). In Section 7 we shall
then prove that the gradient function of these approximate solutions is bounded
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uniformly in time and locally in space. Similar C1,1-estimates will be deduced
in the following Section 8. We stress that these estimates are independent of the
parameter " of the penalisation which thus immediately gives C1,1 regularity also
for our viscosity solution of mean curvature flow with obstacles which we obtain in
the limit " & 0, see Section 10.

While we will state and prove these results only for smooth obstacles, all the
estimates derived in Sections 7 and 8 depend only on the local C2-norm of  , so we
are able to reduce the proof of Theorems 3.1 and 3.3 to the case of smooth obstacles
and an approximation argument carried out later on in Section 10. In particular we
will assume from now on that  is smooth unless stated otherwise.

4. Notation and geometry of submanifolds

We use F = F(x, t) = (F↵)1↵n+2 to denote the time-dependent embedding
vector of a manifold Mn+1 into Rn+2 and d

dt F = Ḟ for its total time derivative.
We set Mt := F(M, t) ⇢ Rn+2 and will often identify an embedded manifold with
its image. We will assume that F is smooth. We assume furthermore that Mn+1 is
smooth and orientable. The embedding F(·, t) induces a metric g = (gi j )1i, jn+1
on Mt . We denote by r the Levi-Civitá connection on (Mt , g(t))t and the induced
bundles while we write r̄ for the gradient on the ambient space Rn+2.

We choose ⌫ = (⌫↵)1↵n+2 to be the upward pointing unit normal vector to
Mt at x 2 Mt .

The second fundamental form A is then characterized through the Gauß equa-
tion

rir j F = �Ai j⌫ (4.1)
or, equivalently, the Weingarten equation

ri⌫ = Ail glkrk F = Aki rk F.

Here and in the following, we raise and lower indices using the metric and its inverse�
gi j

�
and utilize the Einstein summation convention to sum over repeated upper and

lower indices.
Throughout the paper, Latin indices range from 1 to n+1 and refer to geometric

quantities on the hypersurface, while Greek indices refer to the components in fixed
Euclidean coordinates in the ambient space Rn+2.

We define the mean curvature H by H = gi j Ai j and compute the norm of the
second fundamental form through |A|2 = Ai j g jk Akl gil .

Finally, given a function f defined on the ambient spaceRn+2 we writer f for
the derivative of f |Mt on Mt which can equivalently be computed as the projection

r f = PTM
�
r̄ f

�
= r̄ f �

⌦
r̄ f, ⌫

↵
⌫,

of the ambient gradient to the tangent space of the evolving hypersurface Mt . Here
we use in the last equality that this orthogonal projection PTM : Rm+2 ! TpMt ,
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p 2 M , can be expressed in terms of the normal as PTM(X) = X �hX, ⌫i⌫, where
h·, ·i denotes the Euclidean inner product on Rn+2. Furthermore we will consider
the gradient r f (p, t) of functions f , be they defined on all of Rn+2 or only on
Mt , as a vector in either TpMt or in Rn+2 as convenient and without changing
the notation. Similarly, we will evaluate geometric quantities either at (x, t) 2
M ⇥ [0,1) or at p = F(x, t) 2 Mt ⇢ Rn+2.

As the topology of our solutions may change, we only require that solutions to
(3.2) are parametrised over a base manifold M locally in space and time.

We shall also use that the Gauß equation allows us to express the Riemannian
curvature tensor of the hypersurface in terms of the second fundamental form

Ri jkl = Aik A jl � Ail A jk .

Throughout the paper, expressions like rir j Akl are to be understood as first com-
puting the covariant derivatives of the tensor A and then evaluating it in the indi-
cated directions of the standard basis vector fields.

5. Evolution equations

In this section we collect the evolution equations of the various geometric quantities
such as gradient function, second fundamental form, etc. As the corresponding
formulas for mean curvature flow, and more generally for graphical flows moving in
normal direction, are well known, see [4,9,11], we will mainly analyse the influence
of the penalisation ↵".

We remark that the distance function dist@O as well as its level sets are C2loc
in a neighbourhood of @O and that throughout this section we shall only consider
points which, if they are inO, are contained in such a neighbourhood. We will later
justify this assumption as a consequence of Lemma 6.1.

To begin with, we define the height function of the evolving hypersurface by

U := hF, en+2i.

For graphical hypersurfaces, the penalised flow (3.2) can be rewritten in terms ofU
as

d
dt
U �1U = ↵"h⌫, en+2i =

↵"

v
,

v the gradient function introduced above.
For a family of hypersurfaces moving with normal velocity f ,

d
dt
F = � f · ⌫, (5.1)

f any function defined on the evolving hypersurfaces, it is well-known that the
metric evolves by d

dt gi j = �2 f Ai j which becomes

d
dt
gi j = �2(H � ↵")Ai j (5.2)
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in our case. The normal evolves by
d
dt
⌫ = r f,

so using the identity
1⌫ = � |A|2 ⌫ + rH,

valid for arbitrary hypersurfaces in Euclidean space, we obtain in this more general
context of (5.1) that

✓
d
dt

�1

◆
⌫ = |A|2 ⌫ + r( f � H), (5.3)

which for our flow translates to
Lemma 5.1. For hypersurfaces evolving according to (3.2), ⌫ fulfills

d
dt
⌫ �1⌫ = |A|2⌫ � r↵",

or, equivalently, written out in local coordinates

d
dt
⌫� �1⌫� = |A|2⌫� � r� ↵"ri F� gi jr j F� .

With ↵" given by ↵" = �"�dist@O, its derivative in a point p 2 Mt\O is determined
in terms of ⌫O = r̄ distO (where defined) which describes the outwards unit normal
to the level set

@O� :=
n
y 2 Rn+2 : dist@O(y) = ��

o

which contains p. Namely,

r↵" = � 0
" · r dist@O = � 0

" · PTM(⌫O) = � 0
" · (⌫O � h⌫O, ⌫i⌫), (5.4)

or equivalently, working in local coordinates, r j↵" = � 0
" · h⌫O,r j Fi.

Outside ofO, the derivative of ↵" vanishes.
For graphical solutions of (3.2), or more generally of (5.1), we then consider

the “gradient function” v defined by v = h⌫, en+2i�1 which, by (5.3), satisfies
✓
d
dt

�1

◆
v=� h⌫, en+2i�2 ·

⌧✓
d
dt

�1

◆
⌫, en+2

�
� 2h⌫, en+2i�3 |rh⌫, en+2i|2

=� v2 ·
h
h⌫, en+2i |A|2 + hr( f � H), en+2i

i
� 2v3

�
�
�r

⇣
v�1

⌘��
�
2

=� |A|2 · v � 2
|rv|2

v
� hr( f � H), en+2i · v2.

We shall later use that we can express rv in terms of the second fundamental form
as

riv = �v2hri⌫, en+2i = �v2Aki hrk F, en+2i = �v2Aki rkU, (5.5)
but for now only we need the conclusion that
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Lemma 5.2. For graphical hypersurfaces evolving according to (3.2), the gradient
function v = h⌫, en+2i�1 fulfills

d
dt

v �1v = �|A|2v � 2
v |rv|2 + v2 hr↵", en+2i . (5.6)

Compared with standard mean curvature flow we thus obtain an additional term that
contains a derivative of the penalty function and which may thus become arbitrarily
large in the limit " & 0.

However, as illustrated in Figure 5.1, in a point where the evolving hypersur-
face is ‘steeper’ than the obstacle, the penalisation helps to reduce v, because ↵"
grows with increasing (negative) distance to @O.

Figure 5.1. Penalising vectorfield and normals in a point where v � v⌫ .

More precisely, we obtain:
Remark 5.3. Given a point p 2 @O� in a neighbourhood of which @O� is a C1
graph we let vO := h⌫O, en+2i�1 be the gradient function (of the level sets) of the
obstacle. Then at each point p 2 O \ Mt where

v � vO,

we have
hr↵", en+2i  0.

Proof. Since both the evolving hypersurface and the level sets of the obstacle are
graphical and thus v, vO are well defined and positive we can use (5.4) to compute

hr↵", en+2i = � 0
" (h⌫O, en+2i � h⌫O, ⌫i · h⌫, en+2i) = � 0

" ·

✓
1

vO
�

h⌫O, ⌫i

v

◆

which gives the claim as � 0
"  0.

We finally turn to the evolution equation satisfied by the norm of the second
fundamental form.
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It is well-known that |A|2 evolves along a normal flow (5.1) according to

d
dt

|A|2 = 2 f Aki A
i
j A

j
k + 2Ai jrir j f

as well as that

1 |A|2 = 2Ai jrir j H + 2 |rA|2 + 2H Aki A
i
j A

j
k � 2 |A|4 .

This implies the general formula
✓
d
dt

�1

◆
|A|2 = �2Ai jrir j (H � f ) � 2(H � f )Aki A

i
j A

j
k + 2 |A|4 � 2 |rA|2

which in our case becomes

Lemma 5.4. For hypersurfaces evolving by the penalised flow (3.2), the norm of
the second fundamental form fulfils

✓
d
dt

�1

◆
|A|2 = �2 |rA|2 + 2 |A|4 � 2↵"Aki A

i
j A

j
k � 2rir j↵"Ai j . (5.7)

The last term in this equation, given as the covariant derivative of the vector field
r↵" 2 0(T M), needs to be analysed carefully as it contains a second order deriva-
tive of the penalty function. As such it can be of order "�2 at points in the obstacle
which might be reached by the evolving hypersurface, compare also Section 6.

The second covariant derivative of the penalisation function ↵" is given by

rir j↵" = ri
�
r̄r j F↵"

�
= ri

�
(� 0
" � dist@O) · h⌫O,r j Fi

�

= � 00
" · h⌫O,ri Fi · h⌫O,r j Fi + � 0

" ·
⌦
r̄ri F⌫O,r j F

↵

+ � 0
"

⌦
⌫O,rir j F

↵
.

(5.8)

The last term in this formula is given by

� 0
"

⌦
⌫O,rir j F

↵
= �� 0

"Ai j h⌫O, ⌫i.

For a better understanding of the penultimate term in (5.8), we choose an orthonor-
mal basis (ea) of the tangent space to the level set @O� which contains our point p
and write

ri F = hri F, eai�abeb + hri F, ⌫Oi · ⌫O.

In the resulting formula

r̄ri F⌫O = hri F, eai�ab · r̄eb⌫O + hri F, ⌫Oir̄⌫O⌫O,

the first term contains

r̄eb⌫O =
⌦
r̄eb⌫O, ec

↵
�cded = AObc�

cded ,
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the (locally) bounded second fundamental form of the obstacle (or rather its level
set @O�), while the second term can be seen to vanish identically; indeed since�
�r̄ dist@O

�
�2 ⌘ 1 we obtain for every � = 1, . . . , n + 2

�
r̄⌫O⌫O

��
= ⌫

⌘
O
@

@y⌘
⌫
�
O =

n+2X

⌘=1

✓
@

@y⌘
@

@y�
dist@O

◆
@

@y⌘
dist@O

=
1
2
@

@y�
�
�r̄ dist@O

�
�2 = 0.

Thus we can express the coefficient in the penultimate term in (5.8)
⌦
r̄ri F⌫O,r j F

↵
= AObc�

cd�abhea,ri Fi · hed ,r j Fi =: ÃOi j , (5.9)

i, j 2 {1, . . . , n + 1}, in terms of a tensor ÃO which is controlled by AO.
All in all, the derivative of the penalisation is thus given by

rir j↵" = � 00
" h⌫O,ri Fi · h⌫O,r j Fi + � 0

" Ã
O
i j � � 0

"Ai j h⌫O, ⌫i (5.10)

which, once inserted into (5.7), results in:

Lemma 5.5. For hypersurfaces evolving by the penalised flow (3.2), we have
✓
d
dt

�1

◆
|A|2 = � 2 |rA|2 + 2 |A|4 � 2↵"Aki A

i
j A

j
k

� 2� 00
" h⌫O,ri Fi · h⌫O,r j FiAi j � 2� 0

" Ã
O
i j A

i j

+ 2� 0
"h⌫, ⌫Oi |A|2 ,

(5.11)

where ÃOi j is given by (5.9).

Contrary to the evolution equation for the gradient function, we cannot expect the
additional terms to have a sign, so deriving suitable a priori bounds on the second
fundamental form will be one of the main tasks in the analysis of the penalised
flow (3.2). As we shall see, we can deal with this problem by considering a modi-
fied second fundamental form quantity which depends also on the penalty function
itself.

For this we shall in particular need the evolution equation of the penalty func-
tion itself which is given by:

Lemma 5.6. For hypersurfaces evolving by the penalised flow (3.2), we have
✓
d
dt

�1M

◆
↵" = � 0

"↵"h⌫O, ⌫i � � 00
" |PTM⌫O|2 � � 0

" Ã
O
i j g

i j . (5.12)
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Observe that the second term of this evolution equation gives a strong negative con-
tribution (scaling as "�2) in points of the obstacle where the evolving hypersurface
is not tangential to the level sets of the obstacle.

Proof. The formulas for the derivatives of the penalty function, see (5.10) and the
formula following (5.4), immediately imply that

✓
d
dt

�1M

◆
↵" = � 0

"

⌧
⌫O,

✓
d
dt

�1M

◆
F
�

� � 00
" ·

⌦
⌫O,ri F

↵
·
⌦
⌫O,r j F

↵
gi j � � 0

" · ÃOi j g
i j

= � 0
"↵"h⌫O, ⌫i � � 00

" |PTM⌫O|2 � � 0
" Ã

O
i j g

i j

as claimed.

6. Estimates on the depth of penetration

We shall later obtain the desired viscosity solution as limit of solutions to Dirichlet
problems for (3.2) to be solved on larger and larger balls BR(0) where we will
truncate the initial map u0 at levels L ⌧ 0. In this context we shall always assume
that R is sufficiently large so that  < L outside BR(0).

We prove the following bound for the amount that the evolving hypersurface
can sink into the obstacle.

Lemma 6.1. For any height ` 2 R, there exists a number C0(`) 2 (1,1) with the
following property:

For any L 2 (�1, `) and R > 0 as above, there exists "0(L) > 0, such that
for 0 < "  "0(L) any hypersurface Mt = graph(uL",R(·, t)) evolving according to

8
>>>><

>>>>:

u̇ =
p
1+ |Du|2 ·

0

@div

0

@ Duq
1+ |Du|2

1

A + ↵"

1

A in BR(0) ⇥ [0, T )

u = L on @BR(0) ⇥ [0, T )

u(·, 0) = u0 � max{ , L} in BR(0)

(6.1)

satisfies
dist@O(p) � �C0(`) · " (6.2)

in any point p 2 Mt \
�
xn+2 � `

 
and for all times t 2 [0, T ).

We stress that the level L at which we truncate the hypersurface only determines the
range of admissible parameters ", but that the bounds on the depth of penetration on�
xn+2 > `

 
are independent of L . To achieve this, we shall compare the evolving

hypersurface with deformed level sets to @O of the following type:
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Lemma 6.2. Given any function f0 2 C2loc(Rn+2, R+) and any number " > 0, we
let

S" :=
n
p 2 Rn+2 : dist@O(p) = �" f0(p)

o
.

Then for any L > �1 and � > 0, there exists a number "1 = "1(L , f0, �) > 0
such that for any |"| < "1 the hypersurfaces

S" \
n
xn+2 > L

o

are of class C2 with second fundamental form bounded by
�
�
�AS"

�
�
� (p)  (1+ �) ·

�
�AO

�
�(p) + �

for any p 2 {xn+2 > L} \ S", where AO denotes the second fundamental form of
the level set of dist@O that contains p.

In particular, there is a number "2 > 0 depending only on L , the function f0
and on sup@O\{xn+2>L�1}

�
�AO

�
� so that

�
�
�AS"

�
�
� (p)  2 ·

 

sup
B1(p)\@O

�
�
�AO

�
�
� + 1

!

for p 2 S" \ {xn+2 > L} and |"| < "2.

Proof. We first recall that given any function w 2 C2(Rn+2) and a point p0 2
Rn+2 such that Dw(p0) 6= 0 one can compute the second fundamental form of the
(locally C2-) hypersurface

n
p 2 Rn+2 : w(p) = w(p0)

o

by

Ãw(p0) = ±
D2w(p0)
|Dw|(p0)

.

In our case S" =
�
p 2 Rn+2 : w(p) = "

 
is such a level set for w := ⇢

f0 , where we
write for short ⇢ ⌘ dist@O.

Observe that the second term on the right-hand side in

r̄w =
1
f0

r̄⇢ �
⇢

f 20
r f0 =

1
f0
⌫O �

⇢

f 20
r f0

is small if " and thus ⇢(p0) is small, more precisely,
�
�
�
�r̄w �

1
f0
⌫O

�
�
�
�  C · ⇢ (6.3)

for a constant C depending only on L and the choice of f0.
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In particular, the normal to S" at p0 is given by

⌫S"(p0) = ⌫O(p0) + ⇢(p0) · ⇠

for some vector ⇠ whose length is again bounded in terms of the function f0 and L .
Similarly, we can adjust the orthonormal basis (ea) of the tangent space to

@O� , � = ⇢(p0) = " · f0(p0), to give an orthonormal basis ea + ⇢ · ⇠a of Tp0S",
again with |⇠a|  C as above.

To prove the claim we now show that
�
�
�AS"(p0)

�
ea + ⇢ · ⇠a, eb + ⇢ · ⇠b

���
�

�
�
�AO(p0)(ea, eb)

�
�
� + C⇢ ·

⇣
1+

�
�
�AO(p0)

�
�
�
⌘

.

For this we first observe that the final term of

D2w=
1
f0
D2⇢�

1
f 20

(D⇢ ⌦ Df0+Df0 ⌦ D⇢)�
⇢

f 30

�
f0 · D2 f0 � 2Df0 ⌦ Df0

�
,

which contains ⇢ itself rather than a derivative of it, must be small if " is small.
As ea is orthogonal to ⌫O, we have D⇢(ea) = 0, so evaluating the second term

for the basis (ea + ⇢⇠a) of Tp0S" gives also just a contribution of order C⇢, again
with C depending only on f0 and L , in particular independent of the obstacle since
|D⇢| = 1.

Finally observe that the restriction of D2⇢ to Tp0@O� is nothing else than the
second fundamental form AO of the level sets of the obstacle while D2⇢(⌫O, ·)
vanishes.

Combined with (6.3) we thus find that for " > 0 sufficiently small
�
�
�AS"(p0)

�
ea + ⇢⇠a, eb + ⇢⇠b

���
�


1

|Dw|


1
f0

�
�
�AO(p0)(ea, eb)

�
�
� + C⇢

⇣
1+

�
�
�AO(p0)

�
�
�
⌘�


�
�
�AO(p0)(ea, eb)

�
�
� + C"

⇣
1+

�
�
�AO(p0)

�
�
�
⌘

with constants that depend only on L and the function f0. The first claim of the
lemma immediately follows.

To obtain the second claim, we recall the well-known fact, see, e.g., [10,
Lemma 14.17], that in a tubular neighbourhood of @O one can express the principal
curvatures of the level sets @O� in terms of � and the principal curvatures of @O.
In particular, there is a constant "2 > 0 depending only on sup@O\{xn+2>L�1}

�
�AO

�
�

so that for any p with |dist@O(p)|  "2, we have
�
�AO(p)

�
�  3

2 sup@O\B1(p)
�
�AO

�
�.

Reducing "2 if necessary and combining this with the estimate proven above imme-
diately yields the second claim.
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Proof of Lemma 6.1. As we work on a compact space-time domain, here BR(0) ⇥
[0, T ], standard versions of the maximum principle apply. In particular, if u is a
solution of

u̇ =
q
1+ |Du|2 ·

0

@div

0

@ Du
q
1+ |Du|2

1

A + ↵"

1

A (6.4)

and v is a subsolution of this equation, be it in the classical sense that v 2 C2 and

v̇ 
p
1+ |Dv|2·

✓
div

✓
Dvp
1+|Dv|2

◆
+ ↵"

◆
, or in the viscosity sense, with v  u on

the parabolic boundary of our domain, then we have v  u on all of BR(0)⇥ [0, T ].
We may apply this to derive the lemma as follows:

(i) As ↵" � 0, any constant function is a subsolution of (6.4). In particular, the
constant L acts as a lower barrier for the solution u of (6.1);

(ii) We choose a monotonically nonincreasing function f0 2 C2loc(R, R+) such
that

f0(s) � ���1

 

2
p
n ·

"

sup
{xn+2�s�1}\@O

�
�
�AO

�
�
� + 1

#!

and consider as comparison hypersurface S" for " 2 (0, "2) as in Lemma 6.2
(for f0(p) ⌘ f0(pn+2)). Given an arbitrary point p 2 S" \

�
xn+2 � L � 1

 
,

we observe that

�
�
�HS"(p)

�
�
� 

p
n
�
�
�AS"(p)

�
�
�  2

p
n ·

"

sup
@O\{xn+2�pn+2�1}

�
�
�AO

�
�
� + 1

#

�
⇣
� f0

⇣
pn+2

⌘⌘
= �

✓
dist@O(p)

"

◆
= ↵"(p).

Consequently, writing the stationary hypersurface S" \
�
xn+2 > L � 1

 
as

graph of a function uS" : US" ! R over a subset US" ⇢ BR(0), we know
that also uS" is a subsolution of (6.4);

(iii) As uS" is not defined on the whole of BR(0) we first cut off uS" to max{uS" , L}
on its domain of definition US" and observe that this function is equal to L
in a neighbourhood of @US" so can be continuously extended by L to all of
BR(0). As the maximum of two subsolutions is again a subsolution, now in
the viscosity sense, we thus obtain that graph u remains above both S" and the
plane

�
xn+2 = L

 
for all times and (6.2) is valid with C0(`) = f0(`� 1).

Based on Lemma 6.1, we will henceforth assume:
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Assumption 6.3 (Standard assumption on "). Given a number L 2 R and an ini-
tial hypersurface M0 (disjoint from the obstacle) contained in {xn+2 � L}, we
consider the evolution equation (3.2) only for values of " 2 (0, "0(L)), the number
given by Lemma 6.1.
As a consequence of Lemma 6.1 and its proof, we get the following more general
bounds on the penetration depth of solutions to (3.2):

Corollary 6.4. Let O be an obstacle as in Definition 2.1 which we furthermore
assume to be of class C2 and let ` > �1 be any number. Then there exist K < 1
and C0 > 0 such that the following holds true.

Let (Mt )t be a smooth solution of (3.2) (with " satisfying the standard
assumption) which is initially disjoint from the obstacle. Then dist@O(p) � �C0"
and

↵"(p) +
�
�
�AO

�
�
� (p) + vO(p)  K

for any p 2 Mt \O \ {xn+2 � `} and any t � 0.

We remark that the above constant K depends only on local C2-bounds of the ob-
stacle. In particular, while in Definition 2.1 the assumed regularity of the obstacle is
only C1,1 and not C2, we can and will approximate such obstacles by smooth obsta-
cles with locally bounded C2-norm, so Corollary 6.4 will still apply with constants
depending only on the local C1,1-norms of the original obstacleO.

In the following Sections 7 and 8, we shall derive a priori estimates for so-
lutions of (3.2) in such halfspaces

�
xn+2 � `

 
. We will apply these a priori esti-

mates later on in Section 9 to control the evolution of the approximate solutions
constructed in Proposition 9.1 and will always choose ` large enough so that the
following holds:
Assumption 6.5 (Assumptions for a priori estimates in {xn+2 � `}).
We consider solutions (Mt )t of (3.2) with the following properties: For some a > 0

(i) Each Mt \ {xn+2 > `� a}, t � 0, is a graphical, smooth submanifold without
boundary;

(ii) Each Mt \ {xn+2 � `� a} is compact.

7. C1-estimates for the graphical flow: gradient function

We combine the evolution equation for the gradient function given in Lemma 5.2
with the key observation concerning the additional term hr↵", en+2i made in Re-
mark 5.3 and a localisation argument to prove:

Proposition 7.1. Let ` 2 R and let (Mt )t be a solution of (3.2), with " as in As-
sumption 6.3, such that Assumption 6.5 is satisfied. Then the gradient function is
controlled by

(U � `)2 · v  sup
M0\{xn+2�`}

(U � `)2 · v + C(`),
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for all times and in all points with height U � `. Here C(`) depends only on
maxM0 U � ` and the bounds for vO and ↵" from Corollary 6.4.

The proof of this proposition is based on the maximum principle. It is important
to observe that both in the present proof, and in similar arguments carried out in
Section 8, we only need to apply the maximum principle on the compact domains
{(x, t) : u(x, t) � `, t 2 [0, T ]} as our quantities are constructed so that they
are zero on the spatial boundary of this domain, on a neighbourhood of which the
hypersurface is smooth and graphical, compare Assumption 6.5.

Proof. We may assume without loss of generality that ` = 0. We want to apply the
maximum principle to the function

w :=U2v

and obtain by direct computation

ẇ �1w = 2Uv
�
U̇ �1U

�
+U2 (v̇ �1v) � 2v|rU |2 � 4U hrU,rvi

= 2Uv
↵"

v
+U2

⇣
�|A|2v � 2

v |rv|2 + v2 hr↵", en+2i
⌘

� 2v|rU |2 � 4U hrU,rvi.

At a spatial maximum of w, we obtain

0 = 2UvrU +U2rv,

ẇ �1w = 2U↵" �U2|A|2v �
2
v
|rv|2U2 + v2U2 hr↵", en+2i

� 2v|rU |2 + 2U2
1
v
|rv|2

 2U↵" + v2U2 hr↵", en+2i � 2v
⇣
1� 1

v2

⌘
,

where we have used, setting ⌘ = en+2 and observing |⌘| = 1, that

|rU |2 = ⌘�ri F� gi jr j F⇣ ⌘⇣ = ⌘�
�
�� ⇣ � ⌫� ⌫⇣

�
⌘⇣

= |⌘|2 � h⌫, ⌘i2 = 1� 1
v2

.
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Ifw is large, v is also large since the hyperplane
�
xn+2 = sup u0

 
is a stationary so-

lution of the flow and hence acts as an upper barrier. In this situation, hr↵", en+2i 
0 according to Remark 5.3. The term 2U↵" is uniformly bounded and can be ab-
sorbed as �2v + 2/v  �v for v � 2. Hence the claimed inequality follows from
the maximum principle as w vanishes at height `.

8. Controlling the second fundamental form

In this section we analyse the evolution of the second fundamental form under the
flow (3.2). According to (5.11), we have

✓
d
dt

�1

◆
|A|2 = � |rA|2 + 2 |A|4 � 2↵"Aki A

i
j A

j
k

� 2� 00
" h⌫O,ri Fi ·

⌦
⌫O,r j F

↵
Ai j � 2� 0

" Ã
O
i j A

i j

+ 2� 0
"h⌫, ⌫Oi |A|2 ,

(8.1)

where the first two terms agree with the evolution equation for standard mean cur-
vature flow.

The additional terms are all supported on the obstacle though with vastly differ-
ent behaviour as " & 0, depending on whether or not the term contains derivatives
of the penalty function ↵".

Namely, as ↵" is bounded uniformly in time in every halfspace
�
xn+2 � `

 
,

see Section 6, the term �2↵"Aki A
i
j A

j
k will be dominated by |A|4 in points where

the second fundamental form is large and as such will not play an important role,
no matter how small " is.

Conversely, all other terms contain derivatives of ↵" and can thus be of order
"�1 (for first order derivatives as occurring in the last two terms in (8.1)) or even
"�2 (for the other additional term) in points of the obstacle that can a priori be
reached by the evolving hypersurface, compare Section 6.

These terms cannot be expected to have a sign so that we need to construct a
modified second fundamental form quantity in order to be able to apply the maxi-
mum principle.

This construction is done in three steps, first replacing |A|2 with a quantity f
whose evolution equation resembles more closely the one of |A|2 for standard mean
curvature flow, then, similarly to [5] further modifying this to obtain a quantity G
for which ( ddt �1)G is negative for large values of G and controlled gradient and
then finally by localising in space-time.

We first prove:

Lemma 8.1. For any ⌘ 2 (0, 1) and ` > �1, there exists a constant �0 2 (0, 1],
so that to any � 2 (0, �0], we can choose 1  F̄ = F̄(⌘, `, � ) < 1, such that the
following holds true.
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Let (Mt )t be a smooth solution of the flow (3.2) (for " in the range (0, "1) as
discussed in Assumption 6.3). Then the inequality

e��↵"
✓
d
dt

�1M

◆⇣
e�↵" |A|2

⌘
 � (2� ⌘) |rA|2 + (2+ ⌘) |A|4

�
�
�� 0
"

�
� · h⌫, ⌫Oi+ |A|2

�
�

4
� 00
" |A|2 |PTM⌫O|2

(8.2)

holds in every point p 2 Mt \ {xn+2 � `} in which

|A| � F̄ .

Recall that ↵" is uniformly bounded in points p 2 Mt \ {xn+2 � `}, see Corol-
lary 6.4. Hence in points where e�↵" |A|2 is large, |A| is also large and the estimate
above applies. Therefore inequalities as in Lemma 8.1, valid only where |A| is large
and thus of a much simpler form than the general evolution equation, are suitable
to derive upper bounds on the second fundamental form.

We remark that while the present lemma makes no use of the C1-bounds on the
evolving hypersurface derived earlier, such bounds will be crucial in the following
lemma.

Lemma 8.2. For any numbers M < 1 and ` > �1, there exist numbers � , k > 0
as well as F̄ < 1, such that the following holds. Let (Mt )t be a smooth solution of
(3.2) for some " 2 (0, "1) as in Assumption 6.3 and set

G := h
⇣
v2

⌘
· e�↵" · |A|2 , where h(y) = y · eky .

Then
✓
d
dt

�1

◆
G +

1
h
hrh,rGi  �

k
8

h
he�↵" |rA|2 + G|A|2 + G|rv|2

i

�


�

8
� 00
" |PTM⌫O|2 +

1
2
|� 0
"|h⌫, ⌫Oi+

�
· G

holds in every point p 2 Mt \
�
xn+2 � `

 
, where |A| is large and the gradient

function v of Mt is bounded, namely

|A(p)| � F̄, while v(p)  M.

Proof of Lemma 8.1. Let ⌘ > 0 and ` > �1 be given. Let K be as in Corollary
6.4 and let (Mt )t be a solution of the flow (3.2) for some number " 2 (0, "1) as in
Assumption 6.3. Then for � in a range (0, �0) to be determined later, we set

f = f� = e�↵" |A|2
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and compute, using (5.11) and (5.12),

e��↵"
✓

d
dt

�1

◆
f
�

=

✓
d
dt

�1

◆
|A|2 � 2�

⌦
r↵",r |A|2

↵

+ � |A|2 ·

✓
d
dt

�1

◆
↵" � � 2 |r↵"|

2 |A|2

= � 2 |rA|2 + 2 |A|4 � 2↵"Aki A
i
j A

j
k

� � 00
" h⌫O,ri Fi · h⌫O,r j FiAi j � 2� 0

" Ã
O
i j A

i j

+ 2� 0
"h⌫, ⌫Oi |A|2 � 2�� 0

"

⌦
PTM⌫O,r |A|2

↵

+ �
⇥
� 0
"h⌫O,↵"⌫i � � 00

" |PTM⌫O|2 � � 0
" Ã

O
i j g

i j ⇤ |A|2

� � 2
�
�� 0
"

�
�2 |PTM⌫O|2 |A|2 .

Dropping the last, obviously non-positive term and using Young’s inequality as well
as Kato’s inequality |r |A||  |rA|, we obtain

e��↵"
✓

d
dt

�1

◆
f
�

 � (2� ⌘) |rA|2 +
⇣
2+

⌘

2

⌘
|A|4 +

2
⌘

|A|2 ↵"
2

+ C
�
�� 0
"

�
� ·

�
�
�AO

�
�
� ·

�
� |A|2 + |A|

�

� |PTM⌫O|2 ·

"

� 00
"

�
� |A|2 � |A|

�
�
4� 2

⌘

�
�� 0
"

�
�2 |A|2

#

� h⌫, ⌫Oi(2+ �↵")
�
�� 0
"

�
� |A|2 .

(8.3)

To rewrite this expression in the form

e��↵"
✓

d
dt

�1

◆
f
�

 � (2� ⌘) |rA|2 +
⇣
2+

⌘

2

⌘
|A|4 +

2
⌘

|A|2 ↵"
2

� |PTM⌫O|2 · T1 � h⌫, ⌫Oi · T2,
(8.4)

we then use that
1 = |⌫O|2 = |PTM⌫O|2 + h⌫, ⌫Oi2

to split the term on the second line of (8.3) into suitable multiples of |PTM⌫O|2 and
of h⌫, ⌫Oi and find that (8.4) is valid for

T1 :=

"

�� 00
" �

4� 2

⌘

�
�� 0
"

�
�2 � C�

�
�� 0
"

�
�
�
�
�AO

�
�
�

#

· |A|2 �
h
C
�
�� 0
"

�
�
�
�
�AO

�
�
� + � 00

"

i
· |A|

� � ·
h
� 00
" � �

⇣
4⌘�1 + 1

⌘ �
�� 0
"

�
�2
i
|A|2 �

h
� 00
" +

�
�� 0
"

�
�2
i

· |A|

� C
�
�
�AO

�
�
�
2 ⇣

|A|2 + 1
⌘
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and

T2 = (2+ �↵")
�
�� 0
"

�
� |A|2 � Ch⌫, ⌫Oi

�
�� 0
"

�
� ·

�
�
�AO

�
�
� ·

⇣
� |A|2 + |A|

⌘
,

C = C(n) some universal constants.
We will first show that the dominating term in T1 is given by �� 00

" |A|2 > 0, so
that we obtain a negative contribution to the right-hand side of (8.4) scaling as "�2
in points where PTM⌫O is non-zero, i.e. in points where the tangent plane of the
evolving hypersurface and the obstacle do not coincide.

Conversely, as both the obstacle and the evolving hypersurface are graphical, it
is precisely in points where the two tangent planes coincide that h⌫, ⌫Oi is maximal,
i.e. equal to one, so, as we shall see, we again get a large negative contribution to
the right hand side of (8.4) now coming from the dominating term 2

�
�� 0
"

�
� |A|2 of T2.

To begin with we show

Claim: Given any ⌘ > 0 there exists �0 > 0 such that for any � 2 (0, �0) there is a
number F̄ such that

T1 �
⇣�
2
� 00
" � C · K 2

⌘
· |A|2

in every point p 2 Mt \
�
xn+2 � `

 
in which |A| � F̄ . Here C is a universal

constant and K = K (`) is the number given in Corollary 6.4.
To prove this claim, we first recall from Corollary 6.4 that dist@O(p) � �c0 ·",

c0 = c0(`). Thus �" and its derivatives need to be evaluated only for arguments
contained in an interval [�c0",1) where

(� 0
")
2

� 00
"

 sup
[�c0,0]

(� 0)2

� 00
 C1 (8.5)

is bounded by a constant depending only on c0 (and thus `) and the function �,
which we had chosen so that � 000  0.

In points where |A| is large, |A| � F̄ for F̄ � 1 still to be determined, we thus
get

T1��� 00
" ·
h
1� �C1

⇣
4⌘�1+1

⌘
�
�
� F̄

��1
(1+C1)

i
|A|2�C

�
�
�AO

�
�
�
2
|A|2 . (8.6)

Choosing �0 2 (0, 1) small enough so that �0C1(4⌘�1 + 1)  1
4 , and then, for each

� 2 (0, �0), selecting a number F̄ large enough so that
�
� F̄

��1
(1 + C1)  1

4 , we
thus find as claimed that

T1 �
�

2
� 00
" |A|2 � C · K 2 |A|2 , (8.7)

where we use Corollary 6.4 to deal with the last term in (8.6).
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To analyse T2, we first observe that
�
�
�T2 � 2

�
�� 0
"

�
� |A|2

�
�
�  �↵"

�
�� 0
"

�
� |A|2 + C

�
�� 0
"

�
� ·

�
�
�AO

�
�
� · |A|2 ·

⇣
� + |A|�1

⌘

 �0K
�
�� 0
"

�
� |A|2 + C�0K

�
�� 0
"

�
� |A|2 + C F̄�1K

�
�� 0
"

�
� |A|2

CK
⇣
�0 + F̄�1

⌘ �
�� 0
"

�
� |A|2,

since we only need to consider points with |A| � F̄ . After possibly reducing �0
and increasing F̄ , we thus obtain

3
�
�� 0
"

�
� |A|2 � T2 �

�
�� 0
"

�
� |A|2 . (8.8)

Remark that these expressions only scale as "�1 and not as "�2 like the leading
order term of T1.

This difference is crucial since we cannot expect to control the sign of h⌫, ⌫Oi
and will thus need to rely on the contribution of T1 to (8.4) in points where this inner
product is negative. While not necessarily positive, we observe that since both the
obstacle and the evolving hypersurface are graphical, this inner product is bounded
away from �1. Namely writing ⌫O = h⌫O, en+2ien+2 + PRn+1⌫O, where PRn+1⌫O
is the orthogonal projection of ⌫O onto Rn+1 ⇥ {0}, we find

h⌫O, ⌫i=hh⌫O, en+2ien+2 + PRn+1⌫O, ⌫i = h⌫O, en+2i · h⌫, en+2i + hPRn+1⌫O, ⌫i

�(v · vO)�1 �
�
�PRn+1⌫O

�
� � �

�
�PRn+1⌫O

�
� = �

q
1� h⌫O, en+2i2

� �
p
1� K�2,

with the last inequality due to Corollary 6.4.
In points where h⌫, ⌫Oi < 0, we may thus bound

|PTM⌫O|2 = 1� |h⌫, ⌫Oi|2 � K�2,

which in turn gives

h⌫O, ⌫i = h⌫O, ⌫i+ � h⌫O, ⌫i� � h⌫O, ⌫i+ � K 2 |PTM⌫O|2 . (8.9)

Considering points p 2 Mt \
�
xn+2 � `

 
with |A| � F̄ , we can thus conclude from

(8.7) and (8.8) that the estimate

|PTM⌫O|2 T1 + h⌫, ⌫OiT2 � |PTM⌫O|2 ·
⇣�
4
� 00
" � C

⌘
|A|2

+ h⌫, ⌫Oi+
�
�� 0
"

�
� |A|2

(8.10)
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holds with a constant C = C(K ), at least if h⌫, ⌫Oi � 0. On the other hand, if
h⌫, ⌫Oi < 0, we can combine (8.7) and (8.8) with (8.9) to conclude that

|PTM⌫O|2 T1 + h⌫, ⌫O, iT2

� |PTM⌫O|2 ·
⇣�
2
� 00
" � 3

�
�� 0
"

�
� K 2

⌘
· |A|2 � C · |A|2

� |PTM⌫O|2 ·
⇣�
2
� 00
" � � 2

�
�� 0
"

�
�2
⌘

|A|2 � C
⇣
1+ ��2

⌘
|A|2

� |PTM⌫O|2 ·
⇣�
2
� 00
" � � 2C1� 00

"

⌘
|A|2 � C(� , K ) |A|2

� |PTM⌫O|2 ·
h�
4
� 00
" � C(� , K )

i
|A|2

since �0C1  1
4 . But in this second case h⌫, ⌫Oi+ is zero which means that (8.10)

also holds though now with a constant C = C(� , K ). Inserting (8.10) into (8.4)
thus gives

e��↵"
✓
d
dt

�1M

◆
�
e�↵" |A|2

�
 � (2� ⌘) |rA|2 +

⇣
2+

⌘

2

⌘
|A|4 + C2 · |A|2

�
�
�� 0
"

�
� · h⌫, ⌫Oi+ |A|2 �

�

4
� 00
" |A|2 |PTM⌫O|2

for a constant C2 depending on ⌘, � as well as K . Possibly further increasing F̄
(which is allowed to depend on all these quantities), we can however assume that
C2  ⌘

2 (F̄)2, so that we can estimate the final term on the first line by ⌘
2 |A|4 in the

points under consideration, thus obtaining the claim of the lemma.

Proof of Lemma 8.2. Given a number M and a level ` > �1, we let K be as in
Corollary 6.4 and consider a smooth solution (Mt )t of the flow (3.2), " 2 (0, "1) as
in Assumption 6.3, in points where M � v. For a number ⌘ = ⌘(M, `) > 0 to be
determined below, we let �0 = �0(⌘, `) > 0 be as in Lemma 8.1.

We then consider the function

G = h
⇣
v2

⌘
· f,

where f = e�↵" |A|2 is as in Lemma 8.1, with � 2 (0, �0) still to be determined,
and h : R+ ! R+ a nondecreasing function which we will later choose as stated
in the lemma.

To begin with, we calculate
✓
d
dt

�1

◆
G = h ·

✓
d
dt

�1

◆
f + f · 2v · h0 ·

✓
d
dt

�1

◆
v

�


h00 ·

�
�
�r

⇣
v2

⌘��
�
2
+ 2h0 · |rv|2

�
· f

� 2
D
r
⇣
h
⇣
v2

⌘⌘
,r f

E
.

(8.11)
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Here and in the following, h and its derivatives are evaluated at y = v2 unless stated
otherwise.

Let now p 2 Mt \
�
xn+2 � `

 
be a point where |A| � F̄ , the number given by

Lemma 8.1. Inserting the evolution equation (5.6) of the gradient function as well
as the estimate (8.2) into (8.11), we obtain

e��↵"
✓
d
dt

�1

◆
G

 h ·


� (2� ⌘) |rA|2 + (2+ ⌘) |A|4

�
�
�� 0
"

�
� · h⌫, ⌫Oi+ · |A|2 �

�

4
� 00
" |A|2 |PTM⌫O|2

�

+ |A|2 · 2v · h0 ·


� |A|2 v �

2
v

|rv|2 + v2 hr↵", en+2i
�

�
⇣
4h00v2 |rv|2 + 2h0 · |rv|2

⌘
· |A|2

� 2e��↵"
D
r
⇣
h
⇣
v2

⌘⌘
,r f

E
.

(8.12)

We estimate the last term on the third line using Young’s inequality as

|A|2 · 2v · h0 · v2hr↵", en+2i = 2v3 |A|2 h0� 0
"hPTM⌫O, en+2i

 � 2
(h0)2

h
· v2

�
�� 0
"

�
�2 |PTM⌫O|2 |A|2

+ ��2v4h · |A|2

 � 2
(h0)2

h
· v2

�
�� 0
"

�
�2 |PTM⌫O|2 |A|2

+ ��2M4 · e��↵" · G.

Then, as in [5], we deal with the last term in (8.12) by writing one multiple of
e��↵" hr(h(v2)),r f i in terms of G = h · f as

� e��↵"
D
r
⇣
h
⇣
v2

⌘⌘
,r f

E

= �
e��↵"

h
·
D
r
⇣
h
⇣
v2

⌘⌘
,rG

E
+
e��↵"

h

�
�
�r

⇣
h
⇣
v2

⌘⌘��
�
2
· f

= �
e��↵"

h
·
D
r
⇣
h
⇣
v2

⌘⌘
,rG

E
+ 4

(h0)2

h
v2 |rv|2 |A|2

while rewriting the remaining multiple as

e��↵"
D
r
⇣
h
⇣
v2

⌘⌘
,r f

E
=

D
r
⇣
h
⇣
v2

⌘⌘
,r

⇣
|A|2

⌘E
+ � |A|2

D
r
⇣
h
⇣
v2

⌘⌘
,r↵"

E
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and consequently estimating it, using Kato’s and Young’s inequality as well as (5.4),
by �

�
�e��↵"

D
r
⇣
h
⇣
v2

⌘⌘
,r f

E��
�

 4h0v |rv| · |A| |rA| + 2� h0 · v · |A|2 · � 0
"hrv, PTM⌫Oi

 (2� 2⌘) |rA|2 · h +
4

2� 2⌘
(h0)2

h
|rv|2 v2 |A|2

+ ⌘h |rv|2 |A|2 +
� 2

⌘

�
�� 0
"

�
�2 |PTM⌫O|2 v2 ·

(h0)2

h
· |A|2 .

(8.13)

Combining (8.12)-(8.13) we thus find that
✓
d
dt

�1

◆
G � T3

⇣
v2

⌘
· e�↵" |A|4 � T4

⇣
v2

⌘
· e�↵" |A|2 |rv|2 � T (")

5

⇣
v2

⌘
· G

� ⌘e�↵"h · |rA|2 �
1

h(v2)

D
r
⇣
h
⇣
v2

⌘⌘
,rG

E
+ M4��2G,

where

T3(y) := 2h0(y) · y � (2+ ⌘)h(y),

T4(y) := 4h00(y) · y �

✓
4+

2
1� ⌘

◆
·
y · (h0(y))2

h(y)
+ 6h0(y) � ⌘ · h,

(8.14)

and

T (")
5 =

�
�� 0
"

�
� h⌫, ⌫Oi+ + |PTM⌫O|2

 
�

4
� 00
" � � 2

�
1+ ⌘�1� ��� 0

"

�
�2 ·

�
h0

�
v2

��2
v2

h2
�
v2

�

!

need all be evaluated at y = v2, and thus, by assumption, for arguments in the
interval [1,M2].

We will show that all the above terms are strictly positive for h(y) = y · eky
provided k, ⌘ and � are chosen suitably (depending on the given numbers M and `).

We choose k :=
�
24M2��1 and consider the function h(y) = y · eky , whose

derivatives are given by

h0(y) = h(y) ·
⇣
1
y + k

⌘
, h00(y) = h(y) ·

✓
2k
y

+ k2
◆

.

Now selecting ⌘ as ⌘ = k
2 we obtain that the first term in (8.14) is positive, namely

T3(y) = (2ky � ⌘)h(y) �
3
2
kh(y)

for any y 2
⇥
1,M2⇤ which we recall is the range of v2 for the points we consider.
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Furthermore, as 2
1�⌘ = 2(1+ �⌘) for � = 1

1�⌘  48
47 , we can bound

T4(y) =
h(y)
y

·


4
�
2k + k2y

�
y � (6+ 2�⌘)(1+ ky)2 + 6(1+ ky) � ⌘y

�

=
h(y)
y

·


2ky � ⌘(2�+ y) + 4k2y2 � 4�⌘ky � (6+ 2�⌘)k2y2

�

=
h(y)
y


2ky �

k
2
y � k�+ 4k2y2 � 2�k2y � (6+ �k)k2y2

�

�
h(y)
y

·


3
8
ky � 6k2y2

�
�
1
8
kh(y).

We recall that so far we have only imposed an upper bound on � , namely � 2
(0, �0), �0 = �0(⌘, `) the number given by Lemma 8.1. We shall now prove that
for � chosen small enough (depending on ⌘ and k) also T (")

5 will be positive.
Namely, as (h0(y))2·y

h2(y)  (h0(y))2·y
h(y) = eky(1 + ky)2  2 for y 2

⇥
1,M2⇤, we

select � 2 (0, �0) small enough to assure that

2�
⇣
1+ ⌘�1

⌘
· C1 

1
8
,

C1 = C1(`) as in (8.5), in order to get

T "5 �
�
�� 0
"

�
� h⌫, ⌫Oi+ +

�

8
|PTM⌫O|2 � 00

" .

All in all we thus conclude that for points p with v(p)  M and |A(p)| � F̄
✓
d
dt

�1

◆
G +

1
h
hrh,rGi

 �
k
2
h · e�↵" |rA|2 �

3k
2

|A|2 · G + ��2M4 · G

�
k
8
|rv|2 · G �


�

8
� 00
" |PTM⌫O|2 +

1
2
|� 0
"|h⌫, ⌫Oi+

�
· G.

This implies the claim of the lemma as we may further increase the number F̄ =
F̄� determined originally in Lemma 8.1 in order to achieve that ��2M4  k

2 F̄
2,

allowing us to absorb the third term into the second term on the right-hand side.

We now localise these estimates to be able to apply the maximum principle in
halfspaces.

Proposition 8.3. Given any level ` 2 R and any numbers M � 1 and Q < 1,
there exists a constant C depending only on `, M , Q and the obstacle such that
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for solutions (Mt )t of (3.2) evolving from an initial hypersurface M0 = graph(u0)
disjoint from the obstacle and with sup u0  Q that satisfy

v  M on Mt \
n
xn+2 � `� 1

o
for every t � 0,

the second fundamental form is controlled on Mt \
�
xn+2 � `

 
by

(i)
(U � `)4 · |A|2 

C
t

for t 2 (0, 1];
(ii)

(U � `)4 · |A|2  C ·

 

1+ sup
M0\{xn+2�`}

(U � `)4 · |A|2
!

.

for all t � 0.

This proposition is an immediate corollary of the subsequent Lemma 8.4 and the
maximum principle.

Lemma 8.4. Let `, M, Q 2 R and (Mt )t be as in Proposition 8.3. Let G be the
second fundamental form quantity considered in Lemma 8.2. Define

w0 = (U � `)4 · G for all t � 0

and

w1 = t (U � `)4 · G + �(U � `)4v2 for t 2 [0, 1].

Then there exists a constant D such that
✓
d
dt

�1

◆
wi  0, i = 0, 1,

in every point where the respective function fulfils wi � D and rwi = 0.

Proof. We may assume that ` = 0. Let # 2 {0, 1} and set

w := ((1� #) + t#)U4G + #�U4v2,

where � is a large constant that will be fixed later. This allows us to consider the two
cases simultaneously. If # = 0, we obtain a priori estimates up to t = 0 provided
that |A|2 is initially bounded. If # = 1, we obtain local in time a priori estimates.

We first observe that since {xn+2 = Q} lies above M0, it must be disjoint from
the obstacle and consequently serves as upper barrier forU for all times. In addition
to the C1-estimates we have furthermore bounds on ↵" thanks to Corollary 6.4.
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Consequently, if w is large, say w � D, then also |A|2 must be large. In particular,
for a suitable choice of D, it is enough to consider points with |A|2 � F̄ , the
constant of Lemma 8.2. We can thus estimate, using Lemmas 5.2 and 8.2

✓
d
dt

�1

◆
w

=#U4G + 4((1� #) + t#)U3G
�
U̇ �1U

�

+ ((1� #) + t#)U4(Ġ �1G) + 4#�U3v2
�
U̇ �1U

�

+ 2#�U4v(v̇ �1v)

� 12((1� #) + t#)U2G|rU |2 � 8((1� #) + t#)U3hrU,rGir

� 12#�U2v2|rU |2 � 16#�U3vhrU,rvi � 2#�U4|rv|2

#U4G + 4((1� #) + t#)U3G
↵"

v

+((1�#)+t#)U4
✓

�
k
8
G |A|2 �

1
2
|� 0
"|h⌫, ⌫Oi+ · G �

1
h
hrh,rGi

◆

+ 4#�U3v2
↵"

v

+ 2#�U4v
✓

�|A|2v �
2
v
|rv|2 + v2 hrM↵", en+2i

◆

� 12((1� #) + t#)U2G|rU |2 � 8((1� #) + t#)U3hrU,rGir

� 12#�U2v2|rU |2 � 16#�U3vhrU,rvi � 2#�U4|rv|2.

(8.15)

Using that G  C |A|2, we can use the first underlined term above to absorb (upto
an additive constant C) the second term of the right-hand side. We drop the first
term of the penultimate line. Provided � is chosen sufficiently large, we can fur-
thermore absorb the first term on the right hand side into the second underlined
term. Estimating also the penultimate term using Young’s inequality and bounding
the first order terms by a constant, this reduces the above inequality to

✓
d
dt

�1

◆
w  � c1((1� #) + t#)U4G2 � #�U4v2 |A|2

�
⇣
6� 1

4

⌘
#�U4 |rv|2 + C

+ I + I I + I I I"

(8.16)

for some c1 > 0 and a constant C < 1 which may also depend on �.
Here I and I I stand for the terms appearing on the right hand side of (8.15)

that contain rG while

I I I" := 2#�U4v3hr↵", en+2i � ((1� #) + t#)U4G
1
2
�
�� 0
"

�
� h⌫, ⌫Oi+.
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Since we only consider points at which rw = 0 we can replace rG in both I and
I I using

0 =rw

= 4((1� #) + t#)U3GrU + ((1� #) + t#)U4rG

+ 4#�U3v2rU + 2#�U4vrv.

Recall furthermore that

|rv|2 = gi jrivr jv = v4gi j Aki rkU AljrlU  v4 |rU |2 |A|2  v4 |A|2  cG,

compare (5.5) and that h(y) = yeky so, writing for short rh for r
�
h
�
v2

��
,

rh
h

=
h0

h
r
⇣
v2

⌘
=

✓
1
v2

+ k
◆
2vrv

which, thanks to the C1-estimates is bounded by C |rv|  C |A|  CG1/2. We
can thus estimate

I = � ((1� #) + t#)U4 1h hrh,rGi

C((1� #) + t#)U3vG |hrv,rU i| + C#�v3U3 |hrv,rU i|

+ 4#�U4
⇣
1+ kv2

⌘
|rv|2

C((1� #) + t#)U3G3/2 + C#�U3 |A| + 5#�U4|rv|2,

where we used that kv2  1
24 as well as that v is bounded in the last step. Using

Young’s inequality, we can absorb the first two terms of this estimate into the first
two terms of the right hand side of (8.16) and another additive constant C(�), while
the last term is absorbed into the third term of (8.16).

Furthermore, the terms appearing in

I I = � 8((1� #) + t#)U3hrU,rGi

= 32((1� #) + t#)U2G|rU |2 + 32#�U2v2|rU |2 + 16#�U3vhrU,rvi

C((1� #) + t#)U2G + C + C#�U3 |A|

can also be absorbed into the first two terms on the right hand side of (8.16) and a
constant.

Finally, to analyse I I I", we recall that

hr↵", en+2i = � 0
"

�
h⌫O, en+2i � 1

v h⌫O, ⌫i
�



�
�� 0
"

�
�

v
h⌫O, ⌫i.
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Thus

I I I"  �
1
2
h⌫, ⌫Oi+

�
�� 0
"

�
� ·

h
((1� # + t#)U4G � 4#�U4v2

i

= �
1
2
h⌫, ⌫Oi+

�
�� 0
"

�
� ·

h
w � 5#�U4v2

i

is negative in points where w � D provided D is chosen sufficiently large.
All in all we thus conclude that we can fix a number � � 1 so that the estimate

✓
d
dt

�1

◆
w  � c1

4 ((1� #) + t#)U4G2 + C

holds in every point in which rw = 0 and w � D.
We finally remark that in points where w is large the first term in this estimate

dominates since also

((1� #) + t#)U4G2 � ((1� #) + t#)2U4G2 = U�4�w � #�U4v2
�2

must be large asU and v are bounded above and as we only consider times t 2 [0, 1]
in case # = 1. Thus increasing D further allows us to absorb the second term and
yields the claim.

8.1. Ck-estimates for solutions of the approximate problem

In order to guarantee the existence of solutions to the penalised flow (3.2) for all
time, we show that, for each fixed number " > 0, solutions of (3.2) satisfy Ck-
estimates for all positive times.

We stress that these estimates are not uniform in " and indeed that no such uni-
form control is possible as already the solutions of the stationary graphical obstacle
problem are in general only in C1,1, see [8]. As such we shall refrain from writing
down the explicit form of most terms and for the most part use the notation B ⇤C to
denote arbitrary linear combinations of traces of B ⌦ C with respect to the metric.

Recall that under the flow (3.2), the metric evolves according to (5.2), so that
its Christoffel-symbols 0 satisfy

d
dt
0 = rA ⇤ A + r↵" ⇤ A + ↵" ⇤ rA.

Since d
dtrB = r d

dt B + d
dt0 ⇤ B for any tensor B, we thus get

d
dt

rm A = rm d
dt
A + ra1 A ⇤ ra2 A ⇤ ra3 A + ra1↵" ⇤ ra2 A ⇤ ra3 A,

where ai 2 N0 range over all triples with a1 + a2 + a3 = m.
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The evolution equation for the second fundamental form for the general flow
(5.1) is known to be

d
dt
Ai j = rir j f � f Aki Ak j

which implies

d
dt
Ai j �1Ai j = |A|2Ai j � 2H Aki Akj + (H � f )Aki Akj � rir j (H � f ).

For our flow we thus have
✓
d
dt

�1

◆
A = �r2↵" + ↵" ⇤ A ⇤ A + A ⇤ A ⇤ A.

Using that 1rm A = rm1A + ra1 A ⇤ ra2 A ⇤ ra3 A, compare (4.1), we get
✓
d
dt

�1

◆ �
�rm A

�
�2 = � 2

�
�
�rm+1A

�
�
�
2
+ rm+2↵" ⇤ rm A

+ (ra1 A + ra1↵") ⇤ ra2 A ⇤ ra3 A ⇤ rm A,

a1+a2+a3 = m. Since A is bounded on Mt\
�
xn+2 � `

 
and since in such regions

the depth of penetration is controlled by the results of Section 6, we conclude that
in this region

✓
d
dt

�1

◆ �
�rm A

�
�2  �2

�
�
�rm+1A

�
�
�
2
+ C ·

�
�rm A

�
�2 + C + C"�2(m+2), (8.17)

with C depending on `, the Cm+3-norm of the obstacle  , bounds on A, rA, . . . ,
rm�1A, and either a lower bound on t or a bound on the second fundamental form
of the initial hypersurface.
Remark 8.5. For fixed " > 0, we deduce iteratively estimates for |rm A|, m =
1, 2, . . . for solutions of (3.2) of the following form:

(i) For any ` 2 R, any 0 < ⌧ and any m 2 N, there is a constant C depending on
" > 0, on the obstacle and on local C1-bounds of M0 \

�
xn+2 > `� 1

 
, so

that |rm A|  C in Mt \
�
xn+2 � `

 
, t � ⌧ ;

(ii) If M0\
�
xn+2 > `� 1

 
is additionally in Cm+2, then these estimates are valid

up to time t = 0, i.e. |rm A|  C in Mt \
�
xn+2 � `

 
, t 2 [0,1).

Proof. We may proceed as in the proof in the situation without obstacles, see [19,
Theorem 5.9], after replacing the set where u < 0 with the one where U > 0 due
to the different orientation of the graphs. If the derivatives

�
�rk A

�
�, 1  k  m � 1,

are already uniformly bounded in the set considered, the evolution equations for
|rm A|2 and

�
�rm�1A

�
�2 are of the same form as in the proof of [19, Theorem 5.9].

Note that the constants c will now depend on 1
" . This, however, does not cause
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problems as we do not claim that these estimates are independent of ". When we
compute the evolution equation of

tU2
�
�rm A

�
�2 + �

�
�
�rm�1A

�
�
�
2
,

we get an additional term 2tu↵"h⌫, en+2i |rm A|2, which can easily be absorbed.
The rest of the argument carries over to the present situation.

9. Existence of approximate solutions

We construct smooth approximate solutions to (2.1) depending on parameters

• " 2 (0, 1) controlling the penalisation;
• L 2 R, the height at which we truncate our initial value;
• R > 3, the radius of the ball on which we solve a Dirichlet problem;
• � 2 (0, 1) to mollify both the truncated initial values and the obstacle.

Given an obstacle O with @O = graph( ) for a C1,1loc -function  as described in
Definition 2.1, we extend  by �1 to Rn+1. Then we mollify O and consider the
obstaclesO� , � 2 (0, 1], characterised by @O� = graph( �), where

 � =  ⇤ ⌘�

for a smooth mollification kernel ⌘� = ��(n+1)⌘(·/�), supp ⌘ ⇢ B1(0), and let

↵�" = �" � dist@O�

be the corresponding penalisation function.
We remark that all results derived in the previous sections (except for the higher

order estimates of Remark 8.5) are valid with constants independent of � for this
whole family of obstacles as (O�)�2(0,1] satisfy uniform C2loc-estimates.

We remark that mollifying the initial value u0 with the same kernel ensures
that u0 �  remains true after mollification.

In order to apply the results derived in the previous sections, we shall further-
more only consider parameters so that

"  "0(L) the constant of Lemma 6.1 (9.1)

and so that R is large enough to guarantee that the initial map u0 satisfies

u0  L � 1 outside BR/2(0). (9.2)

We then have the following existence result for approximate solutions.
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Proposition 9.1. Let u0 and O with @O = graph |P be an initial map and an
obstacle as described in Definition 2.1 and let O� , � 2 (0, 1], be the mollified
obstacles as described above.

Then for every quadruple (", �, L , R) 2 (0, 1)2⇥R⇥[3,1) of parameters for
which the assumptions (9.1) and (9.2) are satisfied, there exists a smooth solution
u�,L",R : BR(0) ⇥ [0,1) ! R to

8
>>>><

>>>>:

u̇ =
p
1+ |Du|2 ·

0

@div

0

@ Duq
1+ |Du|2

1

A + ↵�"

1

A in BR(0) ⇥ [0,1)

u = L on @BR(0) ⇥ [0,1)

u(·, 0) = (max{u0, L})� = max{u0, L} ⇤ ⌘� in BR(0).

(9.3)

Furthermore, for any ` > L + 2, there exists a constant C = C(u0,O, `) such that
�
�
�Du�,L",R(x, t)

�
�
� +

p
t ·

�
�
�D2u�,L",R(x, t)

�
�
� +

p
t ·

�
�
�
�
d
dt
u�,L",R(x, t)

�
�
�
�  C (9.4)

in every (x, t) 2 BR ⇥ [0,1) with u�,L",R(x, t) � `.
Here, the function ↵�" is evaluated at the point

�
x, u�,L",R(x, t)

�
on the evolving

hypersurface graph u�,L",R(·, t).

Proof. The choice of R implies that the smooth initial map (max{u0, L})� is con-
stant near @BR(0), so that compatibility conditions of any order are fulfilled for the
initial value problem (9.3). As (9.3) is a quasilinear parabolic partial differential
equation on a compact domain, we may apply standard parabolic theory as found,
e.g., in [7, 14] and as carried out in detail for a similar problem in [9, Ch. 2] to ob-
tain the existence of a smooth solution u ⌘ u�,L",R defined on a maximal time interval
[0, T ), T > 0, where T < 1 only if sup |Du| becomes unbounded in finite time.

To establish long time existence it is thus sufficient to show that the derivatives
of u remain bounded for all times which we shall prove using a combination of stan-
dard techniques for mean curvature flow as well as the evolution equations derived
in the previous sections. We remark that in this part of the proof we do not claim
that any of the derived bounds are independent of the choice of the parameters but
will rather prove the uniform a priori bounds (9.4) separately later on.

Let ", �, R, L be any fixed parameters as in the proposition. To begin with, we
observe that since ↵�" � 0, any constant function is a subsolution of the equation; in
particular the constant L serves as a lower barrier for u. Furthermore, the constant
max{sup , sup u0, L} is a solution to the flow equation as ↵�" vanishes on its graph,
so it is an upper barrier and our solution remains uniformly bounded for all times.

We remark that due to our choice of R, we have u(x, t) � L >  (x) for
any |x | � R/2 and any t > 0 so u evolves according to graphical mean curvature
flow in any annulus (B⇢ \ B� (0)) ⇥ [0, T ) with R/2 < � < ⇢ < R. Hence the
interior estimates for solutions of graphical mean curvature flow of K. Ecker and G.
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Huisken [5], in particular [5, Theorem 3.1 and Theorem 3.4], apply in this region
and yield that all derivatives of u = u�,L",R are bounded on [⌧, T ), for any 0 < ⌧ < T ,
T the maximal existence time, so Du cannot blow-up in finite time in this region.

The arguments of the proof of [12, Theorem 2.1], which compare the evolving
hypersurface with barriers previously used in the study of the Dirichlet problem for
minimal hypersurfaces, furthermore yield uniform bounds on |Du| on @BR⇥[0, T ).
As we have already obtained uniform gradient bounds on @B 3R

4
⇥ [⌧, T ), we hence

obtain uniform gradient bounds on (BR \ B 3R
4

) ⇥ [⌧, T ) by applying the maximum
principle to the evolution equation of the gradient function v on this domain. Fi-
nally, the uniform parabolicity of the equation and the fact that compatibility condi-
tions of all orders are satisfied, allow us to apply standard parabolic theory as found,
e.g., in [7, 14], see in particular [14, Theorem IV.5.2], to conclude that derivatives
of u of arbitrary order are bounded on (BR \ B 3R

4
) ⇥ [⌧, T ).

To derive estimates in the interior, say on B 3R
4
, we can now apply the maximum

principle on B 3R
4
to the various evolution equations derived in the previous sections

since we have already obtained bounds on the annulus and thus in particular on
@B 3R

4
; namely gradient estimates now follow from Lemma 5.2 and Remark 5.3, es-

timates on the second fundamental form follow from Lemma 8.2 and higher order
estimates follow from (8.17). Having thus proven that all derivatives of u remain
bounded up to the maximal existence time T , we hence conclude that T = 1 as
otherwise u(·, t) would converge to a smooth limit u(·, T ) from which we could
restart the flow and hence obtain a solution defined on a larger interval, contradict-
ing the maximality of T .

Having thus established long time existence of each approximate solution, we
finally need to prove that these approximate solutions satisfy the estimate (9.4) for
a constant C that is independent of the approximation parameters �, L , ", R. As the
initial hypersurfaces

�
M�,L
",R

�
t=0 satisfy uniform gradient bounds in {xn+2 � `� 2},

Proposition 7.1 yields uniform bounds on
�
�Du�,L".R

�
� in points with u�,L",R � ` � 1 as

required. These uniform gradient bounds finally allow us to apply Proposition 8.3
to obtain the desired uniform bound on the second fundamental form and thus on
the second term in (9.4) in points where u�,L",R � `.

These estimates then imply the claim on the time derivative made in (9.4) since
u solves equation (9.3) and since the penetration depth, and thus ↵�" , is a priori
controlled according to Corollary 6.4.

10. Proofs of the main results

We are now able to prove the existence of viscosity solutions of graphical mean
curvature flow with obstacles as claimed in Theorems 3.1 and 3.3.

Proof of Theorem 3.1. Let O and u0 be an obstacle and initial condition as in Def-
inition 2.1 and let ui = u�i ,Li"i ,Ri be any sequence of approximate solutions as con-
structed in Proposition 9.1 for which ("i , Li , �i , Ri ) ! (0,�1, 0,1).
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Then the uniform C2;1 estimates stated in (9.4) allow us to apply the variant of
the theorem of Arzelà-Ascoli from [19, Lemma 7.3]: we obtain a subsequence ui
converging to a limiting function ũ : Rn+1 ⇥ [0,1) ! R [ {�1} which induces
a pair (�, u) consisting of

� := {(x, t) : u(x, t) > �1} ⇢ Rn+1 ⇥ [0,1)

and the restriction u := ũ|� : � ! R. Here the convergence of ui ! ũ is pointwise
everywhere and in C1,↵;0,↵

loc (� \ {t > 0}) for every ↵ 2 (0, 1).
We recall furthermore, that the graphical velocity of the approximate solu-

tions is controlled by (9.4). Therefore the approximate solutions satisfy uniform
parabolic Hölder estimates up to time t = 0 on any compact subsets of � and so
the obtained limit u is in C0loc(�) and attains the desired initial value u(0) = u0.

We now prove that u is a viscosity solution of

min

(

u̇ �
q
1+ |Du|2 · div

 
Du

p
1+ |Du|2

!

, u �  

)

= 0. (10.1)

We recall that u is a viscosity subsolution for the above operator if for any point
(x0, t0), the left-hand side of (10.1) is nonpositive for all C2-functions ' satisfying
'(x0, t0) = u(x0, t0) as well as u(x, t)  '(x, t) for all (x, t) 2 � with t < t0.

To begin with, we observe that the estimates on the penetration depth derived
in Section 6 imply that

u(x, t) �  (x)

for every (x, t) 2 �. We can thus distinguish between points with u(x0, t0) >
 (x0) and points where the hypersurface touches the closure of the obstacle.

In the former case it is clearly enough to show that u is locally a viscosity
solution of the graphical mean curvature flow equation

u̇ +
q
1+ |Du|2 · H = 0. (10.2)

Given such a point (x0, t0) in which u(x0, t0) >  (x0), we observe that in a space
time neighbourhood also ui (x, t) �  (x) for i sufficiently large, since these func-
tions converge locally uniformly to u. Consequently the functions ui are classical
solutions of (10.2) in this neighbourhood. As we have locally uniform gradient es-
timates for the functions ui , equation (10.2) is uniformly parabolic, so arguing as
in [2, Proposition 2.9], we obtain that the limit u is indeed a viscosity solution to
(10.2).

It remains to consider points (x0, t0) with u(x0, t0) =  (x0). First of all,
since the second argument in the minimum in (10.1) is zero for every C2 function
' with '(x0, t0) = u(x0, t0), the condition that this minimum is non-positive in
the viscosity sense is clearly satisfied. It remains to show that u̇ +

p
1+ |Du|2 ·

H � 0 holds in the viscosity sense. But ↵" � 0, so the functions ui satisfy this
inequality classically on the whole domain of definition so that passing to the limit
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as explained above implies that u itself satisfies the inequality in the viscosity sense.
We conclude that u is a viscosity solution to (10.1).

The claimed estimate (3.1) follows from (9.4). For a C1,1loc -initial hypersurface
we can furthermore derive bounds on the second fundamental form up to t = 0
from Lemma 8.4.

Consider finally a point (x, t) 2 � with t > 0 that is not contained in the
contact set 0, i.e. such that u(x, t) >  (x). By uniform convergence we also
have ui >  in a neighbourhood of (x, t) for sufficiently large i . Thus ui evolves
by graphical mean curvature flow in this neighbourhood. As the ui satisfy locally
uniform gradient estimates we may apply the interior estimates of [5, Theorems 3.1,
3.4] and deduce smoothness of u in a smaller neighbourhood of (x, t).

Proof of Theorem 3.3. We proceed as in the proof of Theorem 3.1 and consider ap-
proximate solutions u�",R as in Proposition 9.1 but now with the initial and bound-
ary values in (9.3) replaced with u(x, t) = u0(x) ⌘ lim|y|!1 u0(y) on @BR(0) ⇥
[0,1) for large R > 0 and u(·, 0) = u0 ⇤ ⌘� in BR(0). Using large spheres near
infinity as barriers, we can separate the evolving graph from the obstacle near infin-
ity. Thus u�",R solves graphical mean curvature flow without additional terms due
to the obstacle outside of a compact set that does not depend on R but may grow
in time. In this region, we can thus apply the a priori estimates of [5] and obtain
uniform bounds on arbitrary derivatives of u�",R .

As the additional term ↵�" is nonnegative, a hyperplane at height inf u0 � 1
acts as a lower barrier. Therefore u0 can at most penetrate into a bounded subset
of the obstacle and we can apply the maximum principle with f0 equal to a con-
stant in Lemma 6.2. Then we obtain bounds on derivatives of u�",R by applying the
maximum principle directly (i.e. without localising with U � `) to the evolution
equations for v of Lemma 5.2, for G of Lemma 8.2 and to (8.17) for higher or-
der derivatives. This is possible since far away from the origin those quantities are
controlled by the estimates of [5], so that we can apply the maximum principle on
compact sets. This implies spatial C2-estimates that depend neither on ", � nor R
and higher order estimates that depend only on " but not on � or R.

Then arguing as in the proof of Proposition 9.1 yields the analogue of this
proposition, in particular estimate (9.4) on all of BR(0) ⇥ [0,1). Thus the argu-
ments of the proof of Theorem 3.1 also apply to the present situation and yield the
desired result.

11. Geometric interpretation: back to the original problem

We finally discuss how the graphical solutions constructed in the previous sections
can lead to a notion of weak solutions for the original problem of flowing a general
(in particular not necessarily graphical) hypersurface N0 in Rn+1 in the presence of
an obstacle P ⇢ Rn+1. We consider the case of a one-sided obstacle, intuitively
speaking an obstacle such that either all or none of its components are enclosed
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by the initial hypersurface. This includes of course the special case of a connected
obstacle.

To be more precise, let dN0 be a continuous distance function to N0 which
has non-vanishing gradient on N0 (and thus changes sign as we pass through N0).
We then ask that dN0 has constant sign on all of P , say dN0 |P < 0 and consider
a complete graphical initial hypersurfaces over �0 := {x : dN0(x) < 0} and a
complete graph over the obstacle as in Definition 2.1. This construction requires no
regularity of the initial hypersurface N0 or the obstacle P .

Let now (�, u) be the corresponding singularity resolving solution whose ex-
istence for all times we have proven above.

Let �t be the time-slice of � at time t as in Definition 2.2 ((i)). Then Mt :=
graph(u(·, t) : �t ! R) is a complete hypersurface and (Mt )t�0 solves graph-
ical mean curvature flow respecting the obstacle. We can now view (�t )t as a
global weak solution of mean curvature flow respecting the original obstacle: Since
u(·, t) �  for every t , the projected flow respects the obstacle in the desired way
that �t contains P for all times and @�t , which represents a weak analogue of
an evolving hypersurface Nt in Rn+1, remains disjoint from the open obstacle P .
Away from the obstacle, [16, Theorem 3.5] ensures that Nt = @�t represents a
weak solution of mean curvature flow in the following sense: For any t0 2 [0,1),
any t1 > t0 and any smooth closed solution (Ct )[t0,t1] of mean curvature flow, which
is disjoint from the obstacle P on [t0, t1] and initially disjoint from the evolving hy-
persurface, i.e. Ct0 \ Nt0 = ;, we have that Ct remains disjoint from Mt on all of
[t0, t1]. This represents the analogue of the characterisation of level set flow through
the avoidance principle as in [13].

We furthermore remark that having constructed graphical solutions provides
the basis for an alternative approach to level-set flow, following the seminal work
of L. C. Evans and J. Spruck [6] and it would be of interest to understand if this
approach is equivalent to the viscosity approach developed by G. Mercier in [17].
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[5] K. ECKER and G. HUISKEN, Interior estimates for hypersurfaces moving by mean curva-
ture, Invent. Math. 105 (1991), 547–569.

[6] L. C. EVANS and J. SPRUCK, Motion of level sets by mean curvature. I, J. Differential
Geom. 33 (1991), 635–681.

[7] A. FRIEDMAN, “Partial Differential Equations of Parabolic Type”, Prentice-Hall Inc., En-
glewood Cliffs, N.J., 1964.



MEAN CURVATURE FLOW WITH OBSTACLES 1467

[8] C. GERHARDT,GlobalC1,1-regularity for solutions of quasilinear variational inequalities,
Arch. Ration. Mech. Anal. 89 (1985), 83–92.

[9] C. GERHARDT, “Curvature Problems”, Series in Geometry and Topology, Vol. 39, Interna-
tional Press, Somerville, MA, 2006.

[10] D. GILBARG and N. S. TRUDINGER, “Elliptic Partial Differential Equations of Second Or-
der”, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag,
Berlin, 1983.

[11] G. HUISKEN and A. POLDEN, Geometric evolution equations for hypersurfaces, In: “Cal-
culus of Variations and Geometric Evolution Problems” (Cetraro, 1996), Lecture Notes in
Math., Vol. 1713, Springer, Berlin, 1999, 45–84.

[12] G. HUISKEN, Nonparametric mean curvature evolution with boundary conditions, J. Dif-
ferential Equations 77 (1989), 369–378.

[13] T. ILMANEN, The level-set flow on a manifold, In: “Differential Geometry: Partial Differen-
tial Equations on Manifolds” (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., Vol. 54,
Amer. Math. Soc., Providence, RI, 1993, 193–204.
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