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Shi-type estimates of the Ricci flow based on Ricci curvature
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Dedicated to Professor Gérard Besson on the occasion of his 60th birthday

Abstract. We prove that the magnitude of the derivative of Ricci curvature can be
uniformly controlled by the bounds of Ricci curvature and injectivity radius along
the Ricci flow. As a consequence, a precise uniform local bound of curvature
operator can be constructed from local bounds of Ricci curvature and injectivity
radius among all n-dimensional Ricci flows. In particular, we show that every
Ricci flow with |Ric |  K must satisfy |Rm|  Ct�1 for all t 2 (0, T ], where
C depends only on the dimension n, and T depends on K and the injectivity
radius injg(t).

In the second part of this paper, we discuss the behavior of Ricci curvature
and its derivative when the injectivity radius is thoroughly unknown. In particular,
another Shi-type estimate for Ricci curvature is derived when the derivative of
Ricci curvature is controlled by the derivative of scalar curvature.

Mathematics Subject Classification (2010): 53C44 (primary); 58J05 (sec-
ondary).

1. Introduction

The Ricci flow on a Riemannian manifold (M, g0), which was proposed by
R. Hamilton in [16], is defined by

8
<

:

@

@t
g(x, t) = �2Ricg(x, t)

g(x, 0) = g0

and is presumed to be able to improve the Riemannian metric g0. Hamilton showed
that a Riemannian metric with positive Ricci curvature on a closed 3-dimensional
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manifold can be deformed to be rounder and rounder along the Ricci flow. In-
deed, by using interpolation techniques, he derived bounds for all derivatives of the
curvature tensor and showed that the metrics g(t), after rescaling, converge in C1

loc-
topology to the standard metric on sphere. Later in [30], W.-X. Shi showed that, for
general Ricci flows, all derivatives of curvature are bounded a priori by the bound
of the curvature itself. Precisely, if a Ricci flow g(t) satisfies |Rm|  K for all
t 2 [0, 1K ] on a closed manifold Mn , then |rl Rm|  Cn,l K t�l/2 for all t 2 (0, 1K ],
where Cn,l denotes a constant depending only on n and l. This estimate, which
is called Shi’s estimate, even holds locally for complete non-compact Ricci flows.
That is, there exists a constant ✓ depending only on the dimension n such that if a
Ricci flow g(t) satisfies |Rm|  K on B2r ⇥ [0, ✓

K ], then |rl Rm|  Cn,l K (K +
r�2 + t�1)l/2 on Br ⇥ (0, ✓

K ]. Thus, along the Ricci flow, C2-boundedness implies
C1-boundedness of metrics.

Some other works revealed that merely the Ricci curvature can control the
curvature operator in certain circumstances. For instance, by blow-up arguments,
N. Šešum [32] and L. Ma and L. Cheng [24] showed that along the Ricci flow |Rm|
maintains finite value as long as |Ric | does. For compact manifolds, B. Wang
improved the result of Šešum by showing that |Rm| is bounded whenever Ric has a
lower bound and the scalar curvature R has certain space-time integral bound [33].
He also showed that R must blow up whenever |Rm| blows up at T in the order
o((T � t)�2) [34, Theorem 1.3]. See also [12, 23, 38] for related results. The
estimates of |Rm| in their results depend on the generic behavior of the metrics
g(t). On the other hand, a classical result due to M. Anderson [1] says that |Rm| of
a Riemannian manifold can be controlled by the bound of |Ric |, |r Ric | and the
lower bound of injectivity radius. Therefore, it is natural to ask whether |r Ric |, or
|Rm|, can be controlled by |Ric | along the Ricci flow. This is the main theme of
this article.

First, we confirm that a Shi-type estimate for Ricci tensor holds provided that
the injectivity radius inj : M ⇥ [0, T ] ! R+ is bounded from below.

Theorem 1.1 (Standard version). For any �, ⌘ > 0 and n 2 N, there exist pos-
itive constants ↵, C and ⇢ such that for any K > 0 and any smooth Ricci flow
(Mn, g(t))t2[0,T ] with T � ⌘

K > 0, if

|Ric |  K and inj � �K� 1
2 on B4pT (x0, t) for all t 2 [0, T ],

then

|r Ric |  ↵
⇣
KT t�1

⌘ 3
2 on B2pT (x0, t) for all t 2 (0, T ]

and
|Rm|  CKT t�1 on B

⇢
p
K�1T�1t (x0, t) for all t 2 (0, T ].

Recently, B. Kotschwar, O. Munteanu and J. Wang [21] improved the aforemen-
tioned results of Šešum and Wang by a different approach based on Moser’s itera-
tion. They can clarify the dependency of the bound, which eventually involves only
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|Ric | and the initial bound of curvature operator. Moser’s iteration has been used
before for similar purpose in [36], and later in [10] where X. Dai, G. Wei and R. Ye
showed that |Rm| can be controlled by initial |Ric | and the initial conjugate radius
up to a short time. However, all of these bounds do not link to the bound of |Ric |
in a clear manner as the bound given by our theorem. For instance, when |Ric | is
arbitrarily small, our theorem ensures that so is |Rm|.

Furthermore, our proof of Theorem 1.1 can be modified so that the scale of
injectivity radius can unhook with the bound of Ricci curvature. Thus, we do not
need a huge injective region to get the estimate of |Rm| when K is small. In par-
ticular, our theorem can be applied to flows with arbitrarily small initial injectivity
radius and the resulting bound depends mainly on the growth of inj with respect to
time (cf. the parameter m in the next theorem).

Theorem 1.2 (Strong version). For any �, ⌘ > 0 and m, n 2 N, there exist posi-
tive constants ↵,C, ⇢ such that for any K > 0 and any smooth Ricci flow
(Mn, g(t))t2[0,T ] with T � ⌘

K > 0, if

|Ric |  K and inj � � ·min
n
K� 1

2 , h
1
2 (t)

o
on B4pT (x0, t) for all t 2 [0, T ],

where h(t)  t is any positive function defined on (0, T ) such that for all t⇤ 2
(0, T ), h(t) � m�1h(t⇤) on t 2

⇥1
2 t

⇤, t⇤
⇤
, then

|r Ric |  ↵
⇣
KTh�1

⌘ 3
2 on B2pT (x0, t) for all t 2 (0, T ]

and
|Rm|  CKTh�1 on B

⇢
p
K�1T�1h(t)(x0, t) for all t 2 (0, T ].

Remark. The reader may take h(t) = t or T⇡ sin
⇡ t
T to obtain some intuitions. The

proof of this version can be found in Section 3. We note that the assumptions do not
directly involve any information of inj at the initial time since limt!0+ h(t) = 0.
This does not mean that our theorem can be applied to a Ricci flow with singular
initial data. The initial metric is required to be at least C3.
The growth or boundedness of curvature operator are important issues in the study
of gradient Ricci solitons. Several a priori curvature estimates have been derived
before (cf. [2, 7, 9, 11, 25–27] among others). Using our Theorem 1.1, we derive a
new boundedness result for all types of gradient Ricci solitons.

Theorem 1.3. For any class of complete non-compact n-dimensional gradient Ric-
ci solitons of either shrinking or steady or expanding type, if the Ricci curvature is
bounded and the injectivity radius is bounded away from zero, then the curvature
operator is bounded by a uniform constant.

We further derive a compactness theorem which shows that gradient Ricci solitons
have compactness property analogue to Einstein manifolds. Note that the limiting
soliton might be a trivial soliton.
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Corollary 1.4. Let � 2 {±1
2 , 0} and A 2 R. For any sequence of gradient Ricci

solitons (Mk, gk, fk, pk)k2N satisfying Ricgk +Hess( fk) = �gk , if

|Ric |gk  K , injgk � I > 0 and |r f |gk (pk)  A,

then there exists a subsequence converging smoothly to (M1, g1, f1, p1), which
satisfies Ricg1 +Hess( f1) = �g1 with f1 = limk!1 fk .

Besides the applications to Ricci solitons, we derive a curvature taming result which
can be applied to general Ricci flows whose initial curvature might not have a uni-
form bound. We say that the curvature operator is k-tamed by a constant C along a
complete non-compact Ricci flow if |Rm|  Ct�k for all small t � 0. In [20], S.
Huang and L.-F. Tam showed that if a Ricci flow g(t) starting from a non-compact
Kähler manifold is 1-tamed by some constantC , then g(t) remains Kähler for t > 0.
Moreover, if C is small enough, then the nonnegativity of holomorphic bisectional
curvature can also be preserved. Therefore, it is rather important to find criterions
for the taming phenomenon. Note that such estimate is twofold: we would like to
have a uniform bound C on a uniform time interval. For lower dimensional closed
manifolds (dimension n = 2 or 3), M. Simon [31, Theorem 2.1] proved that every
(Mn, g) satisfying diam < D, Vol > V > 0 and Ric � �Kg with sufficiently
small K can generate a solution of the Ricci flow which exists up to a maximal time
T = T (D, V ). Moreover, |Rm| is 1-tamed by a constant depending only on D and
V . In [10], Dai, Wei and Ye showed that every closed (Mn, g) satisfying |Ric |  1
and conjugate radius � r0 can generate a solution of the Ricci flow which exists
up to a maximal time T = T (n, r0) and Rm is 12 -tamed by C = C(n, r0). When
|Ric |  K , their theorem holds with C = C(n, r0

p
K ) and T = T (n, r0

p
K ).

For complete non-compact (Mn, g) with n � 3, G. Xu [35, Corollary 1.2] showed
that, if Ric � �Kg and the averaged L p-norm (p > n

2 ) of Rm has a uniform
bound K1 for all geodesic balls Br0(x) with some radius r0 > 0, then the Ricci
flow must exist and Rm is n

2p -tamed by a constant C = C(K , K1, r0, n, p) up to
t = T (K , K1, r0, n, p).

Thanks to the explicit bound in Theorem 1.2, we can derive a taming theorem.

Theorem 1.5. There exists a universal constantC = C(n) such that for any smooth
Ricci flow (Mn, g(t)) and any point x0 2 M ,

|Rm|(x, t)  Ct�1 on B4r (x0, t) for all t 2
⇣
0, K�1

i
,

and
|Rm|(x, t)  CK on B4r (x0, t) for all t 2

h
K�1, r2

i
,

where r2 := inf{ t > 0 | infB8r (x0,t) inj <
p
t} and K denotes the maximum of

r�2 and sup |Ric | on
S

[0,r2] B8r (x0, t).
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Before Section 5, where more applications of our main theorems are demonstrated,
we discuss the approach towards our aim via Moser’s iteration in Section 4. In
particular, we derive the following theorem by using Kotschwar-Munteanu-Wang’s
L p-estimate [21, Proposition 1]. To abbreviate the notation, we denote the parabolic
region emanated from Br (x0, 0) up to t = T by P(r; x0, T ), namely, P(r;x0,T ) :=
� ⇥ (0, T ], where � ⇢ M is the topological region defined by Br (x0, 0). Further-
more, P(r; x0, T ) is defined to be � ⇥ [0, T ].

Theorem 1.6. Let (Mn, g(t))t2[0,T ] be a smooth solution of the Ricci flow. If

|Ric |  K in P(4r; x0, T ) and inf
B4r (x0,0)

inj � I > 0

for some K , I, r > 0, then there existsC depending on K , I, r, T and the dimension
n such that |Rm|(x0, t)  C in P(r; x0, T ) \ P(r; x0, 12T ).

Injectivity radius is a classical quantity used in convergence theories of Riemannian
manifolds. A uniform lower bound of it prevents the sequence of manifolds from
developing local collapsing. Although there is no analytical method to compute the
injectivity radius directly, one can derive a lower bound from local volume bound
provided that the curvature operator is bounded. This was proved for sequences of
manifolds and, furthermore, for sequences of solutions of the Ricci flow (See Sec-
tion 5.1 for more details). Combining with a celebrated theorem of Perelman which
states that the local volume can be controlled along the Ricci flow with locally
bounded curvature, one obtains the legitimacy of taking blow-up limits. However,
in this article we only assume a Ricci curvature bound, which is too weak to derive
a lower bound for injectivity radius from local volume bounds. It is still interesting
to ask whether the injectivity radius condition can be replaced by volume condition
plus certain integral curvature bound. Evan more, can we prove our theorems when
lacking information of injectivity radius? We derive some answers in the second
part of this paper, Sections 6 and 7.

Suppose that Ricci curvature is bounded by K and its derivative |r Ric | is
controlled by the derivative of scalar curvature |rR|, we prove that both |r Ric |
and |rR| are bounded for all t 2 (0, 1K ]. Precisely, we derive

Theorem 1.7 (Global estimate). There exists a constant C > 0, depending only
on ↵,� and n such that for every n-dimensional closed solution (Mn, g(t))t2[0,T )

of the Ricci flow, if the Ricci curvature and its derivative satisfy that |Ric |  K
and |r Ric |  ↵Kt

�1
2 + �|rR| for all t 2 [0, 1K ] ⇢ [0, T ), where K is a positive

constant, then
|r Ric |2  CK 2t�1

for all t 2 (0, 1K ].
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Theorem 1.8 (Local estimate). There exist positive constants ✓0 and C depending
only on ↵,�, n and 3 such that for every solution (Mn, g(t))t2[0,✓0/K ] of the Ricci

flow, if |Rm|  3 on Br (x0, 0), |Ric |  K and |r Ric |  ↵K
⇣
1
r2 + 1

t + K
⌘ 1
2

+

�|rR| on P(r; x0, t0) for some r 
p

✓0/K and t0  ✓0/K , then

|r Ric |2  CK 2
✓
1
r2

+
1
t

+ K
◆

on P( rp
2
; x0, t0).

We doubt that |r Ric | can be controlled by |rR| for generic solutions of the Ricci
flow. However, we believe that it is true for a large variety of solutions including
Ricci solitons. A related result appeared earlier in a collaborated work of A. Deru-
elle and the author [4, Theorem 2.10]. The reader could find more discussions in
the last section.

ACKNOWLEDGEMENTS. The main part of this article was done when I visited
Ovidiu Munteanu in University of Connecticut in September 2015. I appreciate
the hospitality of the university and precious discussions with Ovidiu. Some part
of the work was done when I was a doctoral student at l’Institut Fourier. I would
like to thank my advisor Gérard Besson for his encouragement and all kinds of
helps.

2. Global estimate of Rm

Given an n-dimensional Riemannian manifold (M, g) and a point p 2 M , we can
find a local chart (U ,'),' : U ! Rn , such that p 2 U ⇢ M and ' = ('1, . . . ,'n)
consists of harmonic functions, i.e., 1g'k = 0 for all k = 1, . . . , n. Under
these coordinates, the Laplacian of a function f which is defined by 1g f =
1p
det g @i (

p
det g · gi j · @ j f ) can be reduced to

1g f = gi j@i@ j f.

Moreover, if on a geodesic ball Br (p) ⇢ U one has |Ric |  K and inj � I ,
then M. Anderson [1, Lemma 2.2] showed that for any � 2 (0, 1), there exist
✏ = ✏(K , n, � ) and C0 = C0(✏, I ) such that harmonic coordinates 'k’s exist on
B✏ I with

gi j (p) = �i j and |gi j |
0

C1,�  C0 on B✏ I ,
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where

|gi j |
0

C1,� := sup
Br

|gi j | + sup
Br ;k=1,··· ,n

r |@kgi j |

+ sup
x 6=y;k=1,··· ,n

✓
r1+� |@kgi j (x) � @kgi j (y)|

|x � y|�

◆

and r := ✏ I . (The notation | · |
0 is adopted from [14, Page 53].) On the other hand,

one can compute the Laplacian of gi j under harmonic coordinates and derive

1ggi j = �2Ri j + P
�
gi j , @gi j

�
,

where P is a certain quasi-polynomial of gi j and @gi j (cf. [29, Chapter 10]). Hence
the standard elliptic regularity theory (cf. [14, Theorem 4.6]) tells that

|gi j |
0

C2,�  C
⇣
|Ri j |

0

C0,� + |gi j |
0

C1,�

⌘
. (2.1)

Note that when the Ricci curvature and its derivative are bounded in the sense that
|Ric |2 = gikg jl Ri j Rkl  K 2 and |r Ric |2 = gpqgikg jlrp Ri jrq Rkl  L , then
the norm of coefficients Ri j and its derivatives shall satisfy |Ri j |

0

C0,�  C =
C(K , ✏ I, L). Therefore, one can use harmonic coordinates and (1) to derive a
bound for |g|0C2,� . In particular, the coefficients of curvature tensor are bounded.
Since the tensor norm does not depend on coordinate choosing, the curvature R k

i j l
is bound in the tensor sense. It is also equivalent to say that curvature operator Rm
is bounded. Such strategy will be used several times in this article. One should be
cautious that, for the elliptic regularity on Riemannian manifolds, the constant C
depends not only on n, � , but also on the upper bound of |gi j |. (One can see this
when adapting proofs of theorems in [14, Chapter 2, 3 and 4] into the Riemannian
case.) Hence C = C(n, �, ✏, I ).

For the reader’s convenience, we prove the following compact version of The-
orem 1.1 first. The proof of the standard version of Theorem 1.1 is more subtle and
will be demonstrated in the next section.

Theorem 2.1 (Compact version). For any �, ⌘ > 0 and n 2 N, there exist positive
constants ↵ and C such that for any K > 0 and any closed smooth Ricci flow
(Mn, g(t))t2[0,T ] with T � ⌘

K > 0, if

|Ric |  K and inj � �K� 1
2 for all t 2 (0, T ],

then

|r Ric |  ↵
⇣
KT t�1

⌘ 3
2 and |Rm|  CKT t�1 for all t 2 (0, T ].
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Lemma 2.2. For any �, ⌘ > 0 and n 2 N, there exists ↵ > 0 such that for any
smooth Ricci flow g(t)t2[0,T ] on a closed manifold Mn , if |Ric |  K , inj � �p

K
and T � ⌘

K , then

|r Ric |  ↵
⇣
KT t�1

⌘ 3
2

for all t 2 (0, T ].

Proof. Suppose no such ↵ exists, then we can find a sequence of Ricci flows
gk(t)t2[0,Tk ], points pk = (xk, tk), and ↵k %1 such that tk >0 and |r Ric |gk (pk) >

↵k
�
KkTkt�1k

� 3
2 . By the point-picking lemma afterwards, we can find p̄k = (x̄k, t̄k)

associated to pk such that:

• |r Ric |gk ( p̄k) > ↵k

⇣
KkTk t̄�1k

⌘ 3
2 ;

• |r Ric |gk  8Q̄k := 8|r Ric |gk ( p̄k) on M ⇥ [t̄k � �k Q̄
� 2
3

k , t̄k], where �k :=

1
2↵

2
3
k ⌘.

Consider the rescaling Ricci flows egk := Q̄
2
3
k gk withet := Q̄

2
3
k (t � t̄k) 2 [��k, 0].

Then |Ricegk |g̃k  Kk Q̄
� 2
3

k  ↵
� 2
3

k
tk
Tk & 0 and |r Ricegk |egk  8 on M ⇥ [��k, 0].

In particular, Ric has a uniform C0,� -bound.
Using Anderson’s lemma mentioned before,

injegk �
�

p
Kk

Q
1
3
k =

�
p
Kk

↵
1
2
k
�
KkTk t̄�1k

� 1
2 % 1

and the boundedness of |Ricegk |egk ensures the existence of harmonic coordinates on
a domain of uniform size. Moreover, egk’s may have a uniform C1,� -bound in this
domain. By elliptic regularity, egk’s, which satisfy 1egk = �2Ricegk +P(egk, @egk),
have a uniform C2,� -bound. Namely, |Rmegk |egk ’s are uniformly bounded on M ⇥
(��k, 0]. Applying Shi’s estimate, all higher derivatives of Rmegk ’s are uniformly
bounded on M ⇥ [�1

2�k, 0]. So the marked metrics (egk, p̄k) converge smoothly to
a Ricci flat metric (g1, p1). This contradicts |r Ricg1 |g1(p1) = 1. Therefore,

we have |r Ric |  ↵
�
KT t�1

� 3
2 .

Lemma 2.3 (Point-picking lemma). For any ↵ > 0 and any closed smooth Ricci

flow (M, g(t))t2[0,T ] with |Ric |  K and T � ⌘
K , if |r Ric |(p0) > ↵

⇣
KT t�10

⌘ 3
2

at some point p0 = (x0, t0) with t0 > 0, then there exists p̄ = (x̄, t̄), t̄ > 0, such
that

|r Ric |( p̄) > ↵
⇣
KT t̄�1

⌘ 3
2 and |r Ric |  8Q̄ := 8|r Ric |( p̄)

on M ⇥ [t̄ � � Q̄� 2
3 , t̄], where � := 1

2↵
2
3 ⌘.
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Proof. Here we use Perelman’s method for proving his pseudo-locality theorem
(cf. [28, Theorem 10.1]). Start from the point p0 with Q0 := |r Ric |(p0) >

↵
�
KT t�10

� 3
2 . If |r Ric |  8Q0 on M⇥[t0��Q� 2

3
0 , t0], then we are done. Suppose

this is not the case, then there exists a point p1 = (x1, t1) with t1 2 [t0��Q� 2
3

0 , t0]

and Q1 := |r Ric |(p1) > 8Q0. Note that � = 1
2↵

2
3 ⌘ implies that �Q� 2

3
0  1

2 t0.

t = 0 

t = T 

Q0
2/3 

 t0 

p0 

Q1
2/3 

p1 

t1 

Thus, t1 � t0 � �Q� 2
3 � 1

2 t0. In particular,

Q1 > 8Q0 > 8↵
⇣
KT t�10

⌘ 3
2

� ↵
⇣
KT t�11

⌘ 3
2

and thus
�Q� 2

3
1 

1
2
t1.

If |r Ric |  8Q1 on M⇥ [t1��Q� 2
3

1 , t1], then we are done. Suppose not, then we

can further find p2 so that Q2 > 8Q1 > ↵
�
KT t�12

� 3
2 by similar process. Similarly,

�Q� 2
3

2  1
2 t2 and so on. So tk always stays in (0, T ]. Therefore, such process could

be continued until we find a pk so that |r Ric |  8Qk in M⇥[tk��Q� 2
3

k , tk]. Such
pk must exist because |r Ric |(pk) > 8k Q0 must be bounded in M ⇥ [0, T ].

Now we are able to finish the proof of the compact version of Theorem 1.1.

Proof. For a Ricci flow (Mn, g(t)) with |Ric |  K and inj � �K� 1
2 > 0 for all

t 2 [0, T ], by Lemma 2.2, we have |r Ric |  ↵(KT t�1)
3
2 for all t 2 (0, T ]. For

each fixed t 2 (0, T ], we considereg := (KT t�1)g(t) and obtain

injeg � �(T t�1)
1
2 � �, |Riceg |eg  T�1t  1 and |r Riceg |eg  ↵.
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So by the elliptic regularity (1), the metric tensoreg has a uniformC2,� -bound which
depends on n, �, � and ↵. By choosing an arbitrary � 2 (0, 1), |Rmeg|eg is bounded
by a constant depending only on n, � and ↵. After rescaling back, we see that
the curvature of g(t) satisfies |Rm|  CKT t�1 with C = C(n, �,↵). Since t is
arbitrary in (0, T ] and ↵ = ↵(�, ⌘, n), the theorem is proved.

3. Local estimate of Rm

The estimate in the previous section also holds locally. Namely, the curvature op-
erator can be bounded if |Ric | and inj are bounded in a parabolic neighborhood
of uniform size. To prove this, we need the following local point-picking lemma
which shows that for any point with large |r Ric |, one can find another point nearby
equipped with a controlled parabolic neighborhood.

Lemma 3.1 (point-picking lemma, local version). For any ⌘,↵ > 0 and any Ric-
ci flow (B4pT (x0, t), g(t))t2[0,T ] with |Ric |  K and T � ⌘

K , which is smooth up

to boundary, if |r Ric |(p)>↵
�
KT t�1

� 3
2 at some point p = (x, t) in (B2pT (x0, t),

g(t))t2(0,T ], then there exist ✏ = ✏(⌘) > 0 and p̄ = (x̄, t̄) with dt̄ (x̄, x0) < 4
p
T

and t̄ > 0, such that

|r Ric |( p̄) > ↵
⇣
KT t̄�1

⌘ 3
2 and |r Ric |  8Q̄ := 8|r Ric |( p̄)

in B
�
1
2 Q̄� 13

(x̄, t), t 2 [t̄ � � Q̄� 2
3 , t̄], where � := 1

2✏
2↵

2
3 ⌘. In particular,

B
�
1
2 Q̄� 13

(x̄, t) ⇢ B4pT (x0, t) for each t 2 [t̄ � � Q̄� 2
3 , t̄].

Proof. To abbreviate the notation, we define the backward parabolic metric ball
based at (x⇤, t⇤) by

B(r; x⇤, t⇤) :=
[

t2(t⇤�r2,t⇤]

Br (x⇤, t)

=
n
(x, t)|distg(t)(x, x⇤) < r, t 2

�
t⇤ � r2, t⇤

⇤o
.

We use the same induction argument as in the proof of the global point-picking
lemma. In the proof of the global version, we have seen that to proceed the ar-
gument, we need to justify that pk’s can stay in a finite time-region. Here the
situation is more subtle: we need to make sure that there exists an ✏ > 0 such that
B(�

1
2 Q� 1

3
k ; xk, tk) is contained in

S
t2(0,T ] B4pT (x0, t), where � := 1

2✏
2↵

2
3 ⌘.

Now we start from p=(x, t) and look at the parabolic region B(�
1
2 Q� 1

3 ; x, t).
If B(�

1
2 Q� 1

3 ; x, t) ⇢
S

t2(0,T ] B4pT (x0, t) and |r Ric |  8Q := 8|r Ric |(p) in
this region, then we are done. If not, then there is a p1 2 B(�

1
2 Q� 1

3 ; x, t) such that
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Q1 := |r Ric |(p1) > 8Q. Similar to the proof of the compact version, we wish to
go on finding successive pk’s until we acquire p̄. So we should check

• tk’s will not reach 0: � · Q� 2
3

k  1
2✏
2↵

3
2 ⌘ · ↵� 2

3 K�1
k T�1

k tk  1
2✏
2tk ;

• xk’s stay in a distance less than 3
p
T from the center x0 at each time tk :

dtk (xk, x0)  dtk�1(xk�1, x0) +

r

�Q� 2
3

k�1

 dtk�2(xk�2, x0) +

r

�Q� 2
3

k�2 +

r

�Q� 2
3

k�1

 dt1(x1, x0) +

r

�Q� 2
3

1 + · · · +

r

�Q� 2
3

k�1

 2
p
T +

q
�Q� 2

3 +

r

�Q� 2
3

1 + · · · +

r

�Q� 2
3

k�1

< 2
p
T +

q
�Q� 2

3 +

r
1
4
�Q� 2

3 + · · · +

r
1
4k�1

�Q� 2
3

< 2
p
T + 2

q
�Q� 2

3

< 2
p
T + 2✏

r
1
2
t

< 3
p
T , if ✏ is small enough, for instance, less than

1
p
2
;

p2 

t = 0 

Q2
2/3 

p0 

Q1
2/3 

p1 
t = T  2 T       4 T 

_ _ 

• B(�
1
2 Q� 1

3
k ; xk, tk) ⇢

S
t2(0,T ] B4pT (x0, t):

For any q = (⇠, ⌧ ) 2 B(�
1
2 Q� 1

3
k ; xk, tk), since

K |tk � ⌧ |  K� · Q� 2
3

k 
1
2
✏2⌘T�1tk 

1
2
✏2⌘,
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we have

d⌧ (⇠, x0)  d⌧ (⇠, xk) + d⌧ (xk, x0)

 �
1
2 Q� 1

3
k + dtk (xk, x0) · eK |tk�⌧ |

 ✏

r
1
2
tk + 3

p
T · e

1
2 ✏
2⌘


p
T

 r
1
2
✏ + 3 · e

1
2 ✏
2⌘

!

 4
p
T , if ✏ = ✏(⌘) is small enough.

Therefore, this local point-picking lemma follows by the same argument of induc-
tion as in the proof of Lemma 2.

Now we demonstrate the proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. The idea of proof is the same to the compact version, so we
will be a bit sketchy on the whole process but focus on the crucial steps. Sup-
pose there exist (B4pT (x0, t), gk(t))t2[0,T ], with points xk 2 B2pT (x0, tk) and
↵k ! 1 such that the first conclusion is not true, i.e., Qk := |r Ric |gk (pk) >

↵k(KkTkt�1k )
3
2 . By the local point-picking lemma, we can find p̄k’s and the as-

sociated parabolic regions B(�
1
2 Q̄

1
3
k ; x̄k, t̄k)’s to run the blow-up procedure, where

� := 1
2✏
2↵

2
3 ⌘. Indeed, we rescale the metric gk(t) on B(�

1
2 Q̄

1
3
k ; x̄k, t̄k) by Q̄

2
3
k :=

(|r Ric |gk ( p̄k))
2
3 > ↵

2
3
k KkTkt

�1
k and obtain

|Ricegk |g̃k  Kk Q̄
� 2
3

k  ↵
� 2
3

k
t̄k
Tk

& 0

and

injegk � � · ↵
1
3
k

⇣
Tkt�1k

⌘ 1
2

� �↵
1
3
k % 1

on eB(�
1
2 ; x̄k, t̄k), as ↵k % 1.

As in the proof of the compact version, we encounter a contradiction on a sub-
sequential limit. Therefore, there exists ↵ > 0 such that |r Ric |  ↵(KT t�1)

3
2 for

all Ricci flows (B2pT (x0, t), g(t))t2[0,T ].
Fix an arbitrary t and rescale the metric by letting g̃ := KT t�1g(t), as in the

proof of the compact version, one obtains

injeg � �
⇣
T t�1

⌘ 1
2

� �,
�
�Riceg

�
�
eg  T�1t  1 and

�
�r Riceg

�
�
eg  ↵
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in eB2p⌘(x0, t). So by the elliptic regularity (1), |Rmeg|eg  C in eB⇢(x0, t) where
C = C(n, �,↵) and ⇢ = ⇢(n, �, ⌘). After rescaling back, we see that the curvature
of g(t) satisfies |Rm|  CKT t�1 in B

⇢
p
K�1T�1t (x0, t) with C = C(n, �,↵) and

thus prove the theorem.

Proof of Theorem 1.2. The key of this proof is the following observation: in the
proof of local point-picking lemma, one can see that the parabolic neighborhood
associated to p̄ must be small if t̄ is close to 0. Precisely, the radius is �

1
2 Q̄� 1

3 and
its square is less than 1

2 t̄ . Hence, when performing the blow-up argument along
these picked points, we do not need a uniform lower bound of injectivity radius.
Instead, the injectivity radius is allowed to decay at a rate proportional to Q̄� 1

3 :=

↵
� 1
3

k (KkTkh�1
k (t̄k))�

1
2 , i.e., either inj � K� 1

2
k or inj(x, t) � h

1
2
k (t) is enough. It is

not hard to check that, if the condition |r Ric |(p)  (↵KT t�1)
3
2 in the local point-

picking lemma is replaced by |r Ric |(p)  (↵KTh�1(t))
3
2 , for some positive

function h(t)  t for all t 2 (0, T ], then the lemma still holds with the conclusion
replaced by |r Ric |( p̄)  (↵KTh�1(t̄))

3
2 . Now we use this modified version to

prove Theorem 1.2.
Againwe argue by contradiction.Suppose there exist (B4pT (x0,t),gk(t))t2[0,T ],

with points xk 2 B2pT (x0, tk) and ↵k ! 1 such that Qk := |r Ric |gk (pk) >

↵k(KkTkh�1
k )

3
2 . By the local point-picking lemma (with t being replaced by h

in the bound of r Ric), we can find p̄k’s and the associated parabolic regions

B(�
1
2 Q̄

1
3
k ; x̄k, t̄k)’s to run the blow-up procedure, where � := 1

2✏
2↵

2
3 ⌘. Indeed,

we rescale the metric gk(t) on B(�
1
2 Q̄

1
3
k ; x̄k, t̄k) by Q̄

2
3
k := (|r Ric |gk ( p̄k))

2
3 >

↵
2
3
k KkTkh

�1
k (t̄k) and obtain

�
�Ricegk

�
�
g̃k

 Kk Q̄
� 2
3

k  ↵
� 2
3

k
h̄k
Tk

 ↵
� 2
3

k
t̄k
Tk

& 0

and
injegk � � ·min

⇢
K� 1

2
k , h

1
2
k (t)

�
· ↵

1
3
k

⇣
KkTkh�1

k (t̄k)
⌘ 1
2
.

To derive a uniform lower bound from the second inequality, we study the following
two cases:

• At points where injgk � �K� 1
2

k , we have

injegk � � · K� 1
2

k · ↵
1
3
k (KkTkh�1

k (t̄k))
1
2 � � · ↵

1
3
k (Tkh�1

k (t̄k))
1
2 % 1;

• At points where injgk(t) � �h
1
2
k (t), we have

injegk � �h
1
2
k (t) · ↵

1
3
k (KkTkh�1

k (t̄k))
1
2 � m� 1

2 �⌘
1
2↵

1
3
k % 1

by the assumption of hk(t).
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In either case, the rescaled injectivity radius has a uniform lower bound on
eB(�

1
2 ; x̄k, t̄k). So a contradiction can be derived as before and one can conclude

that |r Ric |  ↵(KTh�1)
3
2 . At last, by using a rescaling argument as in the proof

of Theorem 1.1, one achieves |Rm|  CKTh�1 for some C = C(n, �, ⌘,m) in
B

⇢
p
K�1T�1h(t)(x0, t) for every fixed t and thus the theorem is proved.

Remark 3.2. The prototype for the function h is h(t) = t . In general, if h(t)
is a concave function or a decreasing function, or a conjunction of them, then it
satisfies the assumption that there exists m > 0 such that for all t⇤ 2 (0, T ], h(t) �
m�1 · h(t⇤) for all t 2

⇥1
2 t

⇤, t⇤
⇤
. For instance, h(t) could be T

⇡ sin
⇡ t
T .

Remark 3.3. By examining the proof step by step, one sees that the injectivity
radius assumption in our theorem can be replaced by a lower bound of C1,� - or
W 2,p-harmonic radius. This is more explicit than the original assumption because
harmonic coordinates can be constructed by using analytic method (e.g., [15]). It is
possible, but still a challenge, to estimate harmonic radius along the Ricci flow.

4. A geometrical alternative to De Giorgi-Nash-Moser’s iteration

In this section, we compare our geometrical blow-up argument with Moser’s it-
eration technique. In particular, by using Moser’s iteration and results in [21],
we derive a theorem which requires a weaker injectivity radius assumption, and
has weaker conclusion, than Theorem 1.1. We first recall the following crucial
lemma [21, Proposition 1].

Proposition 4.1. Let (Mn, g(t)) be a smooth solution to the Ricci flow defined
for 0  t  T . Assume that there exist A, K > 0 such that |Ric |  K
on P( Ap

K
; x0, T ) := B Ap

K
(x0, 0) ⇥ [0, T ]. Then, for any p � 3, there exists

c = c(n, p) > 0 so that for all 0  t  T

kRmkpL p(B0)(t)  cecKT
⇣
kRmkpL p(B)(0) + K p�1+ A�2p�Volg(t)(B)

⌘
,

where B0 = B A
2
p
K
(x0, 0) and B = B Ap

K
(x0, 0).

By using this proposition, Moser’s technique and its generalized version for varying
metrics (cf. [22, Chapter 19], [36,37] or [10, Theorem 2.1]), Kotschwar-Munteanu-
Wang derived the following bound:

|Rm|(x0, T )  cec(KT+A)

 

1+
✓

30
K

◆↵

+

✓
1
KT

+A�2
◆�
!

(K (1+ A�2) + 30).

Here ↵,�, c are constants depending only on n and 30 = supB Ap
K

(x0,0) |Rm|.

To compare their approach with ours, we prove the following theorem based
on Kotschwar-Munteanu-Wang’s argument.
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Theorem 4.2. Let (Mn, g(t))t2[0,T ] be a smooth solution of the Ricci flow. If

|Ric |  K in P(4r; x0, T ) and inf
B4r (x0,0)

inj � I > 0

for some K , I, r > 0, then there existsC depending on K , I, r, T and the dimension
n such that |Rm|(x0, t)  C in P(r; x0, T ) \ P(r; x0, 12T ).
Proof. For any point y 2 B2r (x0, 0), consider the harmonic coordinates around it.
Since Ricci curvature is bounded and the injectivity radius is bounded from below,
these coordinates cover a geodesic ball B✏ I (y, 0) for some ✏ depending on K , I
and n. Since kRic kL p is bounded, elliptic regularity of the equation 1ggi j =
�2Ri j + P(g, @g) shows that kRmkL p(B✏ I (y,0)) is bounded by some constant C for
all p > 1 (cf. Section 2 or [1]). Furthermore, a standard result due to Gromov
says that the lower bound of Ricci curvature implies that B2r (x0, 0) can be covered
by a finite collection of B✏ I (yi , 0)’s, say i = 1, . . . , N . Note that N only depends
on n, ✏ I, r and K . Hence kRmkL p(B2r (x0,0)) must be bounded by some constant
CL = CL(n, K , I, r, p).

By Proposition 4.1, when p � 3, the evolving L p-norm of |Rm| on Br (x0, 0)
is controlled by

kRmkpL p(Br )(t)cecKT
⇣
kRmkpL p(B2r )(0) + K p

⇣
1+ (✏ I

p
K )�2p

⌘
Volg(t)(B2r )

⌘
,

where Br = Br (x0, 0) and B = B2r (x0, 0). Divide both sides by Volg(t)(Br ) and
use kRmkpL p(B2r )(0)  C p

L , one obtains

1
Volg(t)(Br )

kRmkpL p(Br )(t)
cecKTC p

L
Volg(t)(Br )

+ cecKT
⇣
K p+(✏ I )�2p

⌘
·
Volg(t)(B2r )
Volg(t)(Br )

.

To find a lower bound for Volg(t)(Br ), we need Berger-Croke’s theorem (cf. [8,
Proposition 14]): there is a uniform constant Cinj which depends only on n such
that, for any Riemannian metric and any r > 0, inf

B2r
inj � I implies that Vol(Br ) �

Cinj I n . Thus

1
Volg(t)(Br )

kRmkpL p(B0)(t)

 cecKTC p
LCinj I

n + cecKT
⇣
K p + (✏ I )�2p

⌘
·
Volg(t)(B2r )
Volg(t)(Br )

.

Since @
@t dVol = �R · dVol along the Ricci flow, the volume ratio which appears in

the last term can be estimated by
Volg(t)(B2r )
Volg(t)(Br )

 e2KT
Volg(0)(B)

Volg(0)(B0)
 e2KT · ceK

where the last inequality comes from Bishop-Gromov volume comparison theorem.
Therefore, 1

Volg(t)(Br )kRmkpL p(Br )(t)  cecKT and we may apply Moser’s iteration
and derive a similar curvature bound as in [21, pages 2620-2623].
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As one can observe easily, Theorem 1.6 only involves the initial lower bound
of inj, while Theorem 1.2 involves injg(t) for t 6= 0. On the other hand, the bounds
in Theorem 1.1 and 1.2 are much better than the one in Theorem 1.6.
Remark 4.3. After checking the argument carefully, one can see that our geomet-
rical blow-up method is valid for general geometric flow @

@t g = R possessing Shi’s
property, where R is a symmetric two-tensor defining by Ricci curvature and g.
Indeed, if such a flow @

@t g = R satisfies @
@t |Rm|  1|Rm| + C|Rm|2, then its cur-

vature can be controlled by Ricci curvature and the injectivity radius in the sense
of Theorem 1.1 and 1.2. This shows that our approach is somewhat an alternative
argument to Moser’s iteration. Note that one more advantage of our approach is
that one actually obtains a C0,� -bound, not only an L1-bound.

5. Applications

5.1. Compactness of the Ricci flow

It has been known for decades that a sequence of closed connected Riemannian
n-manifolds {(Mk, gk)}k2N with bounded curvature, bounded diameter and volume
bounded from below by a positive constant must contain a subsequence which con-
verges in C1,↵-topology to a Riemannian n-manifold (M1, g1) (cf. [15]). Thus
we say the collection

LV := {(Mn, g, L , V, D) | |Rm|  L , Vol � V and diam  D}

is pre-compact for any given real numbers L � 0, V > 0 and D > 0. In [13],
L. Z. Gao showed that the same conclusion holds when the condition |Rm|  L is
replaced by |Ric |  K and a certain integral bound of |Rm|. On the other hand,
Anderson [1] showed that, if inj := infM inj(x) � I > 0, then |Rm|  L can be
replaced by merely |Ric |  K . That is, the set

KI := {(Mn, g, K , I, D) | |Ric |  K , inj � I and diam  D}

is also pre-compact for any given real numbers K � 0, I > 0 and D > 0. As
observed by Cheng-Li-Yau [6], and Cheeger-Gromov-Taylor [5] independently, the
condition of injectivity radius can be derived from bounds of |Rm| and Vol, thus LV-
condition implies KI-condition. Note that the inverse is very likely not true although
we do not notice any constructed counter-example in the limited literatures we have
surveyed. In particular, one seems not able to improve the convergency from C1,↵
to C2 by using merely the KI-conditions.

Such convergence theory plays an important role in the study of singulari-
ties of the Ricci flow. Indeed, given a singular portion of the flow, one can blow
up the solution around it and characterize the singularity by using the limit of
these rescaling solutions. Thus we need the compactness theorem derived by R.
S. Hamilton in [18] to ensure the existence of such limiting solution. A partic-
ular version of Hamilton’s theorem says that if a sequence of marked complete
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solutions of the Ricci flow {(Mk, gk(t), xk)t2[0,T ]}k2N satisfies |Rm|gk (x, t)  L
for all x, t and Volgk(0)(Br (xk)) � V for some r > 0, then there exists a sub-
sequence converging in C1

loc-topology to a marked complete solution of the Ricci
flow (M1, g1(t), x1)t2(0,T ]. The smooth convergency is due to Shi’s estimate,
which says that all higher order derivatives of Rm are bounded provided that Rm
is bounded along the Ricci flow. Hence Hamilton’s theorem can be seen as a LV-
compactness theorem for the Ricci flow. By using Theorems 1.2 and 1.6, one can
derive aC1 KI-compactness theoremwithout assuming any bound on the curvature
operator.

Corollary 5.1. Let (Mk, gk(t), xk)t2[0,T ] be a sequence of marked complete solu-
tions of the Ricci flow. Suppose there are constants K , �, I such that |Ric |gk 
K on Mk ⇥ [0, T ] and

inf
Mk⇥[0,T ]

inj � �
p
t or inf

Mk⇥{0}
inj � I > 0 for all k,

then there exist a subsequence S j := (Mj ,g j (t),x j ) and a solution S1 := (M1,
g1(t), x1) of the Ricci flow over t 2 (0, T ] such that S j converges in C1-topology
to S1 on every time interval [✏, T ] with ✏ > 0 as j ! 1.

5.2. Ricci soliton

Ricci solitons are manifolds (M, g) coupled with a smooth vector field X , which
can generate self-similar solutions to the Ricci flow. Indeed, if a Riemannian man-
ifold (M, g) satisfies Ricg +1

2 LXg = �g for some X , then g(t) = ⇢(t)'⇤
t g(0)

solves the Ricci flow, where ⇢(t) = 1 � 2�t and 't : M ! M is the one param-
eter family of diffeomorphisms generated by ⇢X (cf. [3, Chapter 1]). Moreover,
if X = r f for some smooth function f : M ! R, then the soliton is called a
gradient Ricci soliton.

Curvature growth is an important issue for the study of gradient Ricci soli-
tons. Some classification results are built on the growth assumptions and, on the
other hand, people expect that curvature of solitons should obey certain natural
growth/decay laws. In [25], Munteanu and M.-T. Wang proved that every shrink-
ing gradient Ricci soliton with bounded Ricci curvature must have a polynomial
bound of its curvature. The following theorem shows that, if the injectivity radius
is bounded from below, then the curvature can be uniformly bounded by a constant.

Theorem 5.2. Given any � 2 {±1
2 , 0}, all n-dimensional Ricci solitons

Ric+
1
2
LXg = �g

with |Ric |  K and inj � I > 0 have the same curvature bound.

Proof. Consider a self-similar solution generated by the soliton on a time inter-
val [0, t⇤] for some t⇤ > 0. Since the soliton changes only up to a scaling factor
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along the flow (modulo by diffeomorphisms), so the bounds of curvature and in-
jectivity radius are changing according to the scaling factor. Indeed, Ricg(t)(x) =

⇢�1(t)Ricg(0)('t (x)) and injg(t)(x) = ⇢
1
2 (t) injg(0)('t (x)), where ⇢(t) = 1� 2�t ,

on the self-similar solution. By applying Theorem 2, we know that |r Ric | is uni-
formly bounded at t = t⇤. That means |Rm|  C at t = t⇤, where C depends on
K , I, t⇤, � and n. Because g(0) differs to g(t⇤) only by a scaling factor, we have
|Rm|  C at t = 0.

Based on this curvature estimate, one can further ask for compactness result.

Corollary 5.3. Let � 2 {±1
2 , 0} and A 2 R. For any sequence of gradient Ricci

solitons (Mk, gk, fk, pk)k2N satisfying Ricgk +Hess( fk) = �gk , if

|Ric |gk  K , injgk � I > 0 and |r f |gk (pk)  A,

then there exists a subsequence converging smoothly to (M1, g1, f1, p1), which
satisfies Ricg1 +Hess( f1) = �g1 with f1 = limk!1 fk .

Proof. As in the proof of previous corollary, we can evolve these solitons to some
time t⇤ > 0 and obtain uniform bounds for Rm and injectivity radius for all t 2
[0, t⇤]. Moreover, all the derivatives of Rm are bounded at t = t⇤ by Shi’s estimate.
Hence, all the curvatures and their derivatives are bounded at t = 0 and thus there
exists a subsequential limit (M1, g1, p1).

To show the convergence of fk’s, we normalize f by subtraction such that
f (pk) = 0 and then use |Hess( fk)| = |�gk � Ricgk |  n|�| + K . Indeed, the
bound of Hess( fk) shows that |r fk | grows at most linearly and | fk | grows at most
quadratically from the point pk , where fk = 0 and |r fk |  A. In particular, for
any given r < 1, there are uniform bounds for fk’s and |r fk |’s on the geodesic
balls Br (pk). So fk’s have a uniform C2-bound for every fixed r . Moreover, all
higher derivatives of fk depend only on the derivatives of Ric and lower deriva-
tives of fk , thus are uniformly bounded. Therefore, there exists a subsequence of
(Mk, gk, fk, pk) converging smoothly to a Ricci soliton (M1, g1, f1, p1) satis-
fying Ricg1 +Hess( f1) = �g1.

5.3. Curvature taming around the initial time

In Theorem 1.2, if we set T = ⌘
K , then we obtain an estimate |Rm|  Ch�1(t)

where C is a constant depending only on n, � and ⌘. Surprisingly, this bound does
not involve the bound of Ricci curvature. Combining with the fact that injg(0) is
not involved in Theorem 1.2, we can prove that every Ricci flow is 1-tamed by a
universal constant up to a certain time.

Theorem 5.4. There exists a universal constantC = C(n) such that for any smooth
Ricci flow (Mn, g(t)) and any point x0 2 M ,

|Rm|(x, t)  Ct�1 on B4r (x0, t) for all t 2
⇣
0, K�1

i
,
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and
|Rm|(x, t)  CK on B4r (x0, t) for all t 2

h
K�1, r2

i
,

where r2 := inf{ t > 0 | infB8r (x0,t) inj <
p
t} and K denotes the maximum of r�2

and sup |Ric | on
S

[0,r2] B8r (x0, t).

Proof. Since the flow is smooth, for any x0 2 M , there must exist an r > 0 by the
continuity of inj. That is, inj �

p
t on

S
[0,r2] B8r (x0, t). By the definition of K , we

have |Ric |  K on
S

[0,r2] B8r (x0, t). Consider y 2 B4r (x0, 0) and apply Theorem
1.2 with � = ⌘ = 1, T = 1

K  r2 and h = t on the domain
S

[0,r2] B4r (y, t), one
obtains |Rm|(y, t)  Ct�1 for some C = C(n) and t 2 (0, K�1]. Since y is
an arbitrary point in B4r (x0, 0), |Rm|(x, t)  Ct�1 on

S
(0,K�1] B4r (x0, t). For

t 2 [K�1, r2], one may apply Theorem 1.2 on
S

[t⇤,t⇤+K�1] B4r (y, t) and see that
|Rm|(y, t⇤)  CK . Since t⇤ is arbitrary, the second statement of the theorem is
proved.

6. An estimate of rRic without using injectivity radius

For every Riemannian manifold, the traced second Bianchi identity r j Ri j = 1
2@i R

holds. In view of this, we say that a manifold satisfies strong Bianchi inequality
if the pointwise norm estimate |r Ric |  �|rR| holds for some � > 0. For a
solution of the Ricci flow, we consider a weaker condition as follows.
Definition 6.1. LetU be an open set of a manifold M . A solution of the Ricci flow
(U, g(t))t2(0,T ] with |Ric |  K is said to satisfy the weak Bianchi inequality if

|r Ric |  ↵Kt
�1
2 + �|rR|

on U ⇥ (0, T ] for some constants ↵,� > 0.
This inequality means that the trace-free part of r Ric is bounded by either the
traced part or a constant which is allowed to depend on t

�1
2 . This is not a strong

restriction in the sense that it holds on a large class of static manifolds. More details
about this can be found in the next section.

In [30], W.-X. Shi proved that if the curvature operator is bounded along the
Ricci flow, then all the derivatives of it are bounded uniformly except for the initial
time. If the boundedness condition of the full curvature operator is replaced by the
one of Ricci curvature, then it seems that Shi-type estimate does not hold. However,
if we impose the condition that weak Bianchi inequality holds, then we can derive
a Shi-type estimate for Ricci curvature. Note that the weak Bianchi inequality is
quite looser than the strong one, because it allows |r Ric | 6= 0 whenever |rR| = 0
at some point.

Theorem 6.2 (Global estimate). There exists a constant C > 0, depending only
on ↵,� and n such that for every n-dimensional closed solution (Mn, g(t))t2[0,T )
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of the Ricci flow, if the Ricci curvature and its derivatives satisfy that |Ric |  K
and |r Ric |  ↵Kt

�1
2 + �|rR| for all t 2 [0, 1K ] ⇢ [0, T ), where K is a positive

constant, then
|r Ric |2  CK 2t�1

for all t 2 (0, 1K ].

Remark 6.3. When t = 0, we define 1
t to be 1. Hence the aforementioned in-

equalities, which are concerned, hold trivially.

We recall the following evolution equations that will be used in the proof:

@

@t
R=1R+2|Ric |2,

@

@t
R2=2R

⇣
1R+2|Ric |2

⌘
=1R2�2|rR|2+4R · |Ric |2

and

@

@t
|rR|2 = 2

D
rR,r

⇣
1R + 2|Ric |2

⌘E
� 2Ric(rR,rR)

 1|rR|2 � 2
�
�
�r2R

�
�
�
2
+ 4|Ric | · |rR|2 + 8|Ric | · |r Ric | · |rR|.

Proof. Since @
@t R = 1R + 2|Ric |2, by |Ric |  K , we have

@

@t
R2  1R2 � 2|rR|2 + CK 3,

where C is an indefinite constant varying line by line. Moreover, using |r Ric | 

↵Kt
�1
2 + �|rR|, we can derive

@

@t
|rR|2  1|rR|2 � 2

�
�
�r2R

�
�
�
2
+ CK |rR|2 + CK 3t�1.

Let F = t |rR|2+ AR2 for some constant A. We can show that @
@t F  1F+CK 3

whenever A is larger than some constant depending only on �. Comparing with
the o.d.e. d

dt �(t) = CK 3, one can prove that F  C(K 2 + K 3t) by maximum
principle. Hence |rR|2  CK 2t�1. By using the weak Bianchi inequality again,
we have |r Ric |2  CK 2t�1.

To show the local version, we have to do more efforts. To abbreviate the nota-
tion, we define the parabolic region emanated from Br (x0, 0) as

P(r; x0, t0) := � ⇥ (0, t0], where � ⇢ M
is the topological region defined by Br (x0, 0).
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Theorem 6.4 (Local estimate). There exist positive constants ✓0 and C depending
only on ↵,�, n and 3 such that for every solution (Mn, g(t))t2[0,✓0/K ] of the Ricci

flow, if |Rm|  3 on Br (x0, 0), |Ric |  K and |r Ric |  ↵K
� 1
r2 + 1

t + K
� 1
2 +

�|rR| on P(r; x0, t0) for some r 
p

✓0/K and t0  ✓0/K , then

|r Ric |2  CK 2
✓
1
r2

+
1
t

+ K
◆

on P( rp
2
; x0, t0).

Proof. Recall that along the Ricci flow

@

@t
R2 = 1R2 � 2|rR|2 + 4R · |Ric |2

and
@

@t
|rR|2  1|rR|2 � 2

�
�
�r2R

�
�
�
2
+ 4|Ric | · |rR|2 + 8|Ric | · |r Ric | · |rR|.

Denoting u = 1
r2 + 1

t + K , by the assumptions and Yang’s inequality, we have

@

@t
|rR|2  1|rR|2 � 2

�
�
�r2R

�
�
�
2
+ C1K |rR|2 + C1K 3u,

for some constant C1 > 0.
Let S = (BK 2+R2)·|rR|2, where B > max{n2+4nC�1

1 , 32n2} is a constant.
We derive

@

@t
S =

@

@t
R2 · |rR|2 +

⇣
BK 2 + R2

⌘ @

@t
|rR|2


⇣
1R2 � 2|rR|2 + 4R · |Ric |2

⌘
· |rR|2

+
⇣
BK 2 + R2

⌘ ⇣
1|rR|2 � 2|r2R|2 + C1K |rR|2 + C1K 3u

⌘

 1S � 2rR2 · r|rR|2 � 2|rR|4 � 2
⇣
B + n2

⌘
K 2

�
�
�r2R

�
�
�
2

+
⇣
C1B + C1n2 + 4n

⌘
K 3|rR|2 + C1

⇣
B + n2

⌘
K 5u

 1S � 2rR2 · r|rR|2 � 2|rR|4 � 2BK 2
�
�
�r2R

�
�
�
2

+ 2C1BK 3|rR|2 + 2C1BK 5u.

We want to control the bad terms 2rR2 · r|rR|2, whose sign is unknown, and
2C1BK 3|rR|2, which may not be bounded. Indeed, using the following two in-
equalities, they can be absorbed by the other terms:

�
�
�2rR2 · r|rR|2

�
�
�  8nK |rR|2 ·

�
�
�r2R

�
�
� 

1
2
|rR|4 + 32n2K 2

�
�
�r2R

�
�
�
2
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and

2C1BK 3|rR|2 
1
2
|rR|4 + 2C21B

2K 6 
1
2
|rR|4 +

2
3
C21B

2K 5u.

Since B > 32n2, substituting these two inequalities into the evolution equation of
S, we get

@

@t
S  1S � |rR|4 + C2B2K 5u  1S �

S2

4B2K 4
+ C2B2K 5u,

for some constant C2. Consider F = bSK�4 with some constant b := min{ 1
4B2 ,

1
C2B2

} depending only on n, one can derive

@

@t
F  1F � F2 + u2.

To proceed the proof by using maximum principle, we need a space-time cut-off
function. However, the standard way to construct such a function requires the bound
of |r Ric |, which is exactly what we want to derive here. (Because the evolution
equation of |r2'|, which can be seen in the proof of Lemma B afterwards, involves
r Ric.) This problem occurs also in the proof of Shi’s estimate. To tackle this,
Hamilton [19, Section 13] used a continuity argument and eventually showed that
there exists a short time ✓0K�1 such that Shi’s estimate holds. The first step is to
take a cut-off function ' on the initial manifold M satisfying {x 2 M|' > 0} =
Br (x0, 0), ' = r in B rp

2
(x0, 0), 0  '  r < Ar , |r'|  A and

�
�r2'

�
�  A

r
for some constant A > 1 depending only on n and the initial curvature bound 3.
Extend ' to be a space-time function by letting ' be independent of time. Since
the Ricci flow is smooth, by continuity, |r'|2  2A2 and '|r2'|  2A2 holds on
P(r; x0, ✓1/K ) up to some time ✓1/K > 0. Moreover, we can construct a barrier
function H which behaves well up to t = ✓1/K .

Lemma A. Let H= cA2
'2

+ d
t +K for some constants c=14+4n and d=2(1+✓1).

Then @
@t H > 1H � H2 + u2 on P(r; x0, ✓1/K ).

By using the maximum principle, one can show that H � F cannot vanish on
P(p, r, ✓1/K ). Hence H � F > 0 on P(p, r, ✓2/K ) for some ✓2 > ✓1. Com-
bining with the following lemma, we can show that ✓1 has a uniform lower bound,
i.e., ✓1 must be larger than or equal to the uniform constant ✓0 described in the fol-
lowing lemma. We may assume ✓1 < 1 (otherwise the uniform lower bound ✓0 can
be simply taken to be 1).

Lemma B. There exists a constant ✓0 which depends only on ↵,�, n and 3 such
that if |Ric |  K and F  H on P(r; x0, ✓/K ) for some ✓  ✓0 and r 

p
✓/K ,

then |r'|2  2A2 and '|r2'|  2A2 on P(r; x0, ✓/K ).
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Indeed, suppose on the contrary that ✓1 < ✓0, then this lemma tells us that the
estimates of derivatives of ' hold for time beyond ✓1. This contradicts the definition
of ✓1.

Therefore, F < H on P(r; x0, ✓0/K ). We conclude that

|rR|2 =
FK 4

b(BK 2 + R2)


K 4

bBK 2

 
(14+ 4n)A2

'2
+
2(1+ ✓1)

t
+ K

!

 CK 2
✓
1
'2

+
1
t

+ K
◆

and

|r Ric |2  ↵2K 2u + �2|rR|2  ↵2K 2u + CK 2
✓
1
'2

+
1
t

+ K
◆

 CK 2
✓
1
r2

+
1
t

+ K
◆

for some C depending only on ↵,�, n and 3.

Now we prove Lemma A and Lemma B.

Proof of Lemma A. We show that � @
@t H + 1H + u2 < H2 by the following cal-

culations. Using |r'|2  2A2, '|r2'|  2A2 and t  ✓1/K .

�
@

@t
H + 1H + u2 =

d
t2

+ cA21
✓
1
'2

◆
+

✓
1
r2

+
1
t

+ K
◆2


d
t2

+
cA2

'4

⇣
6|r'|2 � 2'1'

⌘
+

✓
1
r2

+
1
t

+
✓1
t

◆2


d
t2

+
cA2

'4

⇣
12A2 + 4nA2

⌘
+ 2

✓
1
r2

◆2
+ 2

✓
1+ ✓1
t

◆2


(12+ 4n)cA4

'4
+ 2

 
A2

'2

!2
+
2(1+ ✓1)

2 + d
t2

=
((12+ 4n)c + 2)A4

'4
+
2(1+ ✓1)

2 + d
t2

.

Choose c = 14+ 4n and d = 2(1+ ✓1), then we have

�
@

@t
H + 1H + u2 

((12+ 4n)c + 2)A4

'4
+
2(1+ ✓1)

2 + d
t2



 
cA2

'2

!2
+

✓
d
t

◆2
 H2.
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Proof of Lemma B. By definition, r' = gi j' j ei = 'i ei . Thus

@

@t
|r'|2 =

@

@t

⇣
gi j'i' j

⌘
= 2Rpqgipg jq'i' j  2K |r'|2

whenever |Ric |  K . Therefore, |r'|2  A2e2Kt  2A2 when t  ✓
K and

✓  log
p
2.

By using Uhlenbeck’s orthonormal frame {Ea} (cf. [17, page 155]), which sat-
isfies @

@t E
i
a = gi j R jk Eka , one can derive

@

@t
rarb' =

@

@t
EaEb' �

@

@t
(0c

abEc')

= Rbcrarc' + Rdardrb' � (ra Rcb + rbRac � rcRab)Ec'.

Hence
@

@t
'
�
�r2'

�
� = '

@

@t
�
�r2'

�
�  C'

⇣
|Ric |

�
�r2'

�
�+ |r Ric ||r'|

⌘
.

By the assumption F = b(BK 2 + R2)K�4|rR|2  H = cA2
'2

+ d
t + K and the

weak Bianchi inequality, we have

|rR|2 
K 4

b(BK 2 + R2)

 
cA2

'2
+
d
t

+ K

!


K 2

bB

 
cA2

'2
+
d + ✓1
t

!

and

|r Ric |  ↵K
r
1
r2

+
1
t

+ K + �
K

p
bB

s
cA2

'2
+
d + ✓1
t

 CK

0

@

s
cA2

'2
+
d + ✓1
t

1

A ,

where C depends on ↵,� and n. Recall that '  r , A > 1, c = 14 + 4n and
d = 2(1+ ✓1) < 4. Hence

@

@t
'
�
�r2'

�
�  CK'

�
�r2'

�
�+ CK |r'|

s

cA2 +
(d + ✓1)'2

t

 CK
✓

'
�
�r2'

�
�+ A +

r
p
t

◆
,

where C depends on ↵,� and n. By comparing with the ordinary differential equa-
tion d

dt � = CK
⇣
� + A + rp

t

⌘
, as Hamilton did in [19, pages 45-46], one can show

that
'
�
�r2'

�
�  eCKt

⇣
A2 + CK (At + 2r

p
t)
⌘

.
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Therefore, when r 
q

✓
K and t  ✓

K for some ✓ = ✓(↵,�, n, A), we have
'|r2'|  2A2.

7. Further discussion on Bianchi inequalities

In this section, we discuss the validity of Bianchi inequalities on a fixed Riemannian
manifold. For general Riemannian manifolds, the derivative of Ricci tensor can be
decomposed as follows.

Theorem 7.1 (Cf. [16, page 288] for n = 3). Let Ei jk = a(gi j@k R + gik@ j R) +
bg jk@i R with a = n�2

2n2+2n�4 and b = 1
2�a(n+1). Then the decompositionri R jk =

Ei jk + Fi jk satisfies that gi j Fi jk = g jk Fi jk = gki Fi jk = 0 and hEi jk, Fi jki = 0.
In particular, we have

|ri R jk |
2 = |Ei jk |2 + |Fi jk |2 and |Ei jk |2 = (a + b)|rR|2.

Remark 7.2. When n = 3, a = 1
20 , b = 3

10 and |Ei jk |2 = 7
20 |rR|2; when n = 4,

a = 1
18 , b = 2

9 and |Ei jk |2 = 5
18 |rR|2.

From this proposition, we know that a manifold satisfies the weak Bianchi inequal-
ity if the trace-free part of r Ric can be bounded by the non-free part and a con-
stant, i.e. |Fi jk |2  |Ei jk |2 + C . Note that when n ! 1, a + b ! 0 and thus
|r Ric | ⇡ |Fi jk |.

Proof. Using gi j Fi jk =g jk Fi jk =0 and the traced second Bianchi identity ri R i
k =

1
2@k R, one can derive (n + 1)a + b = 1

2 and 2a + nb = 1. Thus a = n�2
2n2+2n�4 .

Furthermore, an easy computation shows that |Ei jk |2 =
�
2(n + 1)a2+ 4ab +

nb2
�
|rR|2 and hEi jk,ri R jki = (a+b)|rR|2. Observing that 2(n+1)a2+4ab+

nb2 = a + b, one obtains hEi jk, Fi jki = hEi jk,ri R jk � Ei jki = 0.

On the other hand, we can compute explicitly on manifolds with rotationally
symmetric metrics.

Theorem 7.3. Let (M, g), g = dr2 + '2(r)gSn�1 , be a rotationally symmetric n-
dimensional manifold and n � 3. Here r is the arc-length parameter. Denote the
radial and spherical sectional curvatures as K0 and K1, respectively. Suppose that
@
@r K0 · @

@r K1 � � C2
(n�1)2�1 for some constant C . Then

|r Ric |2 

✓
1
4

+
1

4(n � 1)2

◆
|rR|2 + (n � 2)C2

on U . In particular, (M, g) satisfies the strong Bianchi inequality |r Ric | 
n

2(n�1) |rR| whenever @
@r K0 · @

@r K1 is nonnegative (e.g., a paraboloid or an infi-
nite horn).
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Remark 7.4. In this theorem, we do not assume that |Ric | is bounded by some
constant.

Proof. It is well-known that for rotationally symmetric manifolds we have

Ric = (n � 1)K0dr2 + (K0 + (n � 2)K1)'2gSn�1

and
R = (n � 1)K0 + (n � 1)(K0 + (n � 2)K1).

Hence

|rR|2 = 4(n � 1)2
✓

@

@r
K0
◆2

+ 4(n � 1)2(n � 2)
✓

@

@r
K0
◆✓

@

@r
K1
◆

+ (n � 1)2(n � 2)2
✓

@

@r
K1
◆2

and

|r Ric |2 = (r1R11)2 +
�
r1R j j

�2

= (n � 1)2
✓

@

@r
K0
◆2

+

✓
@

@r
K0 + (n � 2)

@

@r
K1
◆2


(n � 1)2 + 1
4(n � 1)2

|rR|2 + (n � 2)
⇣
1� (n � 1)2

⌘✓ @

@r
K0
◆✓

@

@r
K1
◆

+
(n � 2)2

4

⇣
3� (n � 1)2

⌘✓ @

@r
K1
◆2


(n � 1)2 + 1
4(n � 1)2

|rR|2 + (n � 2)C2.

It is interesting to know whether such Bianchi inequalities hold for generic
solutions of the Ricci flow. A related result which appeared earlier in a collaborated
work of A. Deruelle and the author [4, Theorem 2.10] shows that the validity of
such inequalities may help us to resolve some long standing open problems about
expanding gradient Ricci solitons.
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