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Shi-type estimates of the Ricci flow based on Ricci curvature

CHIH-WEI CHEN

Dedicated to Professor Gérard Besson on the occasion of his 60th birthday

Abstract. We prove that the magnitude of the derivative of Ricci curvature can be
uniformly controlled by the bounds of Ricci curvature and injectivity radius along
the Ricci flow. As a consequence, a precise uniform local bound of curvature
operator can be constructed from local bounds of Ricci curvature and injectivity
radius among all n-dimensional Ricci flows. In particular, we show that every
Ricci flow with |Ric| < K must satisfy |Rm| < Ct—lforallt e (0, T'], where
C depends only on the dimension n, and 7 depends on K and the injectivity
radius injg ;).

In the second part of this paper, we discuss the behavior of Ricci curvature
and its derivative when the injectivity radius is thoroughly unknown. In particular,
another Shi-type estimate for Ricci curvature is derived when the derivative of
Ricci curvature is controlled by the derivative of scalar curvature.

Mathematics Subject Classification (2010): 53C44 (primary); 58J05 (sec-
ondary).

1. Introduction

The Ricci flow on a Riemannian manifold (M, gg), which was proposed by
R. Hamilton in [16], is defined by

a .
Eg(x,t) = —2Ricg(x,1)
g(x,0) =go

and is presumed to be able to improve the Riemannian metric go. Hamilton showed
that a Riemannian metric with positive Ricci curvature on a closed 3-dimensional
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manifold can be deformed to be rounder and rounder along the Ricci flow. In-
deed, by using interpolation techniques, he derived bounds for all derivatives of the
curvature tensor and showed that the metrics g(#), after rescaling, converge in C° -
topology to the standard metric on sphere. Later in [30], W.-X. Shi showed that, for
general Ricci flows, all derivatives of curvature are bounded a priori by the bound
of the curvature itself. Precisely, if a Ricci flow g(¢) satisfies |[Rm| < K for all
t € [0, %] on a closed manifold M”", then |V!Rm| < C,l,le‘_l/2 forall r € (0, %],
where C,; denotes a constant depending only on n and /. This estimate, which
is called Shi’s estimate, even holds locally for complete non-compact Ricci flows.
That is, there exists a constant 6 depending only on the dimension n such that if a
Ricci flow g(7) satisfies |[Rm| < K on By x [0, &1, then |V'Rm| < C, /K (K +
r2 4 1_1)1/2 on B, x (0, %]. Thus, along the Ricci flow, C2-boundedness implies
C®°-boundedness of metrics.

Some other works revealed that merely the Ricci curvature can control the
curvature operator in certain circumstances. For instance, by blow-up arguments,
N. Sesum [32] and L. Ma and L. Cheng [24] showed that along the Ricci flow | Rm|
maintains finite value as long as |Ric| does. For compact manifolds, B. Wang
improved the result of Se§um by showing that | Rm | is bounded whenever Ric has a
lower bound and the scalar curvature R has certain space-time integral bound [33].
He also showed that R must blow up whenever |Rm| blows up at T in the order
o((T = 1)~2) [34, Theorem 1.3]. See also [12,23,38] for related results. The
estimates of |Rm| in their results depend on the generic behavior of the metrics
g(t). On the other hand, a classical result due to M. Anderson [1] says that | Rm| of
a Riemannian manifold can be controlled by the bound of |Ric|, |V Ric| and the
lower bound of injectivity radius. Therefore, it is natural to ask whether |V Ric |, or
|Rm|, can be controlled by | Ric | along the Ricci flow. This is the main theme of
this article.

First, we confirm that a Shi-type estimate for Ricci tensor holds provided that
the injectivity radius inj : M x [0, T] — R is bounded from below.

Theorem 1.1 (Standard version). For any §,n > 0 and n € N, there exist pos-
itive constants o, C and p such that for any K > 0 and any smooth Ricci flow
(M", g(t)iefo, ) with T > 3+ > 0, if

|Ric| < K and inj > SK_% on B4ﬁ(x0, t)forallt € [0, T],
then

3

IVRic| < (KTI_1>2 on By s (x0,1) forall t € (0, T]

and
|Rm| < CKTt™" on B =iz, (x0. 1) for all t € (0, T].

Recently, B. Kotschwar, O. Munteanu and J. Wang [21] improved the aforemen-
tioned results of SeSum and Wang by a different approach based on Moser’s itera-
tion. They can clarify the dependency of the bound, which eventually involves only
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| Ric | and the initial bound of curvature operator. Moser’s iteration has been used
before for similar purpose in [36], and later in [10] where X. Dai, G. Wei and R. Ye
showed that | Rm| can be controlled by initial | Ric | and the initial conjugate radius
up to a short time. However, all of these bounds do not link to the bound of | Ric |
in a clear manner as the bound given by our theorem. For instance, when | Ric | is
arbitrarily small, our theorem ensures that so is |Rm]|.

Furthermore, our proof of Theorem 1.1 can be modified so that the scale of
injectivity radius can unhook with the bound of Ricci curvature. Thus, we do not
need a huge injective region to get the estimate of |Rm| when K is small. In par-
ticular, our theorem can be applied to flows with arbitrarily small initial injectivity
radius and the resulting bound depends mainly on the growth of inj with respect to
time (cf. the parameter m in the next theorem).

Theorem 1.2 (Strong version). For any 8,n > 0 and m,n € N, there exist posi-
tive constants o, C, p such that for any K > 0 and any smooth Ricci flow
(M", g(®))iejo,ry with T > 3+ > 0, if

IRic| < K and injza-min{K*%,h%(t)} on B, m(xo, 1) forall t € [0, T1,

where h(t) < t is any positive function defined on (0, T) such that for all t* €
0, T), h(t) = m~'h(t*) ont € [3t*,t*], then

(S}

IVRic| < « <KTh—1) on B, s+(x0, 1) forall t € (0, T

and
|Rm| < CKTh™! on B, /7T Yo, 1) forall t € (0, T1.

Remark. The reader may take h(¢) = ¢ or % sin ﬂTt to obtain some intuitions. The
proof of this version can be found in Section 3. We note that the assumptions do not
directly involve any information of inj at the initial time since lim, .o+ h(¢) = 0.
This does not mean that our theorem can be applied to a Ricci flow with singular
initial data. The initial metric is required to be at least C3.

The growth or boundedness of curvature operator are important issues in the study
of gradient Ricci solitons. Several a priori curvature estimates have been derived
before (cf. [2,7,9,11,25-27] among others). Using our Theorem 1.1, we derive a
new boundedness result for all types of gradient Ricci solitons.

Theorem 1.3. For any class of complete non-compact n-dimensional gradient Ric-
ci solitons of either shrinking or steady or expanding type, if the Ricci curvature is
bounded and the injectivity radius is bounded away from zero, then the curvature
operator is bounded by a uniform constant.

We further derive a compactness theorem which shows that gradient Ricci solitons
have compactness property analogue to Einstein manifolds. Note that the limiting
soliton might be a trivial soliton.
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Corollary 1.4. Let A € {:I:%, 0} and A € R. For any sequence of gradient Ricci
solitons (M, gk, [k, Pi)ken satisfying Ricg, +Hess(fx) = Agk, if

IRiclg, < K, inj, >1>0 and |Vflg(pk) <A,

then there exists a subsequence converging smoothly t0 (Moo, 800, foo> Poo), Which
satisfies Ricg . +Hess(foo) = Agoo With foo = limyo0 fi-

Besides the applications to Ricci solitons, we derive a curvature taming result which
can be applied to general Ricci flows whose initial curvature might not have a uni-
form bound. We say that the curvature operator is k-tamed by a constant C along a
complete non-compact Ricci flow if |Rm| < C +—* for all small # > 0. In [20], S.
Huang and L.-F. Tam showed that if a Ricci flow g(¢) starting from a non-compact
Kihler manifold is 1-tamed by some constant C, then g (¢) remains Kihler forr > 0.
Moreover, if C is small enough, then the nonnegativity of holomorphic bisectional
curvature can also be preserved. Therefore, it is rather important to find criterions
for the taming phenomenon. Note that such estimate is twofold: we would like to
have a uniform bound C on a uniform time interval. For lower dimensional closed
manifolds (dimension n = 2 or 3), M. Simon [31, Theorem 2.1] proved that every
(M", g) satisfying diam < D, Vol > V > 0 and Ric > —Kg with sufficiently
small K can generate a solution of the Ricci flow which exists up to a maximal time
T =T(D, V). Moreover, |Rm| is 1-tamed by a constant depending only on D and
V. In [10], Dai, Wei and Ye showed that every closed (M", g) satisfying |Ric| < 1
and conjugate radius > rg can generate a solution of the Ricci flow which exists
up to a maximal time T = T (n, ro) and Rm is %—tamed by C = C(n,rg). When
|Ric| < K, their theorem holds with C = C(n,rovK) and T = T (n, rov/K).
For complete non-compact (M", g) with n > 3, G. Xu [35, Corollary 1.2] showed
that, if Ric > —Kg and the averaged L”-norm (p > 75) of Rm has a uniform
bound K for all geodesic balls By, (x) with some radius ry > 0, then the Ricci
flow must exist and Rm is %—tamed by a constant C = C(K, K1, 1o, n, p) up to
t=T(K, Ky,ro,n, p).

Thanks to the explicit bound in Theorem 1.2, we can derive a taming theorem.

Theorem 1.5. There exists a universal constant C = C(n) such that for any smooth
Ricci flow (M"™, g(t)) and any point xo € M,

|Rm|(x,1) < Ct~" on Bay(xo, 1) forall t € (0, K‘l],
and
|Rm|(x, 1) < CK on Ba (xo, 1) forall t € [K_l,r2] :

where r? := inf{ t > 0| infpg,(x,.;)inj < +/1} and K denotes the maximum of

r~2 and sup | Ric | on U[O,rZ] Bg, (xo, 1).
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Before Section 5, where more applications of our main theorems are demonstrated,
we discuss the approach towards our aim via Moser’s iteration in Section 4. In
particular, we derive the following theorem by using Kotschwar-Munteanu-Wang’s
LP-estimate [21, Proposition 1]. To abbreviate the notation, we denote the parabolic
region emanated from B, (xg, 0) uptot = T by P(r; xo, T), namely, P(r;xo,T) :=
Q x (0, T], where Q2 C M is the topological region defined by B, (xg, 0). Further-
more, P(r; xo, T) is defined to be Q x [0, T'].

Theorem 1.6. Let (M", g(t)):c[o0,1] be a smooth solution of the Ricci flow. If

|Ric| < KinP@r;xo,T) and inf inj>1>0
Byr (x0,0)

forsome K, I,r > 0, then there exists C depending on K, I, r, T and the dimension
n such that |Rm|(xg,t) < C in P@r; xo, T) \ P(r; xo, %T).

Injectivity radius is a classical quantity used in convergence theories of Riemannian
manifolds. A uniform lower bound of it prevents the sequence of manifolds from
developing local collapsing. Although there is no analytical method to compute the
injectivity radius directly, one can derive a lower bound from local volume bound
provided that the curvature operator is bounded. This was proved for sequences of
manifolds and, furthermore, for sequences of solutions of the Ricci flow (See Sec-
tion 5.1 for more details). Combining with a celebrated theorem of Perelman which
states that the local volume can be controlled along the Ricci flow with locally
bounded curvature, one obtains the legitimacy of taking blow-up limits. However,
in this article we only assume a Ricci curvature bound, which is too weak to derive
a lower bound for injectivity radius from local volume bounds. It is still interesting
to ask whether the injectivity radius condition can be replaced by volume condition
plus certain integral curvature bound. Evan more, can we prove our theorems when
lacking information of injectivity radius? We derive some answers in the second
part of this paper, Sections 6 and 7.

Suppose that Ricci curvature is bounded by K and its derivative |V Ric | is
controlled by the derivative of scalar curvature |V R|, we prove that both |V Ric |
and |V R| are bounded for all ¢ € (0, %]. Precisely, we derive

Theorem 1.7 (Global estimate). There exists a constant C > 0, depending only
on a, B and n such that for every n-dimensional closed solution (M", g(t))ic(0.1)
of the Ricci flow, if the Ricci curvature and its derivative satisfy that |Ric| < K

and |V Ric| < oth_T1 + BIVR| forallt € [0, %] C [0, T), where K is a positive
constant, then
|[VRic|?> < CK*t™!

1
Jorallt € (0, ].
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Theorem 1.8 (LLocal estimate). There exist positive constants 6y and C depending
only on a, B, n and A such that for every solution (M", g(t)):e[0,6,/ k] 0f the Ricci

1
flow, if [Rm| < A on B, (x0,0), |Ric| < K and |V Ric| < «K (iz +14 K)2 n
BIVR| on P(r; xo, ty) for somer < \/6y/K and ty < 0y/K, then

|[VRic|? < CK? <—1 A K)
2
r t

on P(%;xo,to).

We doubt that |V Ric | can be controlled by |V R| for generic solutions of the Ricci
flow. However, we believe that it is true for a large variety of solutions including
Ricci solitons. A related result appeared earlier in a collaborated work of A. Deru-
elle and the author [4, Theorem 2.10]. The reader could find more discussions in
the last section.

ACKNOWLEDGEMENTS. The main part of this article was done when I visited
Ovidiu Munteanu in University of Connecticut in September 2015. 1 appreciate
the hospitality of the university and precious discussions with Ovidiu. Some part
of the work was done when I was a doctoral student at 1’Institut Fourier. I would
like to thank my advisor Gérard Besson for his encouragement and all kinds of
helps.

2. Global estimate of Rm

Given an n-dimensional Riemannian manifold (M, g) and a point p € M, we can
find a local chart (4, ¢), ¢ : U — R",suchthat p e Y C M and ¢ = (¢1, ..., @y)
consists of harmonic functions, i.e., Aggy = 0 for all k = 1,...,n. Under
these coordinates, the Laplacian of a function f which is defined by A, f =

JdLTgai(m gy d; f) can be reduced to

Aof =8980 f.

Moreover, if on a geodesic ball B,(p) C U one has |Ric| < K and inj > I,
then M. Anderson [1, Lemma 2.2] showed that for any ¢ € (0, 1), there exist
€ = €(K,n,o) and Cy = Co(e, I) such that harmonic coordinates ¢’s exist on
B.; with

gij(p) =46;j and |gij|/cl,a < Coon By,
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where

|8ijlc1o ==suplgijl + sup  r|okgijl
B,

By k=1, ,n

+ sup (r““’ |9 8ij (x) — 3kgij(y)|>
x#ysk=1,-n lx — yl°

and r := €l. (The notation | - |/ is adopted from [14, Page 53].) On the other hand,
one can compute the Laplacian of g;; under harmonic coordinates and derive

Aggij = —2Rij + P(gij, 08ij)

where P is a certain quasi-polynomial of g;; and dg;; (cf. [29, Chapter 10]). Hence
the standard elliptic regularity theory (cf. [14, Theorem 4.6]) tells that

8iilc20 = € (IRijlpo + I8isler ) @.1)

Note that when _the Ricci curvature and its derivative are bounded in the sense that
|Ric|> = g'*g/'R;jRy < K? and |VRic|? = gPig'*g/'V,R;;V, Ry < L, then
the norm of coefficients R;; and its derivatives shall satisfy |R; j|,C0,(, < C =
C(K,el, L). Therefore, one can use harmonic coordinates and (1) to derive a

bound for | g|’C2‘0. In particular, the coefficients of curvature tensor are bounded.

Since the tensor norm does not depend on coordinate choosing, the curvature R, jkl
is bound in the tensor sense. It is also equivalent to say that curvature operator Rm
is bounded. Such strategy will be used several times in this article. One should be
cautious that, for the elliptic regularity on Riemannian manifolds, the constant C
depends not only on n, o, but also on the upper bound of |g/|. (One can see this
when adapting proofs of theorems in [14, Chapter 2, 3 and 4] into the Riemannian
case.) Hence C = C(n,0,¢,1).

For the reader’s convenience, we prove the following compact version of The-
orem 1.1 first. The proof of the standard version of Theorem 1.1 is more subtle and
will be demonstrated in the next section.

Theorem 2.1 (Compact version). For any 8, n > 0andn € N, there exist positive
constants o and C such that for any K > 0 and any closed smooth Ricci flow
(M", g())iefo,ry with T > 3 > 0, if

IRic| <K and inj>8K~2 forallt e (0,T],

then

(1108

IVRic| < « (KTt_1> and |Rm| < CKTt™" forallt € (0, T].
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Lemma 2.2. For any §,n1 > 0 and n € N, there exists « > 0 such that for any
smooth Ricci flow g(t):c[o0,7] on a closed manifold M", if |Ric| < K, inj > 5

NI
and T > &, then

[\S1{U%}

IVRic| < (KTt‘1>
forallt € (0, T].

Proof. Suppose no such « exists, then we can find a sequence of Ricci flows
8k (t)1e[0,13], points py = (xg, t),and ay /" oo such that #; >0 and |V Ric |g, (pr) >

3 -
ar (KiTxt, 1) 2 By the point-picking lemma afterwards, we can find py = (X, %)
associated to py such that:

3

. - - 1\2
o |VRic g (pr) > ax <Kkatk 1) ;

_ _ __2 _
e |[VRic|g < 80 := 8|VRic|g (pr) on M x [tir — BrQ, °, fk], where B :=
2
.

_2 ~ _2 _
Consider the rescaling Ricci flows gx := Q gx with 7 := Q7 (t — 1) € [—pk, 0].
2 2

Then |Ricg, |, < Kk Q,° <« ’;—i \. 0 and |V Ricg, |3, < 8on M x [—p, O].
In particular, Ric has a uniform C%-bound.
Using Anderson’s lemma mentioned before,
injz > 6 Q% = 8 o(%(KkalT_l)% oo
8k — m k m k k

and the boundedness of | Ricg, |z, ensures the existence of harmonic coordinates on
a domain of uniform size. Moreover, g;’s may have a uniform C'-?-bound in this
domain. By elliptic regularity, gx’s, which satisfy Agy = —2Ricg, +P (gk, 98k),
have a uniform C?-bound. Namely, | Rmg, |z, ’s are uniformly bounded on M x
(— Bk, 0]. Applying Shi’s estimate, all higher derivatives of Rmg, ’s are uniformly

bounded on M x —% Bk, 0]. So the marked metrics (g, px) converge smoothly to
a Ricci flat metric (800, poo). This contradicts |V Ricg,, |¢., (Poo) = 1. Therefore,

3
we have |[VRic| < o (KTt )2, O
Lemma 2.3 (Point-picking lemma). For any o > 0 and any closed smooth Ricci
3
flow (M, g(t))sejo.r) with |Ric| < K and T > L, if |V Ric |(po) > a (I(Tz(;l)2
at some point py = (xg, to) with ty > 0, then there exists p = (x,1),t > 0, such

that

3 —
|VRic|(ﬁ)>a(KTf—1)2 and |V Ric| < 80 := 8|V Ric|(p)

on M X [lr—,BQ_%, t], where B := %0‘*%77-
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Proof. Here we use Perelman’s method for proving his pseudo-locality theorem
(cf. 128, Theorem 10.1]). Start from the point po with Qg := |VRic|(pg) >

(KTto_l) 2. If [VRic| < 8Q¢on M x [ty — ,BQO , tp], then we are done. Supzpose
this is not the case, then there exists a point p; = (x1, t1) with ] € [top — Q(; 3 1]

_2
and Q| := |VRic|(p1) > 80p. Note that = %a%n implies that BQ,, > < 1.

t=T
pg
T
T IﬁQ(;ZB P
| v T‘ 3
l()| I +ﬁQ172/3
I
I d
r=0 \ \
Thus, t; >ty — ﬂQ_% > lto. In particular,
3 3
0, > 800 > 8« (KTtO_1>2 > (KTtl_1>2
and thus
2 1]
< =1.
IBQl ) 1

_2
3

If [VRic| <8Qion M x [ty — BQ,
3
can further find p so that Q> > 80 > «(KTt;')? by similar process. Similarly,

, 11], then we are done. Suppose not, then we

_2
BO, 3 < %tz and so on. So #; always stays in (0, T']. Therefore, such process could

_2
be continued until we find a py so that [V Ric| < 8Qy in M x [tx—B O, 3 t¢]. Such
px must exist because |V Ric |(pr) > 8K Qo must be bounded in M x [0, T1]. O

Now we are able to finish the proof of the compact version of Theorem 1.1.

Proof. For a Ricci flow (M", g(¢)) with |Ric| < K and inj > (SK_% > 0 for all
t € [0,T], by Lemma 2.2, we have |V Ric| < a(KTt*I)% forall ¢t € (0, T]. For
each fixed ¢ € (0, T'], we consider g := (KTt~")g(r) and obtain

injz = 8(T+™1)7 =8, |Ricglz <771 <1 and |VRiczl; <.
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So by the elliptic regularity (1), the metric tensor g has a uniform €% -bound which
depends on 7, o, § and «. By choosing an arbitrary o € (0, 1), | Rmg|3 is bounded
by a constant depending only on n,é and «. After rescaling back, we see that
the curvature of g(¢) satisfies |[Rm| < CKTt ! with C = C(n, 8, ). Since 7 is
arbitrary in (0, T] and o = (8, 1, n), the theorem is proved. O

3. Local estimate of Rm

The estimate in the previous section also holds locally. Namely, the curvature op-
erator can be bounded if |Ric| and inj are bounded in a parabolic neighborhood
of uniform size. To prove this, we need the following local point-picking lemma
which shows that for any point with large |V Ric |, one can find another point nearby
equipped with a controlled parabolic neighborhood.

Lemma 3.1 (point-picking lemma, local version). For any n, o > 0 and any Ric-

ci flow (B4ﬁ(xo, 1), 8(t))iefo,7y with |Ric| < K and T > %, which is smooth up
3

to boundary, if |V Ric |(p) >« (KTI_I)2 at some point p = (x,t) in (Bzﬁ(xo, 1),

g())ie,1], then there exist € = €(n) > 0 and p = (X, t) with di(x, xo) < 4T
and t > 0, such that

[\STI%}

|VRic|(ﬁ)>a(KTt_’1) and |VRic| <80 := 8|V Ric|(p)

- - 2 _ 2
in B _ 1(x,t),t € [t — BQ 3,t], where § = %eza?n. In particular,

B2Q 3

_ - - 2
Bﬁ%Q_%(x,t) - B4ﬁ(xo,t)f0reacht et—BO 3,t].

Proof. To abbreviate the notation, we define the backward parabolic metric ball
based at (xx, t4) by

Br; x, ty) = U By (x4, 1)

te(ts—r2,ty]

= {(x, t)|distg(,)(x, Xg) < T, tE (t* — r2, t*]} .

We use the same induction argument as in the proof of the global point-picking
lemma. In the proof of the global version, we have seen that to proceed the ar-
gument, we need to justify that pg’s can stay in a finite time-region. Here the
situation is more subtle: we need to make sure that there exists an € > 0 such that

1 —% . . . 1.2 2
B(B2Q, s x, t) is contained in (U, ¢ (9. 7] B4 7 (X0, 1), Where B := se~a 3.

Now we start from p = (x, t) and look at the parabolic region B(,B% Q_-%; X, t).
If B(B2 Q™% x, 1) C Uye.r) Bayr(¥0, 1) and [V Ric| < 80 := 8|V Ric|(p) in

. . . L1
this region, then we are done. If not, then there is a p; € B(82 Q™ 3; x, t) such that
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Q1 :=|VRic|(p1) > 8Q. Similar to the proof of the compact version, we wish to
go on finding successive py’s until we acquire p. So we should check

_2
e f’s willnotreach0: 8- Q, 3

e x;’s stay in a distance less than 34/T from the center xq at each time fx:

| _2
dtk ()Ck, XO) = dlk,l ()Ck_],.xo) + IBQk_S]
_2 _2
< dpy_,(xk—2, x0) + ,BQk_32 + 18ij1
_Z _2
< d; (x1, x0) + ,3Q1 ’ -t ,BQk_31
_2 _2
<2VT +\BOT5 +4/BO,F +--+ /B0,

<WT+ypo i+ /ip0 i+ 1ﬁQ‘%
<2JT +2/BQ73

1

1
< 3«/7, if € is small enough, for instance, less than —;

12 3 2 o —1p—1 1.2, .
< j€Twrn-«o 3Kk Tk Ik < 5€°1;

V2
WNT 4T
t=T @ .
Po P
o

\] AL

ﬂQ{m; ’_.l

L

t=0

. B(ﬂ%Qk Xk 1K) C Ute(O T B4f(xo, 1):
Forany g = (£,7) € B(,B Qk ; Xk, Iy), since

_2
3

Kl —t| < Kp-Q,° =

N —



1564 CHIH-WEI CHEN

we have

d- (&, x0) < d¢ (&, xi) + d (xg, Xx0)

1 -1 _
< B2Q. 7 +dy (xp, xp) - X107

1
<€,/ Sk +3VT - o2

Sﬁ( %e+3~e;€2’7>

< 4ﬁ, if € = €(n) is small enough.

Therefore, this local point-picking lemma follows by the same argument of induc-
tion as in the proof of Lemma 2. O

Now we demonstrate the proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. The idea of proof is the same to the compact version, so we
will be a bit sketchy on the whole process but focus on the crucial steps. Sup-
pose there exist (B4ﬁ(xo, 1), 8k (t))te[o,71, With points x; € Bzﬁ(xo, ) and
ay — oo such that the first conclusion is not true, i.e., Qx := |V Ric g (pr) >

o (K Tyt 1)%. By the local point-picking lemma, we can find p;’s and the as-

. . U N
sociated parabolic regions B(82 Q ,3 ; Xk, Ir)’s to run the blow-up procedure, where

_1 _ _2
B = %EZOl%?]. Indeed, we rescale the metric g (¢) on B(/B% O} Xk, k) by Q) =

2
(IVRic | (7)) > a KTkt and obtain
: 53 -3k
|Ricg g, < Kk Q7 <o~ Fk NO

and
1 1

1 5 1
injg, = 8- o (Tt ") = a7 00

on g(ﬂ%; Xk, tx),as ag /' 00.

As in the proof of the compact version, we encounter a contradiction on a sub-
sequential limit. Therefore, there exists ¢ > O such that |V Ric| < a(K Tt_l)% for
all Ricci flows (B, /7 (xo0, 1), 8(1))se0,7]-

Fix an arbitrary ¢ and rescale the metric by letting § := KTt 'g(¢), as in the
proof of the compact version, one obtains

1
injz = 6 (T+™")" 28, [Ricg|; <T~'r =1 and |VRicg|; <
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in §2ﬁ(x0, t). So by the elliptic regularity (1), |[Rmz|z < C in §p(x0, t) where
C =Cn,é,a)and p = p(n, 8, n). After rescaling back, we see that the curvature
of g(t) satisfies |[Rm| < CKTt 'in BPW(XO, t) with C = C(n, §, @) and
thus prove the theorem. O

Proof of Theorem 1.2. The key of this proof is the following observation: in the
proof of local point-picking lemma, one can see that the parabolic neighborhood

. — T . .o L= 1
associated to p must be small if 7 is close to 0. Precisely, the radius is 2 Q™3 and
its square is less than %f . Hence, when performing the blow-up argument along
these picked points, we do not need a uniform lower bound of injectivity radius.

Instead the 1nJect1V1ty radius is allowed to decay at a rate proportronal to O~ 3=
ozk (Kkahk )~ 3 , L.e., either inj > K 2 orinj(x, ) > h () is enough. It is
not hard to check that, if the condition |V Ric |[(p) < (¢ K Tt_l)% in the local point-

picking lemma is replaced by |V Ric|(p) < (@K Th_l(t))%, for some positive
function h(t) < t for all t € (0, T'], then the lemma still holds with the conclusion

replaced by |V Ric|(p) < (aKTh_l(t_))%. Now we use this modified version to
prove Theorem 1.2.

Again we argue by contradiction. Suppose there exist (B, JT (x0,1),8k(t))re[0.175
with points x; € Bzﬁ(xo, t;) and ax — oo such that Q; := |V Ric|g, (pr) >

oek(Kkahk_l)%. By the local point-picking lemma (with ¢ being replaced by A
in the bound of VRic), we can find pi’s and the associated parabolic regions

B(,B Qk ; X, fx)’s to run the blow-up procedure where B : e 203 n. Indeed,
we rescale the metric gx(¢) on B(,Bf Qk s Xk, tx) by Q,; := (|[VRic |gk([7k))§ >

2 _
o Kkahk_1 (tx) and obtain

I

. ! k
‘Rlcgk‘gkaka3§ak kaoz 3Tk\0
and )

1 1.-\2
injz, = 8- min :Kk ,f(z)} (Kkahk D)

To derive a uniform lower bound from the second inequality, we study the following
two cases:

e At points where inj, > 6K k_ 2, we have

_1 1 _ 1 _
injg, > 8- K, 7o) (KiTeh ' (i0)? = 8- of (Tih ' (1))2 7 00
1
e At points where inj,, ;) > 8h} (), we have
1 1 B 1
injgk > 8]’1]? (l) . O[]? (Kkahlzl(tk))% > m_%8r’%(xlg’ /‘ 00
by the assumption of A (z).
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In either case, the rescaled injectivity radius has a uniform lower bound on
~ 1 _ - .. .
B(B2; Xk, tx). So a contradiction can be derived as before and one can conclude

that |V Ric| < a(K Thfl)% . At last, by using a rescaling argument as in the proof
of Theorem 1.1, one achieves |[Rm| < CKTh~! for some C = C(n, 8, n, m) in
W(xo, t) for every fixed ¢ and thus the theorem is proved. O
Remark 3.2. The prototype for the function % is h(¢) = ¢. In general, if h(f)
is a concave function or a decreasing function, or a conjunction of them, then it
satisfies the assumption that there exists m > 0 such that for all t* € (0, T'], h(¢) >
m~' - h(@*) forallt € [%t* t*]. For instance, /() could be % sin ”T’
Remark 3.3. By examining the proof step by step, one sees that the injectivity
radius assumption in our theorem can be replaced by a lower bound of C!-?- or
W?2P-harmonic radius. This is more explicit than the original assumption because
harmonic coordinates can be constructed by using analytic method (e.g., [15]). It is
possible, but still a challenge, to estimate harmonic radius along the Ricci flow.

4. A geometrical alternative to De Giorgi-Nash-Moser’s iteration

In this section, we compare our geometrical blow-up argument with Moser’s it-
eration technique. In particular, by using Moser’s iteration and results in [21],
we derive a theorem which requires a weaker injectivity radius assumption, and
has weaker conclusion, than Theorem 1.1. We first recall the following crucial
lemma [21, Proposition 1].

Proposition 4.1. Let (M", g(t)) be a smooth solution to the Ricci flow defined
for 0 <t < T. Assume that there exist A, K > 0 such that |Ric| < K

on P(\/—,xo,T) = B A (x0,0) x [0, T]. Then, for any p > 3, there exists
c=c(n, p)>0so thatforallO <t<T
1R gy @) < ce8T (I RmMIL () + KP (14 A7) Voly((B))
where B' = B_a (x9,0) and B = B_a (xg,0).
2K VK

By using this proposition, Moser’s technique and its generalized version for varying
metrics (cf. [22, Chapter 19], [36,37] or [10, Theorem 2.1]), Kotschwar-Munteanu-
Wang derived the following bound:

. A 1 B
|Rm|(xo, T) < ce“KT+H (1+<KO> +<ﬁ+A ) )(K(1+A‘2)+Ao)-

Here a, B, ¢ are constants depending only on n and Ag = supg , (y,.0) |Rm|.

VK
To compare their approach with ours, we prove the following theorem based
on Kotschwar-Munteanu-Wang’s argument.
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Theorem 4.2. Let (M", g(t)):c[0,1] be a smooth solution of the Ricci flow. If

|Ric| < KinP@r;xo,T) and inf inj>1>0
By (x0,0)
forsome K, I,r > 0, then there exists C depending on K, I, r, T and the dimension
n such that |Rm|(xo, 1) < C in P(r; x0, T) \ P(r; x0, 3 7).

Proof. For any point y € By, (xgp, 0), consider the harmonic coordinates around it.
Since Ricci curvature is bounded and the injectivity radius is bounded from below,
these coordinates cover a geodesic ball B¢j(y,0) for some ¢ depending on K, /
and n. Since ||Ric|/zr is bounded, elliptic regularity of the equation Agg;; =
—2R;j + P(g, dg) shows that || Rm||Lr(B,,(y,0)) is bounded by some constant C for
all p > 1 (¢f. Section 2 or [1]). Furthermore, a standard result due to Gromov
says that the lower bound of Ricci curvature implies that B, (xg, 0) can be covered
by a finite collection of B¢;(y;,0)’s,sayi = 1,..., N. Note that N only depends
onn,el,r and K. Hence ||Rm| 1rB,, (x,0)) must be bounded by some constant
Cr=Cr(n,K,I,r,p).

By Proposition 4.1, when p > 3, the evolving L”-norm of |Rm| on B, (xg, 0)
is controlled by

IRmIZ g,y (0 e (1RMIE g, ) K2 (1 €IVE) ) Volgi (By)).

where B, = B,(xp,0) and B = By, (xp, 0). Divide both sides by Volg(;)(B;) and
use ||Rm||£,,(32)_)(0) < C?, one obtains

cekTcy Volg() (Bar)

—  __|Rm|?, (t)giLJrceC”(Ku(el)*ZP)- .
Volg (1 (B;) LPBD = Vol (By) Volg (1) (By)

To find a lower bound for Volg()(B;), we need Berger-Croke’s theorem (cf. [8,

Proposition 14]): there is a uniform constant Cj,j which depends only on n such

that, for any Riemannian metric and any r > 0, ian inj > [ implies that Vol(B,) >
2r

CinjI". Thus

o IRl 5n (O
Volg()(Br) Loy

Vol B
<ceKTCPCinil" + ceKT (Kp n (61)—2;;) ' Voig(t)((Bzr))'
g\ Pr

Since %dVol = —R - dVol along the Ricci flow, the volume ratio which appears in
the last term can be estimated by

Voley(Bar) _ o7 Vole(B) - oxr .k

VOlg(,)(Br) - VOlg(O)(B/) -
where the last inequality comes from Bishop-Gromov volume comparison theorem.
Therefore, W || Rm ||§ p( B,)(t) < ceKT and we may apply Moser’s iteration
and derive a similar curvature bound as in [21, pages 2620-2623]. O
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As one can observe easily, Theorem 1.6 only involves the initial lower bound
of inj, while Theorem 1.2 involves inj, , for  # 0. On the other hand, the bounds
in Theorem 1.1 and 1.2 are much better than the one in Theorem 1.6.

Remark 4.3. After checking the argument carefully, one can see that our geomet-
rical blow-up method is valid for general geometric flow -2 5;8 = R possessing Shi’s
property, where R is a symmetric two-tensor defining by Ricci curvature and g.
Indeed, if such a flow %g = R satisfies %lRm| < A|Rm| + C|Rm|?, then its cur-
vature can be controlled by Ricci curvature and the injectivity radius in the sense
of Theorem 1.1 and 1.2. This shows that our approach is somewhat an alternative
argument to Moser’s iteration. Note that one more advantage of our approach is
that one actually obtains a C% -bound, not only an L*°-bound.

5. Applications

5.1. Compactness of the Ricci flow

It has been known for decades that a sequence of closed connected Riemannian
n-manifolds {(Mg, gr)}ren With bounded curvature, bounded diameter and volume
bounded from below by a positive constant must contain a subsequence which con-
verges in C L“—topology to a Riemannian rn-manifold (M, gc0) (cf. [15]). Thus
we say the collection

LV:={(M",g,L,V,D)| |Rm| <L, Vol >V and diam < D}

is pre-compact for any given real numbers L > 0,V > Oand D > 0. In [13],
L. Z. Gao showed that the same conclusion holds when the condition |Rm| < L is
replaced by |Ric| < K and a certain integral bound of |Rm|. On the other hand,
Anderson [1] showed that, if inj := infy; inj(x) > [ > 0, then |Rm| < L can be
replaced by merely |Ric | < K. That is, the set

KI:={(M",g,K,I,D)| |Ric| < K,inj > I and diam < D}

is also pre-compact for any given real numbers K > 0,/ > Oand D > 0. As
observed by Cheng-Li-Yau [6], and Cheeger-Gromov-Taylor [5] independently, the
condition of injectivity radius can be derived from bounds of | Rm| and Vol, thus LV-
condition implies KI-condition. Note that the inverse is very likely not true although
we do not notice any constructed counter-example in the limited literatures we have
surveyed. In particular, one seems not able to improve the convergency from C ¢
to C? by using merely the KI-conditions.

Such convergence theory plays an important role in the study of singulari-
ties of the Ricci flow. Indeed, given a singular portion of the flow, one can blow
up the solution around it and characterize the singularity by using the limit of
these rescaling solutions. Thus we need the compactness theorem derived by R.
S. Hamilton in [18] to ensure the existence of such limiting solution. A partic-
ular version of Hamilton’s theorem says that if a sequence of marked complete
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solutions of the Ricci flow {(My, gk (%), Xi)re[0, 7] keN satisfies |[Rmlg, (x,1) < L
for all x, ¢ and Volg, (0)(B,(x¢)) > V for some r > 0, then there exists a sub-
sequence converging in C >’ -topology to a marked complete solution of the Ricci
flow (Moo, 800(t), Xoo)re(v,71- The smooth convergency is due to Shi’s estimate,
which says that all higher order derivatives of Rm are bounded provided that Rm
is bounded along the Ricci flow. Hence Hamilton’s theorem can be seen as a LV-
compactness theorem for the Ricci flow. By using Theorems 1.2 and 1.6, one can
derive a C*° KI-compactness theorem without assuming any bound on the curvature

operator.

Corollary 5.1. Let (My, gk(t), xk)ic0,1] be a sequence of marked complete solu-
tions of the Ricci flow. Suppose there are constants K, 8, I such that |Ric |g, <
K on My x [0, T] and

inf inj > 8/t or inf inj>1>0 forallk,
M x[0,T] M; x{0}

then there exist a subsequence S := (M;,g;(t),x;) and a solution S = (Mwo,
8oo(), Xoo) Of the Ricci flow over t € (0, T such that S; converges in C*°-topology
to Seo 0n every time interval [e, T] withe > 0 as j — oo.

5.2. Ricci soliton

Ricci solitons are manifolds (M, g) coupled with a smooth vector field X, which
can generate self-similar solutions to the Ricci flow. Indeed, if a Riemannian man-
ifold (M, g) satisfies Ric, +%Lxg = Ag for some X, then g(¢) = p(t)p;g(0)
solves the Ricci flow, where p(¢) = 1 — 2t and ¢; : M — M is the one param-
eter family of diffeomorphisms generated by pX (cf. [3, Chapter 1]). Moreover,
if X = Vf for some smooth function f : M — R, then the soliton is called a
gradient Ricci soliton.

Curvature growth is an important issue for the study of gradient Ricci soli-
tons. Some classification results are built on the growth assumptions and, on the
other hand, people expect that curvature of solitons should obey certain natural
growth/decay laws. In [25], Munteanu and M.-T. Wang proved that every shrink-
ing gradient Ricci soliton with bounded Ricci curvature must have a polynomial
bound of its curvature. The following theorem shows that, if the injectivity radius
is bounded from below, then the curvature can be uniformly bounded by a constant.

Theorem 5.2. Given any X € {:tl, 0}, all n-dimensional Ricci solitons
o1
Ric + 3 Lxg=A\g

with |Ric| < K and inj > [ > 0 have the same curvature bound.

Proof. Consider a self-similar solution generated by the soliton on a time inter-
val [0, #*] for some * > 0. Since the soliton changes only up to a scaling factor
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along the flow (modulo by diffeomorphisms), so the bounds of curvature and in-
jectivity radius are changing according to the scaling factor. Indeed, Ricg () (x) =

1
P! (1) Ricgo) (@1 (1) and inj () = p2 (1) inj ) (@1 (x), Where p(1) = 1 =24,
on the self-similar solution. By applying Theorem 2, we know that |V Ric | is uni-
formly bounded at = r*. That means |Rm| < C at r = t*, where C depends on
K, I,t*, ) and n. Because g(0) differs to g(¢*) only by a scaling factor, we have
|[Rm| < C att =0. O

Based on this curvature estimate, one can further ask for compactness result.

Corollary 5.3. Let A € {:I:%, 0} and A € R. For any sequence of gradient Ricci
solitons (My, gk, fk, Pk)keN satisfying Ricg, +Hess(fx) = Agg, if

IRiclg < K, injy, =1 >0 and |V flg(pr) < A,

then there exists a subsequence converging smoothly to (Mo, 800, foos Poo), Which
satisfies Ricg, . +Hess(foo) = Agoo With foo = limg_ o fi.

Proof. As in the proof of previous corollary, we can evolve these solitons to some
time * > 0 and obtain uniform bounds for Rm and injectivity radius for all ¢ €
[0, *]. Moreover, all the derivatives of Rm are bounded at ¢+ = ¢* by Shi’s estimate.
Hence, all the curvatures and their derivatives are bounded at ¢+ = 0 and thus there
exists a subsequential limit (Mo, goos Poo)-

To show the convergence of fi’s, we normalize f by subtraction such that
f(pr) = 0 and then use |Hess(fi)| = |Agr — Ricg, | < n|A| + K. Indeed, the
bound of Hess( fi) shows that |V fi| grows at most linearly and | fx| grows at most
quadratically from the point pg, where fr = 0 and |V f;| < A. In particular, for
any given r < 00, there are uniform bounds for f;’s and |V f|’s on the geodesic
balls B,(px). So fx’s have a uniform C 2_bound for every fixed r. Moreover, all
higher derivatives of f; depend only on the derivatives of Ric and lower deriva-
tives of fi, thus are uniformly bounded. Therefore, there exists a subsequence of
(Mg, gk, fx, px) converging smoothly to a Ricci soliton (Mso, goos foos Poo) Satis-
fying Ricg  +Hess(foo) = Agoo- O

5.3. Curvature taming around the initial time

In Theorem 1.2, if we set T = % then we obtain an estimate |Rm| < Ch~'(z)
where C is a constant depending only on n, § and . Surprisingly, this bound does
not involve the bound of Ricci curvature. Combining with the fact that inj, ) is
not involved in Theorem 1.2, we can prove that every Ricci flow is 1-tamed by a
universal constant up to a certain time.

Theorem 5.4. There exists a universal constant C = C(n) such that for any smooth
Ricci flow (M", g(t)) and any point xo € M,

\Rm|(x, 1) < Ct™" on By (xo, 1) forall t € (o, K—‘],



SHI-TYPE ESTIMATES BASED ON RICCI CURVATURE 1571

and

|Rm|(x,1) < CK on Bay(xo, 1) forall t € [K—l, rz],
where r? ;= inf{ t > 0| infpy,(x,.r) inj < ~/7} and K denotes the maximum of r =
and sup | Ric | on |y ,2) Bsr (x0, 1).

Proof. Since the flow is smooth, for any xo € M, there must exist an r > O by the
continuity of inj. That is, inj > /7 on U[O’rz] Bs, (xp, t). By the definition of K, we
have |Ric| < K on U[o, r2) Bsr (x0, 7). Consider y € By, (xg, 0) and apply Theorem
12withd =n=1,T = % < r2and h = t on the domain U[O’rz] B4y (y, t), one
obtains |Rm|(y,t) < Ct~! for some C = C(n) and r € (0, K~!]. Since y is
an arbitrary point in By, (x0,0), |Rm|(x,t) < Ct~!' on U(Onyl] Bay (x9,t). For
t € [K~!,r?], one may apply Theorem 1.2 on U[,*,I*JrKfu] B (y, t) and see that
|[Rm|(y, t*) < CK. Since t* is arbitrary, the second statement of the theorem is
proved. O

6. An estimate of VRic without using injectivity radius

For every Riemannian manifold, the traced second Bianchi identity V;R;; = %8,- R
holds. In view of this, we say that a manifold satisfies strong Bianchi inequality
if the pointwise norm estimate |V Ric| < B|VR]| holds for some 8 > 0. For a
solution of the Ricci flow, we consider a weaker condition as follows.

Definition 6.1. Let U be an open set of a manifold M. A solution of the Ricci flow
(U, g(t))ieo,r) With |Ric| < K is said to satisfy the weak Bianchi inequality if

IVRic| < aKt? + B|VR|

on U x (0, T'] for some constants «, 8 > 0.
This inequality means that the trace-free part of V Ric is bounded by either the

traced part or a constant which is allowed to depend on t7 . This is not a strong
restriction in the sense that it holds on a large class of static manifolds. More details
about this can be found in the next section.

In [30], W.-X. Shi proved that if the curvature operator is bounded along the
Ricci flow, then all the derivatives of it are bounded uniformly except for the initial
time. If the boundedness condition of the full curvature operator is replaced by the
one of Ricci curvature, then it seems that Shi-type estimate does not hold. However,
if we impose the condition that weak Bianchi inequality holds, then we can derive
a Shi-type estimate for Ricci curvature. Note that the weak Bianchi inequality is
quite looser than the strong one, because it allows |V Ric | # 0 whenever |[VR| =0
at some point.

Theorem 6.2 (Global estimate). There exists a constant C > 0, depending only
on a, B and n such that for every n-dimensional closed solution (M", g(t))ic(0.1)
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of the Ricci flow, if the Ricci curvature and its derivatives satisfy that |Ric| < K

and [V Ric| < K17 + BIVR| forallt € [0, %] C [0, T), where K is a positive
constant, then
|[VRic|?> < CK?%!

1
forallt € (0, %l

Remark 6.3. When ¢ = 0, we define % to be co. Hence the aforementioned in-
equalities, which are concerned, hold trivially.

We recall the following evolution equations that will be used in the proof:

3 _ ) 3 2 2 2_ 2 i 12
BtR_AR+2|RIC| , 3tR =2R (AR+2|Ric|”)=AR"—-2|VR|"+4R-|Ric|

and
9
5|VR|2 - 2<VR, v (AR +2|Ric |2>> —2Ric(VR, VR)

2
< A|VR>=2 ‘VZR) +4|Ric| - [VR|* + 8|Ric| - |[VRic| - |VR|.
Proof. Since &R = AR +2|Ric|?, by | Ric| < K, we have

0

aR2 < AR? —2|VR* + CK?,
where C is an indefinite constant varying line by line. Moreover, using |V Ric| <
ocl('t%l 4+ BIVR|, we can derive

0 2
VR < AIVR[* -2 ‘VZR‘ L CK|VR? +CK3\,

Let F = t|VR|?>+ AR? for some constant A. We can show that %F < AF+CK3
whenever A is larger than some constant depending only on 8. Comparing with
the o.d.e. j—tqb(t) = CK?, one can prove that F' < C(K? + K30 by maximum

principle. Hence [VR|?> < CK?t~'. By using the weak Bianchi inequality again,
we have [VRic|?> < CK?t~ 1. O

To show the local version, we have to do more efforts. To abbreviate the nota-
tion, we define the parabolic region emanated from B, (xg, 0) as

Pr; xo,t9) := Q2 x (0, t9], where Q C M
is the topological region defined by B; (xg, 0).
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Theorem 6.4 (LLocal estimate). There exist positive constants 6y and C depending
only on a, B, n and A such that for every solution (M", g(t)):e[0,6,/ k] 0f the Ricci

1
flow, if [Rm| < A on B, (x0,0), |Ric| < K and |[VRic| < aK (% + 1+ K)? +
BIVR| on P(r; xo, ty) for somer < \/6p/K and ty < 0y/K, then

2 o1 1
IVRic|" < CK"| 5 +-+K
r t
on P(%; X0, 10)-
Proof. Recall that along the Ricci flow

3
ERz = AR?> —2|VR|?> + 4R - |Ric|?

and

d 2 2 252 . 2 . .

§|VR| < A|VR|* =2 ’V R’ +4|Ric|- |[VR|” 4+ 8|Ric|-|[VRic| - |VR]|.
Denoting u = r% + % + K, by the assumptions and Yang’s inequality, we have

0 2 2 2 2 2 3
IR < AIVR| —2‘v R‘ + CK|VR]? + C1Ku,

for some constant C; > 0.
Let S = (BK2+R?)-|VR|?, where B > max{n? —i—4nC1_1 , 3212} is a constant.
We derive

0 0 2 2 2 2 0 2
Zs=2R2.|VR (BK R)—VR
ot ot | | + + 8t| |

< (AR2 _2|VR? + 4R - |Ric|2> VR
" (BK2 n R2> (A|VR|2 —2|V2R1?> + C,K|VR] + C1K3u>
< AS —2VR2.V|VR]> —2|VR[* =2 (B n n2> K? ‘sz‘z
+ (CIB +Cin? +4n) K3|VR +C, <B + n2> Kou
< AS —2VR?.V|VR[? —2|VR|* — 2BK? )VzR‘Z
+2CiBK?|VR|?> + 2CBK u.

We want to control the bad terms 2VR2 - V|VR|%, whose sign is unknown, and
2C1BK?3|VR|?, which may not be bounded. Indeed, using the following two in-
equalities, they can be absorbed by the other terms:

1 2
2VR2.V|VR?| < 8nK|VR[? - ‘V2R| < 3IVRI +320°K” ‘VZR‘
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and
2

VR|*
IVR| +3

2C1BK3|VR> < Z|VR[* +2C?B*K® < C?B*K>u.

N —
N —

Since B > 32n?, substituting these two inequalities into the evolution equation of
S, we get

2

) S
— S <AS—|VRI*+ C2B*K°’u < AS — ——— + C,B%*K°u,
o = VR + C2B°Ku = aprgs TR

for some constant C». Consider F = bSK ~* with some constant b := min{#,
1
C,B?

} depending only on 7, one can derive

d 2 2
—F < AF — F*+u”.
ot

To proceed the proof by using maximum principle, we need a space-time cut-off
function. However, the standard way to construct such a function requires the bound
of |V Ric |, which is exactly what we want to derive here. (Because the evolution
equation of |V2¢|, which can be seen in the proof of Lemma B afterwards, involves
VRic.) This problem occurs also in the proof of Shi’s estimate. To tackle this,
Hamilton [19, Section 13] used a continuity argument and eventually showed that
there exists a short time 6y K ~! such that Shi’s estimate holds. The first step is to
take a cut-off function ¢ on the initial manifold M satisfying {x € M|¢ > 0} =
Br(x0,0), ¢ = r in B%(xo, 0,0 < ¢ <r < Ar,|Vg| < Aand |[VZp| < 4

for some constant A > 1 depending only on » and the initial curvature bound A.
Extend ¢ to be a space-time function by letting ¢ be independent of time. Since
the Ricci flow is smooth, by continuity, |Vp|? < 2A? and ¢|V2¢p| < 2A? holds on
P(r; xo,61/K) up to some time 6;/K > 0. Moreover, we can construct a barrier
function H which behaves welluptot = 6; /K.

Lemma A. LetH:C(pi;—l—%—{—Kforsome constants c =14+4n and d =2(140y).
Then %H > AH — H> +u? on P(r; x9, 01 /K).

By using the maximum principle, one can show that H — F cannot vanish on
P(p,r,01/K). Hence H — F > 0 on P(p,r, 6,/K) for some 6, > 6;. Com-
bining with the following lemma, we can show that 8; has a uniform lower bound,
i.e., 61 must be larger than or equal to the uniform constant 8y described in the fol-
lowing lemma. We may assume 0; < 1 (otherwise the uniform lower bound 6y can
be simply taken to be 1).

Lemma B. There exists a constant 6y which depends only on a, B, n and A such
that if |Ric| < K and F < H onP(r; xo,0/K) for some 6 < 0y andr < \/0/K,
then |Vo|? < 2A% and ¢|V?@| < 2A% on P(r; xo, 0/K).
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Indeed, suppose on the contrary that 6; < 6p, then this lemma tells us that the
estimates of derivatives of ¢ hold for time beyond 6; . This contradicts the definition
of 6.

Therefore, F < H on P(r; xg, 6p/K). We conclude that

IVR|* =

FK* K* ((14+4m)A%2 2(1+6)
< + +K
b(BK? + R?) ~ bBK? @? t

<CK2<L+£+K>
- 2
@2t

and
1 1
[VRic|* < «®K?u + B|VR|* < oK ?u + CK? <—2 +o+ K>
%
2 f 1 1
=CK°|z+-+K
r t
for some C depending only on «, 8, n and A. O

Now we prove Lemma A and Lemma B.

Proof of Lemma A. We show that — % H + AH + u? < H? by the following cal-
culations. Using |Vp|?> < 24%,¢|V?p| <2A%andr < 6, /K.

3 , d e 11 2
——H+AH+u" = 5 +cAA |5 )+ |5 +-+K
ot t2 @? rz ot

IA
(3]

d cA? 1 1 6\
24+ (6Vv 2—2A) 4=
l‘+(p4(|(p| (p¢+<r2+t+t)

d cA? 1\? 1+6\?
—+c—4<12A2—|—4nA2>+2<—2) +2( + 1)
t [ r t
2
(12 + 4n)cA* A? 21+ 612 +d
@ @ t

(12 4+4n)c +2)A* 2(14+6)2+d
4 + 2 :
@ t

IA
(3]

IA

Choose ¢ = 14 + 4n and d = 2(1 + 61), then we have

(12 +4n)c +2)A* 21+ 61 +d
< - + -
® t

2
cA? d\? 9
=\—=x) +t\7) =H". O
4] t

9 2
——H+ AH +u
ot
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Proof of Lemma B. By definition, Vo = g'/ pje; = ¢'e;. Thus

9 9 /. o
1V Vo|? = o (g”wiwj) =2R,8" g/ pip; < 2K|Vgl|?

whenever |Ric| < K. Therefore, |V(p|2 < A2e2Kt < 2A2 whent <

6 < log+/2.
By using Uhlenbeck’s orthonormal frame {E,} (cf. [17, page 155]), which sat-
isfies %E"z = g RjxEX, one can derive

6
4 and

9 VoVpe = 9 E.E 9 (T, E.0)
8tab‘p—atab(p 91 abLc®
= Rchachp + RdanVMP - (VaRcb + VbRaC - VcRab)Ec(p-
Hence

a . .
0| V2p| = = [ V2| = Co (IRic|[V?p| + |V Ric Vg ).

By the assumption F = b(BK? + R>)K*|VR|> < H = Cwif + 94 + K and the
weak Bianchi inequality, we have

VR K* cA2+d+K cA2+d+91
- b(BK2 + R2) ~ bB t

|V Ric| < K,/1+1+K+ﬁ K +d+91
1C o
- b t

A2 d+0
<ck | [E )
() t

and

where C depends on «, 8 and n. Recall that ¢ < r, A > 1,c = 14 + 4n and
d =2(1+6)) < 4. Hence

2
%¢|V2§0| < CKg|V?0| + CK|V<p|\/cA2 + m

<CK (w{v2¢| +A+ L) ,
7i

where C depends on «, 8 and n. By comparing with the ordinary differential equa-

tlondtqﬁ CK(¢>—|—A+\/_
that

as Hamilton did in [19, pages 45-46], one can show

¢|V2p| < CK! <A2 + CK(Af + 2rﬁ)) .
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Therefore, when r < \/% and r < % for some 8 = 6(«, B, n, A), we have
9| V3| < 2A%. O

7. Further discussion on Bianchi inequalities

In this section, we discuss the validity of Bianchi inequalities on a fixed Riemannian
manifold. For general Riemannian manifolds, the derivative of Ricci tensor can be
decomposed as follows.

Theorem 7.1 (Cf. [16 page 288] for n = 3). Let E;jx = a(gijokR + gikd;R) +
bgjxdi Rwitha = m and b = ——a(n+1) Then the decomposition ViR j; =
Eijk + Fijk Satisﬁes that glJFljk = gj Fl_]k = g Fz]k = 0 and ( ijks l]k) 0.
In particular, we have

\ViRji|* = |Eijk|> + |Fijx|* and |Eijx|* = (a +b)|VRI*.

Remark 7.2. Whenn = 3,a = 55,b = 35 and | E;jx|*> = 5|VR|* whenn = 4,
a=15.b=7%and |Ej|* = %|VRI?.

From this proposition, we know that a manifold satisfies the weak Bianchi inequal-
ity if the trace-free part of V Ric can be bounded by the non-free part and a con-

stant, i.e. |F,~jk|2 < |E,~jk|2 + C. Note that when n — 00, a + b — 0 and thus
|VRic| ~ |Fjjkl|.

Proof. Using g F; k= gjk Fijr =0 and the traced second Bianchi identity V; R i =

30 R, one can derive (n + 1)a +b = % and 2a +nb = 1. Thus a = Mﬂ%

Furthermore, an easy computation shows that | E; Jk|2 (2(n + Da’+ 4ab +
nb?)|VR|* and (Ejjk, ViRjx) = (a+b)|VR|*. Observing that 2(n + 1)a* + 4ab +
nb* = a + b, one obtains (E;j, Fijx) = (Eijk, ViRjx — Eijx) = 0. O

On the other hand, we can compute explicitly on manifolds with rotationally
symmetric metrics.

Theorem 7.3. Let (M, g), g = dr? + (pz(r)gsnfl, be a rotationally symmetric n-
dimensional manifold and n > 3. Here r is the arc-length parameter. Denote the
radial and spherical sectional curvatures as Ko and K1, respectively. Suppose that
Ag . dg > _
ar B0 A1 =

2
(n—?ﬁ for some constant C. Then

|VRic|?> < ! + o IVR> + (n — 2)C?
“\4 4 -—1)?
on U In particular, (M g) satisfies the strong Bianchi inequality |V Ric| <

2(n ) |VR| whenever 35, Ko - ar K is nonnegative (e.g., a paraboloid or an infi-
nite horn).
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Remark 7.4. In this theorem, we do not assume that | Ric | is bounded by some
constant.

Proof. 1t is well-known that for rotationally symmetric manifolds we have

Ric = (n — D Kodr? + (Ko + (n — 2)K1)¢>ggu-1

and
R=m—-DKog+mn—1D(Kg+ (n—2)Ky).
Hence
e (k) s () (50)
IVR|"=4(n—1)"| —Ko ) +4(n—1)"(n—-2)| —Ko —K;
or ar or
3 2
+(n—1)*n—2)* (—Kl)
or
and

IVRic? = (ViRi)? + (ViR;)°

(n— 1) (EK >2+<i1< F -2k >2

" ar ! ar 0T or

n—12+1_ 2\ (2 0
o1 VR @ =2 (1 —(n—1) )(51%) <5K1)

(n —2)2 NZ IS
+T(3‘(”‘“>(5K1)

_ - D2 +1
T 4(n—1)2
It is interesting to know whether such Bianchi inequalities hold for generic
solutions of the Ricci flow. A related result which appeared earlier in a collaborated
work of A. Deruelle and the author [4, Theorem 2.10] shows that the validity of
such inequalities may help us to resolve some long standing open problems about
expanding gradient Ricci solitons.

IVR|? + (n —2)C>. 0
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