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Boundary regularity for Monge–Ampère equations
with unbounded right hand side

OVIDIU SAVIN AND QIAN ZHANG

Abstract. We consider Monge–Ampère equations with right hand side f that
degenerate to1 near the boundary of a convex domain �, which are of the type

det D2u = f in �, f ⇠ d�↵
@� near @�,

where d@� represents the distance to @� and �↵ is a negative power with ↵ 2
(0, 2). We study the boundary regularity of the solutions and establish a localiza-
tion theorem for boundary sections.

Mathematics Subject Classification (2010): 35J96 (primary); 35J70 (sec-
ondary).

1. Introduction

In this paper we consider degenerate Monge–Ampère equations of the type

det D2u = f in �, f ⇠ d�↵
@� near @�, (1.1)

where d@� represents the distance to the boundary of the domain � and �↵ is a
negative power with ↵ 2 (0, 2).

Boundary estimates for the Monge–Ampère equation in the nondegenerate
case f 2 C2(�), f > 0, were obtained by Ivočkina [8], Krylov [9], Caffarelli–
Nirenberg–Spruck [3] (see also [1, 15]).

In [12], a localization theorem at boundary points was proved when the right
hand side f is only bounded away from 0 and 1. It states that under natural local
assumptions on the domain and boundary data, the sections Sh(x0) with x0 2 @�
are “equivalent” to half-ellipsoids centered at x0. This extends up to the boundary
a result that is valid for sections compactly included in �, which is a consequence
of John’s lemma from convex geometry. These localization theorems are the key
ingredients in establishing optimal C2,↵ and W 2,p estimates for solutions under
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further regularity properties of the right-hand side f and boundary data (see [2, 12,
13]).

In [14], the first author studied degenerate Monge–Ampère equations of the
type

det D2u = f in �, f ⇠ d↵
@� near @�, (1.2)

where ↵ > 0 is a positive power. A localization theorem and pointwise C2 esti-
mate were established in [14] and they were later used in [10] to prove the global
smoothness for the eigenfunctions of the Monge–Ampère operator (det D2u)1/n .

In this paper, we consider the case of the Monge-Ampère equation with right
hand side which degenerates to 1 near the boundary of �. This type of equations
appear for example in the study of affine spheres in gemetry [4,5], the p-Minkowski
problem [11], or in optimal transportation problems involving two densities with
only one of them having compact support.

We study the case when f is “comparable” with a negative power d�↵
@� of the

distance function to @�. It can be checked from a simple 1D example that the
Dirichlet problem for equation (1.1) is well posed only for ↵ 2 (0, 2). More-
over, when ↵ 2 (0, 1) solutions are expected to have bounded gradients, and when
↵ 2 [1, 2) the gradient should tend to 1 as we approach the boundary. We study
the geometry of boundary sections of solutions to (1.1) and prove two localization
theorems Theorems 1.1 and 1.4 depending whether ↵ is smaller or larger than 1.

We first give the localization theorem for the case ↵ 2 (0, 1). It states that
under appropriate assumptions on the domain and boundary data, the sections

Sh(x0) :=
�
x 2 �̄| u(x) < u(x0) + ru(x0) · (x � x0) + h

 

with x0 2 @� have the shape of half-ellipsoids centered at x0.

Theorem 1.1. Assume� ⇢ Rn is a bounded convex set, @� 2 C2. Let u : � ! R
be continuous, convex, satisfying

det D2u = f, �0d�↵
@�  f  30d�↵

@� in � (1.3)

for some ↵ 2 (0, 1), and on @�, u separates quadratically from its tangent plane,
namely

µ|x�x0|2u(x)�u(x0)�ru(x0)·(x�x0)  µ�1|x�x0|2, 8x, x0 2 @�, (1.4)

for some µ > 0. Then there is a constant c > 0 depending only on n, �0,30,↵, µ,
diam(�) and k@�kC2 such that for each x0 2 @� and h  c we have

Ech(x0) \ � ⇢ Sh(x0) ⇢ Ec�1h(x0),

where

Eh(x0) :=
�
|(x � x0)⌧ |2 + |(x � x0) · ⌫x0 |

2�↵ < h
 
, 8h > 0,



BOUNDARY REGULARITY 1583

⌫x0 denotes the unit inner normal to @� at x0 and

(x � x0)⌧ := (x � x0) � [(x � x0) · ⌫x0]⌫x0

is the projection of x � x0 onto the tangent plane of @� at x0.

Theorem 1.1 states that a boundary section Sh is equivalent to an ellipsoid of axes
h
1
2 in the tangential direction to @� and h

1
2�↵ in the normal. As a corollary, it can

be proved that the maximal interior sections have the same geometry as boundary
sections. Namely, for any y0 2 �, let Sh̄(y0) denote the maximal interior section
centered at y0 which becomes tangent to @� at some point x0. Then Sh̄(y0) is
equivalent to an ellipsoid of axes h̄

1
2 in the tangential direction to @� at x0 and

h̄
1
2�↵ in the normal ⌫x0 .
We remark that if u|@� = ' and @� 2 C3,' 2 C3(@�), and � is uniformly

convex, then the quadratic separation condition (1.4) is satisfied. The proof is given
in [12, Proposition 3.2], where only the lower bound of det D2u is used. Since in
our degenerate case, det D2u is also bounded below by a constant, the estimate still
applies.

Theorem 1.1 implies global W 2,p estimates of solutions if we assume further
that f = g d�↵

@� for some function g 2 C(�) which is strictly positive. In a subse-
quent work we will show that u 2 W 2,p(�) for any p < 1

↵ .
For the case ↵ 2 (0, 1), we establish the following Liouville type theorem for

global solutions to (1.1).

Theorem 1.2. Let u 2 C(Rn
+) be a convex function that satisfies

c0
⇣
|x 0|2 + x2�↵

n

⌘
 u(x)  c�10

⇣
|x 0|2 + x2�↵

n

⌘
(1.5)

for some c0 > 0 and

det D2u = x�↵
n , u(x 0, 0) =

1
2
|x 0|2. (1.6)

Then

u(x) =
1
2
|x 0|2 +

x2�↵
n

(2� ↵)(1� ↵)
.

Theorem 1.1 and the Liouville theorem imply a pointwise C2 tangential estimate at
the boundary.

Theorem 1.3. Assume that � ⇢ {xn > 0} is a bounded convex set, 0 2 @�,
@� 2 C2 near the origin, and the principal curvatures of @� at 0 are strictly
positive. Let u 2 C(�) be a convex solution to the equation

det D2u = f (x)d�↵
@� in �, u = ' on @�.
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for some ↵ 2 (0, 1), where f is a nonnegative function that is continuous at the
origin and f (0) > 0, the boundary data ' is C2 at 0, and it separates quadratically
away from 0. Assume further that

u(0) = 0, ru(0) = 0.

Then there exists a constant a > 0 such that

u(x) = Q(x 0) + ax2�↵
n + o

⇣
|x 0|2 + x2�↵

n

⌘
,

where Q represents the quadratic part of the boundary data ' at the origin.

Next we give the localization theorem when ↵ 2 (1, 2). In this case we consider the
maximal sections included in � which become tangent to @� at boundary points.

Theorem 1.4. Assume � ⇢ Rn is uniformly convex, @� 2 C2. Assume further
that 0 2 @� and the xn coordinate axis lies in the direction ⌫0 (⌫0 is the unit inner
normal to @� at 0).

Let u : � ! R be continuous, convex, satisfying

det D2u = f, �0d�↵
@�  f  30d�↵

@� in �,

for some ↵ 2 [1, 2), and assume u|@� = ' 2 C2. Suppose that Sh̄(y0) is the
maximal section included in � which becomes tangent to @� at 0. Then

rx 0u(y0) = rx 0'(0), M = �un(y0) � �C,

and the following hold:

(i) If ↵ 2 (1, 2), denote � := n+↵�1
n , then we have

ch̄
1��
2��  max{M, 1}  Ch̄

1��
2�� , ch̄

1
2��  d@�(y0)  Ch̄

1
2�� ,

n
|x 0|2 + |xn|  ch̄

1
2��

o
⇢ Sh̄(y0) � y0 ⇢

n
|x 0|2 + |xn|  Ch̄

1
2��

o
;

(ii) If ↵ = 1, denote h̄⇤ := min{h̄, 1}, then we have

�c log(Ch̄)  |M|n  �C log(ch̄), ch̄C⇤  d@�(y0)  Ch̄c⇤,
Bch̄C⇤ ⇢ Sh̄(y0) � y0 ⇢ BCh̄c⇤ .

Here the constants c,C depend only on n, �0,30,↵, diam(�), and ', @� up to
their second derivatives.

In the case ↵ 2 (1, 2), Theorem 1.4 states that for any y0 2 �, the maximal interior
section Sh̄(y0) which becomes tangent to @� at some point x0 is equivalent to an
ellipsoid of axes h̄

1
2(2��) in the tangential direction to @� at x0 and h̄

1
2�� in the
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normal ⌫x0 . For the border line case ↵ = 1, it cannot be concluded from (ii) that
Sh̄(y0) is equivalent to an ellipsoid whose shape depends only on h̄, y0 and �.
Probably more precise information is needed on the ratio between f and d�1

@� in
order to reach a similar conclusion as in the case ↵ 2 (1, 2).

The proofs of Theorems 1.1 and 1.4 are quite different. Theorem 1.4 follows
directly from comparison with explicit barriers. Theorem 1.1 is much more in-
volved and most of the paper will be devoted towards its proof. We will follow
similar ideas as in the nondegenerate case treated in [12].

The paper is organized as follows. In Section 2 we introduce some notation,
then we reduce Theorem 1.1 to its local version Theorem 2.1. This is further re-
duced to Theorem 2.2, where the distance function is replaced by xn . We also give
a more precise quantitative version of Theorem 1.3 (see Theorem 2.3). Sections 3-4
are devoted to the proof of Theorem 2.2. In Section 5, the proof of Theorem 1.2 is
given. In Section 6, we give the proof of Theorem 2.3 and then finish the proof of
Theorem 1.3. In the last section, we give the proof of Theorem 1.4.

2. Statement of main results

We introduce some notation. We denote points in Rn as

x = (x1, . . . , xn) = (x 0, xn), x 0 2 Rn�1.

Let u be a convex function defined on a convex set �, we denote by Sh(x0) the
section centered at x0 and at height h > 0,

Sh(x0) :=
�
x 2 �| u(x) < u(x0) + ru(x0) · (x � x0) + h

 
.

When x0 2 @�, the term ru(x0) is understood in the sense that

xn+1 = u(x0) + ru(x0) · (x � x0)

is a supporting hyperplane for the graph of u at x0 but for any ✏ > 0,

xn+1 = u(x0) + (ru(x0) + ✏⌫x0) · (x � x0)

is not a supporting hyperplane, where ⌫x0 denotes the unit inner normal to @� at
x0. We denote for simplicity Sh = Sh(0), and sometimes when we specify the
dependence on the function u we use the notation Sh(u) = Sh .

For a set E ⇢ Rn , we always denote ⇡(E) the projection of E into Rn�1, i.e.,

⇡(E) :=
�
x 0 2 Rn�1 : 9 t 2 R s.t. (x 0, t) 2 E

 
.

In the case ↵ 2 (0, 1), for any h > 0 we often use the particular sets

Eh :=
�
|x 0|2 + x2�↵

n < h
 
, E+

h := Eh \ {xn > 0},
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and the diagonal matrix

Fh := diag
⇣
h
1
2 , h

1
2 , . . . , h

1
2 , h

1
2�↵

⌘

in our estimates.
Next we give a local version of Theorem 1.1. Our assumptions are the follow-

ing.
Let � ⇢ Rn be a open convex set. Assume that for some fixed small ⇢ > 0,

B⇢(⇢en) ⇢ � ⇢ {xn > 0} \ B 1
⇢
, (2.1)

and
� contains an interior ball of radius ⇢ tangent to @�

at each point on @� \ {xn  ⇢}.
(2.2)

The part @� \ {xn  ⇢} is then given by xn = g(x 0) for some convex function g,
where

g 2 C2 (⇡(@� \ {xn < ⇢})) , g(0) = 0, rg(0) = 0. (2.3)

Let u : � ! R be a convex solution to

det D2u = f, 0 < �(xn�g)�↵  f  3(xn�g)�↵ in �\{xn < ⇢/2} (2.4)

for some ↵ 2 (0, 1). Moreover,

xn+1 = 0 is the tangent plane to u at 0, (2.5)

that is, u � 0, u(0) = 0, ru(0) = 0 in the sense that xn+1 = ✏xn is not a
supporting plane for the graph of u at 0 for any ✏ > 0.

We also assume that u separates quadratically on @� (in a neighborhood of
{xn = 0}) from the tangent plane at 0, i.e.,

µ|x |2  u(x)  µ�1|x |2 on @� \ {xn  ⇢}. (2.6)

Theorem 2.1. Assume � and u satisfy (2.1)-(2.6). Then there is a constant c > 0
depending only on n, �,3,↵, µ and ⇢ such that for each h  c we have

Ech \ � ⇢ Sh ⇢ Ec�1h .

Assume � and u satisfy the hypotheses in Theorem 1.1. Fix a point x0 2 @�, by
a translation and a rotation of coordinates we can assume that x0 = 0, and the xn
coordinate axis lies in the direction ⌫x0 . Since @� 2 C2, there exists ⇢ > 0 such
that (2.1)-(2.3) hold, and after subtracting a linear function we have (2.5) and (2.6).
By (2.1)-(2.3), it is easy to see that

kD2gkC(⇡(@�\{xn⇢/2}))  C(n, ⇢) (2.7)
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and therefore
d@�(x)  xn � g(x 0)  C 0(n, ⇢)d@�(x),

where C(n, ⇢) and C 0(n, ⇢) are constants depending only on n and ⇢. It follows
that u satisfies (2.4) with � := �0,3 := C 0(n, ⇢)30. Therefore we reduce the proof
of Theorem 1.1 to that of Theorem 2.1 above.

Let � and u satisfy the hypotheses in Theorem 2.1. By constructing some
lower barrier for u, we will prove in Section 3 that in some domain �0 ⇢ � we
have xn � g ⇠ xn , and u still satisfies the quadratic separation (2.6) on @�0 in a
neighborhood of {xn = 0}. Therefore we reduce the proof of Theorem 2.1 to that
of Theorem 2.2 below.

We assume (2.1), (2.5), (2.6) hold while replacing the equation (2.4) by

det D2u = f, 0 < �x�↵
n  f  3x�↵

n in � \ {xn < ⇢}. (2.8)

Note that we do not assume (2.2) and (2.3) hold here.

Theorem 2.2. Assume � and u satisfy (2.1), (2.5), (2.6) and (2.8). Then there is a
constant c > 0 depending only on n, �,3,↵, µ and ⇢ such that for each h  c we
have

Ech \ � ⇢ Sh ⇢ Ec�1h .

We prove Theorem 2.2 using the compactness methods in [12]. We first obtain
some preliminary estimates about u. Next we consider the rescaling v of u. Then
we reduce the proof of the theorem to that of a statement about v. We reduce this to
the proof of a statement (Proposition 4.2) about the limiting function (still denoted
by u) of such v. Different from the case that ↵ = 0 (in this case the estimate of the
volume of St (v) is |St (v)|2 ⇠ tn), the estimate of the volume of St (v) becomes

(x⇤
t (v) · en)�↵|St (v)|2 ⇠ tn, (2.9)

where x⇤
t (v) is the center of mass of St (v). The limiting function u also satisfies this

estimate. To prove Proposition 4.2, we construct some lower barrier for the limiting
function u and use (2.9). Since we do not have the estimate of |Sh(u)|, we also
use the convexity of the original solution to estimate the quantity x⇤

t (v) · en from
below. The estimate (2.9) brings another difficulty when we prove Proposition 4.2.
We use John’s lemma and find an ellipsoid Eh equivalent to the section Sh(u) of the
limiting solution u. In the case ↵ = 0, we use the estimate |Eh|2 ⇠ hn to estimate
the shape of Sh(u), but in our degenerate case, we do not have the estimate of the
volume of Eh . For this, we use the estimate (x⇤

h (u) · en)�↵|Eh|2 ⇠ hn to obtain
an estimate of the shape of Sh(u) in terms of the quantity x⇤

h (u) · en . Using this
estimate, we rescale u and reduce Proposition 4.2 to the lower-dimensional case.
Again, since we do not have the estimate of |Eh|, we perform a different rescaling
(which corresponds to our estimate (2.9)) from the ↵ = 0 case.

At the end of this section we give a more precise quantitative version of Theo-
rem 1.3 as follows.
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Theorem 2.3. For any ⌘ > 0 there exists ✏0 > 0 depending only on ⌘, n,↵ such
that if (2.1)-(2.5) hold with � = 1� ✏0,3 = 1+ ✏0 and

✓
1
2

� ✏0

◆
|x 0|2  u(x) 

✓
1
2

+ ✏0

◆
|x 0|2 on @� \ {xn  ⇢}, (2.10)

then for all h  c, we have

(1� ⌘)Sh(U0) \ � ⇢ Sh(u) ⇢ (1+ ⌘)Sh(U0),

where

U0(x) :=
1
2
|x 0|2 +

x2�↵
n

(2� ↵)(1� ↵)
, Sh(U0) := {x 2 Rn : U0(x) < h},

and the constant c > 0 depends only on ⌘, n,↵, ⇢.

3. Proof of Theorem 2.2 (I)

As mentioned in Section 2, we first show that we can reduce the proof of Theo-
rem 2.1 to that of Theorem 2.2.

Proposition 3.1. Theorem 2.2 implies Theorem 2.1.

Proof. In this proof we always denote by c,C, ci ,Ci (i = 0, 1, 2, . . . ) constants
depending only on n, �,3, µ,↵ and ⇢. For simplicity of notation, their values may
change from line to line whenever there is no possibility of confusion.

Let
v0 := µ|x 0|2 +

3

(2� ↵)(1� ↵) µn�1 (xn � g)2�↵.

Then by straightforward computation and using (2.7), we obtain that

det D2v0=
3

µn�1 (xn � g)�↵det
✓
2µIn�1 �

3

(1�↵) µn�1 (xn � g)1�↵D2g
◆

� 3(xn � g)�↵ in � \ {xn < c⇤},
(3.1)

where c⇤  ⇢/2 is small depending only on n,3, µ,↵ and ⇢.
Denote D := ⇡ (� \ {xn = c⇤}). For x 0 2 D, define

g⇤(x 0) := sup
n
l(x 0) : l  g in D, l is affine, and |rl| 

c⇤⇢
2

o
.

Then g⇤ is convex in D since it is the supremum of a family of convex functions.
We claim that for any x 2 � \ {xn = c⇤}, we have

xn � g⇤(x 0) �
c⇤
2

. (3.2)
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Indeed, if l is affine, l  g in D and |rl|  c⇤⇢
2 , then

0 = g(0) � l(0) = l(x 0) � rl · x 0,

it follows that
l(x 0)  rl · x 0 

c⇤⇢
2

·
1
⇢

=
c⇤
2

,

where we use the fact that � ⇢ B+
1/⇢ . Thus the claim follows.

We also claim that

⇡(� \ {xn  c0⇢}) ⇢ D \
n
|rg| 

c⇤⇢
2

o
⇢ {g⇤ = g} (3.3)

for some small constant c0.
Indeed, the second inclusion in (3.3) follows easily from the convexity of g

and the definition of g⇤. Therefore we only need to prove the first inclusion. Let
c0 > 0 be a small constant to be chosen. For any x0 2 @� \ {xn  c0⇢}, we have
B⇢(y0) ⇢ � ⇢ {xn � 0} by (2.2), where y0 := x0 + ⇢⌫x0 . Let

t = inf
x2B⇢(y0)

xn,

then (y0
0, t) 2 @B⇢(y0) and

⇢⌫x0 · en = (y0 · en � t) � (x0 · en � t) = ⇢ � (x0 · en � t) � (1� c0)⇢,

which gives
1

q
1+ |rg(x 0

0)|
2

= ⌫x0 · en � 1� c0.

Hence,

|rg(x 0
0)| 

s✓
1

1� c0

◆2
� 1 

c⇤⇢
2

(3.4)

if c0 is small. The desired conclusion (3.3) follows.
Let

v⇤ := µ|x 0|2 +
3

(2� ↵)(1� ↵) µn�1 (xn � g)2�↵ � C⇤(xn � g⇤(x 0)).

Then v⇤ is a lower barrier for u in � \ {xn  c⇤} if C⇤ is large depending only on
n,3, µ,↵ and ⇢.

Indeed, since g⇤ is convex, we find from (3.1) that v⇤ is a subsolution of the
equation

det D2w = 3(xn � g)�↵.
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On @� \ {xn  c⇤}, we have xn � g⇤ = g � g⇤ � 0, which implies

v⇤  µ|x 0|2  u.

On � \ {xn = c⇤}, we obtain from (3.2) that

v⇤ 
µ

⇢2
+

3

(2� ↵)(1� ↵) µn�1 c
2�↵
⇤ � C⇤ c⇤

2
 0  u

if C⇤ is large.
Thus,

v⇤  u in � \ {xn  c⇤}.
This together with (3.3) implies that

u � µ|x 0|2 � C⇤(xn � g(x 0)) in � \ {xn  c0⇢}. (3.5)

Therefore, if � is small, we have

u �
µ|x 0|2

2
in � \ {xn  c0⇢} \ {xn  g(x 0) + �|x 0|2}. (3.6)

On the other hand, the convexity of u and the quadratic separation of u on @� \
{xn  ⇢} (see (2.6)) implies that

u  C|x 0|2 in � \ {xn  c0⇢} \ {xn  g(x 0) + �|x 0|2}. (3.7)

In particular, if we denote �0 := � \ {xn < c0⇢} \ {xn > g(x 0) + �|x 0|2}, then the
above two estimates hold on @�0 \ {xn  c0⇢}.

We have
�x�↵

n  det D2u  Cx�↵
n in �0.

We apply Theorem 2.2 to u in �0 and obtain that

Ech \ �0 ⇢ Sh \ �0 ⇢ ECh, 8h  c.

We claim that the last estimate also holds for Sh (instead of Sh \ �0). Indeed, we
have by (3.7)

(� \ �0) \ Ech ⇢ Sh
and therefore

Ech \ � ⇢ Sh .
On the other hand, we obtain from (3.6) that

(Sh \ {xn  c0⇢}) \ �0 ⇢
n
|x 0|  Ch

1
2
o
.

Since
(� \ �0) \ {xn  c0⇢} ⇢

n
xn  g(x 0) + �|x 0|2

o
,

we obtain
Sh \ �0 ⇢ {|x 0|  Ch

1
2 , xn  Ch} ⇢ ECh .
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In the following we give the first part of the proof of Theorem 2.2. In the
remaining part of this section we denote by c,C, ci ,Ci (i = 0, 1, 2, . . . ) positive
constants depending on n, �,3, µ and ↵. The dependence of various constants
also on ⇢ will be denoted by c(⇢),C(⇢), ci (⇢),Ci (⇢)(i = 0, 1, 2, . . . ).

Proposition 3.2. Assume that� and u satisfy the hypotheses of Theorem 2.2. Then,
for each h  c(⇢) there exists a linear transformation (sliding along xn = 0)

Ahx = x � ⌫xn, ⌫n = 0, |⌫|  C(⇢)h� n
2(n+1�↵) ,

such that the rescaled function

ũ(Ahx) = u(x)

satisfies in
S̃h := AhSh = {ũ < h}

the following:

(i) the center of mass x̃⇤
h of S̃h lies on the xn axis, i.e. x̃

⇤
h = dhen;

(ii)
chn  |Sh|2d�↵

h  Chn.

And after a rotation of the x1, . . . , xn�1 variables we have

x̃⇤
h + cDhB1 ⇢ S̃h ⇢ CDhB1,

where Dh := diag(d1, d2, . . . , dn�1, dn) is a diagonal matrix that satisfies
 
n�1Y

1
d2i

!

d2�↵
n = hn (3.8)

and
cdh  dn  Cdh;

(iii) Denote �̃h := Ah� and G̃h := @ S̃h \ {ũ < h}, then G̃h is a graph i.e.

G̃h = (x 0, g̃h(x 0)) with g̃h(x 0) 
2
⇢

|x 0|2

and the function ũ satisfies on G̃h

µ

2
|x 0|2  ũ(x)  2µ�1|x 0|2.
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Proof. Let

v := µ|x 0|2 +
3

(2� ↵)(1� ↵) µn�1 x
2�↵
n � C(⇢)xn,

where C(⇢) is large such that

3

(2� ↵)(1� ↵) µn�1 x
2�↵
n �

C(⇢)

2
xn  0 in � \ {xn  ⇢},

then it is straightforward to check that v is a lower barrier for u in � \ {xn  ⇢}. It
follows that

Sh \ {xn  ⇢} ⇢ {v < h} ⇢ {xn > c(⇢)(µ|x 0|2 � h)}. (3.9)

Let x⇤
h be the center of mass of Sh and dh := x⇤

h · en . We claim that

dh � c0(⇢)h
n

n+1�↵ (3.10)

for some small c0(⇢) > 0.
Indeed, if

dh � c(n)⇢

with c(n) depending only on n, then (3.10) holds clearly. On the other hand, if

dh  c(n)⇢,

then by John’s lemma, for some constant C(n) depending only on n we have

Sh ⇢
n
xn  C(n)dh 

⇢

2

o

if c(n) is small. If (3.10) does not hold, then from the last estimate, (3.9) and John’s
lemma that

Sh ⇢
n
xn  C(n)c0(⇢)h

n
n+1�↵  h

n
n+1�↵

o
\
n
|x 0|  C1(⇢)h

n
2(n+1�↵)

o
.

Define

w = ✏xn +
h
2

 
|x 0|

C1(⇢)h
n

2(n+1�↵)

!2
+

3[C1(⇢)]2(n�1)h
(2� ↵)(1� ↵)

✓
xn

h
n

n+1�↵

◆2�↵

.

Then we have in Sh ,

w  ✏ +
h
2

+
3[C1(⇢)]2(n�1)h
(2� ↵)(1� ↵)

[C(n)c0(⇢)]2�↵  h
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if c0(⇢) is small. On Sh \ @�,

w 
✏

⇢
|x 0|2 +

h
1�↵

n+1�↵

2C1(⇢)2
|x 0|2 +

3[C1(⇢)]2(n�1)h
1�↵

n+1�↵

(2� ↵)(1� ↵)
·
|x 0|2

⇢
 µ|x 0|2

if h  c(⇢). In conclusion,
w  u in Sh,

which contradicts that ru(0) = 0. Thus (3.10) holds.
Now we prove that for all small h we have

dh  C0h
1
2�↵ (3.11)

for some large constant C0.
Assume by contradiction that dh � C0h

1
2�↵ . Then (3.9) implies that

|(x⇤
h )

0|  C(⇢)d
1
2
h . (3.12)

From (2.1) and (2.6) we know that if h  c(⇢), then Sh contains the set @�\ {xn 

⇢} \ {x : |x 0|  (ch)
1
2 } for some small c depending only on µ. Therefore Sh

contains the convex set generated by @� \ {xn  ⇢} \ {x : |x 0|  (ch)
1
2 } and the

point x⇤
h . Let xn = b be a hyperplane in Rn , where b  ⇢ is chosen such that

ch + (b � ⇢)2 = ⇢2.

For each x0 2 @� \ {xn  ⇢} \ {x : |x 0| = (ch)
1
2 }, let y0 be the intersection of the

segment x0x⇤
h (which is the segment joining x0 and x

⇤
h ) and the hyperplane xn = b.

We can write
y0 = (1� ✓)x0 + ✓x⇤

h

for some ✓ = ✓(x0) 2 (0, 1). Since

(1� ✓)x0 · en + ✓dh = y0 · en = b 
ch
⇢

,

we obtain
✓ 

ch
⇢dh

.

Recall that dh � C0h
1
2�↵ , then by (3.12) we obtain that for all small h

|y0
0| = |(1� ✓)x 0

0 + ✓(x⇤
h )

0| � |x 0
0| � ✓

�
|(x⇤

h )
0| + |x 0

0|
�

� (ch)
1
2 �

ch
⇢dh

✓
C(⇢)d

1
2
h + (ch)

1
2

◆

�
(ch)

1
2

2
.
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Since Sh contains the convex set generated by all such y0 and x⇤
h , this means that

Sh contains a convex set of measure c(n)
✓

(ch)
1
2

2

◆n�1
dh , and therefore

|Sh| � c(n)

 
(ch)

1
2

2

!n�1

dh . (3.13)

Let v solves

det D2v = �(C(n)dh)�↵  det D2u in Sh, v = h on @Sh .

Then
v � u � 0 in Sh .

It follows
hn � |h �min

Sh
v|n � c(n,↵)�d�↵

h |Sh|2.

Namely,
d�↵
h |Sh|2  C(n, �,↵)hn. (3.14)

It follows from (3.13) and (3.14) that

dh  Ch
1
2�↵ .

We reach a contradiction if C0 is sufficiently large, hence (3.11) is proved.
Define

Ahx = x � ⌫xn, ⌫ =
(x⇤
h )

0

dh
and

ũ(Ahx) = u(x).

Then the center of mass of S̃h = AhSh is

x̃⇤
h = Ahx⇤

h

and lies on the xn-axis from the definition of Ah . We obtain from (3.9) and (3.10)
that

|⌫| =
|(x⇤

h )
0|

dh
 C(⇢)d� 1

2
h  C(⇢)h� n

2(n+1�↵) . (3.15)

Part (i) of Proposition 3.2 follows.
Let �̃h := Ah� and G̃h := @ S̃h \ @�̃h = @ S̃h \ {ũ < h}.
On @� \ {xn  ⇢} \ {|x 0|  (µ�1h)

1
2 }, we have

|Ahx � x | = |⌫|xn  C(⇢)h� n
2(n+1�↵) |x 0|2  C(⇢)h

1�↵
2(n+1�↵) |x 0|.
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Note that
@Sh \ @� ⇢ {xn  ⇢} \

n
|x 0|  (µ�1h)

1
2
o
,

thus on G̃h = @ S̃h \ @�̃h ,

xn 
1
⇢

|(A�1
h x)0|2 

2
⇢

|x 0|2

and
µ

2
|x 0|2  ũ(x) = u(A�1

h x)  µ�1|(A�1
h x)|2  2µ�1|x 0|2.

It remains to prove (ii). After a rotation of x1, . . . , xn�1 variables, we can assume
that S̃h \ {xn = dh} is equivalent to an ellipsoid of axes d1  d2  · · ·  dn�1 i.e.
(
n�1X

1

✓
xi
di

◆2
 1

)

\ {xn = dh} ⇢ S̃h \ {xn = dh} ⇢

(
n�1X

1

✓
xi
di

◆2
 C(n)

)

.

Thus,

S̃h ⇢

(
n�1X

1

✓
xi
di

◆2
 C(n)

)

\ {0  xn  C(n)dh}.

Since ũ  2µ�1|x 0|2 on G̃h , we see that the domain of definition of G̃h contains a
ball in Rn�1 of radius (µh/2)

1
2 . This implies that

di � c1h
1
2 , i = 1, . . . , n � 1. (3.16)

Now we prove that

d2�↵
h

n�1Y

1
d2i � c2hn. (3.17)

Indeed, if the last estimate does not hold, then we construct

w := ✏xn +

"
n�1X

1

✓
xi
di

◆2
+

✓
xn
dh

◆2�↵
#

· ch.

If c2 is small, then we have

det D2w �
cn2n�1(2� ↵)(1� ↵)x�↵

n
c2

> 3x�↵
n .

On @ S̃h \ G̃h ,
w  ✏ + C(n,↵)ch  h,



1596 OVIDIU SAVIN AND QIAN ZHANG

and on G̃h , we use (3.16) and (3.10) to obtain

w 
2✏
⇢

|x 0|2 + ch
n�1X

1

✓
xi
di

◆2
+ chC(n)1�↵ 2|x 0|2

⇢dh


µ

2
|x 0|2

if c is small. We conclude that w  ũ in S̃h . This contradicts rũ(0) = 0 and
therefore (3.17) holds.

Since S̃h contains the convex set generated by
nPn�1

1 ( xidi )
2  1

o
\ {xn = dh}

and the point 0, we have

|S̃h| � c(n)

 
n�1Y

1
di

!

· dh .

This together with (3.17) and (3.14) implies that

Chn � d�↵
h |S̃h|2 � c(n)d2�↵

h

n�1Y

1
d2i � chn. (3.18)

Define dn from d1, . . . , dn�1 by (3.8), and (3.18) gives

cdh  dn  Cdh .

This proves (ii).

Theorem 2.2 follows from Proposition 3.2 and the following result.

Lemma 3.3. Assume that � and u satisfy the hypotheses of Theorem 2.2. Then for
any h  c(⇢), we have

dn � ch
1
2�↵ . (3.19)

Lemma 3.3 implies Theorem 2.2.

From Lemma 3.3 and Proposition 3.2 we obtain

ch
1
2  di  Ch

1
2 , i = 1, . . . , n � 1, ch

1
2�↵  dn  Ch

1
2�↵ .

It follows that
x̃⇤
h + cFh B1 ⇢ AhSh ⇢ CFhB1, (3.20)

where we recall from Section 2 that

Fhx =
⇣
h
1
2 x 0, h

1
2�↵ xn

⌘
.

Since the domain of definition of G̃h contains a ball of radius (µh/2)
1
2 , we have

cFh B1 \ Ah� ⇢ AhSh ⇢ CFhB1. (3.21)
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It follows that
cEh \ Ah� ⇢ AhSh ⇢ CEh . (3.22)

Denote Ahx = x � ⌫hxn . Using in (3.20) that Sh/2 ⇢ Sh we find

|⌫h/2 � ⌫h|  Ch
1
2�

1
2�↵ , 8h  c(⇢),

which gives

|⌫h|  C(⇢)h
1
2�

1
2�↵ , 8h  c(⇢). (3.23)

This easily implies that

Ec1(⇢)h ⇢ A�1
h Eh ⇢ EC1(⇢)h (3.24)

for some constants c1(⇢),C1(⇢) > 0.
The conclusion of Theorem 2.2 follows from (3.22) and (3.24).
In order to prove Lemma 3.3, we modify the definition of the quantity bu(h)

in [12].
Fix ↵ 2 (0, 1). Given a convex function u we define

bu(h) = h� 1
2�↵ sup

Sh
xn. (3.25)

Whenever there is no possibility of confusion we drop the subindex u and write for
simplicity b(h).

b(h) satisfies the following properties which are slightly different from those
in [12]:

1) If h1  h2, then
✓
h1
h2

◆ 1�↵
2�↵


b(h1)
b(h2)



✓
h2
h1

◆ 1
2�↵

;

2) If A is a linear transformation which leaves the xn-coordinate invariant and

ũ(Ax) = u(x),

then
bũ(h) = bu(h);

3) If A is a linear transformation which leaves the plane {xn = 0} invariant, then

bũ(h1)
bũ(h2)

=
bu(h1)
bu(h2)

;
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4) If
ũ(x) = �u(x)

with � a positive constant, then

bũ(�h) = �� 1
2�↵ bu(h)

and therefore
bũ(�h1)
bũ(�h2)

=
bu(h1)
bu(h2)

.

From part (ii) of Proposition 3.2 we know that

cdn  dh = x⇤
h · en  Cdn,

and it follows that
cdn  bu(h)h

1
2�↵ = sup

Sh
xn  Cdn.

Thus Lemma 3.3 will follow if we show that bu(h) is bounded below. This will
follow from property 1) above and the following lemma.

Lemma 3.4. If h  c(⇢) and bu(h)  c0, then

bu(th)
bu(h)

> 2

for some t 2 [c0, 1].

In order to prove Lemma 3.4, we recall the function ũ, the section S̃h and the matrix
Dh in Proposition 3.2. Define

v(x) =
1
h
ũ(Dhx) =

1
h
u(A�1

h Dhx).

The section S1(v) = {v < 1} = D�1
h AhSh satisfies

x⇤ + cB1 ⇢ S1(v) ⇢ CB1

with x⇤ the center of mass of S1(v). The function v satisfies in S1(v)

�x�↵
n  det D2v(x) = d↵

n det D
2u(A�1

h Dhx)  3x�↵
n

and
v(0) = 0, 0  v  1.

Moreover, let 0 < t  1, x⇤
t (v) and x⇤

th be the centers of mass of St (v) and Sth(u)
respectively, and dth = x⇤

th · en . Then

(x⇤
t (v) · en)�↵|St (v)|2 =

d�↵
th |Sth(u)|2

hn
.
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Since Proposition 3.2 implies that c(th)n  d�↵
th |Sth(u)|2  C(th)n , we obtain

ctn  (x⇤
t (v) · en)�↵|St (v)|2  Ctn.

From the convexity of u we have

x⇤
t (v) · en =

dth
dn

� c
dth
dh

� c ·
supSth(u) xn
supSh(u) xn

� ct.

Let Gv := @S1(v) \ {v < 1}. We claim that

Gv ⇢ {xn  � }, � = C(⇢)h
1�↵

n+1�↵ .

Indeed, for x 2 Gv = D�1
h G̃h ,

dnxn 
2
⇢

|D0
hx

0|2  C(⇢)h,

which gives
xn  C(⇢)h1�

n
n+1�↵ = �

by (3.10). Thus the claim follows.
We also have

v = 1 on @S1(v) \ Gv.

On Gv ,

µ
n�1X

1
a2i x

2
i  v(x)  µ�1

n�1X

1
a2i x

2
i ,

where

ai =
di
h
1
2

� c1, i = 1, . . . , n � 1

by (3.16).
In order to prove Lemma 3.4, we only need to show that there exist constants

c(⇢), c0 small and C sufficiently large such that if h  c(⇢) and max1in�1 ai �
C , then the rescaled function v satisfies

bv(t) � 2bv(1) (3.26)

for some t 2 [c0, 1].



1600 OVIDIU SAVIN AND QIAN ZHANG

4. Proof of Theorem 2.2 (II)

We consider the class of solutions v that satisfy the properties above. After relabel-
ing the constants µ and ai , and by abuse of notation writing u instead of v, we may
assume we are in the following case.

Fix µ, �,3 and ↵ 2 (0, 1). For an increasing sequence

a1  a2  · · ·  an�1

with
a1 � µ,

we consider the family of solutions

u 2 Dµ
� (a1, a2, . . . , an�1)

of convex functions u : � ! R that satisfy

�x�↵
n  det D2u  3x�↵

n , 0  v  1 in �; (4.1)

0 2 @�, Bµ(x0) ⇢ � ⇢ B+
1/µ; (4.2)

µhn  (x⇤
h · en)�↵|Sh|2  µ�1hn, x⇤

h · en � µh (4.3)

with x⇤
h the center of mass of Sh .
Moreover, there exists a closed set G ⇢ @� such that

G ⇢ @� \ {xn  � }, (4.4)

and G is a graph in the en direction with projection ⇡(G) along en ,
(

µ�1
n�1X

1
a2i x

2
i  1

)

⇢ ⇡(G) ⇢

(

µ
n�1X

1
a2i x

2
i  1

)

. (4.5)

The boundary values of u = ' on @� satisfy

' = 1 on @� \ G, (4.6)

and

µ
n�1X

1
a2i x

2
i  '(x)  min

(

1, µ�1
n�1X

1
a2i x

2
i

)

on G. (4.7)

As explained in [12, see page 79], Property (3.26) is a corollary of the following
proposition.
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Proposition 4.1. For any M > 0 there exists C⇤ depending only on M, n, µ, �,3
and ↵ such that if u 2 Dµ

� (a1, a2, . . . , an�1) with

an�1 � C⇤, �  C�1
⇤

then
b(h) = (sup

Sh
xn)h� 1

2�↵ � M

for some h 2 [C�1
⇤ , 1].

We prove Proposition 4.1 by compactness as in [12]. We introduce the limiting
solutions from the class Dµ

� (a1, . . . , an�1) when ak+1 ! 1 and � ! 0.
For an increasing sequence

a1  a2  · · ·  ak

with
a1 � µ,

we denote by

Dµ
0 (a1, . . . , ak,1, . . . ,1), 0  k  n � 2,

the class of functions u that satisfy

�x�↵
n  det D2u  3x�↵

n , 0  u  1 in �; (4.8)

0 2 @�, Bµ(x0) ⇢ � ⇢ B+
1/µ; (4.9)

µhn  (x⇤
h · en)�↵|Sh|2  µ�1hn, x⇤

h · en � µh, (4.10)

where x⇤
h is the center of mass of Sh . There exists a closed set G such that

G ⇢ @� \ {xi = 0, i > k}. (4.11)

If we restrict to the space generated by the first k coordinates, then
(

µ�1
kX

1
a2i x

2
i  1

)

⇢ G ⇢

(

µ
kX

1
a2i x

2
i  1

)

. (4.12)

The boundary values of u = ' on @� satisfy

' = 1 on @� \ G, (4.13)

and

µ
kX

1
a2i x

2
i  '(x)  min

(

1, µ�1
kX

1
a2i x

2
i

)

on G. (4.14)

As in [12], Proposition 4.1 will follow from the proposition below.
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Proposition 4.2. For any M > 0 and 0  k  n�2 there exists ck depending only
on M, k, n, µ, �,3 and ↵ such that if

u 2 Dµ
0 (a1, . . . , ak,1, . . . ,1),

then
b(h) = (sup

Sh
xn)h� 1

2�↵ � M

for some h 2 [ck, 1].

To prove the above proposition, we use the notation introduced in [12]. Denote

x = (y, z, xn), y = (x1, . . . , xk) 2 Rk, z = (xk+1, . . . , xn�1) 2 Rn�1�k .

A sliding along the y direction is defined as follows:

T x := x + ⌫1z1 + ⌫2z2 + · · · + ⌫n�k�1zn�k�1 + ⌫n�k xn

with
⌫1, ⌫2, . . . , ⌫n�k 2 span{e1, . . . , ek}.

Lemma 4.3. Assume that
u � p(|z| � qxn)

for some p, q > 0, q  q0 and assume that for each section Sh of u, h 2 (0, 1),
there exists Th , a sliding along the y direction, such that

ThSh ⇢ C0FhB+
1

for some constant C0. Then

u /2 Dµ
0 (1, . . . , 1,1, . . . ,1).

Proof. Assume by contradiction that u 2 Dµ
0 (1, . . . , 1,1, . . . ,1).We will show

that
u � p0(|z| � q 0xn), q 0 = q � ⌘, (4.15)

where ⌘ > 0 depends only on q0,C0,3, µ, n,↵ and 0 < p0 ⌧ p.
Apply this result a finite number of times we obtain

u � ✏(|z| + xn)

for some ✏ > 0 small. Thus we obtain Sh ⇢ {xn  ✏�1h} and it follows that

ThSh ⇢
n
xn  ✏�1h

o
.
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This together with the hypothesis of the lemma and (4.10) in the definition of the
class Dµ

0 implies that

µhn  (x⇤
h · en)�↵|Sh|2 = (x⇤

h · en)�↵|ThSh|2  Chn+1�↵,

where C is a constant depending only on ✏,C0, n, µ and ↵. This is a contradiction
as h ! 0.

It remains to prove (4.15). Since u 2 Dµ
0 (1, . . . , 1,1, . . . ,1), there is a

closed set
Gh ⇢ @Sh \ {(z, xn) = 0}

such that when we restrict to the subspace {(z, xn) = 0},
�
µ�1|y|2  h

 
⇢ Gh ⇢

�
µ|y|2  h

 
,

and the boundary values 'h of u on @Sh satisfy

'h = h on @Sh \ Gh;

µ|y|2  'h  min
�
h, µ�1|y|2

 
on Gh .

Define
w(x) =

1
h
u(T�1

h Fhx).

Then
S1(w) = F�1

h ThSh ⇢ C0B+
1 ,

and
�x�↵

n  det D2w  3x�↵
n in S1(w).

Also,

w(x) �
1
h
p
⇣
|h

1
2 z| � qh

1
2�↵ xn

⌘
=

p

h
1
2

⇣
|z| � qh

↵
2(2�↵) xn

⌘
. (4.16)

Moreover, the boundary values 'w of w on @S1(w) satisfy

'w = 1 on @S1(w) \ Gw;

µ|y|2  'w  min
n
1, µ�1|y|2

o
on Gw = F�1

h Gh .

Define

v := �

 

|x 0|2 +
x2�↵
n

(2� ↵)(1� ↵)

!

+
3

�n�1

⇣
z1 � qh

↵
2(2�↵) xn

⌘2

+ N
⇣
z1 � qh

↵
2(2�↵) xn

⌘
+ �h

↵
2(2�↵) xn,
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where � is small depending only on µ,C0,↵ and N is large such that

3

�n�1
t2 + Nt

is increasing in the interval |t |  (1+ q0)C0.
By a straightforward computation and similar arguments to the proof of [12,

Lemma 5.4], we find that v is a lower barrier for w in S1(w), which implies

w � N
⇣
z1 � qh

↵
2(2�↵) xn

⌘
+ �h

↵
2(2�↵) xn in S1(w).

Since this inequality holds for all directions in the z-plane, we obtain

w � N

|z| �

✓
q �

�

N

◆
h

↵
2(2�↵) xn

�
.

Back to u we have

u(x) = hw(F�1
h Thx) � h

1
2 N


|z| �

✓
q �

�

N

◆
xn
�

in Sh .

From the convexity of u and u(0) = 0, we know that this inequality holds in � and
therefore (4.15) is proved.

Now we give the proof of Proposition 4.2.
k = 0 : Assume Proposition 4.2 is not true, then by compactness, there exist

M > 0 and u 2 Dµ
0 (1, . . . ,1) such that b(h)  M for any 0 < h  1. Let

v := �

✓
|x 0| +

1
2
|x 0|2

◆
+

3

�n�1(2� ↵)(1� ↵)
x2�↵
n � Nxn,

where � is small depending only on µ and N is large such that

3

�n�1(2� ↵)(1� ↵)
x2�↵
n � Nxn  0

in B+
1/µ. It is easily seen that

v  u in �.

It follows that
u � �|x 0| � Nxn

and then
Sh ⇢

n
|x 0|  ��1(Nxn + h)

o
.
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Since b(h)  M implies that xn  Mh
1
2�↵  Mh

1
2 , we obtain

Sh ⇢
n
|x 0|  Ch

1
2 , xn  Mh

1
2�↵

o
,

where C is a constant depending only on M, µ,3 and ↵. This contradicts Lem-
ma 4.3 and therefore Proposition 4.2 is true for k = 0.

Assume Proposition 4.2 holds for 0, 1, . . . , k � 1, 1  k  n � 2, and now we
prove it for k.

By the induction hypothesis, it suffices to consider the case ak  Ck , where Ck
is a constant depending only on M, k, n, µ, �,3 and ↵. Assume in contradiction
that no ck exists, then we can find a limiting solution u such that

u 2 Dµ̃
0 (1, . . . , 1,1, . . . ,1) (4.17)

with
b(h)  M, 8h > 0, (4.18)

where µ̃ depends only on µ and Ck .
Denote as before

x = (y, z, xn), y = (x1, . . . , xk) 2 Rk, z = (xk+1, . . . , xn�1) 2 Rn�1�k .

Similar to the case k = 0, the function

v := �

✓
|z| +

1
2
|x 0|2

◆
+

3

�n�1(2� ↵)(1� ↵)
x2�↵
n � Nxn

is a lower barrier for u, where � is small depending only on µ̃ and N is large.
Therefore,

u � �|z| � Nxn. (4.19)

This together with (4.18) implies that

Sh ⇢
n
|z|  ��1(Nxn + h)

o
\
n
xn  Mh

1
2�↵

o
. (4.20)

From John’s lemma, there is an ellipsoid Eh such that

Eh ⇢ Sh � x⇤
h ⇢ C(n)Eh (4.21)

with x⇤
h the center of mass of Sh . By a fact in linear algebra (see the arguments

in [12, page 83]), there is Th , a sliding along the y direction, such that

ThEh = |Eh|
1
n AB1, (4.22)
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where, after rotating coordinates in the (y, 0, 0) and (0, z, 0) subspaces, the matrix
A satisfies

A(y, z, xn) = (A1y, A2(z, xn)),

A1 =

0

B
B
@

�1 0 . . . 0
0 �2 . . . 0
...

...
. . .

...
0 0 . . . �k

1

C
C
A and A2 =

0

B
B
B
B
@

�k+1 0 . . . 0 ✓k+1
0 �k+2 . . . 0 ✓k+2
...

...
. . .

...
...

0 0 . . . �n�1 ✓n�1
0 0 . . . 0 ✓n

1

C
C
C
C
A

with

0 < �1  · · ·  �k, � j > 0, ✓n > 0,

 
kY

1
�i

! 
n�1Y

k+1
� j

!

✓n = 1.

Let
ũ(x) = u(T�1

h x), S̃h = ThSh,

then (4.21) implies that

x̃⇤
h + |Eh|

1
n AB1 ⇢ S̃h ⇢ C(n)|Eh|

1
n AB1, (4.23)

where x̃⇤
h is the center of mass of S̃h .

Since u 2 Dµ̃
0 (1, . . . , 1,1, . . . ,1), there exists G̃h = Gh ,

G̃h ⇢ {(z, xn) = 0} \ @ S̃h

such that on the subspace {(z, xn) = 0},
n
µ̃�1|y|2  h

o
⇢ G̃h ⇢

n
µ̃|y|2  h

o
,

and the boundary values '̃h of ũ on @ S̃h satisfy

'̃h = h on @ S̃h \ G̃h;

µ̃|y|2  '̃h  min
n
h, µ̃�1|y|2

o
on G̃h .

For any h > 0, denote dh := x⇤
h · en , then

µ̃hn  (x̃⇤
h · en)�↵|S̃h|2 = d�↵

h |Sh|2  µ̃�1hn, x̃⇤
h · en = dh � µ̃h. (4.24)

We will show that

|Eh|
1
n AB1 ⇢ Cdiag

⇣
h
1
2 , . . . , h

1
2 , h

1
2 d

↵
2
h

⌘
B1, (4.25)

where C is a constant depending only on µ,M, k, �,3, n and ↵.
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This together with (4.23), (4.18) gives

ThSh ⇢ Cdiag
⇣
h
1
2 , . . . , h

1
2 , h

1
2�↵

⌘
B1. (4.26)

Now we prove (4.25). Let

Ā = |Eh|
1
n diag

⇣
h� 1

2 , . . . , h� 1
2 , h� 1

2 d� ↵
2

h

⌘
A

= |Eh|
1
n h� 1

2

0

B
B
B
B
B
@

A1 0

B
B
B
@

1
. . .

1
d� ↵

2
h

1

C
C
C
A
A2

1

C
C
C
C
C
A

=

✓
Ā1

Ā2

◆
.

Since G̃h ⇢ @ S̃h \ {(z, xn) = 0} contains a ball in Rk of radius (µ̃h)1/2, then from
the second inclusion in (4.23) we obtain

�̄i := h� 1
2 |Eh|

1
n �i � c, i = 1, . . . , k, (4.27)

where c is a constant depending only on n and µ̃.
From (4.18) we know that for any x = (y, z, xn) 2 S̃h we have

xn  C(n)dh  C(n)
�
Mh

1
2�↵
� 2�↵

2 d
↵
2
h  C(n,M,↵)h

1
2 d

↵
2
h ,

combining this, (4.24) and (4.20) we obtain that

S̃h ⇢
n
|(z, xn)|  Ch

1
2 d

↵
2
h

o
.

This together with the first inclusion in (4.23) implies that k Ā2k  C and if follows
that

�̄ j := h� 1
2 |Eh|

1
n � j , C,

h� 1
2 |Eh|

1
n |✓n⌫|  C,

✓̄n := h� 1
2 |Eh|

1
n d� ↵

2
h ✓n  C,

(4.28)

where C is a constant depending only on n, µ̃,3,↵ and M .
Also, we have by (4.23)

|Eh|
1
n ✓n  x̃⇤

h · en = dh  C(n)|Eh|
1
n ✓n. (4.29)

We define
w(x) :=

1
h
ũ
⇣
|Eh|

1
n Ax

⌘
,



1608 OVIDIU SAVIN AND QIAN ZHANG

then from (4.23) we know that

B1(x0) ⇢ S1(w) = |Eh|�
1
n A�1 S̃h ⇢ C(n)B1

for some x0, and from (4.24) and (4.29) we find that

�̄x�↵
n  det D2w  3̄x�↵

n

with �̄, 3̄ depending only on �,3, n,↵, µ̃.
Moreover, for t > 0 let x⇤

t (w) be the center of mass of the section St (w), then

St (w) = |Eh|�
1
n A�1ThSth(u),

and we have by (4.29)

dth
dh

 x⇤
t (w) · en = |Eh|�

1
n ✓�1
n dth  C(n)

dth
dh

.

Then (4.24) implies that

ctn  (x⇤
t (w) · en)�↵|St (w)|2  Ctn

for some constants c,C depending only on n,↵ and µ̃.
Let Gw = @S1(w) \ {w < 1} = |Eh|�

1
n A�1G̃h , then the boundary values 'w

of w satisfy
'w = 1 on @S1(w) \ Gw,

and from the definition of �̄i we find that

µ̃
kX

1
�̄2i y

2
i  'w  µ̃�1

kX

1
�̄2i y

2
i .

This implies that
w 2 Dµ̄

0 (�̄1, . . . , �̄k,1, . . . ,1)

for some µ̄ depending only on µ,M, k, �,3, n and ↵.
Note that (4.24) implies that

c 

 
kY

1
�̄i

! 
n�1Y

k+1
�̄ j

!

✓̄n = h� n
2 |Eh|d

� ↵
2

h  C (4.30)

with c,C depending only on n and µ̃.
We claim

✓̄n � c⇤ (4.31)
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for some small c⇤ to be chosen.
Indeed, if we c⇤ is small, then (4.28) and (4.30) imply that

�̄k � Ck(µ̄, M̄, �̄, 3̄, n,↵)

with M̄ := 2µ̄�1. Then by the induction hypothesis,

bw(h̄) � M̄ � 2bw(1)

for some h̄ > C�1
k . It follows that

bu(hh̄)
bu(h)

=
bw(h̄)
bw(1)

� 2,

which implies bu(hh̄) � 2bu(h) for any h > 0. This contradicts (4.18) and there-
fore the claim holds.

Similarly, we obtain that

�̄ j � c̃⇤ (4.32)

for some small c̃⇤.
We obtain from (4.30), (4.31), (4.32) that

�̄i  C, i = 1, . . . , k, (4.33)

where C is a constant depending only on µ,M, k, �,3, n and ↵. This implies that
k Ā1k  C and therefore k Āk  C .

Thus, the estimate (4.25) holds. Then the proof is finished because (4.19),
(4.26) and (4.17) contradict Lemma 4.3.

5. Proof of Theorem 1.2

In this section we always denote by c,C, ci ,Ci , i 2 N constants depending only on
n, c0 and ↵ (c0 is the constant in (1.5)). Their values may change from line to line
whenever there is no possibility of confusion.

Lemma 5.1. Assume the hypotheses in Theorem 1.2 hold, then for i = 1, . . . , n�1
we have ui 2 C(Rn

+).

Proof. We first claim that for some constant c1 small, we have

|ru|  c�11 , in B+
c1 . (5.1)

Indeed, we note that (1.5) implies that

B+
k ⇢ S1(u) ⇢ B+

k�1
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for some constant k depending only on c0 and ↵. We can use the convexity of u
and obtain an upper bound for un and all |ui |, 1  i  n � 1, in B+

k/4. On the other
hand, for any x0 2 B+

c1 , the function

w(x 0
0,0)(x) :=

1
2
|x 0
0|
2+ x 0

0 ·(x
0 � x 0

0)+�|x 0 � x 0
0|
2+

�1�n

(2� ↵)(1� ↵)

�
x2�↵
n �k�1xn

�

is a lower barrier u in S1(u), where � is small depending only on n, c0 and ↵. This
together with the convexity of u gives a lower bound for un(x0).

Next we prove that for any 1  i  n � 1, ui is continuous at any point
x0 2 {|x 0|  c1/2, xn = 0}.

Indeed, fix 1  i  n � 1 and x0 2 {|x 0|  c1/2, xn = 0}, define

ux0(x) = u(x0 + x) � u(x0) � ru(x0) · x .

We only need to prove that @i ux0 is continuous at 0. Assume there is a sequence
x (m) ! 0,m ! 1 with

@i ux0(x
(m)) � ✏

for some ✏ > 0. We have

ux0 � ux0(x
(m)) + rux0(x

(m)) · (x � x (m)).

Note that |rux0(x (m))| is bounded by (5.1). Let m ! 1, we obtain

ux0 � a · x

for some a = (a0, an) 2 Rn with ai � ✏. From the value of ux0 on the boundary
{xn = 0} we find that a0 = 0. This is a contradiction.

For any � > 0, we define

u�(y) :=
1
�
u(F�y),

then u� satisfies (1.5) and (1.6). The results above show that for any 1  i 
n � 1, @i u� is continuous on {|x 0|  c1/2, xn = 0}. Therefore, ui is continuous on
F�{|x 0|  c1/2, xn = 0}. Let � ! 1 and we conclude that ui is continuous on
{xn = 0}.

Proof of Theorem 1.2. As before we have

B+
k ⇢ S1(u) ⇢ B+

k�1 (5.2)

and
|ui |  C in B+

k/4, i = 1, . . . , n � 1, (5.3)

where k is a constant depending only on c0 and ↵.
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Let
L' := tr

⇥
(D2u)�1D2'

⇤

be the linearized Monge–Ampère operator for u. Then for i = 1, . . . , n � 1 we
have

Lui = 0, ui = xi on {xn = 0},
Lu = n,

and if we define P(x) = �|x 0|2 + �1�n
x2�↵
n

(2�↵)(1�↵) with � > 0 a small constant to be
chosen, then

LP = tr[(D2u)�1D2P] � n[det(D2u)�1det D2P]
1
n > n.

Let �1, �2 be large constants to be chosen and define

v⌥(x) := xi ± �1

"

�|x 0|2 + �1�n

 
x2�↵
n

(2� ↵)(1� ↵)
� �2xn

!

� u(x)

#

.

We have
Lv� = �1[LP � Lu] > 0.

On @B+
k/4 \ {xn = 0}, we choose �  1/2 and obtain

v� = xi + �1


�|x 0|2 �

1
2
|x 0|2

�
 xi .

We choose �2 large such that

x2�↵
n

(2� ↵)(1� ↵)
� �2xn  0 in B+

k/4.

Then on @B+
k/4 \ {xn > 0}, we use (1.5) and obtain

v�  xi + �1
h
�|x 0|2 � c0|x 0|2 � c0x2�↵

n

i
 xi �

�1c0
2

(|x 0|2 + x2�↵
n )  �C,

where C is the constant in (5.3), and we choose �  c0/2 and �1 large.
By Lemma 5.1, ui 2 C(B+

k/4) and therefore the maximum principle for linear
elliptic equations implies that

v�  ui in B+
k/4.

Similarly,
v+ � ui in B+

k/4.
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Therefore,
|ui � xi |  �1

⇥
�1�n�2xn + u

⇤
in B+

k/4. (5.4)

For any � > 0, we define

u�(y) :=
1
�
u(F�y),

then u� satisfies (1.5) and (1.6).
Apply (5.4) with u  u� and we obtain

|@i u�(y) � yi |  �1[�
1�n�2yn + u�(y)] in B+

k/4.

Back to u we have

|ui (x) � xi |  �1
h
�1�n�2�

1
2�

1
2�↵ xn + �� 1

2 u(x)
i

in F�B+
k/4. (5.5)

Let � ! 1, we obtain
ui = xi , 8x 2 Rn

+. (5.6)

For any x = (x 0, xn) 2 Rn
+,

u(x 0, xn) = u(0, xn) +
Z 1

0
rx 0u(✓x 0, xn) · x 0d✓ = u(0, xn) +

1
2
|x 0|2. (5.7)

Thus,
det D2u = unn(0, xn) = x�↵

n ,

it follows that

u(0, xn) =
x2�↵
n

(2� ↵)(1� ↵)
+ Axn + B

for some constants A, B 2 R.
Since u 2 C(Rn

+) and satisfies (1.5), we obtain A = B = 0. The conclusion
of the theorem follows from this and (5.7).

6. Proof of Theorem 1.3

Proof of Theorem 2.3. By the localization theorem (Theorem 2.1),

cU0(x)  u(x)  c�1U0(x) in � \ Sc(U0),

where c is a constant depending only on n,↵ and ⇢. Let �h = F�1
h �, then �h \

S1(U0) can be denoted by xn = gh(x 0), where

gh(x 0) = h� 1
2�↵ g(h

1
2 x 0)  Ch

1�↵
2�↵ |x 0|2 (6.1)
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for some constant C = C(n, ⇢). Define

uh(x) =
1
h
u(Fhx), x 2 �h .

Then we have

cU0(x)  uh(x)  c�1U0(x) in �h \ S1(U0). (6.2)

The assumptions of Theorem 2.3 imply that

(1� ✏0)(xn � gh(x 0))�↵  det D2uh(x)
 (1+ ✏0)(xn � gh(x 0))�↵ in �h \ S1(U0)

(6.3)

and
✓
1
2

� ✏0

◆
|x 0|2  uh(x) 

✓
1
2

+ ✏0

◆
|x 0|2 on @�h \ S1(U0). (6.4)

Assume by contradiction that Theorem 2.3 does not hold. Then there is a constant
⌘ > 0 such that for any m 2 N,m � 1, there exist �m, gm, um that satisfy the
hypotheses of Theorem 2.3 with ✏0  1/m, and some 0 < hm  min{1/m, c}
such that if we denote �m

hm = F�1
hm �m and

umhm (x) :=
1
hm

um(Fhm x),

then the part @�m
hm \ S1(U0) is given by xn = gmhm (x 0) for some convex function

gmhm satisfying (6.1) with h  hm , and the function umhm satisfies (6.2)-(6.4) with
✏0  1/m, while the inclusion in Theorem 2.3 does not hold for ⌘ and Shm (um).

Let m ! 1, we can extract a subsequence umhm that converges uniformly on
compact sets to a global solution u0 defined in Rn

+ such that

cU0(x)  u0(x)  c�1U0(x) in Rn
+ (6.5)

and
det D2u0(x) = x�↵

n in Rn
+, u0(x 0, 0) =

1
2
|x 0|2. (6.6)

Theorem 2 implies that

u0 = U0 =
1
2
|x 0|2 +

x2�↵
n

(2� ↵)(1� ↵)
.

We reach a contradiction.
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Proof of Theorem 1.3. Assume the hypotheses in Theorem 1.3 hold, then we can
assume that

' =
1
2
hMx 0, x 0i + o(|x 0|2),

for some positive definite matrix M 2 R(n�1)⇥(n�1).
It suffices to prove the theorem for the case f (0) = 1 and M = In�1. Indeed,

let D0 2 R(n�1)⇥(n�1) be a positive definite matrix such that

D0MD0 = In�1.

Let � > 0 be a constant to be chosen. Define

D :=

✓
D0

�

◆
.

For any y 2 �̃ = D�1�, define

ũ(y) = u(Dy)

and '̃ := ũ|@�̃. Then we have

det D2ũ(y) = f̃ (y)d�↵

@�̃
(y), f̃ (y) := (det M)�1�2 f (Dy)

d�↵
@� (Dy)
d�↵

@�̃
(y)

.

It is easy to see that

lim
y!0

d@�(Dy)
d@�̃(y)

= �.

Thus we can choose � > 0 such that

lim
y!0

f̃ (y) = (det M)�1�2 f (0)��↵ = 1.

Now we assume f (0) = 1 and M = In�1, and we will prove that

u(x) =
1
2
|x 0|2 +

x2�↵
n

(2� ↵)(1� ↵)
+ o

⇣
|x 0|2 + x2�↵

n

⌘
. (6.7)

For any ✏1 > 0 small, we can choose R = R(✏1) > 0 such that @� \ BR is given
by xn = g(x 0) for some convex function g, where

g2C2 (⇡(@� \ BR)) , g(0)=0, rg(0)=0, D2g(0)�k0 In�1 > 0, (6.8)

det D2u = f (x)d�↵
@� , 1� ✏1  f  1+ ✏1 in � \ BR, (6.9)

✓
1
2

� ✏1

◆
|x 0|2  u(x) = '(x 0) 

✓
1
2

+ ✏1

◆
|x 0|2 on @� \ BR, (6.10)

where k0 depends only on the principal curvatures of @� at 0.
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It is obvious that
lim
x!0

xn � g(x 0)

d@�(x)
= 1.

Therefore we can choose R = R(✏1) smaller such that

(1�4✏1)(xn�g(x 0))�↵ det D2u(1+4✏1)(xn�g(x 0))�↵ in �\ BR, (6.11)

For any ⌘ > 0, let ✏0 be the constant given by Theorem 2.3 and ✏1 := ✏0/4. Using
(6.8), (6.10) and (6.11), we can choose ⇢ > 0 such that the hypotheses of Theorem
2.3 hold. Then Theorem 2.3 implies that

|u(x) �U0(x)|  C⌘U0(x) in � \ Sc(U0),

where U0 is defined as in Theorem 2.3, c is a constant depending only on ⌘, n,↵, ⇢
and C = C(n,↵) depends only on n,↵. This proves (6.7) and therefore the proof
of Theorem 1.3 is complete.

7. Proof of Theorem 1.4

In this section we always denote by c,C, ci ,Ci (i = 0, 1, . . . ) constants depending
only on n, �0,30,↵, diam(�), and ', @� up to their second derivatives. For any
A, B 2 R, we write A ⇠ B if

c 
A
B

 C

for some constants c,C depending only on n, �0,30,↵, diam(�), and ', @� up to
their second derivatives.

Suppose the assumptions of Theorem 1.4 hold. First we can use barriers to
obtain that

kukC(�)  C. (7.1)

Now we restrict to a neighborhood of 0 2 @�. As in Section 2, we can assume that
for some fixed small ⇢ > 0, the part @�\ {xn  ⇢} is given by xn = g(x 0) for some
convex function g, where

g 2 C2 (⇡(@� \ {xn < ⇢})) , g(0) = 0, rg(0) = 0. (7.2)

The function u : � ! R satisfies u = '(x 0) on @� \ {xn  ⇢}, and

det D2u = f, 0 < �(xn�g)�↵  f  3(xn�g)�↵ in �\{xn < ⇢/2}, (7.3)

where ↵ 2 [1, 2).

Case 1 : ↵ 2 (1, 2).
Denote � := n+↵�1

n > 1. We claim that for any x 2 @� \ {xn  ⇢/2},

���1xn � ��1(xn � g)2��  ũ  ��1xn � �(xn � g)2��, (7.4)
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where � > 0 is a small constant, and

ũ := u � u(0) � rx 0'(0) · x 0.

Indeed, let C0,C1 > 0 be two constants and define

v� := '(0) + rx 0'(0) · x 0 �
C0

(2� �)
(xn � g)2�� � C1xn.

Since � is uniformly convex, @�,' 2 C2, and u is bounded below by (7.1), by
straightforward computation we obtain that v� is a lower barrier for u in�\ {xn 
⇢/2} if C0,C1 are sufficiently large. Similarly, the function

v+ := '(0) + rx 0'(0) · x 0 �
c1

(2� �)
(xn � g)2�� + Cxn

is an upper barrier for u in � \ {xn  ⇢/2} if c1 is small and C is sufficiently large.
Hence the claim follows.

The estimate (7.4) implies that

|u � u(x0)|  C|x � x0|2�� 8 x0 2 @�, x 2 �.

This together with the convexity of u implies that u is Hölder continuous in � and

kukC0,2�� (�)  C. (7.5)

Let y0 2 � and assume Sh̄(y0) is the maximal section included in�which becomes
tangent to @� at 0 with h̄  c. Then we obtain that

rx 0u(y0) = rx 0'(0), Sh̄(y0) = {x 2 � : ũ(x) < un(y0)xn}.

Note that un(y0) is bounded above since ' 2 C2 and � is uniformly convex. Thus

h̄ = �ũ(y0) + un(y0)y0 · en

is bounded above.
Denote M := �un(y0). We only need to consider two cases: �C < M <

2��1 and M � 2��1, where � is the constant in (7.4).
If �C < M < 2��1, then at the point x = (0, c0) with c0 a small constant, we

have by (7.4)

ũ + Mxn  3��1xn � �x2��
n  �

�

2
x2��
n = �

�

2
c2��
0 .

It follows that h̄ is bounded below. Hence by (7.5),

Sh̄(y0) � Bc(y0).
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It remains to consider the case M � 2��1. For some c1 small, the second inequality
in (7.4) implies that the point x = (0, c1M

1
1�� ) 2 Sh̄(y0) and

ũ + Mxn  �
�

2
x2��
n + Mxn = c1M

2��
1��


1�

�

2
c1��
1

�
 �c1M

2��
1�� .

Therefore,
h̄ � c1M

2��
1�� . (7.6)

On the other hand, the first inequality in (7.4) and the uniform convexity of� imply
that

Sh̄(y0) ⇢
n
xn  CM

1
1�� , |x 0|  CM

1
2(1��)

o
. (7.7)

Using this and the first inequality in (7.4) again, we obtain that for any x 2 Sh̄(y0)

ũ + Mxn �
M
2
xn � ��1x2��

n � ���1x2��
n � �CM

2��
1��

and therefore
h̄  CM

2��
1�� . (7.8)

By (7.4), (7.6) and (7.8), we have

Sh̄/2(y0) ⇢
n
xn � cM

1
1��

o
. (7.9)

Using the first inequality in (7.4), (7.7) and (7.9),we obtain that

xn � g ⇠ xn ⇠ M
1
1�� 8 x 2 Sh̄/2(y0). (7.10)

The volume estimate for interior sections in [6, Corollary 3.2.4] and the definition
of � imply that

|Sh̄/2(y0)| ⇠ M
n(2��)+↵
2(1��) = M

n+1
2(1��) . (7.11)

Define T y := (M
1

2(1��) y0,M
1
1�� yn), and

v(y) :=
1

M
2��
1��

⇥
ũ(T y) + M(T y) · en + h̄/2

⇤
in T�1Sh̄/2(y0).

We have

det D2v(y) = M
↵
1�� det D2u(T y) ⇠ 1 in T�1Sh̄/2(y0)

and
|T�1Sh̄/2(y0)| ⇠ 1.
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Since (7.7) implies that
T�1Sh̄/2(y0) ⇢ BC ,

hence the Aleksandrov’s maximum principle [6, Theorem 1.4.2] implies that

T�1Sh̄/2(y0) � Bc(T�1y0).

Part (i) of Theorem 1.4 is proved.

Case 2 : ↵ = 1.
By straightforward computation, the functions

v� := '(0) + rx 0'(0) · x 0 � C0(xn � g)(� log(xn � g))
1
n � C1xn

and

v+ := '(0) + rx 0'(0) · x 0 � c1(xn � g)(� log(xn � g))
1
n + Cxn,

are barriers for u in�\ {xn  ⇢/2} if C0,C1,C are large constants and c1 is small.
Hence, we have in � \ {xn  ⇢/2}

� ��1xn � ��1(xn � g) (� log(xn � g))
1
n

 ũ  ��1xn � �(xn � g) (� log(xn � g))
1
n ,

(7.12)

where � > 0 is a small constant, and ũ is defined as in the case ↵ 2 (1, 2).
Using (7.12) and similar arguments to the previous case, part (ii) of the theorem

is proved. The proof of Theorem 1.4 is complete.
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