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Boundary regularity for Monge—Ampere equations
with unbounded right hand side

OVIDIU SAVIN AND QIAN ZHANG

Abstract. We consider Monge—Ampere equations with right hand side f that
degenerate to oo near the boundary of a convex domain €2, which are of the type

det D’u=f inQ,  f~d;J neardQ,

where dyq represents the distance to 02 and —« is a negative power with o €
(0, 2). We study the boundary regularity of the solutions and establish a localiza-
tion theorem for boundary sections.

Mathematics Subject Classification (2010): 35J96 (primary); 35J70 (sec-
ondary).

1. Introduction
In this paper we consider degenerate Monge—Ampere equations of the type
det D’u=f inQ,  f~d;§ neardQ, (1.1)

where dyq represents the distance to the boundary of the domain €2 and —« is a
negative power with @ € (0, 2).

Boundary estimates for the Monge—Ampere equation in the nondegenerate
case f € C 2(Q), f > 0, were obtained by Ivockina [8], Krylov [9], Caffarelli—
Nirenberg—Spruck [3] (see also [1,15]).

In [12], a localization theorem at boundary points was proved when the right
hand side f is only bounded away from O and oo. It states that under natural local
assumptions on the domain and boundary data, the sections Sy, (xg) with xo € 9Q2
are “equivalent” to half-ellipsoids centered at xg. This extends up to the boundary
a result that is valid for sections compactly included in €2, which is a consequence
of John’s lemma from convex geometry. These localization theorems are the key
ingredients in establishing optimal C%% and W?? estimates for solutions under
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further regularity properties of the right-hand side f and boundary data (see [2,12,
13]).
In [14], the first author studied degenerate Monge—Ampere equations of the
type
det D’u=f inQ,  f~dS, neard, (12)

where o > 0 is a positive power. A localization theorem and pointwise C? esti-
mate were established in [14] and they were later used in [10] to prove the global
smoothness for the eigenfunctions of the Monge—Ampere operator (det D?u)'/".

In this paper, we consider the case of the Monge-Ampere equation with right
hand side which degenerates to oo near the boundary of 2. This type of equations
appear for example in the study of affine spheres in gemetry [4,5], the p-Minkowski
problem [11], or in optimal transportation problems involving two densities with
only one of them having compact support.

We study the case when f is “comparable” with a negative power d; ¢ of the
distance function to 9€2. It can be checked from a simple 1D example that the
Dirichlet problem for equation (1.1) is well posed only for « € (0,2). More-
over, when @ € (0, 1) solutions are expected to have bounded gradients, and when
a € [1, 2) the gradient should tend to co as we approach the boundary. We study
the geometry of boundary sections of solutions to (1.1) and prove two localization
theorems Theorems 1.1 and 1.4 depending whether « is smaller or larger than 1.

We first give the localization theorem for the case @ € (0, 1). It states that
under appropriate assumptions on the domain and boundary data, the sections

Sn(x0) := {x € Q| u(x) < u(xo) + Vu(xo) - (x — xo) + h}
with xg € 0€2 have the shape of half-ellipsoids centered at xg.

Theorem 1.1. Assume Q C R” is a bounded convex set, Q2 € C?. Letu : @ — R
be continuous, convex, satisfying

det D*u = f, rdyS < f < Aodyg  inQ (1.3)

for some o € (0, 1), and on 02, u separates quadratically from its tangent plane,
namely

plx —xol? <u(x) —u(xo)—Vu(xo)}(x —xo) < u x—xol%, Vx,xo €92, (14)

for some . > 0. Then there is a constant ¢ > 0 depending only on n, Ly, Ao, o, |4,
diam(2) and ||02|| -2 such that for each xo € 02 and h < c we have

Een(x0) N2 C Sp(xo) C Ep1y(x0),
where

En(xo) = {1(x — x0)|* + |(x —x0) - v |*™* < h}, Vh >0,
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Vy, denotes the unit inner normal to 92 at xo and
(x —x0)r = (x — x0) — [(x — x0) - Vxy]vx,
is the projection of x — xq onto the tangent plane of 02 at xg.

Theorem 1.1 states that a boundary section S}, is equivalent to an ellipsoid of axes

h? in the tangential direction to 9$2 and h @ in the normal. As a corollary, it can
be proved that the maximal interior sections have the same geometry as boundary
sections. Namely, for any yg € €2, let Sj;(yo) denote the maximal interior section
centered at yo which becomes tangent to 2 at some point xo. Then Sj(yo) is
equivalent to an ellipsoid of axes 72 in the tangential direction to d€2 at xop and
}_zﬁ in the normal vy, .

We remark that if u|yq = ¢ and 02 € C3, /NS C3(3), and Q is uniformly
convex, then the quadratic separation condition (1.4) is satisfied. The proof is given
in [12, Proposition 3.2], where only the lower bound of det D?u is used. Since in
our degenerate case, det D?u is also bounded below by a constant, the estimate still
applies.

Theorem 1.1 implies global W27 estimates of solutions if we assume further

that f = gd,3 for some function g € C () which is strictly positive. In a subse-

quent work we will show that u € W2 () for any p < é

For the case o € (0, 1), we establish the following Liouville type theorem for
global solutions to (1.1).

Theorem 1.2. Letu € C (RTi) be a convex function that satisfies
co (1P +x27) < u) < et (1P + 627 (15)

for some cy > 0 and

1
det D’u =x;%  u(x',0)= Elx’|2. (1.6)
Then s
_ 1 72 xnia
ux) = Wt T —a)

Theorem 1.1 and the Liouville theorem imply a pointwise C? tangential estimate at
the boundary.

Theorem 1.3. Assume that @ C {x, > 0} is a bounded convex set, 0 € 0L,
Q € C? near the origin, and the principal curvatures of dS2 at 0 are strictly
positive. Let u € C(2) be a convex solution to the equation

det D%u = fdys  inQ, u=g¢ onodQ.
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for some o € (0, 1), where f is a nonnegative function that is continuous at the
origin and f(0) > 0, the boundary data ¢ is C* at 0, and it separates quadratically
away from 0. Assume further that

u(©0) =0, Vu()=0.
Then there exists a constant a > 0 such that
u(x) = Q(x) +ax>"% 4o (lx'l2 + x,%_"‘) ,

where Q represents the quadratic part of the boundary data ¢ at the origin.

Next we give the localization theorem when « € (1, 2). In this case we consider the
maximal sections included in €2 which become tangent to d€2 at boundary points.

Theorem 1.4. Assume Q C R” is uniformly convex, 3Q € C?. Assume further
that 0 € 02 and the x, coordinate axis lies in the direction vq (vg is the unit inner
normal to 92 at 0).

Letu : Q — R be continuous, convex, satisfying

det D’u=f,  odyg < f < Aodyg inQ,

for some o € [1,2), and assume ulyg = ¢ € C2. Suppose that Sj(yo) is the
maximal section included in 2 which becomes tangent to 02 at 0. Then

Vyu(yo) = Veg(0), M = —u,(yo) > —C,
and the following hold:
(1) Ifa € (1, 2), denote B := ”+fl‘—_1 then we have

1-B 1-8 1 -1

ch™F <max{M, 1} < Ch?#, ch™ < dyqa(yo) < ChT?,

-1 - 1
[P+ bl < ™7} € 500 = yo € {112+ xal = CRET
(1) Ifa =1, denote }_z* = min{}_z, 1}, then we have
—clog(Ch) < [M|" < —Clog(ch),  chS < dyq(yo) < ChS,
B jc C 8;(y0) = yo C Beje-

Here the constants ¢, C depend only on n, Ay, Ao, a, diam(2), and ¢, 92 up to
their second derivatives.

In the case @ € (1, 2), Theorem 1.4 states that for any yp € €2, the maximal interior
section Sj,(yo) which becomes tangent to 92 at some point xq is equivalent to an

P . . . P S
ellipsoid of axes #22-A in the tangential direction to 92 at xo and 227 in the
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normal vy,. For the border line case o = 1, it cannot be concluded from (ii) that
S;(yo) is equivalent to an ellipsoid whose shape depends only on £, yp and .

Probably more precise information is needed on the ratio between f and da_szl in
order to reach a similar conclusion as in the case @ € (1, 2).

The proofs of Theorems 1.1 and 1.4 are quite different. Theorem 1.4 follows
directly from comparison with explicit barriers. Theorem 1.1 is much more in-
volved and most of the paper will be devoted towards its proof. We will follow
similar ideas as in the nondegenerate case treated in [12].

The paper is organized as follows. In Section 2 we introduce some notation,
then we reduce Theorem 1.1 to its local version Theorem 2.1. This is further re-
duced to Theorem 2.2, where the distance function is replaced by x,,. We also give
a more precise quantitative version of Theorem 1.3 (see Theorem 2.3). Sections 3-4
are devoted to the proof of Theorem 2.2. In Section 5, the proof of Theorem 1.2 is
given. In Section 6, we give the proof of Theorem 2.3 and then finish the proof of
Theorem 1.3. In the last section, we give the proof of Theorem 1.4.

2. Statement of main results
We introduce some notation. We denote points in R” as
x=X1, ..., x0) =& x), x eRL

Let u be a convex function defined on a convex set , we denote by Sy, (xo) the
section centered at xg and at height 4 > 0,

Sn(xo) == {x € Q| u(x) < u(xo) + Vu(xo) - (x —x0) + h}.
When xg € 0€2, the term Vu(xg) is understood in the sense that
Xnp1 = u(xo) + Vu(xo) - (x — xo)
is a supporting hyperplane for the graph of u at xq but for any € > 0,
Xny1 = u(xo) + (Vu(xo) + €vyy) - (x — Xo)

is not a supporting hyperplane, where vy, denotes the unit inner normal to 9€2 at
xo. We denote for simplicity S, = S3(0), and sometimes when we specify the
dependence on the function u we use the notation Sy, (1) = Sj,.

For a set E C R", we always denote 7 (E) the projection of E into R*~! i.e.,

m(E):={x'eR" " :31eRs.t. (¥,1) € E}.
In the case o € (0, 1), for any 2 > 0 we often use the particular sets

Eni={IWP+x2"<h}, & =& N {x >0}

n



1586 OVIDIU SAVIN AND QIAN ZHANG

and the diagonal matrix

D=

Fa ;:diag<hz,hz,...,h

7 )
in our estimates.
Next we give a local version of Theorem 1.1. Our assumptions are the follow-
ing.
Let 2 C R” be a open convex set. Assume that for some fixed small p > 0,

B,(pe,) C 2 C{x, >0}N B, 2.1
P

and

2 contains an interior ball of radius p tangent to 92 22)
at each point on 9Q N {x, < p}. '

The part 922 N {x, < p} is then given by x,, = g(x’) for some convex function g,
where
geC?(@@QN{x, <p}). g0)=0, Vg(0)=0. (2.3)

Let u : Q@ — R be a convex solution to
det D’u=f 0<i(xp—g) “<f<A(y,—g % inQN{x, <p/2} 24
for some « € (0, 1). Moreover,
Xn+1 = 0 is the tangent plane to u at O, 2.5)

that is, u > 0, u(0) = 0, Vu(0) = O in the sense that x,{; = €x, is not a
supporting plane for the graph of u at O for any € > 0.

We also assume that u separates quadratically on 92 (in a neighborhood of
{x, = 0}) from the tangent plane at 0, i.e.,

plx? <u(x) < px]? ondN{x, < p}. (2.6)

Theorem 2.1. Assume 2 and u satisfy (2.1)-(2.6). Then there is a constant ¢ > 0
depending only on n, A, A, o, u and p such that for each h < ¢ we have

EnNQC Sy CEye

Assume 2 and u satisfy the hypotheses in Theorem 1.1. Fix a point xg € 9€2, by
a translation and a rotation of coordinates we can assume that xo = 0, and the x,
coordinate axis lies in the direction vy,. Since dQ € C?, there exists p > 0 such
that (2.1)-(2.3) hold, and after subtracting a linear function we have (2.5) and (2.6).
By (2.1)-(2.3), it is easy to see that

ID*gllcr@anin<p2yy < Cn, p) 2.7
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and therefore
dyo(x) < xp — g(x") < C'(n, p)dya(x),

where C(n, p) and C’(n, p) are constants depending only on n and p. It follows
that u satisfies (2.4) with A := Ag, A := C’(n, p) Ag. Therefore we reduce the proof
of Theorem 1.1 to that of Theorem 2.1 above.

Let 2 and u satisfy the hypotheses in Theorem 2.1. By constructing some
lower barrier for u, we will prove in Section 3 that in some domain Q¢ C 2 we
have x, — g ~ x,, and u still satisfies the quadratic separation (2.6) on 92 in a
neighborhood of {x, = 0}. Therefore we reduce the proof of Theorem 2.1 to that
of Theorem 2.2 below.

We assume (2.1), (2.5), (2.6) hold while replacing the equation (2.4) by

det D’'u=f, 0<ix;*<f<Ax,* inQN{x, <p} (2.8)
Note that we do not assume (2.2) and (2.3) hold here.

Theorem 2.2. Assume Q2 and u satisfy (2.1), (2.5), (2.6) and (2.8). Then there is a
constant ¢ > 0 depending only on n, ., A, a, u and p such that for each h < c we
have

EnNQC Sy CEy.

We prove Theorem 2.2 using the compactness methods in [12]. We first obtain
some preliminary estimates about . Next we consider the rescaling v of u. Then
we reduce the proof of the theorem to that of a statement about v. We reduce this to
the proof of a statement (Proposition 4.2) about the limiting function (still denoted
by u) of such v. Different from the case that « = 0 (in this case the estimate of the
volume of S; (v) is |S; (v)|2 ~ "), the estimate of the volume of S; (v) becomes

() (v) - en) S (W) |* ~ 1", (2.9)

where x;(v) is the center of mass of S;(v). The limiting function u also satisfies this
estimate. To prove Proposition 4.2, we construct some lower barrier for the limiting
function u and use (2.9). Since we do not have the estimate of |S;(u)|, we also
use the convexity of the original solution to estimate the quantity x;(v) - e, from
below. The estimate (2.9) brings another difficulty when we prove Proposition 4.2.
We use John’s lemma and find an ellipsoid E}, equivalent to the section Sy (1) of the
limiting solution u. In the case « = 0, we use the estimate | Ej, |2 ~ h" to estimate
the shape of S (u), but in our degenerate case, we do not have the estimate of the
volume of Ej. For this, we use the estimate (x; (u) - en) "% En|® ~ h" to obtain
an estimate of the shape of Sy () in terms of the quantity x; (u) - e,. Using this
estimate, we rescale u and reduce Proposition 4.2 to the lower-dimensional case.
Again, since we do not have the estimate of |Ey|, we perform a different rescaling
(which corresponds to our estimate (2.9)) from the @ = O case.

At the end of this section we give a more precise quantitative version of Theo-
rem 1.3 as follows.
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Theorem 2.3. For any n > 0 there exists €g > 0 depending only on n, n, « such
that if (2.1)-(2.5) hold with . =1 — €9, A = 1 + €¢ and

1 72 1 72
7 T [x']" <ulx) < 5 teo IX'I” on 92N {x, < p}, (2.10)

then for all h < c, we have
(1 = Sh(Uo) NQ C Sp(u) C (1 + n)Su(Vy),

where

x27a

,_1/2 n
Uo) = 51+ G o

Sy(Up) :={x e R" : Uy(x) < h},

and the constant ¢ > 0 depends only onn, n, o, p.

3. Proof of Theorem 2.2 (I)

As mentioned in Section 2, we first show that we can reduce the proof of Theo-
rem 2.1 to that of Theorem 2.2.

Proposition 3.1. Theorem 2.2 implies Theorem 2.1.

Proof. In this proof we always denote by ¢, C,¢;, Ci(i = 0,1,2,...) constants
depending only on n, A, A, u, @ and p. For simplicity of notation, their values may
change from line to line whenever there is no possibility of confusion.
Let
A
Q2—-—a)(1 —a)ur!

Then by straightforward computation and using (2.7), we obtain that

v i= plx'|* + (xn — )7

A
(xn — g)~*det (2ulp—1 — ————
(1—a) pr=!

> A, —g)™% inQN{x, <cil,

det D?vp= — (xp — g)l_“ng)
w

(3.1)

where ¢, < p/2 is small depending only on n, A, u, @ and p.
Denote D := 7 (2 N {x, = c4}). For x’ € D, define

g*(x) 1= sup {l(x/) 1< gin D, [is affine, and |VI| < c*p}.

Then g* is convex in D since it is the supremum of a family of convex functions.
We claim that for any x € Q2 N {x,, = c,}, we have

=gt ) = (32)
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Indeed, if [ is affine,/ < g in D and |VI| < %,then
0=g(0)>10) =I(x")—VI-x,

it follows that
cxp 1 _ G

I(x")<VI-x' < =,
2 p 2

where we use the fact that Q2 C B1+/ o Thus the claim follows.
We also claim that

“Llctg=g (3:3)

(@0t < coph) € DN Vel <

for some small constant cg.

Indeed, the second inclusion in (3.3) follows easily from the convexity of g
and the definition of g*. Therefore we only need to prove the first inclusion. Let
co > 0 be a small constant to be chosen. For any xg € 92 N {x, < cop}, we have
B,(y0) C © C {x, > 0} by (2.2), where yp := xo + pvy,. Let

t = inf Xx,,
XEBp(y())

then (y(/), t) € 9B,(yo) and
PVxg-en = (Yo-en—1) —(xo-en —1) =p—(x0 e, — 1) = (1 —co)p,

which gives
1

1+ 1Velp)?

=Vy e > 1—cp.

Hence,
2 Cup
Vg(x))| < —-1<= 34
Ve (gl < (1_60) < (34)
if ¢ is small. The desired conclusion (3.3) follows.
Let
* 72 A 2—a * ko )
v¥ = x|+ (xn — &) = C"(xp — g7 (x")).

Q-1 —apu!

Then v* is a lower barrier for u in 2 N {x, < c,} if C* is large depending only on
n, A, u,oand p.
Indeed, since g* is convex, we find from (3.1) that v* is a subsolution of the
equation
det D*w = A(x, — g)°.
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On a2 N {x, < ¢4}, we have x, — g* = g — g* > 0, which implies
vt < plx')F <.
On 2 N {x, = ¢4}, we obtain from (3.2) that

V¥ <

ﬁ+ A ci‘“—C*C—*SOSM
P> 2—a)(l —a)pr! 2

if C* is large.
Thus,
vi<u inQN{x, <cyl

This together with (3.3) implies that
= plx'? = ¥y — (&) in QN {xy < cop). (3.5)
Therefore, if § is small, we have
plx'|?
2

On the other hand, the convexity of u and the quadratic separation of u on 92 N
{x, < p} (see (2.6)) implies that

in QN {x, < cop} N ix, < gx’) + 81X} (3.6)

u =

u<CI'|? inQ0N{x, <cop)N{x, < gx)+8x3. (3.7)

In particular, if we denote Qg := QN {x, < cop} N {x, > g(x’) + 8|x’|?}, then the
above two estimates hold on 029 N {x, < cop}.
We have
Ax,* < det D*u < Cx,“ in Q.

We apply Theorem 2.2 to u# in 29 and obtain that
EnNQ C SN C&ch, Yh<c.

We claim that the last estimate also holds for Sj, (instead of S, N Q). Indeed, we
have by (3.7) -
(Q\ Qo) NEh C S

and therefore .
EnNQC Sy

On the other hand, we obtain from (3.6) that
(S N (v < coph \ R0 € || = 3.

Since B
@\ Q) N, = cop) € {xn = g(6) + 012,

we obtain '
Sp\ Qo C {|x'| <Ch2,x, <Ch} C &cp. O
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In the following we give the first part of the proof of Theorem 2.2. In the
remaining part of this section we denote by ¢, C,¢;, Ci(i = 0,1,2,...) positive
constants depending on n, A, A, u and «. The dependence of various constants
also on p will be denoted by c(p), C(p), ci(p), Ci(p)(i =0,1,2,...).

Proposition 3.2. Assume that Q2 and u satisfy the hypotheses of Theorem 2.2. Then,
for each h < c(p) there exists a linear transformation (sliding along x, = 0)

Apx =x —vx,, v, =0, |y < C(p)h_m’
such that the rescaled function
u(Apx) = u(x)

satisfies in

Sh = ApSy, = {u < h}
the following:
(i) the center of mass X of Sy, lies on the x, axis, i.c. X; =dpen;
(ii)
ch" < |Sp*d,* < Ch".
And after a rotation of the x1, . .., x,—1 variables we have

X} +cDyBy C S C CDyBy,

where Dy, := diag(dy, da, .. .,dy—1, dy) is a diagonal matrix that satisfies

n—1
(]‘[ d}) d2=% = p" (3.8)
1

and
cdp < dy < Cdp;

(iii) Denote S~2h = ApQ and éh =098, N {it < h}, then éh is a graphie.
~ /o~ 1 . ~ / 2 12
Gp = (x', gn(x")) with  gp(x’) < ;Ix |

and the function u satisfies on Gy

%W <) <2u R
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Proof. Let

A
vi=ulx'|? + x27%
M A —

C(p)x}’h

where C (p) is large such that

A Y C) ,
2-o)d —o()'uﬂ—lx’% ¢ - Txn <0 inQN{x, <p},

then it is straightforward to check that v is a lower barrier for # in Q N {x, < p}. It
follows that

Sn N {xa < p} C {v < ) C {xn > c(p)(ulx'|* = )} 3.9)
Let x; be the center of mass of S;, and dj, := x;; - e,. We claim that
dy > co(p)hF1= (3.10)
for some small co(p) > 0.

Indeed, if
dp > c(n)p

with c¢(n) depending only on #n, then (3.10) holds clearly. On the other hand, if
dp < c(n)p,
then by John’s lemma, for some constant C (n) depending only on n we have
S € fr = condy < 5

if ¢(n) is small. If (3.10) does not hold, then from the last estimate, (3.9) and John’s
lemma that

S € fun = Conaoont= < nt=s | n i) < i onma |,

Define

2
(K L ACI P (= )Z—a
W= €x, + = . d '
"2\ (phTe Q) —a) \pri=

Then we have in Sy,

h AIC1(p)P"Vh 27—«
w<e+ > + 2wl o [C(n)co(p)]”™™ <h
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if co(p) is small. On S, N 92,

11—« l—a
hnti—a AlC 2("*1)]1,14_1_“ 2
ws S e 4 S P < p
2C1(p) 2-a)(l—a) P
if » < ¢(p). In conclusion,
w<u inSy,,
which contradicts that Vu(0) = 0. Thus (3.10) holds.
Now we prove that for all small & we have
d, < Coh™= G.11)

for some large constant Cyp.
1
Assume by contradiction that d, > Coh2==. Then (3.9) implies that

()] < C(p)df . (3.12)

From (2.1) and (2.6) we know that if # < c¢(p), then S}, contains the set 02 N {x,, <
oy N{x : x| < (ch)%} for some small ¢ depending only on . Therefore S,

contains the convex set generated by 9Q2 N {x, < p} N{x : x| < (ch)%} and the
point x;. Let x, = b be a hyperplane in R", where b < p is chosen such that

ch + (b — p)? = p°.
Foreachxg € 9QN{x, < plN{x:|x'| = (ch)%}, let yg be the intersection of the

segment xox, (which is the segment joining xo and x;) and the hyperplane x, = b.
We can write

yo = (1 = 6)xo + Ox;,
for some 8 = 6 (xg) € (0, 1). Since
h
(1—0)x0-en+0dy = yo-en=b <,
P

we obtain

o< M
pdp

Recall that dj, > Coh % , then by (3.12) we obtain that for all small £
ol = 1(1 = O)xy + 00| = Ixgl — 0 (1) | + 1x51)

ey =2 (cw)d,% " (chﬁ)

A%

(ch)z
o
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Since Sy, contains the convex set generated by all such yo and x;;, this means that
1\ n—1
Sy, contains a convex set of measure c(n) (%) dj,, and therefore

1\ n—1
h)z2
1Shl = c(n) ((62) ) d. (3.13)
Let v solves
det D*v = A(C(n)dy)™® < det D*u in Sy, v=~h ondS,.
Then
v>u>0 inSy.
It follows
W' > |h — n;inv|" > c(n, @)rd;, ¥|Shl*.
h
Namely,

d;®|Sp* < C(n, &, a)h". (3.14)
It follows from (3.13) and (3.14) that

dy < ChTs.
We reach a contradiction if Cy is sufficiently large, hence (3.11) is proved.
Define
(x)

Apx =x —vx,, V=——

and
u(Apx) = u(x).

Then the center of mass of S’h = ApSy is
i; = Ahx,’f

and lies on the x,-axis from the definition of A;. We obtain from (3.9) and (3.10)

that )
()| !

v = < C(p)d, 2 < C(p)h™ Tmr=a, (3.15)

Part (1) of~ Proposition 3.2 follows. 5 3 N
Let Qp := ApQ and Gy, := 0S8, N o2, = 05, N{u < h}.
On 32N {x, < p) N {Ix'| < (u~'h)?}, we have

n 1—a
|Apx — x| = [v]xy < C(p)h™ T [x'2 < C(p)h Tt |x].
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Note that
1
951 N2 C (v < p) N {I¥'] = ('3},

thus on Gj, = 39S, N a2,

1 -~ 2
Xn < — (A )12 < SIXP?
p p

and
K2 _ o~ -1 —1 4=1 .12 —1(./2
EIX'I <i(x) =u(A, ' x) < p [(A 07 <2u x)7
It remains to prove (ii). After a rotation of xy, ..., x,_ variables, we can assume

that S‘h N {x, = dj} is equivalent to an ellipsoid of axes d) < dr < --- < d,_j i.e.
1=l e\ 2 5 i\
— ] <1:Nn =dp} C SN =dy} C — ) <C .
;(di) <110 (g =dp} C Si N {xy = di} ;(dl) <Cn)

Thus,

n—1 N\ 2
S C {Z (2—) < C(n>} N0 < xy < Cn)dy).

1 1

Since ii < 2~ '1x’|2 on G}, we see that the domain of definition of G, contains a
ball in R*~! of radius (uh/ 2)% . This implies that

di>ch?, i=1,....n—1 (3.16)
Now we prove that

n—1

dy [ [ d? = e2h" (3.17)
1
Indeed, if the last estimate does not hold, then we construct
n—1 2 2—«a
Xi Xn
= — — - ch.
w exn+|:Z<di) +<dh) :| c

If ¢, is small, then we have

212 —a)(1 — a)x, @

2

> Ax %,

det D*w > ;

On 35, \ Gy,
w < e+ Cn,a)ch <h,
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and on G, we use (3.16) and (3.10) to obtain

26 5 n—1 X; 2 1— 2|x/|2 n
< Ty h o hC o1 P2
w < p|x| +c El a + chC (n) i _2|x|

if ¢ is small. We conclude that w < i in Sj,. This contradicts Vii(0) = 0 and
therefore (3.17) holds.

Since S, contains the convex set generated by { rl’_l (2—:)2 < 1} N{x, = dy)}
and the point 0, we have

n—1
MEXIO! (]‘[ di) - dj.
1

This together with (3.17) and (3.14) implies that

n—1
Ch" = d*|Sh|* = cydy, [ d? = ch™. (3.18)
1

Define d,, from djy, ..., d,—1 by (3.8), and (3.18) gives
cdp < dp, < Cdy.
This proves (ii). ]
Theorem 2.2 follows from Proposition 3.2 and the following result.

Lemma 3.3. Assume that Q2 and u satisfy the hypotheses of Theorem 2.2. Then for
any h < c(p), we have

d, > ch™s. (3.19)

Lemma 3.3 implies Theorem 2.2.

From Lemma 3.3 and Proposition 3.2 we obtain
ch? <d; <Chz, i=1,....n—1,  ch™a <d, <Ch™a.

It follows that
)Z;: +cFyB) C ApSy C CFy By, (3.20)

where we recall from Section 2 that
1 1
Fpx = (hfx', hmxn> )

Since the domain of definition of Gh contains a ball of radius (uh/ 2)% , we have

cFyB1 N ALQ C AySy € CFB;. (3.21)
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It follows that
cEn N AR C ApSy, C CE. (3.22)

Denote Apx = x — vpx,. Using in (3.20) that ;2 C S, we find

vhja — val < Ch2™73, Vh < c(p),

which gives

vl < C()R2~ 7%, Vh < c(p). (323)
This easily implies that
Ecr(omn C Ay En C Ecy (o (3.24)

for some constants c{(p), C1(p) > 0.

The conclusion of Theorem 2.2 follows from (3.22) and (3.24).

In order to prove Lemma 3.3, we modify the definition of the quantity b, (k)
in [12].

Fix a € (0, 1). Given a convex function u we define

bu(h) = h™ 73 sup x,. (3.25)
Sh

Whenever there is no possibility of confusion we drop the subindex u and write for
simplicity b(h).

b(h) satisfies the following properties which are slightly different from those
in [12]:

1) If h; < hy, then

1—a 1
()" <=y
h T b(hy) T\

2) If A is a linear transformation which leaves the x,-coordinate invariant and

u(Ax) = u(x),

then
bi(h) = by (h);

3) If A is a linear transformation which leaves the plane {x, = 0} invariant, then

ba(h1) _ bu(hy)
bi(ha)  bu(h)’
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4) 1f
i(x) = Bu(x)

with 8 a positive constant, then
1
bi(Bh) = B~ by (h)

and therefore
bll(ﬂhl) _ bu(hl)
bi(Bha)  by(hy)

From part (ii) of Proposition 3.2 we know that

cdy < dp =xj, - en < Cdp,

and it follows that

cdy < by(h)h ™5 = sup x, < Cd,,.
Sh

Thus Lemma 3.3 will follow if we show that b, (k) is bounded below. This will
follow from property 1) above and the following lemma.

Lemma 34. Ifh < c(p) and b, (h) < cg, then

by (th)
>
by (h)

for some t € [cp, 1].

In order to prove Lemma 3.4, we recall the function i, the section S‘h and the matrix
Dy, in Proposition 3.2. Define

1 1
v(x) = Li(Dyx) = Eu(A;Ith).

The section S1(v) = {v < 1} = Dh_lAhSh satisfies
x*+c¢B; C S1(v) C CBy
with x* the center of mass of S;(v). The function v satisfies in S} (v)
n

Ax, @ < det D*v(x) = d%det D*u(A; ' Dpx) < Ax,;®

and
v(0)=0, 0<v<l.

Moreover, let 0 < t < 1, x;(v) and x;) be the centers of mass of S;(v) and Sy, (u)
respectively, and d;;, = x}}, - e,. Then

d %S (w))?

@) - en) S )P = =0
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Since Proposition 3.2 implies that c(th)" < dtza |Sin(w)|? < C(th)", we obtain
ct" < (xf (V) - e) IS )P < Cr".

From the convexity of u we have

su X
den > drn >ec. PSi () Xn > ot
dn dh SupSh () Xn

Let G, := 3S51(v) N {v < 1}. We claim that
Gy Clx, <o),  o=C(phira.

Indeed, for x € G, = Dh_léh,
2 /12
dpxn = —|Dpx’|" < C(p)h,
0

which gives

xn < C(p)h "7 = o

by (3.10). Thus the claim follows.
We also have

v=1 ondSi(v)\ Gy.

On G,,
n—1 n—1
wY aixt <v) <p”'y aix},
1 1
where
d;
a=—>c, i=1...,n—-1
h2
by (3.16).

In order to prove Lemma 3.4, we only need to show that there exist constants
c(p), co small and C sufficiently large such that if 2 < c(p) and max|<j<,—1 a; >
C, then the rescaled function v satisfies

by(1) = 2by(1) (3.26)

for some ¢ € [cg, 1].
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4. Proof of Theorem 2.2 (I)

We consider the class of solutions v that satisfy the properties above. After relabel-
ing the constants ¢ and a;, and by abuse of notation writing u instead of v, we may

assume we are in the following case.
Fix u, A, A and @ € (0, 1). For an increasing sequence

with
ay =z W,

we consider the family of solutions
ueDla,a,...,a0-1)
of convex functions u : 2 — R that satisfy
AxY <det DPu < Ax;%  O0<v<1 inQ;
0 € 9Q, By(x0) C 2 C By),;

ph" < (xf - en) T SuP < wThY, X oen > uh

with x;l‘ the center of mass of Sj,.
Moreover, there exists a closed set G C 9£2 such that

G CoiaNix, <o},

and G is a graph in the ¢, direction with projection 7 (G) along ey,

n—l1 n—1
{M_l Zaile-z < 1} cn(G) C {uZaizxiz < 1} .
1 1
The boundary values of u = ¢ on 9S2 satisfy
=1 onadQ\G,

and

n—1 n—1
wY_alx} < (x) < min {1, w! Za?xiz} on G.
1 1

.1
42)

(4.3)

4.4)

4.5)

(4.6)

4.7

As explained in [12, see page 79], Property (3.26) is a corollary of the following

proposition.
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Proposition 4.1. For any M > O there exists Cy depending only on M, n, u, A, A

and a such that ifu € DY (a1, as, . .., ay_1) with
ap—1 = Cy, o < C*_]

then 1
b(h) = (supxy)h 2=« > M

Sh

or some h € [CT1, 1].
f *

We prove Proposition 4.1 by compactness as in [12]. We introduce the limiting

solutions from the class D5 (ay, . .., ay,—1) when ar+1 — ocand o — 0.

For an increasing sequence
ap=az =--- = a

with
ap = [,
we denote by
Dy (ai,...,ar, 00,...,00), 0=<k=<n-2,
the class of functions u that satisfy
kx;“fdetDzqux;“, O<u<1 in;
+ .
0 €0, Bu(x0) CQC B,

ph" < () - en)Shl? < T, xfen > uh,

where x;l‘ is the center of mass of Sj,. There exists a closed set G such that

G CcoQNn{x; =0,i > k}.

If we restrict to the space generated by the first k coordinates, then

k k
{MIZa?xiz < 1} cGC {uZaizxiz < 1}-
1 1

The boundary values of u = ¢ on 92 satisfy
=1 ondQ\G,

and

k k
Mzaizxiz < ¢(x) < min {l,u_l Zaizx?} on G.
1

1
As in [12], Proposition 4.1 will follow from the proposition below.

(4.8)
(4.9
(4.10)

@11

(4.12)

(4.13)

(4.14)
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Proposition 4.2. Forany M > 0 and 0 < k < n — 2 there exists cx depending only
on M, k,n, u, ., A and o such that if

L
u € Dyay, ..., ax, 00,...,00),
then

b(h) = (supx,)h~ T > M
Sh

for some h € [c, 1].

To prove the above proposition, we use the notation introduced in [12]. Denote
x=0rzx), y=@n ) €RY 2= (it xmem) € RTIE
A sliding along the y direction is defined as follows:
Tx:=x4+vizi+wmz2+ -+ Vyp—k—12n—k—1 + Vn—kXn

with
Vi, V2, ..., Vy—k € spanfeq, ..., ex}.

Lemma 4.3. Assume that
u > p(lz| = qxn)

for some p,q > 0,q < qo and assume that for each section Sy, of u, h € (0, 1),
there exists Ty, a sliding along the y direction, such that

TSy C CoFyBy
for some constant Cy. Then
ugDy(l,....1,00,...,00).

Proof. Assume by contradiction that u € Dg (1,...,1,00,...,00). We will show
that

u > p'(lzl — ¢'xn), g =q—n, (4.15)

where n > 0 depends only on gg, Co, A, u,n,a¢ and 0 < p’ K p.
Apply this result a finite number of times we obtain

u > €(|z] 4 xn)

for some € > 0 small. Thus we obtain S, C {x, < e~ 'h} and it follows that

T, Sy C {xn < e—‘h}.
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This together with the hypothesis of the lemma and (4.10) in the definition of the
class Dg implies that

puh" < (x, - en)_a|Sh|2 = (x - en)_a|ThSh|2 < Cchpti-e,

where C is a constant depending only on €, Co, n, u and «. This is a contradiction
ash — 0.
It remains to prove (4.15). Since u € Dg(l, ..., 1,00,...,00), there is a
closed set
G C 085, N{(z, x,) =0}

such that when we restrict to the subspace {(z, x,) = 0},
{w™'yI? < h} € Gy c {uly® < h,
and the boundary values ¢, of u on 9.5, satisfy
op=h ondSy\ Gp;

ulyl> < on < min{h, u”'1y1*} on Gy

Define )
w(x) = Eu(Th_thx).
Then
S1(w) = Fh_lThSh - C()Bf_,
and
Ax, * <det D*w < Ax,* in Sy(w).
Also,
1 1 il D e
we) = 2p (122 = ghTox,) = 2 Izl - gh ™, ). (4.16)
h2

Moreover, the boundary values ¢,, of w on 957 (w) satisfy
=1 ondSi(w)\ Gy;
ulyP < g < min {1,152} on Gy = G

Define

2—a
X A a 2
=81 ?+ n + < — gh?t— )
v (Ix | 2—-a)l —oc)) g1 \*1 4 o

+ N (zl - qhﬁxn) + Shﬁxn,
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where § is small depending only on p, Co, o and N is large such that

A 2
Sl N

is increasing in the interval |t| < (1 + ¢o)Co.
By a straightforward computation and similar arguments to the proof of [12,
Lemma 5.4], we find that v is a lower barrier for w in S;(w), which implies

w>N (zl — qh72<2a—“>xn) SR x, in S;(w).

Since this inequality holds for all directions in the z-plane, we obtain

by o
w>N |:|z| - <q - N) h2<2a>xni| .

5
u(x) = hw(F; ' Tyx) > hZN |:|z| - (q - N) xni| in Sp.

Back to u we have

From the convexity of # and u(0) = 0, we know that this inequality holds in 2 and
therefore (4.15) is proved. O

Now we give the proof of Proposition 4.2.
k = 0 : Assume Proposition 4.2 is not true, then by compactness, there exist
M > 0and u eDg(oo,...,oo) such that b(h) < M forany 0 < h < 1. Let

1 A
=5 / 14712 2—a_N ,
v (|x|+2|x|>+8”—1(2—a)(1—a)x” Xn

where § is small depending only on u and N is large such that

A
12 —a)(1 —a)

2—a
X, " —Nx, <0

in BT,

i It is easily seen that

v<u in Q.

It follows that
u>8|x'| — Nx,

and then
Sy C {|x’| <5 '(Nx, +h)} .
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Since b(h) < M implies that x,, < Mhﬁ < Mh%,we obtain

Sh |l = Chb,x, = MAT ],

where C is a constant depending only on M, u, A and «. This contradicts Lem-
ma 4.3 and therefore Proposition 4.2 is true for k = 0.

Assume Proposition 4.2 holds for 0, 1,...,k— 1,1 <k < n — 2, and now we
prove it for k.

By the induction hypothesis, it suffices to consider the case ay < Cy, where Cy
is a constant depending only on M, k, n, i, A, A and «. Assume in contradiction
that no ¢ exists, then we can find a limiting solution u such that

weDl, ... 1,00,...,00) (4.17)

with
bhy <M, Yh=>O0, (4.18)

where i depends only on w and Cy.
Denote as before

k —1—-k
x=02,%), y=@i....,x) R, z=0k41,...,x0-1) eR" .

Similar to the case k = 0, the function

1 A
=38 ~ x| =N
v (|Z| + 2Ix | >+ 512 — o)l _a)xn Xn

is a lower barrier for u#, where § is small depending only on & and N is large.

Therefore,
u > 48|z| — Nxp. 4.19)

This together with (4.18) implies that
Shc |l =87 Wy +m ) 0 fan < mae ) (4.20)
From John’s lemma, there is an ellipsoid Ej such that
Ep C Sp—x, CC(n)Ey 421

with x; the center of mass of S;. By a fact in linear algebra (see the arguments
in [12, page 83]), there is T}, a sliding along the y direction, such that

TWEn = |En|7 AB,, (4.22)



1606 OVIDIU SAVIN AND QIAN ZHANG

where, after rotating coordinates in the (y, 0, 0) and (0, z, 0) subspaces, the matrix
A satisfies

A(ya Z’ xl’l) = (Alyy AZ(Za xn))’

,81 0 0 Yk+1 0 0 9k+1
0 ... 0 0 Yz 0 Oryo
Al = . - . and A2 = : .
) ¢ B 0 0 ... VYn—1 On—1
00...58 00 e O
with
k n—1
1 k+1
Let

i) =u(T; %), Sp=TySh,
then (4.21) implies that

£+ |Enl" AB) C S C C(n)|Ep|" ABy, (4.23)

where )Z;l" is the center of mass of S‘h.

Since u € Dg(l, ..., 1,00,...,00), there exists Gh = Gy,
Gh C{(z, x2) =0} NS,
such that on the subspace {(z, x,) = 0},
{2~y <) < Gn < {ay? =),
and the boundary values @, of i on 85‘;, satisfy
gn=h ondS,\ Gy;
~ 2~ . ~ 12 =
/lyl” <on < mm{h,u Iyl } on Gj.
For any h > 0, denote dj, := x] - e,, then
" < (% en) ISP = d, ISP < 7T, X en =di = ih. (424)
We will show that
|Exl* ABy € Cdiag (h*,....h?, h3d} ) By, (4.25)

where C is a constant depending only on w, M, k, A, A, n and «.
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This together with (4.23), (4.18) gives

Ty Sy C Cdiag (h%,...,h

‘.I\J\'—‘
=

i+

~—
=

(4.26)
Now we prove (4.25). Let

A = |Ep|7 diag (h—%, LR, h—idh’f) A
Ay

L1 . Al
= n 2 .. = - .
|Enlnh A ( A2>

Since G;, C 88, N {(z, x,) = 0} contains a ball in R¥ of radius (1h)'/2, then from
the second inclusion in (4.23) we obtain

3 = h 2 Epifi > c, i=1,....k 4.27)

where c is a constant depending only on »n and ji.
From (4.18) we know that for any x = (y, z, x;;) € S, we have

o

d? <C(n, M, a)h?dp,

2—a
2

xu < Cn)dy < C(n)(MhT)

combining this, (4.24) and (4.20) we obtain that
S Iz x)l = chraf |,

This together with the first inclusion in (4.23) implies that || As|| < C and if follows
that 1 1
Vi =h"Z|E|ny;, < C,
™3| Ey|716,0] < C, (4.28)
- 1

Bn = h2|Eylnd, 26, < C.

where C is a constant depending only on n, i, A, @ and M.
Also, we have by (4.23)

|Epl#6y < X5 eq = dy < C(n)|Ep| 76, (4.29)

We define |
W) = i (|Eh|%Ax) ,
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then from (4.23) we know that

1 ~
Bi(x0) C S1(w) = |Ey|"nA7S, ¢ C(n)B,

for some xq, and from (4.24) and (4.29) we find that

Ax, % < det D*w < Ax,®

with )_», A depending only on XA, A, n, o, [&.
Moreover, for ¢ > 0 let x;*(w) be the center of mass of the section S;(w), then

1
S;(w) = |Ep| ™7 A7 Ty Sin (u),
and we have by (4.29)

d d
S < xFw) - en = |Enl 0, dy < C(n) 2L
dh dh

Then (4.24) implies that
ct" < (xf (w) - e))"¥IS;(w)* < C1"

for some constants ¢, C depending only on n, o and f&.

Let Gy, =0S1(w) N{w < 1} = |Eh|_%A_1(~}h, then the boundary values ¢,
of w satisfy
oy =1 ondSi(w)\ Gy,

and from the definition of 8; we find that
k _ k _
BY B <ew=<i”' Y B
1 1

This implies that .
w e Dy(Bi, ..., Pr, 00, ..., 00)

for some [t depending only on p, M, k, A, A, n and «.
Note that (4.24) implies that

k n—1
c< (]‘[ B,-) (1"[ fj) On = h™2|Enldy,
1

k+1

IR

<C (4.30)

with ¢, C depending only on n and .
We claim

b, > cx 431)
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for some small ¢, to be chosen.
Indeed, if we ¢, is small, then (4.28) and (4.30) imply that

Bk > Ci(fi, M, %, A, n, &)
with M := 2!, Then by the induction hypothesis,
by(h) = M > 2b,(1)

for some h > C, ! 1t follows that

bu(hh) _ bu(h) _ 5
bu(h) — by() =7

which implies b, (hh) > 2b,(h) for any h > 0. This contradicts (4.18) and there-
fore the claim holds.
Similarly, we obtain that

Vi = Cx (4.32)

for some small ¢,.
We obtain from (4.30), (4.31), (4.32) that

Bi<C, i=1,....k, (4.33)

where C is a constant depending only on wu, M, k, A, A, n and «. This implies that
|A1]l < C and therefore || A| < C.

Thus, the estimate (4.25) holds. Then the proof is finished because (4.19),
(4.26) and (4.17) contradict Lemma 4.3.

5. Proof of Theorem 1.2

In this section we always denote by ¢, C, ¢;, C;, i € N constants depending only on
n, co and « (co is the constant in (1.5)). Their values may change from line to line
whenever there is no possibility of confusion.

Lemma 5.1. Assume the hypotheses in Theorem 1.2 hold, thenfori =1, ..., n—1
we have u; € C(R}).

Proof. We first claim that for some constant ¢; small, we have
IVu| < ¢!, in B} (5.1)
Indeed, we note that (1.5) implies that

B C Siw)C B,
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for some constant £ depending only on cp and «. We can use the convexity of u
and obtain an upper bound for u#, and all |u;|,1 <i <n —1,in B,j/4. On the other

hand, for any xo € BCJT , the function

81—n

2—a __ 73,—1
G- )

1
Wieg0) (6) 1= G230+ (= xg) +81x —xg I+

is a lower barrier u in Sy (u), where § is small depending only on n, cg and «. This
together with the convexity of u gives a lower bound for u,, (xp).

Next we prove that for any 1 < i < n — 1, u; is continuous at any point
xo € {Ix'| <¢1/2, x4, =0}.

Indeed, fix 1 <i <n—1andxg € {|x'| < ¢1/2, x, = 0}, define

Uyy (x) = u(xo + x) — u(xo) — Vu(xp) - x.

We only need to prove that d;uy, is continuous at 0. Assume there is a sequence
x™ 5 0, m — oo with
Bittzg(x™) = €

for some € > 0. We have
Uy, > uxo(x(m)) + Vuxo(x(m)) C(x —x™)y.
Note that |V, (x™)] is bounded by (5.1). Let m — 0o, we obtain
Uy, = d - X

for some a = (d’, a,) € R" with a; > €. From the value of u,, on the boundary
{x, = 0} we find that ' = 0. This is a contradiction.
For any A > 0, we define

1
up(y) = XM(FA)/),

then u, satisfies (1.5) and (1.6). The results above show that for any 1 < i <
n — 1, d;u; is continuous on {|x’| < ¢;/2, x, = 0}. Therefore, u; is continuous on
FAlx'| < c1/2,x, = 0}. Let A — oo and we conclude that u; is continuous on
{x, =0}. O

Proof of Theorem 1.2. As before we have
B C Siw) C B, (5.2)

and
il <C in B, i=1..,n-1, (-3)

where k is a constant depending only on ¢g and «.
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Let
Ly := tr[(Dzu)lezgo]

be the linearized Monge—Ampere operator for u. Then fori = 1,...,n — 1 we
have

Lu; =0, u; = x; on {x, =0},
Lu = n,

2—a
and if we define P(x) = §|x’|?> + &' Q_ii’sw with § > 0 a small constant to be

chosen, then
LP = t[(D*u)"' D®P] > n[det(D*u)~'det D*P]7 > n.

Let y1, y» be large constants to be chosen and define

2—a
vF(x) ==x; £y |:5|X/|2 +8'7" (Q—ng - szn) - u(X)] .

We have
Lv™ =y [LP — Lu] > 0.

On 8B,:r/4 N {x, = 0}, we choose § < 1/2 and obtain
— 712 1 72
v =x; +y1|6x| —Elxl < X;.
We choose y; large such that

2—a
Xn

Ty, <0 in B,
C-ay(l—a) TFm=7 P

Then on 881:74 N {x, > 0}, we use (1.5) and obtain

(X2 +x27%) < —C,

_ _ 1€0
v < x; + [(Slx’l2 —colx'|> — coxrzl "‘] <x— VT

where C is the constant in (5.3), and we choose § < ¢p/2 and y; large.

By Lemma 5.1,u; € C (B,j/ 4) and therefore the maximum principle for linear
elliptic equations implies that

v <wu; in B,j/4.

Similarly,
u; in B,j/ 40
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Therefore,
lui — xi| < n[8'"yoxn +u] in B, (5.4)

For any A > 0, we define
1
up(y) i= —u(Fry),
then u; satisfies (1.5) and (1.6).
Apply (5.4) with u ~~ u; and we obtain

19;13(») — yil < n1[8" ™ yayn + 13 ()] in B;j/4-
Back to u we have
i () = x5l <y [81 72 T 42T )| i BB, (59)
Let A — o0, we obtain
u; =x;, VxelRL. (5.6)

For any x = (x/, x,) € R,

1
1
u(x', x,) = u(0, x,) +f Veu@x', x,) - x'd0 = u(0, x,) + EIX/IZ- (5.7)
0

Thus,
det D*u = up, (0, x,) = x, %,
it follows that
xg_“
0, =— 4 A B
u(0, xp) (2—a)(1—a)+ Xn +

for some constants A, B € R.

Since u € C(R'}) and satisfies (1.5), we obtain A = B = 0. The conclusion
of the theorem follows from this and (5.7). ]

6. Proof of Theorem 1.3
Proof of Theorem 2.3. By the localization theorem (Theorem 2.1),
cUp(x) <u(x) < ¢ 'Up(x) in QN S(Vo),

where c¢ is a constant depending only on n, o and p. Let Q = Fh_lQ, then 2, N
S1(Up) can be denoted by x,, = g5 (x"), where

gn(x) = h™Tag(htx') < Chra |x' P ©6.1)
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for some constant C = C(n, p). Define
1
up(x) = Eu(th), x € Q.

Then we have
cUp(x) < up(x) < ¢ 'Up(x) in QN S (Vo). (6.2)
The assumptions of Theorem 2.3 imply that

(1 — €0)(xp — gn(x)) ™% < det D?up(x)

o (6.3)
< (I +€0)(xn — gn(x")™ in &5, N S1 (Vo)

and

1 /2 1 /2
5 T Ix'|* < up(x) < 5 teo lx'|* on 382, N S1 (Vo). (64)

Assume by contradiction that Theorem 2.3 does not hold. Then there is a constant
n > 0 such that for any m € N, m > 1, there exist Q", g”, u™ that satisfy the
hypotheses of Theorem 2.3 with €9 ~~» 1/m, and some 0 < h,, < min{l/m, c}
such that if we denote €2)' = F) 'Q™ and

1
up, (x) = h—um(Fhmx),
m

then the part 9! N S1(Up) is given by x, = g;! (x") for some convex function
g,’Zn satisfying (6.1) with 2 ~» h,,, and the function ufm satisfies (6.2)-(6.4) with
€y ~» 1/m, while the inclusion in Theorem 2.3 does not hold for n and S, (u™).

Let m — oo, we can extract a subsequence ufm that converges uniformly on
compact sets to a global solution uo defined in R’, such that

cUp(x) < up(x) < ¢ 'Up(x) inRL (6.5)

and |
det D*ug(x) =x,% inR%,  uo(x',0)= E|x’|2. (6.6)
Theorem 2 implies that
1 2—«a
up=Up = /P 4 =—2
2 Q-1 —a)

We reach a contradiction. O
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Proof of Theorem 1.3. Assume the hypotheses in Theorem 1.3 hold, then we can
assume that

1
¢ =S (Mx',x) + o(Ix'1%),

for some positive definite matrix M € R*~Dx(=D,
It suffices to prove the theorem for the case f(0) = 1 and M = I,,_. Indeed,
let D' € RO=Dx=1) pe 3 positive definite matrix such that

D'MD =1,_;.

Let A > 0 be a constant to be chosen. Define

b= (”))

u(y) = u(Dy)

Forany y € Q@ = D~'Q, define

and ¢ := i|,¢. Then we have

det D2ﬁ(y) _ f(y)da_g(y)’ f(y) (det M)~ 1)L2f(D ) 3{2 (( ))’)

It is easy to see that
dyo(Dy)
y%O daQ (y)
Thus we can choose A > 0 such that

lim F(y) = (et M) A2 FO)A =1
y—)

Now we assume f(0) = 1 and M = I,_1, and we will prove that

_ 1 2 x’%—a 2 o

For any €; > 0 small, we can choose R = R(e1) > 0 such that 92 N Bg is given
by x, = g(x") for some convex function g, where

geC*(m(dQN Bg)), g0)=0, Vg0)=0, D?g(0)>koly—1 >0, (6.8)
det D*u = f(x)dm, l—e<f<14e€ inQNBg, (6.9)

1 72 / 1 72
5—61 X" <ulx) =k’ < §+61 |x"|* on d2N Bg, (6.10)

where ko depends only on the principal curvatures of 92 at 0.
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It is obvious that ,
Xn — 8(x7) _
x—0 dag(x)

Therefore we can choose R = R(e;) smaller such that
(1—4€)(x, —g(x") ™% <det D?u<(1+4e€;)(x, —g(x)™¥ in QNBg, (6.11)

For any 1 > 0, let g be the constant given by Theorem 2.3 and €1 := €p/4. Using
(6.8), (6.10) and (6.11), we can choose p > 0 such that the hypotheses of Theorem
2.3 hold. Then Theorem 2.3 implies that

lu(x) —Uo(x)| = CnUp(x) in 2N S.(Vo),

where Uy is defined as in Theorem 2.3, ¢ is a constant depending only on 7, 1, «, p
and C = C(n, o) depends only on n, «. This proves (6.7) and therefore the proof
of Theorem 1.3 is complete. O

7. Proof of Theorem 1.4

In this section we always denote by ¢, C, ¢;, Ci(i =0, 1, ...) constants depending
only on n, A9, Ag, o, diam(£2), and ¢, €2 up to their second derivatives. For any
A, B € R, we write A ~ B if

for some constants ¢, C depending only
their second derivatives.

Suppose the assumptions of Theorem 1.4 hold. First we can use barriers to
obtain that

Q

n n, Ag, Ag, o, diam(€2), and ¢, 92 up to

”””C(§) <C. (7.1)

Now we restrict to a neighborhood of 0 € 9€2. As in Section 2, we can assume that
for some fixed small p > 0, the part 3Q2 N {x, < p}is given by x,, = g(x”) for some
convex function g, where

geC*(@OQN{x, <p)). g0)=0, Vg =0. (72)
The function u :  — R satisfies u = ¢(x") on 3Q N {x, < p}, and
det D’u=f, 0<hl—g) " = f<Al—g"" inQN{x, < p/2}, (73)
where @ € [1, 2).

Casel:x € (1,2).
Denote f := “t¢=1 > 1. We claim that for any x € 3Q N {x, < p/2},

5, =57 — @) P < <87y — 8, — 9)F P, (74)
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where § > 0 is a small constant, and
i:=u—u)—Vyp) - x
Indeed, let Cy, C1 > 0 be two constants and define

Co

2—B) (xp — g)Z—ﬁ — Cix,.

v 1= 9(0) + Vye(0) - x’ —

Since € is uniformly convex, 3$2, ¢ € C2, and u is bounded below by (7.1), by
straightforward computation we obtain that v~ is a lower barrier for u in 2N {x, <
p/2} if Co, Cy are sufficiently large. Similarly, the function

c1
2-p)

is an upper barrier for # in 2N {x, < p/2} if ¢ is small and C is sufficiently large.
Hence the claim follows.
The estimate (7.4) implies that

vt = 9(0) + Vep(0) - x' — (xn — 9> P +Cx,

lu —u(xo)| < Clx —xo|* P VixoedQ, xeq.
This together with the convexity of u implies that u is Holder continuous in €2 and
lullco2-pg) = C. (7.5)

Let yo € Q2 and assume S, (yo) is the maximal section included in €2 which becomes
tangent to 92 at O with h < c. Then we obtain that

Veu(yo) = Vyp(0), Si(yo) = {x € Q:u(x) < un(yo)xn}.
Note that u, (yo) is bounded above since ¢ € C?and Q is uniformly convex. Thus

h = —ii(y0) + un(0)¥0 - €n

is bounded above.

Denote M := —u,(yg). We only need to consider two cases: —C < M <
26~!and M > 28—, where § is the constant in (7.4).

If —C < M < 2871, then at the point x = (0, ¢g) with ¢g a small constant, we
have by (7.4)

5 5 o
i+ Mx, <38 ', —8x>7F < —Ex,%*ﬂ — _Ecg P

It follows that /4 is bounded below. Hence by (7.5),

Sp(y0) D Be(y0)-
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It remains to consider the case M > 28~!. For some ¢ small, the second inequality
1
in (7.4) implies that the point x = (0, c;M ™7 ) € S;(y0) and

~ 8 2713 ﬂ 8 1_’B ﬂ
u—l—Mxnf—zxn + Mx, =c M-8 l—ic1 < —c M-8,

Therefore,
- 2=
h>ciM™F. (7.6)

On the other hand, the first inequality in (7.4) and the uniform convexity of €2 imply
that

1 1
$500) € {xn = CMT | < cmTm | .7)

Using this and the first inequality in (7.4) again, we obtain that for any x € S;(yo)
M 28
u—+ Mx, > Txn — 8_1x,%_ﬂ > —8_1x,2,_ﬂ > _CMTF

and therefore

. 2-p
h<CM™". (7.8)
By (7.4), (7.6) and (7.8), we have
1
Spp00) € fxn z eMa ) (7.9)

Using the first inequality in (7.4), (7.7) and (7.9),we obtain that

1
Xp— 8~ Xp~ MT-P Vxe S,—l/z(yo). (7.10)

The volume estimate for interior sections in [6, Corollary 3.2.4] and the definition
of B imply that

n2—p)+a n+l1

1S5 /2(00)| ~ M 2T=5 = M5 (7.11)

1 1
Define Ty := (M20-F) y', MT-F y,), and

1

v(y) i= —5 [A(Ty) + M(Ty) - e, +h/2]  inT7'S; (o).
MTF
We have
det D?u(y) = MTFdet D>u(Ty) ~ 1 in T7'S} ;,(y0)
and

TS5 000 ~ 1.
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Since (7.7) implies that
T~'S;,2,(30) C Bc,

hence the Aleksandrov’s maximum principle [6, Theorem 1.4.2] implies that

T'S;,2(30) D Be(T ™" yo).
Part (i) of Theorem 1.4 is proved.

Case2:a=1.
By straightforward computation, the functions

1
v = @(0) + Vy(0) - X — Co(x, — g)(—log(x, — g))" — Cix,
and
1
vt = 0(0) + Vre(0) - X’ — c1(xy — 8)(—log(x, — g))7 + Cxy,

are barriers for # in 2N {x, < p/2}if Cy, C1, C are large constants and c; is small.
Hence, we have in Q2 N {x, < p/2}

5! n— - n— —1 n— %
8 xn =8 (xn — 8) (= log(xy — 8)) (7.12)

- _ 1
< <8 'xy — 80y — g) (—log(x, — g)7 ,

where § > 0 is a small constant, and # is defined as in the case @ € (1, 2).
Using (7.12) and similar arguments to the previous case, part (ii) of the theorem
is proved. The proof of Theorem 1.4 is complete.
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