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The invariant measure and the flow associated
to the ®3-quantum field model

SERGIO ALBEVERIO AND SEIICHIRO KUSUOKA

Abstract. We give a direct construction of invariant measures and global flows
for the stochastic quantization equation to the quantum field theoretical ¢g-model
on the 3-dimensional torus. This stochastic equation belongs to a class of singu-
lar stochastic partial differential equations (SPDEs) presently intensively studied,
especially after Hairer’s groundbreaking work on regularity structures. Our direct
construction exhibits invariant measures and flows as limits of the (unique) invari-
ant measures for corresponding finite-dimensional approximation equations. Our
work is done in the setting of distributional Besov spaces, adapting semigroup
techniques for solving nonlinear dissipative parabolic equations on such spaces
and using methods that originated from work by Gubinelli et al on paracontrolled
distributions for singular SPDEs.
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1. Introduction

The present paper undertakes a new and direct construction of global solutions with
general initial conditions and the invariant measure for a nonlinear stochastic par-
tial differential equation (stochastic quantization equation) associated with the @‘3‘-
model of quantum field theory on a torus. To understand the origins of the problem
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and present some motivation for the study of the CI>§'—model, let us shortly recall the
origins of quantum field theory and the motivations for the construction of quantum
field models.

The origins of quantum field theory have to be found already at the beginning
of quantum theory. In fact the considerations which lead M. Planck at the beginning
of last century to the introduction of the basic “quantum of action” (expressed by
Planck’s constant /) were based on a phenomenon (“black body radiation”) involv-
ing the electromagnetic field (described by Maxwell’s equations). Quantum theory
evolved first (1924-25) as a physical theory, different from classical mechanics, for
the description of phenomena characterized by a dependence on £, typical of the
world of atoms and molecules. Later it found its well-known mathematical formu-
lation in terms of operators acting in Hilbert spaces (see, e.g. [83-86]). Already
in 1927, M. Born, W. Heisenberg and P. Jordan considered an analogue of quan-
tum mechanics where the particles are replaced by fields. This was quite natural
since a field (e.g., the classical electromagnetic field) in any bounded space-time
domain after a decomposition in Fourier components can be looked upon as an
infinite system of oscillators, susceptible to be quantized as mechanical particles
performing oscillations. In the same year P. Dirac gave the first physical discus-
sion of a quantized electromagnetic field in interaction with quantized particles
(see, e.g. [65,66]). Soon it was realized that divergences arise in trying to com-
pute quantities of physical interest. This is largely due to the fact of having to do
with an infinite-dimensional quantum system which evolves according to the laws
of relativity theory. Despite the fact that quantum mechanics of finite systems of
non-relativistic particles found a mathematical formulation quite early, the exten-
sion to the case of quantum fields took a lot of time and in some sense is still an
open problem. However, in the case without interaction (“free field case”) a suitable
setting was found through the Fock space representation (since the 30s) and (since
the 60s) the isomorphic Friedrichs-Segal representation of Fock spaces as an L?-
space with respect to a suitable Gaussian measure on the space of real maps from
the space variables to the real numbers. The singularities of this measure coupled
with the nonlinearity of the interaction makes difficult the treatment of the inclusion
of interactions. These difficulties lead in the 50s on one hand to the physical theory
of renormalization, on the other hand to the development of “axiomatic settings”,
trying to fix a minimal set of requirements for a theory or a model to be acceptable.
Up to the present no model satisfying all requirements has been found for the case
where the dimension d of space-time is 4. In the case where d < 3 some nontriv-
ial models satisfying all requirements have been constructed, as part of the area of
research developed in the 60s-70s known under the name of “constructive quantum
field theory” (see, e.g. [7,16,44,61,92]). The Cb;‘-model, which we discuss in the
present paper, belongs to this area, more precisely to the class of models which can
be looked upon as quantized versions of a classical nonlinear partial differential
equation of the form

32 - ) - .
S(.E) = (85 = m}) $(1.F) — V(9 (1. D). (1.1)
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Here m( > 0 is a constant, # and X are time and space variables, respectively, r € R,
X € R?,0 € NU {0}, ¢ takes real values, V is a real-valued differentiable map
on R expressing the nonlinearity of the equation. More precisely, —V'(¢) is the
nonlinearity for the equation. In the d>§ case we have o = 2, V(y) = ry* for
some A > 0 (more general models have been discussed for o < 1, where V can
be of the lower bounded polynomial, trigonometric on exponential-type (see e.g.
[1,2,4,30,44] and [86])). (1.1) is called Klein-Gordon equation (with mass mg and
nonlinearity given by V). For the study of (1.1) and similar classical nonlinear PDEs
see, e.g. [19] and [95]. It is a prototype of relativistic local equations, in as much as
it can be looked upon as a local perturbation by the V-term of the relativistic linear
equation expressed by (1.1) for V = 0 (the linear Klein-Gordon equation, which
is obviously relativistic covariant, since it only involves the relativistic operator

2
D:%—A;).

The quantum field ®q, corresponding to the classical field ¢ satisfying (1.1)
has been realized in the models mentioned above as an operator-valued distribu-
tion, satisfying all requirements of a relativistic quantum field theory in space-time
dimension d := o + 1 < 3 (as mentioned above, the most interesting case where
d = 4 is still out of reach, despite several partial results, see, e.g [14,32,34,52]
and [93]).

A common construction of ®g, for all d < 3 (within the above mentioned
“constructive quantum field theoretical approach”) is by probabilistic methods,
where one first constructs a generalized random field ®g, (where Eu stands for
“Euclidean”) defined as the coordinate process to a probability measure ug, (de-
pending on mq and V) on the probability space @ = S’ (R?), with its Borel o-
algebra. The measure g, is invariant under the (full) Euclidean group E, acting
on S'(R?). ®g, is thus Ez-homogeneous (stationary). All axioms of Euclidean
field theory are satisfied, and from the moments functions of ug, (which have been
shown to exist) one can find, by a suitable analytic continuation, a set of functions,
called Wightman functions, which characterize the relativistic quantum field Dgqu
corresponding to ®gy. These ®gy are “nontrivial” in the sense that they differ both
physically and mathematically from the corresponding quantities for V = 0 (see,
e.g.[21,44] and [92]).

Let us indicate briefly how the structure (®gy, (gy) is constructed in the cases
o = 1, 2 (for the more elementary but also instructive case ¢ = 0 (nonlinear quan-
tum oscillator) see [27,82] and [94]). iy is obtained by a double limit, introducing
both a space-time cut off (also called “infrared cut-off”’) and a regularization cut-
off (“ultraviolet cut-off™). The first is realized either by considering the interaction-
term only for (r, X ) in a bounded region A of R, and putting appropriate boundary
conditions on d A for the space-time Laplacian in R? (with Euclidean metric), or by
replacing R itself by a d-dimensional torus T¢. The ultraviolet cut-off is realized
in two steps: first by plainly replacing in the interaction term the coordinate variable
by a regularized version of it (e.g., through convolution with a mollifier, depending
on a parameter ¢ > 0); the second step consists in introducing appropriate renor-
malization counterterms as we shall see. As a result of the first step one has then a
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family of probability measures i . on S’(R?) of the form
i e(do) = Zy e I V@ DR 0 g ) (1.2)

where 0 € Q@ = S'(RY), Q denoting the probability space (w plays the role of
®gy); mo is the probability measure corresponding to the case where in (1.1) we
have V = 0, which is Nelson’s free field measure 1o on S’(R?), i.e., the Gaussian
measure with mean 0 and covariance operator (—A+m(2))_1 in L2(R%), respectively
when A is the torus T¢, in L2(T%) (and then po can be seen as a measure on S’ (A))
(see, e.g. [44,51,52,76,77] and [92]). To keep in touch with suggestive notations
of the physical literature g is heuristically given by a normalization times

1
exp (—5 /[@Z(t, X) + [Vo(t, %) > + mdo’(t, ;?)]dzd;é) l_[da)(t, ).
t,x

ZA ¢ in (1.2) is a normalization constant. Note that (¢, X) are meant to run over R4
resp. T9, in the former case it is the g, which corresponds to V = 0 in (1.1). As
it stands the limit of ux . for € | O (removal of the regularization given by ¢ > 0)
does not exist even when V has a simple form, e.g., V(y) = Ay*/4 for y € R
with a constant A > O (this model is called ®3—m0del). For d = 2 a replacement
of wi(t, X) by the Wick ordered power : w?(t, X) : to w,(t, ¥) (renormalization by
Wick ordering; for Wick ordered powers see, e.g. [29,77] and [92]) suffices, in the
sense that the moments of the measure

)\' - -
ZX,IS exp <_Z /A : wg(t, X): dtdx) Ho(dw)

(Z A ¢ being again a suitable normalization constant), converge as ¢ |, 0 to the mo-
ments of a probability measure s on S’ (R?). Moreover, (for A / m(z) small enough,
“weak coupling case”) the latter moments converge as A 1 R? to the moments of a
probability measure pg, on S’ (R?). gy is singular with respect to 1, whereas [ a
was still absolutely continuous with respect to . For these and other results on
the <I>‘2‘—m0del, including its relevance as yielding a model of relativistic quantum
fields, see, e.g.[9,36,44,51] and [92].

Remark 1.1. Let us make two side remarks:

(1) for d < 2 other interesting models have been constructed, e.g., for V a lower
bounded polynomial (see, e.g. [44] and [92]), or V of exponential or trigono-
metric type (see e.g. [6,61] and references therein),

(i1) the CD‘;—model and related ones are also relevant for other areas of research, like
condensed matter physics (Allen-Cahn model of phase separation), image anal-
ysis, hydrodynamics, or nonlinear phenomena (see, e.g. [3,37,69,88]).

The construction of a corresponding CI>§-model is more complicated and less de-
tailed results have been established. The main difference in the construction with
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respect to the one for the CI>§—model is that the renormalization needed to obtain pa
(from pp ) involves, besides Wick ordering, the insertion of a divergent second
order “mass renormalization” term and to perform the limit ¢ | 0 more detailed es-
timates had to be established. Basic steps for this were made by J. Glimm [42] and
J. Glimm and A. Jaffe [43], who developed a Hamiltonian approach (see also [44],
[45] and [46]). J. Feldman constructed the moments of a measure corresponding to
A, A being now a bounded subset of R3 (see [31]).

The proof of convergence of the moments of 115 as A 1 R3 to the moments
of a Euclidean @g‘-measure UEu 1s also more indirect, but it has been achieved
in [33], [70] and [90], for the model defined by replacing in the expression for pa ¢
in (1.2) the term

A 4, - -
— tow (t, ) dtdx
A

4
by
A 4, = 2., =
1 [w,(t, x) +a(e, Mo (t, X)]dtdx,
A
with a(e, L) = —are ! 4+ ﬂkz Ine~! + o, with suitable constants «, 8 and for

A > 0,0 € R (cf. [44]). In these references it is then shown that for o sufficiently
large compared to A (“weak coupling”) the moments of i . converge as ¢ | O,
A 1 R3 to the moments of a unique probability measure ug. The limit satisfies
the axioms of a Euclidean model and by analytic continuation a relativistic model
is obtained. pg is non-Gaussian, its moments have an asymptotic expansion in
powers of A to all orders [23], its Borel summability is also proven [70]. On the
other hand, non-uniqueness of the limit for sufficiently small ¢ is shown in [38].

Remark 1.2. Another approach was developed in [80] for the case where A is the
3-dimensional torus and pg is looked upon as a probability measure on the corre-
sponding S’(A) space. On the basis of estimates in [80, Theorem 1.1(c), Theorem
3.5] and [31, Theorem 1d] it is argued to be unique. The coincidence of the limits
when A = [—L, L]%, L 4 oo, (extending functions on A periodically with period
(2L)?) of the moments of U defined in [80] with the moments of the Euclidean
invariant measure ug, discussed in [33] and [70] in the “weak coupling case” is
only hinted to in [80]. Another result on the d>§'—model on the 3-dimensional torus
is in [81], where the homogeneous term %gp“ is replaced by %(p4 — o¢? — e, with
o > 0, u € R. Here a corresponding 1 4 is constructed by first replacing the A by
a lattice As of mesh § > O, then letting § — 0, and showing (Corollary 4.3) the
convergence of the moments of (4, to the moments of a unique limit measure i .
fia is then studied in the limit A 4 R3 and brought in contact with the above Eu-
clidean measure g, (on S’(R?), as discussed in [33] and [70]), in the case where o
is sufficiently large compared to A (which corresponds to the above weak coupling
case). Further results on the d>‘3‘—m0del are presented, e.g., in [10,18,20,24,25,75]
and [93].

Recent important developments initiated by M. Hairer [53] are concerned with
the construction of an SPDE of the heuristic form (1.3) below, and as such being
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related, in the case where V(y) = Ay*/4 (y € R and A > 0) with the heuris-
tic expansion for the probability measure wg, of the Euclidean approach to the
<I>2—model, in the sense that ug, is a candidate for an invariant measure for the
solution of (1.3) for such a V. The general idea of considering an SDE having
a measure of interest as an invariant measure goes back to work by G. Parisi and
Y. S. Wu [79]. In the context of quantum field theory this has taken the name of
“stochastic quantization method”. For the case of the structure (®gy, (Ey) asso-
ciated to the classical equation (1.1) the stochastic quantization method yields the
equation

dX; = [(A —md) X, — V/(X)]dt +dW; (1.3)

where d W, is a Gaussian white noise in the new t € [0, oo)-variable and in the old
space-time variables (¢, ¥) € R x R% = R?, relative to which A is taken. Thus
X (t, X) is for any given 7 thought as a random field in the Euclidean space-time
variables (¢, X). t is thought as a “computer time”. Heuristically, assuming that
the solution flow to (1.3) exists and is ergodic one can compute pgy-averages like

J Fd g, for suitable integrable F, from limits of 7-averages % fOT F(Xp)dt as
T — oo. This program has been implemented mathematically ford = 1 and V,
e.g., of the type of those in the @3—model, in [63] where existence and uniqueness
of solutions of (1.3) and their properties have been discussed (see also [67]).

In the case d = 2 correspondingly as for the construction mentioned above
of a Euclidean measure for models over R2, one achieves the construction of so-
lutions of (1.3) for V, e.g., of the form V(y) = Ay*/4 for y € R with A > 0
(or more generally for the class mentioned in Remark 1.1(i)), by suitably modi-
fying the nonlinear term V' in (1.3). E.g., for the above quartic V one replaces
-1 X 2 in (1.3) by a Wick ordered version —A : X? : of it. The first solution by a
Wick ordered version of the so modified (1.3), both on a 2-dimensional torus and
on IR?, has been realized in [13] by the method of Dirichlet forms (see also [22]
and [71]) (solutions are here in the weak probabilistic sense), for quasi-every ini-
tial conditions. Solutions in a strong sense have been obtained by other essentially
analytic methods in [29]. In [28] G. Da Prato and A. Debussche introduced the
method of exploiting the Ornstein-Uhlenbeck process Z, associated with the lin-
ear part in (1.3) and replacing the process of Z; arising from the nonlinear term
in X; = (X; — Z;) + Z; by corresponding Wick powers; this method has been
extended to more singular SPDEs by Hairer and Gubinelli, see below. In [28] ergod-
icity results for the solution process have been obtained. See also [12] for a survey
of results on the stochastic quantization equation for the <I>‘2‘-model and discussion
of uniqueness problems. For a proof of restricted Markov uniqueness of dynamics
associated with the CID‘Z‘—model see [87], which uses also results of [74], [74] pro-
viding also a new construction of strong solutions in certain negative index Besov
spaces for this stochastic quantization equation. For a derivation of the stochastic
quantization equation from Kac-Ising models see [35,41,55] and [72]. For work on
Gaussian white noise driven PDEs related to other models of quantum fields in 2-
dimensional space-time see [5,8] and [59]. Let us also add that much work has been
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done on related SPDEs with more regular noise and having as a common invariant
measure the @;'—measure W (see [22,64] and the references in [12]).

The situation with the stochastic quantization of the <I>§'—model remained open
for a long time, except for a partial result in [11] until the ground breaking work by
M. Hairer [53,54]. Hairer’s methods are essentially PDE’s ones in spaces of gener-
alized functions (C* with o negative) and are rooted in Gubinelli’s extension of T.
Lyons’ rough path methods to the case of multidimensional time [47,48]. Hairer’s
break through in producing solutions of the stochastic quantization equation to the
d>‘3‘-model (which following his work is also named (equation of the) dynamical 613‘3‘-
model) generated an intensive activity in the area of singular SPDE, also for other
SPDEs, in particular using Gubinelli’s adaption of the method of paracontrolled
distributions for SPDEs (see, e.g. [26,40,49] and [50]).

We shall limit ourselves here to mention work specifically related to the @‘3‘-
model. The original work by Hairer proved the existence of local (in time) so-
lutions of (1.3) on the 3-dimensional torus T, after a renormalization procedure
inspired by the one used for the construction of the d%‘—measure ILEu, in the weak
coupling case. The space on which the solutions are located is a C%-space, for
any o € (—2/3,—1/2), of generalized functions, for initial conditions which are
also in the same C%. Various approximation results for the solutions have been
derived subsequently, see [60] (from other interaction terms) and [57,96] (from
a lattice approximation). The local well-posedness of (1.3) on T> has also been
proved successively by other methods (see [68]). Existence and uniqueness of local
solutions on T3 have been obtained in [26] by the method of paracontrolled distri-
butions. The extension to local solutions of (1.3) on R3 (the case associated with
the original resp. Euclidean model) was discussed in [56] and [57] by introducing
suitable weights. The extension from local to global solutions in the case of T? is
discussed in [53], and in [73] by an interplay of the paracontrolled approach in [50]
with Bourgain’s method, exploiting the presence of the candidate for an invariant
measure, namely the weak coupling case @‘3‘-measure as discussed in [25]. It is
asserted in the abstract of [73] that the existence of invariant measures follows from
the proven uniform bounds on solutions “via the Krylov-Bogoliubov method” (de-
tails are not given in the paper). For the relation of such invariant measures with
“the d>§—measure” of quantum field theory see [57] and [73].

Remark 1.3.

(i) In [58] a method for establishing the strong Feller property of processes as-
sociated with SPDEs of the form (1.3) is presented. In particular, the strong
Feller property of the process of the stochastic quantization equation on T*
constructed in [57] and [73] is established, for initial data of suitable regular-
1y;

(i) To the best of our knowledge, all papers discussing invariant measures for the
stochastic quantization equation (over R3 and T?) use a “ CI>§—measure” as
presented in constructive quantum field theory, rather than constructing them
directly; one exception being [73], in which as we already commented above
an invariant measure is considered to follow from the proven uniform bounds
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on global solutions in the relevant Besov spaces. One main aim of the present
paper — and of the partly related paper [49] — is precisely to provide a direct
construction of invariant measures, see below. The uniqueness of invariant
measures remains open in all approaches;

(iii) [97] introduces a Dirichlet form associated with the solution process of the
dynamical <I>§'—model over T3 discussed in [73], whereas [15] relates to work
in [11] by associating a family of positive bilinear forms to the weak coupling
CI>‘3‘—measure on R3;

(iv) Results of the type of those of [87] established for the restricted Markov
uniqueness of the dynamical <I>‘2‘-model, seem however, to remain open for

the CD;‘—model, both on T3 and on R3.

In the present paper, we consider the stochastic quantization (1.3) with (7, X) €
A =T V(y) = Ay*/4 fory € Rand A > 0 (®3-model on T%). Differently
from other approaches, we do not consider pointwise initial conditions for the reg-
ularized equation, but rather a family of finite-dimensional SDEs approximations
with their invariant measures as initial condition. More precisely, we consider the
well-defined finite-sum approximation {¢y; N € N} (defined at the beginning of
Section 4) of the Fourier expansion of the (heuristic) Cbg‘—measure on T3, and dis-
cuss the nonlinear stochastic partial differential equations given by the stochastic
quantization of the approximation measures 11y . Denote by X the solution to the
finite-dimensional approximation equations with the initial distribution py. The
difference from all other approaches to the study of the stochastic quantization
equation of the d>§—model mentioned above is that in our case the initial distri-

bution of XV is given by uy. In our setting we have then the advantage of being
able to exploit the stationarity of X". To construct a limit process we will prove
a uniform estimate for {X”'}, which implies the tightness of its laws. For this we
use Hairer’s reconstruction method of singular stochastic partial differential equa-
tions. The renormalization will appear in the reconstruction. The tightness yields
a limit process for a suitable subsequence of {XV}. In particular, we obtain the
convergence of the marginal distribution of the subsequence, which is the limit of
the subsequence of {uy} in view of the stationarity of XV. This is the strategy for
our direct construction of an invariant measure and a flow associated with the @‘3‘-
stochastic quantization equation on T>. The strategy seems natural being much in
the spirit of the treatment of stochastic differential equations based on It6 calculus,
and in this sense it is a natural extension of it. This seems to be a natural method also
in relation to the variational approach to SPDEs (for a related approach see [49]).
It is expected that our method can be extended to other singular semilinear SPDEs
with Gaussian white noise, having finite-dimensional approximations with invari-
ant measures. The extension will be model-dependent and will however require
separate estimates.

The organization of the present paper is as follows. The material in Sec-
tion 2 and 3 is introductory. Although it is related to [17,26,49,50,53,54,72-74]
and [75], many detailed estimates needed for our main results are not to be found
in these references. In Section 2 we give the definition of Besov spaces and the
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notation of paraproducts. Paraproducts appear when we consider the partial differ-
ential equation reconstructed from (1.3), and we solve the reconstructed equation in
Besov spaces that are useful for our later deductions. We also prepare some func-
tional inequalities, which are applied for obtaining estimates of each term in the
reconstructed partial differential equations. In Section 3 we introduce the infinite-
dimensional Ornstein-Uhlenbeck process solving the linear part of the stochastic
quantization equation (1.3) and the polynomials associated with this process. The
polynomials of the Ornstein-Uhlenbeck process also were used in Hairer’s recon-
struction method and related works, and their renormalization is required for prov-
ing the convergence in the Besov spaces which we need in the rest of the paper. In
Section 4 we consider the stochastic quantization equations associated to the mea-
sures which approximate the (candidate for a) @g‘-measure on T>. This constitutes
the main part of the present paper. We first apply Hairer’s reconstruction method,
and obtain a solvable partial differential equation with random coefficients. Next
we prove many estimates for each term in the partial differential equation and an
associated energy functional, which appears in the typical approach to dissipative
nonlinear partial differential equations and enables us to control the nonlinear terms.
In the estimate for the energy functional new terms appear. So, we reiterate the pro-
cedure to be able to estimate the new terms which appeared, and then keep repeating
the procedure until finally obtain a uniform estimate, which yields the tightness of
the solutions to the approximation equations. From this our main results follow in
a natural way.

ACKNOWLEDGEMENTS. The authors are grateful to Professors Massimiliano Gu-
binelli, Hiroshi Kawabi and Minoru Yoshida for helpful discussions and valuable
comments. They also thank Professors Alexei Daletskii, Yuzuru Inahama, Hen-
drik Weber, Masato Hoshino, Rongchan Zhu and Xiangchan Zhu for pointing out
mistakes in previous versions of this work. This work was initiated during a com-
mon stay at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique
Fédérale in Lausanne in 2015 during the semester program (organized by Profes-
sors Ana Bela Cruzeiro and Darryl Holm, with the first named author) on Geomet-
ric Stochastic Mechanics. We are grateful to the Centre and its Director, Professor
Nicolas Monod for their great hospitality. The second named author gratefully ac-
knowledges support by Professor Masayoshi Takeda for the CIB stay, and HCM for
a stay in Bonn in March 2016.

2. Besov spaces and estimates of functions

In this section, we introduce the Besov spaces relevant for our work, as well as
the paraproducts and functional inequalities that we shall use. Let A be the 3-
dimensional torus, i.e., (R/ZJTZ)3 with the natural Lebesgue measure dx induced
from the one on R3. Let L” and W*? be the corresponding pth-order integrable
function space and the Sobolev space on A, fors € R and p € [1, oo], respectively.
Let x and ¢ be functions in C°°([0, co); [0, 1]) such that the supports of x and ¢
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are included by [0, 4/3) and [3/4, 8/3] respectively,

o0
X+ 9@ =1, rel0,00),
j=0
e e %) =0, rel0,00), j, ke NU{0}suchthat|j —k| > 2,
Xx()e27/r) =0, rel0,00), jeN.

For the existence of x and ¢, see [17, Proposition 2.10]. Throughout this paper, we
fix x and ¢. Moreover, even if the constants that will appear in the estimates below
depend on x and ¢, we do not mention explicitly this dependence.

Let S(R?) and S’(R?) be the Schwartz space and the space of tempered dis-
tributions on R, respectively. For f € D'(A) where D’(A) is the topological
dual of C*°(A), we can define the periodic extension f e S'(R3) (see Section 3.2
in [89]). By means of this extension, we define the (Littlewood-Paley) nonhomoge-
neous dyadic blocks {A ;; j € NU {—1, 0}} by setting

ALf@) =[F " (x(-DFH]@). xeA
Ajfx) =[F (e - DFAH] @), x e A, jeNU{0),

where F and F~! are the Fourier transform and inverse Fourier transform opera-
tors, i.e. F is the automorphism of S’(IR®) given by the extension of the map

Sy b Y 3
g = g(é) - (27_[)3/2 /1%3 g(x)e dx! g € S(R )v
where x - § = Z?;]Xjéj for x = (x1,%x2,%3), & = (§1,&,&) € R}, and F~!

is the inverse operator of J, respectively (see [17, Section 1.2]). As a family of
pseudo-differential operator, {A ;; j € NU {—1, 0}} is given by

Af=x(V=2)F Aif=9¢(277V=8)f jeNU}

where A is the Laplace operator for the functions on A, i.e.,

CRIN R
Af)=|—=S+5+t5]f&), x=&,x,x3) €A feCPA).
dxy  dxy  0x3
We define the Besov norm || - || g5, and the Besov space B, . on A with s € R and
p,r € [1, 00] by

00 1/r
<Z 2jsr||Ajf||er) r € [1, 00)
J

1By, == .
sup  27°(|Aj fllLr =00,
jeNU[{=1,0)

B, :={f € D'(A); I fllgy, < oo},



@g-MEASURE AND FLOW 1369

It is easy to see that By, ,, C By ,, forsi, s € Rand p1, pa, ri,r2 € [1, 00] such
that s1 > s2, p1 > p2 and r; < r;. It is known that B;’p = W%P fors e R\ Z and
p € [1, oo]. It is also known that B;’oo C B;/l for p € [0, o0] and s, s’ € R such
that s” < s (see Corollary 2.96 in [17]). For simplicity of notation, we denote B;,’Oo
by B), fors € Rand p € [1, oo].

Next we prepare the notation and estimates of paraproducts by following [17,
Chapter 2]. Let

j—1
Sif=> Mf. jeNU{0}.

k=—1
For simplicity of notation, let A_» f := 0 and S_; f := 0. We define

e

fQg =) _(SjNHAjng, fOg:=3gQf

Jj=0

[e.¢]
fOg= ) Ajf(Ajm1g+ A8+ Aj418).
j=-—1

By the definitions of {A;},{S;},©,©, and &, we have
fe§=rQg+ feg+ fe8.
Let fQg = f@g + fOgand fQg := fOs + fOg.

We summarize the fundamental estimates of Besov norms and paraproducts
in the following proposition. Note that here and in the whole paper constants C
appearing on the right-hand side of estimates are always meant as positive, without
mention it.

Proposition 2.1.

(i) Fors € R and p1, p2,r1,r2 € [1, 00] such that p; < pr andry < ry,
||f||B;;3<21/p1—1/p2> <Clflsy,, . [f€Bp

where C is a constant depending on s;
(ii) Fors € Rand p, p1, p2,r € [1,00] such that 1/p = 1/p1 + 1/ pa,

If@glss, < CllfliLeliglss feLl, geB,

pr — pa.r’ p2,r’

where C is a constant depending on s;
(iii) Fors e R,t € (—00,0), and p, p1, p2,r,r1,r2 € [1, 00], such that

1 1 1 1 . 1 1

—=—+— and - =min{l, —+ —1¢,
p P1 P2 r r m

it holds that

t
| f@gllgy < Clfllmy , gy, . f€BY . g€B

P1-11

where C is a constant depending on s and t;
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(iv) For s1,s2 € R such that sy + sp > 0, and p, p1, p2,r,r1, 12 € [1, 00], such

that
1 1 1 1 1 1
—=—+— and -=—+ —,
p p1 P2 r ri n

it holds that
18l < CUfllgy Nglyn . F€BY L. 8 € B,

where C is a constant depending on s| and s;;
(v) Fors € (0,00),¢ € (0, 1) and p, p1, p2,r € [1,00] suchthat 1/p = 1/p1 +
1/p2, )
1f=0sy, = Clflirl fllggs.  f€ LP N BT

where C is a constant depending on s, €, p1, p2 andr;
(vi) Fors € (0,00),e € (0,1) and p,r € [1, o0],

3 2 4 s+
1720y, < CISIZa 1 pge.  f € L 0By

where C is a constant depending on s, &, p and r;
(vii) Forsi,sy € R, p, p1, pa,r,r1,r2 € [1,00] such that 1/p = 1/p1+1/p2 and
1/r=1/ri+1/rpand6 € (0, 1),

0 1-6 K s
IAN osi+a-00, < N F s I . fEeB,, NBy .
By} 2 B;]1 ” B%n P11 p2,72

(viii) For s € R and py, pa,r1,r2 € [1,00] such that 1 = 1/p; + 1/py and 1 =
1/r1 4 1/ry, there exists a constant C depending on s, satisfying

< Clifllgys, I8y, f € Byl 8 € By

P2’

‘ / F)g(x)dx
A

(ix) Fora € R, B € [0,00), and p,r € [1, o], there exists a constant C depend-
ing on a and B, such that

le"® fllgs, < CA+1)fllga2s, f € By, P,

where {e'®; t > 0} is the heat semigroup generated by A on L*(A; C).

Proof. The proofs of (i), (iv), (vii) and (viii) are similar to the case of the functions
on the whole space R3. See [17, Proposition 2.71, Theorem 2.85, Theorem 2.80
and Proposition 2.76] for (i), (iv), (vii) and (viii), respectively. For (ii), (iii) and
(ix), see [73, Propositions A.7 and A.13]. By (iii) and (iv), we have

128y, < IfSflsy, +21fOf my,

pr —

< Cllf gy N f g
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Hence, the fact that LP' ¢ WP C B yields (v). To prove (vi), applying (ii),
(iii) and (iv) again, we have

1By, < 12O f I8y, + 12O lIsy, + 1O Isy,

pr —
2 2
< CIS gy N g + CU o120,

p/3.r"

Hence, (v) and the fact that L2P ¢ W—2P C B, ; ~ yield

3 2 2
1718y, = CILA e ggre + CUANLa 1 NB3,, -

pr —
This inequality implies (vi). O

Now we prepare some functional inequalities which we shall apply in the proof
of our main theorem.

Lemma 2.2.

(i) For 6 € (0,9/16) there exists a constant C depending on 6 such that for

5e(0,11and f € L*N By

7/8
1fllpy <8 <||f||i4 + ||f||;15/.6) +C81010;
2

(i1) For 8 € (0,9/16) there exists a constant C depending on 6 such that for

5€(0,1and f € L*N By

7/8
2 4 2 —26/9.
1715y, <6 <I|f|IL4+ ||f||3215/16) + 5720,

(iii) For 8 € (0,9/16) there exists a constant C depending on 6 such that for

5 1]and f e L*n B

13 <8 <||f||14 + ||f||§15/.6> +Cs710.
2

Proof. Let f € L* N BY. By Proposition 2.1(vii) we have

2/5 3/5 2/5 3/5
1£llgg < CUAIZE NS5 < CUALS 1A e
2 2

where C is a positive constant depending on 6. By applying the fact that

ab < 0a? + (1 —6)b"/1=0 < 110 L p1/A=0) 4 hel0,00), B(0,1) (2.1)
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we have

8/5 4/5 215
Ifllgg <€ (IIfII +If1I; /) =C (ufn‘; + ||f||§15/.6> +C.
2

Hence, applying (2.1) again, we obtain (i).
Next, we show that (ii) holds. By Proposition 2.1(v) and (vii), and (2.1) we
have

2/5 3/5 4/5 3/5 3/5
17208y, = CUPPNLG 12050, < UL 1S 1A e
k 4/%

3/5 3/5 3/10
< ClIFIL IS /.5/16 < (ufn” +||f||1/5}16)
13/20
c (||f||14 + ||f||§]5/m) +C.
2

Hence, applying (2.1) again, we obtain (ii).
Finally, we show that (iii) holds. By Proposition 2.1(vi) and (vii), and (2.1) we
have

25, +3,3/5

Wall g = < CIFI A1,

6/5, £13/5

1350 < CIL I Il s

12/5 3/5 18/5 9/5
< ClsIE I /15/16 < (IIfII P sl /15/16>
9/10
<C (||f||i4 + ||f||§15/16> +C.
2

Hence, applying (2.1) again, we obtain (iii). O

Lemma 2.3. Let o, B € [0, 1). Then, for any nongegative measurable function f
and s,t € [0, 00) such that s < t, we have

t v t
/ t =) ( / (v—u)ﬁf(u)du) dv = B(a, B) / (t = w0y~ £,

where B(a, B) is the beta function with indices o and B.

Proof. The assertion is obtained by a simple application of Fubini-Tonelli’s theo-
rem on changing the order of integration. O

The following Propositions 2.4 and 2.6 are about the estimate of commutators
of paraproducts and the heat semigroup, respectively.
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Proposition 2.4. Let « € (0,1), and B,y € R and p, p1, p2, p3 € [1, 00]. As-
sume that

1 1 1 1
B+y <0, a+B+y>0 —=—+—+—.
p p1 p2 P3
Then,

I(f©)Oh = f @M garser = Cllf lig, gl go Ihll gy,

for f € BZ‘I, g € Bgz and h € BZ3 where C is a constant depending on «, B, y,
P1, p2, pP3.

Proof. See [73, Proposition A.9]. O

In the following we shall need the Fourier expansion of functions in L%(A; C).
Let

(frg) = /A F)g@dx,  fig e L2A(A:C)

where 7 is the complex conjugate of z € C. For k € Z>, define ¢y € L*(A; C)
by er(x) = eﬁk'x/(2n)3/2. Then, {ex; k € Z3} is a complete, orthogonal and
normal system of L2(A; C), and ¢ is an eigenfunction of —A + mg acting as a
self-adjoint operator (> m%) in L2(A, C) with pure discrete spectrum consisting of
the eigenvalues kz—i—m% where k% := 23: 1 k? (with mg > 0 as before, k € Z3). Let
vDbea nonincreasing C °°-function on [0, co) such that vy =1forr €0, 1]
and w(l) (r) =0forr € [2, c0), and let 1//(2) be a nonincreasing function on [0, co)
such that @ (r) = 1 for r € [0,2] and v @ (r) = 0 for r € [4, 00). We remark
that ¥ is not necessarily continuous.

Fori = 1,2 and N € N define PI(\,i) by the mapping from D’(A) to L>(A; C)
given by

PYe =Y v OV kipy P @ Ny PN k) (@, exdex.

keZ3

For n € N, denote {j € Z; |j| < 2"} by Z,. We remark that the terms in the sum
are equal to O unless k € Z?V 4 fori = 1, 2, and hence, PIE,‘ )qb is a real-valued and
smooth function for any ¢ € D’(A). Moreover, it holds that

D p@ _ p@pd) _ p)
Py Py = Py Py =Py’

This property is very important in arguments in Section 4. The theory of Fourier
transforms of periodic distributions (see [89, Section 3.2.3]) implies that for f €
D'(n)

h(V)f =D h()( S, ex)ex

keZ3
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for any continuous function /4 such that the right-hand side is an L?(A; C) function.
In particular,

PV @) =y DN D) f) = FTHp O pEFT] @), xea
with the periodic extension fof f, where

@ (2 0) % @ = v ® (2 Val) v (27 v (2 Vissl)
E=(1.5.6) R

In the rest of the paper, we fix ¥ and ¥® and do not mention explicitly depen-
dence on them, even if the constants that will appear in the estimates below are
depending on them.

Proposition 2.5. For p € (1, 00) and s € R, there exists a constant C, depending
on p such that

1P\ Fllsy < Cpll £ay
for f € BS,NeNandi =1,2.
Proof. Let f € B, and i = 1,2. From the definition of Besov spaces and the

commutativity of P,f,i ) and A j»we have

1Py fllsy = sup  27IPYA;fllLr 22)
JjeNU{-1,0}

Note that for N € N, the total variation of the function & — ¥ (2 V|&|) on R
equals 2. In particular, the total variation is uniformly bounded for N € N. In view
of [89, Theorem 3 of Section 3.4.3], there exists a constant C}, depending on p,
such that

1PN A, fllLe < CpllA; flir, j€NU(=1.0}, NeN, feBj,.
By this inequality and (2.2) we obtain the assertion. U

Let {¢!”®; ¢ > 0} be the heat semigroup generated by A on L?(A; C). Then,
we have the following.

Proposition 2.6. Fora € (—o0, 1), 8,y €eRsuchthaty > a+p8, € (0, max{l, 1 —
al], and p, p1, p2 € [1, 0o] such that 1/p = 1/p1 + 1/ pa, there exists a constant
Cyw , . depending on vy and e such that

1 1 —(V——
I Py )2 (f @R~ F@E S (PY Y25y <Cyav ™72 fllggoe g

for f,g € C®(A), t € (0,00) and N € N, where 'V is defined before, between
Proposition 2.4 and Proposition 2.5.
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Proof. We prove the proposition by following the proofs of Lemmas 2.97 and 2.99
in [17]. We have, recalling the definition of paraproducts,

AP OL) — FOEA(PY)g)

=Y (P58 18] = (S5 N (P

Jj=0

We shall now use the notation fas defined as above. Since the supports of F (5,7 )
and F A j1 g are included by {£ € R?; |£] < 2/71(8/3)} and {£ € R3; 2/71(3/4) <
€] < 27+1(8/3)} for j € N U {0} respectively, the support off[(s’}})A j+1g] is

included by {& € R3;1/6 < 27/|&| < 20/3} for j € N U {0}. Hence, in view
of [17, Lemma 2.69], it is sufficient to show that

sup 277 .etA(PI(\,l))2 [(SiNHAjig] — (ij)Aj+1etA(PIE/1))28H
jeNU{0} L (2.3)

—(y—a—=p)/2
< Cyin ot £ g llgll g

Let p € C*°(]0, 00); [0, 1]) such that p(r) = 1 forr € [1/6,20/3] and p(r) =0
forr ¢ [1/12,40/3]. Define

2 .
e, &) 1= 5 [y DN 6 pe gD, £ RS
Noting that
etA(PIEIU)z(b —F! (e—f|'|2 [w(l)(z—Nl . |)®3i|2f‘$> . eC(A),

and that ¢’ Py and A1 commute, we have for any j € NU {0}, N € N and
X € A;

APV S A j118] 1) = (S /@A j11e > (PP)2g(x)

= 7 (he 7 [STDA 18 ]) @) = 8 HF (v 1 FA g ()

= ./]1‘{3 f—l(ht,N,j)(x -y (S’;}(y) _ S/;?(x)) A/j\/Jr]g(y)dy.
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Since 5}7(- +2rk) = 57,7” and Aj18(-+2mk) = A/,:_l/g for k € Z3, we get then

AP [(S10)85518) @) = (S @A 11 (PP (o)

‘/[‘0 - fﬁl(ht,N,j)(-x -y — 27Tk) (5:]\}(}/) — S‘]\}‘(x)) m(y)dy

keZ3

1
< e = 1 |F 7 o ) = y = 27k
Z /[O,anA S

keZ3

% [VS5F (1 = x + oy |A)5180)| dedy

= Z /[0 47”3/(;1 |z] ‘f‘l(ht,N,j)(Z—Zﬂk)‘ ’aj/f(x —Tz)‘

keZ3

X ‘Afj:rl/g(x - Z)‘ IA(x — z)dtdz.
Hence, Holder’s inequality applied to the right-hand side yields

AP [(S;H)A 18] — (S H XA e (P g

Lr

1
-1 Ny —
<> /[0’471]3 /0 ‘z}“ (he,N. )z 2ﬂk)‘ 2.4)

keZ3

o e e

The periodicity of €§,/f and A ;g implies

[¥5i7¢ =0, = 198i . |Ariisc -2

LP2 = ”Aj+1g”Lm

forr € [0, 1]and z € [0, 47]3. These equalities and (2.4) imply

AP (58 18] = (S, H @A 1™ (PO g |

= ZE:‘A;AﬂP

keZ3

(2.5)

F i )@ = 27| d2 | VS £ o | 818 e
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On the other hand, by the integration by parts formula we have

/04 3 z,f (htNJ)(z—an)‘dz
kez3 7 10:47]

< 8/ min{|z|, 27} ‘]—'_l(h,,N,j)(Z)‘dZ

3/2/ |zI~* min{|z], 2}

/ Kl [x/f<1><2—N| : |>®3<s>]2p(2—f' |é|>|z|4eﬁf'zds‘ dz
R

X

7r3/2/ |z~ mln{lzl 27}

/ —rlgP? [1/,0)(2 Ny |)®3(g)] PN Allcos( - 2) — 11dE

X dz

3/2/ j2I~* min{2], 27}

<[ [A§ (e‘”f' (v |>®3(s>]2p(2—f|§|>>] (cos(§ - 2) - 1>ds‘ dz
2 2 .
nf/; ¥: (e"f'z (v e | p(zf|s|>>‘

X /; |z|_ min{|z|, 27t} |cos(€ - z) — 1| dzd&.
]R;
Noting that for £ € R3,

[t minlz1, 27 leos(s - 2) — 11z
R

521—8/3/ |z|—3|cos(s-z)—1|f/3dz+4n/ |z|7*dz
|z| <27 |

z|>2m

< Ce(1 4+ &)%)

where C, is a constant depending on ¢, we have

[, F e 2ol
kez? i

<G [ P o (e‘"f“ (v |)®3<s)]2p(2—f|5|)>‘ds.
R3

When 2V < 2773 /3 the supports of 1) and p imply that

(2.6)

2 ,
[w(l)(z—N| . |)®3] p277|-) =0.
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When 2V > 2/73/3_ an explicit calculation implies that for £ € R? and ¢ € [0, 00)

‘Ag (ef'f'z [y |>®3<s>]2p<2f|s|>)‘
4

< C (gl + 117 +274) KT Y@k )2 g,

k=0

where C is a constant depending on the bounds of derivatives of (1) up to order 4.
Hence, in view of the support of p we have

2 2 .
a1y a2 (€ [y @] pe i )| e
R3

< C1(2 +27%) (1 + [€]%/)e 162 g
{€R3;277|&|e[1/12,40/3]}

< Cz(tz + 2—4j)2j(3+28/3)€—t22-f/24

where C1 and C; are absolute constants. This inequality and (2.6) imply

f04 , |Z]:_1(ht,N,j)(Z —2mk)|dz
kez3 10471

< Cwm,e(tz + 2—4j)2j(3+28/3)6—1221'/24'

2.7

In view of [17, Proposition 2.78] we have, on the other hand,
[VSifllpn = C2TU N f paraear < CL2ITT 2N fllpasaca-rn
1

< CE D flyaraugs py < €L £ e

where C,, C} and C/ are constants depending on &. From this inequality, (2.5) and
(2.7) we obtain

2Jy

APV SN A 18] = (SN0 A e A (P g

< Cym o (% + 2742 G V=P £ e - 2P | A g

< Cyy V2122 aP))2 (1+(t22j)2)
—22J i
x e flgare - 2P | A g s
< C}/Cw(l)’gt(txﬁ-ﬂ—y)/Z”f”B%TS .0JB ”Aj-i-lg”Lpz
where C\, () , is a constant depending on v and g, and C y 1s a constant depending

on y. Thus, we have proven (2.3) and this, as we mentioned in relation with (2.3)
suffices for the proof of Proposition 2.6. O
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3. Infinite-dimensional Ornstein-Uhlenbeck process

In this section we introduce the relevant infinite-dimensional Ornstein-Uhlenbeck
process and its polynomials. The polynomials of the Ornstein-Uhlenbeck process
appear in the renormalization and the reconstruction of the stochastic partial differ-
ential equation associated to the <I>‘3‘-model.

Let fip be the centered Gaussian measure on D’(A) with the covariance oper-
ator [2(—A + m(z))]_1 where my > 0 as before, and let Z; be the solution to the
stochastic partial differential equation on the 3-dimensional torus A:

Zo(x) = ¢(x), X € A, G.1

{ dZ;(x) = dWi(x) — (A +md)Z,(x)dt, (t,x) € (—00,00) x A
where d W; (x) is a Gaussian white noise with parameter (¢, x) € (—o0, 00) X A and
¢ is arandom variable which has fig as its law and is independent of W; (see Remark
3.1 below for this notation and the relation with the g of Section 1). We remark
that (3.1) is an equation not only for positive ¢, but also for negative t. W; can be
looked upon as a C((—o0, 00); S’(A))-Brownian motion. Then, (Z;, ;) satisfies
the one-dimensional stochastic differential equation of the Ornstein-Uhlenbeck type

d(Z;, ex) = d(W;, ex) — (K> + m%)(Z,, ex)dt, (3.2)

for each k € 77, and hence we obtain the solution as

t
(Zs, o) = e ®HD 70 0) + / SOEID W ), (33)
0

for each k € Z3. We remark that ((W;, ex), € (—o00, 00)) is a 1-dimensional
standard Brownian motion, ((Z;, ex); t € (—00, 00), k € Z4) is a Gaussian system
and the law of Z; coincides with fig for all # € (—o0, 00).

Remark 3.1. If we replace dW;(x) by V2dW;(x) in (3.1), then the solution Z;
will be the Ornstein-Uhlenbeck process which has the Nelson’s Euclidean free field
measure g (of Section 1, with covariance operator (—A + m%)_l) with mass m
as the stationary measure. Some authors define the Ornstein-Uhlenbeck process to
be the solution to the equation (3.1) with this replacement. However, in the present
paper, in order to adjust (also for reader’s convenience) our setting to those of other
recent papers (e.g. [26,53,73] and [75]), we define Z; as above. We remark that
even if we replace d W, (x) by V2dW,(x) in (3.1), the arguments below run almost
in the same way, with some powers of constants entering in estimates, that do not
change the conclusions.

For square-integrable complex-valued random variables &, &, we define
Cov(é1, &) by

Cov(§1, &) == E[(§1 — E[§:1D (62 — E[62D]
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(E denoting as usual the expectation). Then, it is easy to see that

E[{Z;, ex)] =0,
e—|z—s|(k2+m(2,)

Cov((Zy, ex), (Zs, 1)) = 2(](274471(2))]I

k-+1=0>

fors,t € (—oo,00) and k, € Z3. Let

(3.4)

(3.5)

kez? +mg
11,LeZ3
N A e ) A R B LA e M S URRT
17 +my) (3 +m)U+5+ (i+1)? + 3mg)
and define

zMN = PPz,
2,N 1 N
ZON . (pWz,2 ™),
3,N 1 N 1
zPN = Pz} -3¢V P\ z,,

t
2
202N ::/ Q=B p) Z2.N) g

—0o0

t
Z,(O’3’N) :/ e(t—s)(A—mg)P/gll)ZS(&N)ds’
—0oQ

t
Ze2M Z;Z’N)@f e(t—s)(A—m(z))(PI(VI))ZZS{Z,N)dS —cV,
—00

Zt(2,3,N) = ZI(Z’N)@ZI(O'3’N) _ 3C§N)ZI(I’N),

fort € (—o0,00) and N € N.

Remark 3.2. Fort € (—o0, 00) and N € N it holds that

E [(P§}>Zt)2] —cM =,

t
E [Z,(Z’N)@/ e(zs)(Amg)(Pjgll))zzs(z,N)ds} _ CEN) -0
—0o0

(3.6)

(3.7)
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The proofs of (3.6) and (3.7) are mentioned at the beginning of the proof of Propo-

sition 3.3 below. The definition of CéN) is a little different from other known results
(e.g.[26,73]). However, the asymptotics are same and it can be replaced by the one
in other known results.

The following proposition holds.

Proposition 3.3. Let ¢ € (0,1] and p € [1,00). Then for all T € (0, 00) the
following properties hold:

() {20 N e N} and {Pji,z)Z; N € N} converge almost surely in C ([0, 00);
—1/2—¢ .
Boo ) and satisfies

LN 2
sup E|: sup |2 )||[;1/2{| <00, sup E|: sup ||PIE,)Zt||‘Z|/zS:| < 00;
NeN tel0,T] 00 NeN t€[0,T] o0

(i) {Z@M); N e N} converges almost surely in C ([0, 00); B! ~%) and satisfies

P
sup E | sup HZ}ZN) H e <00
NeN | re[0,T] Beo

(iii) {Z©0-2NM); N e N} converges almost surely in C ([0, 00); Béo_e) and satisfies

p
| < OQ;
Bl*
1/2—¢

(iv) {Z©03M):. N e N} converges almost surely in C ([0, 00); B~ ) and satisfies

p
< Q.
3014275

Moreover, for y € (0, 1/4), Z03N) s y-Holder continuous in time almost
surely for N € N and

sup E | sup HZ,(O’Z’N))
NeN t€[0,T]

sup E | sup HZt(O’3’N)‘
NeN t€l0,T]

HZt(O’3’N) _ ZS(0,3,N)‘

sup £ sup < 00;
NeN 5,1€[0,T] (t —s)

2 p
L2
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(v) {Z@2N); N e N} converges almost surely in C ([0, 00); B3?) and satisfies

)4
sup E | sup HZI(Z’LN) H | <00
NeN | t€[0,T] B

(vi) {Z@3N): N e N} converges almost surely in C ([0, 00); Boo /e

fies

) and satis-

sup E | sup HZ(23N)H = < 00;
NeN te[0,T]

(vii) {Z0M 203N N e N} satisfies

sup E[ sup HZU M) z0.3.0) H . } < 00;

NeN t€[0,T]
:| < OQ.
—1/2 &

For the proof of Proposition 3.3, we shall need a lot of explicit calculations. Since,
on the other hand, the results have been essentially derived before we shall only
present here a sketch of the proof. The proof uses methods of [50]. For more details
on the explicit calculation used for establishing the estimates in Proposition 3.3
see [26,73] and [75], noticing also that corresponding calculations in the setting of
regularity structures can be found in [53, Section 7] and [54].

(viii) {ZN) (2(0’3*]\]))2 ; N € N} satisfies

Z(l N) (Z(O 3, N))

sup E | sup
NeN tel0,T]

Sketch of Proof of Proposition 3.3. The proofs of (i), (ii), (iii) and (iv) are done by
explicit calculation by the Fourier expansion. We consider (ii). First we prove (3.6).
Note that

E[(PV2)]= vOe B wov NP OE UZ e (21 el e

k,1eZ3

We calculate this sum by using (3.4) and (3.5), and then easily obtain (3.6). Let
¢,&’ € (0, 1] such that ¢’ < ¢, and define & = (¢ + &’)/2. In view of (3.6), to prove
(i1), we first calculate

[Hz(z .N) Z(z N) H ]
wW— 1-8,2

2
E U((P(“Zaz, = (P Z)% )| ] (3:8)

T @n)?
) a 2
+ Z ( +k2)]+$E |:‘<(PN1 Zt)zv €k> - ((PN)Zs)27 ek)‘ ]

keZ3\{
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for s,t € [0, T]. Using the Fourier expansion of PIEJI )Zt we can express the right-
hand side of (3.8) by the expectation of a fourth order polynomial of complex-
valued Gaussian random variables. Hence, by (3.4), (3.5) and Theorem A.3 we are
able to calculate it explicitly, and as a result we have the bound

2 ’
sup E HZ,(Z’N) _ZeN H l<cli—sF, stero1)
NeN wol=e2

where C is a constant depending on ¢ and &’. Applying the hypercontractivity
of polynomials of Gaussian random variables (see [91, Proposition 2.14] or [78,
Theorem 2.7.2]), for p € (1, co) we have

p /
sup E [HZ,(Z’N) — Z2N) H ) ] <Clt—s[FP?, s,1€[0,T],
NeN w=1=Ep

where C is a constant depending on p, ¢ and ¢’. The Besov embedding theorem (see
Proposition 2.71 in [17]) implies that for sufficiently large p, W ~!17%:7 is embedded
in BZ'~¢. Hence, for sufficiently large p

P ’
sup E[HZI(Z’N) _zem| ] <Cli—sIP?, s.1e[0.T,  (39)
NeN B

where C is a constant depending on p, ¢ and &’. On the other hand, by a similar
calculation as above, we have

/p
P
Y E [”z}”” -z _1_8] <0
NeN Boo

fort € [0,T] and p € [1,00). This implies that Zt(Z’N) converges to a ran-
dom variable Z,(2’°O) almost surely for ¢+ € [0, T]. This convergence and (3.9)
yield the tightness of the laws of {Z?M): N e N} as probability measures on
C ([0, c0); Bo_ol_g ) (see [62, Theorem 4.3 in Chapter I]). In view of (3.9) and the
Kolmogorov criterion, Z?°) has a modification Z(2.%) which is continuous in
time almost surely. Therefore, by applying Proposition A.1 to {Z?>™); N € N} and
2229 we obtain (ii).

Similarly we prove (i), (iii) and (iv). The proof of (i) is simpler. On the other
hand, the proof of (iv) is more complicated, because the order is higher and we also
need to calculate the action of the semigroup and the integral in time, in order to get
the result.
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To prove (v) and (vi), we need to calculate paraproducts. Since e is an eigen-
function of —A with eigenvalue |k|2, the expression of ¢ (2_] «/—A) ey by the spec-
tral decomposition of —A and the definition of A ; imply

Ajer =g (2—1,/—A) e = o2 kDer, ke 73,

Similarly A_jex = x(|k|)ex for k € Z3. From this, the Fourier expansions of
Z,(2’2’N) and Zt(2’3’N) can then be calculated explicitly. Hence, (v) and (vi) are
proved similarly as we did for (ii).

The proofs of (vii) and (viii) are done also by explicit calculation as above.
See [73, Section 1.2] for details. O

4. Construction of the invariant measure and flow

In this section we will construct an invariant probability measure and a flow associ-
ated to the <I>‘3L—measure. We use the same notations as in Sections 2 and 3.

Let 19 € (0, c0) and let . € (0, Ag] be fixed. Define a function Uy on D’(A)
by

Uy (o) = /A {% (P}V“¢)4 (x) — 37’\ (C§N) - 3AC£N)> (Pli,l)qb)z (x)} dx,

and consider the probability measure py on D'(A) given by

un(dp) = Zy"' exp (~Un () fio(de)

where Zy is the normalizing constant. We remark that {¢y} is an approxima-
tion sequence for the <I>‘3‘—measure which will be constructed below as an invariant
probability measure of the flow associated with the stochastic quantization equa-
tion.

Consider the stochastic partial differential equation on A

dYN () = dW,(x) — (A +md YN (i
4.1)
—aPy {(P]E,“Y,N)3(x) -3 (Cf’v) - 3/\C§N)) PI(V”Y,N(X)} dt

where d W, (x) is a white noise with parameter (¢, x) € [0, co) x A. First, we prove
that this SPDE is associated to (p, in the sense that ppy is the invariant measure
for YN
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Theorem 4.1. Let o € (1/2, 00). For each N, (4.1) has a unique global solution
as a stochastic process on W=%2(A) almost surely for all initial values YON €

W~=%2(A). Moreover, iy is the invariant measure with respect to YV .

Proof. To simplify notation, we denote ") (27| . |)®3 by w](vl). Denote (Y,N , €k)
and (W;, ex) by ?,N’k and VT/,", respectively, for k € 73, and consider the Fourier
expansion of ¥}V as

IAOEDY YN er(x). 4.2)
keZ3

Then, the stochastic differential equation associated to (4.1) is given by

dv = awl — &* + mHyN ar

A AN T AN~
“Gar 2 N OV G Wr TR
ll,lz,l3EZ3; (43)
L+ 4=k

+3n (" = 3V w2 TN ar

where k € Z3. Once we prove the existence and the uniqueness of the solution to
(4.3), we obtain the existence and the uniqueness of the solution to (4.1) by means
of (4.2).

Ifk ¢ ZgN , (4.3) reduces to

dYNF = aWk — k> + mdyN*ar.

This implies that YVE with k =4 Zg  has no interaction with the other components,

and the solution YV¥ exists and is unique almost surely for k ¢ Zg - In particular,
similarly as for (3.2),

t
YK = et Empy Nk /0 U= gk (44)

for k ¢ Z%N. In view of this fact, we can regard (4.3) with k € Zg  as a finite-
dimensional stochastic differential equation, from now on. The existence and the
pathwise uniqueness of the local solution in time to (4.3) with k € Zg  immediately
follow from the local Lipschitz continuity of the coefficients of (4.3). Now we show
that the global existence of the solution holds. Let 7 > 0. Define a stopping time

wy 1= min{T, inf{r > 03 Yz IYN512 > M)} for M € [0, 00). Then, by Itd’s
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formula we have for any 7 € [0, c0)

—~ 2 -
YtN’k‘ —E| Y ‘Yé"”‘
k

‘2
3
€Zyn

E sup
tG[O,l:ATM] kEZ%N

t t
<E| sup Y (/ YSN’deS"Jr/ YSN*deSk> + N2 1)
0 0

tel0,fA 3
[ ™] kEZZN

t
+2E|  sup Z [—(k2+m(2))]/ YNk 12ds
0

ze[O,fArM]kGZ%N

A
+E| sup ( )Z Yoo vV @vy Gy vy k)

ey (21)3
ret0inn] N (27 keZ3y 1. 3€Zy:

h+h+l=k

t
TN UN.LYN DN, ~k | UN,~l; ¥ N,~LvN,—~3 3N,k
X/O(YS yNLyNGy Nk L YNy N—byN.—ly Nk

t
F6LE|  sup (C{N>—3AC§N’) S w}v”(k)zf Y NKPds
0

te[0,f ATy ] keZZN
) ) 1/2
S ER/ ’Y'?SN,deSN,k_I_/ ’fSN,deSN,k>N }
keZd, 0 0 inty
3- 22 Ty N4
+ (VP24 1T+ E| sup <——>/ (VYY) 1) ds
[0, ATy] 2n)3% ) Jo *
N l~/\TM e
+6rC\VE Z/ YNk 2ds
7 Jo
keZZN
ity 1/2
<Y E f VARIRIR
0
keZ3,
N t~/\‘L’M Y 3.
+6rC\VE 2/ YNK12ds | + (VP2 4+ 1)
ez, *0
2N

3 ! ~
5(2N+2+1> (1+i’)+(1+6xc{N>>E/ sup Y |V VR2ds

0 rel0,sAty] 3
keZsy
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where (-) here means the quadratic variation. Hence, by Gronwall’s inequality we
have for 7 € [0, 00)

~ 2 3 W)~
E sup Z ‘YzN’k‘ < <2N+2+1) 1+74+E Z )YNk) LOHCE
ZG[O,IT/\‘L’M] kGZ%N keZz

By letting 7 = T and M 1 oo in this inequality and combining it with (4.4) we get

Z(1+k2)—“E[ sup ?,va‘ } <c(1+ Y+ UYNkﬂ) T,

keZ3 tel0,T] keZ3

where C is a constant depending on N and mg. Thus, we have the unique global
solution as a stochastic process Y~ on W—%2(A) almost surely for all initial values
Yy € W*2(A).

For the invariance of uy under the solution of (4.1), consider the differential
operator

1 9
Ay:= Y exp 5 ST +mplalF+ve) | —

keZ3y 1eZ3), 0k
2 8
xexp | — Z (% 4+ md) x> — V(x) ™
zeng k

for x = (xk)keng and x; € C, where

A
V=150 X U WY v ()Y (), x,x,
Il l3,14€Z3
L1+l +13+14=0
3 (N) 0 M
- (e =3ef) Y v v o,
11 lzeZZN
l1+1>=0
9 1( 9 k. 8~—18+ﬂ8
dx; = 2 \ dRex almx; /°  9xr 2 \ ORex olmxy )

Then, by the standard argument by conformal martingales (see [62, Section 6 of
Chapter I1I]) and Dirichlet forms (see [39]) we see that Ay is the generator of
(YN *ok e Zg ) and the measure

AV ) = (Z0) " exp Z(lz+mo)IX1| v | T dx.

zeng keZ3y
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where dx; is the Lebesgue measure on C for k € Z3 and ’Z\;}) is a normalization
constant, is the unique invariant measure associated to (/Y\N *o ke Z% n)- Fork €
73\ Zg - as we have seen above, YN has no interaction with other components
and satisfies (4.4). Moreover, it is easy to see that for k € Z3 \ Zg N

~ -1 k% + m?2
ﬁ%)’k(dx) = (Zﬁ)’k) exp (— 5 91x)? ) dx,

52).k - . . . . .
where Z;v) is a normalization constant, is the invariant measure associated to

?N"‘. Hence,
~(1 ~(2),k
Mﬁv) ® ]_[ Mﬁv)
keZA\Z3

is the invariant measure associated to (YN ko ke Z3). Therefore, w is the invariant
measure associated to Y. ]

For each N € N, consider a stochastic process Y}V given by (4.1) with initial
law up . We extend W appeared in (4.1) to a white noise for (¢, x) € (—00, 00) X A,
define Z; by (3.1) with W, and assume that Yév and Zg are independent. Then, in
view of Theorem 4.1, YN and Z, are stationary processes. In particular, each of
the families of laws {YtN; t € [0,00)} and {Z;;t € [0, 00)} are tight. Corollary
A.5 implies the laws of the pair {(YIN, Z:);t € [0,00)} is also tight. Hence, by
Proposition A.6 we have an invariant probability measure for the system (YN, Z,).
Let (§n, ¢) be a pair of random variables whose law is the invariant probability
measure.

We fix a pair of random variables (§y, ¢). Consider the stochastic partial dif-
ferential equation on A

dXN(x) = dW;(x) — (=2 +mH XN (v)dt
PP PRI @ -3V - 31N PP RN ok ar - 3)
X () = ey (x)

where W; is a white noise independent of (§y, ¢). Note that (4.5) is the equation
with time evolution the same as (4.1) with initial law py. Let XV := Pz(v2)5( N for

N € N. Then, in view of the fact that Pli,z) Pjg,l ) — Pli,l), XV satisfies the stochastic
partial differential equation

dxN(x) = PP dW,(x) — (=a +md) XN (x)di

P PPXI P03V =3 PP XN o ar - (49
X () = P ().
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By the definition xN e C ([0, c0); B;) fors € Rand p € [1,00]. Since for
ke Ly,

E[|(P\Ven. ][]
1

®3
— [ (¥Pe V) @ e P
N JS'(A)

) 3
X exp (—/A (Z( Vo)t - (e - 3,\C§N))(P§j>¢)2> dx> 1o(de)

1 9
——exp (Z(Cim —%CEN))Z) [ 1. Puotdo)
S'(N)

ZN
1 9A
s ——exp (—(Cf” - 3,\C§N))2> :
(k2 +my)Zy 4

by the invariance of 1 with respect to XV we have

i) = Y (vPe V0P m) E[I& . eor]
keZy, 4.7

= E[IX§13,] < o0

for ¢ € [0, 00).

Now we shall investigate the tightness of the laws of {X"V} (see Theorem 4.19
below). To solve (4.6) we apply to our equation a method inspired by the one used
by M. Hairer in his setting in [53], however we keep entirely in the paracontrolled
decomposition setting. We use the notation of paraproducts and of polynomials of
the Ornstein-Uhlenbeck process as in Sections 2 and 3, respectively. In particular,
we extend W in (4.5) to a white noise for (¢, x) € (—00, 00) X A and define Z;
by (3.1) with the extended W, where ¢ is the random variable defined above. We
remark that the pair (X ,N , Z;) is a stationary process by the construction of (§y, ¢).
Similarly to (4.7) we have

E [||P}V2>z,||§2] —E [||PIE,2)ZO||i2] <0 48)
fort € [0, 00). Let
xW.=xN - pPz
xN® .= xN - pPz, 42203V,
X0 [ p [ (POXND -2 2050) @280 as

0
X;Vv(z)a> . X[]V,(Z) _ XiNv(z)a<,
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for t € [0,00). Then, by a similar argument in [26] and [73], we are able to
transform (4.6) to the following PDE:

@ — & +mdx, =

W[ pDyN.@< | p)yN@.> _ ; 203N o 22N
= 3P [(PN xV@= 4 phx] Y1 )@Zt ]

@ — & +mdx, >

3
— 3P (szzl)va’(z)’< +P1§/1)va’(2)’>)
) +AP,E,1)Q>§1)(P1£,1)XN’(2)’< +P]§,1)XN’(2)*>) 4.9)
+)‘P](Vl)q>t(2)(P[E/1)XN’(2)’< + Plill)XN’(z)’>)
APy o (P XN 4 p DX ND-2)
1 D) N, (2),> 2,N
S [ AR IO A
1 1 1 1 2,N
+9A2st/) [qu( >(PIE,)XN,(2),< n P;E/)XN’(Q)’>)@Zz( )]
D@, 0 1
+92 PP WP (P x N @< 4 p(DxN.2).2)

where
€8] ! ) (A—m2)  p(1)N2 0,3,N 2,N
v, (w) ::/ et _mO)(PN ) [(ws — 2203 )> @2 )] ds
0
t
_ (wt _ AZ,(0’3’N)) ®/ e(t—s)(A—m(z))(Pjill))2zs(2,N)dS’
0
t
lIJt(Z)(w) — |:(wt _ /\Zt(o’3’N)) ®/ e(t—s)(A—m%)(Piill))2zs(2,N)dSi| @Zt(z,N)
0
t
_ (wt _ AZ’(O,&N)) [f e(t—s)(A—m%)(P}ill))2zs(2,N)ds@Zt(2,N):|

0
o ) = =3 (2" —22/") @u?

+31 [(22,“’”’ - AZ,(O’3‘N)) Z,(0’3’N)] Quy,

o ) = =3 (w, - 22"V ) @2
0
+ 3z 3AZ;2,N)@/ e(t—s)(A—m%)P[E]l)zs(ljv)ds
—0o0
0
+9A (w,—AZ,(O’3’N)) (Zt(z,z,zv)_ Z,(Z’N)@/ e(t—s)(A—m%)Plill)Zs(z,N)dS>
—0o0

2
2 (I,N) (0,3,N) (0,3,N)
Yy (3zt _ Z ) (Z, ) :

o (w):=-3 (z,“’N’ —xz,‘°~3’N’) Qw2 +31 [(22,“*N’—xz,‘°~3*"’)) 250*3’”] Ow,
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for w € C([0, oo) L%°(A)). Forn € [0,1),y € (0,1/4) and ¢ € (0, 1] define
x), @ and YN (@) by
N ! N,2),> 2 N,(©2) 2 (1) yN,(2) 4
1, 0= [ (o @+ o eapxr]] )

(s')" th/y,m _ X;\//,@‘

+ sup LY
s/, e[0,t];s'<t’ (1" = s
N ' N,(2) 3 ! N,(2),>
) (t):=/ Hx = 8ds+/ HX 2 ‘ .
‘ o I° B, o I° B,fs

respectively. We are going to estimate E [f{iv n,y(T)] and E [Qjév (T)? ] for given

T € (0,00) and g € (1, 8/7). To simplify the notation, we denote by Q a positive
polynomial built with the following quantities

1,N 2) 2,N
sp 12 yaen,  sup 1PPZilaenn, sup |22V

71 —e/24 >
1€[0,T] % 1€[0,T] 1€[0,T]
(2,2,N 0,2,N (0,3,N
ap |22 s |20 e s [205
1€[0,T] 1€[0,T] 1€[0,T] Boo
(2,3,N) (1,N) (0,3,N)
sup || 2, H —(+e)2 sup H Z, Z, H —(4e)2
1€[0,T] Beo 1€[0,T] Beo
0,3,N 0,3,N
(1,N) { 50,3,N)\? HZ’( -2 )H
sup (2, (Z, " ) and sup ,
1€[0,T] p o2 5,1€[0,T] (t—s)

with coefficients depending on Ao, €, 1, ¥ and T, and we also denote by C a pos-
itive constant depending on Ag, €, , ¥ and 7. A constant depending on an extra
parameter § is denoted by Cs. We remark that Q, C and Cs can be different from
line to line and that Proposition 3.3 implies that E[Q] < C for some C.

Lemma 4.2. Fore € (0,1/4],t € [0, T], and § € (0, 1], the following inequality
holds for some positive Q as above:

! o 4 7/8
f IXN-@=3 <8 (/ H PXN.@ H ds> +05°6
0 B, 0 L4

almost surely.
Proof. By (4.9) and Propositions 2.1 and 2.5 we have for ¢ € [0, T']

N,(2),
X7 e

t
SC/ (t — 5)~1He/48 H(P(I)XN Q) AZ(03N)) 0zC N)H ds
0

—1 —g/24

t
< Q/o (t — 5)~ 1 Te/48 H P,E,“X§W>HL4 ds + 0.
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Hence, by Young’s inequality we obtain for ¢ € [0, T']

t t 3
1
/ 1X3 =1 ads < Qf HP,VX;WH ds+ 0.
0 4 0 L

This yields the desired inequality through Holder’s inequality. O

Lemma4.3. Fory € (0,1/8), e € (0,y/2), p € [1,2],t € [0, T]1and 6 € (0, 1]

1 1
Hq,t( )(PI%)XN,(Z))‘

B]1}+2£
t

< Q/ (t — 5)"21/32 H ij,l)Xiv’(z))
0

0
s H pOxN-@ _ phyN.@) H”

ds
15/16
Bp

+ Q| sup
s€[0,1] (t—s)

t 1-6
DvN,(2),1— - —1- 1
x (nPﬁv)Xt <>||1L,,9+/ s — g1 pOX N dS>+Q
0
almost surely.

Proof. Lets € [0, t). Then, Propositions 2.1, 2.5 and 2.6 imply that
He(tfs)(Afmo)(P]g))Z [(PlgIl)X;v.(z) _ /\ZS(O’”)) @ZS(LN)]
D)y N, 0,3,N —$)(A— 1
_ (P]E])Xl @ _ )»Zt( )) o <e(t $)(A mo)(P]E[))ZZS(z,N)>‘
< He(t—s)(A—mo)(P(l))Z [P(l)XN,(2)®Z(2,N)]
— N N s s

— ( P Xﬁv,a)) o (e(t—S)(A—mo) (P2 ZS(Z,N)) H

14+2¢
By

Bl+2s
P
ey He(t—s)(A—mo)(PIE[l))Z [250,3,N)®Z§2,N)]
—$)(A— 1
_Z§o,3,N)® (e(z (A m())(P]E[))ZZSQ,N))) .
P

n H (PS)X:N’Q) _ Plf,l)Xf,V’(z) _ )LZZ(O,&N) + AZS(°’3’N))

o (e(z—s)(A—mo)(Plill))zzs(z,N)) ’

14-2¢
BP

S Q(t_s)—17/32—28

(1N, (2 —3/4-3
P\ X! ()’315/16+Q(I—s) f4=3e
)4

b Qo1 ([P _pPxy ] (] 5050 g0am]

)
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Hence, we have

t
B (PJE,DXZN’(Z) B AZ}°’3*N’) ®/0 =B (D)2 70N g

t
/ =9(B=mo) (p(y2 [(PIE/UX;v,(z) _ )»ZS(O’3’N)> @ZS(Z’N)] ds
0

Bll)+2$
t
- [ e (-2 o254
0
p

t
S Q/ (l, _S)—17/32—28
0

N, 2
PX Y|

Bl/16 ds+ Q

t
ro [l am ot R (e, + el

1-6
)

0
s H pOxN-@ _ pyN.@

X LP ds
(t —s)

HZ(O,3,N) _ Z§O,3,N)

P
L? ds

t
_ ) 1=y)—3e/2
+ Q/O (t—y) Ty

t
< Qfo (t — 5)"21/32 HP](VI)Xév,(z))

15/16 ds+Q
Bp

0
57 H PIXNO) Pz(vl)Xiv’Q)HL,,

+ Q| sup
s€[0,1] (t —s)

t
> (C||P1£/1)X{V’(2)|IIL;9 +/ ane(t _ s)0y7173e/2 H PZE,DXﬁv’(z)‘
0

This proves the assertion in Lemma 4.3.

1393

1-6
ds) .
Lp
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Lemma 4.4. Fory € (0,1/8),¢ € (0,7/2), p € [1,2],¢ € [0, T1, 6 € (0, 1] and
5 e(0,1]

|

< Q/ (t — 5)~21/32 HP(I)XN (2)’

ds

15/16

0
§7 HPIE,“X,N’Q) _ PI<VI>X§\/,<2)

LP

+ Q| sup
sel0,1] (t —s)”

1-6
(||P“)XN o +f s — )7 pOX N ds>+Q,

|

7/8
N,(2 N,(2 _
. <4 <||X, ( )”14 + 11X, ( )||§15/16) + 0§ 16/19
P 2

almost surely.

Proof. By Lemma 4.3 we have, for a positive constant C,

1 1 2,N 2,N 1 1
H\Ij’( (P XNzl )HBS <cC HZI( )” w! )(PZ%)XN,(Z))H
p

Bo—ol —& B}I}+2£

Hence, by applying Lemma 4.3 we have the first estimate.
By Proposition 2.4 we have

<clap]

t
/e(ts)(Aﬂn%)Plill)Zs(Z,N)ds
0

1)y N.@)_, 2030
PIXN@ ;2 H

—l—¢ . 3¢
By Bcl>o € BP

Hence, by Proposition 2.1 and Lemma 2.2 we also have proven the second esti-
mate. O

Lemmad4.5. For ¢ € (0,1/16),t € [0,T] and § € (0, 1], the following bound
holds almost surely:

1473 —

7/8
1 1 1) yN,(2 1) vN,2 —
[ofP P x ™)) <6(||P( XL+ 1P, “n;.m) +5720.
2

Proof. Proposition 2.1 implies

1 1
H ! )(P/f/)XN’(Z))‘

14/3
(1,N) (0,3,N) (1) vN,(2)\2
=C (HZZ ”B—l/z—g/z + HZI HB—l/z—sn) H(P X; ) ‘ l/2+s
(1,N) ~(0,3,N) (0,3,N) (1) N,(2)
re (|22 |20 L) [Py
4/3
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Hence, by Lemma 2.2 we have the assertion. U

Lemma 4.6. For t € [0,T] and § € (0, 1], the following bound holds almost
surely:

1) yN,(Q2 1 1
V(P}V)xt @) 0! )(Pli,)XN’(z))dx‘
A
1) yN,(@2 1y N, (2
<5 (nP}v)Xt s+ 1PYX] ”u;w.(,) +C50.
2
Proof. Holder’s inequality implies

1) vN,Q2 1 1 1) vN,Q2 1 1

L4/3

Applying Lemma 4.5 with replacing é by

: (1) yN.(2)
mm{H Py X,

-1

b 1 b
L4
we obtain

[P XN Pa (px M@

Ll

7/8 26/9
1) yN,2 1) vN,2 1)y N, (2
< (||P§>x, O+ 1p XN )||;15,K,) +o|pP x|
2

almost surely. This inequality and (2.1) imply the assertion. O

Lemma4.7. For p € [1,2],e € (0,1/16),t € (0, T] and 6 € (0, 1], the following
bounds hold almost surely:

2 1
” <I>§ )(Pjil)XN’(Z))HB—l/Z—s

p

7/8

DN, D yvN,Q2 _ _1/4—

sa(nP}V’Xt g+ 1Py X “u;wm) +5710/10 e g,
2

’/ (P XN @)@ (P XN P)dx
A

7/8
1) N,2 DN, Q2 A B
SS(MP}V’XI Pl + 1Py X; “u;m) +Csm V41712,
2

for a positive constant Cs and a positive polynomial Q.
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Proof. By Proposition 2.1 we have

) yvN,Q2 0,3,N 2,N
(2 =22,

=c|z"],

—(14¢)/2
P

(1) vN,(2) 0,3,N)
—1—¢/4 PN Xt - )"Zt HB

1/2—¢/4 °
0o p

0
Zt(Z,N)@/ U= B=m) p ZGN) g
—0o0

Bp

S Ct_l/4_€

(2,N)
Zl‘ HBofolfs/Z

) +wN,Q2 0,3,N
H(Pz(v)Xz()—KZt( ))

0
% (Zt(2,2,N) _ Zt(z'N)@/ e(zs)(Amg)PNZS(z,N)ds)
—0o0

(0,3,N)
0

pl/2-el2”

—(1+€)/2
By

(2,2,N) _ 0,2,N)
=€ <HZI HB’S/Z +e 2o HB]S/Z)

2,N)
2 H B

—1—¢/2
o0

[P 08

1/2—¢ *
By

Hence, we have

2 1 - DN, @2 _1/4—
H@z()(Pz(v)XN’(Z))HB«H)/z <o |pPx! ()HBI/Z+Z A0 (4.10)
p p

This inequality and Lemma 2.2 imply the first inequality.
For the second inequality, by Proposition 2.1, and (4.10) we have

/(P,f,])XN’(Z))CD?)(Pjg,l)XN’(z))dx
A

2
—1/4— — 1)vN,(2
St 1/4 8Q+t SQHP]E/)X[ ()‘39/16
2
4/5 6/5
—1/4— — 1) yN,2 1) yN,2
St 1/4 €Q+t SQHP;,)XZ (>HL2 HP[E[)Xt ()‘815/16.
2

Hence, by (2.1) we have

/(P]E,I)XN’(Z))CI),(Z)(PJS,I)XN’(Z))dx
A

16/5
5t‘1/4_8Q+Qt_S(HP,(V])XtN’(z)”LQ . HPz(vl)XzN’(Z)|

8/5
B215/l6
1) N,2 (D) vN,(2) 4>
<Qr* (HPA(, X Ous wpy XV ||§15/16) 17,
2

Thus, we have the second inequality. O
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Lemma48. For p € [1,2],e € (0,1/16),t € [0, T] and § € (0, 1], the following
bounds hold almost surely:

772

H¢§3> (PIEII)XN,(z)> <5 H pOXN@ ) 57430,

H po(+e)/2 —

P
4

floer et s o

+Cs0.

) )7/8
15/16
BZ

Proof. By Proposition 2.1 we have

2
3 1 1) yN,(2
o] e = |00
P LP

1 N,(2
<0IPYx P12, + 0.

(1) N, (2)
+ | Py’ X p
|| N t ||L1) (4'11)

This and (2.1) imply the first inequality.
By Proposition 2.1 and (4.11) we have

1) yvN,2 3 1
V(va)x, o (P XN @) dx
A

1 N,(2 1 N,(2
< QI X DI NP X P gy

Applying Lemma 2.2 with replacing é by (1 + Q||P,E,1)va’(2)||i4)_18, we obtain

the second inequality. O
Lemma4.9. Fore € (0,1/16), p € [1,2],t € [0, T] and § € (0, 1],

1) vN,(2),> 2,N

e/8
BP

7/4

N2> |? DNt ) N2
<o (Joxt@], + [ ]L) " s ]

5/6
8 H XIIV,(Z))H 457828,

B[l)‘h&‘
Proof. By Proposition 2.1(iv) we have

1 N,(2),> 2,N
H(PIE[)Xt 2 )@Zz( >‘

B/
4.12)

=c|z"],

() N.2).>
P XN 2|

—1—¢/8

I+e/4
o0 By
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Proposition 2.1(vii) and (2.1) imply

2/3
1) vN,(2),>
HP]E/)XI (2) )

1/3
1)y N.2).>
Px H

t

<cC HPJE/DXtN’(Z)’Z(

l+e/4 —
Bp

1—-¢/8
BP

74 —8/13 || p() ¢ N.(2),>
e

14
By

7/13
<35 H PIEII)XIN,(2>,>)

1 I+e °
BP Bl’

7/4

7/4
(1) yN.(2),2
HP X ’31‘5/3 = H

P

wl-¢/8,p

() V.00,
c|rix,

o(|Ael, s o]

7/4
)

7/4

+c|pPxe=] T e,

LP
from (4.12) we have

1) yvN,(2),> 2,N
[P xN @ 2e 22|

e/8
BI’

(1) yN,(2) () yN.(2),2
|:<HPN Xi HL!’+ HVPN Xi ‘

7/4
Lre

7/13

—1—¢/8
9]

B L

x|

est ]z,

1)y N.2).>
P x] ‘

—1—¢/8

I+e
0 By

On the other hand, (2.1) implies
>/6 458223,

1+e
BI’

7/13
8713 || (1) y N2> (D) N.2).>
58/ HPN b'e ‘ <8”PN X ‘

I+¢ — t
BP

Hence, by replacing § by

-1
: 2.N)
8 min {C HZ, H g8 1}

and applying Proposition 2.5 we obtain the assertion. O

Lemma 4.10. Fort € [0,T] and § € (0, 1] it holds that, for some positive C
and Q,

1) N, (2),> 1) N, 0,3,N 2N
/(P](V)X; @ )[(PIE/)Xz @) _ 5 20305 5 )]dx
A

N,(2),> D wN,Q2 N,(2),>
< (IVX" @21 1P X OUL) + 01X 2 gy

N,12),<,5/3
+CIXV @0 + G0

almost surely.
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Proof. By Proposition 2.1 and (2.1) we have
‘/ (POxN 2 [(P,(vl)XtN’(z) B th(0,3,N)> @Z;z,zv)] dx‘
A

<C PIEII)X,N’(Z)’2

1) N,2 0,3,N 2,N
(PIE,)X,()—XZf >)@Z( )”

Bi/g&/S 71 —e/12
(D) N2, 32 (1) yN,(2) (0.3,N) 2.N)
=C PN X; pltesd + H (PN X; _)‘Zt >@Z H —1 —e/12
4/3
3
(D) N, 2,22 @2,N) (D) N,
<C|Py'X; res T sup | Z; || /12 HPN X,
B4/3 t€[0,T]
Hence, we have for § € (0, 1]
‘/ (PIXN -2 [(PLI)XIN’Q) —AZ}“’N)) @Z,(Z’N)]dx‘
)N, N2, >|3? “.13)
=5 | P\ x] “H +C|PPxNB2| L+ G0,
By
On the other hand, by Proposition 2.1 and (2.1) we have
3/2 5/4 1/4
(1) yN,(2),> (D) yN,2),> (D) yN,2),>
e I L0 g I V50 i o
By By By
(D) yN,(2),> 13 | o) o N.@,> 3
<s| P x, e FCTR P X Ry
By 4/3

Since

5/3

5/3
HP(UXN )2 >‘
wl.4/3

1) N, (2),2
pem <€ [PV X107

< 4 (”VP(l)XN @.>

+1PxN ‘”um)

143

e HP(“XN @.<|I7 oga
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for some o € (0, 00), by Proposition 2.5 we have

3/2

plte/s

1)y N.2). >
H PP x!
4/3

2

s

P

Bl+£

4/3

N,12),>
wa(fvxrefl,,

2
L4/3

53
+C|xP= o tCs

This inequality and (4.13) yield the assertion. O

Now we prepare a pathwise estimate of the energy functional on the left-hand
side.

Proposition 4.11. For y € (0,1/8),c € (0,y/2),n€[0,1)andt € [0, T

N,Q2 N,(2
XY @12, —1x @12,
L L
! N,2),> 2 N,(2) 2 (1) yvN,(2) 4
w [ (o], + e, +a |pare]] )

N,(2),
< 1x =12, + 9N o)

1) vN,(Q2 1) vN,Q2
') HPJE/)XN @ _ phy N >‘

L4/3

+o|  sup +0.

s/,1'€[0,t];s' <t’ " —s)r

Proof. Proposition 2.1 implies that for § € (0, 1]

V (A —md)gdx
A

= Il gr-en2 ||g||B;/+%s/6

3/2
14+¢/8
B4/3

< CO NI ep + 8 g1
4
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Hence, by the integration by parts formula, the facts that X, N-2)< — 0 and that
Ia f(Pli,l)g)dx = [u( Plg,l)f)gdx for f, g € L%, and Proposition 2.5, we have
N,2 N,2
X A2, - 1x) 22,

t
= 2/ / (xN@<p x Y@ 4 XN @29 x MOy x VD XN O2) dxds
A

t ) ) 4
— N,(2).2 2 |[yN,(2) (1) N, (2)
<2 [ (|vxr @z v x| pxre]! )as

t 3 t
PO 0o [ x| s [ [xy@>
0 B, - 0

t
v ['|[ (poxme) [(pxme -22009) 0209 ax

3/2
ds

14+¢/8
By

ds

+Cx

+Ck/0 /A(P,(V‘)X§”2>)c1>§1>(PA(,”XN@)dx ds

+Ch /Ot /A(P]E,I)Xﬁv’(z))d>§2)(Plf,l)XN’(z))dx ds

+cx/0t /;\(P]E,I)Xﬁv’(z))CD?)(Pli,l)XN’(z))dx ds

—l—Ck/()t P xN@ L (P XN @25 z2N Lyp s

+Ck/0t PyXYO| e xN ez N>‘W
J

1) N, (2 2) p(DyN,Q2
PV xN@ p v® (PP x <>)‘

4/3

By a similar way to the proof of Lemma 4.10 it is obtained that

3/2
e o2 va (oo )
B, L4/3 L4/3
4/3 43
5/3
+c|xres| +co

for some o € (0, 00), and by (2.1) and Lemma 2.3 it holds that

t N
(1) yvN,(2)
(s — u)~21/32 HP x) ‘ )ds
/o (‘ L4/0 By}
t 4
o [/ e, / ([umor=lrpne],

4/3
<3/ HP(l)XN (z)H ds+C5/ HP(l)XN (2)’

15/16

4/3
15/16 u) ds
By

ds.
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Thus, applying Lemmas 4.2, 4.6, 4.7, 4.8 and 4.10, and Lemmas 4.4 and 4.9 with
-1
replacing § by § min { H P;,DX?]’(Z) HL4 , 1}, we have

e

L? H

/ <HVXN (2).> >H HXN 2 H )d +HXN NORS

N,(2),2 N.(2) DN, 2 N
ves [ (Joxr =]+ HLZHHPN % HQde ®

12

L2

o | P ppte

LA/3

+ A0 sup
s’ €[0,t];s" <1’ ' =syr

(/ Hp(l)XN (2)‘

/ HP(I)XN (2)” ([ P2y — Yy 1213602 HP(l)XN (2)‘

+867°0

(1)XN @ H du
L4/3

1/2
o)
4/3

almost surely, for some o € (0, 00). Since for § € (0, 1]

t 172 e 4 .
(DN, (2 (1) v N, (2 (1) yvN,(2 -3/5
e P L I A L R
d

1.4/3
t
/HP}VDxf,VmH </ 3 = gy 1SR | pUD N 12 dr>du
0 Lt L4/3

t t
< C/ / F 2|y — |y /21362
0 Jo

2
S—1/5 $1/5 (1) yN,(2
x (5 s ey L8| PPxN L4)drdu
t t
565—1/5/ (/ |u—r|V/2—1—38/2du>r—'7/2 POXND| dr
0 0

t t
+cSl/5/ (/ r”/2|u—rly/2138/2dr) Pji,”xffmuz du
0o \Jo L

: 34 4 1/4
<C[Sl/5 ([ rrar)” ([ |l )
B 0 o IWN T L4

t 2
z1/5 (1) v N,(2)
+5 /0 H POxO| du]

- ! 4 ~
<5 [ ool aur e,
0
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by applying these inequalities with letting

~12
() x M@ _ p(D)yN.2)
& [P x)® — PO x)

l/

1473 1

§:=max {4 sup - p ,
s, e[0,t];s' <t’ @ — sy 2

we obtain
N,2),2 N,(2),2
X212, —1xy 12,

! 2 2 4
_ N,(2),> 2 ||y N.(2) (1) yN.(2)
<2 [ ([l em e e e, )a

N,(2),
+Ix P2,
! N,2),> 2 N,(2) 2 1) vN,(2) 4 N
450 Hvxu’ /H +qus H —|—AHPN XV H du + 89N (1)
0 L2 L2 L4

4/5
(DN _ p() N
&y | PP X - PP x)

+8710 sup N B Y

/ ’
s, €l0,t];s' <t’ " — sy

almost surely. Now by taking sufficiently small § so that Q5 < 1/2, we obtain

2
N.(2) N.(2)
R P L

2
L2

t 2 2 4
N,(2) N,(2) (1) yvN,(2)
e [ (Il + [ ), | pxy @) au

N,(2),
< 1X =12, + 9N o)

4/5
| XD — pPx2 @]

LA/3

+0 sup + 0.

s/, t'e€l0,t];s' <t (t/ _S/)y

Therefore, the assertion of Proposition 4.11 holds. O

The expectation of the energy functional is estimated as follows. We remark
that in the proof of the following proposition we apply the stationarity of the pro-
cess XV,
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Proposition 4.12. For y € (0,1/8), ¢ € (0,y/2), n € [0,1),t € [0,T] and
5 e€(0,1]

t 2 2 4
N,(2),> N,(2) (1) N, (2)
T P e I L R

() yN.Q)_ p(D) yN.)
COLA VD AR b Rl

t/

L4/3

<JdE sup

N,(2),<,2
s/,t'€l0,t];s’ <t t' — sy +CE [“Xt “L2]

q
+CE [@év(t)] +C sup E |:HX£V’(2) H _1/2+6] + Cs.
s€l0,¢] B,

Proof. 1t holds that for ¢ € [0, T']
(@) = ()
- (x,N _ Plf,Z)Zt>2 —_ (X{)\’ _ P](VQ)Z())z + 22203 NO (AZ,(O’3’N)>2
. 2)LZ(()0,3,N)X(I)V,(2) + (AZ(()O’3’N))2 .

By the stationarity of the pair (X, Z;), (4.7) and (4.8) we have for ¢ € [0, T']

2 2
S MR (B
L? L?

<2 (E [ / ZO3INxN@g | + E [ ]) +C.

A i
Hence, Proposition 2.1 implies
e[l e b,
! L2 0 2
<4A sup E |:H Zs(O’&N) H X;V,(Z) H31/2+a:| +C.
1

s€[0,t]
From this inequality and Proposition 4.11 we obtain that for ¢ € [0, T]

C ot 2 2 4
N.(2).z N.,(2) (1) yN.(2)
E /0 (HVX” HL2 + HX” HLZ A H Py Xy HL“) du:|

- 4/5
(DN _ p() N
&y | PP X - PP x|

[t
A

B&l;s)/z

1473

<E|Q sup
st €l0,t];s" <t! " —s)r

q
FCE[IXMP 2] cE[9Y 0]+ C sup E [HXSN’(” HB/] .
s€[0,1] 1

Therefore, the assertion of Proposition 4.12 holds. O
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Next we consider the estimate of the Holder continuity that appeared in Propo-
sition 4.12.

Proposition 4.13. For y € (0,1/8),n€[0,1),e € (0,y/2)andt € [0, T],

(/)" ”XII}I,Q) _ Xi\/l,(z)‘

E sup — L4
s, €[0,t];s' <t’ ' — sy
<CE/| sup r" ‘sz,(z)g 2 | TCE| sup r” HXrN'(Z)*< 2
rel0,1] By rel0,z] B3

q
+CE[IX 2] cE[9Y @]+ C sup E [HXSN’(” HB/] .
s€[0,1] 1

Proof. From (4.9) it follows

X;N’(Z)’< _ e(z—s)(A—m(z))X‘gv,(Z)x

t
—)(B—m?) (1 1
_ —3A/ U= p(D [(P[E])Xiv,(z) _ kZ‘SO,S,N)) @Zﬁ“’)]du
N

for s,t € [0, T] such that s < ¢. Hence, for s’, ¢ € [0, T] such that s’ < ¢/, the
mild form representation of the solutions and Proposition 2.1 imply

HXN,(Z),< _ xNV@.<

t s Ly
P N,(2),<
<C(t' =5 HXS/ ey
4/3
t/
I N—=1/2—¢/2 D yN,2) _ 0,3,N)
+20 /b W -w H PUXY® 2200 | .
Thus, by applying (2.1) we have for ¢ € [0, T']
o [ s
L4/3
sup —
s/t e[0,t];s' <t/ (" — s (4.14)
t 7/2
<C sup <r" ‘XN’(Z)’< ) +A/ HP(I)XN’(Z)‘ du+ Q.
ref0,] ' B, o 1IN T L3
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Similarly, from (4.9) and Proposition 2.5 for s’, ¢ € [0, T] such that s < ¢/
we have the estimate

HX?/,@)) _ xN@>

S/

L4/3

t/ 3
’ ’ ’ - (1) yN,(2)
Loy O =Y / « —u)" HPN x HL4du

=c@ -5y |x)O2
4/3

S/

du

t/
v [ — o oW (pD xN.@
oA =) /S = w7 |e x|

t/

Lo _S/)y/ (' — uy~1/A-y—e/2 Hq’gz)(Pz(vl)XN’(Z)) i du
s/ B4/3
t/

YoMt — S/)y/ (' — )~ \/Ar=e/? Hq)f)(PIi]l)XN,(z)) o du
s/ B3
t/

Iy Y 1 yN,2),> (2,N)

+CAt —5) /S/ t —u) (Py'X OZ, Lo du
t/

+Cx(t/—s’)V/ ' = w7 PP XN eZEN| | du
s/ 4/3
t/

+C)»(t/—s/)”/ ¢ — w7 e x| du
s/ 4/3

For § € (0, 1], applying Lemmas 4.4, 4.5, 4.7, 4.8 and 4.9 with replacing § by
8(t — u)* with suitable o for each lemmas, and applying Lemma 2.3, we have for
§€(,1)s',t,t' €[0,T]suchthats’ <t <t

H Xfy,(zxz _ XN’(Z)’>‘

4

s L4/3
N,(2),2
<C@' =5y HX 2
4/3
’ ’ ! N,2),> 2 N,(2) 2 (D yN,2) 4\
_ Y ,(2),> : ,
e oy [ ([oxr @)+ el calppae])
r 7/4 t 5/6
1 1
—f—C(t/—s’)V// ‘1133))({}’42)*< Blgdu—i—Q(t/—s/)”// pPxN®.2 i
s 2 s 4/3

y 1l H PJ(VI’Xf}”Q)—PIE,“Xﬁv"Z)‘
+8Q(t/—s/)”/ sup

s’ rels’,u) (w—r)”

L4/3

du+CsQ(t' —s).
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This inequality and (4.14) imply

oy [ e

sup 1473
s',t'€l0,t];s" <t! @ -5y
<C sup (r'? HX,’V’(Z)’>‘ zy) +C sup (rn ‘X;v,<2>,< 2y>
rel0,7] Byjs rel0,7] By
' N.@.>|? N.o|? 0N |* e
+C/O (HVX”’ ’/HLZ—FHX”’ ‘L2+A“PN X ‘L4> du
/ (1) yN.(2) (1) yN.(2)
(sH" H Py X, — Py Xy ’ Lo
+40 sup —
s/, el0,t];s' <t/ @ —s)y
t 7/4 t 5/6
+C/ H POXN®=I"" gy 4 Q/ H P,{,DX;V’@)’?‘ 1 du+C50.
0 B, 0 B4/3

Hence, by taking § = % (Q[1 + T1)~" and applying Proposition 2.5 and (2.1) we
obtain

oy [ ]

Sup L4/3
5/ El0, 18 <t " —shr
<C sup (r" HXﬁv’(z)’> 2y> +C sup (r” HXfV’(Z)‘ 2y)
ref0,z] By ref0,1] By 28 4.15)
t 2 2 4
N,(2),> N,(2) (1) yN,(2)
ve [ ([oxro= ]+ o], +alrpae],)
t 7/4 t
M yvN,Q2), (D yN,(2),>
+c/ | P X Blgdu—l-/ |Pxy @] du+ 0.
0 2 0 4/3

By (4.15) and Proposition 4.12, for §' € (0, 1] we have

(s")" H th,v,m _xVO

E sup i L3
s/.t'€[0,t];s" <t’ @t —sy
(1) N, (2) (1) N, (2)
<CS'E (sH" H PN Xﬂ _PN Xs/ 1473 LCE HXN @), < ‘ 2
su »(£),
N s’,t’e[O,g;skt’ ' — sy ! L?
,(2),2 .(2),
+CE|:sup r”Hva() Bzyi|+CE|:sup r”HXfV()<Bzyi|
rel0,7] 4/3 rel0,7] 4/3
q
Y CE [@f}’(z)] +C sup E |:HX£V’(2) H _I/M} +Cy
s€[0,¢] By

Therefore, by taking 8’ sufficiently small we have the conclusion. O
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We have to estimate the terms that appeared in Propositions 4.12 and
4.13. For convenience in the proofs of the estimates we give the following
lemma.

Lemma 4.14. (i) For ¢ € (0,1/16), p € [1,2],a, 8 € Rand s,t € [0, T] such
thats < t,

2 e e
P

oa—2p
By

t
_ — 1
+AQ/ (1 —wy~ D2 p XD 5z 03]y
N

(ii) Fory € (0,1/4),n€[0,1), p € [1,4/3], e € (0,1/16),a € [0,2], B € R and
0 ¢ (,1]

x>
Bp
— 2),>
sce—oF|x¥o=|
BP
! —QRa+1+2¢) /4 N,(22),> 2 N,(2) 2
v lomarnsn (fexgosf, « [

4 7/8
+1 H PXN.@ Hﬁ) du

! 7/4
n 5/ (t — )~ Cat1+20)/4 H PN H ' du
N Bz
! 5/6
+5/ (= | PPX @2 du
s BP
; P H pUOXN@ _ pxN.@) ‘
+ AQ/ (t —u)~ @92 | sup L?
s rels,u) (w—r)Y
u 1-6
% (||pI$)X’14V,(2)”};9 +/0 r—flG(u _ r)}/9—1—3s/2 HP]EII)X?’,(Z) ., dr) du

+ Cs0.
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(iii) For y € (0,1/4), 7€ [0,1), g€ (0,1/16), p € [1,4/3], « € [0,2/3], BeR
and 0 € (0, 1]

o
Bp
sce—oF|x}o=|
BP
! 2 N,22),> 2 N,(2 2
oo (e
0 L? L?
4 \T7/8
M N, 2
+AHPN x) U‘ﬁ) du
t 7/4
+5/ =y~ POXN O du
N 2
1 5/6
— 1
+6/ (t —u)~/? HP]SJ)XZY’Q)’?’BHE
N p

0
i H POXN® P}gfnxiv,(z)‘ ,

t
+AQ[ (t —u)~@ 92| sup
N

rels,u) (w—r)”
PN =0 " yo—1-3¢/2 || p() xN.2) 1_9d J
X N Xu L +0 r~ " (u—r) N X L, drjdu

+ Cs0.

Proof. Similarly to the beginning of the proof of Proposition 4.13 we have for s, ¢ €
[0, T] suchthats < ¢

R R
p P

t
+ cx/ (t —u)y~@FTD/2=e/4
N

du.

—1-g/2
By

(D yN,Q2 0,3,N 2,N
| (X - 22039) @22

Therefore Proposition 2.1 yields (i).
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Similarly to above, from (4.9) and Propositions 2.1 and 2.5 we have

]

I

P

a—28
BP

4 3
+ cxf (t —uy~/? (Plﬁ,l)xff(z’) du
N

LpP

t
+ CA/ == | oL PP XND)|  au
N

t
n cx/ (t — 1)~ Cot1+2e)/4 H q’;z)(Plifl)XN’(Z))HB*I/H du
s P
t
n Ck/ (t — 1)~ Cot1+2e)/4 H q)ff)(P[E,l)XN’(z))‘ e du
s P

t
+ cx/ == PP X OV du
N

t
+ Ck/ (t — u)~ @92 H lylgl)(PIE})XN,@))@ZLEz,N)‘
N

du
B
t
+C / (t =)~ gD PXND)| du.
5 P

Hence, by the fact that

k k
(1) yN,Q2
”(PN XA ())

k
(1) yN,(2 (DN, 2
=Xl sclaxre
Lr

L4

for k = 2,3, and Lemmas 2.3, 44, 4.5 and 4.9, and Lemmas 4.7 and 4.8
with and without replacing § by 6(r — u)(1+28)/4 " we obtain (ii) and (iii),
respectively. O

Proposition 4.15. For y € (0,1/8), 5 € [0,1), e € (0,7/2), q € (1,8/7), t €
[0, T]and § € (0, 1],

q
E [Qjév(t)q] <CE |:”X(I)V’(2)HBI+ZV+3S:| + CSE [%i\in,ym] + Cs.
4/3
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Proof. By Lemmas 2.3 and 4.14(ii) we have for ¢ € [0, T']

/t HXN,<2>,>

i
=clxe],
37 +3e
3 7/8
+cs/ (HVXN @2 >H + H L HP“)XN @ L4> du
/4 5/6
(1) yN. ), 1)y N.2).>
+C6A HPN Xu ()<‘)Bé_gdu+c3ﬁ HPN Xu @ ‘Bifgsdu (4.16)
; o | X - P 12
-H»Q/ sup N l L2
rel0,u) (w—r)yy

(HP(I)XN ,2)

172 | Py 2132 ”P(I)XN (2)‘

LA/3 0
+Cs50.

On the other hand, by Lemma 2.3

/t (f P2y — Yy 1213602 HP(I)XN (2)‘ >du
0 0 4/3

! 172 4 1/8
< C/ P2 (g )y /232 H POXN@|"" gr<c H PP xN-@ H dar) .
0 LA4/3 0 L4

> du
L4/3

This inequality and (2.1) imply

1/2
rn ‘P(l)XN @ _ phxN.?) »
Q/ sup L
rel0,u) (u—r)yr
u 12
1 Nn1/2 — —1— 1
(IIP( )XN ( )”L/4 \ / F2(y — pyy/2-1-3¢2 HPI(V)sz,(z) o dr) du
(') HPa)sz @ _ pyh. <2>‘ 12
<CQ sup TR LY
s 1 e[0,];s" <t (1" =)
t | 4 1/8
X (/ HPI(\,)Xﬁv’(Z) H dr>
0
(') HP(”XN @ _ phygh. (2>‘ 77
<$ sup - A
s 1 e[0,];s' <t (1" =5y

"o | e
s([|roxee] ) +cio



1412 SERGIO ALBEVERIO AND SEIICHIRO KUSUOKA

Hence, (4.16) yields

t
[l
0

Biff
N,(2),2
5 C HXO HB—lJrSE
4/3
t Nz N | Oenolt )"
s [ (Joxtes e, e fepare ] ) e
7/8 '
(1) yN,(2) (1) vN,2)
o (s7)" H Py Xy - POXTP|
sup
s/t el0,t];s" <t (t/ - S/)y

t 7/4
M N, (2),
+5f0 (”PN x|

Thus, from this inequality and Lemma 4.2 we have

D) N, 2),>
€+HPN Xu() ‘

_ . du +Cs0.
B) Bifg)

> |14
E [@g(,)q] < CE[HX{)V’(Z)’/ HB—HSS“V“} +CSE [xﬁw (t)] +3E [@Q’(r)q] +Cs.
4/3
By taking § sufficiently small, we obtain the desired inequality. O

Proposition 4.16. For y € (0,1/8),n € [0,1),¢ € (0,y/2],q € (1,8/7),t €
(0, T]and $ € (0, 1],

q
sup E |:HX£Va(2) HB‘/2+€:| <J§E [:{va,n,y(T)] + Cs.
s€[0,7]

1

Proof. By the stationarity of the pair (X,N ,Zy), (4.7) and (4.8) we have for r €
[0, T]

N, |? N )
e[l ] s e - 02
1

q 0,3,N)]|4
Bll/2+£i| +CE |:HZI H B]1/2+£:|

c [’ N_ p®@

?/0 E[HxY — Py Zg
T q

sc [ e[|l ]as e
0 B,

Hence, by (2.1) we have the assertion. ]

q
811/2+s:| ds +C
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Proposition 4.17. For y € (0,1/8),n € [0,1),e € (0,y/2),q € (1,8/7),t €
[0, T] and § € (0, 1], we have

E|: sup r" HXﬁv'(z)’<|

3
5 :| + E |: sup 1 Hxl\’,(Z),?
B Y
rel0,t] 4

r 2y
rel0,¢] B4/3:|

342%_")] + CSE [%f\v’,,’y(t)] + CSE [@é"(,)q] +Cs,

<cr [

for some constants C and Cs.

Proof. By Lemma 4.14(i) we have

3
E| sup r" HXN’(Z)*<
|:re[0,t] ' B}
g 3
<XAE|Q sup (/ (r — ) y1/2-e/4 ”PIEIDX;V,@)_ du)
ref0.1] \Jo

r 4
<AE|Q sup (/ (r—u)(47+2+8)/3du)
ref0,:1 \Jo

t
(1) N, (2 0,3,N
x(/o HPN XN.@ _ 5 z03.N)

4 3/4
du) :| .
L4

30 t 4
E[ sup " HX;V,<2>,<‘ < SLE U HP](VUX;V,@)”U du] +Cs5.  (4.18)
0

2
rel0,¢] By

Hence, we have for § € (0, 1]

By Lemma 4.14(iii) and Holder’s inequality, for 6 € (0, 1] we get

E|: sup r”" HXﬁv'(z)’}‘

2y
rel0,t] B4/3_

s [|xp?]

] laro

r rt 2 2 4
o[ (ot o el oo e )

o7 HP<1>XN @ _phyh. <2>‘
+AE|[Q sup / (r—u)" VT2 sup
rel0.1] vel0.u) (u —v)r

1/2

1473

1/2
(1) N, (2) —n/2¢,, . \v/2=1=3¢/2 || p(1) y*N,(2)
(HP x| 4/3+/0 v (4 —v) P x) HLmdv)du}+C5.
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Since in view of Lemma 2.3 and Holder’s inequality it holds that

o HP“)XN @ _ pixh <2>‘ V2
sup / r—u) VT2 | sup y L3
re[O 7 vel0,u) (u—v)

u 12
« ||P(1)XN(2)”1/2 / v 2(y — pyr/2-1-3¢/2 szizl)xiv’(z) dv ) du
0 14/3
(s7)" Hp(l)XN,a) _ pyN.O) 172
sup v N s
s el0,1];s' <t " —s"yr
X Sup / ll) ]/+8/2||P(1)XN (2)“1/2
re[O t]
+ sup / W —uwy 2| P XY <2)’
ref0,1] L“/3
12
(s HP<1)XN @ _pixne|
<E|Q sup P LY
s, €[0,t];s' <t’ ' — sy
t (1
x <1+f ||PN)XL1tV’(2)||L4/3du)
0
(') HP<1>XN,<2) B P(I)XN’(Z)‘
N Ky N Ky
<Cs+3E sup i — ’ LY
s/, t'€l0,t];s' <t/ @ — sy

t
+ CSE U ||P1§,1)X,7’(2)||3L4du} ,
0

we obtain for § € (0, 1]

E|: sup r” szv,(z)) zy:| <CE |:HXN (2)‘

rel0,7] 4/3

2(7 n):|

+CoE XY, y(z)] +COE DY ] + Cs.

Therefore, by this inequality and (4.18) we have the assertion. O
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We have finished estimating the terms. So, now we obtain the following uni-
form estimate.

Theorem 4.18. Let y € (0,1/8), n € [0,1), ¢ € (0,y/2) and q € (1,8/7).
Assume that

1
+ -
n=y+g

Then,

E [%ivﬂ’?a)’(T)] +E [@g(T)q] + E |: sup r" HX?”Q)K‘

rel0,T]

3
2y
By

Proof. Propositions 4.12,4.13,4.15,4.16 and 4.17 imply that for § € (0, 1]

3

2y
By
L2:|

+ E| sup r"Hva'(z)’> » | =C.
rel0,T] B4/3

‘Xy,<2>,<

E [%Q’,n,y(T)] +E [@g(T)q] 4 E[ wp

rel0,T]
+E| sup r’ HXfV’(Z)’>
rel0,7T] 4/3

B2,
<CSE [:{)\ 7 y(T)] + CSE [@N(T)q] +CE |:HX ,(2), <‘

+CE |:HXN <2>‘

] CE [HXO M ] ves

3
o |6

On the other hand,

2
ot 2o g bee
L rel0,T]

Hence, by taking é sufficiently small we have

E[xY, @]+ E[9Y @]

+ E|: sup r" szv,(z),<

3
Bzy:| + E |: sup r" HX?”(Z))‘
rel0,T] 4/3

rel0,T]

Bf}’;| (4.19)

e[,

N,(2)
2(y n)} + CE |:HX H 1+2y+35] + C.
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The invariance of the law of X (I)V with respect to XV implies that

N,(2)
eI,
= —/ E|: X?’ 2(yn):|dt+E|:HP<2)ZO‘

(0,3,N)
ot 12027,

2(V n>:|

(2 z0.3.N)
= _/ |:HX B n):| dt+2 sup E [HP Zi B n)+H ‘ 2(y—77)i|
1€[0,T] By
N

< gE |2, ] +c.

Similarly it holds that
e[ ] = ot 0]
—l+2y+3$ -3 ALY

By these inequalities and (4.19) we obtain the assertion. O

Theorem 4.18 yields the tightness of the laws of {X "}, which is the target in
the present paper.

Theorem 4.19. For & € (0,1/16], (X"} is tight on C ([0 00): B,§/* ™). More-

over, if X is a limit of a subsequence (X NGy of{XN} on C ([0, 00); B4/3 ), then

1/2—
X is a continuous process on B, /3/ ¢ the limit measure 1 (in the weak conver-

gence sense) of the associated subsequence {{unx)} is an invariant measure with
respect to X and it holds that

/ 91, -1/2-< () < 0.

Proof. Let T € (0,00) and 9 € (0, T'). Take y, n and ¢ as in Theorem 4.18. For
h € (0,1]and &' € (0, 1], Chebyshev’s inequality implies that

sup P sup ’XN 2 XN (2)’ s > ¢
NeN  \s.relt.T1:ls—t|<h LY
N, N,
W n”Xt ()_XS()‘ "
=< sup L7
8/t6] s,telty, T;s<t,t—s<h (t —s)”

Hence, from Theorem 4.18 we obtain

‘XN () XN (2)‘

lim sup P ( sup i g’) =0 (4.20)

10 NeN s,telty, T |s—t|<h
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for ¢’ € (0, 1]. On the other hand, Chebyshev’s inequality implies that, for any
R >0,

sup P (HX;:’(Z)
NeN

1
>R)<—=sup E| sup r” HXN’(Z) .
B, ) Rt Nen |:re[0,T] ' B,

Hence, by Theorem 4.18 we obtain

lim sup P <HXN’(2)

R—o00 NeN fo

> R> =0. 421)

4/3

In view of the fact that the unit ball in Bi% is compactly embedded in L*/3 (see [17,
Theorem 2.94]), the tightness of the laws of {X N.@) on C([tg, T1; L*3) follows
from (4.20) and (4.21). From this fact, the tightness of the laws of {P]£,2)Z } and
{ZO3-NY on C([t, T1; BO_OI/Z_S) for sufficiently small ¢ € (0, 1], and Corollary
A.5, we have the tightness of {X} on C([to, T]; B4_/13/2_€). For N € N, in view

of the Markov property of X" and the invariance of u" with respect to XV, the
law of X" on C([ty, T1; B4_/13/2_€) coincides with the law of X" on C([0, T —
fol; B4_/13/2_8). Hence, we have the tightness of the laws of {X"} on C([0, T —
tol; B4_/13/ 2_8). Since T € (0, o0) and #9 € (0, T) are arbitrary and the topology of

C([0, c0); B;/;/ 278) is given by uniform convergence on compact sets, we obtain

the tightness of the laws of {X"} on C ([0, 00); B4_/13/2_8). By construction there is

then a continuous limit process X (which might depend on the subsequence).

Let f be a bounded continuous function on B4_/13/ 2= Then, by the invariance

of u with respect to XV for any N € N, we have
ELf(X)]= lim E[f(XtN)]z lim /fduN=/fd,u, t € [0, 00).
N—oo N—oo

Therefore, 1 is invariant with respect to X . Moreover, by the invariance of "V with
respect to X N fort € (0, 00) we have

N—>oo N—o0

2 . NI . N |?
E HXOHB‘”Q‘S <liminf E ”XO ”B"/z‘g <Climinf E ”XO HB“/Q‘g +C
2 2 2

c.. . ! N.2 % C.. . N
=_11mmf/0 E[th HB;UH di+C <~ liminf XY, (0+C.

t N—oo
From this also the last assertion in Theorem 4.19 is proven. O

Remark 4.20. The existence of the continuous process X obtained in Theorem
4.19 is only for almost all initial point X with respect to the probability measure
w1 which we obtained as a limit measure of the {1 y}. The exceptional set appears,
because we give the initial distribution of XV by the specific measure 1y .
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Remark 4.21. The state space of X obtained in Theorem 4.19 is B4_/13/ >~¢ The

index —1/2 — ¢ for the differentiability seems to be optimal. However, the index
4/3 for integrability is not expected to be optimal, in fact higher integrability for
the process is obtained in [73]. By following the argument in [73] we may improve
also in our case the integrability index of the state space.

Remark 4.22. In the present paper, we proved only the existence of a continuous
limit process and of an associated invariant measure. However, the uniqueness of
the limit process in some classes of approximations is expected to hold, because in
[53, Theorem 1.15] and [26, Theorem 3.1] a contractive map from the polynomials
of the Ornstein-Uhlenbeck process to the unique local solution has been obtained.
It seems thus possible to show this kind of uniqueness in our approach by adapting
the arguments in [53] and [26] to our setting.

Remark 4.23. In the present paper, we only considered the approximation of the
<I>‘3‘-measure by finite sums in a Fourier series expansion. However, a small modifi-
cation of the proof yields the same result with other spatial regularization as for the
process discussed in [26].

Corollary 4.24. The limit process X that appeared in Theorem 4.19 can be re-

/4

-3 ;
garded as a B, ™' "-valued continuous process.

Proof. As in the proof of Theorem 4.19, for T € (0, oo0) and 7y € (0, T'), the laws
of (XN-@}onC ([0, T1; L*73) are tight. Hence, by the Besov embedding theorem,

the laws of {X (@} are also tight as the probability measures on C ([to, T); B, 3 4).

The rest of the proof follows similarly as in the proof of Theorem 4.19. O

A. Appendix

A.1. Almost sure convergence of continuous stochastic processes

Proposition A.1. Let (S,d) be a separable metric space, and let X", X be S-
valued continuous stochastic processes on a probability space (2, F, P). Assume
that the family of the laws of {X"} is tight as a family of probability measures on
C([0, 00); S), and that X]' converges to X; almost surely for t € [0, T]. Then, X"
converges to X almost surely in C ([0, 00); S) with the topology of uniform conver-
gence on finite intervals.

Proof. Let T > 0 and ¢ > 0. For m, p € N define Q,, , by the total set of all
w € 2 satisfying
1
sup d(Xs(w), Xi()) < »

s,t€l0,TT;|s—t|<1/m

1
and sup sup d( X} (w), X} (w)) < —.
neNs,te[0,T];|s—t|<1/m P
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Because of the tightness of {P o X YU{Po (X" :n € N}on C([0, 20); S),
for P-almost every w € 2, {X (w)} U {X"(w); n € N} is equi-continuous on [0, T'].

Hence, we have
o0
P(U Qm,p>=1, peN. (A1)
m=1

Let K;;, := min{k € N;k > mT} for any m € N. Since by assumption X}
converges to X; almost surely for ¢ € [0, T], for each m € N there exists a P-null
set N,, such that

lim _max d(X}),, @), Xgm@) =0, ©€Q\ Ny. (A2)

n—>o0 k=1,2,...,
On the other hand, form € N and w € ©, , we have

sup d(X} (@), X;(»))
1€[0,7]

< max (X, @, Xym@)+ sup d(X] (@), X} (@)
k=1,2,....Kp, teltk=1)/m,k/m)

+ sup d(Xs(w), Xt/m(w))>
telk—1)/m.k/m)

2
X7 X —.
<, _max d( X/ (@), Xiym(@)) + »

Hence, by (A.2),for p e Nand w € US> (Q,p \ Npn),
. 2
limsup sup d(X;(w), X;(@)) < —
n—oo tef0,7T] p

Therefore, by (A.1) we obtain

C
P lim sup d(X;,X;,) =0
n=>00 40,7

P (U {limsup sup d(XM(w), X, (w)) > %})
p=1

n—oo tel0,T]

M

P (limsup sup d(X} (w), X (w)) > %)

1 n—00 t€[0,T]

[1 —P (U (Qmp \ Nm)ﬂ
1 m=1

p

e

I
o v
T
U
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A.2. Moments of multidimensional Gaussian random variables

Proposition A.2. Letn € Nand let (X1, X», ..., X2,) be a 2n-dimensional Gaus-
sian random vector with real-valued components. Then, we have

2n n 2
1
E ]_[Xi}zz : Er=aD ( E[X"<-’)]>
|:i=1 im0 DN =2 G5 \ish
n
X ( l_[ COV(XU(Zjl)ixa(zj))> :
Jj=i+1

Proof. 1t is well known that for m € N and m-dimensional real Gaussian vector
(Y1, Ya, ... Y,) it holds that

m/2

1
i e —— Cov(Ys0i—1), Yo2iy), m even
E [H(Y,- —~ E[Y,-])] = 1 (m/2)12m/2 G;m 11 Qi1 Lo @)
1=

0, m :odd

(see [92, Proposition 1.2]). Applying this formula, we have

2n 2n
E |:l_[ Xl} =F |:l_[(Xi — E[X;]+ E[Xi]):|
i=1 i=1

2n 2n i
1
- Z i'2n —i)! 2 (H E[Xo(j)]) : [ oo E[Xa(j)])}
i=0 €Sy, \j=i+l j=1
= AT A A E[Xa(j)]> e
— (2i)! (2n — 2i)! oo \j=2it1 2
i
x Z 1_[ Cov(X1o02j—1)> Xroo(2)))
TSy j=I1
o 2 (1 I
=) E[Xou)]) ( Cov(Xo2j-1), Xa(zn)) :
=it @2n =202 5B, \j=2it1 =1
By changing i for n — i in the sum, we obtain the assertion. O

Now we consider a complex-valued version of Proposition A.2. For square-
integrable complex-valued random variables Z1, Z, we define Cov(Z;, Z3) by

Cov(Z1, Z2) := E[(Z1 — E[Z1])(Z2 — E[Z3])].
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Theorem A3. Let n € N and let (X1,Y1, X2, Y2, ..., Xo,, Yo,) be a 4n-dimen-
sional Gaussian random vector. Then, we have

E [lz_n[ (X,- + «/—_IY,)}

i=1

¢ 1
=§(2i)!(n—i)!2” D> (UE[ "U)J”/__IYW)])

0eSy,

n
X ( l_[ Cov (Xcr(Zj—l) +vV—=1Ys0j-1), Xo2j) + v—lYa(zj))> .
j=i+l

Proof. Define a 4n-dimensional real-valued Gaussian random vector (Z1, Z», ...,
Zon, Z_1,7Z_ 2, - ,Z_ 2,,) and a 4n-dimensional complex-valued Gaussian ran-
dom vector (Z1, Zz, .. Zzn, Z_ 1, Z_ 2, .. Z o) by

X; i=1,2,...,2n ~ X; i=1,2,...,2n
Z; = . Z; = .

Y., i=-1,-2,...,—2n, ~=1Y_;, i=-1,-2,...,—2n,
respectively. Then, by Proposition A.2 we have

2n
E []‘[(x,- + J—_m)}
i=1
#j=1,2,...,.2n;¢;<0} 1
- 3 (v=1) >

I (n — i) 2n—i
e=(er;k=1,2,....2n)e{£1)2" i=0 @D (n —D)!2
n
Z l_[ E qa(l) 1_[ COV(Zezg_lo(Zlfl)a Z€210'(2l))
€Sy, \I=1 [=i+1

n 1
- ; Qi) (n — i)l 27—

<X x (M)

0€6y e=(et:k=1,2,...,.2n)e{£1}2"

X ( [] CovZey io—n. 26210(21)))

I=i+1

2i
Z Qi) (n — ,)|2n i Z <H E [Xa(f) + \/__”]0(}‘)])

=0 0e®y, \j=I

( COV Xo@j-1) +vV—=1Yo2j-1), Xo@j) +V —1Yo<2j))) .o
Jj=i+1
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A 3. Tightness of the direct product of tight families

Let S and S, be metric spaces, S; x S» be the product space of S1 and S, and 7; be
a projection on S1 x Sy to S; fori = 1,2. We remark that S; x $> is a metrizable
topological space.

Proposition A4. Let {P,} be a family of probability measures on Sy x Sy. If the
family { P o nl._l} is tight as probability measures on S; fori = 1,2, then {P,} is
tight on S1 x S3.

Proof. For ¢ € (0, 1] there exists compact sets K| and K> in S7 and S, such that
forr € A

3
2 9

&

Poon ' (K1) > 1~ >

Prom;, (K2 > 1—
respectively. Hence, for A € A
Py(Ky x K2) = P((K1 x ) N(S; x K2)) > 1 —e.

Since the compactness is equivalent to the sequential compactness on metric spaces
and the product of sequentially compact sets is also sequentially compact, K1 x K>
is a compact set in S1 x S,. Therefore, the assertion holds. ]

Corollary A.5. Let B be a Banach space. Let {X ;l)} and {X/(XQ)} be families of B-
valued random variables on a probability space. If the laws of { X il) }and {X §2)} are
tight, then the laws of the pairs {(X (1), X )(Lz))} are also tight as probability measures

on B x B. In particular, the laws of {X ;1) + X)(xz) } are tight as probability measures
on B.

Proof. The assertions follow from Proposition A .4 and the continuity of the map-
ping
f:BxB—B, fkx,yy=x+y, (x,y € B). O

A 4. Existence of invariant measures for stationary Markov processes

Proposition A.6. Consider a Markov process (X7;t € [0, 00)) on a topological
space S and denote the process X. with initial distribution v by X" . If the family of
probability measures

{P o (X")" i1 €0, oo)}
is tight for a probability measure v, then X has an invariant probability measure.

Proof. Since {P o (X}’)’l;t € [0, 00)} is tight, the family {u;; ¢ € (0, c0)} of
probability measures on (S, Z(S)) defined by

t
wi(A) = %/ Po (X)) N(A)yds, Ae B(©S)
0
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is also tight. Hence, there exists a sequence {#,} C (0, co) such that lim,_, . #, =
oo and p,, converges to a probability measure u. For f € Cp(S) and ¢t € (0, 00)

1 ty
BNT  Togn o v
ELAXEN = fim ~ [ ELFOX s
1 th ty+t t
= lim © (/ ELf(X!)1ds + f ELf(X!)1ds — / E[f(Xs”)]dS>
n—o00 fy \Jo tn 0
=/fd,u.
S
Therefore, w is an invariant probability measure for X . O
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