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The equivariant Euler characteristic ofA3[2]

JONAS BERGSTRÖM AND OLOF BERGVALL

Abstract. We compute the weighted Euler characteristic, equivariant with re-
spect to the action of the symplectic group of degree six over the field of two el-
ements, of the moduli space of principally polarized Abelian threefolds together
with a level two structure.
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1. Introduction

Let Ag[2] denote the moduli space of principally polarized Abelian varieties of di-
mension g together with a full level 2 structure. Recall that, if we avoid characteris-
tic 2, a full level 2 structure on an Abelian variety A is a choice of an identification
of the Weil pairing on A[2] with the standard symplectic form on (Z/2Z)2g. Simi-
larly, letMg[2] denote the moduli space of smooth curves of genus g together with
a full level 2 structure on their Jacobians. Note that we are considering these spaces
as coarse moduli spaces. The two types of moduli spaces are connected through
the Torelli morphism tg :Mg[2] ! Ag[2] sending a smooth curve to its Jacobian.
There is an action of Sp2(2g), the symplectic group of degree 2g over the field of
two elements, onAg[2] andMg[2] via its action on the level 2 structure (for some
more details on this see for instance [2]).

The locus Hg[2] insideMg[2] consisting of hyperelliptic curves can, for any
g � 2, be described as a disjoint union of copies ofM0,2g+2 (see [3,7,11] and [12]),
the moduli space of smooth genus 0 curves together with 2g + 2 marked points.
Moreover, the moduli spaceM1,1[2] of elliptic curves is isomorphic toM0,4. The
cohomology ofM0,2g+2, together with the action of the symmetric group S2g+2,
can (because of purity) be computed using counts of points over finite fields (see
for instance [3, 5] and [10]). In Section 5.1 respectively Section 5.2 below, we
compute in this way the Sp2(2)-action and Hodge structure of the cohomology of
M1,1[2] ⇠= A1[2] respectively the Sp2(4)-action and Hodge structure of the coho-
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mology ofM2[2]. By adding the complement of t2(M2[2]) inside A2[2] consist-
ing of products of elliptic curves we also compute the Sp2(4)-equivariant weighted
Euler characteristic of A2[2]. For a definition of this type of Euler characteristic
see Section 2.

Themain result of this article is Table 4.1which contains the Sp2(6)-equivariant
weighted Euler characteristic of A3[2]. This is based upon the work of the second
author in [2] in which the Sp2(6)-equivariant cohomology ofM3[2] is computed,
see Section 3 below. There are two other loci consisting of either products of an
indecomposable Abelian surface and an elliptic curve, or products of three elliptic
curves. The cohomology of these loci are computed in Section 5 and Section 6
respectively.

We note in Section 4 that the weighted Euler characteristic of A3[2] contains
much fewer classes than the weighted Euler characteristics of its different loci. This
cancellation property was noted also in [1] for the integer valued Euler character-
istic of local systems upon the corresponding strata inside A3, the moduli space of
principally polarized Abelian threefolds with no level structure. The Hodge struc-
ture of the cohomology ofA3 was previously known, see [8].

ACKNOWLEDGEMENTS. We thank the referee for helpful comments.

2. Euler characteristics

For a quasi-projective variety X defined over C, let GrWk Hi (X) denote the kth
subquotient of the weight filtration on Hi (X), the i th Betti cohomology group
with complex coefficients. Say that a finite group G acts on X . This will make
GrWk H

i (X) into a representation of G. Define the G-equivariant weighted Euler
characteristic of X to be

eX (v) =
X

i,k�0
(�1)i GrWk H

i (X) vk,

which is a polynomial in the formal variable v whose coefficients are virtual rep-
resentations of G. This Euler characteristic is additive in the sense that if X =
Y t Z , where Y and Z are preserved by G, then eX (v) = v2codimX (Y )eY (v) +
v2codimX (Z)eZ (v). If X fullfils purity, in the sense of Dimca and Lehrer in [5], then
one can from this Euler characteristic determine the individual cohomology groups
as representations of G.

Now let X be a quasi-projective variety defined over O[ 1N ], where O is a ring
of integers of an algebraic number field, together with an action of a finite group G.
For any prime power q = pr (where p - N ), let Fq denote the geometric Frobenius
morphism acting on X ⌦ F̄q . For any g 2 G we will by XFq�g denote the set of
fixed points of Fq � g acting on X ⌦ F̄q . Note that XFq�id = X (Fq). Determining
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the numbers |XFq�g|, for all g 2 G and almost all prime powers q = pr (meaning
for all but a finite set of primes p and all r � 1), will be called a twisted point count
of X .

Say that there, for all g 2 G, are polynomials Pg(t), with complex coefficients
and of degree 2 dim X , such that Pg(q) = |XFq�g| for almost all prime powers q.
Using the Lefschetz fixed point theorem, we can then from this information deter-
mine theG-equivariant weighted Euler characteristic of X (C), see [6, Appendix A].

All spaces we consider here will be quasi-projective varieties defined over
Z

⇥1
2
⇤
.

3. Decomposable and indecomposable Abelian threefolds

We say that a principally polarized Abelian threefold is indecomposable if it is not
isomorphic to a product of Abelian varieties of lower dimension. We denote the
corresponding locus inA3[2] byAin3 [2].

The Torelli morphism t3 gives an isomorphismM3[2] ⇠= Ain3 [2] (on the level
of coarse moduli spaces). The moduli spaceM3[2] can be decomposed as a disjoint
union

M3[2] = Q[2] tH3[2],

whereQ[2] denotes the locus consisting of curves whose canonical model is a plane
quartic curve and whereH3[2] denotes the hyperelliptic locus.

The cohomology groups of Q[2] and H3[2] were determined as representa-
tions of Sp2(6) by the second author in [2]. For completeness, we recall the results
in Table 7.1 and Table 7.2.

There are two types of decomposable Abelian threefolds. The threefold can
either be isomorphic to a product of an indecomposable Abelian surface and an
elliptic curve or to a product of three elliptic curves. We denote the corresponding
loci inA3[2] byA2,1[2] andA1,1,1[2] respectively.

4. The main result

We have the decomposition

A3[2] = t3(Q[2]) t t3(H3[2]) tA2,1[2] tA1,1,1[2]

and below we compute the cohomology groups of each of the spaces on the right
hand side as representations of Sp2(6). Moreover, we will see that each cohomology
group Hi of a space on the right hand side is pure of weight 2i and Tate type (i, i).

By the additivity of the weighted Euler characteristic,

eA3[2](v) = et3(Q[2])(v) + v2 et3(H3[2])(v) + v4 eA2,1[2](v) + v6 eA1,1,1(v).
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Putting the results together for the different strata we get the Sp2(6)-equivariant
weighted Euler characteristic of A3[2], see Table 4.1. Each column in this table
corresponds to an irreducible representation of Sp2(6). The irreducible representa-
tions are denoted �dn where d is the dimension of the representation and n is letter
used to distinguish different representations of the same dimension, see [4].

Table 4.1. The Sp2(6)-equivariant weighted Euler characteristic of A3[2].

�1a �7a �15a �21a �21b
eA3[2](v) 1+ v2 + v4 + v6 + v12 0 v12 0 0

�27a �35a �35b �56a �70a
eA3[2](v) �v6 � v8 0 �v6 � v8 + v12 0 0

�84a �105a �105b �105c �120a
eA3[2](v) v12 0 v4 0 v10

�168a �189a �189b �189c �210a
eA3[2](v) v10 0 0 0 �v6

�210b �216a �280a �280b �315a
eA3[2](v) �v6 0 0 v10 0

�336a �378a �405a �420a �512a
eA3[2](v) 0 0 0 v8 �v12

Note that the results for �1a agree with the computation of the cohomology groups
of A3 together with their Hodge structure in [8]. Note also that only 13 of the 30
irreducible representations of Sp2(6) occur in eA3[2](v) and that for each irreducible
representation the coefficients of vi are all either zero or ±1. This is in sharp con-
trast to the cohomology of the individual pieces - all irreducible representations
except �7a occur in some cohomology group of some piece and they occur with
multiplicities up to 14.

5. An indecomposable Abelian surface and an elliptic curve

As in the genus 3 case, t2 gives an isomorphismM2[2] ⇠= Ain2 [2], where Ain2 [2]
denotes the indecomposable locus insideA2[2].

There is a close relationship between A2,1[2] and the product spaceM2[2] ⇥
A1[2]. LetC be a genus 2 curve with level 2 structure represented by the symplectic
basis (e1, e2, f1, f2) of Jac(C)[2] and let E be an elliptic curve with level 2 structure
(e3, f3). Then t2(C) ⇥ E is an Abelian threefold and t2(C)[2] ⇥ E[2] is a six
dimensional vector space over F2 with a symplectic pairing given by

ei · e j = fi · f j = 0

and
ei · f j = �i, j
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for all i and j , where we identify ei with t2(ei ) and fi with t2( fi ). Clearly, not all
level 2 structures on t2(C) ⇥ E arise in this way but those that do are permuted by
the group Sp2(4) ⇥ Sp2(2). Let C be the quotient set Sp2(6)/(Sp2(4) ⇥ Sp2(2)).
We may then describe the locusA2,1[2] as

A2,1[2] ⇠=
a

c2C

(M2[2] ⇥A1[2])c,

where (M2[2] ⇥ A1[2])c is an isomorphic copy ofM2[2] ⇥ A1[2] indexed by c
and the components are permuted as

g(M2[2] ⇥A1[2])c = (M2[2] ⇥A1[2])gc
for g 2 Sp2(6). In terms of cohomology groups this means that

Hi (A2,1[2]) = IndSp2(6)Sp2(4)⇥Sp2(2)
Hi (M2[2] ⇥A1[2]).

By the Künneth theorem we have that

Hi (M2[2] ⇥A1[2]) ⇠=
M

p+q=i
H p(M2[2]) ⌦ Hq(A1[2]).

Thus, in order to understand the action of Sp2(4) ⇥ Sp2(2) on Hi (M2[2] ⇥A1[2])
it is enough to understand the action of Sp2(4) on Hi (M2[2]) and the action of
Sp2(2) on Hi (A1[2]) for all i .

5.1. The moduli space of elliptic curves with level two structure

In order to understand the action of Sp2(2) on Hi (A1[2]) we note that Sp2(2) is
isomorphic to the symmetric group S3 and that A1[2] is isomorphic (over Z[12 ]) to
M0,4, the moduli space of four ordered points on P1. Under these identifications,
the action of Sp2(2) is given by permuting the first three points. SinceM0,4 is pure
in the sense of Dimca and Lehrer [5] we can deduce the action of Sp2(2) on its
cohomology groups by a twisted point count, see Section 2.

Say that � = (1, 2, . . . , 2g + 2) 2 S2g+2. Then (p1, . . . , pn) 2 MFq��
0,2g+2

if and only if p1 is defined over Fqn , but not over any strict subfield of Fqn , and
pi = Fi�1 p1 for all i . Using this fact we easily find that for all prime powers q,

�
�
�MFq�id

0,4

�
�
� =

(q + 1)q(q � 1)(q � 2)
|PGL2(Fq)|

= q � 2

�
�
�MFq�(12)

0,4

�
�
� =

(q + 1)q(q2 � q)

|PGL2(Fq)|
= q

�
�
�MFq�(123)

0,4

�
�
� =

(q + 1)(q3 � q)

|PGL2(Fq)|
= q + 1.
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Thus, the traces of (id, (12), (123)) on H0(A1[2]) and H1(A1[2]) are (1, 1, 1) and
(2, 0,�1), respectively. In other words, H0(A1[2]) is the trivial representation of
Sp2(2) while H1(A1[2]) is the standard representation.

5.2. The moduli space of genus two curves with level two structure

In order to understand the action of Sp2(4) on Hi (M2[2]) we note that Sp2(4) is
isomorphic to the symmetric group S6 and thatM2[2] is isomorphic (over Z[12 ])
toM0,6, the moduli space of six ordered points on P1. Under these identifications,
the action of Sp2(4) onM2[2] is given by permuting the points. Also,M0,6 is pure
so we can again deduce the action of Sp2(4) on the cohomology via twisted point
counts. As in the above, we easily find that for all prime powers q,

�
�
�MFq�id

0,6

�
�
� =

(q + 1)q(q � 1)(q � 2)(q � 3)(q � 4)
|PGL2(Fq)|

= q3 � 9q2 + 26q � 24

�
�
�MFq�(12)

0,6

�
�
� =

(q + 1)q(q � 1)(q � 2)(q2 � q)

|PGL2(Fq)|
= q3 � 3q2 + 2q

�
�
�MFq�(12)(34)

0,6

�
�
� =

(q + 1)q(q2 � q)(q2 � q � 2)
|PGL2(Fq)|

= q3 � q2 � 2q

�
�
�MFq�(12)(34)(56)

0,6

�
�
� =

(q2 � q)(q2 � q � 2)(q2 � q � 4)
|PGL2(Fq)|

= q3 � 3q2 � 2q + 8

�
�
�MFq�(123)

0,6

�
�
� =

(q + 1)q(q � 1)(q3 � q)

|PGL2(Fq)|
= q3 � q

�
�
�MFq�(123)(45)

0,6

�
�
� =

(q + 1)(q2 � q)(q3 � q)

|PGL2(Fq)|
= q3 � q

�
�
�MFq�(123)(456)

0,6

�
�
� =

(q3 � q)(q3 � q � 3)
|PGL2(Fq)|

= q3 � q � 3

�
�
�MFq�(1234)

0,6

�
�
� =

(q + 1)q(q4 � q2)
|PGL2(Fq)|

= q3 + q2

�
�
�MFq�(1234)(56)

0,6

�
�
� =

(q2 � q)q(q4 � q2)
|PGL2(Fq)|

= q3 � q2

�
�
�MFq�(12345)

0,6

�
�
� =

(q + 1)(q5 � q)

|PGL2(Fq)|
= q3 + q2 + q + 1

�
�
�MFq�(123456)

0,6

�
�
� =

q6 � q3 � q2 + q
|PGL2(Fq)|

= q3 + q � 1.
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We may read off Tr(�, Hi (M0,6)) as the coefficient of (�1)i q3�i in |MFq�� 0

0,6 |,
where � 0 is the element in the above list which is conjugate to � .

We now know Hi (M2[2]) as a representation of Sp2(4) for all i and we know
Hi (A1[2]) as a representation of Sp2(2) for all i so we therefore know Hi (M2[2]⇥
A1[2]) as a representation of Sp2(4) ⇥ Sp2(2). Inducing this representation to
Sp2(6) gives us Hi (A2,1[2]) as a representation of Sp2(6). We give the result in
Table 7.3.

As an aside we note that the complement of t2(M2[2]) inside A2[2] consists
of products of elliptic curves. The cohomology of this locus can be computed using
the same techniques as in Section 6, but in this case we will omit the details. Let us
denote the irreducible representations of Sp2(4) ⇠= S6 by s�, which are indexed in
the standard way by �, a partition of 6. Adding the contributions from the two loci
we find that,

eA2[2](v) =
�
1+ v2

�
s6 � v4

�
s5,1 + s4,2

�
+ v6s3,2,1.

6. Products of three elliptic curves

There is a close relationship between the product space (A1[2])3 and the locus
A1,1,1[2]. Let E1, E2 and E3 be three elliptic curves with level 2 structures (e1, f1),
(e2, f2) and (e3, f3), respectively. Then E1 ⇥ E2 ⇥ E3 is an Abelian threefold and
E1[2] ⇥ E2[2] ⇥ E3[2] is a six dimensional vector space over F2 with a symplectic
pairing given by

ei · e j = fi · f j = 0

for all i and j and
ei · f j = �i, j .

Clearly, not all level 2 structures on E1 ⇥ E2 ⇥ E3 arise in this way but those
that do are permuted by the group (Sp2(2))3 while the three curves themselves
are permuted by the symmetric group S3. Let C be the quotient set Sp2(6)/(S3 n
(Sp2(2))3). We may describe the locusA1,1,1[2] as

A1,1,1[2] ⇠=
a

c2C

�
A1[2]

�3
c,

where (A1[2])3c is an isomorphic copy of (A1[2])3 indexed by c and the components
are permuted as

g
�
A1[2]

�3
c =

�
A1[2]

�3
gc
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for g 2 Sp2(6). In terms of cohomology groups this means that

Hi�A1,1,1[2]
�

= IndSp2(6)S3n(Sp2(2))3
Hi

⇣�
A1[2]

�3⌘
.

By the Künneth theorem we have that

Hi
⇣�
A1[2]

�3⌘ ⇠=
M

p+q+r=i
H p�A1[2]

�
⌦ Hq�A1[2]

�
⌦ Hr �A1[2]

�
.

Thus, in order to understand the action of S3 n (Sp2(2))3 on Hi ((A1[2])3 it is
enough to understand the action of Sp2(2) on Hi (A1[2]) for all i and the action of
S3 on the factors.

Since the action of Sp2(2) was described in Section 5.1 we only consider
the action of S3 on the factors. Let ↵ ⌦ � ⌦ � 2 H p(A1[2]) ⌦ Hq(A1[2]) ⌦
Hr (A1[2]) ✓ H p+q+r ((A1[2])3). We have

(12).↵ ⌦ � ⌦ � = (�1)pq� ⌦ ↵ ⌦ � ,

(13).↵ ⌦ � ⌦ � = (�1)pr� ⌦ � ⌦ ↵,

(23).↵ ⌦ � ⌦ � = (�1)qr↵ ⌦ � ⌦ �,

where the signs are a consequence of the Künneth isomorphism. Since S3 is gener-
ated by transpositions and H p+q+r ((A1[2])3) is generated by elements of the form
↵ ⌦� ⌦ � for all possible choices of p, q and r , this determines the action of S3 on
H p+q+r ((A1[2])3).

We now have all the information we need in order to understand the action of
S3 n (Sp2(2))3 on Hi ((A1[2])3).

Example 6.1. Let u be a basis vector for the trivial representation of Sp2(2) and let
v1 and v2 be basis vectors for the standard representation of Sp2(2). Let � 2 Sp2(2)
be an element of order 3 acting as

�.u = u,
�.v1 = v2,

�.v2 = �v1 � v2,

and let g 2 S3 n (Sp2(2))3 on Hi ((A1[2])3 be the element g = ((23), (�, �, id)).
We of course have g.u ⌦ u ⌦ u = u ⌦ u ⌦ u, so Tr(g, H0((A1[2])3) = 1. In
cohomological degree 1 we have

g.v2 ⌦ u ⌦ u = �(v1 + v2) ⌦ u ⌦ u
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while g.↵ has no component in the direction of ↵ for all other choices of ↵ 2
H1((A1[2])3). Thus, Tr(g, H1((A1[2])3)) = �1. In degree 2 we have

g.u ⌦ v2 ⌦ v2 = u ⌦ v2 ⌦ (v1 + v2)

while g.↵ has no component in the direction of ↵ for all other choices of ↵ 2
H2((A1[2])3). We conclude that Tr(g, H2((A1[2])3)) = 1. Finally, in degree 3 we
have

g.v2 ⌦ v2 ⌦ v2 = �(v1 + v2) ⌦ v2 ⌦ (v1 + v2)

while g.↵ has no component in the direction of ↵ for all other choices of ↵ 2
H3((A1[2])3). Hence, Tr(g, H3((A1[2])3) = �1. We thus have

3X

i=0
Tr

⇣
g, Hi

⇣�
A1[2]

�3⌘⌘
t i = 1� t + t2 � t3.

Similar computations for the other conjugacy classes of S3 n (Sp2(2))3 give the
results in Table 6.1, where

Pg
⇣�
A1[2]

�3
, t

⌘
:=

3X

i=0
Tr

⇣
g, Hi

⇣�
A1[2]

�3⌘⌘
t i ,

is called the equivariant Poincaré polynomial. See [9, Chapter 4] for a beautiful
description of how to compute representatives of S3 n (Sp2(2))3. In Table 6.1, � is
the element of Sp2(2) described in Example 6.1 while ⌧ is the element of order 2
acting as

⌧.v1 = �v1, ⌧.v2 = v1 + v2

where v1 and v2 are the same basis vectors of the standard representation considered
in Example 6.1.

Table 6.1. Equivariant Poincaré polynomials of (A1[2])3 for a representative g of every
conjugacy class of S3 n (Sp2(2))3.
g Pg((A1[2])3, t) g Pg((A1[2])3, t) g Pg((A1[2])3, t)
(id, (id, id, id)) 1+ 6t + 12t2 + 8t3 ((23), (id, id, id)) 1+ 2t � 2t2 � 4t3 ((123), (id, id, id)) 1+ 2t3
(id, (id, id, ⌧ )) 1+ 4t + 4t2 ((23), (id, ⌧, id)) 1+ 2t ((123), (⌧, id, id)) 1
(id, (id, id, � )) 1+ 3t � 4t3 ((23), (id, �, id)) 1+ 2t + t2 + 2t3 ((123), (�, id, id)) 1� t3

(id, (id, ⌧, ⌧ )) 1+ 2t ((23), (⌧, id, id)) 1� 2t2
(id, (id, ⌧, � )) 1+ t � 2t2 ((23), (⌧, ⌧, id)) 1
(id, (id, �, � )) 1� 3t2 + 2t3 ((23), (⌧, �, id)) 1+ t2

(id, (⌧, ⌧, ⌧ )) 1 ((23), (�, id, id)) 1� t � 2t2 + 2t3
(id, (⌧, ⌧, � )) 1� t ((23), (�, ⌧, id)) 1� t
(id, (⌧, �, � )) 1� 2t + t2 ((23), (�, �, id)) 1� t + t2 � t3

(id, (�, �, � )) 1� 3t + 3t2 � t3
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By inducing the corresponding representations from S3 n (Sp2(2))3 to Sp2(6) we
obtain the cohomology ofA1,1,1[2] as a representation of Sp2(6). We give the result
in Table 7.4.

7. Cohomology groups of strata

In this section we give the cohomology groups of Q[2], H3[2], A2,1[2] and
A1,1,1[2] as representations of Sp2(6). The results are presented in Table 7.1-7.4.
Each column in these tables corresponds to an irreducible representation of Sp2(6).
The irreducible representations are denoted �dn where d is the dimension of the
representation and n is a letter used to distinguish different representations of the
same dimension, see [4].

Table 7.1. The cohomology groups of Q[2] as a representation of Sp2(6).

�1a �7a �15a �21a �21b �27a �35a �35b �56a �70a

H0 1 0 0 0 0 0 0 0 0 0
H1 0 0 0 0 0 0 0 1 0 0
H2 0 0 0 0 0 0 0 0 0 0
H3 0 0 0 1 0 0 0 0 0 0
H4 0 0 0 0 0 0 0 0 0 1
H5 0 0 0 0 0 1 1 1 0 0
H6 1 0 2 0 1 1 1 3 0 0

�84a �105a �105b �105c �120a �168a �189a �189b �189c �210a

H0 0 0 0 0 0 0 0 0 0 0
H1 0 0 0 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0 0 0 1
H3 0 0 1 0 0 0 1 0 0 2
H4 0 0 2 0 2 1 2 1 0 3
H5 1 2 2 1 2 4 3 3 3 4
H6 5 1 1 4 0 3 2 2 5 3

�210b �216a �280a �280b �315a �336a �378a �405a �420a �512a

H0 0 0 0 0 0 0 0 0 0 0
H1 0 0 0 0 0 0 0 0 0 0
H2 0 0 0 1 0 0 0 0 0 0
H3 1 0 0 0 0 0 1 2 2 1
H4 4 0 3 1 3 2 3 6 5 4
H5 4 4 4 6 5 6 6 6 8 9
H6 1 6 3 6 1 6 4 2 6 6
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Table 7.2. The cohomology groups ofH3[2] as a representation of Sp2(6).
�1a �7a �15a �21a �21b �27a �35a �35b �56a �70a

H0 1 0 0 0 0 0 0 1 0 0
H1 0 0 0 0 0 1 0 1 0 0
H2 0 0 0 1 0 0 0 0 0 0
H3 0 0 0 1 0 0 0 0 0 1
H4 0 0 0 0 0 1 1 1 0 1
H5 0 0 1 0 1 1 1 2 0 0

�84a �105a �105b �105c �120a �168a �189a �189b �189c �210a

H0 0 0 0 0 0 0 0 0 0 0
H1 0 0 0 0 0 1 0 0 0 1
H2 0 0 1 0 2 1 1 0 0 3
H3 0 0 3 1 3 2 4 1 0 5
H4 2 2 3 2 3 6 5 4 4 6
H5 4 2 1 4 1 4 3 3 6 4

�210b �216a �280a �280b �315a �336a �378a �405a �420a �512a

H0 0 0 0 0 0 0 0 0 0 0
H1 0 0 0 1 0 0 0 0 0 0
H2 1 0 0 2 0 0 1 3 2 2
H3 5 1 3 3 4 3 5 10 7 7
H4 6 5 7 8 7 9 9 10 12 14
H5 2 7 4 8 3 8 6 4 8 9

Table 7.3. The cohomology groups of A2,1[2] as representations of Sp2(6).
�1a �7a �15a �21a �21b �27a �35a �35b �56a �70a

H0 1 0 0 0 0 1 0 1 0 0
H1 0 0 0 0 0 2 0 2 0 0
H2 0 0 0 1 0 0 0 1 0 0
H3 0 0 0 1 0 0 0 0 0 2
H4 0 0 0 0 0 0 0 0 1 1

�84a �105a �105b �105c �120a �168a �189a �189b �189c �210a

H0 0 0 1 0 0 1 0 0 0 0
H1 1 0 1 0 2 2 0 0 0 2
H2 1 0 2 2 3 3 3 0 0 5
H3 1 0 3 2 2 3 5 2 1 6
H4 0 1 1 0 2 1 2 2 1 2

�210b �216a �280a �280b �315a �336a �378a �405a �420a �512a

H0 0 0 0 0 0 0 0 0 0 0
H1 1 0 0 3 0 0 0 1 1 1
H2 2 2 0 6 1 2 3 6 5 5
H3 4 2 4 4 4 5 6 10 8 10
H4 4 1 3 2 5 3 5 6 5 5
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Table 7.4. The cohomology groups of A1,1,1[2] as representations of Sp2(6).

�1a �7a �15a �21a �21b �27a �35a �35b �56a �70a

H0 1 0 0 0 0 1 0 1 0 0
H1 0 0 0 0 0 1 0 2 0 0
H2 0 0 0 1 0 0 0 0 0 1
H3 0 0 0 0 0 0 0 0 1 1

�84a �105a �105b �105c �120a �168a �189a �189b �189c �210a

H0 1 0 1 0 0 1 0 0 0 0
H1 1 0 1 1 2 2 1 0 0 3
H2 0 0 2 1 2 2 3 1 0 4
H3 0 0 1 0 1 0 1 1 0 1

�210b �216a �280a �280b �315a �336a �378a �405a �420a �512a

H0 0 0 0 1 0 0 0 0 1 0
H1 1 1 0 4 0 1 1 2 2 2
H2 2 1 1 3 2 2 3 6 4 5
H3 3 0 2 0 3 1 3 4 3 3
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