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The equivariant Euler characteristic of .43[2]

JONAS BERGSTROM AND OLOF BERGVALL

Abstract. We compute the weighted Euler characteristic, equivariant with re-
spect to the action of the symplectic group of degree six over the field of two el-
ements, of the moduli space of principally polarized Abelian threefolds together
with a level two structure.

Mathematics Subject Classification (2010): 14K 10 (primary); 14H10, 14D22,
14F20, 14F40 (secondary).

1. Introduction

Let A,[2] denote the moduli space of principally polarized Abelian varieties of di-
mension g together with a full level 2 structure. Recall that, if we avoid characteris-
tic 2, a full level 2 structure on an Abelian variety A is a choice of an identification
of the Weil pairing on A[2] with the standard symplectic form on (Z/27)¢. Simi-
larly, let M ¢[2] denote the moduli space of smooth curves of genus g together with
a full level 2 structure on their Jacobians. Note that we are considering these spaces
as coarse moduli spaces. The two types of moduli spaces are connected through
the Torelli morphism 7, : M,[2] — A,[2] sending a smooth curve to its Jacobian.
There is an action of Sp,(2g), the symplectic group of degree 2g over the field of
two elements, on Ag [2] and M ¢[2] via its action on the level 2 structure (for some
more details on this see for instance [2]).

The locus H,[2] inside M [2] consisting of hyperelliptic curves can, for any
g = 2,be described as a disjoint union of copies of M 2442 (see [3,7,11] and [12]),
the moduli space of smooth genus O curves together with 2g + 2 marked points.
Moreover, the moduli space M 1[2] of elliptic curves is isomorphic to My 4. The
cohomology of My 242, together with the action of the symmetric group S>,42,
can (because of purity) be computed using counts of points over finite fields (see
for instance [3,5] and [10]). In Section 5.1 respectively Section 5.2 below, we
compute in this way the Sp,(2)-action and Hodge structure of the cohomology of
M 1[2] = A;[2] respectively the Sp,(4)-action and Hodge structure of the coho-
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mology of M;[2]. By adding the complement of 7, (M;[2]) inside A[2] consist-
ing of products of elliptic curves we also compute the Sp,(4)-equivariant weighted
Euler characteristic of A;[2]. For a definition of this type of Euler characteristic
see Section 2.

The main result of this article is Table 4.1 which contains the Sp, (6)-equivariant
weighted Euler characteristic of A3[2]. This is based upon the work of the second
author in [2] in which the Sp,(6)-equivariant cohomology of M3[2] is computed,
see Section 3 below. There are two other loci consisting of either products of an
indecomposable Abelian surface and an elliptic curve, or products of three elliptic
curves. The cohomology of these loci are computed in Section 5 and Section 6
respectively.

We note in Section 4 that the weighted Euler characteristic of .43[2] contains
much fewer classes than the weighted Euler characteristics of its different loci. This
cancellation property was noted also in [1] for the integer valued Euler character-
istic of local systems upon the corresponding strata inside A3, the moduli space of
principally polarized Abelian threefolds with no level structure. The Hodge struc-
ture of the cohomology of A3 was previously known, see [8].

ACKNOWLEDGEMENTS. We thank the referee for helpful comments.

2. Euler characteristics

For a quasi-projective variety X defined over C, let Gr,fv H!(X) denote the kth
subquotient of the weight filtration on H'(X), the ith Betti cohomology group
with complex coefficients. Say that a finite group G acts on X. This will make
Gr,ZV H!(X) into a representation of G. Define the G-equivariant weighted Euler
characteristic of X to be

ex(v) = Y (=D Gr H'(X)v*,
i,k>0

which is a polynomial in the formal variable v whose coefficients are virtual rep-
resentations of G. This Euler characteristic is additive in the sense that if X =
Y u Z, where Y and Z are preserved by G, then ex(v) = p2eodimx (V) o (1)) 4
p2eodimy (), (). If X fullfils purity, in the sense of Dimca and Lehrer in [5], then
one can from this Euler characteristic determine the individual cohomology groups
as representations of G.

Now let X be a quasi-projective variety defined over O[%], where O is a ring
of integers of an algebraic number field, together with an action of a finite group G.
For any prime power ¢ = p” (where p { N), let F, denote the geometric Frobenius
morphism acting on X ® F,,. For any g € G we will by X/4°¢ denote the set of
fixed points of F, o g acting on X ® IF,. Note that X Fyoid — x (Fy). Determining
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the numbers | Xf4°2|, for all ¢ € G and almost all prime powers ¢ = p” (meaning
for all but a finite set of primes p and all > 1), will be called a twisted point count
of X.

Say that there, for all g € G, are polynomials Pg(2), with complex coefficients
and of degree 2dim X, such that P,(q) = |X Fgo8| for almost all prime powers q.
Using the Lefschetz fixed point theorem, we can then from this information deter-
mine the G-equivariant weighted Euler characteristic of X (C), see [6, Appendix A].

All spaces we consider here will be quasi-projective varieties defined over

2[4]

3. Decomposable and indecomposable Abelian threefolds

We say that a principally polarized Abelian threefold is indecomposable if it is not
isomorphic to a product of Abelian varieties of lower dimension. We denote the
corresponding locus in A3[2] by A[2].

The Torelli morphism #3 gives an isomorphism M3[2] = Ai3n[2] (on the level
of coarse moduli spaces). The moduli space M3[2] can be decomposed as a disjoint
union

M;[2] = Q2] u H32],

where Q[2] denotes the locus consisting of curves whose canonical model is a plane
quartic curve and where H3[2] denotes the hyperelliptic locus.

The cohomology groups of Q[2] and H3[2] were determined as representa-
tions of Sp, (6) by the second author in [2]. For completeness, we recall the results
in Table 7.1 and Table 7.2.

There are two types of decomposable Abelian threefolds. The threefold can
either be isomorphic to a product of an indecomposable Abelian surface and an
elliptic curve or to a product of three elliptic curves. We denote the corresponding
loci in A3[2] by Ay, 1[2] and A 1,1[2] respectively.

4. The main result
We have the decomposition
A3(2] = 13(QI2]) U 3(H3[2]) U Az 1 [21 U Ay a(2]
and below we compute the cohomology groups of each of the spaces on the right
hand side as representations of Sp, (6). Moreover, we will see that each cohomology

group H' of a space on the right hand side is pure of weight 2i and Tate type (i, i).
By the additivity of the weighted Euler characteristic,

ea512)(0) = €13Qp2) (V) + V¥ €312 (0) + v ey 2 () + 00 e, (V).
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Putting the results together for the different strata we get the Sp,(6)-equivariant
weighted Euler characteristic of A3[2], see Table 4.1. Each column in this table
corresponds to an irreducible representation of Sp,(6). The irreducible representa-
tions are denoted ¢4, where d is the dimension of the representation and # is letter
used to distinguish different representations of the same dimension, see [4].

Table 4.1. The Sp, (6)-equivariant weighted Euler characteristic of .43[2].

P14 Pla ®154 D210 D216
ea10) T+ V240 400402 0 12 0 0
0274 @354 ®35p 560 D704
e 4,2 (V) -6 — 8 0 =¥ +02 0 0
P84a @105a 1056 @105¢ 1204
e A5121(v) 12 0 vt 0 !0
1684 1894 1895 189¢ P210a
e A1 (V) v!0 0 0 0 —
P2106 P216a $280a P2800 P3154
eA3121(v) —0 0 0 100
?336a ?378a P4054 P420a P512a
e A1 (v) 0 0 0 V8 o2

Note that the results for ¢»1, agree with the computation of the cohomology groups
of Aj together with their Hodge structure in [8]. Note also that only 13 of the 30
irreducible representations of Sp, (6) occur in e 4,[2](v) and that for each irreducible
representation the coefficients of v’ are all either zero or #1. This is in sharp con-
trast to the cohomology of the individual pieces - all irreducible representations
except ¢7, occur in some cohomology group of some piece and they occur with
multiplicities up to 14.

5. An indecomposable Abelian surface and an elliptic curve

As in the genus 3 case, #; gives an isomorphism M;[2] = Ai2“[2], where Ai2“[2]
denotes the indecomposable locus inside A3 [2].

There is a close relationship between A 1[2] and the product space M3[2] x
A1[2]. Let C be a genus 2 curve with level 2 structure represented by the symplectic
basis (e1, e2, f1, f2) of Jac(C)[2] and let E be an elliptic curve with level 2 structure
(e3, f3). Then 1,(C) x E is an Abelian threefold and #,(C)[2] x E[2] is a six
dimensional vector space over [F, with a symplectic pairing given by

ei-ej=fi-fi=0

and
e fj=70i;
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for all i and j, where we identify e; with t2(e;) and f; with #,(f;). Clearly, not all
level 2 structures on #,(C) x E arise in this way but those that do are permuted by
the group Sp,(4) x Sp,(2). Let € be the quotient set Sp,(6)/(Sp,(4) x Sp,(2)).
We may then describe the locus A 1[2] as

Axa121 = [ JMal2] x Ail2))..,
ce?

where (M>[2] x A;[2])¢ is an isomorphic copy of M>[2] x A;[2] indexed by ¢
and the components are permuted as

g(M2[2] x A1[2])e = (M2[2] x A1[2])ge

for g € Sp,(6). In terms of cohomology groups this means that

H (Ap1[2]) = IndgR2 (D) o o H (Mal2] x Ay[2)).

By the Kiinneth theorem we have that

H (M2 x Ail2) = @ HP(Mal2]) ® HY(A[2)).

ptq=i

Thus, in order to understand the action of Sp,(4) x sz'(2) on H (M»[2] x A;[2])
it is enough to understand the action of Sp,(4) on H' (M5[2]) and the action of
Sp,(2) on H'(A;[2]) for all ;.

5.1. The moduli space of elliptic curves with level two structure

In order to understand the action of Sp,(2) on H I(A1[2]) we note that Sp,(2) is
isomorphic to the symmetric group S3 and that A[2] is isomorphic (over Z[%]) to
Mo 4, the moduli space of four ordered points on P!, Under these identifications,
the action of Sp,(2) is given by permuting the first three points. Since M 4 is pure
in the sense of Dimca and Lehrer [5] we can deduce the action of Sp,(2) on its
cohomology groups by a twisted point count, see Section 2.

Say that 0 = (1,2,...,2¢ +2) € Sag42. Then (py,...,py) € ngzc;iz
if and only if p; is defined over Fyn, but not over any strict subfield of Fyn, and
pi = F'~!py for all i. Using this fact we easily find that for all prime powers ¢,

F,oid (g+1Dg(qg—Dig—2)
= e -2
Moy IPGL, (F, )| 1
Fpo2)| (g + Dgq(g* —¢q)
Moa | = T IpaLaamy)] 1
Fo(123)| (@ +D(g®> —q)
Mo IPGLy(F,)| aF
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Thus, the traces of (id, (12), (123)) on H°(A;[2]) and H'(A;[2]) are (1, 1, 1) and
(2,0, —1), respectively. In other words, H 0(A;[2)) is the trivial representation of
Sp,(2) while H 1(A[2)) is the standard representation.

5.2. The moduli space of genus two curves with level two structure

In order to understand the action of Sp,(4) on H {(M>[2]) we note that Sp,(4) is

isomorphic to the symmetric group Sg and that M;[2] is isomorphic (over Z[%])

to M6, the moduli space of six ordered points on P!, Under these identifications,
the action of Sp,(4) on M;[2] is given by permuting the points. Also, M ¢ is pure
so we can again deduce the action of Sp,(4) on the cohomology via twisted point

counts. As in the above, we easily find that for all prime powers ¢,

IPGL2 (Fg)|

Facid _@+Dglg=D@=2(q=3@q=-4 _

0.6 [PGL2(Fy)|
Ml _ (g+Da(g—Dq-2)(q*—q)

[PGL>(Fy)|

Fac1269) @+ D@ —)q*—q—2)

0.6 B [PGL>(Fy)|

qu(12)(34)(56)‘ _ @ -9 —q-2q*—q-%

[PGL2(FFy)|

Fas129) _(g+Dgg =D’ —q)

0.6 B [PGL>(Fy)|
Fae12E9| (@ +1D@*—q9)(q>—q)

0.6 IPGL, (Fy)|
(129656 _ @ -9 —q-3)

0.6 [PGL2(Fy)|
Fac(1239) _ g+ Da(q* = 4%

0.6 [PGL, (Fy)|
Fae123966) | _ @* - aqq* — g%

0.6 [PGL>(Fy)|
o249+ (@ —q)

0.6 [PGL>(Fy)|

6 3_ 2

F,0(123456) q9 —q —q°+gq

Mo,q6 =

3_9g% +26g — 24
=q°—3¢*+2¢
=¢’—q* -2

=q°—3¢>—2q+38

=q¢—q

=q¢ —q
=q¢’—q-3
g g

. Qg
=¢+q*+q+1
=q¢+q—1.
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We may read off Tr(o, H' (Mo)) as the coefficient of (—1)'¢>~ in IM(i”;a [,
where o’ is the element in the above list which is conjugate to o .

We now know H'(M>[2]) as a representation of Sp, (4) for all i and we know
H(A[2]) asa representation of Sp, (2) for all i so we therefore know H 1(Ma[2]x
Ai1[2]) as a representation of Sp,(4) x Sp,(2). Inducing this representation to
Sp,(6) gives us H i (A2,1[2]) as a representation of Sp,(6). We give the result in
Table 7.3.

As an aside we note that the complement of 7, (M>[2]) inside A,[2] consists
of products of elliptic curves. The cohomology of this locus can be computed using
the same techniques as in Section 6, but in this case we will omit the details. Let us
denote the irreducible representations of Sp,(4) = Se by s,, which are indexed in
the standard way by A, a partition of 6. Adding the contributions from the two loci
we find that,

e 21(v) = (14 v%)se — v*(ss.1 +s42) + 005321

6. Products of three elliptic curves

There is a close relationship between the product space (A [2])? and the locus
Ai1.1.1[2]. Let Eq, E» and E3 be three elliptic curves with level 2 structures (e, f1),
(e2, f2) and (e3, f3), respectively. Then E; x E; x Ej3 is an Abelian threefold and
E1[2] x E>[2] x E3[2] is a six dimensional vector space over [, with a symplectic
pairing given by

ei-ej=fi-fi=0
for all i and j and
ei - fj=20ij.
Clearly, not all level 2 structures on E; x E> x E3 arise in this way but those
that do are permuted by the group (Sp2(2))3 while the three curves themselves

are permuted by the symmetric group S3. Let % be the quotient set Sp,(6)/(S3 X
(Sp, 2)%). We may describe the locus A; 11[2] as

A2l = ]_[ («41[2])3,
ce¥

where (A [2])3 is an isomorphic copy of (A; [2])? indexed by ¢ and the components
are permuted as

g(Ail21)] = (Ail2])},
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for g € Sp,(6). In terms of cohomology groups this means that

H (Ay20) = nd2 @ ((Ai2))).

$3%(Spy(2))?

By the Kiinneth theorem we have that

H((AR)’)z @ H(AR) © HI(AIRI) © H (A2).

prq+r=i

Thus, in order to understand the action of S3 X (Sp2(2))3 on HI((A([2])? it is
enough to understand the action of Sp,(2) on H "(A;[2]) for all i and the action of
S3 on the factors.

Since the action of Sp,(2) was described in Section 5.1 we only consider
the action of S3 on the factors. Let a @ B ® y € HP(A1[2]) ® H1(A([2]) ®
H"(A1[2]) € HPT9H ((A1[2])7). We have

(12.a@Ry =FDMBRa®y,
13).a@py=-H"YyRLQ«,
23) @Ry =-D"a®y 8,

where the signs are a consequence of the Kiinneth isomorphism. Since S3 is gener-
ated by transpositions and H? 194" ((A; [2D)3) is generated by elements of the form
o ® B ® y for all possible choices of p, g and r, this determines the action of S3 on
HPHH ((AL2])°).

We now have all the information we need in order to understand the action of
$3 % (Spy(2))* on H ((A1[2])*).

Example 6.1. Let u be a basis vector for the trivial representation of Sp,(2) and let
vy and v, be basis vectors for the standard representation of Sp,(2). Let o € Sp,(2)
be an element of order 3 acting as

ou=u,
o.v] = V3,
o.v) = —V] — V3,

and let g € S5 X (Sp,(2))? on H'((A;[2])? be the element g = ((23), (0, 0, id)).
We of course have g.u @ u @ u = u Q@ u ® u, so Tr(g, H'((A4[2])%) = 1. In
cohomological degree 1 we have

gnRURU=—V+1n)QuUuu
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while g.o has no component in the direction of « for all other choices of o €
H'((Ai121)%). Thus, Tr(g, H' ((A;[2])%)) = —1. In degree 2 we have

gURUAU =u® Vv (v + v2)

while g.o has no component in the direction of « for all other choices of @ €
H2((A;[2])?). We conclude that Tr(g, H2((A[2])%) = 1. Finally, in degree 3 we
have

gRNU=—(+12) Q2 ® (v] +v2)

while g.o has no component in the direction of « for all other choices of o €
H3((A112D%). Hence, Tr(g, H>((A1[2])%) = —1. We thus have

3

ST (g H((AR))) =1 -2 =1

i=0

Similar computations for the other conjugacy classes of S3 X (Sp2(2))3 give the
results in Table 6.1, where

P ((Ai12D) 1) = iTr (s H ((A12)%)) 7,

is called the equivariant Poincaré polynomial. See [9, Chapter 4] for a beautiful
description of how to compute representatives of S3 X (Sp, (2))3. In Table 6.1, o is
the element of Sp,(2) described in Example 6.1 while 7 is the element of order 2
acting as

T.V] = —V|, T.Up =101+

where v and v, are the same basis vectors of the standard representation considered
in Example 6.1.

Table 6.1. Equivariant Poincaré polynomials of (A;[2])° for a representative g of every
conjugacy class of S3 X (Sp, 2))3.

Po((A12D3, 1)

8 Pe((AI2D°. D) g Pe((AI12D°,0) g

(id, (id, id, id)) | 1 + 67 + 12:Z + 843 [((23), (id, id, id)) | 1 + 2r — 2¢Z — 4.3 [ ((123), (id, id, id)) |1 + 2¢3
(d, (id, id, 7)) |1 + 41 + 412 ((23), (id, 7, id)) |1+ 2¢ ((123), (7, 1id, id)) |1

@(d, (id,id, o)) |1 + 31 — 413 ((23), (id, 0, id)) |1 427 + 1% + 213 |((123), (0, id, id)) |1 — 3
Gd, (d, 7, 7)) |1+2¢ ((23), (,id, id)) |1 —2¢2

(d, (id, 7, 0)) |1+t —2¢2 ((23), (z, 7,id)) |1

@id, (id, 0, o)) |1 =312 + 273 ((23), (7, 0,id)) |1+ 12

Gd, (r,7, 7)) |1 ((23), (0, id, id)) |1 — ¢ —2r2 + 213

(4d, (r,7,0)) |1 —1t ((23), (0, 7,id)) |1 —1

Gd, (r,0,0)) |1—2t+1¢2 ((23), (0, 0,id)) |1 —t+12— 43

(d, (0, 0,0)) |1—3t+3¢2 4¢3
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By inducing the corresponding representations from S3 x (Sp,(2))? to Sp,(6) we
obtain the cohomology of .4 1 1[2] as a representation of Sp, (6). We give the result
in Table 7 4.

7. Cohomology groups of strata

In this section we give the cohomology groups of Q[2], H3[2], A2 ([2] and
A1.1.1[2] as representations of Sp,(6). The results are presented in Table 7.1-7 4.
Each column in these tables corresponds to an irreducible representation of Sp, (6).
The irreducible representations are denoted ¢4, where d is the dimension of the
representation and » is a letter used to distinguish different representations of the
same dimension, see [4].

Table 7.1. The cohomology groups of Q[2] as a representation of Sp, (6).
Pla P10 P15a P21a 216 P210 D350 D356 PS6a Pr0a

HO 1 0 0 0 0 0 0 0 0 0
H! 0 0 0 0 0 0 0 1 0 0
H? 0 0 0 0 0 0 0 0 0 0
H3 0 0 0 1 0 0 0 0 0 0
H* 0 0 0 0 0 0 0 0 0 1
H> 0 0 0 0 0 1 1 1 0 0
H° 1 0 2 0 1 1 1 3 0 0

$84a 1050 P1056 P105¢ P120a P168a P189a P189p P189c P210a
H° 0 0 0 0 0 0 0 0 0 0
H! 0 0 0 0 0 0 0 0 0 0
H? 0 0 0 0 0 0 0 0 0 1
H3 0 0 1 0 0 0 1 0 0 2
H* 0 0 2 0 2 1 2 1 0 3
H> 1 2 2 1 2 4 3 3 3 4
H° 5 1 1 4 0 3 2 2 5 3

$2100 P216a P280a P280b P315a P336a P378a P405a P420a P512a

HO 0 0 0 0 0 0 0 0 0 0
H! 0 0 0 0 0 0 0 0 0 0
H? 0 0 0 1 0 0 0 0 0 0
H3 1 0 0 0 0 0 1 2 2 1
H* 4 0 3 1 3 2 3 6 5 4
H> 4 4 4 6 5 6 6 6 8 9
H° 1 6 3 6 1 6 4 2 6 6
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Table 7.2. The cohomology groups of H3[2] as a representation of Sp,(6).
Gla P1a Pisa P21a P16 D270 P35a P35b P56a Pr0a

HO 1 0 0 0 0 0 0 1 0 0
H! 0 0 0 0 0 1 0 1 0 0
H? 0 0 0 1 0 0 0 0 0 0
H3 0 0 0 1 0 0 0 0 0 1
H* 0 0 0 0 0 1 1 1 0 1
H? 0 0 1 0 1 1 1 2 0 0

D84a P105a D1056 P105¢ P120a P168a P189a P189p P189c P210a
HO 0 0 0 0 0 0 0 0 0 0
H! 0 0 0 0 0 1 0 0 0 1
H? 0 0 1 0 2 1 1 0 0 3
H3 0 0 3 1 3 2 4 1 0 5
H* 2 2 3 2 3 6 5 4 4 6
H> 4 2 1 4 1 4 3 3 6 4

@210 P216a P280a D280b P3150 P336a D378a P405a P420a D5124
H° 0 0 0 0 0 0 0 0 0 0
H! 0 0 0 1 0 0 0 0 0 0
H? 1 0 0 2 0 0 1 3 2 2
H3 5 1 3 3 4 3 5 10 7 7
H* 6 5 7 8 7 9 9 10 12 14
H> 2 7 4 8 3 8 6 4 8 9

Table 7.3. The cohomology groups of .4, 1[2] as representations of Sp,(6).

$1a P1a P1sa P24 D216 D270 350 D356 P56a P10a

1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 2 0 2 0 0
H? 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 2
H* 0 0 0 0 0 0 0 0 1 1
P84a D105a P1056 P105¢ DP120a P168a D189 P189H P189c 2104
HY 0 0 1 0 0 1 0 0 0 0
H' 1 0 1 0 2 2 0 0 0 2
H? 1 0 2 2 3 3 3 0 0 5
H3 1 0 3 2 2 3 5 2 1 6
H* 0 1 1 0 2 1 2 2 1 2

$2100 P216a P280a P280b P315a P336a P378a P405a P420a P512a

HY 0 0 0 0 0 0 0 0 0 0
H! 1 0 0 3 0 0 0 1 1 1
H? 2 2 0 6 1 2 3 6 5 5
H3 4 2 4 4 4 5 6 10 8 10
H* 4 1 3 2 5 3 5 6 5 5
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Table 7.4. The cohomology groups of A 1 1[2] as representations of Sp,(6).

Pla P10 P15a P21a D216 P27a D350 P35 Ps6a Pr0a
HY 1 0 0 0 0 1 0 1 0 0
H! 0 0 0 0 0 1 0 2 0 0
H? 0 0 0 1 0 0 0 0 0 1
H3 0 0 0 0 0 0 0 0 1 1

P84a 1050 P105b P105c P120a P168a P189a P189p P189c P210a
HY 1 0 1 0 0 1 0 0 0 0
H! 1 0 1 1 2 2 1 0 0 3
H?> 0 0 2 1 2 2 3 1 0 4
H3 0 0 1 0 1 0 1 1 0 1

$2100 P216a P280a P280b P315a P336a P378a P405a P420a P512a
HY 0 0 0 1 0 0 0 0 1 0

H' 1 1 0 4 0 1 1 2 2 2

H? 2 1 1 3 2 2 3 6 4 5

H3 3 0 2 0 3 1 3 4 3 3
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