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Trudinger-Moser inequalities on a closed Riemannian surface
with the action of a finite isometric group

YU FANG AND YUNYAN YANG

Abstract. Let (X, g) be a closed Riemannian surface, Wl'z(Z, g) be the usual
Sobolev space, G be a finite isometric group acting on (X, g), and .7 be the
function space including all functions u € wh2(x, g) with f): udvg = 0 and
u(o(x)) = u(x) for all 0 € G and all x € X. Denote the number of distinct
points of the set {o(x) : ¢ € G} by I(x) and £ = min,¢y /(x). Let A(]} be
the first eigenvalue of the Laplace-Beltrami operator on the space .7#g. Using
blow-up analysis, we prove that if @ < )‘(1} and B8 < 4m ¢, then there holds

2
sup / P dvg < 00;
UeHG, [5 |\Voul2dvg—a [5 u?dvg<17%

ifa < /\f’ and 8 > 4xl,or o > Af’ and B8 > O, then the above supremum

is infinity; if o < A? and < 4 ¢, then the above supremum can be attained.
Moreover, similar inequalities involving higher order eigenvalues are obtained.
Our results partially improve original inequalities of J. Moser [17], L. Fontana [9]
and W. Chen [4].

Mathematics Subject Classification (2010): 58J05 (primary).

1. Introduction

Let Q C R” be a smooth bounded domain, Wol’"(SZ) be the usual Sobolev space,
and w,—1 be the area of the unit sphere in R”. It was proved by Moser [17] that for

/=1 there holds

any o < ap = nw,” |

n/n=1)
sup f e dx < oo. (1.1)
UeW " (Q), fo IVulndx<1’<
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Moreover, o, is the best constant in the sense that if ¢ > «,, the integrals in the
above inequality are still finite, but the supremum is infinity. Such kind of inequal-
ities are known as Trudinger-Moser inequalities in literature. Earlier contributions
are due to Yudovich [34], Pohozaev [21], Peetre [20] and Trudinger [24]. Let A1 (£2)
be the first eigenvalue of the Laplace operator with respect to the Dirichlet boundary
condition. Adimurthi-Druet [1] proved that for any o < A1(£2), there holds

2 2
sup / e (talul) gy — oo, (1.2)
ueW, 2 (Q), fq |VulPdx<17%

moreover, if @ > A1(€2), then the above supremum is infinity, where ||u||% =
fQ u?dx. The inequality (1.2) is stronger than (1.1) and was extended by the sec-
ond named author [26] to the higher dimensional case. Later, Tintarev [23] proved
among other results that for any o < A1 (B (0)), there holds

2
sup / e dx < o0, (1.3)
u\’EWOl'Z(Q),fQ |Vu|?dx—a o u?dx<1 Y

where B (0) denotes the ball centered at O with radius R and its measure is equal
to that of Q2. As one expected, A1 (Bg(0)) can be replaced by A;(£2), which is a
consequence of [28, Theorem 1].

One can ask whether the supremum in (1.1) can be attained or not. Existence
of extremal functions was proved first by Carleson-Chang [3] in the case that 2 is
the unit ball, then by Struwe [22] in the case that €2 is close to a ball in the sense
of measure, later by Flucher [8] when €2 is a planar domain, and finally by Lin [13]
when  is a domain in R”. In [25], the second named author claimed that the
supremum in (1.2) can be attained for all 0 < o < A1(€2). We remark that there
is a mistake during that test function computation ( [25, page 338, line 8]). In fact,
in two dimensions, extremal function for (1.2) exists only for sufficiently small «,
see for example [27]. Concerning extremal functions for inequalities of the type
(1.2), we refer the reader to [6,10,14,15,19,29,30,32,33,35]. As a comparison,
it was proved in [28] that the supremum in (1.3) can be attained for all @ < A (£2).
It is remarkable that (1.3) is stronger than (1.2), however, there is no relation on
existence of extremal functions between (1.2) and (1.3).

Let (S?, go) be the 2-dimensional sphere x12+x22+x32 = 1 with the metric go =
a’x12 + dx% + de2 and the corresponding volume element dvg,. According to Moser
[17], one can find a constant C such that for all functions u with [ [V u 2dvg, <
land [o udvg, =0,

/Sz M dg, < C. (14)

Concerning all even functions u, it was indicated by Moser [18] that the best con-
stant «p = 4w would double. Namely, there exists a constant C such that for
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all functions u satisfying u(—x) = u(x), ¥x € S?, Je |Vgoul?dvg, < 1, and
Jsp udvg, = 0, there holds

/Sz M dvg, < C. (15)

Later, by using an isoperimetric inequality on closed Riemannian surfaces with
conical singularities, Chen [4] proved a Trudinger-Moser inequality for a class of
“symmetric” functions, which particularly generalized (1.4) and (1.5).

Let (M, g) be a closed n-dimensional Riemannian manifold. Among other
results, it was proved by Fontana [9] that there exists a constant C, depending only
on (M, g),suchthatifu € WH"(M, g) satisfies S IVgul"dvg < 1and [, udvy =
0, then

/M "V gy, < € (1.6)

The existence of extremal functions for (1.6) was obtained by Li [11,12]. Pre-
cisely, there exists some ug € W!"(M) N C' (M) with [}, |V,uol"dv, = 1 and
[y uodvg = 0 such that

n/(n—1) n/(n—1)
/e"‘"lu(’l dv,= sup f %l dvg. (1.7)
M ueWLn(M), [y, IVeul"dvg <1, [, udvg=0+M

Obviously (1.7) implies (1.6). In [27], the inequality (1.2) was generalized to a
closed Riemannian surface version, namely for any o with 0 < o < A((2) =

1 2
lnfﬂu\lz:], J5, udvg=0 [Vou ||29

2 2
sup / et (H“I'”“2)dvg < 00; (1.8)
uer’z(Z,g),fE |Vgu|2dvg§],fZ udvg=07%

moreover, the supremum in (1.8) can be attained for sufficiently small &. However,
in a recent work [28], an analog of (1.3) was also established on a closed Rieman-
nian surface, say for any o < A1(X),

2
sup / edru dvg < 00. (1.9)
ueWh2(s,2), [s |VeulPdvg—a [ u?dvg<17 X

Moreover, the above supremum can be attained for any ¢ < A1(X). Further, this
kind of inequalities involving higher order eigenvalues of the Laplace-Beltrami op-
erator has been studied.

In this paper, our aim is to establish Trudinger-Moser inequalities for “sym-
metric” functions and prove the existence of their extremal functions on a closed
Riemannian surface with the action of a finite isometric group. They can be viewed
as a “combination” of (1.5) and (1.9). We believe that such inequalities would
play an important role in the study of prescribing Gaussian curvature problem
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and mean field equations. Before ending this introduction, we mention Mancini-
Martinazzi [16], who studied the classical Trudinger-Moser inequality by estimat-
ing the energy of extremals for subcritical functionals.

ACKNOWLEDGEMENTS. The authors thank the referee for very careful reading and
constructive comments, which greatly improve the previous version of this paper.

2. Notation and main results

Let (2, g) be a closed Riemannian surface and G = {01, - - - , on} be an isometric
group acting on it, where N is some positive integer. By definition, G is a group and
each o; : ¥ — X is an isometric map, particularly 0" gy = gq;(x) forallx € X.
Letu : ¥ — R be a measurable function, we say that u € Zg if u is G-invariant,
namely u(o;(x)) = u(x) forany 1 < i < N and almost every x € X. We denote
W12(%, g) the closure of C*°(%) under the norm

12
||u||W1,z(g,g>=( /2 (IVgu|2+u2)dvg) |

where V, and dv, stand for the gradient operator and the Riemannian volume ele-
ment respectively. Define a Hilbert space

He = {u e Wiz, 9N LG / udvg = 0} (2.1)
D)

with an inner product

<M, U),yf(; = /;: (Vgu, ng)dvg,

where (V,u, V,v) stands for the Riemannian inner product of Veu and Vyv. Let
Ay = —div, V, be the Laplace-Beltrami operator, and

2
3G = gpr JzlVeuldue

2.2
ue g, u#z0 fE uzdvg 22)

be the first eigenvalue of A, on the space 7. For any x € X, we set /(x) =
#G(x), where A stands for the number of all distinct points in the set A, and
G(x) = {o1(x), -+ ,on(x)}. Let

£ =min I (x). (2.3)
XeX
Clearly wehave 1 < ¢ < Nsincel < I(x) < N forall x € ¥. As one will see, the

best constant in the Trudinger-Moser inequality for “symmetric” functions would
be 47 ¢. Precisely we state the following theorem.
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Theorem 2.1. Let (X, g) be a closed Riemannian surface and G = {oy, --- , on}
be an isometric group acting on it. Assume g, A? and £ are defined by (2.1),
(2.2) and (2.3) respectively. Then we have the following assertions:

(i) Forany a < A? and B < 4w ¥, there holds

sup / eﬁuzdvg < 00; 2.4)
b

UEHG, [5 |VeulPdvg—a [5 uldvg<1

() Ifa < AIG and B > 4nd, or o > AIG and B > 0, then the supremum in (2.4) is
infinity;

(i) Ifa < A? and B < 4m{, then the supremum in (2.4) can be attained by some
function ug € #G N CHUE, ) with [5, |Veuol*dvy — o [5 uddvg = 1.

As in [28], we may consider the effect of higher order eigenvalues on the Trudinger-
Moser inequality. For this purpose, we define the first eigenfunction space with
respect to A? by

Eklcz{uei%”GzAguz)»(l}u}.

By an induction, the j-th (j > 2) eigenvalue and eigenfunction space will be de-
fined as

2
56 _ inf Jz [Veuldvg 2.5)
Jj = ., 1 2d i
ueH G, ueE; |, u#0 fg U=dvg
and
L . G
Eo = {ue Bl A =1ul
respectively, where E;_| = E)L? ®---DEc 1 and
J=
Ei = {u € MG / uvdvg =0, Vv € Ej_l} . (2.6)
' by

Then higher order eigenvalues of A, affect the Trudinger-Moser inequality in the
following way:

Theorem 2.2. Let (X, g) be a closed Riemannian surface and G = {oy, --- , on}
be an isometric group acting on it. Assume g, £, k? and E j‘_l are defined by
(2.1), (2.3), (2.5) and (2.6) respectively, j > 2.

(i) Forany o < k? and B < 4m{, there holds

sup / eﬁuzdvg < 00; 2.7
b

ueEj'_l, J5 IVgu|?dvg—a [ u?dvg<1
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) Ifa < A? and B > 4w l, or o > )»5.; and B > 0, then the supremum in (2.7) is
infinity;

(iii) For any o < )»? and B < 4w ¥, the supremum in (2.7) can be attained by some
function ugy € E].{l NCUE, g) with [5 |VeuolPdvg — o [5 ubdvy = 1.

Let us give several examples for the finite isometric group G acting on a closed
Riemannian surface (X, g). (a) If G = {Id}, where Id denotes the identity map,
then G is a trivial isometric group action, and Theorems 2.1 and 2.2 are reduced to
(28, Theorems 3 and 4]). (b) Let (S?, go) be the standard 2-sphere given as in the
introduction, and G = {Id, o¢}, where op(x) = —x for any x € S?. Then we have
8G(x) = g{x, —x} =2 forany x € S2, and thus £ = 2. Hence Moser’s inequality
(1.5) for even functions is a special case of our theorems. (c¢) If G has a fixed point,
namely there exists some point p € X such that o(p) = p for all o € G, then we
have £ = #G(p) = 1, and whence both of the best constants in (2.4) and (2.7) are
4.
From now on, to simplify notations, we write

1/2
lullt,e = (fz |Vu|*dvg —a/zuzdvg> : (2.8)

provided that the right hand side of the above equality makes sense, say, if ¢ < A?
and u € JG, then |lu||; o is well defined. For the proof of Theorems 2.1 and 2.2,
we follow the lines of [28] and thereby follow closely [11]. Pioneer works are due to
Carleson-Chang [3], Ding-Jost-Li-Wang [7], and Adimurthi-Struwe [2]. Since both
of them are similar, we only give the outline of the proof of Theorem 2.1. Firstly,
we prove that the best constant in (2.4) is 4 £, which is based on Moser’s original
inequality and test function computations; Secondly, a direct method of variation
shows that every subcritical Trudinger-Moser functional has a maximizer, namely
for any € > 0, there exists some u, € G with |uc|l;.o = 1 satisfying

/e(4ne—s)u§dvg: sup /6(47r€—e)u2dvg’
b b

ueAg, llull,a<1

where o < A? and ||u||1 4 is defined as in (2.8); Thirdly, we use blow-up analysis
to show that if sup, .y |uc| — 00 as € — 0, then

sup / e4”(”2dvg < Vol (%) + Tl AT A
b

ueHg, llullo<1

where Ay, is a constant related to a certain Green function (see (3.42) below); Fi-
nally, we construct a sequence of functions ¢, € 7 with ||¢¢||1.o < 1 such that

/ T2y, > Vol () + mle 7470w
z
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provided that € > 0 is chosen sufficiently small. Combining the above two esti-
mates, we get a contradiction, which implies that u, must be uniformly bounded.
Then applying elliptic estimates to the equation of u., we get a desired extremal
function.

In the remaining part of this paper, we shall prove Theorems 2.1 and 2.2.
Throughout this paper, we do not distinguish sequence and subsequence. More-
over we often denote various constants by the same C, but the dependence of C
will be given only if necessary. Also we use symbols |O(Re)| < CRe,o0.(1) - 0
ase —> 0,05(1) > 0as § — 0, and so on.

3. Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1. In the first subsection, we show that
the best constant in (2.4) is equal to 4 £. The essential tools we use are subcritical
Trudinger-Moser inequality and Moser’s sequence of functions. Also we prove (ii)
of Theorem 2.1. In the second subsection, we consider the existence of maximizers
for subcritical Trudinger-Moser functionals and study their energy concentration
phenomenon. In the third subsection, assuming blow-up occurs, we derive an upper
bound of the supremum in (2.4), which obviously leads to (i) of Theorem 2.1. In
the final subsection, we construct a sequence of test functions to show that the upper
bound we obtained in the third subsection is not really an upper bound. Therefore
blow-up can not occur and elliptic estimates lead to existence of extremal function.
This concludes (iii) of Theorem 2.1.

3.1. The best constant

In view of (2.2), one can see that X? > ( by using a direct method of variation. For
any fixed o < A, if u € G satisfies ||lull1,o < 1,then |Veu[3 < A$/($ —a).

By Fontana’s inequality (1.6), there exists a positive constant Sy depending only on
A? and « such that

2
sup / ePou dvg < oo.
ueAG, lulo<1J%

Now we define

B* = sup {,8 : sup / e’g”zdvg < oo} . 3.1
b

ueg, lull,a<1

Lemma 3.1. Let £ and 8* be defined as in (2.3) and (3.1) respectively. Then B* =
4 l.
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Proof. We divide the proof into two steps.

Step 1. There holds B* < 4m{. In view of (2.3), there exists some point xg € X
satisfying £ = G (xo) = fi{o1(x0), - -+ , on(x0)}. Without loss of generality, we
assume that o1 = Id is the identity map, and that G(xo) = {o; (xo)}le. Take

1 .
ro = min d, (o,- (x0), 0 (xo)),

T 4 1<i<j<t
where dg(0;(x0), 0j(x0)) denotes the Riemannian distance between o;(xo) and
0j(xo). Since every o; : ¥ — X is an isometric map, we can see that for all
0<r<ro,
By (0i(x0)) = 0i(Br(x0)), 1 =i =<¢, (3.2)

where B, (x) stands for the geodesic ball centered at x € X with radius r.
Fixing p € X,k € Nand 0 < r < rg, we take a sequence of Moser functions
by

log k whenp < rk—1/4

My =Mpr(x,r) = {4log = whenrk™'/* < p <r (3.3)
P
0 whenp > r,

where p denotes the Riemannian distance between x and p. Define

Mo, (x0).k(x,7)  x € Byy(oi(x0)), 1 <i =¥

My = My(x.r) = l (34)
0, xeX\ UleBrO (0 (x0)).
If x € By,(0i(x0)) for some i, then it follows from (3.2) that forany j =1,--- , N,

0j(x) € By(0j(0i(x0))) and dg(0(x), 0j(0i(x0))) = dg(x,0i(x0)). In view of
(3.3) and (3.4), one can easily check that

My(0j(x),r) = My(x,7), Vx € Byy(0i(x0)), 1 <i <€ 1<j<N. (35)

Ifxe ED\Uf:1 By, (0i(xp)),theno;(x)e E\Uf:1 B, (0i(x0)), and thus Mk(aj (x),r)=
Ofor j =1,---, N. This together with (3.5) leads to

My(0j(x),r) = Mi(x,r), Vx € £, 1 < j < N. (3.6)
A straightforward calculation shows
/ |Vg1\71k|2dvg = (14 O(r))8nllogk, 3.7
b

/ M"dv, = O(1), m =1,2. (3.8)
z



TRUDINGER-MOSER INEQUALITIES INVOLVING AN ISOMETRIC GROUP 1303

Denote ﬁk = m Is Mkdvg and define

In view of (3.6), we have M}’ € 7. Note that || M]||1, = 1. By (3.7) and (3.8),

||1\7[k — ﬁk”l,a =14+ 0))8nllogk + O(1).
Hence we have for any 8 > 4 ¢,

(logk+0(1))2

2 __
/ P M dvg > / pa TFOM8atloght0M dy,,
By (x0) B, —1/4(x0)

B1(1+og (1)) logk 5 12
=e 0T 72k~ 12(1 4 0 (1)).

Choosing r > 0 sufficiently small and then passing to the limit k — oo in the above
estimate, we conclude

*2
/ eP1Mi dvg — 00 as k — oo.
Bro(x())

Therefore g* < 4m .

Step 2. There holds B* > 4m{. Suppose B* < 4w €. Then for any k € N, there is a
up € J¢¢G with |lug|l1,¢ < 1 such that

f e(ﬂ**”k_l)“fdvg — 00 as k— oo. (3.9)
s

Since o < A?, we can see that uj is bounded in Wl’z(E, g). Up to a subse-

quence, we can assume that 1 converges to some function ug weakly in W2(Z,g),
strongly in L9(X, g), Vg > 1, and for almost every x € X. Clearly up € .7 and
lluoll1,« < 1. We now claim that ug = 0. For otherwise, we have

1
e — ol < 1= lluollT o + 0k (D) < 1= Suollf, <1 (3.10)
for sufficiently large k. Given any € > 0. We calculate

/e(ﬁ*+k1>u,%dvg 5/ B DO 0+ € gy,
z z
e 3.11)

<C ( / e(ﬂ*+k‘><1+2e><uk—uo>2dvg> e
z
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where C is a constant depending only on ug, 8* and €. In view of (3.10), one can
find a small € > 0 and a large integer ko such that when k > ko, there holds

(B +57) A+ 200w — woll} = 6% (1= 87" ol ) -

This together with (3.11) leads to
/ B H gy <
b

contradicting (3.9). This confirms our claim ug = 0.

For any fixed x € ¥, welet I = I(x) = ##G(x). Without loss of generality, we
assume that 0y = Id and that G(x) = {o1(x), - - - , o7(x)}. There exists sufficiently
small r; > O such that ﬂl.’: | Bri (0i(x)) = &. Since o;’s are all isometric maps, if
0 < r <ry,then we have

/ |Vt |2 dv,g :/ \Veuy*dvg, Y1 <i<I.
B; (0 (x)) B (x)

Noting that I > £, ||uk|l1,« < 1and up =0, we have for0 <r <ry,
2 1
[Veug|“dvg < — + or(1). (3.12)
B (x) ¢

Let¢ e Cé(Br(x)),O <¢ =<1, =1onBypx)and |Vgl| < % This together
with (3.12) and o = 0 implies that Cux € W, >(B, (x)) and

|
/B N Ve up)[Pdv, < 7 +ox(). (3.13)

Take a normal coordinate system (B (x), exp;l; {y}),where y=(y1, y2) €B,(0) C
R?, and exp . : B,(0) — B(x) denotes the exponential map. Let Yx(y) =
(Cug)(exp, (), y € B, (0). In view of (3.13), one easily gets

f \VRN/fk(y)|2dy =1+ 0(?))/ |Vg(§uk)|2dvg
B, (0) B,(x) (3.14)

=1+ 0@) (% + Ok(l)) ;

where Vp» denotes the usual gradient operator in R?. Also there holds v €
WO1 ’2(IBr (0)) since ¢uy € WO1 ’2(B, (x)). Hence, if K € N is chosen sufficiently
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large and r > 0 is chosen sufficiently small, it then follows from (3.14) and Moser’s
inequality (1.1) that

/ B H R gy < / BN gy
By j2(x) By (x)

=(1+0@) | T Dvigy
B, 0)

<C

for some constant C and all k¥ > K. Since (X, g) is compact, there exists some
constant C such that for all k > K,

/ e(ﬂ*+k71)”%dvg <C.
b

This contradicts (3.9) again. Hence * > 4n¢.
We finish the proof of the lemma by combining Steps 1 and 2. O

We now clarify the proof of (ii) of Theorem 2.1, which is partially implied by
Lemma 3.1.

Proof of (i) of Theorem 2.1. If @ < X? and 8 > 4x¢{, then Step 1 of the proof

of Lemma 3.1 gives the desired result. In the following, we assume o > A? and
B > 0. By a direct method of variation, one can find a function uy # O satisfying
ug € HgNCY ) and

/ |Vguo|*dvg =x?/ uddv,.
b b
For any ¢ € R, we have tuy € 5 and
/ Vg (tug)|*dvg — o / (tug)*dvg < 0.
= b
Moreover, there holds
/ e’s(’”‘))zdvg — 00 as t— oo.
by

Again this gives the desired result. O
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3.2. Maximizers for subcritical functionals

Let o < A?. As in ([28, page 3183]), by Lemma 3.1 and a direct method of
variation, we can prove that for any 0 < € < 47 ¢, there exists some u, € G with
llell1,o = 1 such that

/e(4ﬂ€—€>u3dvg= sup /e(“”g_é)“zdvg. (3.15)
. T

ueHAG, llulli,e=1
The Euler-Lagrange equation for the maximizer u, reads

1 2 Me
Agte — que = —ueWmmMe €
glUe € e € e

ue € Ag, luelli,a =1

2
Ae = / uze(4ﬂ£—e)uedvg
2

1 2

_ (4rl—e)u
= — Uce cdv,.
He Volg (%) /z ¢ 8

Regularity theory implies that u, € C'(Z, g). Using an argument of ([28, page
3184]), one has

(3.16)

liminfie > 0, |uel/Ae <C. 3.17)
e—0
By (3.15), one can easily see that
lim [ % O%gy, = sup / AT gy, (3.18)
e~0Jx ueHAG, lull,a<1J%

Note that we do not assume the supremum on the right hand side of (3.18) is finite.
If lu¢] < C, in view of (3.17), applying elliptic estimates to (3.16), we obtain
ue — u* in C'(X, g), which implies that u* € J#g and lu*l1, = 1. In view of
(3.18), we know that u* is a desired extremal function. From now on, we assume
Ce = maxy |ue| — 400 as e — 0. Noting that —u, also satisfies (3.15) and (3.16),
we may assume with no loss of generality that

Ce = mzax lue| = mzax Ue = Ue(Xe) > +00 (3.19)
and that
Xe >xp€X as € — 0. (3.20)
To proceed, we need the following energy concentration phenomenon of u..
Lemma 3.2. Under the assumptions (3.19) and (3.20), we have

(i) ue converges to 0 weakly in WY2(2, g), strongly in L*(, g), and almost
everywhere in %;
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(11) I(xo) = £G(xo) = ¢; )
(iii) rlgr(l)éh_rf(l)fBr(XO) |Vouel*dvg = 1/L.

Proof. (1) Since o < X? and ||uell1,o = 1, ue is bounded in whi(z, g). Hence we

may assume u. converges to ug weakly in w2z, g), strongly in L2(z, g),and
almost everywhere in 2. If ug £ 0, then

ol =1 2 1 <1_1 2
lue —uolly o = lluolly o + 0e(1) = 2IIMOIIW,

provided that € is sufficiently small. It follows from Lemma 3.1 that ¢*7 =z i
bounded in L9(%, g) for some g > 1. Then applying elliptic estimates to (3.16),
we have that ||u¢|| ~(x) < C, which contradicts (3.19). Therefore ug = 0.

(i1) Since £ = minyey I (x), we have I (xg) > £. Suppose I = I(xg) > £.
Using the same argument as we derived (3.12), we have

1
/ |Vgtte 2 dvg < — + 0(1), (321)
B, (x0) I

provided that r > 0 is chosen sufficiently small. Similar to (3.15), it follows from
(3.21) and Moser’s inequality (1.1) that

2
/ e47‘[€pu€dvg S C
By j2(x0)

for some sufficiently small » > 0 and some p > 1, where C is a constant depending
only on r, p, I and £. Applying elliptic estimates to (3.16), we have that u. is
uniformly bounded in B, /4(x¢). This contradicts (3.19). Therefore I (xg) = £.

.. . 2 1
(iii) By (ii), there exists some ro > 0 such that || Vgu, ||L2(Br0 o)) < 7 toe(l).
It follows that
1
lim lim / |VuePdvg < - (3.22)
r—>0e—0 /B, (xy) 12

We claim that the equality of (3.22) holds. For otherwise, there exist two positive
constants v and r; with O < r| < ro such that

2 1
|Vgu€| dvg < — — .
By, (x0) ¢

Similarly as we did in the proof of (ii), we have that ¢ is bounded in
L9(By, 2(x0)) for some g > 1. Then applying elliptic estimates to (3.16), we
obtain that u. is uniformly bounded in By, /4(xp), which contradicts (3.19). This
concludes our claim and (iii) holds. O

e(4n€—e)u
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3.3. Blow-up analysis

Set
o= Ve e—(znZ—e/z)cz
€ — .
Ce

(3.23)

For any 0 < a < 4m¢,by Lemma 3.1, the Holder inequality and (i) of Lemma 3.2,
one has

A :/ uge(47r€—e)u§dvg :eacgf uge(47r6—e—a)uzdvg Seacgoe(l)‘
= z
It then follows that 5
rlc2emimemace — o (1). (3.24)

In particular, 7 — Oase — 0. Let0 < § < %ig(E) be fixed, where iz (X)
is the injectivity radius of (X, g). For y € Bsrf—l (0) ¢ R?, we define Y (y) =

C;lue(expxe (rey)), e (y) = Ce(”e(expxé (rey)) —ce) and g (y) = (eXpl 8)rey),
where B sr—1(0) is the Euclidean ball of radius ér.” ! centered at 0, and expy, is the

exponential map at x.. Note that g, converges to gop in C120C (R?) as € — 0, where
go denotes the standard Euclidean metric. By (3.16), we have on B o] 0),

_ — V(2 Ny 2 M
Ag Ve (y) = ar2ye () + ¢ 2 (y)e Wt welexpy rey)—c) —r?celf (3.25)
€

e

_ 2 _ 2
g pe(y) = arZcliie(y) + e ()e e OPTaN=E) —y2e .
€

€

(3.26)

In view of (3.24), applying elliptic estimates to (3.25) and (3.26) respectively, we
have

Ye —> 1 in C.(R?), (3.27)
and
9e > ¢ in Ci (R?), (3.28)
where ¢ satisfies
—Ap2g = 57 in R?

(0) =0=supg
R2

/ ST gy < 0.
R2
By a result of Chen-Li [5], we have

1

= ——log (1 +me|y|?
o0 =—1— og (1 +melyl®),

which leads to

1
/ ST gy = = (3.29)
]RZ E
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By (3.23),(3.27) and (3.28), there holds for any R > 0,

f AT gy = lim A= @xp o) =) g,
B (0) €=>0JBr(©)
2

. C N2
= lim —E/ et e)“€a’vg
€=0 Ae JBg,, (xo)

= lim — / 2@ gy,
Bpre (xe)
This together with (3.29) gives

1 1
lim lim — / u2e @O gy, = (3.30)
Brre (xe) ¢

R—00e—0 A¢
By (ii) of Lemma 3.2 and (3.20), one has for all sufficiently small € > 0,
Niz1 Brr (01 (xe)) = @. (3.31)

Noting that u, € ¢, we have

2 2
/ u?e“ne*e)”fdvg = / uge(“”e*e)“fdvg, 1<i<d.
Bpre (0i(xe)) BRre (xe)

This together with (3.30) and (3.31) leads to

1 1
lim lim —/ u2e®T Mgy, = - 1<i <. (3.32)
Bir (01 (x0)) ¢

R—00e—0 A

By definition of A, in (3.16), we conclude from (3.32) that

1
lim lim —

/ uZe @ gy, = 0. (3.33)
R—00€=0 e JSA\UL Brr (i (x0))

Similar to [1,11],V0 < B < 1, we let uc, g = min{u,, Bce}.

Lemma 3.3. VO < 8 < 1, there holds

lim | |Vgue gl*dvg = B.
X

e—>0
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Proof. Multiplying (3.16) by u. g, we have

/ |vgu€,,3|2dvg=/ Vite, pVuedvg
z z
1

- ué’ﬁuee
re Jx

e
+ o ‘/;: Mg,ﬂuedvg - Z /;: Mé’ﬁdvg (3.34)
1 XZ:/ (4n€—€)u2d
= — Mé,ﬂuée ¢ vg
)\, BR}'E (0 (x¢))

€ i=1

1
— Ue, lguee(MZ*)uzdvg 4+ 0e(1).
Ae JE\UL, Brre (01 (xe))

(4l—e)u?
cdvg

Note that 0 < u, gue < uf on X, and ue g = B(1 + 0c(1))ue on By (0i(xe))
for 1 <i < £. In view of (3.30), (3.33) and (3.34), letting ¢ — O first and then
R — o0, we conclude the lemma. ]

Lemma 3.4. There holds liminf._g A¢/c? > 0.

Proof. Let 0 < B < 1. In view of Lemma 3.3, we have by using the Holder
inequality

—eu? —e)u?
/ uge(47r€ e)usdvg < / uge(4nﬁ e)uf-ﬂdvg = 0c(1).
uefﬁcé )

Similarly

A
Ze S 'Bzf e(4nz—e)u§dvg +oc(1)
Ue>fPce

c?
S g2 (/2 e(4nz—e)u§dvg _ fz e(4ni—e)u§,ﬁdvg) + 0.(1) (3.35)

_ 2
=p’ fz (T TME — 1dvg + 0e(1).
This together with (3.18) ends the proof of the lemma. O

Lemma 3.5. Forany 1 <q <2, we have ccu, converges to G weakly in W4 (X, g),
strongly in L*1/ =9 (%), and almost everywhere in %, where G is a Green function

satisfying

g 1
AG—aG = - Soi(xg) — ————
8 @ K ; UI(XO) Volg(z)
f Gdug =0 (3.36)
> L
G(oi(0) = G), x € T\ {o;(x0)};_, 1 i <€
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Proof. By (3.16),

1 C
Ag(ceue) —a(cclte) = he = _Ceuee(“ﬂz—e)ug _ €/~’L€.
Ae A

It follows from Lemmas 3.3 and 3.4 that forany 0 < 8 < 1,

C, V2 C V2
/ _€|u€|e(4ﬂf E)Medvg — _E |u€|e(47t[ E)uedvg
s A

€ € Jue<fce

C 2
+ re uee(4nl e)uedvg
Ae Ue>pPee

Ce (4rb—e)u? 1
— | |ucle «fdv, + —
ML ‘ £

IA

§%+mm,

and that

CelLel < 1 C_e/ |u€|e(4n[—e)u§dvg
he Volg(2) Ae Ju, <ge.

1
+ c_€ / uée(4ﬂ€76)u£dvg
VOlg(E) Ae ue>Pee

1
= mg + 0. (1).

1311

(3.37)

Hence k. is bounded in L' (X, g). Then by ( [31, Lemma 2.11]), we have ccu.
is bounded in W'4(X, g) forany 1 < ¢ < 2. Up to a subsequence, for any
l <g<2andl < s <2g/2 — q), ccue converges to G weakly in W4(X%),

strongly in L*(X, g), and almost everywhere in X.
We calculate

C
f —Euée(4”£_€)uzdvg = 0c(1),
ue<pce

€

C 2
/ _€u66(4ﬂ€76)u€dvg
{ite>Bee \UL_ BRre (07 (x0)) Me

11 /
S —_—
B Ae Js\UL_ Bgy (01 (x0))

/ C_Guee(4rri—e)ugdvg
Brr (01 (x0)) Pe

_1+oe(1)

Ae BRr (05 (xc))

2
uze W Nedv, = o(1),

1
uze(“”[—e)”gdvg — Z +o(l), 1<i<?¢

(3.38)

(3.39)

(3.40)
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where o(1) — 0 as € — 0 first and then R — oo. Integrating the equation (3.37),
we have by combining (3.38)-(3.40),

Celle

Volg (%) = / € T gy, = 1+ 0, (1).
z Ae

In view of (3.38)-(3.40) again, testing the equation (3.37) by ¢ € C%(Y) and pass-
ing to the limit ¢ — 0, we have

/EGqubdvg - oz/E Godvg, = %lz;:q&(ai(xo)) - Vol(:(E) -/Zduivg.
Since ccue € G, we have f): Gdv, = 0 and G(0;(x)) = G(x) for all x €
Y\ {o1(xg), - ,0e(xp)}andall 1 <i <£. O

Let
Y =G+ o— Zlogd (01 (x0). X).

It follows from (3.36) that the distributional Laplacian of i belongs to L%(X%, g)
for some s > 2. Then we have by elliptic estimates that v € C!(X, g). Let
ro = %minlfkjsg dg (0 (x0), 0j(x0)). For x € By (x0), the Green function G can
be decomposed as

1 ~
Gx) = 377 logdg(x, x0) + Axy + ¥ (x), (341)

where ¥ € C!(By, (x0)), ¥ (x0) = 0 and

1
Ay, lim (G(x) + —Z logdg(x, xo))

X—>X0
(3.42)
= xli?;o (W(X) - — Zlogd (0 (x0), )C))
By (3.36), we have

0G
VoG|Pdv, =« G*dvg — G—do

):\u“ B . V4 . 4 ) 8])

¢_, Bs(0i (x0)) E\U!_, Bs(0i (x0)) Ui—19Bs(0i (x0))

1
Volg (%) \U'_, Bs(0i (x0))

Gdvg

1 2
= —ﬁloga + Ay +a/}: G dvg + 05(1).
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Hence

/ |Voue|*du,
AU, Bs(0; (x0))

1 1 2
:g (—ﬁlogS + Ay, —I—a‘/; G dvg + 05(1) —|—o€(1)> .
It follows that

/z Vgt |*du, =1+a/ uzdvg—/ ) |Voue|>du,
Ui_; Bs (i (x0)) 2 Z\U;_ Bs(oi (x0))

1 1
=1—-—=|—=—1logd+ A 1 1H].
Cz < P, 0go + X0 +08( )+0€( ))

Let se = SUpy p, (x,) Ue and ite = (ue —so)T. Thenu, € WOI’Z(B(; (x0)), and satisfies

1 1
|Vgiie*dvg < 7 =1——<——10g8+A +05(1)+0(1)>.
ﬁiq&(m(xo)) e ¢ ¢ c? 2l *o €

€

Now we choose an isothermal coordinate system (U, ¢; {x!, x?}) near xq such that

Bas(xo) C U, ¢(x9) = 0, and the metric g = el (d)c12 + dxzz) for some function
h e CY(¢(U)) with h(0) = 0. Clearly, for any § > 0, there exists some c(8) > 0
with ¢(6) — 0 as § — O such that \/g < 1+4¢(8) and ¢ (Bs(p)) C Bs14¢5))(0) C

R2. Noting that 7. = 0 outside Bj(p) for sufficiently small §, we have

/ | Ve (e 0 ™) 2dx = / Vi |*dv,
Bs(1+c8)) (0) & Bs(14¢(5)) (0)

~ T
=/ |Vgiie|ldvg < —.
Bs (x0) ¢

This together with a result of Carleson-Chang [3] leads to

lim sup/ (64”@%/75 — Ddv,
Bs(p)

e—>0

< limsup (1 + ¢(8)) (4 ticod™ /T _ 1) dx (3.43)
€0 Bs(14()) (0)

<7821 + c(8))’e.

Note that |uc| < cc and uc/ce = 1 4 0c(1) on the geodesic ball Bg,, (x¢) C X. We
estimate on Bg,, (x¢),

(Al — e)u? < 4 l(iie + s¢)°
< 4702 + 87 lsctie + 0 (1)
< 4mlu? — 4log§ + 8wl Ay, + o(1)
< 4mlu?/te —2log 8 +4mlAy, + o(1).
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Therefore

/ e(47r€—e)u£dvg
BRrE (xe)

< 524t oD) / L
BRre (xe)

:82647r£AX0+0(1)/ (e4neﬁZ/zE — Ddvg + o(1)
BRre(xe)

(3.44)

55_2€4HEAX0+0(1)/ (647T[ﬁ3/‘[g _ 1)dvg + 0(1)’
Bs(xo)

where 0(1) — 0 as € — O first and then § — 0. Combining (3.43) with (3.44),
letting ¢ — O first, and then letting 6 — 0, we conclude
lim sup/ e(4ﬂ_e)”£dvg < el T4t

Bpre (xe)

e—0

Therefore

lim sup / WO gy, < e TAT A (3.45)
Ui:l BRre (Ui (xs))

e—>0

Proposition 3.6. Under the assumptions (3.19) and (3.20), there holds

sup / e4”e“2dvg = lim 6(4’”376)”2(11)[g < Vol, (%) + e T Ay
ueAg. lull1o<1JE c~>0J%
Proof. We calculate
f e(4ne—e)u§dvg = (1 +0.(1)) p@mt—u(exp,, (rey))rEZdy
BRrg (x¢) Br(0)

A
= (1 +o0c(1) = (/ ST gy + 05(1)> .
Ce Br(0)

In view of (3.29) and (3.45),

1. A
lim lim T gy, — — 1im ZE
R—00e—0 Bgr, (xe) { e—0 Ce
Hence
lim lim TN gy = 1im S (3.46)
R—00€=0JUl_ Bry, (0i(xe)) €—>0 cg
By (3.35), we have
T
lim / (@@ _ iy, < — lim 25, Y0 < B < 1.
e—=0J» ,32 e—0 Cg
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Letting 8 — 1, we obtain

A
lim /2 (WM _ ), < lim =<

e—0 T e—0 Cg

This together with (3.45) and (3.46) completes the proof of the proposition. O

34. Test function computation
In this subsection, we shall complete the proof of (iii) of Theorem 2.1. Let ¢ < A?
be fixed and £ be an integer defined as in (2.3). In particular, we shall construct a

function sequence ¢, satisfying ¢, € G,

f Vo |*dvg —a/ pZdv, = 1 (3.47)
X x

and
/ M dyy > voly (D) + e T (3.48)
z

for sufficiently small € > 0, where xo and A, are defined as in (3.20) and (3.42)
respectively. If there exists such a sequence ¢, then we have by Proposition 3.6
that ¢ must be bounded. Applying elliptic estimates to (3.16), we conclude the
existence of the desired extremal function.

To do this, we define a sequence of functions by

1 r2
———log(l +7n¢%)+ B
c+ Fwt 8 e X € Bre(xg)
be(x) = c (3.49)

X € Bage(x0) \ Bre(x0),

G-ty

c

where @ is defined as in (3.41), ¢ € C§°(B2re(x0)) satisfies that ¢ = 1 on Bre(xo)
and [|Ve¢llze = O(1/(Re)),r = r(x) = distg(x, x0), R = —loge, B and c are
constants depending only on € to be determined later. Define another sequence of
functions

be (x) X € Bage(xo)
ne(x) = 0@ () x € Bape(0i(x0)), 2 =i < ¢ (3.50)
G

- x € B\ UL_  Bare(0i(x0)).
Noting that G (0; (x)) = G(x) forall x € = \ {o7(x0), - - - , 0¢(x0)}, one can easily
check that

Ne(01(x) = ne(x), Yx € B, VI <i <t (351
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In view of (3.49) and (3.50), in order to ensure that n. € W12(Z, g), we set

1 1 1 1
—(=——1log(1 +7¢R> + B) = ~ [ ——— log(R Ay ),
c—l—c< oy og(l1+m )+ ) c( 7l og(Re) + Xo)

which gives

1 1
27lc? = — loge —2m¢B +2mlAy, + 2 log(w¢) + O <ﬁ> . (3.52)

Noting that [5, Gdv, = 0, we have

/ IV, G [2dv,
T\U/_ Bre (07 (x0))
G
GA;Gdv, —/ G——do
UL, 0BRe(0i(x0)) IV

fz\uf_l BRe (0 (x0))

—a Gdv, — —— Gdv
/E\UleRe@(xo)) VOl (D) S\t Bre@ivoy (3.53)
J4
3G
-y / G—do
= JoBre(oi(xg) OV

1
= — —log(Re) + oc/ G?dvg + Ay, + O(Re log(Re)).
2l b))

Since 17/' eCcl(z, g) and J(xo) =0, we have

/ Vet 29 %dv, = O((Re)?), (3.54)
Bore (x0)\ Bre (x0)

/ VoGV lPdv, = O(Re), (3.55)
B)Re (x0)\ BRe (x0)

1 1 log(m¢) 1 1
Vone|?dv, = — [ — log R ——+0([—=)). 356
/BRe(xo) [Venel“duvg 202 (27.[ og R + o = + 72 ( )

Combining (3.53)-(3.56) and noting that

f Vel *dvg = ef Vel dug,
Ut Bre (0i(x0)) Bre(x0)

we obtain

1 1
/|vgne|2dvg=— 210g——i—log(n@)—1+4n£Ax()+4n£a/G2dvg
b3) 47Tf6‘2 € b3 (3 57)

1
+0 <ﬁ> + O(Relog(Re))) .



TRUDINGER-MOSER INEQUALITIES INVOLVING AN ISOMETRIC GROUP 1317

Observing
1
nedvg = - Gdvg + O(Relog(Re))
¢ 2:\U, lB2Re(UI(x0))
1
- Gdvg + O(Relog(Re)) (3.58)
¢ U, 1 B2re (0 (x0))
1
= —O(Relog(Re)),
c
we have | |
7. = dv, = —O(Relog(Re)). 3.59
e = o) /E Nedvg = —~O(Relog(Re)) (3.59)
Hence

/ (ne — ﬁe)zdvg = / nfdvg — 256/ Nedvg +ﬁ§V01g(E)
by b by

_ ! (/ szvg+0(Relog(Re))>

6’2

This together with (3.57) yields

e =7l = /2 VenePdvg —a fz (ne —7)2dv,

1
= 2 (2 log ~ + log(wt) — 1 +4mLAy, (3.60)

+0 ( ! ) + O(Re log(Re)))

Now we choose B in (3.52) such that

Ine —Nell1,e = 1. (3.61)
Combining (3.60) and (3.61), we have

loge log(m¥) 1 1

2

=—— -— o O(Relog(R 3.62
= ot T Tane T ame T +O(Relog(Re)). (3.62)

It then follows from (3.52) and (3.62) that

B = L + 0 ( ! ) + O(Relog(Re)). (3.63)
4l
Let
Qe = Ne — 7. (3.64)
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In view of (3.51), (3.64) and the fact that n. € W12(Z, g), we have ¢, € Jg.
Moreover, the equality (3.61) is exactly ||¢¢ll1, = 1, and thus (3.47). A straight-
forward calculation shows on Br¢(xp),

2
4n0d? = 4mec? — 2log (1 + nzr—z) 4 87B + O(Re log(Re)).
€

This together with (3.62) and (3.63) yields

/ e4ﬂz¢€2dvg > et 4% 4 0 (71 2) ,
BRE ()C()) (log 6)

which immediately leads to

2 1
/Z e4ﬂ[¢5dvg > 7TE€1+47T€AXO + O ( ] 2) . (365)
UL, Bre (07 (x0)) (loge)

: 4 ep? ;
Now we shall calculate the integral f S\UL, Bage (07 (x0)) © dv,. By our choices of

1

R = —loge and 2= O (loge) (see (3.62)), one can easily see that

Relog(Re) =0 (%) . (3.66)
c

Recalling the representation of the Green function G, namely (3.41), one has

V4
szvg = / szvg
v/L.Jf_leRe(Ui(xo)) ; B re(0i(x0))
—0 ((Re)z(log(Re))z) .

This together with (3.66) gives

/ , szvg=/ G2dvg—/[ szvg
S\UE_; Bage (07 (x0)) > U;_1 Bare (0i (x0))

! (3.67)
=Gl3+o (2) :
Moreover, in view of (3.58), (3.59), (3.64) and (3.66), there holds
/ d)?dvg = / nzdvg +o0 (iz)
T\U!_, Bage (0 (x0)) T\U!_, Bage (0 (x0)) ¢ (3.68)

G* 1
— , c—zdl}g + o0 C_2 .
TA\U;_1 B2re (0i (x0))
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Obviously it follows from R = — log € and (3.62) that

1
/ dvg = volg(Z) 40 <—2> ) (3.69)
S\UL_, Boge (01 (x0)) ¢

Combining (3.67)-(3.69) and using the inequality e’ > 1 + ¢ for ¢ > 0, we obtain

2
e47r€¢€dvg Z /

(1+4me9?) dv,
T\UL_, Bage (0i (x0))

/E\Uf_, BRe (0i (x0))

> vol,(X) +4nt ”G”% +o0 i
=" c2 2]
Noting that O(GOg%)Q) = o(=) and combining (3.65) and (3.70), we conclude
(3.48) for sufficiently small € > 0. This completes the proof of Theorem 2.1. [

4. Proof of Theorem 2.2

In this section, we shall prove Theorem 2.2. Since the proof is very similar to that
of Theorem 2.1, we only give its outline.
Let j > 2, k? and E ].L_] be defined as in (2.5) and (2.6) respectively. For

o< A?, we define

B; =sup|pB: sup /Eeﬁ"zdvg <00y 4.1)

u€Ey |, llulli o<1

Comparing (3.1) with (4.1), similar to Lemma 3.1, we have ,3;‘ = 47 €, where £ is
defined as in (2.3).
We now prove (ii) of Theorem 2.2. If o > A]G and 8 > 0, we take u; €

HG N CH(T, g) satisfies Aguj = A?uj and u; # 0. It follows that

/ IV, (1) dvg — a/ (tuj)’dvg <0, VreR (4.2)
z z

and that
/ eﬂ(”lj)zdvg — 00 as t— 0. (4.3)
b

Then (4.2) and (4.3) imply that the supremum in (2.7) is infinity.
Ifo < A? and 8 > 4m{, then we shall prove that the supremum in (2.7) is

infinity. To do this, we let {e,-}:.';j 1_1 cHenclz, g) be an orthonormal basis of
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Ej_1 = EA? ® - ®Ec 1 with respect to the inner product on L>(X, g), namely,
i
E;j_1 = spanfey, --- ,emj_l} and
1 i=k
(ei,er) = / eiexdvg = 8 =
= 0 i#k
foralli,k =1,---,m;_y. Let A7Ik be defined as in (3.4). Set

mj_j

~ 1 ~ ~
=My — ——— | Mydvg = (M. ene.
Ok k Volg(E)/z kdvg i:1( ks €i)e;

Then Qy € EJ.{I. By a straightforward calculation, || Qg II%’a =140(r)8nllogk+
O(1). Denote Qf = Q/|Qkll1,«- It follows that for any fixed 8 > 47 ¢,

80%2 Bllogk+0(1)2
e k d'Ug Z e(l+0(r))8nllogk+0(l)dvg
z B, —1/4(x0)

plto(ylogk 2
= e OBl gpik—1/ (I + ok (1)).

Choosing r > 0 sufficiently small and then passing to the limit k — oo in the above
estimate, we conclude

%2
/eﬂdevg—>oo as k — oo.
b))

Hence the supremum in (2.7) is infinity.
In the following, we sketch the proof of (i) and (iii) of Theorem 2.2.
Leta < A?. By a direct method of variation, one can see that for any 0 < € <

47 €, there exists some u, € Ej{l with ||ucll1,¢ = 1 such that

2 2
/ e(4n€—e)uédvg — sup / e(4n’£—e)u dvg.
P z

ueEy | llulli o<1

Clearly u. satisfies the Euler-Lagrange equation

1 N e mj—1
Aglte — attte = —uee e _ € Ve
glUe € e € e 1{2:;
e € E5 . llucllig =1
Ae 2/2M56(4ne—e)u§dvg (44)
1 2
— A l—e€)u
=—— | uce cdv
e = Vol () /2 ¢ 8

1
ykz/;:k—ekuee“”e*)”gdvg.
€
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Without loss of generality, we assume ¢ = uc(xe) = supy |ue] — +o0o and
Xe — xg as € — 0. Let r. be the blow-up scale defined as in (3.23) and ¢.(y) =
Ce(ue(expy (rey)) —ce) for y € IB%Sr;l(O), where 0 < § < %ig(E). As before, we
can derive

1 .
9ey) > o) == log (1 +7tylP) in Cioo(R?).

Moreover, we can prove that V1 < g < 2, ccu converges to a Green function G
2

weakly in W14 (%, g), strongly in L2-4 (X, g), and almost everywhere in . In this

case, G satisfies

4 mij—j

1 1
A,G—aG = - Og: — —
g o 7 ; o (x0) Volg(Z) ; ek (xo)ex

4.5)
/ Gpdv, =0, Vo € E;_
)

G(o(x)) =Gx), Vx € £\ G(xg), Yo € G.

Similarly, G has a decomposition (3.41) near xo and Ay, is defined as in (3.42).
Analogous to Proposition 3.6, we arrive at

sup / A dy, < Volyg(3) + e T A (4.6)
U€E} |, llullg<19%
This particularly leads to (i) of Theorem 2.2.

Finally we construct a sequence of functions to show that the estimate (4.6)
is not true. This implies that blow-up can not occur and elliptic estimates on (4.4)
give a desired extremal function. To do this, we let 1., ¢ be defined respectively
as in (3.50) and (3.64) satisfying n. € W'2(X, g) and ||¢c[l1.« = 1. Note that
the constants ¢ and B in definitions of 7. and ¢, are given by (3.62) and (3.63)
respectively. It then follows that

4 tlIGII3, 1
/ M9 dvy > Volg () + e T4 0% 4 L8 4 . @)
5 —loge —loge

Let
mj_i

P = — ) (e, ei)ei. (4.38)
i=1

Obviously ¢7€ e E ,‘L—l' Since G satisfies (4.5) and

e—0

/ Gejdvg, = lim cetteejdvg =0, V1 <i<mj_q,
= )
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we calculate

(¢e, €i) = / (e — Me)eidvg
UL, Bage (07 (x0))

G _ 1
+/ — —N¢ eidvg =0 > .
S\UL_; B2ge (@i (x0) \ € log” €

This together with (4.8) leads to

~ 1 ~ 1
¢e=¢e+o( 2), ||¢>€||%a=1+o( 2). 4.9)
log“ e ’ log“ e

It follows from (4.7) and (4.9) that

92

4l — 2 1
/e ""E%vadvg:/ R gy
> >

Z<1 e <—1c1>g6>)

40| G2, 1
X (Volg(E) + e T Ay —2L =8 4, <—2)
C C

4mL||G|13, |
>Volg(2) + mle! T4 Ax 4 _ Ee L, < ) ’
—loge —loge

which implies that (4.6) does not hold. This completes the proof of (iii) of Theo-
rem 2.2.
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