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Trudinger-Moser inequalities on a closed Riemannian surface
with the action of a finite isometric group

YU FANG AND YUNYAN YANG

Abstract. Let (6, g) be a closed Riemannian surface, W1,2(6, g) be the usual
Sobolev space, G be a finite isometric group acting on (6, g), and HG be the
function space including all functions u 2 W1,2(6, g) with

R
6 udvg = 0 and

u(� (x)) = u(x) for all � 2 G and all x 2 6. Denote the number of distinct
points of the set {� (x) : � 2 G} by I (x) and ` = minx26 I (x). Let �G1 be
the first eigenvalue of the Laplace-Beltrami operator on the space HG. Using
blow-up analysis, we prove that if ↵ < �G1 and �  4⇡`, then there holds

sup
u2HG,

R
6 |rgu|2dvg�↵

R
6 u2dvg1

Z

6
e�u

2
dvg < 1;

if ↵ < �G1 and � > 4⇡`, or ↵ � �G1 and � > 0, then the above supremum
is infinity; if ↵ < �G1 and �  4⇡`, then the above supremum can be attained.
Moreover, similar inequalities involving higher order eigenvalues are obtained.
Our results partially improve original inequalities of J. Moser [17], L. Fontana [9]
and W. Chen [4].

Mathematics Subject Classification (2010): 58J05 (primary).

1. Introduction

Let � ⇢ Rn be a smooth bounded domain, W 1,n
0 (�) be the usual Sobolev space,

and !n�1 be the area of the unit sphere in Rn . It was proved by Moser [17] that for
any ↵  ↵n = n!1/(n�1)n�1 , there holds

sup
u2W 1,n

0 (�),
R
� |ru|ndx1

Z

�
e↵|u|n/(n�1)dx < 1. (1.1)
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Moreover, ↵n is the best constant in the sense that if ↵ > ↵n , the integrals in the
above inequality are still finite, but the supremum is infinity. Such kind of inequal-
ities are known as Trudinger-Moser inequalities in literature. Earlier contributions
are due to Yudovich [34], Pohozaev [21], Peetre [20] and Trudinger [24]. Let �1(�)
be the first eigenvalue of the Laplace operator with respect to the Dirichlet boundary
condition. Adimurthi-Druet [1] proved that for any ↵ < �1(�), there holds

sup
u2W 1,2

0 (�),
R
� |ru|2dx1

Z

�
e4⇡u

2(1+↵kuk22)dx < 1; (1.2)

moreover, if ↵ � �1(�), then the above supremum is infinity, where kuk22 =R
� u

2dx . The inequality (1.2) is stronger than (1.1) and was extended by the sec-
ond named author [26] to the higher dimensional case. Later, Tintarev [23] proved
among other results that for any ↵ < �1(BR(0)), there holds

sup
u2W 1,2

0 (�),
R
� |ru|2dx�↵

R
� u2dx1

Z

�
e4⇡u

2
dx < 1, (1.3)

where BR(0) denotes the ball centered at 0 with radius R and its measure is equal
to that of �. As one expected, �1(BR(0)) can be replaced by �1(�), which is a
consequence of [28, Theorem 1].

One can ask whether the supremum in (1.1) can be attained or not. Existence
of extremal functions was proved first by Carleson-Chang [3] in the case that � is
the unit ball, then by Struwe [22] in the case that � is close to a ball in the sense
of measure, later by Flucher [8] when � is a planar domain, and finally by Lin [13]
when � is a domain in Rn . In [25], the second named author claimed that the
supremum in (1.2) can be attained for all 0  ↵ < �1(�). We remark that there
is a mistake during that test function computation ( [25, page 338, line 8]). In fact,
in two dimensions, extremal function for (1.2) exists only for sufficiently small ↵,
see for example [27]. Concerning extremal functions for inequalities of the type
(1.2), we refer the reader to [6, 10, 14, 15, 19, 29, 30, 32, 33, 35]. As a comparison,
it was proved in [28] that the supremum in (1.3) can be attained for all ↵ < �1(�).
It is remarkable that (1.3) is stronger than (1.2), however, there is no relation on
existence of extremal functions between (1.2) and (1.3).

Let (S2, g0) be the 2-dimensional sphere x21+x22+x23 = 1 with the metric g0 =
dx21 +dx22 +dx23 and the corresponding volume element dvg0 . According to Moser
[17], one can find a constant C such that for all functions u with

R
S2 |rg0u|2dvg0 

1 and
R
S2 udvg0 = 0,

Z

S2
e4⇡u

2
dvg0  C. (1.4)

Concerning all even functions u, it was indicated by Moser [18] that the best con-
stant ↵2 = 4⇡ would double. Namely, there exists a constant C such that for
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all functions u satisfying u(�x) = u(x), 8x 2 S2,
R
S2 |rg0u|2dvg0  1, andR

S2 udvg0 = 0, there holds Z

S2
e8⇡u

2
dvg0  C. (1.5)

Later, by using an isoperimetric inequality on closed Riemannian surfaces with
conical singularities, Chen [4] proved a Trudinger-Moser inequality for a class of
“symmetric” functions, which particularly generalized (1.4) and (1.5).

Let (M, g) be a closed n-dimensional Riemannian manifold. Among other
results, it was proved by Fontana [9] that there exists a constant C , depending only
on (M, g), such that if u 2 W 1,n(M, g) satisfies

R
M |rgu|ndvg  1 and

R
M udvg =

0, then Z

M
e↵n |u|

n/(n�1)
dvg  C. (1.6)

The existence of extremal functions for (1.6) was obtained by Li [11, 12]. Pre-
cisely, there exists some u0 2 W 1,n(M) \ C1(M) with

R
M |rgu0|ndvg = 1 andR

M u0dvg = 0 such that
Z

M
e↵n |u0|

n/(n�1)
dvg= sup

u2W 1,n(M),
R
M |rgu|ndvg1,

R
M udvg=0

Z

M
e↵n |u|

n/(n�1)
dvg. (1.7)

Obviously (1.7) implies (1.6). In [27], the inequality (1.2) was generalized to a
closed Riemannian surface version, namely for any ↵ with 0  ↵ < �1(6) =
infkuk2=1,

R
6 udvg=0 krguk22,

sup
u2W 1,2(6,g),

R
6 |rgu|2dvg1,

R
6 udvg=0

Z

6
e4⇡u

2(1+↵kuk22)dvg < 1; (1.8)

moreover, the supremum in (1.8) can be attained for sufficiently small ↵. However,
in a recent work [28], an analog of (1.3) was also established on a closed Rieman-
nian surface, say for any ↵ < �1(6),

sup
u2W 1,2(6,g),

R
6 |rgu|2dvg�↵

R
6 u2dvg1

Z

6
e4⇡u

2
dvg < 1. (1.9)

Moreover, the above supremum can be attained for any ↵ < �1(6). Further, this
kind of inequalities involving higher order eigenvalues of the Laplace-Beltrami op-
erator has been studied.

In this paper, our aim is to establish Trudinger-Moser inequalities for “sym-
metric” functions and prove the existence of their extremal functions on a closed
Riemannian surface with the action of a finite isometric group. They can be viewed
as a “combination” of (1.5) and (1.9). We believe that such inequalities would
play an important role in the study of prescribing Gaussian curvature problem
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and mean field equations. Before ending this introduction, we mention Mancini-
Martinazzi [16], who studied the classical Trudinger-Moser inequality by estimat-
ing the energy of extremals for subcritical functionals.

ACKNOWLEDGEMENTS. The authors thank the referee for very careful reading and
constructive comments, which greatly improve the previous version of this paper.

2. Notation and main results

Let (6, g) be a closed Riemannian surface and G = {�1, · · · , �N } be an isometric
group acting on it, where N is some positive integer. By definition,G is a group and
each �i : 6 ! 6 is an isometric map, particularly � ⇤

i gx = g�i (x) for all x 2 6.
Let u : 6 ! R be a measurable function, we say that u 2 IG if u is G-invariant,
namely u(�i (x)) = u(x) for any 1  i  N and almost every x 2 6. We denote
W 1,2(6, g) the closure of C1(6) under the norm

kukW 1,2(6,g) =

✓Z

6

⇣
|rgu|2 + u2

⌘
dvg

◆1/2
,

where rg and dvg stand for the gradient operator and the Riemannian volume ele-
ment respectively. Define a Hilbert space

HG =

⇢
u 2 W 1,2(6, g) \ IG :

Z

6
udvg = 0

�
(2.1)

with an inner product

hu, viHG =
Z

6

⌦
rgu,rgv

↵
dvg,

where hrgu,rgvi stands for the Riemannian inner product of rgu and rgv. Let
1g = �divgrg be the Laplace-Beltrami operator, and

�G1 = inf
u2HG, u 6⌘0

R
6 |rgu|2dvgR
6 u2dvg

(2.2)

be the first eigenvalue of 1g on the space HG. For any x 2 6, we set I (x) =
]G(x), where ]A stands for the number of all distinct points in the set A, and
G(x) = {�1(x), · · · , �N (x)}. Let

` = min
x26

I (x). (2.3)

Clearly we have 1  `  N since 1  I (x)  N for all x 2 6. As one will see, the
best constant in the Trudinger-Moser inequality for “symmetric” functions would
be 4⇡`. Precisely we state the following theorem.



TRUDINGER-MOSER INEQUALITIES INVOLVING AN ISOMETRIC GROUP 1299

Theorem 2.1. Let (6, g) be a closed Riemannian surface and G = {�1, · · · , �N }
be an isometric group acting on it. Assume HG, �G1 and ` are defined by (2.1),
(2.2) and (2.3) respectively. Then we have the following assertions:

(i) For any ↵ < �G1 and �  4⇡`, there holds

sup
u2HG,

R
6 |rgu|2dvg�↵

R
6 u2dvg1

Z

6
e�u

2
dvg < 1; (2.4)

(ii) If ↵ < �G1 and � > 4⇡`, or ↵ � �G1 and � > 0, then the supremum in (2.4) is
infinity;

(iii) If ↵ < �G1 and �  4⇡`, then the supremum in (2.4) can be attained by some
function u0 2 HG \ C1(6, g) with

R
6 |rgu0|2dvg � ↵

R
6 u

2
0dvg = 1.

As in [28], we may consider the effect of higher order eigenvalues on the Trudinger-
Moser inequality. For this purpose, we define the first eigenfunction space with
respect to �G1 by

E�G1 =
n
u 2 HG : 1gu = �G1 u

o
.

By an induction, the j-th ( j � 2) eigenvalue and eigenfunction space will be de-
fined as

�Gj = inf
u2HG, u2E?

j�1, u 6⌘0

R
6 |rgu|2dvgR
6 u2dvg

(2.5)

and
E�Gj =

n
u 2 E?

j�1 : 1gu = �Gj u
o

respectively, where E j�1 = E�G1 � · · · � E�Gj�1 and

E?
j�1 =

⇢
u 2 HG :

Z

6
uvdvg = 0, 8v 2 E j�1

�
. (2.6)

Then higher order eigenvalues of 1g affect the Trudinger-Moser inequality in the
following way:

Theorem 2.2. Let (6, g) be a closed Riemannian surface and G = {�1, · · · , �N }
be an isometric group acting on it. Assume HG, `, �Gj and E

?
j�1 are defined by

(2.1), (2.3), (2.5) and (2.6) respectively, j � 2.

(i) For any ↵ < �Gj and �  4⇡`, there holds

sup
u2E?

j�1,
R
6 |rgu|2dvg�↵

R
6 u2dvg1

Z

6
e�u

2
dvg < 1; (2.7)
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(ii) If ↵ < �Gj and � > 4⇡`, or ↵ � �Gj and � > 0, then the supremum in (2.7) is
infinity;

(iii) For any ↵ < �Gj and �  4⇡`, the supremum in (2.7) can be attained by some
function u0 2 E?

j�1 \ C1(6, g) with
R
6 |rgu0|2dvg � ↵

R
6 u

2
0dvg = 1.

Let us give several examples for the finite isometric group G acting on a closed
Riemannian surface (6, g). (a) If G = {I d}, where I d denotes the identity map,
then G is a trivial isometric group action, and Theorems 2.1 and 2.2 are reduced to
([28, Theorems 3 and 4]). (b) Let (S2, g0) be the standard 2-sphere given as in the
introduction, and G = {I d, �0}, where �0(x) = �x for any x 2 S2. Then we have
]G(x) = ]{x,�x} = 2 for any x 2 S2, and thus ` = 2. Hence Moser’s inequality
(1.5) for even functions is a special case of our theorems. (c) If G has a fixed point,
namely there exists some point p 2 6 such that � (p) = p for all � 2 G, then we
have ` = ]G(p) = 1, and whence both of the best constants in (2.4) and (2.7) are
4⇡ .

From now on, to simplify notations, we write

kuk1,↵ =

✓Z

6
|rgu|2dvg � ↵

Z

6
u2dvg

◆1/2
, (2.8)

provided that the right hand side of the above equality makes sense, say, if ↵ < �G1
and u 2 HG, then kuk1,↵ is well defined. For the proof of Theorems 2.1 and 2.2,
we follow the lines of [28] and thereby follow closely [11]. Pioneer works are due to
Carleson-Chang [3], Ding-Jost-Li-Wang [7], and Adimurthi-Struwe [2]. Since both
of them are similar, we only give the outline of the proof of Theorem 2.1. Firstly,
we prove that the best constant in (2.4) is 4⇡`, which is based on Moser’s original
inequality and test function computations; Secondly, a direct method of variation
shows that every subcritical Trudinger-Moser functional has a maximizer, namely
for any ✏ > 0, there exists some u✏ 2 HG with ku✏k1,↵ = 1 satisfying

Z

6
e(4⇡`�✏)u

2
✏dvg = sup

u2HG, kuk1,↵1

Z

6
e(4⇡`�✏)u

2
dvg,

where ↵ < �G1 and kuk1,↵ is defined as in (2.8); Thirdly, we use blow-up analysis
to show that if supx26 |u✏ | ! 1 as ✏ ! 0, then

sup
u2HG, kuk1,↵1

Z

6
e4⇡`u

2
dvg  Volg(6) + ⇡`e1+4⇡`Ax0 ,

where Ax0 is a constant related to a certain Green function (see (3.42) below); Fi-
nally, we construct a sequence of functions �✏ 2 HG with k�✏k1,↵  1 such that

Z

6
e4⇡`�

2
✏ dvg > Volg(6) + ⇡`e1+4⇡`Ax0 ,
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provided that ✏ > 0 is chosen sufficiently small. Combining the above two esti-
mates, we get a contradiction, which implies that u✏ must be uniformly bounded.
Then applying elliptic estimates to the equation of u✏ , we get a desired extremal
function.

In the remaining part of this paper, we shall prove Theorems 2.1 and 2.2.
Throughout this paper, we do not distinguish sequence and subsequence. More-
over we often denote various constants by the same C , but the dependence of C
will be given only if necessary. Also we use symbols |O(R✏)|  CR✏, o✏(1) ! 0
as ✏ ! 0, o�(1) ! 0 as � ! 0, and so on.

3. Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1. In the first subsection, we show that
the best constant in (2.4) is equal to 4⇡`. The essential tools we use are subcritical
Trudinger-Moser inequality and Moser’s sequence of functions. Also we prove (ii)
of Theorem 2.1. In the second subsection, we consider the existence of maximizers
for subcritical Trudinger-Moser functionals and study their energy concentration
phenomenon. In the third subsection, assuming blow-up occurs, we derive an upper
bound of the supremum in (2.4), which obviously leads to (i) of Theorem 2.1. In
the final subsection, we construct a sequence of test functions to show that the upper
bound we obtained in the third subsection is not really an upper bound. Therefore
blow-up can not occur and elliptic estimates lead to existence of extremal function.
This concludes (iii) of Theorem 2.1.

3.1. The best constant

In view of (2.2), one can see that �G1 > 0 by using a direct method of variation. For
any fixed ↵ < �G1 , if u 2 HG satisfies kuk1,↵  1, then krguk22  �G1 /(�G1 � ↵).
By Fontana’s inequality (1.6), there exists a positive constant �0 depending only on
�G1 and ↵ such that

sup
u2HG, kuk1,↵1

Z

6
e�0u

2
dvg < 1.

Now we define

�⇤ = sup

(

� : sup
u2HG, kuk1,↵1

Z

6
e�u

2
dvg < 1

)

. (3.1)

Lemma 3.1. Let ` and �⇤ be defined as in (2.3) and (3.1) respectively. Then �⇤ =
4⇡`.
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Proof. We divide the proof into two steps.

Step 1. There holds �⇤  4⇡`. In view of (2.3), there exists some point x0 2 6
satisfying ` = ]G(x0) = ] {�1(x0), · · · , �N (x0)}. Without loss of generality, we
assume that �1 = I d is the identity map, and that G(x0) = {�i (x0)}`i=1. Take

r0 =
1
4

min
1i< j`

dg
�
�i (x0), � j (x0)

�
,

where dg(�i (x0), � j (x0)) denotes the Riemannian distance between �i (x0) and
� j (x0). Since every �i : 6 ! 6 is an isometric map, we can see that for all
0 < r  r0,

Br (�i (x0)) = �i (Br (x0)), 1  i  `, (3.2)

where Br (x) stands for the geodesic ball centered at x 2 6 with radius r .
Fixing p 2 6, k 2 N and 0 < r  r0, we take a sequence of Moser functions

by

Mp,k = Mp,k(x, r) =

8
>>><

>>>:

log k when⇢  rk�1/4

4 log
r
⇢

whenrk�1/4 < ⇢  r

0 when⇢ > r,

(3.3)

where ⇢ denotes the Riemannian distance between x and p. Define

eMk = eMk(x, r) =

8
<

:

M�i (x0),k(x, r) x 2 Br0(�i (x0)), 1  i  `

0, x 2 6 \ [`i=1Br0(�i (x0)).
(3.4)

If x 2 Br0(�i (x0)) for some i , then it follows from (3.2) that for any j = 1, · · · , N ,
� j (x) 2 Br (� j (�i (x0))) and dg(� j (x), � j (�i (x0))) = dg(x, �i (x0)). In view of
(3.3) and (3.4), one can easily check that

eMk(� j (x), r) = eMk(x, r), 8x 2 Br0(�i (x0)), 1  i  `, 1  j  N . (3.5)

If x26\[`i=1Br0(�i (x0)), then � j (x)26\[`i=1Br0(�i (x0)), and thus eMk(� j (x),r)=
0 for j = 1, · · · , N . This together with (3.5) leads to

eMk
�
� j (x), r

�
= eMk(x, r), 8x 2 6, 1  j  N . (3.6)

A straightforward calculation shows
Z

6
|rg eMk |

2dvg = (1+ O(r))8⇡` log k, (3.7)
Z

6

eMm
k dvg = O(1), m = 1, 2. (3.8)
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Denote eMk = 1
Volg(6)

R
6
eMkdvg and define

M⇤
k = M⇤

k (x, r) =
eMk(x, r) � eMk

keMk � eMkk1,↵
.

In view of (3.6), we have M⇤
k 2 HG. Note that kM⇤

k k1,↵ = 1. By (3.7) and (3.8),

keMk � eMkk1,↵ = (1+ O(r))8⇡` log k + O(1).

Hence we have for any �1 > 4⇡`,
Z

Br0 (x0)
e�1M

⇤
k
2
dvg �

Z

Brk�1/4 (x0)
e�1

(log k+O(1))2
(1+O(r))8⇡` log k+O(1) dvg

= e
�1(1+ok (1)) log k

(1+O(r))8⇡` ⇡r2k�1/2(1+ ok(1)).

Choosing r > 0 sufficiently small and then passing to the limit k ! 1 in the above
estimate, we conclude

Z

Br0 (x0)
e�1M

⇤
k
2
dvg ! 1 as k ! 1.

Therefore �⇤  4⇡`.

Step 2. There holds �⇤ � 4⇡`. Suppose �⇤ < 4⇡`. Then for any k 2 N, there is a
uk 2 HG with kukk1,↵  1 such that

Z

6
e(�

⇤+k�1)u2k dvg ! 1 as k ! 1. (3.9)

Since ↵ < �G1 , we can see that uk is bounded in W
1,2(6, g). Up to a subse-

quence, we can assume that uk converges to some function u0 weakly inW 1,2(6,g),
strongly in Lq(6, g), 8q > 1, and for almost every x 2 6. Clearly u0 2 HG and
ku0k1,↵  1. We now claim that u0 ⌘ 0. For otherwise, we have

kuk � u0k21,↵  1� ku0k21,↵ + ok(1)  1�
1
2
ku0k21,↵ < 1 (3.10)

for sufficiently large k. Given any ✏ > 0. We calculate
Z

6
e(�

⇤+k�1)u2k dvg 
Z

6
e(�

⇤+k�1)(1+✏)(uk�u0)2+Cu20dvg

 C
✓Z

6
e(�

⇤+k�1)(1+2✏)(uk�u0)2dvg

◆ 1+✏
1+2✏

,

(3.11)
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where C is a constant depending only on u0, �⇤ and ✏. In view of (3.10), one can
find a small ✏ > 0 and a large integer k0 such that when k � k0, there holds

⇣
�⇤ + k�1

⌘
(1+ 2✏)kuk � u0k21,↵  �⇤

⇣
1� 8�1ku0k21,↵

⌘
.

This together with (3.11) leads to
Z

6
e(�

⇤+k�1)u2k dvg  C,

contradicting (3.9). This confirms our claim u0 ⌘ 0.
For any fixed x 2 6, we let I = I (x) = ]G(x). Without loss of generality, we

assume that �1 = I d and thatG(x) = {�1(x), · · · , �I (x)}. There exists sufficiently
small r1 > 0 such that \I

i=1Br1(�i (x)) = ?. Since �i ’s are all isometric maps, if
0 < r  r1, then we have

Z

Br (�i (x))
|rguk |2dvg =

Z

Br (x)
|rguk |2dvg, 81  i  I.

Noting that I � `, kukk1,↵  1 and u0 ⌘ 0, we have for 0 < r  r1,

Z

Br (x)
|rguk |2dvg 

1
`

+ ok(1). (3.12)

Let ⇣ 2 C10(Br (x)), 0  ⇣  1, ⇣ ⌘ 1 on Br/2(x) and |rg⇣ |  2
r . This together

with (3.12) and u0 ⌘ 0 implies that ⇣uk 2 W 1,2
0 (Br (x)) and

Z

Br (x)

�
�rg(⇣uk)

�
�2dvg 

1
`

+ ok(1). (3.13)

Take a normal coordinate system (Br (x), exp�1
x ; {y}), where y=(y1, y2)2Br (0) ⇢

R2, and expx : Br (0) ! Br (x) denotes the exponential map. Let  k(y) =
(⇣uk)(expx (y)), y 2 Br (0). In view of (3.13), one easily gets

Z

Br (0)

�
�rR2 k(y)

�
�2dy = (1+ O(r))

Z

Br (x)

�
�rg(⇣uk)

�
�2dvg

 (1+ O(r))
✓
1
`

+ ok(1)
◆

,

(3.14)

where rR2 denotes the usual gradient operator in R2. Also there holds  k 2
W 1,2
0 (Br (0)) since ⇣uk 2 W 1,2

0 (Br (x)). Hence, if K 2 N is chosen sufficiently
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large and r > 0 is chosen sufficiently small, it then follows from (3.14) and Moser’s
inequality (1.1) that

Z

Br/2(x)
e(�

⇤+k�1)u2k dvg 
Z

Br (x)
e(�

⇤+k�1)(⇣uk)2dvg

= (1+ O(r))
Z

Br (0)
e(�

⇤+k�1) 2k dy

 C

for some constant C and all k � K . Since (6, g) is compact, there exists some
constant C such that for all k � K ,

Z

6
e(�

⇤+k�1)u2k dvg  C.

This contradicts (3.9) again. Hence �⇤ � 4⇡`.
We finish the proof of the lemma by combining Steps 1 and 2.

We now clarify the proof of (ii) of Theorem 2.1, which is partially implied by
Lemma 3.1.

Proof of (ii) of Theorem 2.1. If ↵ < �G1 and � > 4⇡`, then Step 1 of the proof
of Lemma 3.1 gives the desired result. In the following, we assume ↵ � �G1 and
� > 0. By a direct method of variation, one can find a function u0 6⌘ 0 satisfying
u0 2 HG \ C1(6) and

Z

6
|rgu0|2dvg = �G1

Z

6
u20dvg.

For any t 2 R, we have tu0 2 HG and

Z

6
|rg(tu0)|2dvg � ↵

Z

6
(tu0)2dvg  0.

Moreover, there holds

Z

6
e�(tu0)2dvg ! 1 as t ! 1.

Again this gives the desired result.
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3.2. Maximizers for subcritical functionals

Let ↵ < �G1 . As in ([28, page 3183]), by Lemma 3.1 and a direct method of
variation, we can prove that for any 0 < ✏ < 4⇡`, there exists some u✏ 2 HG with
ku✏k1,↵ = 1 such that

Z

6
e(4⇡`�✏)u

2
✏dvg = sup

u2HG, kuk1,↵1

Z

6
e(4⇡`�✏)u

2
dvg. (3.15)

The Euler-Lagrange equation for the maximizer u✏ reads
8
>>>>>>>>><

>>>>>>>>>:

1gu✏ � ↵u✏ =
1
�✏
u✏e(4⇡`�✏)u

2
✏ �

µ✏

�✏
u✏ 2 HG, ku✏k1,↵ = 1

�✏ =
Z

6
u2✏e

(4⇡`�✏)u2✏dvg

µ✏ =
1

Volg(6)

Z

6
u✏e(4⇡`�✏)u

2
✏dvg.

(3.16)

Regularity theory implies that u✏ 2 C1(6, g). Using an argument of ([28, page
3184]), one has

lim inf
✏!0

�✏ > 0, |µ✏ |/�✏  C. (3.17)

By (3.15), one can easily see that

lim
✏!0

Z

6
e(4⇡`�✏)u

2
✏dvg = sup

u2HG , kuk1,↵1

Z

6
e4⇡`u

2
dvg. (3.18)

Note that we do not assume the supremum on the right hand side of (3.18) is finite.
If |u✏ |  C , in view of (3.17), applying elliptic estimates to (3.16), we obtain
u✏ ! u⇤ in C1(6, g), which implies that u⇤ 2 HG and ku⇤k1,↵ = 1. In view of
(3.18), we know that u⇤ is a desired extremal function. From now on, we assume
c✏ = max6 |u✏ | ! +1 as ✏ ! 0. Noting that�u✏ also satisfies (3.15) and (3.16),
we may assume with no loss of generality that

c✏ = max
6

|u✏ | = max
6

u✏ = u✏(x✏) ! +1 (3.19)

and that
x✏ ! x0 2 6 as ✏ ! 0. (3.20)

To proceed, we need the following energy concentration phenomenon of u✏ .

Lemma 3.2. Under the assumptions (3.19) and (3.20), we have

(i) u✏ converges to 0 weakly in W 1,2(6, g), strongly in L2(6, g), and almost
everywhere in 6;
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(ii) I (x0) = ]G(x0) = `;
(iii) lim

r!0
lim
✏!0

R
Br (x0) |rgu✏ |2dvg = 1/`.

Proof. (i) Since ↵ < �G1 and ku✏k1,↵ = 1, u✏ is bounded in W 1,2(6, g). Hence we
may assume u✏ converges to u0 weakly in W 1,2(6, g), strongly in L2(6, g), and
almost everywhere in 6. If u0 6⌘ 0, then

ku✏ � u0k21,↵ = 1� ku0k21,↵ + o✏(1)  1�
1
2
ku0k21,↵,

provided that ✏ is sufficiently small. It follows from Lemma 3.1 that e(4⇡`�✏)u2✏ is
bounded in Lq(6, g) for some q > 1. Then applying elliptic estimates to (3.16),
we have that ku✏kL1(6)  C , which contradicts (3.19). Therefore u0 ⌘ 0.

(ii) Since ` = minx26 I (x), we have I (x0) � `. Suppose I = I (x0) > `.
Using the same argument as we derived (3.12), we have

Z

Br (x0)
|rgu✏ |2dvg 

1
I

+ o✏(1), (3.21)

provided that r > 0 is chosen sufficiently small. Similar to (3.15), it follows from
(3.21) and Moser’s inequality (1.1) that

Z

Br/2(x0)
e4⇡`pu

2
✏dvg  C

for some sufficiently small r > 0 and some p > 1, where C is a constant depending
only on r , p, I and `. Applying elliptic estimates to (3.16), we have that u✏ is
uniformly bounded in Br/4(x0). This contradicts (3.19). Therefore I (x0) = `.

(iii) By (ii), there exists some r0 > 0 such that krgu✏k2L2(Br0 (x0))
 1

` + o✏(1).
It follows that

lim
r!0

lim
✏!0

Z

Br (x0)

�
�rgu✏

�
�2dvg 

1
`
. (3.22)

We claim that the equality of (3.22) holds. For otherwise, there exist two positive
constants ⌫ and r1 with 0 < r1 < r0 such that

Z

Br1 (x0)

�
�rgu✏

�
�2dvg <

1
`

� ⌫.

Similarly as we did in the proof of (ii), we have that e(4⇡`�✏)u2✏ is bounded in
Lq(Br1/2(x0)) for some q > 1. Then applying elliptic estimates to (3.16), we
obtain that u✏ is uniformly bounded in Br1/4(x0), which contradicts (3.19). This
concludes our claim and (iii) holds.
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3.3. Blow-up analysis

Set
r✏ =

p
�✏

c✏
e�(2⇡`�✏/2)c2✏ . (3.23)

For any 0 < a < 4⇡`, by Lemma 3.1, the Hölder inequality and (i) of Lemma 3.2,
one has

�✏ =
Z

6
u2✏e

(4⇡`�✏)u2✏dvg = eac
2
✏

Z

6
u2✏e

(4⇡`�✏�a)u2✏dvg  eac
2
✏o✏(1).

It then follows that
r2✏ c

2
✏e

(4⇡`�✏�a)c2✏ = o✏(1). (3.24)

In particular, r✏ ! 0 as ✏ ! 0. Let 0 < � < 1
2 ig(6) be fixed, where ig(6)

is the injectivity radius of (6, g). For y 2 B
�r�1
✏

(0) ⇢ R2, we define  ✏(y) =

c�1✏ u✏(expx✏ (r✏ y)), '✏(y) = c✏(u✏(expx✏ (r✏ y)) � c✏) and g✏(y) = (exp⇤
x✏ g)(r✏ y),

where B
�r�1
✏

(0) is the Euclidean ball of radius �r�1
✏ centered at 0, and expx✏ is the

exponential map at x✏ . Note that g✏ converges to g0 in C2loc(R2) as ✏ ! 0, where
g0 denotes the standard Euclidean metric. By (3.16), we have on B

�r�1
✏

(0),

1g✏ ✏(y) = ↵r2✏  ✏(y) + c�2✏  ✏(y)e(4⇡`�✏)(u
2
✏(expx✏ (r✏ y))�c

2
✏ ) � r2✏ c

�1
✏

µ✏

�✏
(3.25)

1g✏ '✏(y) = ↵r2✏ c
2
✏ ✏(y) +  ✏(y)e(4⇡`�✏)(u

2
✏(expx✏ (r✏ y))�c

2
✏ ) � r2✏ c✏

µ✏

�✏
. (3.26)

In view of (3.24), applying elliptic estimates to (3.25) and (3.26) respectively, we
have

 ✏ ! 1 in C1loc
�
R2
�
, (3.27)

and
'✏ ! ' in C1loc

�
R2
�
, (3.28)

where ' satisfies 8
>>>><

>>>>:

�1R2' = e8⇡`' in R2

'(0) = 0 = sup
R2
'

Z

R2
e8⇡`'(y)dy < 1.

By a result of Chen-Li [5], we have

'(y) = �
1
4⇡`

log
�
1+ ⇡`|y|2

�
,

which leads to Z

R2
e8⇡`'(y)dy =

1
`
. (3.29)
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By (3.23), (3.27) and (3.28), there holds for any R > 0,

Z

BR(0)
e4⇡`'(y)dy = lim

✏!0

Z

BR(0)
e(4⇡`�✏)(u

2
✏(expx✏ (r✏ y))�c

2
✏ )dy

= lim
✏!0

c2✏
�✏

Z

BRr✏ (x✏)
e(4⇡`�✏)u

2
✏dvg

= lim
✏!0

1
�✏

Z

BRr✏ (x✏)
u2✏e

(4⇡`�✏)u2✏dvg.

This together with (3.29) gives

lim
R!1

lim
✏!0

1
�✏

Z

BRr✏ (x✏)
u2✏e

(4⇡`�✏)u2✏dvg =
1
`
. (3.30)

By (ii) of Lemma 3.2 and (3.20), one has for all sufficiently small ✏ > 0,

\`i=1BRr✏ (�i (x✏)) = ?. (3.31)

Noting that u✏ 2 HG, we have

Z

BRr✏ (�i (x✏))
u2✏e

(4⇡`�✏)u2✏dvg =
Z

BRr✏ (x✏)
u2✏e

(4⇡`�✏)u2✏dvg, 1  i  `.

This together with (3.30) and (3.31) leads to

lim
R!1

lim
✏!0

1
�✏

Z

BRr✏ (�i (x✏))
u2✏e

(4⇡`�✏)u2✏dvg =
1
`
, 1  i  `. (3.32)

By definition of �✏ in (3.16), we conclude from (3.32) that

lim
R!1

lim
✏!0

1
�✏

Z

6\[`i=1BRr✏ (�i (x✏))
u2✏e

(4⇡`�✏)u2✏dvg = 0. (3.33)

Similar to [1, 11], 80 < � < 1, we let u✏,� = min{u✏,�c✏}.

Lemma 3.3. 8 0 < � < 1, there holds

lim
✏!0

Z

6
|rgu✏,� |2dvg = �.
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Proof. Multiplying (3.16) by u✏,� , we have
Z

6
|rgu✏,� |2dvg =

Z

6
rgu✏,�ru✏dvg

=
1
�✏

Z

6
u✏,�u✏e(4⇡`�✏)u

2
✏dvg

+ ↵

Z

6
u✏,�u✏dvg �

µ✏

�✏

Z

6
u✏,�dvg

=
1
�✏

X̀

i=1

Z

BRr✏ (�i (x✏))
u✏,�u✏e(4⇡`�✏)u

2
✏dvg

+
1
�✏

Z

6\[`i=1BRr✏ (�i (x✏))
u✏,�u✏e(4⇡`�✏)u

2
✏dvg + o✏(1).

(3.34)

Note that 0  u✏,�u✏  u2✏ on 6, and u✏,� = �(1 + o✏(1))u✏ on BRr✏ (�i (x✏))
for 1  i  `. In view of (3.30), (3.33) and (3.34), letting ✏ ! 0 first and then
R ! 1, we conclude the lemma.

Lemma 3.4. There holds lim inf✏!0 �✏/c2✏ > 0.
Proof. Let 0 < � < 1. In view of Lemma 3.3, we have by using the Hölder
inequality

Z

u✏�c✏
u2✏e

(4⇡`�✏)u2✏dvg 
Z

6
u2✏e

(4⇡`�✏)u2✏,�dvg = o✏(1).

Similarly
�✏

c2✏
� �2

Z

u✏>�c✏
e(4⇡`�✏)u

2
✏dvg + o✏(1)

� �2
✓Z

6
e(4⇡`�✏)u

2
✏dvg �

Z

6
e(4⇡`�✏)u

2
✏,�dvg

◆
+ o✏(1)

= �2
Z

6
(e(4⇡`�✏)u

2
✏ � 1)dvg + o✏(1).

(3.35)

This together with (3.18) ends the proof of the lemma.

Lemma 3.5. For any 1<q<2, we have c✏u✏ converges toG weakly inW 1,q(6,g),
strongly in L2q/(2�q)(6), and almost everywhere in6, where G is a Green function
satisfying

8
>>>>>><

>>>>>>:

1gG � ↵G =
1
`

X̀

i=1
��i (x0) �

1
Volg(6)Z

6
Gdvg = 0

G(�i (x)) = G(x), x 2 6 \
�
� j (x0)

 `
j=1 , 1  i  `.

(3.36)
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Proof. By (3.16),

1g(c✏u✏) � ↵(c✏u✏) = h✏ =
1
�✏
c✏u✏e(4⇡`�✏)u

2
✏ �

c✏µ✏
�✏

. (3.37)

It follows from Lemmas 3.3 and 3.4 that for any 0 < � < 1,
Z

6

c✏
�✏

|u✏ |e(4⇡`�✏)u
2
✏dvg =

c✏
�✏

Z

u✏�c✏
|u✏ |e(4⇡`�✏)u

2
✏dvg

+
c✏
�✏

Z

u✏>�c✏
u✏e(4⇡`�✏)u

2
✏dvg


c✏
�✏

Z

6
|u✏ |e(4⇡`�✏)u

2
✏,�dvg +

1
�


1
�

+ o✏(1),

and that

c✏ |µ✏ |
�✏


1

Volg(6)

c✏
�✏

Z

u✏�c✏
|u✏ |e(4⇡`�✏)u

2
✏dvg

+
1

Volg(6)

c✏
�✏

Z

u✏>�c✏
u✏e(4⇡`�✏)u

2
✏dvg


1

Volg(6)

1
�

+ o✏(1).

Hence h✏ is bounded in L1(6, g). Then by ( [31, Lemma 2.11]), we have c✏u✏
is bounded in W 1,q(6, g) for any 1 < q < 2. Up to a subsequence, for any
1 < q < 2 and 1 < s  2q/(2 � q), c✏u✏ converges to G weakly in W 1,q(6),
strongly in Ls(6, g), and almost everywhere in 6.

We calculate
Z

u✏�c✏

c✏
�✏
u✏e(4⇡`�✏)u

2
✏dvg = o✏(1), (3.38)

Z

{u✏>�c✏}\[`i=1BRr✏ (�i (x✏))

c✏
�✏
u✏e(4⇡`�✏)u

2
✏dvg


1
�

1
�✏

Z

6\[`i=1BRr✏ (�i (x✏))
u2✏e

(4⇡`�✏)u2✏dvg = o(1),
(3.39)

Z

BRr✏ (�i (x✏))

c✏
�✏
u✏e(4⇡`�✏)u

2
✏dvg

=
1+ o✏(1)

�✏

Z

BRr✏ (�i (x✏))
u2✏e

(4⇡`�✏)u2✏dvg =
1
`

+ o(1), 1  i  `,

(3.40)
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where o(1) ! 0 as ✏ ! 0 first and then R ! 1. Integrating the equation (3.37),
we have by combining (3.38)-(3.40),

c✏µ✏
�✏

Volg(6) =
Z

6

c✏
�✏
u✏e(4⇡`�✏)u

2
✏dvg = 1+ o✏(1).

In view of (3.38)-(3.40) again, testing the equation (3.37) by � 2 C2(6) and pass-
ing to the limit ✏ ! 0, we have

Z

6
G1g�dvg � ↵

Z

6
G�dvg =

1
`

X̀

i=1
�(�i (x0)) �

1
Volg(6)

Z

6
�dvg.

Since c✏u✏ 2 HG, we have
R
6 Gdvg = 0 and G(�i (x)) = G(x) for all x 2

6 \ {�1(x0), · · · , �`(x0)} and all 1  i  `.

Let

 (x) = G(x) +
1
2⇡`

X̀

i=1
log dg(�i (x0), x).

It follows from (3.36) that the distributional Laplacian of  belongs to Ls(6, g)
for some s > 2. Then we have by elliptic estimates that  2 C1(6, g). Let
r0 = 1

4 min1i< j` dg(�i (x0), � j (x0)). For x 2 Br0(x0), the Green function G can
be decomposed as

G(x) = �
1
2⇡`

log dg(x, x0) + Ax0 + e (x), (3.41)

where e 2 C1(Br0(x0)), e (x0) = 0 and

Ax0 = lim
x!x0

✓
G(x) +

1
2⇡`

log dg(x, x0)
◆

= lim
x!x0

 

 (x) �
1
2⇡`

X̀

i=2
log dg(�i (x0), x)

!

.

(3.42)

By (3.36), we have
Z

6\[`i=1B�(�i (x0))
rgG|2dvg = ↵

Z

6\[`i=1B�(�i (x0))
G2dvg �

Z

[`i=1@B�(�i (x0))
G
@G
@⌫

d�

�
1

Volg(6)

Z

6\[`i=1B�(�i (x0))
Gdvg

= �
1
2⇡`

log � + Ax0 + ↵

Z

6
G2dvg + o�(1).
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Hence
Z

6\[`i=1B�(�i (x0))
|rgu✏ |2dvg

=
1
c2✏

✓
�

1
2⇡`

log � + Ax0 + ↵

Z

6
G2dvg + o�(1) + o✏(1)

◆
.

It follows that
Z

[`i=1B�(�i (x0))
|rgu✏ |2dvg = 1+ ↵

Z

6
u2✏dvg �

Z

6\[`i=1B�(�i (x0))
|rgu✏ |2dvg

= 1�
1
c2✏

✓
�

1
2⇡`

log � + Ax0 + o�(1) + o✏(1)
◆

.

Let s✏ = sup@B�(x0) u✏ andeu✏ = (u✏ � s✏)+. Theneu✏ 2 W 1,2
0 (B�(x0)), and satisfies

Z

[`i=1B�(�i (x0))
|rgeu✏ |2dvg  ⌧✏ = 1�

1
c2✏

✓
�

1
2⇡`

log � + Ax0 + o�(1) + o✏(1)
◆

.

Now we choose an isothermal coordinate system (U,�; {x1, x2}) near x0 such that
B2�(x0) ⇢ U , �(x0) = 0, and the metric g = eh(dx12 + dx22) for some function
h 2 C1(�(U)) with h(0) = 0. Clearly, for any � > 0, there exists some c(�) > 0
with c(�) ! 0 as � ! 0 such thatpg  1+ c(�) and �(B�(p)) ⇢ B�(1+c(�))(0) ⇢
R2. Noting thateu✏ = 0 outside B�(p) for sufficiently small �, we have

Z

B�(1+c(�))(0)
|rR2(eu✏ � ��1)|2dx =

Z

��1(B�(1+c(�))(0))
|rgeu✏ |2dvg

=
Z

B�(x0)
|rgeu✏ |dvg 

⌧✏

`
.

This together with a result of Carleson-Chang [3] leads to

lim sup
✏!0

Z

B�(p)
(e4⇡`eu

2
✏/⌧✏ � 1)dvg

 lim sup
✏!0

(1+ c(�))
Z

B�(1+c(�))(0)
(e4⇡`(eu✏��

�1)2/⌧✏ � 1)dx

⇡�2(1+ c(�))3e.

(3.43)

Note that |u✏ |  c✏ and u✏/c✏ = 1+ o✏(1) on the geodesic ball BRr✏ (x✏) ⇢ 6. We
estimate on BRr✏ (x✏),

(4⇡`� ✏)u2✏  4⇡`(eu✏ + s✏)2

 4⇡`eu2✏ + 8⇡`s✏eu✏ + o✏(1)
 4⇡`eu2✏ � 4 log � + 8⇡`Ax0 + o(1)
 4⇡`eu2✏/⌧✏ � 2 log � + 4⇡`Ax0 + o(1).
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Therefore
Z

BRr✏ (x✏)
e(4⇡`�✏)u

2
✏dvg

 ��2e4⇡`Ax0+o(1)
Z

BRr✏ (x✏)
e4⇡`eu

2
✏/⌧✏dvg

= ��2e4⇡`Ax0+o(1)
Z

BRr✏ (x✏)
(e4⇡`eu

2
✏/⌧✏ � 1)dvg + o(1)

 ��2e4⇡`Ax0+o(1)
Z

B�(x0)
(e4⇡`eu

2
✏/⌧✏ � 1)dvg + o(1),

(3.44)

where o(1) ! 0 as ✏ ! 0 first and then � ! 0. Combining (3.43) with (3.44),
letting ✏ ! 0 first, and then letting � ! 0, we conclude

lim sup
✏!0

Z

BRr✏ (x✏)
e(4⇡`�✏)u

2
✏dvg  ⇡e1+4⇡`Ax0 .

Therefore

lim sup
✏!0

Z

[`i=1BRr✏ (�i (x✏))
e(4⇡`�✏)u

2
✏dvg  ⇡`e1+4⇡`Ax0 . (3.45)

Proposition 3.6. Under the assumptions (3.19) and (3.20), there holds

sup
u2HG, kuk1,↵1

Z

6
e4⇡`u

2
dvg = lim

✏!0

Z

6
e(4⇡`�✏)u

2
✏dvg  Volg(6) + ⇡`e1+4⇡`Ax0 .

Proof. We calculate
Z

BRr✏ (x✏)
e(4⇡`�✏)u

2
✏dvg = (1+ o✏(1))

Z

BR(0)
e(4⇡`�✏)u

2
✏(expx✏ (r✏ y))r2✏ dy

= (1+ o✏(1))
�✏

c2✏

✓Z

BR(0)
e8⇡`'(y)dy + o✏(1)

◆
.

In view of (3.29) and (3.45),

lim
R!1

lim
✏!0

Z

BRr✏ (x✏)
e(4⇡`�✏)u

2
✏dvg =

1
`
lim
✏!0

�✏

c2✏
.

Hence
lim
R!1

lim
✏!0

Z

[`i=1BRr✏ (�i (x✏))
e(4⇡`�✏)u

2
✏dvg = lim

✏!0

�✏

c2✏
. (3.46)

By (3.35), we have

lim
✏!0

Z

6
(e(4⇡`�✏)u

2
✏ � 1)dvg 

1
�2

lim
✏!0

�✏

c2✏
, 80 < � < 1.
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Letting � ! 1, we obtain

lim
✏!0

Z

6
(e(4⇡`�✏)u

2
✏ � 1)dvg  lim

✏!0

�✏

c2✏
.

This together with (3.45) and (3.46) completes the proof of the proposition.

3.4. Test function computation

In this subsection, we shall complete the proof of (iii) of Theorem 2.1. Let ↵ < �G1
be fixed and ` be an integer defined as in (2.3). In particular, we shall construct a
function sequence �✏ satisfying �✏ 2 HG,

Z

6
|rg�✏ |

2dvg � ↵

Z

6
�2✏dvg = 1 (3.47)

and Z

6
e4⇡`�

2
✏ dvg > volg(6) + ⇡`e1+4⇡`Ax0 (3.48)

for sufficiently small ✏ > 0, where x0 and Ax0 are defined as in (3.20) and (3.42)
respectively. If there exists such a sequence �✏ , then we have by Proposition 3.6
that c✏ must be bounded. Applying elliptic estimates to (3.16), we conclude the
existence of the desired extremal function.

To do this, we define a sequence of functions by

b✏(x) =

8
>>><

>>>:

c +
� 1
4⇡` log(1+ ⇡` r

2

✏2
) + B

c
x 2 BR✏(x0)

G � ⇣e 
c

x 2 B2R✏(x0) \ BR✏(x0),

(3.49)

where e is defined as in (3.41), ⇣ 2 C1
0 (B2R✏(x0)) satisfies that ⇣ ⌘ 1 on BR✏(x0)

and krg⇣kL1 = O(1/(R✏)), r = r(x) = distg(x, x0), R = � log ✏, B and c are
constants depending only on ✏ to be determined later. Define another sequence of
functions

⌘✏(x) =

8
>>>><

>>>>:

b✏(x) x 2 B2R✏(x0)

b✏(��1
i (x)) x 2 B2R✏(�i (x0)), 2  i  `

G
c

x 2 6 \ [`i=1B2R✏(�i (x0)).

(3.50)

Noting that G(�i (x)) = G(x) for all x 2 6 \ {�1(x0), · · · , �`(x0)}, one can easily
check that

⌘✏(�i (x)) = ⌘✏(x), 8x 2 6, 81  i  `. (3.51)
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In view of (3.49) and (3.50), in order to ensure that ⌘✏ 2 W 1,2(6, g), we set

c +
1
c

✓
�

1
4⇡`

log(1+ ⇡`R2) + B
◆

=
1
c

✓
�

1
2⇡`

log(R✏) + Ax0

◆
,

which gives

2⇡`c2 = � log ✏ � 2⇡`B + 2⇡`Ax0 +
1
2
log(⇡`) + O

✓
1
R2

◆
. (3.52)

Noting that
R
6 Gdvg = 0, we have

Z

6\[`i=1BR✏(�i (x0))
|rgG|2dvg

=
Z

6\[`i=1BR✏(�i (x0))
G1gGdvg �

Z

[`i=1@BR✏(�i (x0))
G
@G
@⌫

d�

=↵
Z

6\[`i=1BR✏(�i (x0))
G2dvg �

1
Volg(6)

Z

6\[`i=1BR✏(�i (x0))
Gdvg

�
X̀

i=1

Z

@BR✏(�i (x0))
G
@G
@⌫

d�

= �
1
2⇡`

log(R✏) + ↵

Z

6
G2dvg + Ax0 + O(R✏ log(R✏)).

(3.53)

Since e 2 C1(6, g) and e (x0) = 0, we have
Z

B2R✏(x0)\BR✏(x0)
|rg⇣ |

2e 2dvg = O((R✏)2), (3.54)
Z

B2R✏(x0)\BR✏(x0)
rgGrg⇣e dvg = O(R✏), (3.55)

Z

BR✏(x0)
|rg⌘✏ |

2dvg =
1
`2c2

✓
1
2⇡

log R +
log(⇡`)
4⇡

�
1
4⇡

+ O
✓
1
R2

◆◆
. (3.56)

Combining (3.53)-(3.56) and noting that
Z

[`i=1BR✏(�i (x0))
|rg⌘✏ |

2dvg = `

Z

BR✏(x0)
|rg⌘✏ |

2dvg,

we obtain
Z

6
|rg⌘✏ |

2dvg=
1

4⇡`c2

✓
2 log

1
✏
+log(⇡`)�1+4⇡`Ax0+4⇡`↵

Z

6
G2dvg

+O
✓
1
R2

◆
+ O(R✏ log(R✏))

◆
.

(3.57)



TRUDINGER-MOSER INEQUALITIES INVOLVING AN ISOMETRIC GROUP 1317

Observing
Z

6
⌘✏dvg =

1
c

 Z

6\[`i=1B2R✏(�i (x0))
Gdvg + O(R✏ log(R✏))

!

=
1
c

 

�
Z

[`i=1B2R✏(�i (x0))
Gdvg + O(R✏ log(R✏))

!

=
1
c
O(R✏ log(R✏)),

(3.58)

we have
⌘✏ =

1
Volg(6)

Z

6
⌘✏dvg =

1
c
O(R✏ log(R✏)). (3.59)

Hence
Z

6
(⌘✏ � ⌘✏)

2dvg =
Z

6
⌘2✏dvg � 2⌘✏

Z

6
⌘✏dvg + ⌘2✏Volg(6)

=
1
c2

✓Z

6
G2dvg + O(R✏ log(R✏))

◆
.

This together with (3.57) yields

k⌘✏ � ⌘✏k
2
1,↵ =

Z

6
|rg⌘✏ |

2dvg � ↵

Z

6
(⌘✏ � ⌘✏)

2dvg

=
1

4⇡`c2

✓
2 log

1
✏

+ log(⇡`) � 1+ 4⇡`Ax0

+O
✓
1
R2

◆
+ O(R✏ log(R✏))

◆
.

(3.60)

Now we choose B in (3.52) such that

k⌘✏ � ⌘✏k1,↵ = 1. (3.61)

Combining (3.60) and (3.61), we have

c2 = �
log ✏
2⇡`

+
log(⇡`)
4⇡`

�
1
4⇡`

+ Ax0 + O
✓
1
R2

◆
+ O(R✏ log(R✏)). (3.62)

It then follows from (3.52) and (3.62) that

B =
1
4⇡`

+ O
✓
1
R2

◆
+ O(R✏ log(R✏)). (3.63)

Let
�✏ = ⌘✏ � ⌘✏ . (3.64)
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In view of (3.51), (3.64) and the fact that ⌘✏ 2 W 1,2(6, g), we have �✏ 2 HG.
Moreover, the equality (3.61) is exactly k�✏k1,↵ = 1, and thus (3.47). A straight-
forward calculation shows on BR✏(x0),

4⇡`�2✏ � 4⇡`c2 � 2 log

 

1+ ⇡`
r2

✏2

!

+ 8⇡`B + O(R✏ log(R✏)).

This together with (3.62) and (3.63) yields
Z

BR✏(x0)
e4⇡`�

2
✏ dvg � ⇡e1+4⇡`Ax0 + O

✓
1

(log ✏)2

◆
,

which immediately leads to
Z

[`i=1BR✏(�i (x0))
e4⇡`�

2
✏ dvg � ⇡`e1+4⇡`Ax0 + O

✓
1

(log ✏)2

◆
. (3.65)

Now we shall calculate the integral
R
6\[`i=1B2R✏(�i (x0))

e4⇡`�2✏ dvg. By our choices of
R = � log ✏ and c2 = O(log ✏) (see (3.62)), one can easily see that

R✏ log(R✏) = o
✓
1
c2

◆
. (3.66)

Recalling the representation of the Green function G, namely (3.41), one has

Z

[`i=1B2R✏(�i (x0))
G2dvg =

X̀

i=1

Z

B2R✏(�i (x0))
G2dvg

= O
⇣
(R✏)2(log(R✏))2

⌘
.

This together with (3.66) gives
Z

6\[`i=1B2R✏(�i (x0))
G2dvg =

Z

6
G2dvg �

Z

[`i=1B2R✏(�i (x0))
G2dvg

= kGk22 + o
✓
1
c2

◆
.

(3.67)

Moreover, in view of (3.58), (3.59), (3.64) and (3.66), there holds
Z

6\[`i=1B2R✏(�i (x0))
�2✏dvg =

Z

6\[`i=1B2R✏(�i (x0))
⌘2✏dvg + o

✓
1
c2

◆

=
Z

6\[`i=1B2R✏(�i (x0))

G2

c2
dvg + o

✓
1
c2

◆
.

(3.68)
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Obviously it follows from R = � log ✏ and (3.62) that
Z

6\[`i=1B2R✏(�i (x0))
dvg = volg(6) + o

✓
1
c2

◆
. (3.69)

Combining (3.67)-(3.69) and using the inequality et � 1+ t for t � 0, we obtain
Z

6\[`i=1BR✏(�i (x0))
e4⇡`�

2
✏ dvg �

Z

6\[`i=1B2R✏(�i (x0))

⇣
1+ 4⇡`�2✏

⌘
dvg

� volg(6) + 4⇡`
kGk22
c2

+ o
✓
1
c2

◆
.

Noting that O( 1
(log ✏)2 ) = o( 1c2 ) and combining (3.65) and (3.70), we conclude

(3.48) for sufficiently small ✏ > 0. This completes the proof of Theorem 2.1. ⇤

4. Proof of Theorem 2.2

In this section, we shall prove Theorem 2.2. Since the proof is very similar to that
of Theorem 2.1, we only give its outline.

Let j � 2, �Gj and E
?
j�1 be defined as in (2.5) and (2.6) respectively. For

↵ < �Gj , we define

�⇤
j = sup

8
<

:
� : sup

u2E?
j�1, kuk1,↵1

Z

6
e�u

2
dvg < 1

9
=

;
. (4.1)

Comparing (3.1) with (4.1), similar to Lemma 3.1, we have �⇤
j = 4⇡`, where ` is

defined as in (2.3).
We now prove (ii) of Theorem 2.2. If ↵ � �Gj and � > 0, we take u j 2

HG \ C1(6, g) satisfies 1gu j = �Gj u j and u j 6⌘ 0. It follows that

Z

6
|rg

�
tu j
�
|2dvg � ↵

Z

6

�
tu j
�2dvg  0, 8t 2 R (4.2)

and that Z

6
e�(tu j )2dvg ! 1 as t ! 1. (4.3)

Then (4.2) and (4.3) imply that the supremum in (2.7) is infinity.
If ↵ < �Gj and � > 4⇡`, then we shall prove that the supremum in (2.7) is

infinity. To do this, we let {ei }
m j�1
i=1 ⇢ HG \ C1(6, g) be an orthonormal basis of
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E j�1 = E�G1 � · · · � E�Gj�1 with respect to the inner product on L
2(6, g), namely,

E j�1 = span{e1, · · · , em j�1} and

(ei , ek) =
Z

6
ei ekdvg = �ik =

8
<

:

1 i = k

0 i 6= k

for all i, k = 1, · · · ,m j�1. Let eMk be defined as in (3.4). Set

Qk = eMk �
1

Volg(6)

Z

6

eMkdvg �
m j�1X

i=1
(eMk, ei )ei .

Then Qk 2E?
j�1. By a straightforward calculation, kQkk21,↵=(1+O(r))8⇡` log k+

O(1). Denote Q⇤
k = Qk/kQkk1,↵ . It follows that for any fixed � > 4⇡`,
Z

6
e�Q

⇤
k
2
dvg �

Z

Brk�1/4 (x0)
e

�(log k+O(1))2
(1+O(r))8⇡` log k+O(1) dvg

= e
�(1+ok (1)) log k
(1+O(r))8⇡` ⇡r2k�1/2(1+ ok(1)).

Choosing r > 0 sufficiently small and then passing to the limit k ! 1 in the above
estimate, we conclude

Z

6
e�Q

⇤
k
2
dvg ! 1 as k ! 1.

Hence the supremum in (2.7) is infinity.
In the following, we sketch the proof of (i) and (iii) of Theorem 2.2.
Let ↵ < �Gj . By a direct method of variation, one can see that for any 0 < ✏ <

4⇡`, there exists some u✏ 2 E?
j�1 with ku✏k1,↵ = 1 such that

Z

6
e(4⇡`�✏)u

2
✏dvg = sup

u2E?
j�1,kuk1,↵1

Z

6
e(4⇡`�✏)u

2
dvg.

Clearly u✏ satisfies the Euler-Lagrange equation
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

1gu✏ � ↵u✏ =
1
�✏
u✏e(4⇡`�✏)u

2
✏ �

µ✏

�✏
�

m j�1X

k=1
�kek

u✏ 2 E?
j�1, ku✏k1,↵ = 1

�✏ =
Z

6
u2✏e

(4⇡`�✏)u2✏dvg

µ✏ =
1

Volg(6)

Z

6
u✏e(4⇡`�✏)u

2
✏dvg

�k =
Z

6

1
�✏
eku✏e(4⇡`�✏)u

2
✏dvg.

(4.4)



TRUDINGER-MOSER INEQUALITIES INVOLVING AN ISOMETRIC GROUP 1321

Without loss of generality, we assume c✏ = u✏(x✏) = sup6 |u✏ | ! +1 and
x✏ ! x0 as ✏ ! 0. Let r✏ be the blow-up scale defined as in (3.23) and '✏(y) =
c✏(u✏(expx✏ (r✏ y)) � c✏) for y 2 B

�r�1
✏

(0), where 0 < � < 1
2 ig(6). As before, we

can derive

'✏(y) ! '(y) = �
1
4⇡`

log
�
1+ ⇡`|y|2

�
in C1loc

�
R2
�
.

Moreover, we can prove that 81 < q < 2, c✏u✏ converges to a Green function G
weakly inW 1,q(6, g), strongly in L

2q
2�q (6, g), and almost everywhere in6. In this

case, G satisfies
8
>>>>><

>>>>>:

1gG � ↵G =
1
`

X̀

i=1
��i (x0) �

1
Volg(6)

�
m j�1X

j=1
ek(x0)ek

Z

6
G�dvg = 0, 8� 2 E j�1

G(� (x)) = G(x), 8x 2 6 \G(x0), 8� 2 G.

(4.5)

Similarly, G has a decomposition (3.41) near x0 and Ax0 is defined as in (3.42).
Analogous to Proposition 3.6, we arrive at

sup
u2E?

j�1, kuk1,↵1

Z

6
e4⇡`u

2
dvg  Volg(6) + ⇡`e1+4⇡`Ax0 . (4.6)

This particularly leads to (i) of Theorem 2.2.
Finally we construct a sequence of functions to show that the estimate (4.6)

is not true. This implies that blow-up can not occur and elliptic estimates on (4.4)
give a desired extremal function. To do this, we let ⌘✏ , �✏ be defined respectively
as in (3.50) and (3.64) satisfying ⌘✏ 2 W 1,2(6, g) and k�✏k1,↵ = 1. Note that
the constants c and B in definitions of ⌘✏ and �✏ are given by (3.62) and (3.63)
respectively. It then follows that

Z

6
e4⇡`�

2
✏ dvg � Volg(6)+⇡`e1+4⇡`Ax0 +

4⇡`kGk2L2(6,g)

� log ✏
+o

✓
1

� log ✏

◆
. (4.7)

Let

e�✏ = �✏ �
m j�1X

i=1
(�✏, ei )ei . (4.8)

Obviously e�✏ 2 E?
j�1. Since G satisfies (4.5) and

Z

6
Geidvg = lim

✏!0

Z

6
c✏u✏eidvg = 0, 81  i  m j�1,
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we calculate

(�✏, ei ) =
Z

[`i=1B2R✏(�i (x0))
(⌘✏ � ⌘✏)eidvg

+
Z

6\[`i=1B2R✏(�i (x0))

✓
G
c

� ⌘✏

◆
eidvg = o

✓
1

log2 ✏

◆
.

This together with (4.8) leads to

e�✏ = �✏ + o
✓

1
log2 ✏

◆
, ke�✏k21,↵ = 1+ o

✓
1

log2 ✏

◆
. (4.9)

It follows from (4.7) and (4.9) that

Z

6
e
4⇡`

e�2✏
ke�✏k21,↵ dvg=

Z

6
e4⇡`�

2
✏+o(

1
� log ✏ )dvg

�

✓
1+ o

✓
1

� log ✏
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,

which implies that (4.6) does not hold. This completes the proof of (iii) of Theo-
rem 2.2.
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[6] M. DE SOUZA and J. M. DO Ó, A sharp Trudinger-Moser type inequality in R2, Trans.
Amer. Math. Soc. 366 (2014), 4513–4549.

[7] W. DING, J. JOST, J. LI and G. WANG, The differential equation �Du = 8⇡ � 8⇡heu on
a compact Riemann Surface, Asian J. Math. 1 (1997), 230–248.

[8] M. FLUCHER, Extremal functions for Trudinger-Moser inequality in 2 dimensions, Com-
ment. Math. Helv. 67 (1992), 471–497.



TRUDINGER-MOSER INEQUALITIES INVOLVING AN ISOMETRIC GROUP 1323

[9] L. FONTANA, Sharp borderline Sobolev inequalities on compact Riemannian manifolds,
Comment. Math. Helv. 68 (1993), 415–454.

[10] S. IULA and G. MANCINI, Extremal functions for singular Moser-Trudinger embeddings,
Nonlinear Anal. 156 (2017), 215–248.

[11] Y. LI, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two,
J. Partial Differential Equations 14 (2001), 163–192.

[12] Y. LI, The existence of the extremal function of Moser-Trudinger inequality on compact
Riemannian manifolds, Sci. China Math. (Series A) 48 (2005), 618–648.

[13] K. LIN, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc. 348 (1996),
2663–2671.

[14] G. LU and Y. YANG, The sharp constant and extremal functions for Moser-Trudinger in-
equalities involving L p norms, Discrete Cont. Dyn. Syst. 25 (2009), 963–979.

[15] G. LU and Y. YANG, Adams’ inequalities for bi-Laplacian and extremal functions in di-
mension four, Adv. Math. 220 (2009), 1135–1170.

[16] G. MANCINI and L. MARTINAZZI, The Moser-Trudinger inequality and its extremals on
a disk via energy estimates, Calc. Var. 56 (2017), 94, https://doi.org/10.1007/s00526-017-
1184-y.

[17] J. MOSER, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971),
1077–1091.

[18] J. MOSER, On a nonlinear problem in differential geometry, In: “Dynamical Systems”
(Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 273–280.

[19] V. H. NGUYEN, Extremal functions for the Moser-Trudinger inequality of Adimurthi-Druet
type in W1,N (RN ), arXiv:1702.07970.

[20] J. PEETRE, Espaces d’interpolation et theoreme de Soboleff, Ann. Inst. Fourier (Grenoble)
16 (1966), 279–317.

[21] S. POHOZAEV, The Sobolev embedding in the special case pl = n, In: “Proceedings of
the Technical Scientific Conference on Advances of Scientific Research 1964-1965”, Math-
ematics sections, Moscov. Energet. Inst., Moscow, 1965, 158–170.

[22] M. STRUWE, Critical points of embeddings of H1,n0 into Orlicz spaces, Ann. Inst.
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