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ABSTRACT. We study infinite order automorphisms of irreducible holomor-
phically symplectic manifolds with an invariant Lagrangian fibration. Such
automorphisms act (possibly after taking a positive iterate) by translations on
smooth fibers, and their orbits in a general fiber are dense ([1]). We provide
a simple proof that the associated Betti map is of maximal rank, in particular,
the set of fibers where the induced translation is of finite order is dense as
well.
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1. INTRODUCTION

1.1. The dynamics of parabolic automorphisms.

1.1.1. Let X be an irreducible hyperkéhler (or “holomorphically symplectic’)
manifold of complex dimension 2g. This means that

(a) X is a simply-connected, compact, Kdhler manifold;

(b) there is a holomorphic 2-form ¢ on X which is symplectic, i.e. % is a
non-vanishing holomorphic form of top degree;

(c) o is unique up to a nonzero multiplicative factor.

1.1.2. On H?(X,Z) there is a non-degenerate integral quadratic form g of sig-
nature (3,b, — 3), the Beauville-Bogomolov form (see [22], §23.4). The signa-
ture of g on H''(X;R)! is (1,1 (X) — 1), so that the projectivization of the
positive cone

{ue H"'(X;R) ; q(u,u) > 0} (1.1)
can be viewed as a model of the hyperbolic space. We shall denote by Hy
this hyperbolic space, its dimension is 4""!(X) — 1. Its boundary dHy is the
projectivization of the isotropic cone {u € H'!(X;R) ; q(u,u) = 0}.

We denote by NS(X) the Néron-Severi group of X,

NS(X)=H"!'(X;:R)NH*(X;Z). (1.2)
If L is a line bundle on X, we denote by [L] € NS(X) its Chern class.

1.1.3. The group Aut(X) acts by isometries on H?(X;Z) with respect to g
and preserves the Hodge decomposition, so that it acts also by isometries on
H (X;R) and on Hy. As described in [40] for instance, there are three types
of isometries of hyperbolic spaces, hence three types of automorphisms: el-
liptic, parabolic, and loxodromic. In this article, we study parabolic automor-
phisms. An automorphism f of X is parabolic if the induced automorphism f*
of H1(X;R) satisfies the following equivalent properties:

(a) f* has exactly one fixed point on the boundary dHy and no fixed point in
the interior;

(b) there is a positive iterate (f*)" of f* acting as a unipotent matrix of infinite
order on H!(X;R) (resp. on H?(X;7Z));

©) 1(f*)"| = c(f)n® +O(n) for some positive constant c(f). (Here, ||-|| is any
norm on End (H"!(X;R)) or End (H?(X;R)).)

1We denote by H'"! (X, R) the subspace of H>(X,R) whose complexification is H'*! (X).
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We refer to the Appendix for references and a proof of (c).

1.1.4. Let f € Aut(X) be parabolic. Its fixed point on the boundary dHlx cor-
responds to a line in H!(X;R) which is fixed pointwise by f*; this line is
integral: it is generated by some primitive isotropic class ¢y € NS(X). More-
over, the nef cone of X being closed and Aut(X)-invariant, we can choose ¢ rto
be the class of some nef line bundle (i.e. £ is in the closure of the Kéhler cone
of X). This uniquely determines ¢¢. Since b;(X) = 0, Pic’(X) = 0 and there is
a unique nef line bundle L such that [L¢] = ¢7; then f*Ly = L.

1.1.5. The so-called Lagrangian Conjecture (which has been stated indepen-
dently by several people, including Hassett and Tschinkel, Huybrechts, and
Sawon), also known as the Hyperkihler SYZ Conjecture, says that a nef line
bundle L with ¢([L],[L]) = 0 should be semi-ample: this means that L*" should
be base-point-free for large positive integers n. This conjecture has been veri-
fied in all known examples (see [5]); applied to Ly, it says that the linear system
of sections of Lf?" defines a morphism

pr:X—B (1.3)

with connected fibers of strictly positive dimension. According to [32], such a

morphism is a Lagrangian fibration, which means that the smooth fibers of py

are Lagrangian tori. The base B of the fibration is a normal projective variety of

complex dimension g and of Picard number 1, which a priori can be singular.
Then, there is an automorphism fp of B such that

prof=feopy, (1.4)

and it can be shown that fp has finite order (see [29] and Theorem B below).
Thus, for some k£ > 1,

(1) the action of (f*)* on H?(X;Z) is unipotent, and of infinite order;

Q) proff=ps
3) fk acts as a translation on each smooth fiber ([1], Proposition 3.8).

1.1.6. Theorem 3.11 of [1] shows that the orbits of fk must be dense in the
euclidean topology on almost all smooth fibers of ps. A natural question is
whether one often encounters smaller orbit closures. For example, is the set of
b € B such that f* is of finite order on X, (i.e. acts as a translation by a torsion
element) dense in B? Our main theorem answers this question positively (see
below for the definitions of translation vector and maximal variation).
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Theorem A. Let X be an irreducible hyperkdhler manifold of dimension 2g.
Let f be a parabolic automorphism of X with an invariant fibration py: X — B
and let k be a positive integer such that pyo ff=p . Then,

(1) forany p € {1,2,...,g}, there is a positive constant c,(f) such that
1) Wz = €p(N)n* + 0P 1);

(2) the translation vector of f* has maximal variation;
(3) forany s € {0,1,2,...,2g}, the subset of B defined by

Dy(f*) = {b € B ; the closure of any orbit off&b has dimension s in Xp,}

is dense in B for the euclidean topology.

In the definition of Dy(f¥), “closure” means “closure with respect to the eu-
clidean topology”. For instance, the following sets are dense in B:

D, = {b € B ; every orbit of f*in X, is dense in Xp} (1.5)
Dy={beB; ff has finite order}. (1.6)

Note that we assume in Theorem A that f preserves a Lagrangian fibration; as
explained in Section 1.1.5, this is satisfied in all known examples.

1.1.7. When X is projective, Theorem A is not new: it can be derived from
results of Bakker, André-Corvaja-Zannier, Gao, and Voisin. This is explained
in Section 1.3. Theorem A has also been proven for all surfaces in [7, 9], but it
seems difficult to apply the same methods in higher dimension (?). Our goal is to
describe a new proof of it, and to extend the result to non-projective manifolds;
on our way, we also extend a result of Lo Bianco (see Theorems B and C).

1.2. Betti coordinates, translation vector, maximal variation.

2The surfaces in [9] are Kihler but do not have to be hyperkéhler. Indeed, if X is a compact
complex surface, the intersection form defines a quadratic form on the second cohomology
group of X. If the surface is Kihler, its restriction to H'!(X;R) is non-degenerate and of
signature (1,41 (X)—1). Thus, automorphisms of X can also be classified into three types,
elliptic, parabolic, or loxodromic. By a theorem of Gizatullin, every parabolic automorphism
of a compact Kéhler surface preserves a genus 1 fibration (with finite order action on the base
except for some automorphisms of some tori).



PARABOLIC AUTOMORPHISMS: ORBITS AND BETTI MAPS 5

1.2.1. A few references. The Betti coordinates, introduced below, have been
used in various situations similar to the one in this paper. A good historical
introduction can be found in the first pages of [3]. The references we know
about that are closest to our setting are the following: firstly, Manin’s study
of the Mordell problem over function fields [30]; secondly, Zannier’s famous
book [46], more precisely its Chapter 3.3 concerning a question of Masser;
thirdly, the work of Corvaja, Masser, and Zannier, in particular [11]. Since
then, Betti coordinates have become a common tool in Diophantine geometry,
with connexions to algebraic dynamics (see [9, 13]). See in particular Sec-
tion 1.3 below.

1.2.2. Betti coordinates. Let p: X — B be a fibration of a compact complex
manifold. We shall always denote by B° the subset of regular values of p where,
by definition, the singularities of B are put in B\ B°. Suppose that for every
b € B°, the fiber X, = p~!(b) is a torus, isomorphic to C8 /L(b) for some lattice
L(b) C C# (not uniquely defined, see Remark 1.1 below).

Let U be a simply connected open subset of B, bg apointof U,and s: U — X
a section of p. If one fixes a basis of H(Xp,;Z), it can be propagated continu-
ously to the fibers X}, for b € U and this gives a trivialization H; (Xy;7Z) ~ Z?¢.
Then, there is a unique diffeomorphism

®: Xy — U x (R*¢/7%) (1.7)
such that
(i) p = pry o®, where pry, is the projection from U x (R?8/Z28) to U,
(ii) @osyy(b) = (b,0) forall b € U,
(iii) ®: X, — {b} x (R?8/Z?8) is an isomorphism of Lie groups for all b € U,
(iv) @, maps the basis of H{(Xy;7Z) to the canonical basis of

78 ~ Hy (U x (R*/7%);Z) .

This diffeomorphism is real analytic. We shall refer to & as the Betti dif-
feomorphism; points of U x (R?¢/Z?8) can be written (u,x) with u in U and
x = (x1,...,%2) in R?€ modulo Z28, and we shall refer to these as the Betti co-
ordinates (determined by ®). We refer to the triple given by U, the section sy,
and the basis of H;(Xy,Z) as the Betti datum used to define ®. To simplify
notation, we shall simply write U x R?¢ /72 instead of U x (R?€ /7Z?8).

Remark 1.1. The Betti datum can be used to fix a choice of lattice L(b) such
that X, = C8/L(b). For this, we fix a trivialization of the tangent bundle to the
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fibers of p along s(U). Then, T X, can be identified to C# for any b € U
and L(b) C C# can be defined to be the kernel of the exponential map C8 ~
Ts(p)Xp — Xp. With such a definition, L(b) depends holomorphically on b.

1.2.3. The translation vector. Let f be an automorphism of X such that po f =
p and f acts by translations on the general fibers of p. Conjugating f by ® one
gets a diffeomorphism ®o f o ®~! of U x R?8 /7?8 of type

(u,x) = (u,x+15(u)) (1.8)

for some real analytic functionzs: U — RR?¢ (or to R?€ /Z?%8). By definition, tris
the translation vector of f (in the Betti coordinates defined by ®). As we shall
see in Section 3.2, the generic rank of 7/ is an even integer and this integer does
not depend on the choice of Betti coordinates. We shall refer to it as the rank
of the translation vector. The maximal possible rank is min(2dimc(B),2g).
For Lagrangian fibrations dimc(B) = g so, in what follows, we assume that
min(2dimc(B),2g) = 2g for simplicity; then, we say that 7, has maximal
rank, or equivalently that 7, has maximal variation, if its generic rank is 2g.
Lemma 3.1 shows that the variations of 7, are maximal if and only if the image
of 7 is open in R?¢, if and only if I 1S an open mapping.

This explains the meaning of Assertion (2) in Theorem A and shows that
this assertion implies Assertion (3) (see Section 3 for more on 7y and a detailed
proof of how (3) is derived from (2)).

1.2.4. Now, suppose that s: B — X is a global holomorphic section of p. For
every b € B°, we can declare that s(b) is the neutral element of X}, and, doing
so, Xj becomes a commutative complex Lie group.

Then, fosis a new section of p, and the action of f on Xj, is the translation by
fos(b)—s(b) forevery b € B°. Let us now set r = f os and forget about f. The
dynamical properties of f can be translated into properties of t. More precisely,
consider a Betti diffeomorphism ® (determined by some choice of Betti datum)
and set

1y = P2 720 (Por)  mod Z7%. (1.9)

This map u € U > t7(u) = prae/72¢(P(#(1))) mod 778 is usually called the
Betti map associated to the section ¢ (and the chosen Betti datum). Thus, the
translation vector of f has maximal variation if and only if the Betti map is
generically of maximal rank 2g . This property of the Betti map has been stud-
ied a lot, at least in the case when X is projective, as explained below.
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1.3. General results on Betti maps. Let us explain how Theorem A can be
derived from works of André, Corvaja and Zannier, of Gao, of Voisin, and of
Bakker when X is projective.

1.3.1. As mentionned above, Chapter 3.3 of [46] makes use of Betti coordinates
to solve a problem of unlikely intersection concerning common torsion points
of two sections of an elliptic fibration. It combines the counting estimates of
Pila and Wilkie for rational points on a subanalytic set S of R” and an argument
that relies on the monodromy of the Gauss-Manin connection of the elliptic
fibration to control the algebraic part of the subset S involved in the problem (see
also [39, 11]). A second crucial reference is [3]: it initiates the systematic study
of Betti coordinates in arbitrary dimensions and combines the previous strategy
with theorems from functional transcendence theory, notably André’s theorem
concerning the independence of abelian logarithms [2] and the Ax—Schanuel
theorem from [34].

In this section, we rely on the subsequent developments by Gao, because [19]
and [18] contain optimal results regarding the variations of the Betti maps (i.e.
of the translation vectors). The tools used in [19] being somewhat simpler, we
base our explanation on it and describe how it is related to Theorem A.

1.3.2. In[19, Theorem 1.3], Gao considers an abelian scheme p: 4 — S of
relative dimension g over a smooth complex algebraic variety S, with a section
€ (or more generally a multisection) generating 4. By definition, this means
that 4 is a group scheme (there is a neutral section of p) and Zg is Zariski
dense in 4. He proves that the associated Betti map is generically of rang 2g if
the following three properties are satisfied:

(a) the modular map u : § — A, is quasi-finite (3);

(b) dim(S) > g, and

(c) the geometric generic fiber of the family is simple (*).

To apply this result to our context, we can take S to be the set of regular values
B° of pr. Then (b) is satisfied by construction. Moreover, a recent theorem
of Bakker proving Matsushita’s conjecture states that either u is quasi-finite on

3Here, A, is the space of polarized abelian varieties in dimension g with respect to some
polarization type and some level structure; since they are not relevant, we simply write 4.

See also [18], where it is established that the non-maximality of the rank of the Betti map
associated to a generating & implies the existence of a quotient abelian scheme of low variation.
For simplicity’s sake we prefer to keep [19] as our main reference: it is almost equally quick to
get applications to hyperkihler manifolds from [19], see [4].
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a dense open subset of S or u is constant, i.e. the family is isotrivial (see [4]).
Thus, in the non-isotrivial case, Gao’s theorem is close to establishing Asser-
tion (2) of Theorem A; nevertheless, there is a subtlety here: in general it is
not true that the geometric generic fiber is simple, though the scheme-theoretic
generic fiber is simple and has Picard number 1 (see [37]).

Example 1.2. Let Y be a K3 surface with a genus one fibration 4 : ¥ — P!,
The Cartesian square of Y is naturally fibered in products of genus one curves
over P! x P!, and the natural involution exchanges the fiber over (a,b) with
that over (b,a). Set X = Y% = Hilb?(Y). Then X is hyperkihler and is fibered
over P2 = Sym?(P') in such a way that most of the fibers are tori: the fiber over
a-+b,a+b,ish~'(a) x h~'(b). The generic fiber of this fibration 41 : X — P2
ceases to be simple after a degree two extension of the function field of P2,
corresponding to the map (a,b) — a+ b from P! x P! to P2.

For most applications, though, Gao’s theorem works with some extra argu-
ment: see for example [4, Corollary 9] for a density statement similar to what
we discuss here.

Finally, coming back to the setting of hyperkihler manifolds, the case of
isotrivial Lagrangian fibrations is covered in a paper by Voisin [45] together
with the case dim(X) < 8 (i.e. g <4).

Remark 1.3. In [3], the authors raise the question whether the Betti map asso-
ciated to a section  of p: 4 — S is generically of rank 2g under the following
milder conditions: & generates 4, 4 has no fixed part over any étale finite cov-
ering of S, u is quasifinite, and (as above) dim(S) > g. In [18, Example 9.4],
a counterexample is given with g = 4; clearly, this example is not hyperkihler.
However, a positive answer to this question was obtained in [3] when g < 3,
and in any dimension under the additional assumption that the abelian scheme
has no non-trivial (that is, other than multiplying by an integer) endomorphism
over any finite covering of the base.

1.4. Strategy of proof. With the previous results in mind, the reason why
we wrote this text is twofold. Firstly, Theorems A and B now hold uniformly,
for projective and non-projective hyperkihler manifolds, and for isotrivial and
non-isotrivial fibrations. Secondly, the proof follows a new route. Gao obtains
his result as a consequence of mixed Ax-Schanuel theorem. On one side, our
argument is simpler because it relies on more basic principles; on the other
side it applies only to the hyperkihler case, because we rely on Verbitsky’s
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theorem [42, Theorem 1.5] on the cohomology of hyperkéhler manifolds (this
is used to get Assertion (1) of Theorem A, which is — in turn — used to derive
Assertion (2)). The proof is done for projective hyperkihler manifolds first, and
then generalized to the non-projective case. The argument for this last step is
of independent interest; it applies recent results of Soldatenkov and Verbitsky.

One of our arguments combines basic volume estimates from riemannian
geometry with a theorem of Gauthier and Vigny. This riemannian point of
view is quite natural and is reminiscent of both Manin’s proof of the geometric
Mordell conjecture and Parshin’s proof of the geometric Shafarevich conjecture
in characteristic zero (see [33, 38]). See also the recent article [10] and the
book [17], in which this approach is described in details for elliptically fibered
surfaces.

1.5. Acknowledgements. We are grateful to Thomas Gauthier, Misha Verbit-
sky, and Claire Voisin for useful discussions. We thank Pietro Corvaja, An-
drey Soldatenkov, and Umberto Zannier for interesting feedback, as well as the
anonymous referee for his remarks and the reference [10].

2. HYPERKAHLER MANIFOLDS

In this section, X is a irreducible hyperkihler manifold of dimension 2g,
as in Section 1.1.1. We introduce the main basic features of parabolic
automorphisms and Lagrangian fibrations.

We denote by ¢ a holomorphic symplectic form &, as in Section 1.1.1, and
by ¢ the Beauville-Bogomolov form on H?(X;Z), as in Section 1.1.2. The
Beauville-Bogomolov form will be seen either as a quadratic or a bilinear form;
we refer to [22] for its main properties. Note that when g = 1, X is a K3 surface
and ¢ is given by the natural intersection form on H?(X;Z).

2.1. The Néron-Severi group. We denote by gx the restriction of g to NS(X).

If A is aring, we set NS(X;A) = NS(X) ®zA; hence NS(X) = NS(X;Z). When

X is projective, there are classes u in NS(X) with gx(u,u) > 0, for instance

Chern classes of ample line bundles. Conversely, a theorem of Huybrechts

shows that if such a class u € NS(X) exists, then X is projective (see [21, 23]).
There are three possibilities for the signature of gx on NS(X;R)

(a) gx is non-degenerate of signature (1,p(X)—1);



PARABOLIC AUTOMORPHISMS: ORBITS AND BETTI MAPS 10

(b) gx is degenerate with one-dimensional kernel, and takes only non-positive
values; in this case, following Oguiso (see [36], page 167), we say that gx
is parabolic;

(c) gx is negative definite.

The second and third cases do not appear when X is projective.

2.2. The transcendental lattice. The transcendental lattice T(X) is, by defini-
tion, the orthogonal complement of NS(X) in H?(X;Z) with respect to . The
Lefschetz theorem on (1, 1)-classes implies that T(X) is the smallest subgroup
of H*(X;Z) such that Co is contained in T(X) ®z C and H*(X;Z)/T(X) is
torsion free. The intersection T(X) NNS(X) is reduced to 0, except when gy is
parabolic.

2.3. Fibrations and polarizations. Let p: X — B be a holomorphic fibration,
that is, a proper surjection with connected fibers and dim(X) > dim(B) > 1.
Then by the results of Matsushita, p is a Lagrangian fibration in the sense of
holomorphic symplectic geometry (see [22, Sec. 21.4]); moreover,

(1) its fibers are projective, and the generic fiber is an abelian variety of dimen-
sion g = dim(X)/2 on which ¢ vanishes (see [6], Proposition 2.1, which
the author attributes to Voisin);

(2) the base B is projective too, indeed it is Kdhler and Moishezon with rational
singularities (see [25] Theorem 2.8, [35] Corollary 1.7). Moreover B is Q-
factorial with Picard number 1 (see [31]). It is generally expected that B is
isomorphic to P§; when B is smooth, this is a theorem by Hwang [24].

Now, set X° = Xpo, where B° is defined as in Section 1.2.2. The projection
p: X° — B° is a proper submersion, the fibers of which are naturally polarized
abelian varieties (however, when p does not have a section, the group law on
the general fiber is not well defined). Indeed,

(3) the restriction homomorphism H?(X;Z) — H?(Xp;Z) has cyclic image.

This remark has been made by Oguiso in [37] (see [1] for a self-contained
proof). Let R, C H*(X,;Z) denote this cyclic group. If « is a Kihler form
on X, then there is a unique positive multiple ok such that R;, is generated by
the class [OCK|Xb]; this integral class gives a natural polarization of X}, for each
b € B°. When X is projective, we can assume that [ok] is in NS(X).
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2.4. Automorphisms. Let p: X — B be a Lagrangian fibration on X. Since
p(B) = 1, there is a unique primitive ample class hp in NS(B); we denote by
h € NS(X) its pull back by p: this class is nef and isotropic (i.e. gx (h,h) = 0).

Let f be an automorphism that preserves the class 4. Then f preserves the
fibration p, in the following sense: there is an automorphism fp of B such
that po f = fpo p. The automorphism fp preserves hp. One can also find an
embedding B C PV(C) such that fp preserves the Fubini-Study form (restricted
to B); we denote such a form by kp:

f8¥B =Xa. (2.1)

The existence of such a form Kp is due to Lo Bianco (see [29], Lemma 3.1).
Let us sketch his proof. Since the Picard group of B is cyclic and B is pro-
jective, there is an fp-invariant and very ample line bundle Lg on B. Then, fp
induces a linear transformation Fz of HY(B;Lp) and the Kodaira-Iitaka embed-
ding v: B — P(H°(B;L)") is equivariant: 10 fg = Fgol. On the other hand,
the volume form voly := (6 A G)$ induces a probability measure ug = p,voly
on B with full support which is fp-invariant. Then, the invariance of 1.up under
Fp, the fact that 1(B) is not contained in a hyperplane of P(H°(B;Lg)"), and
the equality Supp(t.up) = 1(B) imply that Fp is contained in a compact sub-
group of PGL (H(B;Lg)"). Thus, up to a linear conjugacy, Fp preserves the
Fubini-Study metric.

A priori B can have singularities, but it does make sense to speak of such
a differential form as the restriction of a form defined on the ambient space
PV(C); this is compatible with the definitions of Varouchas as suggested in
[41], Remark 2.2 (see also [14]).

Theorem B. Let p: X — B be a Lagrangian fibration of an irreducible hyper-
kdhler manifold X. Let f be an automorphism of X such that po f = fgo p for
some fp € Aut(B). Then there is an integer k > 1 such that

(1) f* preserves the symplectic form o, i.e. (f*)*c = ©, and
2) f{,f =Idp, i.e. f* preserves each fiber of p.

If X is not projective, then f*c = G; in other words, one can take k = 1 in the
first assertion; it is implied by & € T(X), see Theorem 2.4 in [36].

Proof. Let us prove Assertion (1) (see also [8, 36]). Since f is parabolic, all
eigenvalues of f* on H?(X;C) have modulus 1. Since f* preserves the lattice
H?(X;7), its characteristic polynomial is a monic polynomial with integer co-
efficients. Thus, the eigenvalues of f are roots of unity. On the other hand, ¢
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is unique up to a scalar factor, so f*c = ac where « is the eigenvalue of f* on
H?>O(X;C). If k denotes the order of ., then (f*)*6 = G.

When X is projective, Assertion (2) is part of a theorem from [29](5 ). The
non-projective case reduces to the projective one as follows: using the form kp
one defines a family of new complex structures X; on X (the “degenerate twistor
deformations” studied by Verbitsky and Soldatenkov), all fibered over B, such
that the map f remains holomorphic on each X;. Since some of these complex
structures are projective, the conclusion will follow from the projective case.
Details are provided in Section 7.4. 0

3. MAXIMAL VARIATION AND BETTI COORDINATES

In this section, we study the variations of the translation vector of a
parabolic automorphism of a projective hyperkdhler manifold.

3.1. The setting. We suppose that X is a projective hyperkdhler manifold, with
a parabolic automorphism f that preserves a Lagrangian fibration ps: X — B,
and use the notations introduced in the previous sections. For simplicity, we
replace f by a positive iterate to assume that

prof=psand ff6=0 3.1

as in Theorem B.

Since X is projective, we can find a multisection S of py. Thatis, S C X isa
smooth, irreducible, g-dimensional subvariety of X which is generically trans-
verse to py. Then, psg: S — B is generically finite. Moreover, if U is a suf-
ficiently small, non-empty, open subset of B°, we can find such a multisection
that is everywhere transverse to py above U, i.e. pfjsn, ~1(v) 1S @ non-ramified

cover from SN p}l (U) to U of some degree d > 1. With such a choice, and if
U is simply-connected, there are d holomorphic sections s; of p above U such
that SN U is the disjoint union of the s;(U). The degree d is the intersection
number ([S] - [X]) for any fiber X.

3.2. Translation vectors. Let U C B° be simply connected and let s: U — X
be a holomorphic section of ps above U. Fix a basis of H(Xy;Z) and consider
the Betti diffeomorphism & and the translation vector ¢y associated to these
data.

3 Assertion (2) has been claimed already in [1], with an explanation that Lo Bianco’s argu-

ment for the projective case was valid in general. That explanation does not seem to be correct,
this is why we provide a proof of (2) based on Verbitsky’s idea in Section 7.4.
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Lemma 3.1. The following properties are equivalent.

(D)t U — R28 is an open mapping;

(2) t¢(U) contains an open subset of R*;

3)ty: U — R?¢ has maximal rank 2g in the complement of a proper, real
analytic subset of U.

If they are not satisfied the generic rank of ty is even and < 2g — 2.

We just sketch the proof of this lemma because it is already proven in [3,
19, 9]. The first remark is that the fibers of the Betti projection T, o ®: Xy —
R28 / 78 are complex submanifolds of X;;. The second remark is that, viewed
in Betti coordinates, ¢y is just the projection of = fos —s on R?¢ /7?8 and t
is a holomorphic function (its differential Dt intertwines the complex structure
ju on TU with the complex structure jx on 7X). With this at hand, the first
consequence is that 77 is real analytic, and in particular the maximum of the
rank of (Dt),, u € U, is attained on the complement of a proper real analytic
subset of U. Then, let j(u) be the (translation invariant) complex structure on
R?¢ /7?8 (equivalently, on R?8) obtained from the restriction of jy to X, via ®:

jw)(v) = Bu(ix (@, 1)) (3.2)

for every vector v tangent to R?¢ /Z?¢. Then (j(u)) is a real analytic family of
complex structures and the second consequence is (Dts), o juy = j(u) o (Dtf),
for every u € U. Thus, the generic rank of 77 is even. These properties directly
imply the lemma.

Lemma 3.2. The property “t; has maximal variation” does not depend on the
Betti datum chosen to define the Betti coordinates.

Indeed, changing the section s does not change 7, and changing the basis of
H(Xy;Z) changes tf into Aoty for some A € GLg(Z), so in both cases the
property “t;(U) contains an open subset of R%¢” is preserved by such a change.

To show that the property does not depend on the choice of U, note that if
U NU' is non-empty, then Lemma 3.1(3) shows that 7; has maximal variation
on U if and only if it has maximal variation on U NU’, and then this property
propagates to U’. Then use that B° is connected.

3.3. Volumes and variations. To study the variations of 77, we shall rely on
the following volumic characterization of its maximal variation. If k is a Kéhler
form on X, and if W is a complex analytic subset of (some open subset of) X of
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dimension m, its volume with respect to K is equal to

VO]K(W):/ K", (3.3)
W

If W C X is closed, its volume can be computed in cohomology as the intersec-
tion product vol(W) = ([W] - [k]™), where [x] is the class of K and [W] is the
Poincaré dual of the homology class of W.

Lemma 3.3. Let U be an open subset of B, the closure of which is contained
in B°. Let x be a Kiihler form on X. Let M be a multisection of pr. Then
vol(f"(M)NXy) = O(n?8), and the following properties are equivalent

(a) 1y does not have maximal variation,

(b) vol(f*(M)NXy) = 0(n*$~") as n goes to -+oo;

© (") &y, = O(n*¢~1) as n goes to +oo, where ||- |, denotes the uniform
norm on Xy (for sections of N$8(TX)).

Instead of O(n*$~1), we could obtain O(n") where r is the generic rank of ¢
on U, but the weakest estimate will be sufficient for our purpose. This lemma
implies again that maximal variation of the translation vector is an intrinsic
property that does not depend on the choice of Betti coordinates.

Proof. By compactness of U C B°, we reduce to the case when U is a ball (i.e.
viewed in some local chart of B° containing U, U is a ball in C¥$).

As in Section 3.2, s: U — X is a section of py above U, @ is a Betti dif-
feomorphism and 7 is the translation vector in the Betti coordinates; we set
S = s(U). We can assume moreover that s (resp. ) extends to a neighbor-
hood of U (resp. of p;I(U)). We transport the riemannian metric associated
to K by P to get a riemannian metric ||-|| g on U x R?¢/7%. Let ||-|,,. be the
euclidean metric on C8 x R28, restricted to U x R?8. Since U C B°, there is a
constant A > 1 such that A~ [-|| . < [|[lc 0 < Al
space of U x R?8 /728, Thus, when estimating volumes, we can work with the
usual euclidean metric in the Betti coordinates.

Let d be the degree of the multisection M. Let C C U be the branch locus
of psy: MN p}l(U ) — U. Let D be a real analytic subset of U containing
C such that U’ := U \ D is simply connected (by this we mean that each con-
nected component of U’ is simply connected). Since the Lebesgue measure of
D vanishes, the volume of f"(M) above U’ is the same as its volume above U.
But over U’, M is a union of d sections, so without loss of generality we may
replace M by one of them and assume that M is in fact a section.

ouc Uniformly on the tangent
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In the Betti coordinates, f becomes
for (u,x) — (u,x+1t¢(u)) (3.4)

®(S) is parametrized by u + (u,0), and ®(M) by u > (u,m® (1)) for some real
analytic function m®. Thus, ®(f"(M)) is parametrized by

U (u,mq)(u) +ntr(u)), (3.5)

and the question is to estimate the volume of this submanifold of real dimension
2g with respect to the euclidean metric.

In the tangent space of U C C8 = R?8, denote by (v;)i<2, the standard or-
thonormal basis. In the tangent space of R?¢ /7?8, denote by (e;)i<24 the stan-
dard orthonormal basis. The image of v; by the differential of u — (u,m® (u) +
ntr(u)) is the vector

wi(nyu) = v+ (Dmcp)u(vi) +n(Dtg)u(vi). (3.6)

Let us write #7(u) = (t1(u),...,t2g(u)) and (Dty),(v;) = (9;tj(u)); similarly,
m®(u) = (mcll’(u),...,mgz,(u)) and (Dm®),(v;) = (8,m?(u)) We see that the
exterior product wi(n;u) A--- Awag(n;u) is a polynomial in n of degree at most
2g with coefficients which are uniformly bounded, analytic functions of u. For
instance, when g = 1 we obtain

w| =V1 +alm(1b€1 +81m§’ez +nditie; +noitren

Wy = vy + 0amT e + 0ymT s + noatieq +nortrer

and then setting v = v + alm‘lbel + almg’eg and v, = vy + azm?el + Bng’ez
we obtain

w1 Awy :vll/\vlz
+n(azl‘1v/1 Neq +82t2v/1 Nen —amv’z/\e] —a1t2v/2/\62)

+ n2(81t182t2 - 81r282t1)e1 Ner

where the dependence on u is implicit. The monomial n?¢ appears only in front
of ej \--- A ey, and is multiplied by the function u — det((Dty),). Since the
euclidean volume is bounded from above by the integral of the function u —
|| w1 () A -+ Awog(n;u)|| with respect to the Lebesgue measure on U C R,
this proves the first equivalence stated in the lemma.

The computation for [|(f")*k® ||y, is similar. O
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In the next Section, we extend this type of estimate from compact subset
U of B° to the whole base B itself. That is, we shall estimate the volumes of
f"(S) C X, where S is a multisection.

4. PROPAGATION OF VOLUME ESTIMATES

We show that if the translation vector of f does not have maximal vari-
ation, then [|(f")* | ges (x ) = O(n*87Y).

Our first goal is the following proposition.

Proposition 4.1. If the variations of ty are not maximal then, for any multisec-
tion S of py: X — B, there is an integer D > 2 such that

vole(f'(8)) = o(D*"~Y)
as n goes to +oo.

This will be achieved in Section 4.3. Then in Section 4.4 we transfer this
volume estimate into the upper bound [|(f")*[| e (x.r) = o(n?6 1),

The difficulty is to propagate the volume estimate from Lemma 3.3 up to
neighborhoods of the singular fibers of p; because when approaching these
fibers, the Betti coordinates may explode. To do this, we rely on pluripotential
theory and use a technique that has been developed by Gauthier and Vigny. To
refer directly to their work, we translate our problem into a dynamical property
of a new (non-invertible, rational) transformation of X.

4.1. Multiplication by D along the fibers.

4.1.1. Let p: X — B be a fibration of a complex projective variety, the generic
fiber of which is isomorphic to an abelian variety of dimension g. Let Sy be a
multisection of p of degree d = ([So] - [Xp]), as in Section 3.1.

Let D > 2 be an integer such that d divides D — 1. Then, there is a well defined
dominant, rational transformation mp: X --+ X acting by multiplication by D
along the smooth fibers of p. More precisely, pick a point » € B° and a base
point w on the fiber Xj,. Using w as neutral element, X}, becomes a commutative
group isomorphic to C8/L(b) for some lattice L(b). Using the group law, the
transformation mp can be defined fiberwise by

D—1
z€Xprmp(zr)=Dz——— Y s, (4.1)

d sESHNXp
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where the points of Sy M X}, are eventually repeated according to their multiplic-
ities. This does not depend on w by the following standard lemma, the proof of
which is straightforward.

Lemma4.2. Leta;, i=1,...,l beintegers suchthat) ;a;=1,and P,i=1,...,l
be points on a complex torus. Then Y ;a;P; does not depend on the choice of the
neutral element w.

Hence it defines a rational transformation of X, regular above B°, preserving
pf, and of topological degree D?. In Betti coordinates, over some open subset
U C B°, mp becomes

mp.&(u,x) = (u,Dx+1tp(x)) (4.2)

for some real analytic map fp: U — R?8.

4.1.2. If p: X — B is a Lagrangian fibration of a hyperkidhler manifold, the
natural polarization of the fibers introduced in Section 2.3 is automatically in-
variant under mp; that is,

(1) for b in B°, the image of the restriction of H*(X;Z) to H*>(X};Z) is an
infinite cyclic subgroup R, C H 2 (Xp3Z);
(2) there is an ample line bundle A on X such that (a suitable multiple of) the

ample generator of Ry, is the Chern class of A, := A|x, and mpA, = A?Dz.

Thus, mp is a family of polarized endomorphisms of X — B in the sense used
by Gauthier and Vigny in [20].

To prove (2), let H, be the ample generator of R,. The inverse image by
mp multiplies H, by D?. If we pick any line bundle L;, in the class Hj, then
mpLy = L}?D ’ ® M}, where Mj, € Pic°(Xp). To find a line bundle in the class of
Hjp, which is taken to the power D? by mp, we have to add to L a (D2 —1)-th
root of M,,. There are D? — 1 of them, so equally D? — 1 line bundles Ly j in the
class Hp, and we take the sum of them all to get a monodromy invariant A.

Now, suppose we start with a Lagrangian fibration and a multisection S,
and we do the base change given by p: So — B. We get a new variety Y, a
map ¢: Y — X of degree d, and a new fibration py: Y — Sp such that pog =
P|s, © py- Moreover, py has a natural section Sg C Y. Then, for each D > 2 we
can construct a rational transformation m1§3 Y --» Y acting by multiplication
by D on the smooth fibers of py and fixing Sg pointwise (we use Sg MYy as the
neutral element of ¥, := p, ! (b) for b € S5). The natural polarization R;, of the
fibers of Xj, can be pulled back to Y and it gives an m}-invariant polarization.
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4.2. Local to global volume estimates. Let us summarize some of the results
of [20]. We fix a fibration py : Y — By and a rational transformation g: ¥ — Y.
We also fix a Kéhler form kg on By. We assume that py o g = py, that g is
regular over some dense open subset of By, and that, as above, g is (relatively)
polarized. This assumption is equivalent to the existence of an ample line bun-
dle A on Y and an integer D(g) > 2 such that

g Ay =AY 4.3)

for all b in a dense open subset of By. Choose a Kihler form K representing
the Chern class of A and a dense open subset B}, of By over which g is regular
and satisfies (4.3) (By is a regular part in the sense of [20]). Set Y/ = p}l (By).
Then, on Y/, there is a closed positive current Tg, of type (1,1), such that

—— ("= T, (4.4)

in the sense of weak convergence for currents. Moreover, Tg has local, continu-
ous potentials (on the open set Y’). For this, we refer to Section 2.3 of [20] (6).

Then, Proposition 3.3 in [20] shows that the following properties are equiva-
lent. Let S be a multisection of py and let {S} denote the current of integration
on S. Let by denote the dimension of By, hence also the dimension of S. The
following properties are equivalent

(a) locally above B, the volume of g(S) does not grow as fast as D(g)?r*. This
means that for any open subset U C By such that U C B}, we have

vol(g(Su)) = o(D(8)"")
or equivalently

[ & =o(9"
gk (Sv)

as k goes to +oo;
(b) the intersection of Tng with S over B; vanishes, i.e.

SA Tng =0
Y/

The construction in [20] differs slightly from what we write. They fix an equivariant em-
bedding 1: ¥ — By X PV such that T = Ttz o1 where g is the first projection By X Y — By.
Then, they replace the Kihler form k by krg, the restriction of the Fubini-Study form to 1(Y).
So, their form is not Kahler, but in the limit process (4.4) we obtain the same current.
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(c) the global volume of the strict transform gX (S) grows as most as D(g)®r —1k,
ie.
vol(g§(8)) = 0(D() " ~1%)

as k goes to +-oo; equivalently

1 1g4(8)] lI= 0(D(g)r~15).

Here,  is any Kihler form on ¥ and [-] denotes the class in H?" (Y;Z). The
point is that the local Property (a), in which the implicit constant in o(-) might
depend on U, gives rise to the global estimates stated in Property (c).

If we apply this result when by = g, dim(Y) = 2g, the generic fiber of Y —
By is abelian, and g = mJ}) acts by multiplication by D along the fibers, then
D(g) = D? and we derive that vol(g"(Sy)) = o(D?) implies

| [(mp)5(8)] [|= O(DP~2k). (4.5)
4.3. Proof of Proposition 4.1. Set X° = Xpo.

4.3.1. First, we assume py: X — B has a section so: B --» X, the image of
which is denoted by Sp.

(a). First Step.— We fix some integer D > 2 and denote by mp: X --» X
the rational map fixing S and acting by multiplication by D along the fibers of
pr- Let @ denote local Betti coordinates associated to an open set U C B°, the
section Sy, and some basis of H (Xp;7Z), b € U. Viewed in the Betti coordinates,
the section sp corresponds to so./q,(u) =0, while f and mp correspond to

fo(u,x) = (u,x+17(u)) (4.6)
mp.o(u,x) = (u,Dx). 4.7)
Thus, we have
f£k 0s0.a(u) = D4 (u) (4.8)
= ml ¢ (fo 0 50.0(u)) (4.9)

which means that above U we have

17 (Sow) = miy (£(Sow)). (4.10)
From Lemma 3.3 and Section 4.2, we deduce that

|77 (So) lI= 0D 2% (4.11)

where || - || is any norm on the vector space H*¢(X;R).
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(b). Second Step.— Now, we need to prove an estimate similar to (4.11),
but with Sy replaced by any multisection S of py. Consider the fiber product
W =X xpX xpX; as a set, this algebraic variety is

W ={(x,y,2) €X*; pr(x) = ps(y) = ps(2)}- (4.12)

It comes with a fibration P;: W — B, defined by P (x,y,z) = ps(x), and with a
rational map A: W — X, defined by

A(x,y,2) =x+(y—2), (4.13)

using the group law along the fiber X, b = Pr(x,y,z). (We do not need the
existence of a section or a choice of neutral element in X, for this definition.)

Let S be a multisection of py and consider the sequence of multisections
Ty C W of Py defined by

Ti={(x3.2) EW:x €S, y €S0, 2= 1 (). (4.14)
Then,
2(S) = A(T). (4.15)
From the first step, we know that the class [T;] € H*#¢(W;Z) satisfies
I [7] [|< D82 (4.16)

for some constant C > 0 that depends on S. At the level of (co)homology
classes, A acts as a linear map between finite dimensional spaces; thus, we
| [A(T)] |< C" || [T] || for some constant C' > 0 and

|7 (9)] l|< "Dl (4.17)
for C” = C-C'. This concludes the proof.

obtain

4.3.2. Incase py: X — B does not have a section, we take for Sy a multisection
and do the base change py: So — B, as in Section 4.1.2. This provides a new
variety Y — Sy with a natural section S, and a map ¢: ¥ — X above Sy — B.
Define S6 to be the locus of points s € Sp around which ps: So — B is a local
diffeomorphism and p¢(x) € B°. If V C S, is an open subset and V is small
enough, ¢ realizes a diffeomorphism from Yy = p, V) to pJZl(pf(V)). The
automorphism f induces a rational transformation fy of Y such that fog =
go fy. For D > 2, we define mp y to be the multiplication by D along the fibers
of py fixing the natural section Sg .

Now, if § is a multisection of ps, we pull back it to ¥ by g. This gives a
multisection S? of py for which vol(£2°(SY)) = O(D*¢~D¥) ag soon as U C S},
because ¢ realizes a local conjugation between fy and f. Thus, we can repeat
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the argument from Step 1 above in Y. Then, we can repeat the argument from
Step 2 by working on Wy =Y X, Y X5, Y and composing the addition map
A: Wy — Y (defined as in Equation (4.13)) with g: Y — X. This concludes the
proof in the general case.

4.4. A cohomological estimate.

Proposition 4.3. Let f be a parabolic automorphism of a hyperkdhler manifold
X. If the variations of the translation vector of f are not maximal, then

1) sy = O™
as n goes to +oo.

Proof. Embed X into a projective space PV, and intersect it with a suitable linear
subspace to get a multisection S of X. The class [S] of S will be considered as
an element of H¢(X;Z) (using Poincaré duality), it is the same as [0%¢] where
ors denotes the restriction of the Fubini-Study form to X. Proposition 4.1
shows that

I (81l = 0*EY) (4.18)

along the subsequence n = D¥, for some D > 2.

Now, consider a real subspace W of H?¢(X;R) together with a closed, con-
vex, and salient cone C C W, the interior of which is non-empty. Assume
that (a) W and C are f*-invariant and (b) [S] is in the interior of C. Then,
1(£)" |l = O(n*&~1). Indeed, by Birkhoff’s version of the Perron-Frobenius
theorem, we know that

AT I IO lw < AU (4.19)

for some constant A > 1. Thus, Equation (4.18) implies that the spectral radius
of fiy is equal to 1. This, in turn, implies that ||(f*)"||,, grows like a power of
n, and then Equation (4.18) shows that this power is <2(g—1).

We apply this scheme to the vector space W = H&$(X;R) and the cone C =
P$(X), the cone of classes represented by closed positive currents of bidegree
(g,g) (see for instance [15]). This is a closed, convex cone, and it is salient
because the set of closed positive currents 7' of bidegree (g,g) with fixed mass
My(T) = (T|«$) is compact for the weak-* topology. The class [S] = [0%] is
in the interior of this cone, because any small perturbation of ®® is a positive
(g,g)-form. And P#(X) is Aut(X)-invariant. This concludes the proof. O
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5. ACTION ON THE COHOMOLOGY

In this section, we show that if f is a parabolic automorphism of a hy-
perkihler manifold, then for every 1 < p < g there is a positive constant

cp(f) such that | (f*)"l| o () = cp(FIn?P.

Let f be an automorphism of a hyperkidhler manifold. Recall from Sec-
tion 1.1.3 that f is either elliptic, parabolic, or loxodromic. The following result
is a concatenation of theorems of Lo Bianco, Oguiso, and Verbitsky.

Theorem C. Let f be an automorphism of a hyperkdhler manifold of dimen-
sion 2g.

(1) If f is elliptic, then f* =1dyx for some k > 1;

(2) if f is parabolic, then for every 1 < p < g there is a positive constant c,(f)
such that |[(f*) o ) = o F)027

(3) if f is loxodromic, there is a real number A(f) > 1 such that for every
1 < p < g there is a positive constant cp(f) such that ||(f*)"|| o x;r) =
e (M)

(4) by duality, if f is parabolic then for g § 2g there is a positive con-
stant cp(f) with ||(f*)" | grp(x.m) = cp(f f)n? ), and similarly if f is lox-

odromic then ||(f*)" ||pr X:R) ~cp(f)MSf ) n(28=p),

We only sketch the proof, because the only part that may be considered to be
new is the second assertion.

Let us prove Assertion (1). Since f is elliptic, its eigenvalues on H"!(X;R),
and then on H?(X;R), all have modulus 1. Thus, being roots of the character-
istic polynomial of f}, (X:Z)° hence of a monic polynomial with integer coef-
ficients, these eigenvalues must be roots of unity. This implies that a positive
iterate of f acts trivially on H 2 (X;Z). Then, according to Lieberman’s theorem
(see [26]), a positive iterate of f must be in the connected component Aut(X )0
of the identity. Since Aut(X)? is trivial for any irreducible hyperkihler manifold
(see [22]), we conclude that f has finite order.

Now, suppose that f is parabolic. Then [[(f*)"[| ;1.1 (x.r) = c1(f)n? for some
c1(f) > 0 (see § 8). Theorem 1.5 of [42] says that Sym” (H?(X;R)) embeds
into H2P(X;R) for p < g via the cup product, so

1) | g X]R)>Cnp (5.1
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for some positive constant ¢ and for all » > 1. On the other hand, from the
Khovanski-Teyssier inequalities, the numbers

log (| (/)" | grr(x:r))

Ky = limsu 52
p(f) . log() 5.2)

form a concave function of p, for 0 < p < dim(X) (see [27]); this means that
25p(f) < sp-1(f) +5p1(f) (5.3)

for every p. Since so(f) = 0 and s1(f) = 2, it follows from the lower esti-
mate (5.1) that s, (f) = 2p for every p < g.

When f is loxodromic, we have [|(f*)"[|y11(x;r) = c1(f)M(f)" for some
A(f) > 1 and the same argument leads to Assertion (3) (for the details, see [28,
Appendix] or [36]).

6. THEOREM A IN THE PROJECTIVE CASE, AND APPLICATION

We prove Theorem A when X is assumed to be projective and give an
application to the dynamics of some groups of automorphisms.

6.1. Proof of Theorem A. Let f be a parabolic automorphism of a hyperkih-
ler manifold X, as in Theorem A. Assertion (1) of Theorem A is contained
in Theorem C. In particular, [|(f*)"|yes(x.r) grows like cg(f)n*. The same
estimate holds for f*, the first positive iterate acting as the identity on the
base of the invariant Lagrangian fibration py, with constant c.(f) replaced by
ol f5) = co(F)R%.

Now, assume that X is projective. By Proposition 4.3, the translation vector
of fk has maximal variations, as stated in Assertion (2) of Theorem A.

Let us derive Assertion (3) from Assertion (2). This final step does not use
that X is projective, only the validity of Assertion (2). Let U C B° be a small,
relatively compact, simply connected open subset. Write fX on Xy in some
Betti coordinates :

Fapu,x) = (.24 1 (1) (6.1)
Forb € U, the closure Z(b) of Zt 1+ (b) € R?¢ /78 is a Lie subgroup of R?¢ /728,
Its dimension r(b) and its number of connected components ¢(b) vary with b.
Since 7 has maximal variations, ffk(U ) contains an open set, so that any pair
(r,c) with 0 < r <2g and ¢ € Z> can be realized as (r(b),c(b)) by some b in
U. This proves Assertion (3) because orbits of f* in X;, correspond, in the Betti
coordinates U x R?8 /728, to subsets of type {b} x (x+Z(b)).
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6.2. Example. Consider a compact hyperkidhler manifold X, of dimension 2g,
together with two parabolic automorphisms f and g preserving distinct La-
grangian fibrations py: X — By and pg: X — B,. By this we mean that p; and
pg satisfy the following equivalent properties (see [1, Proposition 2.20]): (a)
the restriction of pr to a general fiber of p, is not constant; (b) the restriction of
Py to a general fiber of p, is a dominant morphism onto By; (c) the restriction
of p, to a general fiber of ps is a dominant morphism onto B,. The existence
of two distinct Lagrangian fibrations like that implies that X is projective.

For each pair of positive integers (k, ), consider the subgroup I' ¢ of Aut(X)
generated by f* and g’. Fix a distance dist(-) on X and say that a subset A C X
is €-dense if every point of X is at distance less than € from a point of A.

(1) The set {x € X ; the orbit I'; ¢(x) is dense in X} (for the euclidean topol-
ogy) is a countable intersection of open dense subsets of X; in particular, it
is dense and has full measure for the volume form (G AG)3.

(2) For every € > 0, there is an integer N > 1 such that for every pair (k,¢) with
kand ¢ > N, the set {y € X ; I'y ¢(y) is finite} is an e-dense set.

To get (1), do as in [1, §6] and [9]: by Theorem A, the locus of points b in
By such that the orbit closures of f in X}, have codimension > 1 is a countable
union of proper real analytic subsets of B;’c. Pick a point x € X such that ps(x)
is not in this meager set. The closure of I'; ¢(x) contains the fiber of p through
x, hence also the orbit of this fiber by I' ¢; then, using g, it contains all fibers of
P in the complement of a meager set. This shows that a generic orbit is dense.
To conclude, note that being dense is the same as being €-dense for all € > 0.
(Also, an orbit is dense for some I' ¢ if and only if it is dense for all I';, ,.)

To get Assertion (2), we use the following consequence of Theorem A: the
set Fy == {b € By ; f&b = Idy, } becomes e-dense in B if k is large enough.
Similarly, the set G, C B, corresponding to fibers of p, on which the order of g
divides / is e-dense for large enough ¢. Then, the set

p; () Npg'(Gy) (6.2)
is €-dense and is made of fixed points of I’ .
Remark 6.1. The second assertion shows the finite exceptional orbits in The-

orem 0.2 of [16] can be arbitrarily large (resp. €-dense) when one reduces the
size of the group (see also Corollary 1.2 of [12]).
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7. FROM THE PROJECTIVE CASE TO THE KAHLER CASE

The purpose of this section is to deduce Theorem A in the non-
projective setting from the case of projective hyperkihler manifolds.
For this, we apply the method of degenerate twistor deformations de-
veloped by Verbitsky and Soldatenkov in [43, 41].

According to Section 6.1, we only need to prove the second assertion of
Theorem A, since the first one has already been verified for all hyperkéhler
manifolds and the third one is a consequence of the second.

7.1. The non-projective setting. Let X be a non-projective, irreducible, hy-
perkédhler manifold, with a fixed holomorphic structure, equipped with some
holomorphic Lagrangian fibration p: X — B. Let ¢ be a holomorphic symplec-
tic form on X. Recall from Section 2.3 that B is projective. We denote by / the
pull-back of a fixed very ample class in NS(B). The class & € NS(X) is nef and
satisfies gx (h) = 0.

Since X is not projective, Huybrechts’ Theorem (see § 2.1) shows that the
form gy is negative semi-definite on NS(X;R), with one-dimensional kernel
RA. In other words, with the vocabulary from Sections 2.1 and 2.2, the lattice
(NS(X),qgx) is parabolic and the class / is an isotropic element of both NS(X)
and the transcendental lattice T(X).

Consider a parabolic automorphism f: X — X such that po f = fgo p for
some automorphism fp of B. Since Pic(B) ~ Z, we have f*h = h. Moreover,
according to Section 2.4, there is a Kéhler form kg on B such that fzkp = K3;
we can assume furthermore that [kp] = A.

In the non-projective case, it follows from Oguiso’s results that f*c = o (see
Assertion (1) of Theorem B and the comment after this theorem).

7.2. Twistor deformations. A C-symplectic form on a ditferentiable manifold
M of dimension 4n is a closed, complex-valued 2-form € such that Qrtl =0
and Q" A Q" is everywhere non-vanishing (see Definition 2.1 in [41]). The first
main properties of such a C-symplectic form are (see [41]):

(1) the kernel of Q on the complexified tangent space TcM is everywhere of
dimension 2n and can be seen as the antiholomorphic tangent bundle of a
complex structure J;

(2) with respect to this complex structure, € is a holomorphic symplectic form.

Take X as in Section 7.1. On the differentiable manifold X, consider the family
of differentiable forms Q, = 6 +¢p*Kp. According to [41, Theorem 2.3],
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(3) for any ¢, €, is a C-symplectic form.

Thus, the family €, defines a family of complex structures J;, hence a family of
complex manifolds (on the same underlying differentiable manifold) such that
Xo = X, € is a holomorphic symplectic form on X;, and therefore H 2’O(X,;C)
is generated by [Q;] = [o] +th for each . Moreover, by [41, Theorem 2.3],

(4) the map p : X; — B remains a holomorphic Lagrangian fibration, and the
complex structure on the fibers of p does not change.

7.3. Conclusion. Now, the next proposition is almost obvious.

Proposition 7.1. The diffeomorphism f : X — X is holomorphic with respect to
all the complex structures J;, t € C.

Proof. First, recall that we assume that the parabolic automorphism is sym-
plectic with respect to the initial symplectic structure ¢ = (. Moreover, fp
preserves Kg. Thus, f preserves each C-symplectic form Q; = 6 +tp*kp. In
particular, f preserves its kernel and the conjugate of the kernel, which are the
antiholomorphic and holomorphic tangent bundles to X;, respectively. 0J

With this construction at hand, the keypoint is that some of the X; are projec-
tive for arbitrarily small parameters ¢ € C.

Proposition 7.2. For any r > 0, there exists t € C with |t| < 1/r such that X; is
projective.

Proof. For t small, X; is Kihler, because being Kéhler is an open property;
then, as in any family of Kihler manifolds, the Hodge numbers stay constant
(see [44]). Thus, for small parameters, we obtain a family of irreducible hyper-
kédhler manifolds.

From Huybrechts’ theorem, we know that X; is projective when it carries an
integral (1, 1)-class u with g(u,u) > 0. Moreover, an integral class u € H*(X;7Z)
is of type (1, 1) with respect to the complex structure J; when it is g-orthogonal
to the class [€].

Fix r > 1 large, and then choose a class a € H?(X,Z) such that

0 < rlg(a,0)| < q(a,h); (7.1)

such a class exists because ¢(+,6) and g(-, i) are two linearly independent linear
forms on H?(X;C). Then, changing a into a + mh for some integer m € Z
we can suppose g(a,a) > 0. Now, a is of type (1,1) on X; if and only if t =
—q(a,o0)/q(a,h). This defines a unique 7, of modulus < 1/r. O
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Since Assertion (2) of Theorem A does not depend on the complex structure
J; but only on the dynamical properties of f, we can now apply Theorem A on
X; to derive the same conclusion on Xy. This concludes the proof of our main
theorem in the non-projective setting.

7.4. Extension of Lo Bianco’s theorem. A similar argument can be applied
to extend the second assertion of Theorem B from the projective to the non-
projective setting. Indeed, along a twistor deformation (X;,€,), with Q, = 6+
tp*xp, the action of f; on the base of its invariant fibration does not change.
Since for some parameters ¢+ we know that X; is projective, we can apply Lo
Bianco’s result to conclude that fp has finite order.

8. APPENDIX

8.1. Parabolic isometries. Let V be a real vector space of (finite) dimension m + 1
endowed with a non-degenerate quadratic form gy of signature (1,m). Let h € O(gy)
be a linear transformation of V preserving qy. By definition, A is parabolic if it does
not fix any vector v € V with gy (v) = 1 and if all its eigenvalues have modulus 1.
Equivalently, 1 is an eigenvalue of A, but the corresponding eigenspace {v; h(v) = v}
does not intersect {v; gy (v) > 0}. When & is parabolic, there is a unique isotropic
line Dy, C V which is h-invariant, and this line is fixed pointwise. For this, we refer to
Ratcliffe’s book on hyperbolic geometry [40].

Remark 8.1. If 4 is a parabolic isometry and & preserves a subspace W C V on which
gv 1s non-degenerate and indefinite, then &y : W — W is also parabolic.

If dim(V) < 2, there is no parabolic isometry; indeed, if dim(V) = 2 the isotropic
cone is made of two lines, and a parabolic isometry should preserve each of them,
with eigenvalue 1 on one of them, hence with eigenvalue 1 on the second (because
det(-) = £1 on O(gy)), but then the isometry would have order 1 or 2.

Proposition 8.2. Let h be such a parabolic isometry. Then, given any operator norm
||| on End (V), there is a constant c(h) > 0 such that |h"|| =~ c(h)n®.

Proof. The characteristic polynomial of & can be written P,(¢) = (t — 1)"Q(t) where
Q € Rt} and Q(1) # 0. From this, we get a decomposition V = E| @ Ep where E is the
kernel of (h—Idy)" and Ey is the kernel of Q(h). This is an orthogonal decomposition
Ell = Ep. In particular, the restriction of gy to E; is non-degenerate. The line Dj, is
contained in E;. Thus, the signature of gy on Ej is (1,dim(E;) — 1), and gy is negative
definite on Ep. In particular, the restriction of 4 to Eg is in a compact group.

Thus, we can now assume that V is equal to E;. In other words, & is unipotent.
Then, on Dﬁ /Dy, the endomorphism induced by 4 is unipotent and preserves a negative
definite quadratic form; thus, it is equal to the identity.

Let v, be an element of V such that gy (v2) = 1. Set vi = h(v2) —v,. Then v; #0
(because A is parabolic) and v; is orthogonal to Dy. Thus, vi = h(v;) — vo for some
vo € Dy,. The vector vy is not 0, because otherwise & would induce a parabolic isometry
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of the 2-dimensional space Vect(vi,v;). Thus, the vector space W = Vect(vy,v2,v3)
is h-invariant, has dimension 3, and contains D. In the basis (vi,v,,v3), the matrix of
h is a Jordan bloc of size 3, and the growth of ||#"|| is quadratic. On the orthogonal
complement W+,  is the identity. This concludes the proof. g

8.2. Parabolic automorphisms. Combining the two previous sections, we get the no-
tion of parabolic automorphism of hyperkédhler manifolds: these are automorphisms
f: X — X such that f* determines a parabolic isometry of V := H'! (X;R) with respect
to the Beauville-Bogomolov quadratic form gy := ¢g. Then, Proposition 8.2 proves the
equivalence between Assertions (a) and (c) from Section 1.1.3. The equivalence with
(b) comes from the fact that all eigenvalues of f* are roots of unity because f* preserves
the lattice H*(X;Z) in H*(X;R).
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