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ABSTRACT. We study infinite order automorphisms of irreducible holomor-
phically symplectic manifolds with an invariant Lagrangian fibration. Such
automorphisms act (possibly after taking a positive iterate) by translations on
smooth fibers, and their orbits in a general fiber are dense ([1]). We provide
a simple proof that the associated Betti map is of maximal rank, in particular,
the set of fibers where the induced translation is of finite order is dense as
well.
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1. INTRODUCTION

1.1. The dynamics of parabolic automorphisms.

1.1.1. Let X be an irreducible hyperkähler (or “holomorphically symplectic”)
manifold of complex dimension 2g. This means that

(a) X is a simply-connected, compact, Kähler manifold;
(b) there is a holomorphic 2-form σ on X which is symplectic, i.e. σg is a

non-vanishing holomorphic form of top degree;
(c) σ is unique up to a nonzero multiplicative factor.

1.1.2. On H2(X ,Z) there is a non-degenerate integral quadratic form q of sig-
nature (3,b2 −3), the Beauville-Bogomolov form (see [22], §23.4). The signa-
ture of q on H1,1(X ;R)1 is (1,h1,1(X)− 1), so that the projectivization of the
positive cone

{u ∈ H1,1(X ;R) ; q(u,u)> 0} (1.1)

can be viewed as a model of the hyperbolic space. We shall denote by HX

this hyperbolic space, its dimension is h1,1(X)− 1. Its boundary ∂HX is the
projectivization of the isotropic cone {u ∈ H1,1(X ;R) ; q(u,u) = 0}.

We denote by NS(X) the Néron-Severi group of X ,

NS(X) = H1,1(X ;R)∩H2(X ;Z). (1.2)

If L is a line bundle on X , we denote by [L] ∈ NS(X) its Chern class.

1.1.3. The group Aut(X) acts by isometries on H2(X ;Z) with respect to q
and preserves the Hodge decomposition, so that it acts also by isometries on
H1,1(X ;R) and on HX . As described in [40] for instance, there are three types
of isometries of hyperbolic spaces, hence three types of automorphisms: el-
liptic, parabolic, and loxodromic. In this article, we study parabolic automor-
phisms. An automorphism f of X is parabolic if the induced automorphism f ∗

of H1,1(X ;R) satisfies the following equivalent properties:

(a) f ∗ has exactly one fixed point on the boundary ∂HX and no fixed point in
the interior;

(b) there is a positive iterate ( f ∗)n of f ∗ acting as a unipotent matrix of infinite
order on H1,1(X ;R) (resp. on H2(X ;Z));

(c) ∥( f ∗)n∥= c( f )n2+O(n) for some positive constant c( f ). (Here, ∥·∥ is any
norm on End(H1,1(X ;R)) or End(H2(X ;R)).)

1We denote by H1,1(X ,R) the subspace of H2(X ,R) whose complexification is H1,1(X).
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We refer to the Appendix for references and a proof of (c).

1.1.4. Let f ∈ Aut(X) be parabolic. Its fixed point on the boundary ∂HX cor-
responds to a line in H1,1(X ;R) which is fixed pointwise by f ∗; this line is
integral: it is generated by some primitive isotropic class ℓ f ∈ NS(X). More-
over, the nef cone of X being closed and Aut(X)-invariant, we can choose ℓ f to
be the class of some nef line bundle (i.e. ℓ f is in the closure of the Kähler cone
of X). This uniquely determines ℓ f . Since b1(X) = 0, Pic0(X) = 0 and there is
a unique nef line bundle L f such that [L f ] = ℓ f ; then f ∗L f = L f .

1.1.5. The so-called Lagrangian Conjecture (which has been stated indepen-
dently by several people, including Hassett and Tschinkel, Huybrechts, and
Sawon), also known as the Hyperkähler SYZ Conjecture, says that a nef line
bundle L with q([L], [L]) = 0 should be semi-ample: this means that L⊗n should
be base-point-free for large positive integers n. This conjecture has been veri-
fied in all known examples (see [5]); applied to L f , it says that the linear system
of sections of L⊗n

f defines a morphism

p f : X → B (1.3)

with connected fibers of strictly positive dimension. According to [32], such a
morphism is a Lagrangian fibration, which means that the smooth fibers of p f

are Lagrangian tori. The base B of the fibration is a normal projective variety of
complex dimension g and of Picard number 1, which a priori can be singular.

Then, there is an automorphism fB of B such that

p f ◦ f = fB ◦ p f , (1.4)

and it can be shown that fB has finite order (see [29] and Theorem B below).
Thus, for some k ≥ 1,

(1) the action of ( f k)∗ on H2(X ;Z) is unipotent, and of infinite order;
(2) p f ◦ f k = p f ;
(3) f k acts as a translation on each smooth fiber ([1], Proposition 3.8).

1.1.6. Theorem 3.11 of [1] shows that the orbits of f k must be dense in the
euclidean topology on almost all smooth fibers of p f . A natural question is
whether one often encounters smaller orbit closures. For example, is the set of
b ∈ B such that f k is of finite order on Xb (i.e. acts as a translation by a torsion
element) dense in B? Our main theorem answers this question positively (see
below for the definitions of translation vector and maximal variation).



PARABOLIC AUTOMORPHISMS: ORBITS AND BETTI MAPS 4

Theorem A. Let X be an irreducible hyperkähler manifold of dimension 2g.
Let f be a parabolic automorphism of X with an invariant fibration p f : X → B
and let k be a positive integer such that p f ◦ f k = p f . Then,

(1) for any p ∈ {1,2, . . . ,g}, there is a positive constant cp( f ) such that

∥( f n)∗∥H p,p(X ;R) = cp( f )n2p +O(n2p−1);

(2) the translation vector of f k has maximal variation;

(3) for any s ∈ {0,1,2, . . . ,2g}, the subset of B defined by

Ds( f k) = {b ∈ B ; the closure of any orbit of f k
|Xb

has dimension s in Xb}

is dense in B for the euclidean topology.

In the definition of Ds( f k), “closure” means “closure with respect to the eu-
clidean topology”. For instance, the following sets are dense in B:

Dg = {b ∈ B ; every orbit of f k in Xb is dense in Xb} (1.5)

D0 = {b ∈ B ; f k
|Xb

has finite order}. (1.6)

Note that we assume in Theorem A that f preserves a Lagrangian fibration; as
explained in Section 1.1.5, this is satisfied in all known examples.

1.1.7. When X is projective, Theorem A is not new: it can be derived from
results of Bakker, André-Corvaja-Zannier, Gao, and Voisin. This is explained
in Section 1.3. Theorem A has also been proven for all surfaces in [7, 9], but it
seems difficult to apply the same methods in higher dimension (2). Our goal is to
describe a new proof of it, and to extend the result to non-projective manifolds;
on our way, we also extend a result of Lo Bianco (see Theorems B and C).

1.2. Betti coordinates, translation vector, maximal variation.

2The surfaces in [9] are Kähler but do not have to be hyperkähler. Indeed, if X is a compact
complex surface, the intersection form defines a quadratic form on the second cohomology
group of X . If the surface is Kähler, its restriction to H1,1(X ;R) is non-degenerate and of
signature (1,h1,1(X)− 1). Thus, automorphisms of X can also be classified into three types,
elliptic, parabolic, or loxodromic. By a theorem of Gizatullin, every parabolic automorphism
of a compact Kähler surface preserves a genus 1 fibration (with finite order action on the base
except for some automorphisms of some tori).
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1.2.1. A few references. The Betti coordinates, introduced below, have been
used in various situations similar to the one in this paper. A good historical
introduction can be found in the first pages of [3]. The references we know
about that are closest to our setting are the following: firstly, Manin’s study
of the Mordell problem over function fields [30]; secondly, Zannier’s famous
book [46], more precisely its Chapter 3.3 concerning a question of Masser;
thirdly, the work of Corvaja, Masser, and Zannier, in particular [11]. Since
then, Betti coordinates have become a common tool in Diophantine geometry,
with connexions to algebraic dynamics (see [9, 13]). See in particular Sec-
tion 1.3 below.

1.2.2. Betti coordinates. Let p : X → B be a fibration of a compact complex
manifold. We shall always denote by B◦ the subset of regular values of p where,
by definition, the singularities of B are put in B \B◦. Suppose that for every
b ∈ B◦, the fiber Xb = p−1(b) is a torus, isomorphic to Cg/L(b) for some lattice
L(b)⊂ Cg (not uniquely defined, see Remark 1.1 below).

Let U be a simply connected open subset of B◦, b0 a point of U , and s : U →X
a section of p. If one fixes a basis of H1(Xb0;Z), it can be propagated continu-
ously to the fibers Xb for b ∈U and this gives a trivialization H1(XU ;Z)≃ Z2g.
Then, there is a unique diffeomorphism

Φ : XU →U × (R2g/Z2g) (1.7)

such that

(i) p = prU ◦Φ, where prU is the projection from U × (R2g/Z2g) to U ,
(ii) Φ◦ s|U(b) = (b,0) for all b ∈U ,

(iii) Φ : Xb →{b}× (R2g/Z2g) is an isomorphism of Lie groups for all b ∈U ,
(iv) Φ∗ maps the basis of H1(XU ;Z) to the canonical basis of

Zg ≃ H1
(
U × (R2g/Z2g);Z

)
.

This diffeomorphism is real analytic. We shall refer to Φ as the Betti dif-
feomorphism; points of U × (R2g/Z2g) can be written (u,x) with u in U and
x = (x1, . . . ,x2g) in R2g modulo Z2g, and we shall refer to these as the Betti co-
ordinates (determined by Φ). We refer to the triple given by U , the section s|U ,
and the basis of H1(XU ,Z) as the Betti datum used to define Φ. To simplify
notation, we shall simply write U ×R2g/Z2g instead of U × (R2g/Z2g).

Remark 1.1. The Betti datum can be used to fix a choice of lattice L(b) such
that Xb = Cg/L(b). For this, we fix a trivialization of the tangent bundle to the
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fibers of p along s(U). Then, Ts(b)Xb can be identified to Cg for any b ∈ U
and L(b) ⊂ Cg can be defined to be the kernel of the exponential map Cg ≃
Ts(b)Xb → Xb. With such a definition, L(b) depends holomorphically on b.

1.2.3. The translation vector. Let f be an automorphism of X such that p◦ f =
p and f acts by translations on the general fibers of p. Conjugating f by Φ one
gets a diffeomorphism Φ◦ f ◦Φ−1 of U ×R2g/Z2g of type

(u,x) 7→ (u,x+ t f (u)) (1.8)

for some real analytic function t f : U →R2g (or to R2g/Z2g). By definition, t f is
the translation vector of f (in the Betti coordinates defined by Φ). As we shall
see in Section 3.2, the generic rank of t f is an even integer and this integer does
not depend on the choice of Betti coordinates. We shall refer to it as the rank
of the translation vector. The maximal possible rank is min(2dimC(B),2g).
For Lagrangian fibrations dimC(B) = g so, in what follows, we assume that
min(2dimC(B),2g) = 2g for simplicity; then, we say that t f has maximal
rank, or equivalently that t f has maximal variation, if its generic rank is 2g.
Lemma 3.1 shows that the variations of t f are maximal if and only if the image
of t f is open in R2g, if and only if t f is an open mapping.

This explains the meaning of Assertion (2) in Theorem A and shows that
this assertion implies Assertion (3) (see Section 3 for more on t f and a detailed
proof of how (3) is derived from (2)).

1.2.4. Now, suppose that s : B → X is a global holomorphic section of p. For
every b ∈ B◦, we can declare that s(b) is the neutral element of Xb and, doing
so, Xb becomes a commutative complex Lie group.

Then, f ◦s is a new section of p, and the action of f on Xb is the translation by
f ◦s(b)−s(b) for every b ∈ B◦. Let us now set t = f ◦s and forget about f . The
dynamical properties of f can be translated into properties of t. More precisely,
consider a Betti diffeomorphism Φ (determined by some choice of Betti datum)
and set

t f = prR2g/Z2g(Φ◦ t) mod Z2g. (1.9)

This map u ∈ U 7→ t f (u) = prR2g/Z2g(Φ(t(u))) mod Z2g is usually called the
Betti map associated to the section t (and the chosen Betti datum). Thus, the
translation vector of f has maximal variation if and only if the Betti map is
generically of maximal rank 2g . This property of the Betti map has been stud-
ied a lot, at least in the case when X is projective, as explained below.
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1.3. General results on Betti maps. Let us explain how Theorem A can be
derived from works of André, Corvaja and Zannier, of Gao, of Voisin, and of
Bakker when X is projective.

1.3.1. As mentionned above, Chapter 3.3 of [46] makes use of Betti coordinates
to solve a problem of unlikely intersection concerning common torsion points
of two sections of an elliptic fibration. It combines the counting estimates of
Pila and Wilkie for rational points on a subanalytic set S of Rn and an argument
that relies on the monodromy of the Gauss-Manin connection of the elliptic
fibration to control the algebraic part of the subset S involved in the problem (see
also [39, 11]). A second crucial reference is [3]: it initiates the systematic study
of Betti coordinates in arbitrary dimensions and combines the previous strategy
with theorems from functional transcendence theory, notably André’s theorem
concerning the independence of abelian logarithms [2] and the Ax–Schanuel
theorem from [34].

In this section, we rely on the subsequent developments by Gao, because [19]
and [18] contain optimal results regarding the variations of the Betti maps (i.e.
of the translation vectors). The tools used in [19] being somewhat simpler, we
base our explanation on it and describe how it is related to Theorem A.

1.3.2. In [19, Theorem 1.3], Gao considers an abelian scheme p : A → S of
relative dimension g over a smooth complex algebraic variety S, with a section
ξ (or more generally a multisection) generating A . By definition, this means
that A is a group scheme (there is a neutral section of p) and Zξ is Zariski
dense in A . He proves that the associated Betti map is generically of rang 2g if
the following three properties are satisfied:

(a) the modular map µ : S → Ag is quasi-finite (3);
(b) dim(S)≥ g, and
(c) the geometric generic fiber of the family is simple (4).

To apply this result to our context, we can take S to be the set of regular values
B◦ of p f . Then (b) is satisfied by construction. Moreover, a recent theorem
of Bakker proving Matsushita’s conjecture states that either µ is quasi-finite on

3Here, Ag is the space of polarized abelian varieties in dimension g with respect to some
polarization type and some level structure; since they are not relevant, we simply write Ag.

4See also [18], where it is established that the non-maximality of the rank of the Betti map
associated to a generating ξ implies the existence of a quotient abelian scheme of low variation.
For simplicity’s sake we prefer to keep [19] as our main reference: it is almost equally quick to
get applications to hyperkähler manifolds from [19], see [4].
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a dense open subset of S or µ is constant, i.e. the family is isotrivial (see [4]).
Thus, in the non-isotrivial case, Gao’s theorem is close to establishing Asser-
tion (2) of Theorem A; nevertheless, there is a subtlety here: in general it is
not true that the geometric generic fiber is simple, though the scheme-theoretic
generic fiber is simple and has Picard number 1 (see [37]).

Example 1.2. Let Y be a K3 surface with a genus one fibration h : Y → P1.
The Cartesian square of Y is naturally fibered in products of genus one curves
over P1 ×P1, and the natural involution exchanges the fiber over (a,b) with
that over (b,a). Set X = Y [2] = Hilb2(Y ). Then X is hyperkähler and is fibered
over P2 = Sym2(P1) in such a way that most of the fibers are tori: the fiber over
a+b, a ̸= b, is h−1(a)×h−1(b). The generic fiber of this fibration h[2] : X → P2

ceases to be simple after a degree two extension of the function field of P2,
corresponding to the map (a,b) 7→ a+b from P1 ×P1 to P2.

For most applications, though, Gao’s theorem works with some extra argu-
ment: see for example [4, Corollary 9] for a density statement similar to what
we discuss here.

Finally, coming back to the setting of hyperkähler manifolds, the case of
isotrivial Lagrangian fibrations is covered in a paper by Voisin [45] together
with the case dim(X)≤ 8 (i.e. g ≤ 4).

Remark 1.3. In [3], the authors raise the question whether the Betti map asso-
ciated to a section ξ of p : A → S is generically of rank 2g under the following
milder conditions: ξ generates A , A has no fixed part over any étale finite cov-
ering of S, µ is quasifinite, and (as above) dim(S) ≥ g. In [18, Example 9.4],
a counterexample is given with g = 4; clearly, this example is not hyperkähler.
However, a positive answer to this question was obtained in [3] when g ≤ 3,
and in any dimension under the additional assumption that the abelian scheme
has no non-trivial (that is, other than multiplying by an integer) endomorphism
over any finite covering of the base.

1.4. Strategy of proof. With the previous results in mind, the reason why
we wrote this text is twofold. Firstly, Theorems A and B now hold uniformly,
for projective and non-projective hyperkähler manifolds, and for isotrivial and
non-isotrivial fibrations. Secondly, the proof follows a new route. Gao obtains
his result as a consequence of mixed Ax-Schanuel theorem. On one side, our
argument is simpler because it relies on more basic principles; on the other
side it applies only to the hyperkähler case, because we rely on Verbitsky’s
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theorem [42, Theorem 1.5] on the cohomology of hyperkähler manifolds (this
is used to get Assertion (1) of Theorem A, which is – in turn – used to derive
Assertion (2)). The proof is done for projective hyperkähler manifolds first, and
then generalized to the non-projective case. The argument for this last step is
of independent interest; it applies recent results of Soldatenkov and Verbitsky.

One of our arguments combines basic volume estimates from riemannian
geometry with a theorem of Gauthier and Vigny. This riemannian point of
view is quite natural and is reminiscent of both Manin’s proof of the geometric
Mordell conjecture and Parshin’s proof of the geometric Shafarevich conjecture
in characteristic zero (see [33, 38]). See also the recent article [10] and the
book [17], in which this approach is described in details for elliptically fibered
surfaces.

1.5. Acknowledgements. We are grateful to Thomas Gauthier, Misha Verbit-
sky, and Claire Voisin for useful discussions. We thank Pietro Corvaja, An-
drey Soldatenkov, and Umberto Zannier for interesting feedback, as well as the
anonymous referee for his remarks and the reference [10].

2. HYPERKÄHLER MANIFOLDS

In this section, X is a irreducible hyperkähler manifold of dimension 2g,
as in Section 1.1.1. We introduce the main basic features of parabolic
automorphisms and Lagrangian fibrations.

We denote by σ a holomorphic symplectic form σ, as in Section 1.1.1, and
by q the Beauville-Bogomolov form on H2(X ;Z), as in Section 1.1.2. The
Beauville-Bogomolov form will be seen either as a quadratic or a bilinear form;
we refer to [22] for its main properties. Note that when g = 1, X is a K3 surface
and q is given by the natural intersection form on H2(X ;Z).

2.1. The Néron-Severi group. We denote by qX the restriction of q to NS(X).
If A is a ring, we set NS(X ;A) =NS(X)⊗ZA; hence NS(X) =NS(X ;Z). When
X is projective, there are classes u in NS(X) with qX(u,u) > 0, for instance
Chern classes of ample line bundles. Conversely, a theorem of Huybrechts
shows that if such a class u ∈ NS(X) exists, then X is projective (see [21, 23]).

There are three possibilities for the signature of qX on NS(X ;R)

(a) qX is non-degenerate of signature (1,ρ(X)−1);
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(b) qX is degenerate with one-dimensional kernel, and takes only non-positive
values; in this case, following Oguiso (see [36], page 167), we say that qX

is parabolic;
(c) qX is negative definite.

The second and third cases do not appear when X is projective.

2.2. The transcendental lattice. The transcendental lattice T(X) is, by defini-
tion, the orthogonal complement of NS(X) in H2(X ;Z) with respect to q. The
Lefschetz theorem on (1,1)-classes implies that T(X) is the smallest subgroup
of H2(X ;Z) such that Cσ is contained in T(X)⊗Z C and H2(X ;Z)/T(X) is
torsion free. The intersection T(X)∩NS(X) is reduced to 0, except when qX is
parabolic.

2.3. Fibrations and polarizations. Let p : X → B be a holomorphic fibration,
that is, a proper surjection with connected fibers and dim(X) > dim(B) ≥ 1.
Then by the results of Matsushita, p is a Lagrangian fibration in the sense of
holomorphic symplectic geometry (see [22, Sec. 21.4]); moreover,

(1) its fibers are projective, and the generic fiber is an abelian variety of dimen-
sion g = dim(X)/2 on which σ vanishes (see [6], Proposition 2.1, which
the author attributes to Voisin);

(2) the base B is projective too, indeed it is Kähler and Moishezon with rational
singularities (see [25] Theorem 2.8, [35] Corollary 1.7). Moreover B is Q-
factorial with Picard number 1 (see [31]). It is generally expected that B is
isomorphic to Pg; when B is smooth, this is a theorem by Hwang [24].

Now, set X◦ = XB◦ , where B◦ is defined as in Section 1.2.2. The projection
p : X◦ → B◦ is a proper submersion, the fibers of which are naturally polarized
abelian varieties (however, when p does not have a section, the group law on
the general fiber is not well defined). Indeed,

(3) the restriction homomorphism H2(X ;Z)→ H2(Xb;Z) has cyclic image.

This remark has been made by Oguiso in [37] (see [1] for a self-contained
proof). Let Rb ⊂ H2(Xb;Z) denote this cyclic group. If κ is a Kähler form
on X , then there is a unique positive multiple ακ such that Rb is generated by
the class [ακ|Xb]; this integral class gives a natural polarization of Xb for each
b ∈ B◦. When X is projective, we can assume that [ακ] is in NS(X).
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2.4. Automorphisms. Let p : X → B be a Lagrangian fibration on X . Since
ρ(B) = 1, there is a unique primitive ample class hB in NS(B); we denote by
h ∈ NS(X) its pull back by p: this class is nef and isotropic (i.e. qX(h,h) = 0).

Let f be an automorphism that preserves the class h. Then f preserves the
fibration p, in the following sense: there is an automorphism fB of B such
that p ◦ f = fB ◦ p. The automorphism fB preserves hB. One can also find an
embedding B ⊂ PN(C) such that fB preserves the Fubini-Study form (restricted
to B); we denote such a form by κB:

f ∗BκB = κB. (2.1)

The existence of such a form κB is due to Lo Bianco (see [29], Lemma 3.1).
Let us sketch his proof. Since the Picard group of B is cyclic and B is pro-
jective, there is an fB-invariant and very ample line bundle LB on B. Then, fB

induces a linear transformation FB of H0(B;LB) and the Kodaira-Iitaka embed-
ding ι : B → P(H0(B;LB)

∨) is equivariant: ι ◦ fB = FB ◦ ι. On the other hand,
the volume form volX := (σ∧σ)g induces a probability measure µB = p∗volX
on B with full support which is fB-invariant. Then, the invariance of ι∗µB under
FB, the fact that ι(B) is not contained in a hyperplane of P(H0(B;LB)

∨), and
the equality Supp(ι∗µB) = ι(B) imply that FB is contained in a compact sub-
group of PGL(H0(B;LB)

∨). Thus, up to a linear conjugacy, FB preserves the
Fubini-Study metric.

A priori B can have singularities, but it does make sense to speak of such
a differential form as the restriction of a form defined on the ambient space
PN(C); this is compatible with the definitions of Varouchas as suggested in
[41], Remark 2.2 (see also [14]).

Theorem B. Let p : X → B be a Lagrangian fibration of an irreducible hyper-
kähler manifold X. Let f be an automorphism of X such that p◦ f = fB ◦ p for
some fB ∈ Aut(B). Then there is an integer k ≥ 1 such that

(1) f k preserves the symplectic form σ, i.e. ( f k)∗σ = σ, and
(2) f k

B = IdB, i.e. f k preserves each fiber of p.

If X is not projective, then f ∗σ = σ; in other words, one can take k = 1 in the
first assertion; it is implied by h ∈ T(X), see Theorem 2.4 in [36].

Proof. Let us prove Assertion (1) (see also [8, 36]). Since f is parabolic, all
eigenvalues of f ∗ on H2(X ;C) have modulus 1. Since f ∗ preserves the lattice
H2(X ;Z), its characteristic polynomial is a monic polynomial with integer co-
efficients. Thus, the eigenvalues of f are roots of unity. On the other hand, σ
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is unique up to a scalar factor, so f ∗σ = ασ where α is the eigenvalue of f ∗ on
H2,0(X ;C). If k denotes the order of α, then ( f k)∗σ = σ.

When X is projective, Assertion (2) is part of a theorem from [29](5). The
non-projective case reduces to the projective one as follows: using the form κB

one defines a family of new complex structures Xt on X (the “degenerate twistor
deformations” studied by Verbitsky and Soldatenkov), all fibered over B, such
that the map f remains holomorphic on each Xt . Since some of these complex
structures are projective, the conclusion will follow from the projective case.
Details are provided in Section 7.4. □

3. MAXIMAL VARIATION AND BETTI COORDINATES

In this section, we study the variations of the translation vector of a
parabolic automorphism of a projective hyperkähler manifold.

3.1. The setting. We suppose that X is a projective hyperkähler manifold, with
a parabolic automorphism f that preserves a Lagrangian fibration p f : X → B,
and use the notations introduced in the previous sections. For simplicity, we
replace f by a positive iterate to assume that

p f ◦ f = p f and f ∗σ = σ (3.1)

as in Theorem B.
Since X is projective, we can find a multisection S of p f . That is, S ⊂ X is a

smooth, irreducible, g-dimensional subvariety of X which is generically trans-
verse to p f . Then, p f |S : S → B is generically finite. Moreover, if U is a suf-
ficiently small, non-empty, open subset of B◦, we can find such a multisection
that is everywhere transverse to p f above U , i.e. p f |S∩p f −1(U) is a non-ramified

cover from S∩ p−1
f (U) to U of some degree d ≥ 1. With such a choice, and if

U is simply-connected, there are d holomorphic sections si of p f above U such
that S∩U is the disjoint union of the si(U). The degree d is the intersection
number ([S] · [Xb]) for any fiber Xb.

3.2. Translation vectors. Let U ⊂ B◦ be simply connected and let s : U → X
be a holomorphic section of p f above U . Fix a basis of H1(XU ;Z) and consider
the Betti diffeomorphism Φ and the translation vector t f associated to these
data.

5Assertion (2) has been claimed already in [1], with an explanation that Lo Bianco’s argu-
ment for the projective case was valid in general. That explanation does not seem to be correct,
this is why we provide a proof of (2) based on Verbitsky’s idea in Section 7.4.
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Lemma 3.1. The following properties are equivalent.

(1) t f : U → R2g is an open mapping;
(2) t f (U) contains an open subset of R2g;
(3) t f : U → R2g has maximal rank 2g in the complement of a proper, real

analytic subset of U.

If they are not satisfied the generic rank of t f is even and ≤ 2g−2.

We just sketch the proof of this lemma because it is already proven in [3,
19, 9]. The first remark is that the fibers of the Betti projection π2 ◦Φ : XU →
R2g/Z2g are complex submanifolds of XU . The second remark is that, viewed
in Betti coordinates, t f is just the projection of t = f ◦ s− s on R2g/Z2g and t
is a holomorphic function (its differential Dt intertwines the complex structure
jU on TU with the complex structure jX on T X). With this at hand, the first
consequence is that t f is real analytic, and in particular the maximum of the
rank of (Dt)u, u ∈ U , is attained on the complement of a proper real analytic
subset of U . Then, let j(u) be the (translation invariant) complex structure on
R2g/Z2g (equivalently, on R2g) obtained from the restriction of jX to Xu via Φ:

j(u)(v) = Φ∗(jX(Φ
−1
∗ v)) (3.2)

for every vector v tangent to R2g/Z2g. Then (j(u)) is a real analytic family of
complex structures and the second consequence is (Dt f )u ◦ jU = j(u) ◦ (Dt f )u

for every u ∈U . Thus, the generic rank of t f is even. These properties directly
imply the lemma.

Lemma 3.2. The property “t f has maximal variation” does not depend on the
Betti datum chosen to define the Betti coordinates.

Indeed, changing the section s does not change t f , and changing the basis of
H1(XU ;Z) changes t f into A ◦ t f for some A ∈ GL2g(Z), so in both cases the
property “t f (U) contains an open subset of R2g” is preserved by such a change.

To show that the property does not depend on the choice of U , note that if
U ∩U ′ is non-empty, then Lemma 3.1(3) shows that t f has maximal variation
on U if and only if it has maximal variation on U ∩U ′, and then this property
propagates to U ′. Then use that B◦ is connected.

3.3. Volumes and variations. To study the variations of t f , we shall rely on
the following volumic characterization of its maximal variation. If κ is a Kähler
form on X , and if W is a complex analytic subset of (some open subset of) X of
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dimension m, its volume with respect to κ is equal to

volκ(W ) =
∫

W
κ

m. (3.3)

If W ⊂ X is closed, its volume can be computed in cohomology as the intersec-
tion product volκ(W ) = ([W ] · [κ]m), where [κ] is the class of κ and [W ] is the
Poincaré dual of the homology class of W .

Lemma 3.3. Let U be an open subset of B, the closure of which is contained
in B◦. Let κ be a Kähler form on X. Let M be a multisection of p f . Then
volκ( f n(M)∩XU) = O(n2g), and the following properties are equivalent

(a) t f does not have maximal variation;
(b) volκ( f n(M)∩XU) = O(n2g−1) as n goes to +∞;
(c) ∥( f n)∗κg∥XU

=O(n2g−1) as n goes to +∞, where ∥·∥XU
denotes the uniform

norm on XU (for sections of ∧g,g(T X)).

Instead of O(n2g−1), we could obtain O(nr) where r is the generic rank of t f

on U , but the weakest estimate will be sufficient for our purpose. This lemma
implies again that maximal variation of the translation vector is an intrinsic
property that does not depend on the choice of Betti coordinates.

Proof. By compactness of U ⊂ B◦, we reduce to the case when U is a ball (i.e.
viewed in some local chart of B◦ containing U , U is a ball in Cg).

As in Section 3.2, s : U → X is a section of p f above U , Φ is a Betti dif-
feomorphism and t f is the translation vector in the Betti coordinates; we set
S = s(U). We can assume moreover that s (resp. Φ) extends to a neighbor-
hood of U (resp. of p−1

f (U)). We transport the riemannian metric associated
to κ by Φ to get a riemannian metric ∥·∥

κ,Φ on U ×R2g/Z2g. Let ∥·∥euc be the
euclidean metric on Cg ×R2g, restricted to U ×R2g. Since U ⊂ B◦, there is a
constant A≥ 1 such that A−1∥·∥euc ≤∥·∥

κ,Φ ≤ A∥·∥euc uniformly on the tangent
space of U ×R2g/Z2g. Thus, when estimating volumes, we can work with the
usual euclidean metric in the Betti coordinates.

Let d be the degree of the multisection M. Let C ⊂ U be the branch locus
of p f |M : M ∩ p−1

f (U) → U . Let D be a real analytic subset of U containing
C such that U ′ := U \D is simply connected (by this we mean that each con-
nected component of U ′ is simply connected). Since the Lebesgue measure of
D vanishes, the volume of f n(M) above U ′ is the same as its volume above U .
But over U ′, M is a union of d sections, so without loss of generality we may
replace M by one of them and assume that M is in fact a section.
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In the Betti coordinates, f becomes

fΦ : (u,x) 7→ (u,x+ t f (u)) (3.4)

Φ(S) is parametrized by u 7→ (u,0), and Φ(M) by u 7→ (u,mΦ(u)) for some real
analytic function mΦ. Thus, Φ( f n(M)) is parametrized by

u 7→ (u,mΦ(u)+nt f (u)), (3.5)

and the question is to estimate the volume of this submanifold of real dimension
2g with respect to the euclidean metric.

In the tangent space of U ⊂ Cg = R2g, denote by (vi)i≤2g the standard or-
thonormal basis. In the tangent space of R2g/Z2g, denote by (ei)i≤2g the stan-
dard orthonormal basis. The image of vi by the differential of u 7→ (u,mΦ(u)+
nt f (u)) is the vector

wi(n;u) = vi +(DmΦ)u(vi)+n(Dt f )u(vi). (3.6)

Let us write t f (u) = (t1(u), . . . , t2g(u)) and (Dt f )u(vi) = (∂it j(u)); similarly,
mφ(u) = (mΦ

1 (u), . . . ,m
Φ
2g(u)) and (Dmφ)u(vi) = (∂im

φ

j(u)). We see that the
exterior product w1(n;u)∧·· ·∧w2g(n;u) is a polynomial in n of degree at most
2g with coefficients which are uniformly bounded, analytic functions of u. For
instance, when g = 1 we obtain

w1 = v1 +∂1mΦ
1 e1 +∂1mΦ

2 e2 +n∂1t1e1 +n∂1t2e2

w2 = v2 +∂2mΦ
1 e1 +∂2mΦ

2 e2 +n∂2t1e1 +n∂2t2e2

and then setting v′1 = v1 + ∂1mΦ
1 e1 + ∂1mΦ

2 e2 and v′2 = v2 + ∂2mΦ
1 e1 + ∂2mΦ

2 e2

we obtain

w1 ∧w2 = v′1 ∧ v′2
+n(∂2t1v′1 ∧ e1 +∂2t2v′1 ∧ e2 −∂1t1v′2 ∧ e1 −∂1t2v′2 ∧ e2)

+n2(∂1t1∂2t2 −∂1t2∂2t1)e1 ∧ e2

where the dependence on u is implicit. The monomial n2g appears only in front
of e1 ∧ ·· · ∧ e2g, and is multiplied by the function u 7→ det((Dt f )u). Since the
euclidean volume is bounded from above by the integral of the function u 7→∥∥w1(n;u)∧·· ·∧w2g(n;u)

∥∥ with respect to the Lebesgue measure on U ⊂ R2g,
this proves the first equivalence stated in the lemma.

The computation for ∥( f n)∗κg∥XU
is similar. □
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In the next Section, we extend this type of estimate from compact subset
U of B◦ to the whole base B itself. That is, we shall estimate the volumes of
f n(S)⊂ X , where S is a multisection.

4. PROPAGATION OF VOLUME ESTIMATES

We show that if the translation vector of f does not have maximal vari-
ation, then ∥( f n)∗∥Hg,g(X ;R) = O(n2(g−1)).

Our first goal is the following proposition.

Proposition 4.1. If the variations of t f are not maximal then, for any multisec-
tion S of p f : X → B, there is an integer D ≥ 2 such that

volκ( f Dn
(S)) = O(D2n(g−1))

as n goes to +∞.

This will be achieved in Section 4.3. Then in Section 4.4 we transfer this
volume estimate into the upper bound ∥( f n)∗∥Hg,g(X ;R) = O(n2g−1).

The difficulty is to propagate the volume estimate from Lemma 3.3 up to
neighborhoods of the singular fibers of p f because when approaching these
fibers, the Betti coordinates may explode. To do this, we rely on pluripotential
theory and use a technique that has been developed by Gauthier and Vigny. To
refer directly to their work, we translate our problem into a dynamical property
of a new (non-invertible, rational) transformation of X .

4.1. Multiplication by D along the fibers.

4.1.1. Let p : X → B be a fibration of a complex projective variety, the generic
fiber of which is isomorphic to an abelian variety of dimension g. Let S0 be a
multisection of p of degree d = ([S0] · [Xb]), as in Section 3.1.

Let D≥ 2 be an integer such that d divides D−1. Then, there is a well defined
dominant, rational transformation mD : X 99K X acting by multiplication by D
along the smooth fibers of p. More precisely, pick a point b ∈ B◦ and a base
point w on the fiber Xb. Using w as neutral element, Xb becomes a commutative
group isomorphic to Cg/L(b) for some lattice L(b). Using the group law, the
transformation mD can be defined fiberwise by

z ∈ Xb 7→ mD(z) = Dz− D−1
d ∑

s∈S0∩Xb

s, (4.1)
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where the points of S0∩Xb are eventually repeated according to their multiplic-
ities. This does not depend on w by the following standard lemma, the proof of
which is straightforward.

Lemma 4.2. Let ai, i= 1, . . . , l be integers such that ∑i ai = 1, and Pi, i= 1, . . . , l
be points on a complex torus. Then ∑i aiPi does not depend on the choice of the
neutral element w.

Hence it defines a rational transformation of X , regular above B◦, preserving
p f , and of topological degree D2g. In Betti coordinates, over some open subset
U ⊂ B◦, mD becomes

mD,Φ(u,x) = (u,Dx+ tD(x)) (4.2)

for some real analytic map tD : U → R2g.

4.1.2. If p : X → B is a Lagrangian fibration of a hyperkähler manifold, the
natural polarization of the fibers introduced in Section 2.3 is automatically in-
variant under mD; that is,

(1) for b in B◦, the image of the restriction of H2(X ;Z) to H2(Xb;Z) is an
infinite cyclic subgroup Rb ⊂ H2(Xb;Z);

(2) there is an ample line bundle A on X such that (a suitable multiple of) the
ample generator of Rb is the Chern class of Ab := A|Xb and m∗

DAb = A⊗D2

b .

Thus, mD is a family of polarized endomorphisms of X → B in the sense used
by Gauthier and Vigny in [20].

To prove (2), let Hb be the ample generator of Rb. The inverse image by
mD multiplies Hb by D2. If we pick any line bundle Lb in the class Hb, then
m∗

DLb = L⊗D2

b ⊗Mb where Mb ∈ Pic◦(Xb). To find a line bundle in the class of
Hb, which is taken to the power D2 by mD, we have to add to Lb a (D2 −1)-th
root of Mb. There are D2−1 of them, so equally D2−1 line bundles Lb, j in the
class Hb, and we take the sum of them all to get a monodromy invariant Ab.

Now, suppose we start with a Lagrangian fibration and a multisection S0,
and we do the base change given by p : S0 → B. We get a new variety Y , a
map q : Y → X of degree d, and a new fibration pY : Y → S0 such that p ◦ q =

p|S0 ◦ pY . Moreover, pY has a natural section SY
0 ⊂ Y . Then, for each D ≥ 2 we

can construct a rational transformation mY
D : Y 99K Y acting by multiplication

by D on the smooth fibers of pY and fixing SY
0 pointwise (we use SY

0 ∩Yb as the
neutral element of Yb := p−1

Y (b) for b ∈ S◦0). The natural polarization Rb of the
fibers of Xb can be pulled back to Y and it gives an mY

D-invariant polarization.
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4.2. Local to global volume estimates. Let us summarize some of the results
of [20]. We fix a fibration pY : Y → BY and a rational transformation g : Y →Y .
We also fix a Kähler form κB on BY . We assume that pY ◦ g = pY , that g is
regular over some dense open subset of BY , and that, as above, g is (relatively)
polarized. This assumption is equivalent to the existence of an ample line bun-
dle A on Y and an integer D(g)≥ 2 such that

g∗Ab = AD(g)
b (4.3)

for all b in a dense open subset of BY . Choose a Kähler form κ representing
the Chern class of A and a dense open subset B′

Y of B◦
Y over which g is regular

and satisfies (4.3) (B′
Y is a regular part in the sense of [20]). Set Y ′ = p−1

Y (B′
Y ).

Then, on Y ′, there is a closed positive current T̂g, of type (1,1), such that

1
D(g)k (g

k)∗κ → T̂g (4.4)

in the sense of weak convergence for currents. Moreover, T̂g has local, continu-
ous potentials (on the open set Y ′). For this, we refer to Section 2.3 of [20] (6).

Then, Proposition 3.3 in [20] shows that the following properties are equiva-
lent. Let S be a multisection of pY and let {S} denote the current of integration
on S. Let bY denote the dimension of BY , hence also the dimension of S. The
following properties are equivalent

(a) locally above B′
Y the volume of gk(S) does not grow as fast as D(g)bY k. This

means that for any open subset U ⊂ BY such that U ⊂ B′
Y we have

vol(gk(SU)) = o(D(g)bY k)

or equivalently ∫
gk(SU )

κ
bY = o(D(g)bY k)

as k goes to +∞;
(b) the intersection of T̂ bY

g with S over B′
Y vanishes, i.e.∫

Y ′
S∧ T̂ bY

g = 0;

6The construction in [20] differs slightly from what we write. They fix an equivariant em-
bedding ι : Y → BY ×PN such that π = πB ◦ ι where πB is the first projection BY ×Y → BY .
Then, they replace the Kähler form κ by κFS, the restriction of the Fubini-Study form to ι(Y ).
So, their form is not Kähler, but in the limit process (4.4) we obtain the same current.
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(c) the global volume of the strict transform gk
∗(S) grows as most as D(g)(bY−1)k,

i.e.
vol(gK

∗ (S)) = O(D(g)(bY−1)k)

as k goes to +∞; equivalently

∥ [gk
∗(S)] ∥= O(D(g)(bY−1)k).

Here, κ is any Kähler form on Y and [·] denotes the class in H2bY (Y ;Z). The
point is that the local Property (a), in which the implicit constant in o(·) might
depend on U , gives rise to the global estimates stated in Property (c).

If we apply this result when bY = g, dim(Y ) = 2g, the generic fiber of Y →
BY is abelian, and g = mY

D acts by multiplication by D along the fibers, then
D(g) = D2 and we derive that vol(gk(SU)) = o(D2gk) implies

∥ [(mY
D)

k
∗(S)] ∥= O(D(2g−2)k). (4.5)

4.3. Proof of Proposition 4.1. Set X◦ = XB◦ .

4.3.1. First, we assume p f : X → B has a section s0 : B 99K X , the image of
which is denoted by S0.

(a). First Step.– We fix some integer D ≥ 2 and denote by mD : X 99K X
the rational map fixing S0 and acting by multiplication by D along the fibers of
p f . Let Φ denote local Betti coordinates associated to an open set U ⊂ B◦, the
section S0, and some basis of H1(Xb;Z), b∈U . Viewed in the Betti coordinates,
the section s0 corresponds to s0,Φ(u) = 0, while f and mD correspond to

fΦ(u,x) = (u,x+ t f (u)) (4.6)

mD,Φ(u,x) = (u,Dx). (4.7)

Thus, we have

f Dk

Φ ◦ s0,Φ(u) = Dkt f (u) (4.8)

= mk
D,Φ ( fΦ ◦ s0,Φ(u)) (4.9)

which means that above U we have

f Dk
(S0,U) = mk

D ( f (S0,U)) . (4.10)

From Lemma 3.3 and Section 4.2, we deduce that

∥ f Dk
(S0) ∥= O(D(2g−2)k) (4.11)

where ∥ · ∥ is any norm on the vector space H2g(X ;R).
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(b). Second Step.– Now, we need to prove an estimate similar to (4.11),
but with S0 replaced by any multisection S of p f . Consider the fiber product
W = X ×B X ×B X ; as a set, this algebraic variety is

W = {(x,y,z) ∈ X3 ; p f (x) = p f (y) = p f (z)}. (4.12)

It comes with a fibration Pf : W → B, defined by Pf (x,y,z) = p f (x), and with a
rational map A : W → X , defined by

A(x,y,z) = x+(y− z), (4.13)

using the group law along the fiber Xb, b = Pf (x,y,z). (We do not need the
existence of a section or a choice of neutral element in Xb for this definition.)

Let S be a multisection of p f and consider the sequence of multisections
Tk ⊂W of Pf defined by

Tk = {(x,y,z) ∈W ; x ∈ S, y ∈ S0, z = f Dk
(y)}. (4.14)

Then,
f Dk

(S) = A(Tk). (4.15)

From the first step, we know that the class [Tk] ∈ H2g(W ;Z) satisfies

∥ [Tk] ∥≤CD(2g−2)k (4.16)

for some constant C > 0 that depends on S. At the level of (co)homology
classes, A acts as a linear map between finite dimensional spaces; thus, we
obtain ∥ [A(Tk)] ∥≤C′ ∥ [Tk] ∥ for some constant C′ > 0 and

∥ [ f Dk
(S)] ∥≤C′′D(2g−2)k (4.17)

for C′′ =C ·C′. This concludes the proof.

4.3.2. In case p f : X → B does not have a section, we take for S0 a multisection
and do the base change p f : S0 → B, as in Section 4.1.2. This provides a new
variety Y → S0 with a natural section SY

0 , and a map q : Y → X above S0 → B.
Define S′0 to be the locus of points s ∈ S0 around which p f : S0 → B is a local
diffeomorphism and p f (x) ∈ B◦. If V ⊂ S′0 is an open subset and V is small
enough, q realizes a diffeomorphism from YV = p−1

Y (V ) to p−1
f (p f (V )). The

automorphism f induces a rational transformation fY of Y such that f ◦ q =

q◦ fY . For D ≥ 2, we define mD,Y to be the multiplication by D along the fibers
of pY fixing the natural section SY

0 .
Now, if S is a multisection of p f , we pull back it to Y by q. This gives a

multisection SY of pY for which vol( f Dk

Y (SY
U))=O(D(2g−1)k) as soon as U ⊂ S′0,

because q realizes a local conjugation between fY and f . Thus, we can repeat



PARABOLIC AUTOMORPHISMS: ORBITS AND BETTI MAPS 21

the argument from Step 1 above in Y . Then, we can repeat the argument from
Step 2 by working on WY = Y ×S0 Y ×S0 Y and composing the addition map
A : WY → Y (defined as in Equation (4.13)) with q : Y → X . This concludes the
proof in the general case.

4.4. A cohomological estimate.

Proposition 4.3. Let f be a parabolic automorphism of a hyperkähler manifold
X. If the variations of the translation vector of f are not maximal, then

∥( f n)∗∥Hg,g(X ;R) = O(n2(g−1))

as n goes to +∞.

Proof. Embed X into a projective space PN , and intersect it with a suitable linear
subspace to get a multisection S of X . The class [S] of S will be considered as
an element of Hg,g(X ;Z) (using Poincaré duality), it is the same as [ωg

FS] where
ωFS denotes the restriction of the Fubini-Study form to X . Proposition 4.1
shows that

∥( f n)∗[S]∥= O(n2(g−1)) (4.18)

along the subsequence n = Dk, for some D ≥ 2.
Now, consider a real subspace W of H2g(X ;R) together with a closed, con-

vex, and salient cone C ⊂ W , the interior of which is non-empty. Assume
that (a) W and C are f ∗-invariant and (b) [S] is in the interior of C. Then,
∥( f ∗)n∥W = O(n2(g−1)). Indeed, by Birkhoff’s version of the Perron-Frobenius
theorem, we know that

A−1∥( f ∗)n[S]∥ ≤ ∥( f ∗)n∥W ≤ A∥( f ∗)n[S]∥ (4.19)

for some constant A ≥ 1. Thus, Equation (4.18) implies that the spectral radius
of f ∗W is equal to 1. This, in turn, implies that ∥( f ∗)n∥W grows like a power of
n, and then Equation (4.18) shows that this power is ≤ 2(g−1).

We apply this scheme to the vector space W = Hg,g(X ;R) and the cone C =

Pg(X), the cone of classes represented by closed positive currents of bidegree
(g,g) (see for instance [15]). This is a closed, convex cone, and it is salient
because the set of closed positive currents T of bidegree (g,g) with fixed mass
Mκ(T ) = ⟨T |κg⟩ is compact for the weak-∗ topology. The class [S] = [ω

g
FS] is

in the interior of this cone, because any small perturbation of ωg is a positive
(g,g)-form. And Pg(X) is Aut(X)-invariant. This concludes the proof. □
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5. ACTION ON THE COHOMOLOGY

In this section, we show that if f is a parabolic automorphism of a hy-
perkähler manifold, then for every 1 ≤ p ≤ g there is a positive constant
cp( f ) such that ∥( f ∗)n∥H p,p(X ;R) ≃ cp( f )n2p.

Let f be an automorphism of a hyperkähler manifold. Recall from Sec-
tion 1.1.3 that f is either elliptic, parabolic, or loxodromic. The following result
is a concatenation of theorems of Lo Bianco, Oguiso, and Verbitsky.

Theorem C. Let f be an automorphism of a hyperkähler manifold of dimen-
sion 2g.

(1) If f is elliptic, then f k = IdX for some k ≥ 1;
(2) if f is parabolic, then for every 1 ≤ p ≤ g there is a positive constant cp( f )

such that ∥( f ∗)n∥H p,p(X ;R) ≃ cp( f )n2p;
(3) if f is loxodromic, there is a real number λ( f ) > 1 such that for every

1 ≤ p ≤ g there is a positive constant cp( f ) such that ∥( f ∗)n∥H p,p(X ;R) ≃
cp( f )λ( f )pn;

(4) by duality, if f is parabolic then for g ≤ p ≤ 2g there is a positive con-
stant cp( f ) with ∥( f ∗)n∥H p,p(X ;R) ≃ cp( f )n2(2g−p), and similarly if f is lox-
odromic then ∥( f ∗)n∥H p,p(X ;R) ≃ cp( f )λ( f )n(2g−p).

We only sketch the proof, because the only part that may be considered to be
new is the second assertion.

Let us prove Assertion (1). Since f is elliptic, its eigenvalues on H1,1(X ;R),
and then on H2(X ;R), all have modulus 1. Thus, being roots of the character-
istic polynomial of f ∗H2(X ;Z), hence of a monic polynomial with integer coef-
ficients, these eigenvalues must be roots of unity. This implies that a positive
iterate of f acts trivially on H2(X ;Z). Then, according to Lieberman’s theorem
(see [26]), a positive iterate of f must be in the connected component Aut(X)0

of the identity. Since Aut(X)0 is trivial for any irreducible hyperkähler manifold
(see [22]), we conclude that f has finite order.

Now, suppose that f is parabolic. Then ∥( f ∗)n∥H1,1(X ;R) ≃ c1( f )n2 for some
c1( f ) > 0 (see § 8). Theorem 1.5 of [42] says that Symp(H2(X ;R)) embeds
into H2p(X ;R) for p ≤ g via the cup product, so

∥( f ∗)n∥H p,p(X ;R) ≥ cn2p (5.1)
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for some positive constant c and for all n ≥ 1. On the other hand, from the
Khovanski-Teyssier inequalities, the numbers

sp( f ) = limsup
n→+∞

log(∥( f ∗)n∥H p,p(X ;R))

log(n)
(5.2)

form a concave function of p, for 0 ≤ p ≤ dim(X) (see [27]); this means that

2sp( f )≤ sp−1( f )+ sp+1( f ) (5.3)

for every p. Since s0( f ) = 0 and s1( f ) = 2, it follows from the lower esti-
mate (5.1) that sp( f ) = 2p for every p ≤ g.

When f is loxodromic, we have ∥( f ∗)n∥H1,1(X ;R) ≃ c1( f )λ( f )n for some
λ( f )> 1 and the same argument leads to Assertion (3) (for the details, see [28,
Appendix] or [36]).

6. THEOREM A IN THE PROJECTIVE CASE, AND APPLICATION

We prove Theorem A when X is assumed to be projective and give an
application to the dynamics of some groups of automorphisms.

6.1. Proof of Theorem A. Let f be a parabolic automorphism of a hyperkäh-
ler manifold X , as in Theorem A. Assertion (1) of Theorem A is contained
in Theorem C. In particular, ∥( f ∗)n∥Hg,g(X ;R) grows like cg( f )n2g. The same
estimate holds for f k, the first positive iterate acting as the identity on the
base of the invariant Lagrangian fibration p f , with constant cg( f ) replaced by
cg( f k) = cg( f )k2g.

Now, assume that X is projective. By Proposition 4.3, the translation vector
of f k has maximal variations, as stated in Assertion (2) of Theorem A.

Let us derive Assertion (3) from Assertion (2). This final step does not use
that X is projective, only the validity of Assertion (2). Let U ⊂ B◦ be a small,
relatively compact, simply connected open subset. Write f k on XU in some
Betti coordinates :

f k
Φ(u,x) = (u,x+ t f k(u)). (6.1)

For b ∈U , the closure Z(b) of Zt f k(b)∈R2g/Z2g is a Lie subgroup of R2g/Z2g.
Its dimension r(b) and its number of connected components c(b) vary with b.
Since t f k has maximal variations, t f k(U) contains an open set, so that any pair
(r,c) with 0 ≤ r ≤ 2g and c ∈ Z≥1 can be realized as (r(b),c(b)) by some b in
U . This proves Assertion (3) because orbits of f k in Xb correspond, in the Betti
coordinates U ×R2g/Z2g, to subsets of type {b}× (x+Z(b)).
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6.2. Example. Consider a compact hyperkähler manifold X , of dimension 2g,
together with two parabolic automorphisms f and g preserving distinct La-
grangian fibrations p f : X → B f and pg : X → Bg. By this we mean that p f and
pg satisfy the following equivalent properties (see [1, Proposition 2.20]): (a)
the restriction of p f to a general fiber of pg is not constant; (b) the restriction of
p f to a general fiber of pg is a dominant morphism onto B f ; (c) the restriction
of pg to a general fiber of p f is a dominant morphism onto Bg. The existence
of two distinct Lagrangian fibrations like that implies that X is projective.

For each pair of positive integers (k, ℓ), consider the subgroup Γk,ℓ of Aut(X)

generated by f k and gl . Fix a distance dist(·) on X and say that a subset Λ ⊂ X
is ε-dense if every point of X is at distance less than ε from a point of Λ.

(1) The set {x ∈ X ; the orbit Γk,ℓ(x) is dense in X} (for the euclidean topol-
ogy) is a countable intersection of open dense subsets of X ; in particular, it
is dense and has full measure for the volume form (σ∧σ)g.

(2) For every ε > 0, there is an integer N ≥ 1 such that for every pair (k, ℓ) with
k and ℓ≥ N, the set {y ∈ X ; Γk,ℓ(y) is finite} is an ε-dense set.

To get (1), do as in [1, §6] and [9]: by Theorem A, the locus of points b in
B f such that the orbit closures of f in Xb have codimension ≥ 1 is a countable
union of proper real analytic subsets of B◦

f . Pick a point x ∈ X such that p f (x)
is not in this meager set. The closure of Γk,ℓ(x) contains the fiber of p f through
x, hence also the orbit of this fiber by Γk,ℓ; then, using g, it contains all fibers of
pg in the complement of a meager set. This shows that a generic orbit is dense.
To conclude, note that being dense is the same as being ε-dense for all ε > 0.
(Also, an orbit is dense for some Γk,ℓ if and only if it is dense for all Γm,n.)

To get Assertion (2), we use the following consequence of Theorem A: the
set Fk := {b ∈ B f ; f k

|Xb
= IdXb} becomes ε-dense in B if k is large enough.

Similarly, the set Gℓ ⊂ Bg corresponding to fibers of pg on which the order of g
divides ℓ is ε-dense for large enough ℓ. Then, the set

p−1
f (Fk)∩ p−1

g (Gℓ) (6.2)

is ε-dense and is made of fixed points of Γk,ℓ.

Remark 6.1. The second assertion shows the finite exceptional orbits in The-
orem 0.2 of [16] can be arbitrarily large (resp. ε-dense) when one reduces the
size of the group (see also Corollary 1.2 of [12]).
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7. FROM THE PROJECTIVE CASE TO THE KÄHLER CASE

The purpose of this section is to deduce Theorem A in the non-
projective setting from the case of projective hyperkähler manifolds.
For this, we apply the method of degenerate twistor deformations de-
veloped by Verbitsky and Soldatenkov in [43, 41].

According to Section 6.1, we only need to prove the second assertion of
Theorem A, since the first one has already been verified for all hyperkähler
manifolds and the third one is a consequence of the second.

7.1. The non-projective setting. Let X be a non-projective, irreducible, hy-
perkähler manifold, with a fixed holomorphic structure, equipped with some
holomorphic Lagrangian fibration p : X → B. Let σ be a holomorphic symplec-
tic form on X . Recall from Section 2.3 that B is projective. We denote by h the
pull-back of a fixed very ample class in NS(B). The class h ∈ NS(X) is nef and
satisfies qX(h) = 0.

Since X is not projective, Huybrechts’ Theorem (see § 2.1) shows that the
form qX is negative semi-definite on NS(X ;R), with one-dimensional kernel
Rh. In other words, with the vocabulary from Sections 2.1 and 2.2, the lattice
(NS(X),qX) is parabolic and the class h is an isotropic element of both NS(X)

and the transcendental lattice T(X).
Consider a parabolic automorphism f : X → X such that p ◦ f = fB ◦ p for

some automorphism fB of B. Since Pic(B) ≃ Z, we have f ∗h = h. Moreover,
according to Section 2.4, there is a Kähler form κB on B such that f ∗BκB = κB;
we can assume furthermore that [κB] = h.

In the non-projective case, it follows from Oguiso’s results that f ∗σ = σ (see
Assertion (1) of Theorem B and the comment after this theorem).

7.2. Twistor deformations. A C-symplectic form on a differentiable manifold
M of dimension 4n is a closed, complex-valued 2-form Ω such that Ωn+1 = 0
and Ωn ∧Ωn is everywhere non-vanishing (see Definition 2.1 in [41]). The first
main properties of such a C-symplectic form are (see [41]):

(1) the kernel of Ω on the complexified tangent space TCM is everywhere of
dimension 2n and can be seen as the antiholomorphic tangent bundle of a
complex structure J;

(2) with respect to this complex structure, Ω is a holomorphic symplectic form.

Take X as in Section 7.1. On the differentiable manifold X , consider the family
of differentiable forms Ωt = σ+ t p∗κB. According to [41, Theorem 2.3],
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(3) for any t, Ωt is a C-symplectic form.

Thus, the family Ωt defines a family of complex structures Jt , hence a family of
complex manifolds (on the same underlying differentiable manifold) such that
X0 = X , Ωt is a holomorphic symplectic form on Xt , and therefore H2,0(Xt ;C)
is generated by [Ωt ] = [σ]+ th for each t. Moreover, by [41, Theorem 2.3],

(4) the map p : Xt → B remains a holomorphic Lagrangian fibration, and the
complex structure on the fibers of p does not change.

7.3. Conclusion. Now, the next proposition is almost obvious.

Proposition 7.1. The diffeomorphism f : X → X is holomorphic with respect to
all the complex structures Jt , t ∈ C.

Proof. First, recall that we assume that the parabolic automorphism is sym-
plectic with respect to the initial symplectic structure σ = Ω0. Moreover, fB

preserves κB. Thus, f preserves each C-symplectic form Ωt = σ+ t p∗κB. In
particular, f preserves its kernel and the conjugate of the kernel, which are the
antiholomorphic and holomorphic tangent bundles to Xt , respectively. □

With this construction at hand, the keypoint is that some of the Xt are projec-
tive for arbitrarily small parameters t ∈ C.

Proposition 7.2. For any r > 0, there exists t ∈ C with |t|< 1/r such that Xt is
projective.

Proof. For t small, Xt is Kähler, because being Kähler is an open property;
then, as in any family of Kähler manifolds, the Hodge numbers stay constant
(see [44]). Thus, for small parameters, we obtain a family of irreducible hyper-
kähler manifolds.

From Huybrechts’ theorem, we know that Xt is projective when it carries an
integral (1,1)-class u with q(u,u)> 0. Moreover, an integral class u∈H2(X ;Z)
is of type (1,1) with respect to the complex structure Jt when it is q-orthogonal
to the class [Ωt ].

Fix r ≥ 1 large, and then choose a class a ∈ H2(X ,Z) such that

0 < r|q(a,σ)|< q(a,h); (7.1)

such a class exists because q(·,σ) and q(·,h) are two linearly independent linear
forms on H2(X ;C). Then, changing a into a +mh for some integer m ∈ Z
we can suppose q(a,a) > 0. Now, a is of type (1,1) on Xt if and only if t =
−q(a,σ)/q(a,h). This defines a unique t, of modulus < 1/r. □
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Since Assertion (2) of Theorem A does not depend on the complex structure
Jt but only on the dynamical properties of f , we can now apply Theorem A on
Xt to derive the same conclusion on X0. This concludes the proof of our main
theorem in the non-projective setting.

7.4. Extension of Lo Bianco’s theorem. A similar argument can be applied
to extend the second assertion of Theorem B from the projective to the non-
projective setting. Indeed, along a twistor deformation (Xt ,Ωt), with Ωt = σ+

t p∗κB, the action of ft on the base of its invariant fibration does not change.
Since for some parameters t we know that Xt is projective, we can apply Lo
Bianco’s result to conclude that fB has finite order.

8. APPENDIX

8.1. Parabolic isometries. Let V be a real vector space of (finite) dimension m+ 1
endowed with a non-degenerate quadratic form qV of signature (1,m). Let h ∈ O(qV )
be a linear transformation of V preserving qV . By definition, h is parabolic if it does
not fix any vector v ∈ V with qV (v) = 1 and if all its eigenvalues have modulus 1.
Equivalently, 1 is an eigenvalue of h, but the corresponding eigenspace {v ; h(v) = v}
does not intersect {v ; qV (v) > 0}. When h is parabolic, there is a unique isotropic
line Dh ⊂ V which is h-invariant, and this line is fixed pointwise. For this, we refer to
Ratcliffe’s book on hyperbolic geometry [40].

Remark 8.1. If h is a parabolic isometry and h preserves a subspace W ⊂V on which
qV is non-degenerate and indefinite, then h|W : W →W is also parabolic.

If dim(V ) ≤ 2, there is no parabolic isometry; indeed, if dim(V ) = 2 the isotropic
cone is made of two lines, and a parabolic isometry should preserve each of them,
with eigenvalue 1 on one of them, hence with eigenvalue ±1 on the second (because
det(·) =±1 on O(qV )), but then the isometry would have order 1 or 2.

Proposition 8.2. Let h be such a parabolic isometry. Then, given any operator norm
∥·∥ on End(V ), there is a constant c(h)> 0 such that ∥hn∥ ≃ c(h)n2.

Proof. The characteristic polynomial of h can be written Ph(t) = (t − 1)rQ(t) where
Q ∈R[t] and Q(1) ̸= 0. From this, we get a decomposition V = E1⊕EQ where E1 is the
kernel of (h− IdV )

r and EQ is the kernel of Q(h). This is an orthogonal decomposition
E⊥

1 = EQ. In particular, the restriction of qV to E1 is non-degenerate. The line Dh is
contained in E1. Thus, the signature of qV on E1 is (1,dim(E1)−1), and qV is negative
definite on EQ. In particular, the restriction of h to EQ is in a compact group.

Thus, we can now assume that V is equal to E1. In other words, h is unipotent.
Then, on D⊥

h /Dh, the endomorphism induced by h is unipotent and preserves a negative
definite quadratic form; thus, it is equal to the identity.

Let v2 be an element of V such that qV (v2) = 1. Set v1 = h(v2)− v2. Then v1 ̸= 0
(because h is parabolic) and v1 is orthogonal to Dh. Thus, v1 = h(v1)− v0 for some
v0 ∈ Dh. The vector v0 is not 0, because otherwise h would induce a parabolic isometry
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of the 2-dimensional space Vect(v1,v2). Thus, the vector space W = Vect(v1,v2,v3)
is h-invariant, has dimension 3, and contains D. In the basis (v1,v2,v3), the matrix of
h is a Jordan bloc of size 3, and the growth of ∥hn∥ is quadratic. On the orthogonal
complement W⊥, h is the identity. This concludes the proof. □

8.2. Parabolic automorphisms. Combining the two previous sections, we get the no-
tion of parabolic automorphism of hyperkähler manifolds: these are automorphisms
f : X →X such that f ∗ determines a parabolic isometry of V :=H1,1(X ;R) with respect
to the Beauville-Bogomolov quadratic form qV := q. Then, Proposition 8.2 proves the
equivalence between Assertions (a) and (c) from Section 1.1.3. The equivalence with
(b) comes from the fact that all eigenvalues of f ∗ are roots of unity because f ∗ preserves
the lattice H2(X ;Z) in H2(X ;R).
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