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Abstract. We consider the interaction of a viscous incompressible fluid with a flexible shell in three

space dimensions. The fluid is described by the three-dimensional incompressible Navier–Stokes equa-

tions in a domain that is changing in accordance with the motion of the structure. The displacement
of the latter evolves along a visco-elastic shell equation. Both are coupled through kinematic boundary

conditions and the balance of forces.
We prove a counterpart of the classical Ladyzhenskaya-Prodi-Serrin condition yielding conditional

regularity and uniqueness of a solution.

Our result is a consequence of the following three ingredients which are of independent interest:
(i) the existence of local strong solutions, (ii) an acceleration estimate (under the Serrin assumption)

ultimately controlling the second-order energy norm, and (iii) a weak-strong uniqueness theorem. The

first point and, to some extent, the last point were previously known for the case of elastic plates, which
means that the relaxed state is flat. We extend these results to the case of visco-elastic shells, which

means that more general reference geometries can be considered such as cylinders or spheres. The second

point, i.e., the acceleration estimate for three-dimensional fluids is new even in the case of plates.

1. Introduction

When three-dimensional Navier-Stokes equations are considered, only conditional smoothness and
uniqueness of weak solutions are known for large data and time. The condition is that the fluid velocity
satisfies some integrability beyond the natural energy estimate that overcomes a certain scaling, namely1

v ∈ Lr(I;Ls(Ω)), 2
r + 3

s = 1, 2 ≤ r < ∞. (1.1)

The above criterion is known as the Ladyzhenskaya-Prodi-Serrin condition, referring to the works by
Prodi [44] and Serrin [50, 51] on conditional uniqueness as well as that of Ladyzhenskaya [35] showing
conditional regularity of solutions. Summarizing, this means if (1.1) is satisfied, then the solution is a)
smooth, and b) unique within all weak-solutions satisfying an energy inequality. The latter property is
often referred to as weak-strong-uniqueness.

Many authors have since contributed to the generalization of this criterion [4, 5, 15, 26, 31, 32, 33].
In particular, in recent years, seminal studies related to the borderline case s = 3 indicate that the
condition could potentially be sharp [1, 26, 27, 28]. As the physical indications of non-uniqueness are
usually (necessarily) present in fluid-structure interaction problems, it seems worthwhile investigating
how far the seminal work by Ladyzhenskaya, Prodi, Serrin and many others still holds true in this
framework. The aim of this paper is to advance this theory to the framework of elastic deformable shells
interacting with the incompressible Navier–Stokes equations. A second and more practical motivation of
our study is its potential application for numerical analysis. Indeed, the analysis here in particular shows
that strong solutions are attractors, which is a first step towards convergence results. See Remark 1.4 for
more details.

In the context of a fluid-structure interaction problem the domain of the fluid varies with time with
respect to the evolution of the structure. Hence an estimate for the difference of two solutions cannot be
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1Here and later we use I = (0, T ) as the time interval and Ω ⊂ R3 for the spatial (reference) domain. Further notations

can be found in the next section.
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directly obtained even when both solutions are smooth. This is already the case when a single rigid body
is moving inside the fluid. For that regime, rather recently, the Ladyzhenskaya-Prodi-Serrin condition
has been extended for the motion of a rigid ball immersed in a viscous incompressible fluid [14, 39, 42].
In that context falls also the uniqueness result for weak solutions in two dimensions [21].

The situation becomes even more dramatic, when flexible materials are considered that change the
domain in an asymmetric fashion.

In this work we study curved reference configurations (see Figure 1). The most prominent reference
geometries for shells are cylinders, that relate for example to the very relevant application of blood-flow
or balls, relating for example to the motion of a balloon. But certainly many more complicated reference
geometries may appear in applications. In short, we derive the following three novel results to be found
in sections three, four and five that might each be of independent interest:

Section 3 Local strong solutions. We show the existence of a smooth solution for short times.
Section 4 The acceleration estimate. Here we show that as long as the fluid velocity satisfies (1.1) and

the displacement of the shell stays C1 in space, the solution satisfies some extra smoothness. This
section relates to the conditional smoothness of solutions a). This estimates strongly depends on
the fact that we consider visco-elastic shells, i.e. the coefficient γ > 0 below in (1.2).

Section 5 Weak-strong uniqueness. Finally, in this section, it is shown that the constructed smooth
solution is unique in the regime of weak solutions satisfying an energy estimate and possessing a
bi-Lipschitz-in-space shell displacement; hence, conditional uniqueness is shown b).

The only additional assumption for a weak solution to be smooth and unique that we require on the
shell displacement is that it is C1 in space. As we will explain below, this is just an instant of regularity
more than a weak solution enjoys.

The first point and, to some extent, the last point above were previously known for the case of elastic
plates, which means that the relaxed state is flat. The latter one is also the first weak-strong uniqueness
result in the context of fluid-structure interaction with flexible structure [49]. The proof there relies
heavily on the fact that the reference configuration is flat. The second point above, the acceleration
estimate for three-dimensional fluids, is new even in the case of plates.

1.1. Analysis of fluid-structure interactions. The results presented here strongly connect to previous
works on fluid-structure interactions involving elastic structures interacting with an unsteady three-
dimensional viscous incompressible fluid. Most results are on the existence theory. We refer to [12] for an
overview of the setting considered in this paper and to [29] for various subjects in fluid-solid interactions.
We may broadly classify these body of work into the construction of strong solutions and weak solutions
for a viscous fluid interacting with an elastic structure.

For weak solutions, a semi-group approach is used in [2] in the construction of global-in-time weak
solutions for the interaction between a stationary elastic solid immersed in a viscous incompressible
fluid, where the interaction happens at the boundary of the solid. The same authors then show in [3]
that for smooth enough data, the weak solutions constructed in [2] become smooth. The existence of a
weak solution is also shown in [11] for a regularized three-dimensional elastic structure immersed in an
incompressible viscous fluid contained in a fixed bounded connected domain. These solutions exist as long
as deformations of the elastic solid are sufficiently small and no collisions occurs between the structure
and the boundary. However, large translations and rotations of the structure are accounted for. The
authors in [13] used a Galerkin method to show the existence of a weak solution to the three-dimensional
Navier–Stokes equations coupled with a two-dimensional elastic plate model that is modified to include
viscous effects. This weak solution exists as long as the structure does not touch the fixed part of the
fluid boundary. The viscous effects incorporated in the plate model is then removed in [22] by passing to
the limit as the coefficient modelling the viscoelasticity tends to zero. The seminal work [18] explores the
motion of the linear Kirchhoff elastic solid material inside an incompressible viscous fluid. A topological
fixed-point argument is used to construct a local-in-time weak solution which is then shown to be regular
and unique. The authors in [36] study the interaction of an incompressible Newtonian fluid with a linearly
elastic Koiter shell. Here, the fluid’s boundary is described by the mid-section of the shell and the authors
show the existence of weak solutions, without self-intersections of the shell, using an Aubin–Lions type
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argument. Eventually, an existence result for the fully nonlinear Koiter shell model has been proved in
[43].

When it comes to strong solutions, short time existence and uniqueness of solutions in Sobolev spaces
are studied in [16, 17] for a viscous incompressible fluid interacting with a nonlinear thin elastic shell. The
shell equation for the former [16] is modelled by the nonlinear Saint-Venant-Kirchhoff constitutive law,
whereas that of the latter [17] is modelled by the nonlinear Koiter shell model. In [19] the authors prove
the existence of a unique local strong solution, without restriction on the size of the data, when the elastic
structure is now governed by quasilinear elastodynamics. In [25], the elastic structure is modelled by a
damped wave equation with additional boundary stabilization terms. For sufficiently small initial data,
subject to said boundary stabilization terms, global-in-time existence of strong solutions and exponential
decay of the solutions are shown. The free boundary fluid-structure interaction problem consisting of a
Navier–Stokes equation and a wave equation defined in two different but adjacent domains is studied in
[34]. A local strong solution is constructed under suitable compatibility conditions for the data. Another
local-in-time strong existence result is [38] where the viscous Newtonian fluid is interacting with an elastic
structure modelled by a nonlinear damped shell equation. Finally, a local strong solution is constructed
for the motion of a linearly elastic Lamé solid moving in a viscous fluid in [45]. For the problem (1.2)–(1.4)
below, the only available local existence results deal with the case of a flat geometry, see [17] and [38],
while the existence of global strong solutions in 2D is proved in [23] for flat geometry and in [6] for linear
elastic shells in general geometries. A corresponding result for the 3D case is not yet known.

1.2. The fluid-structure interaction problem. We are interested in the interaction of an incom-
pressible fluid with a flexible shell where the shell reacts to the surface forces induced by the fluid and
deforms the spatial reference domain Ω ⊂ R3 to Ωη(t) with respect to a coordinate transform φη(t) (see
Figure 1 for the typical situation). The deformed domain Ωη is defined in Subsection 2.4 in a precise
way. We assume that the shell is visco-elastic. This means that besides the fluid forces, it is driven by
its elastic properties and its viscosity. The reference model here is the linearized Koiter shell model, but
also linearized versions of von Karman shells or pure bending shells are models that can be treated by
the methods here. Following [36, 41], we find that the elastic part of the equation for the solid becomes
α∆2

yη + Bη, where B is a linear second-order differential operator. Similarly, the part related to the

viscosity of the shell becomes γ∆2
y∂tη +B′∂tη, where B′ is another linear second-order differential oper-

ator. To simplify reading, we take a form of the equation that contains only parts of the contributions of
elasticity and viscosity, which are essential for the analysis to be performed. In particular, we reduce the
elastic part to α∆2

yη and the viscous part to −γ∆y∂tη. We observe that the reduction is with no loss
of generality, which certainly would not be the case if non-linear Koiter shell models were considered as
in [8, 41, 43].

Accordingly, the shell function η : (t,y) ∈ I × ω 7→ η(t,y) ∈ R with I = (0, T ) for some T > 0 solves{
ϱs∂

2
t η − γ∂t∆yη + α∆2

yη = g − n⊺τ ◦φηnη|det(∇yφη)| for all (t,y) ∈ I × ω,

η(0,y) = η0(y), (∂tη)(0,y) = η∗(y) for all y ∈ ω,
(1.2)

with periodic boundary conditions in space. Here ω ⊂ R2 is the torus and φ : ω → ∂Ω paramtrizing
the boundary of the reference domain Ω, with |det(∇yφη)| := |∂y1

φη × ∂y2
φη|. The parameters ϱs, γ

and α are positive constants and the function g : (t,y) ∈ I × ω 7→ g(t,y) ∈ R is a given forcing term.
The vectors n and nη are the normal vectors of the reference boundary and of the deformed boundary,
respectively, whereas τ denotes the Cauchy stress of the fluid given by Newton’s rheological law, that
is τ = µ

(
∇v + (∇v)⊺

)
− πI3×3. The positive constant µ represents the viscosity coefficient. Also,

v : (t,x) ∈ I × Ωη 7→ v(t,x) ∈ R3, the velocity field and π : (t,x) ∈ I × Ωη 7→ π(t,x) ∈ R, the pressure
function are the unknown functions for the fluid whose motion is governed by the Navier–Stokes equations

ϱf
(
∂tv + (v · ∇)v

)
= µ∆v −∇π + f for all (t,x) ∈ I × Ωη,

divv = 0 for all (t,x) ∈ I × Ωη,

v(0,x) = v0(x) for all x ∈ Ωη0 ,

(1.3)
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Figure 1. Domain transformation in the general set-up in 3D.

where ϱf is a positive constant representing the density of the fluid and the function f : (t,x) ∈ I×Ωη 7→
f(t,x) ∈ R3 is a given volume force. The equations (1.2) and (1.3) are coupled through the kinematic
boundary condition

v ◦φη = ∂tηn for all (t,y) ∈ I × ω. (1.4)

1.3. Main result. The main motivation for the present work is to prove an analog of the results by Serrin,
Prodi and Ladyzhenskaya for the fluid-structure interaction problem (1.2)–(1.4). The here presented
result is a summary of Theorem 6.1, where the statement can be found in its full extent.

A weak solutions (η,v) to (1.2)–(1.4) can be constructed to satisfy the energy inequality and thus

sup
I

∥∂tη∥2L2
y
+ sup

I
∥∆yη∥2L2

y
+

∫
I

∥∂t∇yη∥2L2
y
dt < ∞. (1.5)

We speak about a strong solution if all quantities in (1.2) and (1.3) are L2-functions in space-time. The
precise definitions can be found in Definitions 2.5 and 2.6.

Theorem 1.1 (Shells). Let (v, η) be a weak solution to (1.2)–(1.4). Suppose that we have

v ∈ Lr(I;Ls(Ωη)),
2
r + 3

s ≤ 1, (1.6)

η ∈ L∞(I;C1(ω)) (1.7)

for some r ∈ [2,∞) and s ∈ (3,∞]. Then (v, η) is a strong solution to (1.2)–(1.4). Moreover, (v, η)
is unique in the class of weak solutions satisfying the energy inequality and with structure component in
L∞(I;C0,1(ω)).

We emphasis that the only additional assumption for the structure is given by L∞(I;C1(ω)) for
conditional smoothness or L∞(I;C0,1(ω)) for the uniqueness class of the strong solution. Note that
this is only an instant of regularity more than a weak solution enjoys as it belongs to L∞(I;W 2,2(ω)),
see (1.5). Further note that the spaces W 2,2(ω), C0,1(ω) and C1(ω) even have the same index in 2D,
but the embedding W 2,2(ω) ↪→ C0,1(ω) just fails. This extra assumption is, however, essential for the
approach presented here. Hence it remains a challenging open problem of whether the uniqueness regime
(of a strong solution) can be extended to all energy preserving weak-solutions in the case of a curved
reference geometry. In contrast, in case the reference geometry is flat (the plate case), a direct approach
for weak-strong uniqueness is available for which the C0,1(ω) assumption is not necessary [49]. As the
theory presented here is in particular valid for plates, we have the following corollary.

Corollary 1.2 (Plates). Let (v, η) be a weak solution of (1.2)–(1.4) with flat reference geometry. Suppose
that we have

v ∈ Lr(I;Ls(Ωη)),
2
r + 3

s ≤ 1,

η ∈ L∞(I;C1(ω))
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for some r ∈ [2,∞) and s ∈ (3,∞]. Then (v, η) is a strong solution of (1.2)–(1.4). Moreover, (v, η) is
unique in the class of weak solutions satisfying an energy inequality.2

Remark 1.3. In the above result, it might be interesting to explore the borderline case, i.e. v ∈
L∞(I;L3(Ωη)). However, handling this case would require further work using different techniques. For
instance, this has been addressed in the context of the Navier–Stokes equations in [20] where the backward-
uniqueness theorem for the heat operator is used.

Remark 1.4 (Stability and convergence of numerical schemes). Related to the weak-strong uniqueness
results is a stability estimate (see Section 5). It arises naturally, when the difference of two solutions is
estimated. Hence a further result of this work is that any solution satisfying (1.6) and (1.7) is actually
an attractor in the respective uniqueness class.

Stability are of particular importance for numeric applications. Indeed they form the first step in
order to show that the difference between a discrete solution and the continuous solution decreases (with
a rate), provided that the continuous solution is unique, as was shown for plates in 2D [48, 49].

The formal proof for the regularity part of Theorem 1.1 consists in proving an acceleration estimate
which combines and extends the results in [6, 23]. In order to appreciate the moving boundary, the correct
test function for the momentum equation is – roughly speaking – the material derivative ∂tv + v · ∇v
combined with the test-function ∂2

t η for the structure equation. A key tool is eventually to estimate ∇2v
(as well as∇π) by means of ∂tv+v·∇v. This can be done by means of a steady Stokes theory for irregular
domains proved in [6] (applied to the domain Ωη(t) for fixed t). It strongly requires a boundary with
a small local Lipschitz constant and thus (1.7) is essentially needed there. Otherwise, such a regularity
estimate is not known and probably not even expected. Furthermore, in order to avoid the appearance
of the pressure function, an extension operator from ω to Ωη has been used in [23] which is at the same
time solenoidal and satisfies a homogeneous Neumann-type boundary condition. The construction of the
latter is only possible for a flat reference domain. Hence, we introduce the pressure function and work
with a more common extension operator which does not preserve solenoidability. The advantage of the
latter is that it has the usual regularization property (it “gains” the differentiability which is lost by the
trace theorem, see Section 2.5) different from the solenoidal extensions used in [23], [36] and [43]. A
major difference between the 2D and 3D cases is that one has to use the full strength of this operator to
compensate for the worsening embeddings.

In order to make this argument rigorous, we work with a strong solution to (1.2)–(1.4). Thus, we prove
the existence of a local strong solution in Theorem 3.1. With a strong solution at hand, we can justify the
estimates mentioned above. To close the argument (see the proof of Theorem 6.1) we have to compare
weak and strong solution by means of a weak-strong uniqueness result. The difficulty of the latter is that
one needs to compare two velocity fields which are a priori defined on different (time-changing) domains.
Nevertheless, such a result has been established very recently in [49] for linear elastic plates. The key
idea is to transform the strong solution into the domain of the weak solution and then estimate their
difference. When doing so, the strong solution loses its solenoidal character which must be corrected to
avoid the appearance of the pressure function in the weak formulation. In the case of a flat geometry as
in [49] this can be done by an explicit construction, but our situation is more complicated. We thus work
with a Bogovkij-operator for moving domains [30]. Its properties crucially hinge on the spatial Lipschitz
continuity of the moving boundary and thus require that the weak solution belongs to L∞(C0,1). For
details on the criticality of Lipschitz regularity see [47], where estimates for the Bogovkij-operator in
rough time-dependent domains are studied.

1.4. Organization of the paper. We introduce in Section 2 some notations, definitions and the func-
tional analytic framework. In particular, we give the definition of the notion of a weak and a strong
solution for the system (1.2)–(1.4). We then construct in Section 3, the local strong solution by lin-
earizing the system and employing the Banach fixed-point argument. Section 4 is devoted to proposing
the conditions of Serrin type to obtain the acceleration estimate. In Section 5, we focus on showing the

2The larger uniqueness class follows from [49]. Strictly speaking the weak-strong uniqueness result in [49] considers

elastic plates. However, the presence of dissipation in the structure equation does not change the argument at all.
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weak-strong uniqueness result. Finally, we give in Section 6 a short summary to formulate the main
result by collecting the key elements of the previous sections.

2. Preliminaries

2.1. Conventions. For simplicity, we set all physical constants in (1.2)–(1.4) to 1. The analysis is not
affected as long as they are strictly positive. For two non-negative quantities f and g, we write f ≲ g if
there is some c > 0 such that f ≤ cg. Here c is a generic constant which does not depend on the crucial
quantities. If necessary, we specify particular dependencies. We write f ≈ g if both f ≲ g and g ≲ f
hold. In the notation for function spaces (see next subsection), we do not distinguish between scalar-
and vector-valued functions. However, vector-valued functions will usually be denoted in bold case. For
simplicity, we supplement (1.2) with periodic boundary conditions and identify ω (which represents the
complete boundary of Ω) with (0, 1)2. We consider periodic function spaces for zero-average functions.
It is only a technical matter to consider (1.2) on a nontrivial subset of ∂Ω together with zero boundary
conditions for η and ∇yη instead of considering (1.2) on (0, 1)2, see e.g. [36] or [9] for the corresponding
geometrical set-up. We shorten the time interval (0, T ) by I.

2.2. Classical function spaces. Let O ⊂ R3 be open. The function spaces of continuous or α-Hölder-
continuous functions, α ∈ (0, 1], are denoted by C(O) or C0,α(O) respectively, where O is the closure
of O. Similarly, we write C1(O) and C1,α(O). We denote by Lp(O) and W k,p(O) for p ∈ [1,∞]
and k ∈ N, the usual Lebesgue and Sobolev spaces over O. For a bounded domain O, the notation
(f)O := −

∫
O f dx := L3(O)−1

∫
O f dx represents the mean or average value of f ∈ Lp(O). We denote

by W k,p
0 (O), the closure of the smooth and compactly supported functions in W k,p(O). If ∂O is regular

enough, this coincides with the functions vanishing H2 -a.e. on ∂O. We also denote by W−k,p(O) the

dual of W k,p
0 (O). Finally, we consider subspaces W 1,p

div (O) and W 1,p
0,div(O) of divergence-free vector fields

which are defined accordingly. The space Lp
div(O) is defined as the closure of the set of smooth and

compactly supported solenoidal functions in Lp(O). We will use the shorthand notations Lp
x and W k,p

x

in the case of 3-dimensional domains (typically spaces defined over Ω ⊂ R3 or Ωη ⊂ R3) and Lp
y and

W k,p
y for 2- dimensional sets (typcially spaces of periodic functions defined over ω ⊂ R2). For any pair

of separable Banach spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) with X ⊂ Y , we write X ↪→ Y if X is continuously
embedded into Y , that is ∥ · ∥Y ≲ ∥ · ∥X . Since we only consider functions on ω with periodic boundary
conditions and zero mean values, we have the following equivalences

∥ · ∥W 1,2
y

≈ ∥∇y · ∥L2
y
, ∥ · ∥W 2,2

y
≈ ∥∆y · ∥L2

y
, ∥ · ∥W 4,2

y
≈ ∥∆2

y · ∥L2
y
.

For a separable Banach space (X, ∥ · ∥X), we denote by Lp(I;X), the set of (Bochner-) measurable
functions u : I → X such that the mapping t 7→ ∥u(t)∥X belongs to Lp(I). The set C(I;X) denotes the
space of functions u : I → X which are continuous with respect to the norm topology on (X, ∥ · ∥X).
For α ∈ (0, 1] we write C0,α(I;X) for the space of Hölder-continuous functions with values in X. The
space W 1,p(I;X) consists of those functions from Lp(I;X) for which the distributional time derivative
belongs to Lp(I;X) as well. The space W k,p(I;X) is defined accordingly. We use the shorthand Lp

tX for

Lp(I;X). For instance, we write Lp
tW

1,p
x for Lp(I;W 1,p(O)). Similarly, W k,p

t X stands for W k,p(I;X).

2.3. Fractional differentiability and Sobolev multipliers. For p ∈ [1,∞), the fractional Sobolev
space (Sobolev-Slobodeckij space) with differentiability s > 0 with s /∈ N will be denoted by W s,p(O).
For s > 0, we write s = ⌊s⌋+ {s} with ⌊s⌋ ∈ N0 and {s} ∈ (0, 1). We denote by W s,p

0 (O), the closure of
the smooth and compactly supported functions in W s,p(O). For s > 1

p this coincides with the functions

vanishing Hn−1 -a.e. on ∂O provided that ∂O is regular enough. We also denote by W−s,p′
(O), for s > 0

and p, p′ ∈ [1,∞), with 1
p +

1
p′ = 1, the dual of W s,p

0 (O). Similar to the case of unbroken differentiabilities

above, we use the shorthand notations W s,p
x and W s,p

y . We will denote by Bs
p,q(Rn), the standard Besov

spaces on Rn with differentiability s > 0, integrability p ∈ [1,∞] and fine index q ∈ [1,∞]. They can be
defined (for instance) via Littlewood-Paley decomposition leading to the norm ∥ · ∥Bs

p,q(Rn). We refer to
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[46] and [53, 54] for an extensive description. For a bounded domain O ⊂ Rn, the Besov spaces Bs
p,q(O)

are defined as the restriction of functions from Bs
p,q(Rn), that is

Bs
p,q(O) := {f |O : f ∈ Bs

p,q(Rn)},
∥g∥Bs

p,q(O) := inf{∥f∥Bs
p,q(Rn) : f |O = g}.

If s /∈ N and p ∈ (1,∞) we have Bs
p,p(O) = W s,p(O).

In accordance with [40, Chapter 14], the Sobolev multiplier norm is given by

∥φ∥M(W s,p(O)) := sup
u: ∥u∥Ws−1,p(O)=1

∥∇φ · u∥W s−1,p(O), (2.1)

where p ∈ [1,∞] and s ≥ 1. The space M(W s,p(O)) of Sobolev multipliers is defined as those objects for
which the M(W s,p(O))-norm is finite. For δ > 0 we denote by M(W s,p(O))(δ) the subset of functions
from M(W s,p(O)) with M(W s,p(O))-norm not exceeding δ. By mathematical induction with respect to
s, one can prove for Lipschitz-continuous functions φ that membership to M(W s,p(O)), in the sense of
(2.1), implies that

sup
w: ∥w∥Ws,p(O)=1

∥φw∥W s,p(O) < ∞. (2.2)

The quantity (2.2) also serves as customary definition of the Sobolev multiplier norm in the literature
but (2.1) is more suitable for our purposes. Note that in our applications, we always assume that the
functions in question are Lipschitz continuous so that the implication above holds true.

Let us finally collect some useful properties of Sobolev multipliers. By Sobolev’s embedding one easily
checks that a function belongs to M(W s,p(Rm)) provided that one of the following conditions holds for
some ε > 0:

• p(s− 1) < m and ϕ ∈ Bs+ε
ϱ,p (Rm) with ϱ ∈

[
m
s−1 ,∞

]
;

• p(s− 1) = m and ϕ ∈ Bs+ε
ϱ,p (Rm) with ϱ ∈ (p,∞].

In some cases, important for the parametrisation of the boundary of an n-dimensional domain, this
statement can be sharpened. By [40, Corollary 14.6.2] we have for ϕ ∈ Bs

ϱ,p(Rn−1) compactly supported
and δ ≪ 1 that

∥ϕ∥M(W s,p(Rn−1)) ≤ c(∥ϕ∥Bs
ϱ,p(Rn−1))δ, (2.3)

provided that ∥∇ϕ∥L∞(Rn−1) ≤ δ, s = l − 1/p for some l ∈ N and one of the following conditions holds:

• p(l − 1) < n and ϕ ∈ Bs
ϱ,p(Rn−1) with ϱ ∈

[ p(n−1)
p(l−1)−1 ,∞

]
;

• p(l − 1) = n and ϕ ∈ Bs
ϱ,p(Rn−1) with ϱ ∈ (p,∞].

By [40, Corollary 4.3.8], it holds

∥ϕ∥M(W s,p(Rn)) ≈ ∥∇ϕ∥W s−1,p(Rn), (2.4)

for p(s − 1) > n. Finally, we note the following rule about the composition with Sobolev multipliers
which is a consequence of [40, Lemma 9.4.1]. For open sets O1,O2 ⊂ Rn, u ∈ W s,p(O2) and a Lipschitz
continuous function ϕ : O1 → O2 with Lipschitz continuous inverse and ϕ ∈ M(W s,p(O1)) we have

∥u ◦ ϕ∥W s,p(O1) ≲ ∥u∥W s,p(O2) (2.5)

with constant depending on ϕ. Using Lipschitz continuity of ϕ and ϕ−1, estimate (2.5) is obvious for
s ∈ (0, 1]. The general case can be proved by mathematical induction with respect to s.

2.4. Function spaces on variable domains. The spatial domain Ω is assumed to be an open bounded
subset of R3 with smooth boundary ∂Ω and an outer unit normal n. We assume that ∂Ω can be
parametrised by an injective mapping φ ∈ Ck(ω;R3) for some sufficiently large k ∈ N. We suppose for
all points y = (y1, y2) ∈ ω that the pair of vectors ∂iφ(y), i = 1, 2, is linearly independent. For a point
x in the neighbourhood of ∂Ω we define the functions y and s by

y(x) = argmin
y∈ω

|x−φ(y)|, s(x) = (x− y(x)) · n(y(x)).



8 DOMINIC BREIT, PRINCE ROMEO MENSAH, SEBASTIAN SCHWARZACHER, AND PEI SU

Moreover, we define the projection p(x) = φ(y(x)). We define L > 0 to be the largest number such that
s,y and p are well-defined on SL, where

SL = {x ∈ Rn : dist(x, ∂Ω) < L}. (2.6)

Due to the smoothness of ∂Ω for L small enough we have |s(x)| = miny∈ω |x−φ(y)| for all x ∈ SL. This
implies that SL = {sn(y) + y : (s,y) ∈ (−L,L)×ω}. For a given function η : I ×ω → R we parametrise
the deformed boundary by

φη(t,y) = φ(y) + η(t,y)n(y), y ∈ ω, t ∈ I.

By possibly decreasing L, one easily deduces from this formula that Ωη does not degenerate, that is

∂1φη × ∂2φη(t,y) ̸= 0, n(y) · nη(t)(y) > 0, y ∈ ω, t ∈ I, (2.7)

provided that supt ∥η∥W 1,∞
y

< L. Here nη(t) is the normal of the domain Ωη(t) defined through

∂Ωη(t) = {φ(y) + η(t,y)n(y) : y ∈ ω}. (2.8)

With some abuse of notation we define the deformed space-time cylinder I×Ωη =
⋃

t∈I {t}×Ωη(t) ⊂ R4.
The corresponding function spaces for variable domains are defined as follows.

Definition 2.1. (Function spaces) For I = (0, T ), T > 0, and η ∈ C(I × ω) with ∥η∥L∞(I×ω) < L we
define for 1 ≤ p, r ≤ ∞

Lp(I;Lr(Ωη)) :=
{
v ∈ L1(I × Ωη) : v(t, ·) ∈ Lr(Ωη(t)) for a.e. t, ∥v(t, ·)∥Lr(Ωη(t)) ∈ Lp(I)

}
,

Lp(I;W 1,r(Ωη)) :=
{
v ∈ Lp(I;Lr(Ωη)) : ∇v ∈ Lp(I;Lr(Ωη))

}
.

In order to establish a relationship between the fixed domain and the time-dependent domain, we intro-
duce the Hanzawa transform Ψη : Ω → Ωη defined by

Ψη(x) =

{
p(x) +

(
s(x) + η(y(x))ϕ(s(x))

)
n(y(x)) if dist(x, ∂Ω) < L,

x elsewhere.
(2.9)

for any η : ω → (−L,L). Here ϕ ∈ C∞(R) is such that ϕ ≡ 0 in a neighborhood of −L and ϕ ≡ 1 in
a neighborhood of 0. The other variables p, s and n are as defined earlier in this Section 2.4. Due to
the size of L, we find that Ψη is a homomorphism such that Ψη|Ω\SL

is the identity. Furthermore, Ψη

together with its inverse3 Ψ−1
η : Ωη → Ω possesses the following properties, see [6] for details. If for some

α,R > 0, we assume that

∥η∥L∞
y

+ ∥ζ∥L∞
y

< α < L

holds, then for any s > 0, ϱ, p ∈ [1,∞] and for any η, ζ ∈ Bs
ϱ,p(ω) ∩W 1,∞(ω), we have that

∥Ψη∥Bs
ϱ,p(Ω∪Sα) + ∥Ψ−1

η ∥Bs
ϱ,p(Ω∪Sα) ≲ 1 + ∥η∥Bs

ϱ,p(ω), (2.10)

∥Ψη −Ψζ∥Bs
ϱ,p(Ω∪Sα) + ∥Ψ−1

η −Ψ−1
ζ ∥Bs

ϱ,p(Ω∪Sα) ≲ ∥η − ζ∥Bs
ϱ,p(ω) (2.11)

and

∥∂tΨη∥Bs
ϱ,p(Ω∪Sα) ≲ ∥∂tη∥Bs

ϱ,p(ω), η ∈ W 1,1(I;Bs
ϱ,p(ω)) (2.12)

holds uniformly in time with the hidden constants depending only on the reference geometry, on L− α.

3It exists provided that we choose ϕ such that |ϕ′| < L/α.
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2.5. Extension and smooth approximation on variable domains. In this subsection, we construct
an extension operator which extends functions from ω to the moving domain Ωη for a given function η
defined on ω. We follow [10, Section 2.3]. Since Ω is assumed to be sufficiently smooth, it is well-known
that there is an extension operator FΩ which extends functions from ∂Ω to R3 and satisfies

FΩ : Wσ,p(∂Ω) → Wσ+1/p,p(R3),

for all p ∈ [1,∞] and all σ > 0, as well as FΩv|∂Ω = v. Now we define Fη by

Fηb = FΩ((bn) ◦φ−1) ◦Ψ−1
η , b ∈ Wσ,p(ω), (2.13)

where φ is the function in the parametrization of ∂Ω. If η is regular enough, Fη behaves as a classical
extension. We obtain the following Lemma which is a version of [6, Lemma 2.2], but also includes
differentiabilities larger than 1.

Lemma 2.2. Let σ > 0 and p ∈ [1,∞]. Let η ∈ C0,1(ω) with ∥η∥L∞
y

< α < L. Suppose further that

η ∈ B
σ+1/p+ε,p
ϱ,p (ω), where p, ϱ and ε are related as in (2.3) and (2.4) (if σ + 1/p ∈ N the choice ε = 0 is

possible). The operator Fη defined in (2.13) satisfies

Fη : Wσ,p(ω) → Wσ+1/p,p(Ω ∪ Sα)

and (Fηb) ◦φη = bn on ω for all b ∈ Wσ,p(ω). In particular, we have

∥Fηb∥Wσ+1/p,p(Ω∪Sα) ≲ ∥b∥Wσ,p(ω),

where the hidden constant depends only on Ω, p, σ, ∥∇yη∥L∞
y
, ∥η∥

B
σ+1/p+ε,p
ϱ,p

and L− α.

Proof. On account of (2.10) we have Ψ−1
η ∈ B

σ+1/p
ϱ,p (Ω∪Sα) as well. By (2.3) and (2.4) this implies that

Ψ−1
η ∈ M(Wσ+1/p,p(Ω ∪ Sα)). Now (2.5) becomes applicable and we obtain

∥Fηb∥Wσ+1/p,p(Ω∪Sα) ≲ ∥FΩ((bn) ◦φ−1)∥Wσ+1/p,p(Ω)

≲ ∥(bn) ◦φ−1)∥Wσ,p(∂Ω) ≲ ∥b∥Wσ,p(ω),

which yields the claim. □

Finally, we prove a smooth approximation result. For that we also require the following solenoidal
extension, see [43, Proposition 3.3].

Lemma 2.3. For a given η ∈ L∞(I;W 1,2(ω)) with ∥η∥L∞
t,y

< α < L, there are linear operators

Kη : L1(ω) → R, F div
η : {ξ ∈ L1(I;W 1,1(ω)) : Kη(ξ) = 0} → L1(I;W 1,1

div (Ω ∪ Sα)),

such that the tuple (F div
η (ξ − Kη(ξ)), ξ − Kη(ξ)) satisfies

F div
η (ξ − Kη(ξ)) ∈ L∞(I;L2(Ωη)) ∩ L2(I;W 1,2

div (Ωη)),

ξ − Kη(ξ) ∈ L∞(I;W 2,2(ω)) ∩W 1,∞(I;L2(ω)),

trη(F
div
η (ξ − Kη(ξ)) = ξ − Kη(ξ),

F div
η (ξ − Kη(ξ))(t, x) = 0 for (t, x) ∈ I × (Ω \ Sα)

provided that we have ξ ∈ L∞(I;W 2,2(ω)) ∩W 1,∞(I;L2(ω)). In particular, we have the estimates

∥F div
η (ξ − Kη(ξ))∥Lq(I;W 1,p(Ω∪Sα)) ≲ ∥ξ∥Lq(I;W 1,p(ω)) + ∥ξ∇η∥Lq(I;Lp(ω)),

∥∂tF div
η (ξ − Kη(ξ))∥Lq(I;Lp(Ω∪Sα)) ≲ ∥∂tξ∥Lq(I;Lp(ω)) + ∥ξ∂tη∥Lq(I;Lp(ω)),

∥F div
η (ξ − Kη(ξ))∥Lq(I;W 2,p(Ω∪Sα)) ≲ ∥ξ∥Lq(I;W 2,p(ω)) + ∥ξ∇2η∥Lq(I;Lp(ω))

+ ∥|∇ξ||∇η|∥Lq(I;Lp(ω)) + ∥|ξ||∇η|2∥Lq(I;Lp(ω))

+ ∥ξ∇η∥Lq(I;Lp(ω)),

∥∂tF div
η (ξ − Kη(ξ))∥Lq(I;W 1,p(Ω∪Sα)) ≲ ∥∂tξ∥Lq(I;W 1,p(ω)) + ∥ξ∂t∇η∥Lq(I;Lp(ω))

+ ∥|∂tξ||∇η|∥Lq(I;Lp(ω)) + ∥|∇ξ||∂tη|∥Lq(I;Lp(ω))
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+ ∥ξ|∂tη||∇η|∥Lq(I;Lp(ω)),

for any p ∈ (1,∞), q ∈ (1,∞].

With the help of Lemma 2.3 we obtain the following.

Lemma 2.4. For any tuple (η,v) belonging to the class

L2
(
I;W 2,∞(ω)

)
∩W 1,2(I;W 2,2(ω))× L2

(
I;W 1,2

div (Ωη)
)
∩ C0(I;L2(Ωη)) (2.14)

and satisfying v ◦ φη = ∂tηn on ω, where ∥η∥L∞
t,y

< α < L there is a sequence (ηn,vn) which belongs to

the class (2.14) and satisfies additionally

ηn ∈ C∞(I × ω), vn ∈ W 1,2
(
I;W 1,2

div (Ωη)
)
,

and vn ◦ φη = (∂tηn − Kη(∂tηn))n on ω, which converges to (η,v) strongly and has uniform bounds in
the spaces given in (2.14).

Proof. The proof is strongly related to [23, Section 6]. We define

ṽ0 = v − F div
η (∂tηn),

which we use as decomposition. Note that ∂tηn is the trace of the divergence free function v, such that
it is not difficult to derive that (see [43, Lemma 6.3] for more details)

Kη(∂tηn) = 0.

This implies that F div
η (∂tηn) is well defined. Further ṽ0 has zero trace on ∂Ωη.

Each part can be smoothly approximated. The first part uses ηn as a smooth approximation of η for
instance by convolution in space and time. This also makes ∂tηn and ∂2

t ηn smooth. Thus by Lemma 2.3
we obtain

F div
η (∂tηnn) ∈ W 1,2

(
I;W 1,2(Ωη)

)
∩ L2

(
I;W 2,2(Ωη)

)
∩ C0(I;W 1,2(Ωη)).

Moreover, the tuple (ηn,F div
η (∂tηn − Kη(∂tηn))n)) converges to the expected limit with respect to the

topology from (2.14). As was already realized in [43, 49] this part of the approximation only uses the
regularity of η related to the energy estimate.

It is for the approximation of ṽ0 that more regularity has to be assumed for η. This is where we use
the Piola transformation Tη that changes the support of a function from Ω to Ωη without changing the
divergence. It is defined as

Tηw =
(
∇Ψη(det∇Ψη)

−1w
)
◦Ψ−1

η with inverse T −1
η w =

(
(∇Ψη)

−1(det∇Ψη)w
)
◦Ψη.

Note that the derivatives of Tηw and T −1
η w can naturally be bounded by the respective derivatives of

η. Hence as η ∈ L2(I,W 2,∞(ω)) ∩W 1,2(I;W 2,2(ω)) we find for any p, q ∈ [1,∞] that

Tη : W 1,2(I;W 1,2
0,div(Ω) → W 1,2

(
I;W 1,2

0,div(Ωη)
)
,

Tη : Lp
(
I;Lq(Ω)

)
→ Lp

(
I;Lq(Ωη)

)
,

Tη : L2
(
I;W 1,2

0,div(Ω)
)
∩ L∞(

I;L2(Ω)
)
→ L2

(
I;W 1,2

0,div(Ωη)) ∩ L∞(
I;L2(Ωη)

)
,

with uniform bounds. The same bounds hold for T −1
η . Estimates yielding these continuities can be

shown by direct computations. Note, for instance, that the first estimate requires that ∇η ∈ L∞(I × ω).
The approximation is then defined by first considering

T −1
η ṽ0 ∈ L2

(
I;W 1,2

0,div(Ω)) ∩W 1,2
(
I;L2(Ω)

)
.

This function can now be smoothly approximated by a sequence (T −1
η ṽ0)n ⊂ W 1,2(I;C∞

c,div(Ω)), where

(T −1
η ṽ0)n → T −1

η ṽ0 almost everywhere as n → ∞. This can be achieved by cutting-off the boundary,
then applying a Bogovskij operator to make the function solenoidal and convoluting in time-space. We
remark that all these operations are linear and continuous in the spaces regarded here. Now we fix

ṽ0,n := Tη(T
−1
η ṽ0)n.
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Now, by construction we have ṽ0,n ∈ W 1,2
(
I;W 1,2

div (Ωη)
)
, as required. Furthermore, we find that a.e.

|∇ṽ0,n| ≲ |(T −1
η ṽ0)n|+ |∇(T −1

η ṽ0)n|

with a hidden constant depending on |∇2η|. Hence we obtain that

∥∇ṽ0,n∥L2(I,L2(Ωη))
≲ ∥∇(T −1

η ṽ0)n∥L2(I,L2(Ωη))
+ ∥(T −1

η ṽ0)n∥L∞(I;L2(Ωη))

≲ ∥ṽ0∥L2(I,W 1,2(Ωη))
+ ∥ṽ0∥L∞(I;L2(Ωη))

,

with a hidden constant depending on ∥∇η∥L∞(I×ω) and ∥∇2η∥L2(I;L∞(ω)). Combining the above, the

sequence (ηn, ṽ0,n + F div
η ((∂tηn − Kη(∂tηn))n)) has the desired properties. □

2.6. The concept of solutions. In this subsection, we introduce the notions of solutions to (1.2)–(1.4)
that are under consideration. We start with the definition of a weak solution.

Definition 2.5 (Weak solution). Let (f , g, η0, η∗,v0) be a dataset such that

f ∈ L2
(
I;L2

loc(R3)
)
, g ∈ L2

(
I;L2(ω)

)
, η0 ∈ W 2,2(ω) with ∥η0∥L∞(ω) < L,

η∗ ∈ L2(ω), v0 ∈ L2
div(Ωη0

) is such that v0 ◦φη0
= η∗n on ω.

(2.15)

We call the tuple (η,v) a weak solution to the system (1.2)–(1.4) with data (f , g, η0, η∗,v0) provided that
the following holds:

(a) The structure displacement η satisfies

η ∈ W 1,∞(
I;L2(ω)

)
∩W 1,2

(
I;W 1,2(ω)

)
∩ L∞(

I;W 2,2(ω)
)

with ∥η∥L∞(I×ω) < L,

as well as η(0) = η0 and ∂tη(0) = η∗.
(b) The velocity field v satisfies

v ∈ L∞(
I;L2(Ωη)

)
∩ L2

(
I;W 1,2

div (Ωη)
)

with v ◦φη = ∂tηn on I × ω,

as well as v(0) = v0.
(c) For all (ϕ,ϕ) ∈ C∞(I × ω)× C∞(I;C∞

div(R3)) with ϕ(T, ·) = 0, ϕ(T, ·) = 0 and ϕ ◦ φη = ϕn on
I × ω we have ∫

I

d

dt

(∫
ω

∂tη ϕdy +

∫
Ωη

v · ϕ dx

)
dt

=

∫
I

∫
Ωη

(
v · ∂tϕ+ v ⊗ v : ∇ϕ−∇v : ∇ϕ+ f · ϕ

)
dx dt

+

∫
I

∫
ω

(
∂tη ∂tϕ− ∂t∇yη · ∇yϕ+ g ϕ−∆yη∆yϕ

)
dy dt.

(d) For a.a. t ∈ I, we have

E(t) +
∫ t

0

∫
ω

|∂t∇yη|2 dy dσ +

∫ t

0

∫
Ωη(σ)

|∇v|2 dx dσ

≤ E(0) +
∫ t

0

∫
ω

g∂tη dy dσ +

∫ t

0

∫
Ωη(σ)

v · f dx dσ.

where

E(t) := 1

2

∫
ω

(
|∂tη(t)|2 + |∆yη(t)|2

)
dy +

1

2

∫
Ωη(t)

|v(t)|2 dx.

The existence of a weak solution can be shown as in [36]. The term ∂t∆yη is not included there,
but it does not alter the arguments. Note that here we use a pressure-free formulation (that is, with
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test-function satisfying additionally divϕ = 0). If the solution possesses more regularity, the pressure
can be recovered by solving

−∆π = div
(
(v · ∇)v − f

)
in I × Ωη,

(n⊺nη) ◦φ−1
η π =

(
|det(∇yφη)|−1(∂2

t η − ∂t∆yη +∆2
yη − g)

)
◦φ−1

η

+ n ◦φ−1
η

(
∇v + (∇v)⊺

))
nη ◦φ−1

η on I × ∂Ωη.

(2.16)

This equation fully determines the pressure. It does also satisfy a Neumann problem, as in the case of the
Navier-Stokes equation with no slip boundary conditions. In this case however, the time-changing mean
has to be determined using the shell equation. This can be done as follows. Setting π(t) = π0(t) + cπ(t),
where

∫
Ωη(t)

π0(t) dx = 0 and cπ = π− π0 is constant in space, and testing the structure equation with 1

we obtain

cπ(t)

∫
ω

n · nη|det(∇yφη)|dy =

∫
ω

n
(
∇v + (∇v)⊺ − π0I3×3

)
◦φηnη|det(∇yφη)|dy

+

∫
ω

∂2
t η dy −

∫
ω

g dy.

(2.17)

Since Ωη is C1 uniformly in time, the operator ∆ has the usual regularity and uniqueness properties for
C1 domains. In particular, it allows for a unique solution in L2, if the right hand side is in W−2,2 and the
boundary value in W− 1

2 ,2 or for a unique solution in W 1,2, provided that its boundary value is in W
1
2 ,2

and the right hand side is in W−1,2. Moreover, in this particular case, the solution of (2.16) satisfies

−∇π = ∂tv + (v · ∇)v −∆v − f

distributionally which implies that∫
I

∫
Ωη

|∇π|2 dx dt ≲
∫
I

∫
Ωη

(
|∂tv|2 + |(v · ∇)v)|2 + |∆v|2 + |f |2

)
dx dt

≲
∫
I

∥∂tv∥2L2(Ωη)
dt+

(∫
I

∥v∥4L4(Ωη)

) 1
2
(∫

I

∥∇v∥4L4(Ωη)
dt

) 1
2

+

∫
I

∥∇2v∥2L2(Ωη)
dt+

∫
I

∥f∥2L2(Ωη)
dt,

whenever the right hand side is finite, independent of the boundary value of π in (2.16). This is the case
for a strong solution defined as follows.

Definition 2.6 (Strong solution). We call the triple (η,v, π) a strong solution to (1.2)–(1.4) provided
that (η,v) is a weak solution to (1.2)–(1.4), which satisfies

η ∈ W 1,∞(
I;W 1,2(ω)

)
∩W 1,2

(
I;W 2,2(ω)

)
∩ L∞(

I;W 3,2(ω)
)
∩W 2,2(I;L2(ω)) ∩ L2(I;W 4,2(ω)),

v ∈ W 1,2
(
I;L2(Ωη)

)
∩ L2

(
I;W 2,2(Ωη)

)
∩ L∞(

I;W 1,2(Ωη)
)
, π ∈ L2

(
I;W 1,2(Ωη)

)
.

For a strong solution (η,v, π) the momentum equation holds in the strong sense, that is we have

∂tv + (v · ∇)v = ∆v −∇π + f (2.18)

a.e. in I × Ωη. The shell equation holds in the strong sense as well, that is, we have

∂2
t η − ∂t∆yη +∆2

yη = g − n⊺τ ◦φηnη|det(∇yφη)| (2.19)

a.e. in I × ω. Note that for a strong solution, the Cauchy stress τ = ∇v + (∇v)⊺ − πI3×3 possesses
enough regularity to be evaluated at the moving boundary (this is due to the trace theorem and the
uniform Lipschitz continuity of Ωη).



SERRIN FOR FSI 13

2.7. The Stokes equations in non-smooth domains. In this section, we present the necessary frame-
work to parametrise the boundary of the underlying domain Ω ⊂ R3 by local maps of a certain regularity.
This yields, in particular, a rigorous definition of a Ms,p-boundary. We follow the presentation from [6]
(see also [7]). Eventually, we present an elliptic estimate for the Stokes system under minimal assumption
on the boundary.

We assume that ∂Ω can be covered by a finite number of open sets U1, . . . ,Uℓ, for some ℓ ∈ N, such
that the following holds. For each j ∈ {1, . . . , ℓ} there is a reference point yj ∈ R3 and a local coordinate

system {ej1, e
j
2, e

j
3} (which we assume to be orthonormal and set Qj = (ej1|e

j
2|e

j
3) ∈ R3×3), a function

φj : R2 → R and rj > 0 with the following properties:

(A1) There is hj > 0 such that

U j = {x = Qjz+ yj ∈ R3 : z = (z′, z3) ∈ R3, |z′| < rj , |z3 − φj(z
′)| < hj}.

(A2) For x ∈ Uj we have with z = Q⊺
j (x− yj)

• x ∈ ∂Ω if and only if z3 = φj(z
′);

• x ∈ Ω if and only if 0 < z3 − φj(z
′) < hj ;

• x /∈ Ω if and only if 0 > z3 − φj(z
′) > −hj .

(A3) We have that

∂Ω ⊂
ℓ⋃

j=1

U j .

In other words, for any x0 ∈ ∂Ω there is a neighbourhood U of x0 and a function ϕ : R2 → R such that
after translation and rotation4

U ∩ Ω = U ∩G, G = {(x′, x3) ∈ R3 : x′ ∈ R2, x3 > ϕ(x′)}.

The regularity of ∂Ω will be described by means of local coordinates as just described.

Definition 2.7. Let O ⊂ R3 be a bounded domain, s ≥ 1 and 1 ≤ p ≤ ∞. We say that ∂O belongs to
the class M(W s,p) if there is ℓ ∈ N and functions φ1, . . . , φℓ ∈ M(W s,p)(R2) satisfying (A1)–(A3).

Clearly, we can define similarly a M(W s,p)(δ)-boundary for some δ > 0 by requiring that φ1, . . . , φℓ ∈
M(W s,p(R2))(δ). Analogous definitions apply for various other function spaces such as Bs

ϱ,p for s > 0

and ϱ, p ∈ [1,∞] or C1,α for α ∈ (0, 1]. Of particular importance for us is also a Lipschitz boundary,
where φ1, . . . , φℓ ∈ W 1,∞(R2). We say that the local Lipschitz constant of ∂O, denoted by Lip(∂O), is
(smaller or) equal to some number L > 0 provided that the Lipschitz constants of φ1, . . . , φℓ are not
exceeding L.

After these preparations let us consider the steady Stokes system
∆v −∇π = −f ,

divv = 0,

v|∂O = v∂ ,

(2.20)

in a domain O ⊂ R3 with unit normal n. The result given in the following theorem is a maximal regularity
estimate for the solution of (2.20) in terms of the right-hand side. The boundary data under minimal
assumption on the regularity of ∂O, see [6, Theorem 3.2 & Remark 3.3].

Theorem 2.8. Let p ∈ (1,∞), s ≥ 1 + 1
p and suppose that O is a Lipschitz domain with local Lipschitz

constant δ belonging to the class M(W s−1/p,p)(δ) for some sufficiently small δ > 0. Let f ∈ W s−2,p(O)
and v∂ ∈ W s−1/p,p(∂O) with

∫
∂O v∂ · n dH2 = 0. Then there is a unique solution to (2.20) and we have

∥v∥W s,p(O) + ∥π∥W s−1,p(O) ≲ ∥f∥W s−2,p(O) + ∥v∂∥W s−1/p,p(∂O).

4By translation via yj and rotation via Qj we can assume that x0 = 0 and that the outer normal at x0 is pointing in

the negative x3-direction.
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Remark 2.9. Suppose that O is a Bθ
ϱ,p-domain for some θ > s− 1/p (θ ≥ s− 1/p if s ∈ N) with locally

small Lipschitz constant. The conditions from Theorem 2.8 are satisfied provided p ∈ (1,∞), s ≥ 1 + 1
p

and

ϱ ≥ p if p(s− 1) ≥ 3, ϱ ≥ 2p
p(s−1)−1 if p(s− 1) < 3,

are such that 3
(
1
p − 1

2

)
+ 1 ≤ s, c.f. (2.3) and (2.4).

Remark 2.10. In Section 4 we have to apply Theorem 2.8 to the domain O = Ωη(t) for a fixed t. Here
η : I × ω → R and ∂Ωη(t) is parametrised via the function φη(t) defined on ω, see Section 2.4 for details.
We exclude self-intersection and degeneracy by assumption (in particular, ∂1φη × ∂2φη ̸= 0 such that
nη(t) is well-defined). Given x0 ∈ ∂Ωη(t), for some t ∈ I fixed, we rotate the coordinate system such that
nη(t)(y(x0)) = (0, 0, 1)⊺ and translate it such that x0 = 0. Accordingly, it holds

det
(
∇yφ̃η(t)

)
= 1, φ̃η =

(
φ1
η

φ2
η

)
.

Hence the function φ̃η(t) is invertible in a neighbourhood U of z0 := y(x0). We define in φ̃η(t)(U) the
function

ϕ(z) =

(
z

ϕ(z))

)
=

(
z

φ3
η(t)((φ̃η(t))

−1(z))

)
.

It describes the boundary ∂Ωη(t) close to x0. One easily checks that ∂zϕ(z0) = 0 (since nη(t)(y(x0)) =

(0, 0, 1)⊺) such that ∂zϕ is small close to z0. Suppose now that η ∈ L∞(I;W 2,2 ∩ C1(ω)) and that
sup
I

Lip(∂Ωη(t)) is sufficiently small. We can use Sobolev’s embedding for Besov spaces to see that

W 2,2(R2) = B2
2,2(R2) ↪→ B

3/2
4,2 (R

2).

Then we conclude by (2.3) and (2.5) that

∥ϕ∥M(W
3/2,2
y )

≤ δ, ∥ϕ∥W 1,∞
y

≤ δ,

holds uniformly in time for some sufficiently small δ in a neighbourhood of z0 (using also ϕ(z0) = 0 and
∂zϕ(z0) = 0).

2.8. Universal Bogovskij operator. Bogovskij operators are natural to be considered in star-shaped
domains. As Lipschitz domains are unions of star-shaped domains, Bogovskij operators are available on
Lipschitz domains as well. Recently, the concept of universal Bogovskij operators was introduced in [30].
Observe that the same Bogovskij operator actually can be used for a family of domains, as long as the
Lipschitz constant is controlled. This allows to use a (locally) steady operator to correct the divergence
in time-changing domains.

More precisely in [30, Corollary 3.4] the following statement was shown:

Theorem 2.11. Let Σ ⊂ R3 be a the-dimensional Lipschitz-manifold, M > γ > 0, CL > 0, b ∈ C∞
0 (Σ×

[0, γ]) with unit integral. Then there exists a linear, universal Bogovskij operator Bog : C∞
0 (Σ× [0,M ]) →

C∞
0 (Σ× [0,M ]) such that for any CL-Lipschitz function (i.e., with Lipschitz constant CL) η : Σ → [γ,M ]

and Ση := {(x′, xn) ∈ Σ × [0,M ] : 0 < xn < η(x′)} the operator Bog maps C∞
0 (Ωη) to C∞

0 (Ωη) with
div Bog f = f − b

∫
f dx. In addition,

∥Bog(f)∥W s+1,p(Ση)
≤ Cs,p

B ∥f∥W s,p(Ση)
,

for all 1 < p < ∞ and s ≥ 0 with Cs,p
B only depending on s, p, diam(Σ), CL, γ and the Lipschitz properties

of Σ.

In order to make this operator admissible for our needs we introduce the following version.

Corollary 2.12. There is a universal Bogovskij operator, such that for all η : ω → (−L,L) with
∥∇η∥L∞(ω) ≤ CL and b ∈ C∞

0 (Ω \ SL) (where Ωη is defined by (2.8)) with unit integral we have

Bog : C∞
0 (Ωη) → C∞

0 (Ωη) with div Bog f = f − b

∫
f dx.
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In addition, it holds

∥Bog(f)∥W s+1,p(Ωη)
≤ Cs,p

B ∥f∥W s,p(Ωη)
,

∥Bog(div f)∥W s,p(Ωη)
≤ Cs,p

B ∥f∥W s,p(Ωη)
,

for all 1 < p < ∞ and s ≥ 0 with Cs,p
B only depending on L,φ,CL.

Proof. The proof is by now standard. One covers the domain SL with balls of finite overlap, such that on
each ball all possible functions η can be written as a graph. On these sets one may apply Theorem 2.11.
Hence the partition of unity argument introduced in [47, Section 3.1] allows to construct the desired
operator. □

Remark 2.13 (Time-derivative of Bogovskij operator). Please observe that the same operator can be
applied to a time-changing function with time-changing support. The operator then automatically has
zero trace on the variable support of the function. In particular for supt ∥∇η(t)∥∞ ≤ CL, supt ∥η(t)∥∞ ≤
L, we find that ∂tBog(fχΩη

) = Bog(∂tfχΩη
) and Bog(∂tfχΩη

) = 0 on ∂Ωη.

3. Local strong solutions

Our goal in this section is to construct a local-in-time strong solution of (1.2)–(1.4). The main theorem
is the following:

Theorem 3.1. Suppose that the dataset (f , g, η0, η∗,v0) satisfies (2.15) and in addition

f ∈ L∞(I;L2
loc(R3)) ∩ L2(I;W 1,2

loc (R
3)),

η0 ∈ W 3,2(ω), η∗ ∈ W 1,2(ω), v0 ∈ W 1,2
div (Ωη0

).
(3.1)

There is a time T ∗ > 0 such that there exists a unique strong solution to (1.2)–(1.4) in the sense of
Definition 2.6.

The main ideas to prove Theorem 3.1 are as follows.

• We transform the fluid-structure system to its reference domain.
• We then linearize the resulting system on the reference domain and obtain estimates for the
linearized system.

• We construct a contraction map for the linearized problem (by choosing the end time small
enough) which gives the local solution to the system on its original domain.

This is reminiscent of the approach in [6, 23, 24, 37].

3.1. Transformation to reference domain. For a solution (η,v, π) of (1.2)–(1.4), we set π = π ◦Ψη

and v = v ◦Ψη and define

Aη = Jη
(
∇Ψ−1

η ◦Ψη

)⊺∇Ψ−1
η ◦Ψη,

Bη = Jη
(
∇Ψ−1

η ◦Ψη

)⊺
,

hη(v) =
(
Bη0

−Bη

)
: ∇v,

Hη(v, π) =
(
Aη0

−Aη

)
∇v −

(
Bη0

−Bη

)
π,

hη(v) = (Jη0 − Jη)∂tv − Jη∇v · ∂tΨ−1
η ◦Ψη −Bη∇v v + Jηf ◦Ψη,

where Jη = det(∇Ψη). Exactly as in the two-dimensional case considered in [6, Lemma 4.2] we obtain
the following result.

Theorem 3.2. Suppose that the dataset (f , g, η0, η∗,v0) satisfies (2.15) and (3.1). Then (η,v, π) is a
strong solution to (1.2)–(1.4) in the sense of Definition 2.6, if and only if (η,v, π) is a strong solution of

Bη0
: ∇v = hη(v), (3.2)

∂2
t η − ∂t∆yη +∆2

yη = g + n⊺
[
Hη(v, π)−Aη0

∇v +Bη0
π
]
◦φn, (3.3)

Jη0∂tv − div(Aη0∇v) + div(Bη0π) = hη(v)− divHη(v, π), (3.4)

with v ◦φ = (∂tη)n on I × ω.
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3.2. The linearized problem. In this section, we let (g, η0, η∗,v0) be as before in Theorem 3.2. In
addition, we consider (h,h,H) such that

h ∈ L2
(
I;W 1,2(Ω)

)
∩W 1,2

(
I;W−1,2(Ω)

)
∩ {h(0, ·) = 0},

h ∈ L2(I × Ω), H ∈ L2(I;W 1,2(Ω)),
(3.5)

and study the following linear system

Bη0
: ∇v = h, (3.6)

∂2
t η − ∂t∆yη +∆2

yη = g + n⊺
[
H−Aη0∇v +Bη0π

]
◦φn, (3.7)

Jη0∂tv − div(Aη0∇v) + div(Bη0π) = h− divH, (3.8)

with v ◦ φ = (∂tη)n on I × ω. It is important to note that Bη0 and Aη0 are time-independent and that
(3.7) remain posed on I × ω with periodic boundary conditions.

Proposition 3.3. Suppose that the dataset (g, η0, η∗,v0, h,h,H) satisfies (2.15), (3.1) and (3.5). Then
there exists a strong solution (η,v, π) of (3.6)–(3.8) such that

sup
I

∫
ω

(
|∂t∇yη|2 + |∇y∆yη|2

)
dy + sup

I

∫
Ω

|∇v|2 dx

+

∫
I

∫
ω

(
|∂t∆yη|2 + |∂2

t η|2 + |∆2
yη|2

)
dy dt+

∫
I

∫
Ω

(
|∇2v|2 + |∂tv|2 + |π|2 + |∇π|2

)
dx dt

≲
∫
ω

(
|η∗|2 + |∇yη∗|2 + |∆yη0|2 + |∇y∆yη0|2

)
dy +

∫
Ω

(
|v0|2 + |∇v0|2

)
dx

+

∫
I

∥∂th∥2W−1,2(Ω) dt+

∫
I

∫
ω

|g|2 dy dt

+

∫
I

∫
Ω

(
|h|2 + |∇h|2 + |h|2 + |H|2 + |∇H|2

)
dx dt.

(3.9)

Proof. The solution can be rigorously constructed by means of a two-layer approximation scheme similar
to [24]. This is done by first adding the term ε∂t∆

2
yη, for 0 < ε ≪ 1, to the left-hand side of the structure

equation. The resulting system can then be solved by a finite-dimensional Galerkin approximation after
which one obtains a uniform-in-ε bound, allowing for the passage to the limit ε → 0. We skip this
standard method and proceed to explain how to construct the Galerkin basis for our original system.
The additional term ε∂t∆

2
yη brings the advantage that the integral below in (3.12) can be directly bounded

without invoking the elliptic Stokes theory which is not available on the Galerkin level. Hence one can
obtain ε-dependent acceleration estimates. Eventually, one can obtain estimates for the fluid-system as
in (3.19) below. This guarantees that all terms in the computations below are well-defined.

We first consider a basis for the case h = 0. The general case will be explained below. By solving
the eigenvalue problems of the Stokes operator on Ωη0 we construct a smooth orthogonal basis (X̃ℓ)ℓ∈N
of W 1,2

0,div(Ωη0
). This provides a divergence-free bases for the reference domain Ωη0

, with zero boundary
values. We enrich this basis with solenoidal extensions of inhomogenious boundary values, which are
a basis of the shell displacement. For that we solve the eigenvalue problems for the Laplace operator
on ω with periodic boundary conditions adjusting the constant invariance such that we gain a smooth
orthogonal basis (Yℓ)ℓ∈N of the space{

ζ ∈ W 2,2(ω) :

∫
∂Ω

ζ ◦φ−1 dH2 = 0

}
.

We define vector fields Ỹℓ by setting Ỹℓ = F div
Ωη0

((Yℓn) ◦ φ−1), where F div
Ωη0

is a solenoidal extension

operator. It can be constructed by means of a standard extension and a Bogosvkii correction and thus
maps W k,2(ω) → W k,2(Rn) for k ∈ N such that the Ỹℓ’s are smooth and solenoidal.

Now we set Xℓ := X̃ℓ ◦Ψη0 , which yields a basis of

{w ∈ W 1,2
0 (Ω) : Bη0

: ∇w = 0}. (3.10)
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and respectivelyYℓ := Ỹℓ◦Ψη0 also belong to the function space in (3.10). Now we choose an enumeration
(ωℓ)ℓ∈N of (Xℓ)ℓ∈N ∪ (Yℓ)ℓ∈N. Note that we use (Yℓ)ℓ∈N as the Ansatz space for ∂tη and not η, as this
is what is related to the fluid-velocity. The terms depending on η are hence taken as primitive of the
discretization of ∂tη.

In the case h ̸= 0, h represents the change of area, which can be removed by solving an auxiliary
problem. For that introduce λ(t) =

∫
Ω
h(t) dx, then the following problem is well posed:

∆w = h in Ω, ∂nw = λ on ∂Ω.

Now replacing the Ansatz above by ∂tη ≡ ∂tη̃ + λ and v ≡ ṽ +∇w implies the existence of a respective
system solvable using the above basis. Note that all newly appearing perturbation terms are strictly
depending on h with natural bounds. In particular, the shell equation becomes

∂2
t η̃ − ∂t∆yη̃ +∆2

yη̃ + ε∆2∂tη̃ = g + n⊺
[
H−Aη0

∇v +Bη0
π
]
◦φn− ∂tλ.

We now give a formal proof of estimate (3.9), which can be made rigorous with the help of the approxi-
mation procedure explained above.

Let us now suppose that h = 0 such that Bη0
: ∇v = 0. Consider the pair of test functions (∂tη,v)

for (3.7) and (3.8) respectively. We use the ellipticity of Aη0 to obtain

sup
I

∫
ω

(
|∂tη|2 + |∆yη|2

)
dy +

∫
I

∫
ω

|∂t∇yη|2 dy dt+ sup
I

∫
Ω

|v|2 dx+

∫
I

∫
Ω

|∇v|2 dx dt

≲
∫
ω

(
|η∗|2 + |∆yη0|2

)
dy +

∫
I

∫
ω

|g|2 dy dt+

∫
Ω

|v0|2 dx+

∫
I

∫
Ω

(
|h|2 + |H|2

)
dx dt.

(3.11)

If we now consider (∂2
t η, ∂tv) as test functions (which can be used as a test-function on the Galerkin level

since Bη0
is time independent) for (3.7) and (3.8), respectively, we obtain∫

I

∫
ω

|∂2
t η|2 dy dt+

1

2

∫
ω

|∂t∇yη|2 dy +

∫
I

∫
Ω

|∂tv|2 dx dt+
1

2

∫
Ω

|∇v|2 dx

=
1

2

∫
ω

|∇yη∗|2 dy +

∫
I

∫
ω

(
g −∆2

yη + n⊺H ◦φn
)
∂2
t η dy dt

+
1

2

∫
Ω

|∇v0|2 dx+

∫
I

∫
Ω

(
h− divH

)
· ∂tv dx dt.

We note that

−
∫
I

∫
ω

∆2
yη · ∂2

t η dy dt =

∫
I

∫
ω

∂t(∇y∆yη · ∂t∇yη) dy dt+

∫
I

∫
ω

|∂t∆yη|2 dy dt

≤ 1

4
sup
I

∫
ω

|∂t∇yη|2 dy + sup
I

∫
ω

|∇y∆yη|2 dy +

∫
I

∫
ω

|∂t∆yη|2 dy dt,

(3.12)

and we thus obtain∫
I

∫
ω

|∂2
t η|2 dy dt+ sup

I

∫
ω

|∂t∇yη|2 dy +

∫
I

∫
Ω

|∂tv|2 dx dt+ sup
I

∫
Ω

|∇v|2 dx

≲
∫
ω

|∇yη∗|2 dy + sup
I

∫
ω

|∇y∆yη|2 dy +

∫
I

∫
ω

(
|g|2 + |∂t∆yη|2

)
dy dt

+

∫
I

∥H∥2
W 1,2

x
dt+

∫
Ω

|∇v0|2 dx+

∫
I

∫
Ω

(
|h|2 + |∇H|2

)
dx dt,

(3.13)

where we have used the trace theorem yielding∫
I

∫
∂Ω

|H|2dH2 dt ≲
∫
I

∥H∥2
W 1,2

x
dt.
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We now test (3.7) with −∂t∆yη to obtain∫
ω

(
|∂t∇yη|2 + |∇y∆yη|2

)
dy +

∫
I

∫
ω

|∂t∆yη|2 dy dt

≲
∫
ω

(
|∇yη∗|2 + |∇y∆yη0|2

)
dy +

∫
I

∫
ω

|g|2 dy dt

+

∫
I

∫
ω

∣∣n⊺
(
H−Aη0

∇v +Bη0
π
)
◦φn ∂t∆yη

∣∣dy dt.

(3.14)

For the last term we have by the trace theorem∫
I

∫
ω

∣∣n⊺
(
H−Aη0∇v +Bη0π

)
◦φn ∂t∆yη

∣∣dy dt

≲
∫
I

(
∥H∥W 1/2,2(∂Ω) + ∥∇v∥W 1/2,2(∂Ω) + ∥π∥W 1/2,2(∂Ω)

)
∥∂t∆yη∥W−1/2,2

y
dt

≲
∫
I

(
∥H∥W 1,2

x
+ ∥∇v∥W 1,2

x
+ ∥π∥W 1,2

x

)
∥∂tη∥W 3/2,2

y
dt

≲
∫
I

(
∥H∥W 1,2

x
+ ∥∇v∥W 1,2

x
+ ∥π∥W 1,2

x

)
∥∂tη∥1/2W 1,2

y
∥∂tη∥1/2W 2,2

y
dt

≤ κ

∫
I

(
∥H∥2

W 1,2
x

+ ∥∇v∥2
W 1,2

x
+ ∥π∥2

W 1,2
x

+ ∥∂t∆yη∥2L2
y

)
dt+ c(κ)

∫
I

∥∂tη∥2W 1,2
y

dt,

(3.15)

where κ > 0 is arbitrary.
Moreover, notice that by using (3.11) to estimate the last term in (3.15), we obtain from (3.14) and (3.11)
that

sup
I

∫
ω

(
|∂t∇yη|2 + |∇y∆yη|2

)
dy +

∫
I

∫
ω

|∂t∆yη|2 dy dt

≤ κ

∫
I

(
∥∇v∥2

W 1,2
x

+ ∥π∥2
W 1,2

x

)
dt+ c(κ)

∫
ω

(
|η∗|2 + |∇yη∗|2 + |∆yη0|2 + |∇y∆yη0|2

)
dy

+ c(κ)

∫
Ω

|v0|2 dx+ c(κ)

∫
I

∫
ω

|g|2 dy dt+ c(κ)

∫
I

∫
Ω

(
|h|2 + |h|2 + |H|2 + |∇H|2

)
dx dt.

(3.16)

To find an estimate for the pressure term in (3.16), we decompose it into π = π0+ cπ where
∫
Ω
π0 dx = 0

and cπ is only dependent of time. We therefore deduce from (3.7) that

cπ

∫
ω

n⊺Bη0 ◦φn dy =

∫
ω

(
∂2
t η − g − n⊺

[
Bη0π0 +H−Aη0∇v

]
◦φn

)
dy,

where we used the zero-mean property of η. Since Bη0
is uniformly elliptic, it follows from the above and

Poincaré’s inequality that∫
I

∥π∥2
W 1,2

x
dt ≲

∫
I

(
∥∇π∥2L2

x
+ ∥π0∥2L2

x

)
dt+

∫
I

(cπ)
2 dt

≲
∫
I

(
∥∇π∥2L2

x
+ ∥π0∥2L2

x

)
dt+

∫
I

∫
ω

(
|∂2

t η|2 + |g|2
)
dy dt

+

∫
I

(
∥π0∥2W 1,2

x
+ ∥H∥2

W 1,2
x

+ ∥∇v∥2
W 1,2

x

)
dt,

(3.17)

where we have used the trace theorem,∫
I

(
∥π0∥2L2(∂Ω) + ∥H∥2L2(∂Ω) + ∥∇v∥2L2(∂Ω)

)
dt

≲
∫
I

(
∥π0∥2W 1,2

x
+ ∥H∥2

W 1,2
x

+ ∥∇v∥2
W 1,2

x

)
dt.
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Collecting the inequalities from (3.11), (3.13), (3.16) and (3.17), we conclude that

sup
I

∫
ω

(
|∂t∇yη|2 + |∇y∆yη|2

)
dy + sup

I

∫
Ω

|∇v|2 dx

+

∫
I

∫
ω

(
|∂t∆yη|2 + |∂t∇yη|2 + |∂2

t η|2
)
dy dt+

∫
I

∫
Ω

|∂tv|2 dx dt

≲
∫
ω

(
|η∗|2 + |∇yη∗|2 + |∆yη0|2 + |∇y∆yη0|2

)
dy +

∫
Ω

(
|v0|2 + |∇v0|2

)
dx

+

∫
I

∫
ω

|g|2 dy dt+

∫
I

∫
Ω

(
|h|2 + |H|2 + |∇H|2

)
dx dt

+

∫
I

∥∂th∥2W−1,2
x

dt+ κ

∫
I

(
∥π0∥2W 1,2

x
+ ∥∇v∥2

W 1,2
x

)
dt.

(3.18)

Our next goal is to estimate the κ-terms above to get (3.9). For this, we transform (3.6) and (3.8) by
applying Ψ−1

η0
to them. By setting v := v ◦Ψ−1

η0
and π := π ◦Ψ−1

η0
, we obtain{

divv = 0,

∂tv −∆v +∇π = J−1
η0

h ◦Ψ−1
η0

− div
(
Bη0

H ◦Ψ−1
η0

)
,

in I × Ωη0
with v ◦ φη0

= (∂tη)n on I × ω. Based on the maximal regularity theorem for the classical
unsteady Stokes system (we refer, for instance, to [52]), we obtain∫

I

∫
Ωη0

(
|∂tv|2 + |∇2v|2 + |∇π|2

)
dx dt

≲
∫
I

∥∂tη∥2W 3/2,2
y

dt+

∫
I

∫
Ωη0

(
|h ◦Ψ−1

η0
|2

+ |(divH) ◦Ψ−1
η0

|2
)
dx dt+

∫
Ωη0

|∇v0|2 dx.

(3.19)

We now transform back to Ω and interpolate the regularity for the structure function to obtain for any
κ > 0 ∫

I

∫
Ω

(
|∂tv|2 + |∇2v|2 + |∇π|2

)
dx dt

≤ κ

∫
I

∥∂t∆yη∥2L2
y
dt+ c(κ)

∫
I

∥∂tη∥2W 1,2
y

dt

+ c

∫
I

∫
Ω

(
|h|2 + |∇H|2

)
dx dt+ c

∫
Ω

|∇v0|2 dx.

If we now combine this with (3.18), then we obtain the desired estimate (3.9) in the case h = 0 (note
that one can finally control ∆2

yη by means of equation (3.7)). As in [6, Sec. 4.2] one can reduce the case
h ̸= 0 to the homogenous case by means of an elliptic problem. □

3.3. Fixed-point argument. Based on Proposition 3.3 we study in this section the existence of the
solution of the nonlinear system (3.2)–(3.4), by employing the Banach fixed-point argument. We assume
that the triplet (ζ,w, q) are given and we wish to solve

Bη0 : ∇v = hζ(w), (3.20)

∂2
t η − ∂t∆yη +∆2

yη = g + n⊺
[
Hζ(w, q)−Aη0

∇v +Bη0
π
]
◦φn, (3.21)

Jη0
∂tv − div(Aη0

∇v) + div(Bη0
π) = hζ(w)− divHζ(w, q), (3.22)

with v ◦φ = (∂tη)n on I∗ × ω. Here, I∗ := (0, T∗) is to be determined later. We define the space

XI∗ :=
(
W 1,∞(

I∗;W
1,2(ω)

)
∩ L∞(

I∗;W
3,2(ω)

)
∩W 1,2

(
I∗;W

2,2(ω)
)
∩W 2,2

(
I∗;L

2(ω)
))

×
(
L∞(

I∗;W
1,2(Ω)

)
∩W 1,2

(
I∗;L

2(Ω)
)
∩ L2

(
I∗;W

2,2(Ω)
))

× L2
(
I∗;W

1,2(Ω)
)
,
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equipped with the norm

∥(ζ,w, q)∥2XI∗
:= sup

I∗

∫
ω

(
|∂tζ|2 + |∂t∇yζ|2 + |∆yζ|2 + |∇y∆yζ|2

)
dy

+

∫
I∗

∫
ω

(
|∂t∇yζ|2 + |∂t∆yζ|2 + |∂2

t ζ|2
)
dy dt

+ sup
I∗

∫
Ω

(
|w|2 + |∇w|2

)
dx

+

∫
I∗

∫
Ω

(
|∇w|2 + |∇2w|2 + |∂tw|2 + |q|2 + |∇q|2

)
dx dt.

Let B
XI∗
R be a ball defined as

B
XI∗
R :=

{
(ζ,w, q) ∈ XI∗ with ζ(0) = η0, ∂tζ(0) = η∗, w(0) = v0 : ∥(ζ,w, q)∥2XI∗

≤ R
}
,

for some R > 0 large enough.

Theorem 3.4. There exists a time T∗ > 0 and R > 0, such that the map T , defined by

T : B
XI∗
R → B

XI∗
R

(ζ,w, q) 7→ (η,v, π),

is a contraction map, which thereby possesses a fixed point in XI∗ .

Proof. We would like to show that the map T defined above maps the ball B
XI∗
R into itself and that for

any (ζi,wi, qi) ∈ B
XI∗
R , for i = 1, 2, we can find ρ < 1 such that

∥T (ζ1,w1, q1)− T (ζ2,w2, q2)∥XI∗
≤ ρ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥XI∗

.

To present the proof clearly, we divide it into the following two steps.

Step 1: We show that T : B
XI∗
R → B

XI∗
R , i.e., the ball B

XI∗
R is T -invariant. To do this, we need

to show that for any (ζ,w, q) ∈ B
XI∗
R , we have

∥T (ζ,w, q)∥2XI∗
= ∥(η,v, π)∥2XI∗

≤ R2. (3.23)

Indeed, according to (3.9), we deduce the following estimate from (3.20)–(3.22)

∥(η,v, π)∥2XI∗
≲ D(g, η0, η∗,v0) +

∫
I∗

(
∥∂thζ(w)∥2W−1,2(Ω) dt+ ∥hζ(w)∥2W 1,2(Ω)

)
dt

+

∫
I∗

(
∥hζ(w)∥2L2(Ω) + ∥Hζ(w, q)∥2W 1,2(Ω)

)
dt

=: D(g, η0, η∗,v0) +K1 +K2 +K3 +K4,

(3.24)

where

D(g, η0, η∗,v0) = ∥η∗∥2W 1,2(ω) + ∥η0∥2W 3,2(ω) + ∥v0∥2W 1,2(Ω) +

∫
I∗

∥g∥2L2(ω) dt.

Recalling the regularity assumption in (3.1), we choose R > 0 large enough, such that

cD(g, η0, η∗,v0) ≤
1

4
R2, (3.25)

where c > 0 is the hidden constant from (3.24). We show in what follows that the sum of the Ki is also
bounded by 1

2R
2 which will give the estimate (3.23).

To estimate K1, we have

∂thζ(w) = (Bη0 −Bζ) : ∂t∇w − (∂tBζ) : ∇w.

We notice that the continuous embedding

L∞(I∗;W
3,2(ω)) ∩W 1,2(I∗;W

2,2(ω)) ↪→ C0,1/8(I∗;W
11/4,2(ω)) ↪→ L∞(I∗;W

1,∞ ∩W 2,4(ω)), (3.26)
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scales with T
1/8
∗ . We thereby obtain from (2.10)–(2.12) that∫

I∗

∥(Bη0
−Bζ) : ∂t∇w∥2

W−1,2
x

dt ≲
∫
I∗

∥Bη0
−Bζ∥2L∞

x
∥∂tw∥2L2

x
dt

+

∫
I∗

∥∇(Bη0
−Bζ)∥2L3

x
∥∂tw∥2L2

x
dt

≲ sup
I∗

∥η0 − ζ∥2
W 1,∞

y

∫
I∗

∥∂tw∥2L2
x
dt

+ sup
I∗

∥η0 − ζ∥2
W 2,3

y

∫
I∗

∥∂tw∥2L2
x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.27)

On the other hand, due to the continuous embedding

W 2,2(I∗;L
2(ω)) ∩W 1,2(I∗;W

2,2(ω)) ↪→ W 5/4,2(I∗;W
3/2,2(ω)) ↪→ W 1,4(I∗;W

1,4(ω)),

it follows from Hölder inequality that∫
I∗

∥∂tBζ : ∇w∥2
W−1,2

x
dt ≲

∫
I∗

∥∂tBζ : ∇w∥2
L

4/3
x

dt

≲
∫
I∗

∥∂tBζ∥2L4
x
∥∇w∥2L2

x
dt

≲ T
1/2
∗

(∫
I∗

∥∂tζ∥4W 1,4
y

dt

) 1
2

sup
I∗

∥∇w∥2L2
x

≲ T
1/2
∗ ∥(ζ,w, q)∥2XI∗

.

(3.28)

Combining (3.27) with (3.28) we have

K1 ≲ T
1/2
∗ ∥(ζ,w, q)∥2XI∗

. (3.29)

To estimate K2, we note that

|hζ(w)|+ |∇hζ(w)| ≲ |(Bη0
−Bζ) : ∇w|+ |(Bη0

−Bζ) : ∇2w|
+ |∇(Bη0

−Bζ) : ∇w|.

Using the argument from (3.26) again, we derive from (2.10)–(2.12) that∫
I∗

∥(Bη0
−Bζ) : ∇w∥2L2

x
dt+

∫
I∗

∥(Bη0
−Bζ) : ∇2w∥2L2

x
dt

≲ sup
I∗

∥η0 − ζ∥2
W 1,∞

y

∫
I∗

∥∇2w∥2L2
x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.30)

According to the continuous embeddings

L∞(I∗;W
3,2(ω)) ↪→ L∞(I∗;W

2,4(ω)), (3.31)

and

W 1,2(I∗;L
2(Ω)) ∩ L2(I∗;W

2,2(Ω)) ↪→ W 1/8,2(I∗;W
7/4,2(Ω)) ↪→ L2(I∗;W

1,4(Ω)), (3.32)

where the latter scales with T 1/8, it follows that∫
I∗

∥∇(Bη0
−Bζ)∇w∥2L2

x
dt ≲ sup

I∗

∥η0 − ζ∥2
W 2,4

y

∫
I∗

∥∇w∥2L4
x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.33)
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We obtain from (3.30) and (3.33) that

K2 ≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

. (3.34)

To estimate K3, let us recall that

hζ(w) = (Jη0 − Jζ)∂tw + Jζ∇w∂tΨ
−1
ζ ◦Ψζ +Bζ∇ww + Jζf ◦Ψζ .

Due to the continuous embeddings (3.26), it follows from the definition Jη = det(∇Ψη) and (2.10)–(2.12)
that ∫

I∗

∥(Jη0 − Jζ)∂tw∥2L2
x
dt ≲ sup

I∗

∥η0 − ζ∥W 1,∞
y

∫
I∗

∥∂tw∥2L2
x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.35)

By using the embeddings

L∞(I∗;W
3,2(ω)) ↪→ L∞(I∗;W

1,∞(ω)),

W 1,∞(I∗;W
1,2(ω)) ∩W 1,2(I∗;W

2,2(ω)) ↪→ W 1,4(I∗;W
3/2,2(ω)) ↪→ W 1,4(I∗;L

∞(ω)),

we obtain that ∫
I∗

∥Jζ∇w∂tΨ
−1
ζ ◦Ψζ∥2L2

x
dt

≲
∫
I∗

(
1 + ∥ζ∥2

W 1,∞
y

)
∥∇w∥2L2

x
∥∂tζ∥2L∞

y
dt

≲ T
1/2
∗ sup

I∗

(
1 + ∥ζ∥2

W 1,∞
y

)
sup
I∗

∥∇w∥2L2
x

(∫
I∗

∥∂tζ∥4L∞
y
dt

) 1
2

≲ T
1/2
∗ ∥(ζ,w, q)∥2XI∗

.

(3.36)

Also, by using the embedding (3.32) we obtain∫
I∗

∥Bζ∇ww∥2L2
x
dt ≲

∫
I∗

(
1 + ∥ζ∥2

W 1,∞
y

)
∥∇w∥2L4

x
∥w∥2L4

x
dt

≲ sup
I∗

(
1 + ∥ζ∥2

W 3,2
y

)
sup
I∗

∥w∥2
W 1,2

x

∫
I∗

∥∇w∥2L4
x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.37)

Next, by using (3.26), we obtain∫
I∗

∥Jζf ◦Ψζ∥2L2
x
dt ≲ sup

I∗

(
1 + ∥ζ∥2

W 1,∞
y

) ∫
I∗

∥f∥2L2
x
dt

≲ T∗ sup
I∗

∥f∥2L2
x
.

(3.38)

It follows from (3.35)–(3.38) that

K3 ≲ T
1/2
∗

(
∥(ζ,w, q)∥2XI∗

+ sup
I∗

∥f∥2L2
x

)
. (3.39)

Our next goal is to estimate K4. Since

Hζ(w, q) = (Aη0
−Aζ)∇w + (Bη0

−Bζ)q,
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due to the continuous embeddings (3.26), (3.32) and (3.31), it follows from (2.10)–(2.12) that∫
I∗

∥(Aη0 −Aζ)∇w∥2
W 1,2

x
dt

≲
∫
I∗

∥∇(Aη0 −Aζ)∥2L4
x
∥∇w∥2L4

x
dt+

∫
I∗

∥Aη0 −Aζ∥2L∞
x
∥∇2w∥2L2

x
dt

≲ sup
I∗

∥η0 − ζ∥2
W 2,4

y

∫
I∗

∥∇w∥2L4
x
dt+ sup

I∗

∥η0 − ζ∥2
W 1,∞

y

∫
I∗

∥∇2w∥2L2
x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.40)

Next, we use the embedding

L2(I∗;W
3,2(ω)) ∩W 1,2(I∗;W

2,2(ω)) ↪→ W 2/3,2(I∗;W
7/3,2(ω)) ↪→ L∞(I∗;W

2,3(ω)),

where the latter scales with T
1/6
∗ , and W 2,3(ω) ↪→ W 1,∞(ω) to obtain∫

I∗

∥(Bη0 −Bζ)q∥2W 1,2
x

dt

≲
∫
I∗

∥∇(Bη0 −Bζ)∥2L3
x
∥q∥2L6

x
dt+

∫
I∗

∥Bη0 −Bζ∥2L∞
x
∥∇q∥2L2

x
dt

≲ sup
I∗

∥η0 − ζ∥2
W 2,3

y

∫
I∗

∥q∥2
W 1,2

x
dt+ sup

I∗

∥η0 − ζ∥2
W 1,∞

y

∫
I∗

∥q∥2
W 1,2

x
dt

≲ T
1/4
∗ ∥(ζ,w, q)∥2XI∗

.

(3.41)

By using (3.40) and (3.41), it follows that

K4 ≲ T
1/3
∗ ∥(ζ,w, q)∥2XI∗

. (3.42)

Collecting the estimates (3.29), (3.34), (3.39) and (3.42), we have shown that

∥T (ζ,w, q)∥2XI∗
= ∥(η,v, π)∥2XI∗

≤ cT
1/2
∗

(
∥(ζ,w, q)∥2XI∗

+ sup
I∗

∥f∥2L2
x

)
. (3.43)

Clearly, we can choose R such that supI∗ ∥f∥
2
L2

x
< R2

4 . Since (ζ,w, q) ∈ B
XI∗
R , by choosing T∗ in

I∗ = (0, T∗) so that T
1/2
∗ < c−1

2 , we find that the right-hand side of (3.43) is bounded by R2

2 . This,
together with (3.25), implies (3.23).

Step 2: We prove that T is a contraction map. To show the contraction property, we denote η12 :=
η1 − η2, v12 := v1 − v2 and π12 := π1 − π2. We derive the system that (η12,v12, π12) satisfies, which
reads

Bη0 : ∇v12 = hζ1(w1)− hζ2(w2), (3.44)

and
ϱs∂

2
t η12 − γ∂t∆yη12 + α∆2

yη12 = n⊺
[
−Aη0∇v12 +Bη0π12

]
◦φn

+ n⊺
[
Hζ1(w1, q1)−Hζ2(w2, q2)

]
◦φn,

(3.45)

and
Jη0∂tv12 − div(Aη0∇v12) + div(Bη0π12) = hζ1(w1)− hζ2(w2)

− divHζ1(w1, q1) + divHζ2(w2, q2).
(3.46)

Since the left-hand side of (3.44), (3.45) and (3.46) are all linear as functions of (η12,v12, π12), it suffices
to estimate their right-hand sides and substitute these estimates into the corresponding right-hand terms
in (3.9). Precisely, we estimate the following integrals:

K1 :=

∫
I∗

∥∂t[hζ1(w1)− hζ2(w2)]∥2W−1,2(Ω) dt,
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K2 :=

∫
I∗

∥hζ1(w1)− hζ2(w2)∥2W 1,2(Ω) dt,

K3 :=

∫
I∗

∥hζ1(w1)− hζ2(w2)∥2L2(Ω) dt,

K4 :=

∫
I∗

∥Hζ1(w1, q1)−Hζ2(w2, q2)∥2W 1,2(Ω) dt.

The estimates for these Ki’s can be obtained in the same manner as the corresponding Ki’s above when
showing that the mapping T maps the ball into itself. However, we proceed to give a summary of the
various estimates.

To estimate K1, we need some preliminary estimates. Recalling the definition of hη(v) at the beginning
of Subsection 3.1, we write

∂t[hζ1(w1)− hζ2(w2)] = (Bη0
−Bζ1) : ∂t∇(w1 −w2) + (Bζ2 −Bζ1) : ∂t∇w2

+ ∂t(Bη0 −Bζ1) : ∇(w1 −w2) + ∂t(Bζ2 −Bζ1) : ∇w2.

Now, just as in (3.27), we obtain from (2.10)–(2.12) and the continuous embedding (3.26) that∫
I∗

(
∥(Bη0 −Bζ1) : ∂t∇(w1 −w2)∥2W−1,2

x
+ ∥(Bζ1 −Bζ2)∂t∇w2∥2W−1,2

x

)
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

Also, as in (3.28), we obtain∫
I∗

(
∥∂t(Bη0

−Bζ1) : ∇(w1 −w2)∥2W−1,2
x

+ ∥∂t(Bζ1 −Bζ2) : ∇w2∥2W−1,2
x

)
dt

≲ T
1/2
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

,

and thus,

K1 ≲ T
1/2
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

. (3.47)

To estimate K2, we first note that

|hζ1(w1)− hζ2(w2)|+ |∇[hζ1(w1)− hζ2(w2)]|
≲ |(Bη0

−Bζ1) : ∇(w1 −w2)|+ |(Bζ1 −Bζ2) : ∇w2|
+ |(Bη0 −Bζ1) : ∇2(w1 −w2)|+ |(Bζ1 −Bζ2) : ∇2w2|
+ |∇(Bη0

−Bζ1) : ∇(w1 −w2)|+ |∇(Bζ1 −Bζ2) : ∇w2|.
Similar to (3.30), we use (3.26) and (2.10)–(2.12) and obtain∫

I∗

(
∥(Bη0 −Bζ1) : ∇(w1 −w2)∥2L2

x
+ ∥(Bζ1 −Bζ2) : ∇w2∥2L2

x

)
dt

+

∫
I∗

(
∥(Bη0 −Bζ1) : ∇2(w1 −w2)∥2L2

x
+ ∥(Bζ1 −Bζ2) : ∇2w2∥2L2

x

)
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.48)

As in (3.33), we obtain∫
I∗

(
∥∇(Bη0

−Bζ1)∇(w1 −w2)∥2L2
x
+ ∥∇(Bζ1 −Bζ2)∇w2∥2L2

x

)
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.49)

We obtain from (3.48) and (3.49) that

K2 ≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

. (3.50)

To estimate K3, we need some preliminary estimates. First of all, note that

|hζ1(w1)− hζ2(w2)| ≲ |(Jη0
− Jζ1)∂t(w1 −w2)|+ |(Jζ1 − Jζ2)∂tw2|
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+
∣∣Jζ1∇(w1 −w2)∂tΨ

−1
ζ1

◦Ψζ1

∣∣+ ∣∣(Jζ1 − Jζ2
)
∇w2∂tΨ

−1
ζ1

◦Ψζ1

∣∣
+
∣∣Jζ2∇w2∂t

(
Ψ−1

ζ1
◦Ψζ1 −Ψ−1

ζ2
◦Ψζ2

)∣∣
+
∣∣Jζ1(∇Ψ−1

ζ1
◦Ψζ1

)⊺∇(w1 −w2)w1

∣∣
+
∣∣[Jζ1(∇Ψ−1

ζ1
◦Ψζ1

)⊺ − Jζ2
(
∇Ψ−1

ζ2
◦Ψζ2

)⊺]∇w2w1

∣∣
+
∣∣Jζ2(∇Ψ−1

ζ2
◦Ψζ2

)⊺∇w2(w1 −w2)
∣∣

+ |Jζ1(f ◦Ψζ1 − f ◦Ψζ2)|+ |(Jζ1 − Jζ2)f ◦Ψζ2 |.

As in (3.35), using (3.26) and (2.10)–(2.12) we have∫
I∗

(
∥(Jη0 − Jζ1)∂t(w1 −w2)∥2L2

x
+ ∥(Jζ1 − Jζ2)∂tw2∥2L2

x

)
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.51)

Similar to (3.36), we obtain∫
I∗

∥Jζ1∇(w1 −w2)∂tΨ
−1
ζ1

◦Ψζ1∥2L2
x
dt+

∫
I∗

∥∥(Jζ1 − Jζ2)∇w2∂tΨ
−1
ζ1

◦Ψζ1

∥∥2
L2

x
dt

+

∫
I∗

∥∥Jζ2∇w2∂t
(
Ψ−1

ζ1
◦Ψζ1 −Ψ−1

ζ2
◦Ψζ2

)∥∥2
L2

x
dt

≲ T
1/2
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.52)

Next, as in (3.37), we obtain∫
I∗

∥Jζ1
(
∇Ψ−1

ζ1
◦Ψζ1

)⊺∇(w1 −w2)w1∥2L2
x
dt

+

∫
I∗

∥∥[Jζ1(∇Ψ−1
ζ1

◦Ψζ1

)⊺ − Jζ2
(
∇Ψ−1

ζ2
◦Ψζ2

)⊺]∇w2w1

∥∥2
L2

x
dt

+

∫
I∗

∥Jζ2
(
∇Ψ−1

ζ2
◦Ψζ2

)⊺∇w2(w1 −w2)∥2L2
x
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.53)

By following the same argument as in (3.38), we obtain∫
I∗

(
∥Jζ1(f ◦Ψζ1 − f ◦Ψζ2)∥2L2

x
+ ∥(Jζ1 − Jζ2)f ◦Ψζ2∥2L2

x

)
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.54)

It follows from (3.51)–(3.54) and the assumptions on f that

K3 ≲ T
1/2
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

. (3.55)

Our next goal is to estimate K4. First of all, note that

|Hζ1(w1, q1)−Hζ2(w2, q2)| ≲ |(Aη0
−Aζ1)∇(w1 −w2)|+ |(Aζ1 −Aζ2)∇w2|

+ |(Bη0
−Bζ1)(q1 − q2)|+ |(Bζ1 −Bζ2)q2|,

holds uniformly. By the same argument as in (3.40), by using (3.26), (3.32) and (3.31), we obtain from
(2.10)–(2.12) that∫

I∗

(
∥(Aη0

−Aζ1)∇(w1 −w2)∥2W 1,2
x

dt+ ∥(Aζ1 −Aζ2)∇w2∥2W 1,2
x

)
dt

≲ T
1/4
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.56)
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Finally, we adopt the approach leading to (3.41) and obtain∫
I∗

(
∥(Bη0

−Bζ1)(q1 − q2)∥2W 1,2
x

+

∫
I∗

∥(Bζ1 −Bζ2)q2∥2W 1,2
x

)
dt

≲ T
1/3
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

(3.57)

By using (3.56) and (3.57), it follows that

K4 ≲ T
1/3
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

. (3.58)

By collecting the estimates (3.47), (3.50), (3.55) and (3.58) together, we have

∥T (ζ1,w1, q1)− T (ζ2,w2, q2)∥2XI∗
≤ cT

1/2
∗ ∥(ζ1,w1, q1)− (ζ2,w2, q2)∥2XI∗

.

Choosing T∗ in I∗ = (0, T∗) so that T
1/2
∗ < c−1 yields the desired contraction property. □

4. The acceleration estimate

In this section, we prove the acceleration estimate for a solution satisfying the Serrin condition. In
order to make the proof rigorous, we work with a strong solution, the existence of which is guaranteed
locally in time by Theorem 3.1. Eventually, we compare weak and strong solution by means of Theorem
5.1 and obtain the desired result for a weak solution in Theorem 6.1. Let (v, η) be a strong solution
(1.2)–(1.4) in the sense of Definition 2.6 with data (f , g, η0, η∗,v0), which is in particular a weak solution
(see Definition 2.5) and thus satisfies the standard energy estimates

sup
I∗

∥v∥2L2
x
+

∫
I∗

∥∇v∥2L2
x
dt ≲ C0, (4.1)

sup
I∗

∥∂tη∥2L2
y
+ sup

I∗
∥∆yη∥2L2

y
+

∫
I∗

∥∂t∇yη∥2L2
y
dt ≲ C0, (4.2)

where

C0 := ∥v0∥2L2
x
+ ∥η∗∥2L2

y
+ ∥∆yη0∥2L2

y
+

∫
I∗

∥f∥2L2
x
dt+

∫
I∗

∥g∥2L2
y
dt.

The following acceleration estimate (or second order energy estimate) is one of the core results of the
paper and directly leads to the main result in Theorem 6.1. Under the Serrin condition, it holds uniformly
in time allowing us to extend the local solution globally in time.

Theorem 4.1. Suppose that the dataset (f , g, η0, η∗,v0) satisfies (2.15) and (3.1). Suppose that (η,v)
is a strong solution to (1.2)–(1.4) in the sense of Definition 2.6. Furthermore, for some r ∈ [2,∞) and
s ∈ (3,∞] we set

C1 := ∥v∥Lr(I;Ls(Ωη)),
2
r + 3

s ≤ 1, (4.3)

C2 := ∥η∥L∞(I;C1(ω)). (4.4)

Finally, suppose that there is no degeneracy in the sense of (2.7). Then we have the uniform-in-time
estimate:

sup
I∗

∫
ω

(
|∂t∇yη|2 + |∇y∆yη|2

)
dy + sup

I∗

∫
Ωη

|∇v|2 dx

+

∫
I∗

∫
ω

(
|∂t∆yη|2 + |∂2

t η|2
)
dy dt+

∫
I∗

∫
Ωη

(
|∇2v|2 + |∂tv|2 + |∇π|2

)
dx dt

≲
∫
ω

(
|∇yη∗|2 + |∇y∆yη0|2

)
dy +

∫
Ωη0

|∇v0|2 dx

+

∫
I∗

∫
Ωη

|f |2 dx dt+

∫
I∗

∫
ω

|g|2 dy dt,

(4.5)

where the hidden constant depends only on C0, C1 and C2.
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Proof. We use ϕ = ∂tv + Fη(∂tηn) · ∇v and ϕ = ∂2
t η as test functions for the fluid and shell equations

respectively. (For this, we give in Remark 4.2 more details). Here Fη is the extension operator introduced
in Section 2.5. From the momentum equation in the strong form (2.18), we obtain for t ∈ I∗∫

I∗

∫
Ωη

(
∂tv + v · ∇v

)
·
(
∂tv + Fη(∂tηn) · ∇v

)
dx dσ

=

∫
I∗

∫
Ωη

div τ ·
(
∂tv + Fη(∂tηn) · ∇v

)
dx dσ +

∫
I∗

∫
Ωη

f ·
(
∂tv + Fη(∂tηn) · ∇v

)
dx dσ,

where τ = ∇v+∇v⊺ − πI3×3 is the Cauchy stress. We now aim at integrating by parts in the first term
on the right-hand side obtaining∫

I∗

∫
Ωη

div τ ·
(
∂tv + Fη(∂tηn) · ∇v

)
dx dσ

= −
∫
I∗

∫
ω

F ∂2
t η dy dσ −

∫
I∗

∫
Ωη

∇v : ∇
(
Fη(∂tηn) · ∇v

)
dx dσ

− 1
2

∫
Ωη

|∇v|2 dx+ 1
2

∫
Ωη0

|∇v0|2 dx+ 1
2

∫
I∗

∫
∂Ωη

(∂tηn) ◦φ−1
η · nη ◦φ−1

η |∇v|2dH2 dσ

+

∫
I∗

∫
Ωη

π div
(
Fη(∂tηn) · ∇v

)
dx dσ (4.6)

with

F = −n⊺τ ◦φηnη|det(∇yφη)|. (4.7)

In the above we used the fact divv = 0 and

(∂tv + Fη(∂tηn) · ∇v) ◦φη = ∂2
t ηn,

which is explained in Remark 4.2. Note that we also used Reynold’s transport theorem applied to∫
Ωη(t)

|∇v(t)|2 dx:∫
Ωη

∇v : ∇∂tv dx dσ =
1

2

d

dt

∫
Ωη

|∇v|2 dx− 1

2

∫
∂Ωη

(∂tηn) ◦φ−1
η · nη ◦φ−1

η |∇v|2dH2 dσ.

Although all the terms in equation (4.6) are well-defined for a strong solution (η,v) this is not true for
its derivation. Hence we apply Lemma 2.4 to obtain a smooth approximation which fully justifies (4.6)
after passing to the limit.

Multiplying the structure equation (2.19) by ∂2
t η we obtain from the formal computation (3.12) that∫

I∗

∫
ω

|∂2
t η|2 dy dt+ sup

I∗

∫
ω

|∂t∇yη|2 dy

≲
∫
ω

|∇yη∗|2 dy + sup
I∗

∫
ω

|∇y∆yη|2 dy +

∫
I∗

∫
ω

|∂t∆yη|2 dy dt+

∫
I∗

∫
ω

(g + F ) ∂2
t η dy dt.

It can be made rigorous by means of a spatial regularization argument. Since we consider periodic
boundary conditions a spatial convolution can be applied without further difficulty. Using Young’s
inequality and writing

Fη(∂tηn) · ∇v = v · ∇v + Fη(∂tηn) · ∇v − v · ∇v,

we have ∫
I∗

∫
Ωη

(∂tv + v · ∇v) · (∂tv + v · ∇v + Fη(∂tηn) · ∇v − v · ∇v) dx dσ

=

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dσ +

∫
I∗

∫
Ωη

(∂tv + v · ∇v) · (Fη(∂tηn) · ∇v) dx dσ

−
∫
I∗

∫
Ωη

(∂tv + v · ∇v) · (v · ∇v) dx dσ.
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For the last integral above, we have∫
I∗

∫
Ωη

(∂tv + v · ∇v) · (v · ∇v) dx dσ ≲ κ

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dσ + c(κ)

∫
I∗

∫
Ωη

|v · ∇v|2 dx dσ.

With the similar strategy we estimate the term on f as below:∫
I∗

∫
Ωη

f · (∂tv + v · ∇v + Fη(∂tηn) · ∇v − v · ∇v) dx dσ

≲ κ

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dσ + c(κ)

∫
I∗

∫
Ωη

|f |2 dx dσ

+

∫
I∗

∫
Ωη

f · (Fη(∂tηn) · ∇v) dx dσ +

∫
I∗

∫
Ωη

|v · ∇v|2 dx dσ.

Now combining the fluid part with the solid part together, for κ > 0 small enough we finally arrive at

sup
I∗

∫
Ωη

|∇v|2 dx+

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dt+

∫
I∗

∫
ω

|∂2
t η|2 dy dt+ sup

I∗

∫
ω

|∂t∇yη|2 dy

≲
∫
I∗

∫
Ωη

|v · ∇v|2 dx dt+

∫
I∗

∫
∂Ωη

(∂tηn) ◦φ−1
η · nη ◦φ−1

η |∇v|2dH2 dt

−
∫
I∗

∫
Ωη

(
∂tv + v · ∇v

)
·
(
Fη(∂tηn) · ∇v

)
dx dt

−
∫
I∗

∫
Ωη

∇v :
(
Fη(∂tηn)

⊺∇2v +∇Fη(∂tηn)∇v⊺
)
dx dt

+

∫
I∗

∫
Ωη

π div
(
Fη(∂tηn)∇v

)
dx dt+

∫
I∗

∫
Ωη

f · (Fη(∂tηn) · ∇v) dx dt

+

∫
I∗

∫
Ωη

|f |2 dx dt+

∫
Ωη0

|∇v0|2 dx+

∫
ω

|∇yη∗|2 dy + sup
I∗

∫
ω

|∇y∆yη|2 dy

+

∫
I∗

∫
ω

|∂t∆yη|2 dy dt+

∫
I∗

∫
ω

|g|2 dy dt

=: I + · · ·+XII. (4.8)

Notice that in (4.8) the last six terms are already uncritical. In particular, XI will be obtained on the
left hand side via a second test, see (4.18) below. Hence we start the estimate of the terms I–VI.

In order to control the first term, we make use of Theorem 2.8. Its application to the moving domain
Ωη has been justified in Remark 2.10, we thereby have

∥v∥W 2,2
x

+ ∥π∥W 1,2
x

≲ ∥∂tv + v · ∇v∥L2
x
+ ∥f∥L2

x
+ ∥∂tη∥W 3/2,2

y
, (4.9)

uniformly in time with a constant depending on C2 from (4.4). Note that we also used the estimate

∥∂tηn ◦φ−1
η ∥

W
3/2,2
y

≲ ∥∂tη∥W 3/2,2
y

, (4.10)

which is a consequence of (4.2) and the definition φη = φ + ηn. In fact, φ−1
η is uniformly bounded in

time in the space of Sobolev multipliers on W 3/2,2(ω) by (2.3) and (2.4) (together with the assumption
∂1φη×∂2φη ̸= 0) since η is uniformly bounded in time even inW 2,2(ω) by (4.2). Hence the transformation
rule (2.5) applies. For every κ > 0 and for s ∈ (3,∞], we estimate using Sobolev’s inequality (recalling
that ∂Ωη is Lipschitz uniformly in time with a constant controlled by C2, cf. (4.4)) and (4.1)

I ≤
∫
I∗

∥v∥2Ls
x
∥∇v∥2

L
2s

s−2
x

dt ≤ c

∫
I∗

∥v∥2Ls
x
∥∇v∥

2s−6
s

L2
x

∥∇v∥
6
s

W 1,2
x

dt

≤ c(κ)

∫
I∗

∥v∥
2s

s−3

Ls
x
∥∇v∥2L2

x
dt+ κ

∫
I∗

∥∇v∥2
W 1,2

x
dt

≤ c(κ)

∫
I∗

∥v∥
2s

s−3

Ls
x
∥∇v∥2L2

x
dt+ κ

∫
I∗

(
∥∂tv + v · ∇v∥2L2

x
+ ∥f∥2L2

x
+ ∥∂tη∥2W 3/2,2

y

)
dt,
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where the first part of the κ-term can be absorbed in the left-hand side of (4.8). Note that r := 2s
s−3 ∈

[2,∞) since s ∈ (3,∞]. The resulting constant depends on C1 from (4.3).
For the boundary integral II on the right-hand side of (4.8), we have

II ≤
∫
I∗

∥∇v∥L4(∂Ωη)∥∇v∥
L

8
3 (∂Ωη)

∥∂tη ◦φ−1
η ∥

L
8
3 (∂Ωη)

dt

≲
∫
I∗

∥∇v∥W 1/2,2(∂Ωη)∥∇v∥W 1/4,2(∂Ωη)∥∂tη ◦φ−1
η ∥W 1/4,2(∂Ωη) dt

≲
∫
I∗

∥∇v∥W 1,2
x

∥∇v∥
W

3/4,2
x

∥∂tη∥W 1/4,2
y

dt

≲
∫
I∗

∥∇v∥
7
4

W 1,2
x

∥∇v∥
1
4

L2
x
∥∂tη∥

3
4

L2
y
∥∂tη∥

1
4

W 1,2
y

dt

≤ κ

∫
I∗

∥∇v∥2
W 1,2

x
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt,

where we used that ∥∂tη∥L2
y
is uniformly bounded in time (see (4.2)) and the embeddings W 1/2,2(∂Ωη) ↪→

L4(∂Ωη) and W 1/4,2(∂Ωη) ↪→ L8/3(∂Ωη), as well as the following interpolation inequalities:

∥f∥
W

1
4
,2(ω)

≲ ∥f∥
3
4

L2(ω)∥f∥
1
4

W 1,2(ω),

∥f∥
W

3
4
,2(Ωη)

≲ ∥f∥
1
4

L2(Ωη)
∥f∥

3
4

W 1,2(Ωη)
.

(4.11)

For the third term III, we first have

III ≤ κ

∫
I∗

∥∂tv + v · ∇v∥2L2
x
dt+ c(κ)

∫
I∗

∥∇vFη(∂tηn)∥2L2
x
dt.

We estimate the second integrals above by∫
I∗

∥∇vFη(∂tηn)∥2L2
x
dt ≤

∫
I∗

∥Fη(∂tηn)∥2L4
x
∥∇v∥2L4

x
dt

≲
∫
I∗

∥Fη(∂tηn)∥2W 3/4,2
x

∥∇v∥
1
2

L2
x
∥∇v∥

3
2

W 1,2
x

dt

≲
∫
I∗

∥∂tη∥2W 1/4,2
y

∥∇v∥
1
2

L2
x
∥∇v∥

3
2

W 1,2
x

dt

≲
∫
I∗

∥∂tη∥
1
2

W 1,2
y

∥∇v∥
1
2

L2
x
∥∇v∥

3
2

W 1,2
x

dt

≤ κ

∫
I∗

∥∇v∥2
W 1,2

x
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt.

Here we used the 2D interpolation from (4.11) again and

∥Fη(∂tηn)∥W 3/4,2
x

≲ ∥∂tη∥W 1/4,2
y

,

which follows from Lemma 2.2 and (4.4), and the inequalities:

∥f∥L4(Ωη) ≲ ∥f∥W 3/4,2(Ωη),

∥f∥L4(Ωη) ≲ ∥f∥
1
4

L2(Ωη)
∥f∥

3
4

W 1,2(Ωη)
.

(4.12)

Thus we have the estimate for III:

III ≤ κ

∫
I∗

(
∥∂tv + v · ∇v∥2L2

x
+ ∥∇v∥2

W 1,2
x

)
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt.

Now we consider estimating the integral IV. For this we have∫
I∗

∫
Ωη

∇v : Fη(∂tηn)
⊺∇2v dx dt
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≤
∫
I∗

∥∇2v∥L2
x
∥∇v∥L4

x
∥Fη(∂tηn)∥L4

x
dt

≲
∫
I∗

∥∇2v∥L2
x
∥∇v∥

1
4

L2
x
∥∇v∥

3
4

W 1,2
x

∥Fη(∂tηn)∥W 3/4,2
x

dt

≲
∫
I∗

∥v∥
7
4

W 2,2
x

∥∇v∥
1
4

L2
x
∥∂tη∥W 1/4,2

y
dt

≲
∫
I∗

∥v∥
7
4

W 2,2
x

∥∇v∥
1
4

L2
x
∥∂tη∥

1
4

W 1,2
y

dt

≤ κ

∫
I∗

∥v∥2
W 2,2

x
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
x

∥∇v∥2L2
x
dt, (4.13)

where we used the energy estimate (4.2), the interpolation inequality (4.11) and (4.12) as well as Lemma
2.2 again. For the second integral in IV we obtain similarly∫

I∗

∫
Ωη

∇v : ∇Fη(∂tηn)∇v⊺ dx dt

≲
∫
I∗

∥∇v∥2L4
x
∥∇Fη(∂tηn)∥L2

x
dt

≲ ∥∇v∥
1
2

L2
x
∥∇v∥

3
2

W 1,2
x

∥Fη(∂tηn)∥W 1,2
x

dt

≲
∫
I∗

∥v∥
3
2

W 2,2
x

∥v∥
1
2

W 1,2
x

∥∂tη∥W 1/2,2
y

dt

≲
∫
I∗

∥v∥
3
2

W 2,2
x

∥v∥
1
2

W 1,2
x

∥∂tη∥
1
2

W 1,2
y

dt

≤ κ

∫
I∗

∥v∥2
W 2,2

x
dt+ C(κ)

∫
I∗

∫
I∗

∥∂tη∥2W 1,2
y

∥v∥2
W 1,2

x
dt. (4.14)

Putting the estimate (4.13) and (4.14) together, we arrive at

IV ≤ κ

∫
I∗

∥v∥2
W 2,2

x
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥v∥2
W 1,2

x
dt.

To estimate V, we note that it can be written as

V = −
∫
I∗

∫
Ωη

∇π · Fη(∂tηn)∇v dx dt+

∫
I∗

∫
∂Ωη

πFη(∂tηn)∇vnη ◦φ−1
η dH2 dt.

Now we estimate the two integrals on the right-hand side above one by one. Firstly, we derive using
Lemma 2.2 ∫

I∗

∫
Ωη

∇π · Fη(∂tηn)∇v dx dt

≤
∫
I∗

∥∇π∥L2
x
∥Fη(∂tηn)∥L4

x
∥∇v∥L4

x
dt

≲
∫
I∗

∥∇π∥L2
x
∥Fη(∂tηn)∥W 3/4,2

x
∥∇v∥

1
4

L2
x
∥∇v∥

3
4

W 1,2
x

dt

≲
∫
I∗

∥∇π∥L2
x
∥∂tη∥W 1/4,2

y
∥∇v∥

1
4

L2
x
∥∇v∥

3
4

W 1,2
x

dt

≲
∫
I∗

∥∇π∥L2
x
∥∂tη∥

1
4

W 1,2
y

∥∇v∥
1
4

L2
x
∥∇v∥

3
4

W 1,2
x

dt

≲ κ

∫
I∗

(
∥∇π∥2L2

x
+ ∥∇v∥2

W 1,2
x

)
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt.

(4.15)
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Using similar technique we also have by the trace theorem∫
I∗

∫
∂Ωη

πFη(∂tηn)∇vnη ◦φ−1
η dH2 dt

≤
∫
I∗

∥π∥L4(∂Ωη)∥Fη(∂tηn)∥L8/3(∂Ωη)∥∇v∥L8/3(∂Ωη) dt

≲
∫
I∗

∥π∥W 1/2,2(∂Ωη)∥Fη(∂tηn)∥W 1/4,2(∂Ωη)∥∇v∥W 1/4,2(∂Ωη) dt

≲
∫
I∗

∥π∥W 1,2
x

∥∂tη∥W 1/4,2
y

∥∇v∥
W

3/4,2
x

dt

≲
∫
I∗

∥π∥W 1,2
x

∥∂tη∥
1
4

W 1,2
y

∥∇v∥
1
4

L2
x
∥∇v∥

3
4

W 1,2
x

dt

≤ κ

∫
I∗

(
∥π∥2

W 1,2
x

+ ∥v∥2
W 2,2

x

)
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt.

Therefore, we obtain the estimate

V ≤ κ

∫
I∗

(
∥π∥2

W 1,2
x

+ ∥v∥2
W 2,2

x

)
dt+ C(κ)

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt.

Notice that the sixth integral on the right-hand side of (4.8), i.e., VI, can be treated similarly to (4.15).
Observe from the estimate of V above, we must estimate here also the L2-norm of the pressure, for which
we use (2.17) (noticing that

∫
ω
n · nη|∂yφη|dy is strictly positive by our assumption of non-degeneracy,

cf. (2.7)). We have∫
I∗

∥π∥2
W 1,2

x
dt ≲

∫
I∗

∥∇π∥2L2
x
dt+

∫
I∗

c2π dt

≲
∫
I∗

∥∇π∥2L2
x
dt+

∫
I∗

∫
ω

|∂2
t η|2 dy dt+

∫
I∗

∫
ω

|g|2 dy dt

+

∫
I∗

∥π0∥2L2(∂Ωη)
dt+

∫
I∗

∥∇v∥2L2(∂Ωη)
dt.

Using (4.9), for any ε ∈ (0, 1/2) the last term above can be estimated as∫
I∗

∥∇v∥2L2(∂Ωη)
dt ≲

∫
I∗

∥∇v∥2W 1/2+ε,2(Ωη)
dt

≲
∫
I∗

∥∇v∥1−2ε
L2(Ωη)

∥v∥1+2ε
W 2,2(Ωη)

dt

≤ κ

∫
I∗

(
∥∂tv + v · ∇v∥2L2

x
+ ∥f∥2L2

x
+ ∥∂tη∥2W 3/2,2

y

)
dt+ c(κ)

∫
I∗

∥∇v∥2L2
x
dt,

whereas, by Poincaré’s inequality,∫
I∗

∥π0∥2L2(∂Ωη)
dt ≲

∫
I∗

∥∇π0∥2L2
x
dt+

∫
I∗

∥π0∥2L2
x
dt ≲

∫
I∗

∥∇π0∥2L2
x
dt =

∫
I∗

∥∇π∥2L2
x
dt,

where we used that (π0)Ωη
= 0 by definition. At this stage, the integrals containing the pressure in the

above can now be controlled by means of (4.9).
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Combining all the above estimates, choosing κ small enough and using (4.2) once more we conclude
that

sup
I∗

∫
Ωη

|∇v|2 dx+

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dt+

∫
I∗

∫
ω

|∂2
t η|2 dx dt+ sup

I∗

∫
ω

|∂t∇yη|2 dy

≲
∫
I∗

∥f∥2L2
x
dt+ ∥∇v0∥2L2

x
+

∫
I∗

∥g∥2L2
y
dt+ ∥∇yη∗∥2L2

y
+

∫
I∗

∥∇v∥2L2
x
dt

+

∫
I∗

∥v∥
2s

s−3

Ls
x
∥∇v∥2L2

x
dt+

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt+

∫
I∗

∥∂tη∥2W 1,2
y

dt

+ sup
I∗

∥∇y∆yη∥2L2
y
+

∫
I∗

∥∂t∆yη∥2L2
y
dt.

(4.16)

In the above we used the interpolation for the structure norm ∥∂tη∥2
W

3/2
y

:

∥∂tη∥2W 3/2
y

≤ ∥∂tη∥W 1,2
y

∥∂tη∥W 2,2
y

≤ ∥∂tη∥2W 2,2
y

+ ∥∂tη∥2W 1,2
y

. (4.17)

Testing the structure equation by ∂t∆yη yields5

1

2
sup
I∗

∫
ω

|∂t∇yη|2 dy +

∫
I∗

∫
ω

|∂t∆yη|2 dy dt+
1

2
sup
I∗

∫
ω

|∇y∆yη|2 dy

=
1

2

∫
ω

|∇yη∗|2 dy +
1

2

∫
ω

|∇y∆yη0|2 dy −
∫
I∗

∫
ω

(g + F ) ∂t∆yη dy dt,

(4.18)

where F has been introduced in (4.7).
Using a similar argument as in (4.10) to control F by τ and as in I− III and V to estimate τ , we have∫

I∗

∫
ω

F · ∂t∆yη dy dt

≤
∫
I∗

∥F∥W 1/2,2(ω)∥∂t∆yη∥W−1/2,2(ω) dt

≲
∫
I∗

∥τ∥W 1/2,2(∂Ωη)∥∂tη∥W 3/2,2(ω) dt

≲
∫
I∗

(
∥∂tv + v · ∇v∥L2

x
+ ∥f∥L2

x
+ ∥∂tη∥W 3/2,2

y
+ ∥∂2

t η∥L2
y
+ ∥g∥L2

y

)
∥∂tη∥W 3/2,2

y
dt

≤ κ

∫
I∗

(
∥∂tv + v · ∇v∥2L2

x
+ ∥f∥2L2

x
+ ∥∂2

t η∥2L2
y
+ ∥g∥2L2

y

)
dt+ c(κ)

∫
I∗

∥∂tη∥2W 3/2,2
y

dt

≤ κ

∫
I∗

(
∥∂tv + v · ∇v∥2L2

x
+ ∥∂2

t η∥2L2
y
+ ∥∂t∆yη∥2L2

y
+ ∥f∥2L2

x

)
dt

+ c(κ)

∫
I∗

∥∂tη∥2W 1,2
y

dt+ c(κ)

∫
I∗

∥g∥2L2
y
dt,

where we used the interpolation (4.17) in the last step. Hence we derive from (4.2) and Grönwall’s
inequality that

sup
I∗

∫
ω

|∂t∇yη|2 dy +

∫
I∗

∫
ω

|∂t∆yη|2 dy dt+ sup
I∗

∫
ω

|∇y∆yη|2 dy

≤ κ

∫
I∗

(
∥∂tv + v · ∇v∥2L2

x
+ ∥∂2

t η∥2L2
y

)
dt+ c(κ)C̃0,

(4.19)

where

C̃0 = C0 +

∫
ω

|∇yη∗|2 dy +

∫
ω

|∇y∆yη0|2 dy.

5This test can be rigorously performed by mollifying the structure equation and multiplying it with the mollified test-

function.



SERRIN FOR FSI 33

Combining (4.16) and (4.19), we arrive at

sup
I∗

∫
Ωη

|∇v|2 dx+

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dt+

∫
I∗

∫
ω

|∂2
t η|2 dy dt

+ sup
I∗

∫
ω

|∂t∇yη|2 dy +

∫
I∗

∫
ω

|∂t∆yη|2 dy dt+ sup
I∗

∫
ω

|∇y∆yη|2 dy

≲
∫
I∗

∥v∥
2s

s−3

Ls
x
∥∇v∥2L2

x
dt+

∫
I∗

∥∂tη∥2W 1,2
y

∥∇v∥2L2
x
dt+ C.

Note that the condition (4.3) and (4.2) imply that
∫
I∗

(
∥v∥

2s
s−3

Ls
x

+ ∥∂tη∥2W 1,2
y

)
dt ≤ c with a constant c

depending on C1. Therefore, we obtain from Grönwall’s lemma that

sup
I∗

∫
Ωη

|∇v|2 dx+

∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dt+

∫
I∗

∫
ω

|∂2
t η|2 dy dt ≤ C∗,

sup
I∗

∫
ω

(
|∂t∇yη|2 + |∇y∆yη|2

)
dy +

∫
I∗

∫
ω

|∂t∆yη|2 dy dt ≤ C∗,

(4.20)

where C∗ depends on C̃0, C1 and C2. We can now use the momentum equation and (4.9) again to obtain
(recall (4.10)) ∫

I∗

∫
Ωη

|∇2v|2 dx dt+

∫
I∗

∫
Ωη

|∇π|2 dx dt

≲
∫
I∗

∫
Ωη

|∂tv + v · ∇v|2 dx dt+

∫
I∗

∥f∥2L2
x
dt+

∫
I∗

∥∂tη∥2W 3/2,2
y

dt ≲ C∗.

(4.21)

At this point, we notice that the only term required to obtain (4.5) is a uniform-in-time bound for∫
I∗

∫
Ωη

|∂tv|2 dx dt. Since by (4.21), all the terms on the right-hand side of the momentum equation (1.3)

are squared integrable in space-time, our desired estimate follows once we show that the convective term
v · ∇v is also squared integrable in space-time. Note that a bound for the sum ∂tv + v · ∇v as given
in (4.21) does not directly yield a bound for v · ∇v. Nevertheless, combining (4.20), (4.21) and Sobolev
embedding, we thereby obtain that∫

I∗

∫
Ωη

|v · ∇v|2 dx dt ≲
∫
I∗

∥v∥2L4
x
∥∇v∥2L4

x
dt ≲ sup

I∗

∥v∥2
W 1,2

x

∫
I∗

∥∇v∥2
W 1,2

x
≲ C2

∗ ,

which completes the proof. □

Remark 4.2. The test function we used in the proof of Theorem 4.1 make sense. Indeed, recalling the
interface condition v ◦φη = ∂tηn, we differentiate it with respect to time and obtain that

∂t(v ◦φη) = ∂tv ◦φη +∇v ◦φη ∂tφη.

With the definition of φη: φη(t,y) = φ(y) + η(t,y)n(y) we have for y ∈ ω

∂tφη(t,y) = ∂tη(t,y)n(y).

This give us that

(∂tv + Fη(∂tηn) · ∇v) ◦φη = ∂tv ◦φη + (∂tηn) · ∇v ◦φη

= ∂t(v ◦φη) = ∂2
t ηn,

where we used the properties of the extension Fη introduced in Lemma 2.2.

Remark 4.3. We remark here that the conditions we proposed in Theorem 4.1 as the minimal assump-
tions for the conditional strong solution for the fluid-structure system (1.2)–(1.4). The Serrin condition
for the velocity of the fluid (4.3) is crucial in the estimate of the convective term and the Lipschitz con-
dition for the structure (4.4) plays an important role in the steady Stokes estimate, which are applied
multiple times.
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5. Weak-strong uniqueness

In this section, we are interested in the weak-strong uniqueness of the solutions for the fluid-structure
interaction system (1.2)–(1.4). We aim to compare two solutions (v1, η1) and (v2, η2), where (v1, η1)
is a weak solution satisfying η1 ∈ L∞(I;C0,1(ω)) and (v2, η2) is a strong solution, i.e. satisfies (4.5).
Since the fluid domain depends on the deformation of the shell, we have to transfer the strong solution
by means of a change of variables to the weak domain. We transform v2 and π2 (note that we have a
pressure for the strong solution but not for the weak one) to the domain of the weak solution (that is
Ωη1

) by setting

v2 := v2 ◦Ψη2−η1
, π2 := π2 ◦Ψη2−η1

, f2 := f2 ◦Ψη2−η1
, (5.1)

where the Hanzawa transform Ψη2−η1
: Ωη1

→ Ωη2
is defined in (2.9). With this information, we are now

in the position to state the main result of this section.

Theorem 5.1. Let (v1, η1) be a weak solution of (1.2)–(1.4) with data (f1, g1, η0,1, η∗,1,v0,1) in the sense
of Definition 2.5 and let (v2, η2) be a strong solution of (1.2)–(1.4) with data (f2, g2, η0,2, η∗,2,v0,2) in the
sense of Definition 2.6. Suppose further that

η1 ∈ L∞(I;C0,1(ω))

and define v2 and f2 in accordance with (5.1). Assume that f1, f2 ∈ L2(I;L2(Ωη1
)) and g1, g2 ∈

L2(I;L2(ω)). Then we have

sup
t∈I

∫
Ωη1(t)

|v1(t)− v2(t)|2 dx+ sup
t∈I

∫
ω

(
|∂t(η1 − η2)(t)|2 + |∆y(η1 − η2)(t)|2

)
dy

+

∫
I

∫
Ωη1(σ)

|∇(v1 − v2)|2 dx dt+

∫
I

∫
ω

|∂t∇y(η1 − η2)|2 dy dt

≲
∫
Ωη0,1

|v1(0)− v2(0)|2 dx+

∫
ω

|∂t(η1 − η2)(0)|2 dy +

∫
ω

|∆y(η1 − η2)(0)|2 dy

+

∫
I

∫
Ωη1

|f1 − f2|2 dx dt+

∫
I

∫
ω

|g1 − g2|2 dy dt.

(5.2)

Proof. It turned out more suitable to perform the uniqueness and stability analysis on the weaker geom-
etry given by η1. We therefore transfer the strong solution (η2, v2) to the geometry given by η1. With
the transformation (5.1) in hand, we obtain the equations for (v2, η2) in Ωη1

as follows:

Bη2−η1
: ∇v2 = 0, (5.3)

∂2
t η2 − ∂t∆yη2 +∆2

yη2 = g2 − n⊺
[
Aη2−η1∇v2 −Bη2−η1π2

]
◦φη1nη1 , (5.4)

∂tv2 −∆v2 +∇π2 = h12(v2) + div
[(
Aη2−η1 − I3×3

)
∇v2 +

(
I3×3 −Bη2−η1

)
π2

]
, (5.5)

where

h12(v2) = (1− Jη2−η1)∂tv2 − Jη2−η1∇v2∂tΨ
−1
η2−η1

◦Ψη2−η1 −Bη2−η1∇v2v2 + Jη2−η1f2,

and the matrices Aη2−η1
and Bη2−η1

are similarly defined as in Subsection 3.1 by replacing the subscript
η by η2 − η1. As a consequence of (2.10) we obtain the pointwise estimate

|1− Jη2−η1
|+ |Aη2−η1

− I3×3|+ |Bη2−η1
− I3×3| ≲ |η1 − η2|+ |∇y(η1 − η2)|, (5.6)

where the hidden constant depends on the L∞(I;C0,1(ω))-norms of η1 and η2. Next we introduce a
suitable Bogovskij operator for our setting:

Bogη1
(f) := Bog(fχΩη1

),

where Bog is defined in Corollary 2.12, depending on ∥η1∥L∞(I×ω) =: L and ∥∇η1∥L∞(I×ω) =: CL only.

Note that this is the point where the additional Lipschitz assumption of the weak solution is crucially
needed.

To obtain the difference estimate, we would like to test the equation for (v1 − v2, η1 − η2) by the pair
(v1 − v2 + Bogη1

(divv2), ∂t(η1 − η2)). However, v1 is not smooth enough to qualify as a test function
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for the weak equation. We thus consider the following procedure: In the first step, we use the energy
inequality for (v1, η1), that is

1
2

∫
ω

|∂tη1|2 dy + 1
2

∫
ω

|∆yη1|2 dy +

∫ t

0

∫
ω

|∂t∇yη1|2 dy dσ

+ 1
2

∫
Ωη1(t)

|v1|2 dx+

∫ t

0

∫
Ωη1(σ)

|∇v1|2 dx dσ

≤ 1
2

∫
ω

|∂tη1(0)|2 dy + 1
2

∫
ω

|∆yη1(0)|2 dy + 1
2

∫
Ωη1(0)

|v1(0)|2 dx

+

∫ t

0

∫
ω

g1∂tη1 dy dσ +

∫ t

0

∫
Ωη1(σ)

v1 · f1 dx dσ

for a.a. t ∈ I. Next observe that for a.a. t∫ t

0

∫
ω

∆yη1 ∂t∆yη2 dy dσ = −
∫ t

0

∫
ω

∂tη1 ·∆2
yη2 dy dσ +

[∫
ω

∆yη1∆yη2 dy

]σ=t

σ=0

,

an identity that can be rigorously shown by using convolution in space. This implies, by testing the
equation for (v1, η1), see Definition 2.5 (c), with (−v2 +Bogη1

(divv2),−∂tη2), that∫
ω

(−∆yη1(t)∆yη2(t)− ∂tη1(t) ∂tη2(t)) dy +

∫
ω

∆yη1(0)∆yη2(0) dy

−
∫
Ωη1(t)

v1(t) · (v2(t)− Bogη1
(divv2(t))) dx

+

∫ t

0

∫
ω

(
∂tη1 ∂

2
t η2 − ∂t∇yη1 · ∂t∇yη2 + g1 ∂tη2 + ∂tη1∆

2
yη2

)
dy dσ

= −
∫
ω

∂tη1(t) ∂tη2(t) dy −
∫
Ωη1(t)

v1(t) · (v2(t)− Bogη1
(divv2(t))) dx

+

∫ t

0

∫
ω

(
∂tη1 ∂

2
t η2 − ∂t∇yη1 · ∂t∇yη2 + g1 ∂tη2 −∆yη1 ∂t∆yη2

)
dy dσ.

= −
∫
ω

∂tη1(0) ∂tη2(0) dy +

∫
Ωη1(0)

v1(0) · (−v2(0) + Bogη1
(divv2(0))) dx

+

∫ t

0

∫
Ωη1(σ)

(
v1 · ∂t(−v2 +Bogη1

(divv2))
)
+ v1 ⊗ v1 : ∇Bogη1

(divv2))
)
dx dσ

+

∫ t

0

∫
Ωη1(σ)

(v1 · ∇)v1 · v2 dx dσ −
∫ t

0

∫
∂Ωη1(σ)

|v1|2n · ∂tη2nη1 ◦φ−1
η1

dH2 dσ

+

∫ t

0

∫
Ωη1(σ)

(
−∇v1 : ∇(−v2 +Bogη1

(divv2)) + f1 · (−v2 +Bogη1
(divv2))

)
dx dσ.

Finally, we multiply the (strong) equation for (−v2,−η2) by (v1 −v2 +Bogη1
(divv2), ∂t(η1 − η2)). This

implies after integration by parts

1
2

∫
ω

(
|∂tη2(t)|2 + |∆yη2(t)|2

)
dy −

∫ t

0

∫
ω

∂t∇yη2 · ∂t∇y(η1 − η2) dy dt+ 1
2

∫
Ωη1(t)

|v2|2 dx

− 1
2

∫ t

0

∫
∂Ωη1(σ)

n ◦φ−1
η1

· ∂tη1nη1
◦φ−1

η1
|v2|2dH2dσ −

∫ t

0

∫
Ωη1(σ)

∂tv2 · v1 dx dσ

+

∫ t

0

∫
Ωη1(σ)

∇v2 : ∇(v2 − v1) dx dσ
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= 1
2

∫
Ωη1(0)

|v2(0)|2 dx+ 1
2

∫
ω

(
|∂tη2(0)|2|∆yη2(0)|2

)
dy

−
∫ t

0

∫
Ωη1(σ)

h12(v2) ·
(
v1 − v2 +Bogη1

(divv2)
)
dx dσ

−
∫ t

0

∫
Ωη1(σ)

v2 · ∂tBogη1
(divv2) dx dσ +

∫
Ωη1

v2 · Bogη1
(divv2) dx

−
∫
Ωη1(0)

v2(0) · Bogη1(0)(divv2(0)) dx+

∫ t

0

∫
Ωη1(σ)

∇v2 : ∇Bogη1
(divv2) dx dσ

+

∫ t

0

∫
Ωη1(σ)

(
Aη2−η1

− I3×3

)
∇v2 : ∇(v1 − v2 +Bogη1

(divv2)) dx dσ

+

∫ t

0

∫
Ωη1(σ)

(
I3×3 −Bη2−η1

)
π2 : ∇(v1 − v2 +Bogη1

(divv2)) dx dσ

+

∫ t

0

∫
ω

∂2
t η2 ∂tη1 dy dσ −

∫ t

0

∫
ω

∇y∆yη2 ∂t∇yη1 dy dσ −
∫ t

0

∫
ω

g2∂t(η1 − η2) dy dσ

+

∫ t

0

∫
ω

∂tη2 ∂tη1 dy dσ −
∫
ω

∂tη2(t) ∂tη1(t) dy.

Combining the above we find that

1
2

∫
Ωη1(t)

|v1(t)− v2(t)|2 dx+

∫ t

0

∫
Ωη1(σ)

|∇(v1 − v2)|2 dx dσ

+ 1
2

∫
ω

|∂t(η1 − η2)(t)|2 dy +

∫ t

0

∫
ω

|∂t∇y(η1 − η2)|2 dy dσ + 1
2

∫
ω

|∆y(η1 − η2)(t)|2 dy

≤ 1
2

∫
Ωη1(0)

|v1(0)− v2(0)|2 dx+ 1
2

∫
ω

|∂t(η1 − η2)(0)|2 dy + 1
2

∫
ω

|∆y(η1 − η2)(0)|2 dy

−
∫ t

0

∫
Ωη1(σ)

(
(1− Jη2−η1

)∂tv2

)
·
(
v1 − v2 +Bogη1

(divv2)
)
dx dσ

+

∫ t

0

∫
Ωη1(σ)

(
Jη2−η1∇v2∂tΨ

−1
η2−η1

◦Ψη2−η1

)
·
(
v1 − v2 +Bogη1

(divv2)
)
dx dσ

+

∫ t

0

∫
Ωη1(σ)

∇v2v2 ·
(
v1 − v2 +Bogη1

(divv2)
)
dx dσ

+ 1
2

∫ t

0

∫
∂Ωη1(σ)

n ◦φ−1
η1

· (∂tη1nη1) ◦φ−1
η1

|v2|2dH2 dσ

−
∫ t

0

∫
∂Ωη1(σ)

n ◦φ−1
η1

· (∂tη2nη1
) ◦φ−1

η1
|v1|2dH2 dσ

+

∫ t

0

∫
Ωη1(σ)

(
Bη2−η1

− I3×3

)
∇v2v2 ·

(
v1 − v2 +Bogη1

(divv2)
)
dx dσ

+

∫ t

0

∫
Ωη1(σ)

(v1 − v2) · ∂tBogη1
(divv2) dx dσ −

∫
Ωη1(t)

(v1 − v2) · Bogη1
(divv2) dx

+

∫
Ωη1(0)

(v1 − v2)(0) · Bogη1
(divv2(0)) dx−

∫ t

0

∫
Ωη1(σ)

∇(v1 − v2) : ∇Bogη1
(divv2) dx dσ

+

∫ t

0

∫
Ωη1(σ)

(
Aη2−η1 − I3×3

)
∇v2 : ∇(v1 − v2 +Bogη1

(divv2)) dx dσ
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+

∫ t

0

∫
Ωη1(σ)

(
I3×3 −Bη2−η1

)
π2 : ∇(v1 − v2 +Bogη1

(divv2)) dx dσ

+

∫ t

0

∫
ω

(g1 − g2)∂t(η1 − η2) dy dσ +

∫ t

0

∫
Ωη1(σ)

(v1 − v2) · (f1 − f2) dx dσ

+

∫ t

0

∫
Ωη1(σ)

(1− Jη2−η1)f2 · (v1 − v2) dx dσ +

∫ t

0

∫
Ωη1

(1− Jη2−η1)f2Bogη1
(divv2) dx dσ

+

∫ t

0

∫
Ωη1(σ)

v1 ⊗ v1 : ∇Bogη1
(divv2) dx dσ +

∫ t

0

∫
Ωη1(σ)

v1 · ∇v1 · v2 dx dσ

+

∫ t

0

∫
Ωη1(σ)

(f1 − f2)Bogη1
(divv2) dx dσ

=:

22∑
i=1

Ri. (5.7)

Note that R1, R2 and R3 are in good form and so we start the estimate for the remaining terms on the
right side of (5.7). We benefit multiple times from the estimates for the Bogovskij operator, cf. Corollary
2.12, yielding

∥Bogη1
(divv2)∥W 1,2(Ωη1

) = ∥Bogη1
(div(v2 − v1))∥W 1,2(Ωη1

) ≲ ∥v1 − v2∥W 1,2(Ωη1
), (5.8)

and

∥Bogη1
(divv2)∥L2(Ωη1 )

= ∥Bogη1
(div(v2 − v1))∥L2(Ωη1 )

≲ ∥v1 − v2∥L2(Ωη1 )
. (5.9)

For the terms including the external forcing we obtain

R12 +R16 +R17 +R18 +R19 +R22

≤ δ

∫ t

0

(
∥v1 − v2∥2L2(Ωη1

) + ∥∇(v1 − v2)∥2L2(Ωη1
) + ∥∂tη1 − ∂tη2∥2L2(ω)

)
dσ

+ C(δ)

∫ t

0

∥f2∥2L2(Ωη1
)∥η1 − η2∥2W 2,2(ω) dσ + C(δ)

∫ t

0

(
∥g1 − g2∥2L2(ω) + ∥f1 − f2∥2L2(Ωη1

)

)
dσ

+ C(δ)∥v1(0)− v2(0)∥2L2(Ωη1(0))
.

Using (5.6) and (5.8) we estimate

R4 ≲
∫ t

0

∥1− Jη2−η1
∥L4(Ωη1(σ))∥∂tv2∥L2(Ωη1(σ))∥v1 − v2 +Bogη1

(divv2)∥L4(Ωη1(σ)) dσ

≲
∫ t

0

∥η2 − η1∥W 2,2(ω)∥∂tv2∥L2(Ωη1(σ))∥v1 − v2 +Bogη1
(divv2)∥W 1,2(Ωη1(σ)) dσ

≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

∥∂tv2∥2L2(Ωη1(σ))
∥η1 − η2∥2W 2,2(ω) dσ,

According to the properties of the map Ψη2−η1
discussed in Section 2.4, we continue estimating R5:

R5 ≲
∫ t

0

∥∇v2∥L4(Ωη1(σ))∥∂tΨ
−1
η2−η1

◦Ψη2−η1∥L4(Ωη1(σ))∥v1 − v2∥L2(Ωη1(σ)) dσ

≲
∫ t

0

∥v2∥W 2,2(Ωη1(σ))∥∂t(η1 − η2)∥L4(ω)∥v1 − v2∥L2(Ωη1(σ)) dσ

≤ δ

∫ t

0

∥∂t∇y(η1 − η2)∥2L2(ω) dσ + C(δ)

∫ t

0

∥v2∥2W 2,2(Ωη1(σ))
∥v1 − v2∥2L2(Ωη1(σ))

dσ.

For the R9 term, we use the fact that ∥∇v2∥L2
x
is essentially bounded in time and (5.6) to obtain

R9 ≲
∫ t

0

∥I3×3 −Bη1−η2
∥L4(Ωη1(σ))∥v2∥L∞(Ωη1(σ))∥v1 − v2∥L4(Ωη1(σ)) dσ
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≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

∥v2∥2W 2,2(Ωη1(σ))
∥η1 − η2∥2W 2,2(ω) dσ.

We now start the estimate for R10. we rewrite divv2 as follows:

divv2 = I3×3 : ∇v2 = (I3×3 −Bη2−η1) : ∇v2, (5.10)

where we take into account the divergence free condition for v2 on Ωη1
derived in (5.3). Using the

properties of the Bogovskij operator from Remark 2.13 and (5.8) as well as (5.6) and (2.12) we have

R10 ≤
∫ t

0

∥v1 − v2∥L6(Ωη1(σ))∥(I3×3 −Bη2−η1) : ∂t∇v2∥W−1, 6
5 (Ωη1(σ))

dσ

+

∫ t

0

∥v1 − v2∥L4(Ωη1(σ))∥∂t(Bη2−η1
) : ∇v2∥W−1, 4

3 (Ωη1(σ))
dσ

≲
∫ t

0

∥v1 − v2∥W 1,2(Ωη1(σ))∥I3×3 −Bη2−η1
∥W 1,2(Ωη1(σ))

∥∂tv2∥L2(Ωη1(σ)) dσ

+

∫ t

0

∥v1 − v2∥
1/4
L2(Ωη1(σ))

∥v1 − v2∥
3/4
W 1,2(Ωη1(σ))

∥∂t∇(η1 − η2)∥L2(ω)∥∇v2∥L2(Ωη1(σ)) dσ

≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + δ

∫ t

0

∥∂t∇(η1 − η2)∥2L2(ω) dσ

+ C(δ)

∫ t

0

∥∂tv2∥2L2(Ωη1(σ))
∥η1 − η2∥2W 2,2(ω) dσ + C(δ)

∫ t

0

∥v1 − v2∥2L2(Ωη1(σ))
dσ.

Here we also used that v2 ∈ L∞(I;W 1,2(Ωη1
)). With (5.10) we have

R11 ≤ ∥v1 − v2∥L2(Ωη1
)∥Bog ((I3×3 −B) : ∇v2)∥L2(Ωη1

)

≤ ∥v1 − v2∥L2(Ωη1 )
∥(I3×3 −B) : ∇v2∥W−1,2(Ωη1

)

≤ δ∥v1 − v2∥2L2(Ωη1
) + C(δ)∥(I3×3 −B) : ∇v2∥2

L
6
5 (Ωη1

)

≤ δ∥v1 − v2∥2L2(Ωη1 )
+ C(δ)∥∇v2∥2L2(Ωη1 )

∥∇y(η1 − η2)∥2L3(ω)

≤ δ∥v1 − v2∥2L2(Ωη1 )
+ C(δ)∥∇y(η1 − η2)∥

4
3

L2(ω)∥∇y(η1 − η2)∥
2
3

W 1,2(ω)

≤ δ∥v1 − v2∥2L2(Ωη1
) + ε∥∇y(η1 − η2)∥2W 1,2(ω) + C(δ, ε)∥∇y(η1 − η2)∥2L2(ω)

≤ δ∥v1 − v2∥2L2(Ωη1
) + ε∥∇y(η1 − η2)∥2W 1,2(ω)

+ C(δ, ε)∥∇y(η1 − η2)∥L2(0,t;L2(ω))∥∇y(η1 − η2)∥W 1,2(0,t;L2(ω))

≤ δ∥v1 − v2∥2L2(Ωη1
) + ε∥∇y(η1 − η2)∥2W 1,2(ω) + ν∥∇y(η1 − η2)∥2W 1,2(0,t;L2(ω))

+ C(δ, ε, ν)∥η1 − η2∥2L2(0,t;W 2,2(ω)),

where we used

∥∇y(η1 − η2)∥L∞(0,t;L2(ω)) ≲ ∥∇y(η1 − η2)∥
1
2

L2(0,t;L2(ω))∥∇y(η1 − η2)∥
1
2

W 1,2(0,t;L2(ω)).

Using (5.10) we estimate for R13:

R13 ≤
∫ t

0

∥∇(v1 − v2)∥L2(Ωη1(σ))∥∇Bogη1
(divv2)∥L2(Ωη1(σ)) dσ

≲
∫ t

0

∥∇(v1 − v2)∥L2(Ωη1(σ))∥(I3×3 −Bη2−η1) : ∇v2∥L2(Ωη1(σ))

≲
∫ t

0

∥∇(v1 − v2)∥L2(Ωη1(σ))∥∇y(η1 − η2)∥L4(ω)∥∇v2∥L4(Ωη1(σ))

≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
+ C(δ)

∫ t

0

∥v2∥2W 2,2(Ωη1(σ))
∥η1 − η2∥2W 2,2(ω),
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where we also used

∥∇Bogη1
(divv2)∥L2(Ωη1(σ)) ≲ ∥divv2∥L2(Ωη1(σ)).

Recalling the regularity π2 ∈ L2(I,W 1,2(Ωη1
)) and v2 ∈ L2(I,W 2,2(Ωη1

)), we estimate R14 and R15 in a
similar way. By (5.6) we thus have

R14 ≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

(
∥v2∥2W 2,2(Ωη1(σ))

+ 1
)
∥η1 − η2∥2W 2,2(ω) dσ,

and

R15 ≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

(
∥π2∥2W 1,2(Ωη1(σ))

+ 1
)
∥η1 − η2∥2W 2,2(ω) dσ.

Now we deal with the estimate of R6, R7, R8 and R20, R21 together. We first take an integration by part
of R20 and obtain

R20 = −
∫ t

0

∫
Ωη1(σ)

v1 · ∇v1 · Bogη1
(divv2) dx dσ.

Note that there is no boundary term since the Bogovskij operator vanishes on the boundary. We then
rewrite R6 as

R6 =

∫ t

0

∫
Ωη1(σ)

(v2 − v1)∇v2(v1 − v2 +Bogη1
(divv2)) dx dσ

+

∫ t

0

∫
Ωη1(σ)

(v1 − v2)∇(v2 − v1)(v1 − v2 +Bogη1
(divv2)) dx dσ

+

∫ t

0

∫
Ωη1(σ)

v2∇(v2 − v1)(v1 − v2 +Bogη1
(divv2)) dx dσ

+

∫ t

0

∫
Ωη1(σ)

v1∇v1(v1 − v2 +Bogη1
(divv2)) dx dσ

= R6,0 +R6,1 +R6,2 +R6,3.

For R6,0 we have by (5.9)

R6,0 ≤
∫ t

0

∥v2 − v1∥L4(Ωη1(σ))∥∇v2∥L2(Ωη1(σ))∥v1 − v2 +Bogη1
(divv2)∥L4(Ωη1(σ)) dσ

≲
∫ t

0

∥v2 − v1∥2L4(Ωη1(σ))
∥∇v2∥L2(Ωη1(σ)) dσ

≲
∫ t

0

∥v2 − v1∥
1
2

L2(Ωη1(σ))
∥∇(v1 − v2)∥

3
2

L2(Ωη1(σ))
dσ

≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

∥v1 − v2∥2L2(Ωη1(σ))
dσ,

where we used the fact that v2 ∈ L∞(I,W 1,2(Ωη1
)) and the interpolation inequality in 3D:

∥v2 − v1∥L4(Ωη1(σ)) ≲ ∥v2 − v1∥
1
4

L2(Ωη1(σ))
∥v1 − v2∥

3
4

W 1,2(Ωη1(σ))
.

Taking an integration by parts with respect to space, we estimate R6,1 as

R6,1 = −
∫ t

0

∫
Ωη1(σ))

1

2
∇|v1 − v2|2 · (v1 − v2 +Bogη1

(divv2)) dx dσ

= −1

2

∫ t

0

∫
∂Ωη1

|v1 − v2|2n ◦φ−1
η1

· (∂tη1 − (∂tη2)nη1
) ◦φ−1

η1
dH2 dσ,

where we have used the fact that

div(v1 − v2 +Bogη1
(divv2)) = div(−v2 +Bogη1

(divv2)) = 0 in Ωη1
.



40 DOMINIC BREIT, PRINCE ROMEO MENSAH, SEBASTIAN SCHWARZACHER, AND PEI SU

The estimate of R6,2 is straightforward and we get

R6,2 ≤
∫ t

0

∥∇(v1 − v2)∥L2(Ωη1(σ))∥v2∥L∞(Ωη1(σ))∥v1 − v2 +Bogη1
(divv2)∥L2(Ωη1(σ)) dσ

≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

∥v2∥2W 2,2(Ωη1(σ))
∥v1 − v2∥2L2(Ωη1(σ))

dσ.

Adding R6, R7, R8, R20 and R21 we arrive at

R6 +R7 +R8 +R20 +R21

≤ δ

∫ t

0

∥∇(v1 − v2)∥2L2(Ωη1(σ))
dσ + C(δ)

∫ t

0

(
1 + ∥v2∥2W 2,2(Ωη1(σ))

)
∥v1 − v2∥2L2(Ωη1(σ))

dσ

+

∫ t

0

∫
∂Ωη1

n ◦φ−1
η1

(
1

2
|v1|2∂tη1 ◦φ−1

η1
− 1

2
|v1 − v2|2(∂tη1 − ∂tη2) ◦φ−1

η1

)
nη1

◦φ−1
η1

dH2 dσ

+

∫ t

0

∫
∂Ωη1

n ◦φ−1
η1

(
1

2
|v2|2∂tη1 ◦φ−1

η1
− |v1|2∂tη2 ◦φ−1

η1

)
nη1

◦φ−1
η1

dH2 dσ, (5.11)

where we use an integration by parts for the following term∫ t

0

∫
Ωη1(σ)

v1 · ∇v1v1 dx dσ =

∫ t

0

∫
∂Ωη1

1

2
n ◦φ−1

η1
|v1|2(∂tη1nη1

) ◦φ−1
η1

dH2 dσ.

To deal with the boundary terms on the right side of (5.11), we notice that

1

2
|v1|2∂tη1 ◦φ−1

η1
− 1

2
|v1 − v2|2(∂tη1 − ∂tη2) ◦φ−1

η1
+

1

2
|v2|2∂tη1 ◦φ−1

η1
− |v1|2∂tη2 ◦φ−1

η1

= 1
2

(
∂tη2|∂t(η1 − η2)|2

)
◦φ−1

η1

(5.12)

on ∂Ωη1
using the boundary conditions for v1 and v2. The last two integrals on the right-hand side

of (5.11) are thus bounded by
∫ t

0
∥∂t(η1 − η2)∥2L2(ω) dσ using also that ∂tη2 ∈ L∞(I × ω). Putting all

the estimates together, taking the supremum with respect to time on both sides of (5.7) and applying
Grönwall’s lemma we obtain (5.2). □

Remark 5.2. The estimate from Theorem 5.1 also applies when the forcing in the momentum equation
is in divergence form, that is

∂2
t η − ∂t∆yη +∆2

yη = g − n⊺
(
τ + F

)
◦φηnη|det(∇yφη)| for all (t,y) ∈ I × ω,

∂tv + (v · ∇)v = ∆v −∇π + divF for all (t,x) ∈ I × Ωη,

divv = 0 for all (t,x) ∈ I × Ωη,

for some F : I × Ωη → R3×3. In this case we obtain the estimate

sup
t∈I

∫
Ωη1(t)

|v1(t)− v2(t)|2 dx+ sup
t∈I

∫
ω

(
|∂t(η1 − η2)(t)|2 + |∆y(η1 − η2)(t)|2

)
dy

+

∫
I

∫
Ωη1(σ)

|∇(v1 − v2)|2 dx dt+

∫
I

∫
ω

|∂t∇y(η1 − η2)|2 dy dt

≲
∫
Ωη1(0)

|v1(0)− v2(0)|2 dx+

∫
ω

|∂t(η1 − η2)(0)|2 dy +

∫
ω

|∆y(η1 − η2)(0)|2 dy

+

∫
I

∫
Ωη1

|F1 − F2|2 dx dt+

∫
I

∫
ω

|g1 − g2|2 dy dt,

where F2 := F2 ◦Ψη2−η1
.
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6. The main result

In the following, we formulate the desired conditional regularity and uniqueness result for (1.2)–(1.4),
which implies Theorem 1.1 and Corollary 1.2. Its proof follows by combining Theorems 3.1, 4.1 and 5.1.

Theorem 6.1. Let T > 0 be given. Suppose that the dataset (f , g, η0, η∗,v0) satisfies (2.15) and (3.1).
Let (v, η) be a weak solution of (1.2)–(1.4) in the sense of Definition 2.5. Suppose that we have

v ∈ Lr(I;Ls(Ωη)),
2
r + 3

s ≤ 1, (6.1)

η ∈ L∞(I;C1(ω)). (6.2)

Then (v, η) is a strong solution in the sense of Definition 2.6 on I = (0, t), where t < T only in the case
where Ωη(s) approaches a self-intersection as s → t or it degenerates6 (namely, if lim

s→t
(∂1φη×∂2φη)(s,y) =

0 or lim
s→t

n(y) · nη(s)(y) = 0 for some y ∈ ω). Moreover, (v, η) is unique in the class of weak solutions

with deformation in L∞(I, C0,1(ω)).

Proof. Consider first the problem on the interval (0, T ∗) in which the strong solution exists by Theorem
3.1. On account of (6.2) Theorem 5.1 applies and thus both solutions coincide. Hence the strong solution
satisfies (6.1) (with a constant independent of T ∗). Thus we obtain the estimate from Theorem 4.1.
Now we can apply Theorem 3.1 to obtain a strong solution on the interval (T ∗, 2T ∗) with initial data
u(T ∗), η(T ∗), ∂tη(T

∗). This procedure can now be repeated until the moving boundary approaches a
self-intersection or degenerates (that is (∂1φη × ∂2φη)(T,y) = 0 for some y ∈ ω). □
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[1] D. Albritton, E. Brué, and M. Colombo, Non-uniqueness of Leray solutions of the forced Navier-Stokes equations.

Annals of Mathematics, 196(1), 415–455 (2022)
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83, 186 75 Praha 8, Czech Republic

and

Department of Mathematics, Analysis and Partial Differential Equations, Uppsala University, Lägerhyddsvägen
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