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ABSTRACT. We consider the interaction of a viscous incompressible fluid with a flexible shell in three
space dimensions. The fluid is described by the three-dimensional incompressible Navier—Stokes equa-
tions in a domain that is changing in accordance with the motion of the structure. The displacement
of the latter evolves along a visco-elastic shell equation. Both are coupled through kinematic boundary
conditions and the balance of forces.

We prove a counterpart of the classical Ladyzhenskaya-Prodi-Serrin condition yielding conditional
regularity and uniqueness of a solution.

Our result is a consequence of the following three ingredients which are of independent interest:
(i) the existence of local strong solutions, (ii) an acceleration estimate (under the Serrin assumption)
ultimately controlling the second-order energy norm, and (iii) a weak-strong uniqueness theorem. The
first point and, to some extent, the last point were previously known for the case of elastic plates, which
means that the relaxed state is flat. We extend these results to the case of visco-elastic shells, which
means that more general reference geometries can be considered such as cylinders or spheres. The second
point, i.e., the acceleration estimate for three-dimensional fluids is new even in the case of plates.

1. INTRODUCTION

When three-dimensional Navier-Stokes equations are considered, only conditional smoothness and
uniqueness of weak solutions are known for large data and time. The condition is that the fluid velocity
satisfies some integrability beyond the natural energy estimate that overcomes a certain scaling, namely!

v e L"(I; L*(Q)), 243 =1, 2<r<oo. (1.1)

The above criterion is known as the Ladyzhenskaya-Prodi-Serrin condition, referring to the works by
Prodi [44] and Serrin [50, 51] on conditional uniqueness as well as that of Ladyzhenskaya [35] showing
conditional regularity of solutions. Summarizing, this means if (1.1) is satisfied, then the solution is a)
smooth, and b) unique within all weak-solutions satisfying an energy inequality. The latter property is
often referred to as weak-strong-uniqueness.

Many authors have since contributed to the generalization of this criterion [4, 5, 15, 26, 31, 32, 33].
In particular, in recent years, seminal studies related to the borderline case s = 3 indicate that the
condition could potentially be sharp [1, 26, 27, 28]. As the physical indications of non-uniqueness are
usually (necessarily) present in fluid-structure interaction problems, it seems worthwhile investigating
how far the seminal work by Ladyzhenskaya, Prodi, Serrin and many others still holds true in this
framework. The aim of this paper is to advance this theory to the framework of elastic deformable shells
interacting with the incompressible Navier—Stokes equations. A second and more practical motivation of
our study is its potential application for numerical analysis. Indeed, the analysis here in particular shows
that strong solutions are attractors, which is a first step towards convergence results. See Remark 1.4 for
more details.

In the context of a fluid-structure interaction problem the domain of the fluid varies with time with
respect to the evolution of the structure. Hence an estimate for the difference of two solutions cannot be
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Here and later we use I = (0,T) as the time interval and Q C R® for the spatial (reference) domain. Further notations
can be found in the next section.
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directly obtained even when both solutions are smooth. This is already the case when a single rigid body
is moving inside the fluid. For that regime, rather recently, the Ladyzhenskaya-Prodi-Serrin condition
has been extended for the motion of a rigid ball immersed in a viscous incompressible fluid [14, 39, 42].
In that context falls also the uniqueness result for weak solutions in two dimensions [21].

The situation becomes even more dramatic, when flexible materials are considered that change the
domain in an asymmetric fashion.

In this work we study curved reference configurations (see Figure 1). The most prominent reference
geometries for shells are cylinders, that relate for example to the very relevant application of blood-flow
or balls, relating for example to the motion of a balloon. But certainly many more complicated reference
geometries may appear in applications. In short, we derive the following three novel results to be found
in sections three, four and five that might each be of independent interest:

Section 3 Local strong solutions. We show the existence of a smooth solution for short times.

Section 4 The acceleration estimate. Here we show that as long as the fluid velocity satisfies (1.1) and
the displacement of the shell stays C' in space, the solution satisfies some extra smoothness. This
section relates to the conditional smoothness of solutions a). This estimates strongly depends on
the fact that we consider visco-elastic shells, i.e. the coefficient v > 0 below in (1.2).

Section 5 Weak-strong uniqueness. Finally, in this section, it is shown that the constructed smooth
solution is unique in the regime of weak solutions satisfying an energy estimate and possessing a
bi-Lipschitz-in-space shell displacement; hence, conditional uniqueness is shown b).

The only additional assumption for a weak solution to be smooth and unique that we require on the
shell displacement is that it is C! in space. As we will explain below, this is just an instant of regularity
more than a weak solution enjoys.

The first point and, to some extent, the last point above were previously known for the case of elastic
plates, which means that the relaxed state is flat. The latter one is also the first weak-strong uniqueness
result in the context of fluid-structure interaction with flexible structure [49]. The proof there relies
heavily on the fact that the reference configuration is flat. The second point above, the acceleration
estimate for three-dimensional fluids, is new even in the case of plates.

1.1. Analysis of fluid-structure interactions. The results presented here strongly connect to previous
works on fluid-structure interactions involving elastic structures interacting with an unsteady three-
dimensional viscous incompressible fluid. Most results are on the existence theory. We refer to [12] for an
overview of the setting considered in this paper and to [29] for various subjects in fluid-solid interactions.
We may broadly classify these body of work into the construction of strong solutions and weak solutions
for a viscous fluid interacting with an elastic structure.

For weak solutions, a semi-group approach is used in [2] in the construction of global-in-time weak
solutions for the interaction between a stationary elastic solid immersed in a viscous incompressible
fluid, where the interaction happens at the boundary of the solid. The same authors then show in [3]
that for smooth enough data, the weak solutions constructed in [2] become smooth. The existence of a
weak solution is also shown in [11] for a regularized three-dimensional elastic structure immersed in an
incompressible viscous fluid contained in a fixed bounded connected domain. These solutions exist as long
as deformations of the elastic solid are sufficiently small and no collisions occurs between the structure
and the boundary. However, large translations and rotations of the structure are accounted for. The
authors in [13] used a Galerkin method to show the existence of a weak solution to the three-dimensional
Navier—Stokes equations coupled with a two-dimensional elastic plate model that is modified to include
viscous effects. This weak solution exists as long as the structure does not touch the fixed part of the
fluid boundary. The viscous effects incorporated in the plate model is then removed in [22] by passing to
the limit as the coefficient modelling the viscoelasticity tends to zero. The seminal work [18] explores the
motion of the linear Kirchhoff elastic solid material inside an incompressible viscous fluid. A topological
fixed-point argument is used to construct a local-in-time weak solution which is then shown to be regular
and unique. The authors in [36] study the interaction of an incompressible Newtonian fluid with a linearly
elastic Koiter shell. Here, the fluid’s boundary is described by the mid-section of the shell and the authors
show the existence of weak solutions, without self-intersections of the shell, using an Aubin-Lions type
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argument. Eventually, an existence result for the fully nonlinear Koiter shell model has been proved in

When it comes to strong solutions, short time existence and uniqueness of solutions in Sobolev spaces
are studied in [16, 17] for a viscous incompressible fluid interacting with a nonlinear thin elastic shell. The
shell equation for the former [16] is modelled by the nonlinear Saint-Venant-Kirchhoff constitutive law,
whereas that of the latter [17] is modelled by the nonlinear Koiter shell model. In [19] the authors prove
the existence of a unique local strong solution, without restriction on the size of the data, when the elastic
structure is now governed by quasilinear elastodynamics. In [25], the elastic structure is modelled by a
damped wave equation with additional boundary stabilization terms. For sufficiently small initial data,
subject to said boundary stabilization terms, global-in-time existence of strong solutions and exponential
decay of the solutions are shown. The free boundary fluid-structure interaction problem consisting of a
Navier—Stokes equation and a wave equation defined in two different but adjacent domains is studied in
[34]. A local strong solution is constructed under suitable compatibility conditions for the data. Another
local-in-time strong existence result is [38] where the viscous Newtonian fluid is interacting with an elastic
structure modelled by a nonlinear damped shell equation. Finally, a local strong solution is constructed
for the motion of a linearly elastic Lamé solid moving in a viscous fluid in [45]. For the problem (1.2)—(1.4)
below, the only available local existence results deal with the case of a flat geometry, see [17] and [38],
while the existence of global strong solutions in 2D is proved in [23] for flat geometry and in [6] for linear
elastic shells in general geometries. A corresponding result for the 3D case is not yet known.

1.2. The fluid-structure interaction problem. We are interested in the interaction of an incom-
pressible fluid with a flexible shell where the shell reacts to the surface forces induced by the fluid and
deforms the spatial reference domain 2 C R3 to Q1) with respect to a coordinate transform ¢, ) (see
Figure 1 for the typical situation). The deformed domain Q, is defined in Subsection 2.4 in a precise
way. We assume that the shell is visco-elastic. This means that besides the fluid forces, it is driven by
its elastic properties and its viscosity. The reference model here is the linearized Koiter shell model, but
also linearized versions of von Karman shells or pure bending shells are models that can be treated by
the methods here. Following [36, 41], we find that the elastic part of the equation for the solid becomes
aA?,n + Bm, where B is a linear second-order differential operator. Similarly, the part related to the
viscosity of the shell becomes vAi,f)tn + B’0yn, where B’ is another linear second-order differential oper-
ator. To simplify reading, we take a form of the equation that contains only parts of the contributions of
elasticity and viscosity, which are essential for the analysis to be performed. In particular, we reduce the
elastic part to ozAf,n and the viscous part to —yA, 0. We observe that the reduction is with no loss
of generality, which certainly would not be the case if non-linear Koiter shell models were considered as
in [8, 41, 43].
Accordingly, the shell function n: (t,y) € I X w — n(t,y) € R with I = (0,T) for some T > 0 solves

(1.2)

0500 — YO Ayn + ozA?,n =g—nTTopm,|det(Vyp,)| forall (t,y) € I xw,
n(0,y) =no(y), (8m)(0,y) = n.(y) for all y € w,

with periodic boundary conditions in space. Here w C R? is the torus and ¢ : w — 9§ paramtrizing
the boundary of the reference domain Q, with [det(Vyy,)| := |0y, ¢y X Oy, 5| The parameters o,
and « are positive constants and the function ¢ : (t,y) € I X w — ¢g(t,y) € R is a given forcing term.
The vectors n and n,, are the normal vectors of the reference boundary and of the deformed boundary,
respectively, whereas 7 denotes the Cauchy stress of the fluid given by Newton’s rheological law, that
is T = M(Vv + (VV)T) — ml3x3. The positive constant p represents the viscosity coefficient. Also,
v (t,x) €1 xQ,— v(t,x) € R3 the velocity field and 7 : (t,x) € I x Q, — 7(t,x) € R, the pressure
function are the unknown functions for the fluid whose motion is governed by the Navier—Stokes equations

05 (Ov + (v-V)v) = pAv = Vr + £ forall (t,x) € I x Q,
divv =20 for all (¢,x) € I x Q,, (1.3)
v(0,x) = vo(x) for all x € Qy,,
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n

FI1GURE 1. Domain transformation in the general set-up in 3D.

where gy is a positive constant representing the density of the fluid and the function f : (¢,x) € I X, —
f(t,x) € R? is a given volume force. The equations (1.2) and (1.3) are coupled through the kinematic
boundary condition

vow, =0mm forall (t,y) € I X w. (1.4)

1.3. Main result. The main motivation for the present work is to prove an analog of the results by Serrin,
Prodi and Ladyzhenskaya for the fluid-structure interaction problem (1.2)—(1.4). The here presented
result is a summary of Theorem 6.1, where the statement can be found in its full extent.

A weak solutions (n,v) to (1.2)—(1.4) can be constructed to satisfy the energy inequality and thus

sup |97 + sup | Ayn|7 +/||8Nyn\|%2 dt < oo. (1.5)
I Yy I Yy I Yy

We speak about a strong solution if all quantities in (1.2) and (1.3) are L2-functions in space-time. The
precise definitions can be found in Definitions 2.5 and 2.6.

Theorem 1.1 (Shells). Let (v,n) be a weak solution to (1.2)—(1.4). Suppose that we have
veL(I;L¥Q,), 2+2<1, (1.6)
n € L>®(I;C*(w)) (1.7)

for some r € [2,00) and s € (3,00]. Then (v,n) is a strong solution to (1.2)—(1.4). Moreover, (v,n)

is unique in the class of weak solutions satisfying the energy inequality and with structure component in
Lo (1; C%Y (w)).

We emphasis that the only additional assumption for the structure is given by L*°(I;C'(w)) for
conditional smoothness or L°°(I;C%!(w)) for the uniqueness class of the strong solution. Note that
this is only an instant of regularity more than a weak solution enjoys as it belongs to L>(I; W%2%(w)),
see (1.5). Further note that the spaces W??(w),C%!(w) and C!(w) even have the same index in 2D,
but the embedding W2?(w) < C%!(w) just fails. This extra assumption is, however, essential for the
approach presented here. Hence it remains a challenging open problem of whether the uniqueness regime
(of a strong solution) can be extended to all energy preserving weak-solutions in the case of a curved
reference geometry. In contrast, in case the reference geometry is flat (the plate case), a direct approach
for weak-strong uniqueness is available for which the C%!(w) assumption is not necessary [49]. As the
theory presented here is in particular valid for plates, we have the following corollary.

Corollary 1.2 (Plates). Let (v,n) be a weak solution of (1.2)—(1.4) with flat reference geometry. Suppose
that we have

veL(;L*(Q,), 2+2<1,
n e L¥(I;C(w))
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for some r € [2,00) and s € (3,00]. Then (v,n) is a strong solution of (1.2)—(1.4). Moreover, (v,n) is
unique in the class of weak solutions satisfying an energy inequality.”

Remark 1.3. In the above result, it might be interesting to explore the borderline case, i.e. v €
L>(I; L3(€,)). However, handling this case would require further work using different techniques. For
instance, this has been addressed in the context of the Navier—Stokes equations in [20] where the backward-
uniqueness theorem for the heat operator is used.

Remark 1.4 (Stability and convergence of numerical schemes). Related to the weak-strong uniqueness
results is a stability estimate (see Section 5). It arises naturally, when the difference of two solutions is
estimated. Hence a further result of this work is that any solution satisfying (1.6) and (1.7) is actually
an attractor in the respective uniqueness class.

Stability are of particular importance for numeric applications. Indeed they form the first step in
order to show that the difference between a discrete solution and the continuous solution decreases (with
a rate), provided that the continuous solution is unique, as was shown for plates in 2D [48, 49].

The formal proof for the regularity part of Theorem 1.1 consists in proving an acceleration estimate
which combines and extends the results in [6, 23]. In order to appreciate the moving boundary, the correct
test function for the momentum equation is — roughly speaking — the material derivative ;v + v - Vv
combined with the test-function 977 for the structure equation. A key tool is eventually to estimate Vv
(as well as V) by means of 9;v+v-Vv. This can be done by means of a steady Stokes theory for irregular
domains proved in [6] (applied to the domain , ) for fixed ¢). It strongly requires a boundary with
a small local Lipschitz constant and thus (1.7) is essentially needed there. Otherwise, such a regularity
estimate is not known and probably not even expected. Furthermore, in order to avoid the appearance
of the pressure function, an extension operator from w to €2, has been used in [23] which is at the same
time solenoidal and satisfies a homogeneous Neumann-type boundary condition. The construction of the
latter is only possible for a flat reference domain. Hence, we introduce the pressure function and work
with a more common extension operator which does not preserve solenoidability. The advantage of the
latter is that it has the usual regularization property (it “gains” the differentiability which is lost by the
trace theorem, see Section 2.5) different from the solenoidal extensions used in [23], [36] and [43]. A
major difference between the 2D and 3D cases is that one has to use the full strength of this operator to
compensate for the worsening embeddings.

In order to make this argument rigorous, we work with a strong solution to (1.2)—(1.4). Thus, we prove
the existence of a local strong solution in Theorem 3.1. With a strong solution at hand, we can justify the
estimates mentioned above. To close the argument (see the proof of Theorem 6.1) we have to compare
weak and strong solution by means of a weak-strong uniqueness result. The difficulty of the latter is that
one needs to compare two velocity fields which are a priori defined on different (time-changing) domains.
Nevertheless, such a result has been established very recently in [49] for linear elastic plates. The key
idea is to transform the strong solution into the domain of the weak solution and then estimate their
difference. When doing so, the strong solution loses its solenoidal character which must be corrected to
avoid the appearance of the pressure function in the weak formulation. In the case of a flat geometry as
in [49] this can be done by an explicit construction, but our situation is more complicated. We thus work
with a Bogovkij-operator for moving domains [30]. Its properties crucially hinge on the spatial Lipschitz
continuity of the moving boundary and thus require that the weak solution belongs to L>(C%!). For
details on the criticality of Lipschitz regularity see [47], where estimates for the Bogovkij-operator in
rough time-dependent domains are studied.

1.4. Organization of the paper. We introduce in Section 2 some notations, definitions and the func-
tional analytic framework. In particular, we give the definition of the notion of a weak and a strong
solution for the system (1.2)—(1.4). We then construct in Section 3, the local strong solution by lin-
earizing the system and employing the Banach fixed-point argument. Section 4 is devoted to proposing
the conditions of Serrin type to obtain the acceleration estimate. In Section 5, we focus on showing the

2The larger uniqueness class follows from [49]. Strictly speaking the weak-strong uniqueness result in [49] considers
elastic plates. However, the presence of dissipation in the structure equation does not change the argument at all.
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weak-strong uniqueness result. Finally, we give in Section 6 a short summary to formulate the main
result by collecting the key elements of the previous sections.

2. PRELIMINARIES

2.1. Conventions. For simplicity, we set all physical constants in (1.2)—(1.4) to 1. The analysis is not
affected as long as they are strictly positive. For two non-negative quantities f and g, we write f < g if
there is some ¢ > 0 such that f < cg. Here c is a generic constant which does not depend on the crucial
quantities. If necessary, we specify particular dependencies. We write f ~ g if both f < gand g < f
hold. In the notation for function spaces (see next subsection), we do not distinguish between scalar-
and vector-valued functions. However, vector-valued functions will usually be denoted in bold case. For
simplicity, we supplement (1.2) with periodic boundary conditions and identify w (which represents the
complete boundary of ) with (0,1)2. We consider periodic function spaces for zero-average functions.
It is only a technical matter to consider (1.2) on a nontrivial subset of 99 together with zero boundary
conditions for 7 and V7 instead of considering (1.2) on (0,1)2, see e.g. [36] or [9] for the corresponding
geometrical set-up. We shorten the time interval (0,7) by 1.

2.2. Classical function spaces. Let @ C R? be open. The function spaces of continuous or a-Holder-
continuous functions, o € (0, 1], are denoted by C(O) or C%*(O) respectively, where O is the closure
of O. Similarly, we write C1(O) and C1*(0). We denote by LP(O) and W*P(O) for p € [1,00]
and k£ € N, the usual Lebesgue and Sobolev spaces over O. For a bounded domain O, the notation
(flo == fo fdx := L3(O)! [, f dx represents the mean or average value of f € LP(O). We denote
by Wéc P(0), the closure of the smooth and compactly supported functions in W*?(0). If 9O is regular
enough, this coincides with the functions vanishing #2 -a.e. on dO. We also denote by W~5?(0O) the
dual of W,P(O). Finally, we consider subspaces W,;”(©) and Wolﬁiv(O) of divergence-free vector fields
which are defined accordingly. The space Lf, (O) is defined as the closure of the set of smooth and
compactly supported solenoidal functions in LP(O). We will use the shorthand notations LE and Wk»
in the case of 3-dimensional domains (typically spaces defined over  C R3 or Q, C R?) and LY and
W)’f’p for 2- dimensional sets (typcially spaces of periodic functions defined over w C R?). For any pair
of separable Banach spaces (X, |- ||x) and (Y, ]| - |ly) with X C Y, we write X — Y if X is continuously
embedded into Y, that is || - [[y < - ||x. Since we only consider functions on w with periodic boundary
conditions and zero mean values, we have the following equivalences

Dl = 19y ez - lpze = 1Ay - oz, - lpme = 1A2 - z.

For a separable Banach space (X, || - ||x), we denote by LP(I; X), the set of (Bochner-) measurable
functions u : I — X such that the mapping ¢ — ||u(t)| x belongs to LP(I). The set C(I; X) denotes the
space of functions u : I — X which are continuous with respect to the norm topology on (X, || - [|x)-
For a € (0,1] we write C%(I; X) for the space of Hélder-continuous functions with values in X. The
space W1P(I; X) consists of those functions from LP(I; X) for which the distributional time derivative
belongs to LP(I; X) as well. The space WP (I; X) is defined accordingly. We use the shorthand LY X for
LP(I; X). For instance, we write LWL for LP(I; WP (O)). Similarly, WF*X stands for W*?(I; X).

2.3. Fractional differentiability and Sobolev multipliers. For p € [1,00), the fractional Sobolev
space (Sobolev-Slobodeckij space) with differentiability s > 0 with s ¢ N will be denoted by W*?(0).
For s > 0, we write s = |s] + {s} with |[s] € Ny and {s} € (0,1). We denote by W;"*(0O), the closure of
the smooth and compactly supported functions in W*?(0). For s > % this coincides with the functions
vanishing H™~! -a.e. on O provided that O is regular enough. We also denote by W~=5#' (0), for s > 0
and p,p’ € [1,0), with %—i— i =1, the dual of W?(O). Similar to the case of unbroken differentiabilities
above, we use the shorthand notations W¢* and Wg?. We will denote by B, ,(R"), the standard Besov
spaces on R™ with differentiability s > 0, integrability p € [1,00] and fine index ¢ € [1,00]. They can be
defined (for instance) via Littlewood-Paley decomposition leading to the norm [| - || 5 (&»). We refer to
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[46] and [53, 54] for an extensive description. For a bounded domain O C R", the Besov spaces B ,(O)
are defined as the restriction of functions from By  (R"), that is

By (0) :={flo: f € B, ,R")},
91l 55 ,0) := nf{[lf]|

If s ¢ Nand p € (1,00) we have By (O) = W*P(0).
In accordance with [40, Chapter 14], the Sobolev multiplier norm is given by

B;ﬁq(]Rn) : f‘(g = g}.

el mwe»(oy) = sup Ve - ullws-10(0), (2.1)
u: ”u”Ws—l-,p(o)zl
where p € [1,00] and s > 1. The space M(W?*P(O)) of Sobolev multipliers is defined as those objects for
which the M(W#®P?(O))-norm is finite. For § > 0 we denote by M(W?*P(0))(J) the subset of functions
from M(W?*?(0)) with M(W?#*P(0O))-norm not exceeding J. By mathematical induction with respect to
s, one can prove for Lipschitz-continuous functions ¢ that membership to M(W*?(0)), in the sense of
(2.1), implies that

sup o wllw=»(0) < o0. (2.2)
w: [|wllws.p(0)=1
The quantity (2.2) also serves as customary definition of the Sobolev multiplier norm in the literature
but (2.1) is more suitable for our purposes. Note that in our applications, we always assume that the
functions in question are Lipschitz continuous so that the implication above holds true.
Let us finally collect some useful properties of Sobolev multipliers. By Sobolev’s embedding one easily
checks that a function belongs to M(W?#P(R™)) provided that one of the following conditions holds for
some € > 0:

e p(s—1) <mand ¢ € B51#(R™) with o € [, 00];

e p(s—1)=mand ¢ € By15(R™) with ¢ € (p, oc].
In some cases, important for the parametrisation of the boundary of an n-dimensional domain, this
statement can be sharpened. By [40, Corollary 14.6.2] we have for ¢ € Bg,p(R”_l) compactly supported

and 6 < 1 that

@l mwer@n-1)) < (|8l s ®n-1))d; (2.3)
provided that ||Vl pec(gn-1y < J, s =1 —1/p for some [ € N and one of the following conditions holds:

e p(l—1)<nand ¢ € B (R"!) with ¢ € [p’(’l(ff)l_)l,oo];
e p(l—1)=nand ¢ € B ,(R"!) with ¢ € (p, ).

By [40, Corollary 4.3.8], it holds

[Pl mwer @) = [VOlws-ro@n), (2.4)

for p(s — 1) > n. Finally, we note the following rule about the composition with Sobolev multipliers
which is a consequence of [40, Lemma 9.4.1]. For open sets O1, 02 C R", u € W*P(O3) and a Lipschitz
continuous function ¢ : O — Oy with Lipschitz continuous inverse and ¢ € M(W*?(0;)) we have

luo @llwsro S llullwsro,) (2.5)

with constant depending on ¢. Using Lipschitz continuity of ¢ and ¢!, estimate (2.5) is obvious for
s € (0,1]. The general case can be proved by mathematical induction with respect to s.

2.4. Function spaces on variable domains. The spatial domain 2 is assumed to be an open bounded
subset of R?® with smooth boundary 92 and an outer unit normal n. We assume that 9Q can be
parametrised by an injective mapping ¢ € C*(w;R?) for some sufficiently large k¥ € N. We suppose for
all points y = (y1,y2) € w that the pair of vectors 9;¢(y), i = 1,2, is linearly independent. For a point
x in the neighbourhood of 02 we define the functions y and s by

y(x) = argmin |x — o(y)[, s(x) = (x —y(x)) - n(y(x)).
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Moreover, we define the projection p(x) = ¢(y(x)). We define L > 0 to be the largest number such that
s,y and p are well-defined on Sy, where

Sp = {x e R": dist(x,00) < L}. (2.6)

Due to the smoothness of 9 for L small enough we have |s(x)| = minye,, |x — ¢(y)| for all x € Sy,. This
implies that S;, = {sn(y)+y: (s,y) € (—L,L) x w}. For a given function 7 : I X w — R we parametrise
the deformed boundary by

en(t,y) = @(y) +n(t,y)n(y), yecwtel

By possibly decreasing L, one easily deduces from this formula that ), does not degenerate, that is
O1py X Doy (t,y) #0, n(y) -n,4)(y) >0, ycw, tel, (2.7)

provided that sup, ||1]|;1.. < L. Here n, ;) is the normal of the domain €, ;) defined through

ey = {(y) +n(t,y)n(y) : y € w}. (2.8)

With some abuse of notation we define the deformed space-time cylinder I x Q, = {J,c; {t} X Q) C R
The corresponding function spaces for variable domains are defined as follows.

Definition 2.1. (Function spaces) For I = (0,T), T > 0, and n € C(I x w) with [|]|pe(r1xw) < L we
define for 1 < p,r < oo
LP(I;L7(Q)) == {v € L'(I x Q) : v(t,") € L"(Qy)) for ae. t, |jv(t, M@, € LP(I)},
LP(L; W () o= {v € LP(I; L"(,)) : Vv € LP(I; L"(Q))}-

In order to establish a relationship between the fixed domain and the time-dependent domain, we intro-
duce the Hanzawa transform ¥, : 2 — €, defined by

v, (x) _{ E(X) + (s(x) + n(y(x)e(s(x)))n(y(x)) if dist(xéifelv)véi? (2.9)

for any n : w — (=L, L). Here ¢ € C*°(R) is such that ¢ = 0 in a neighborhood of —L and ¢ = 1 in
a neighborhood of 0. The other variables p, s and n are as defined earlier in this Section 2.4. Due to
the size of L, we find that ¥, is a homomorphism such that ¥,|g\g, is the identity. Furthermore, ¥,
together with its inverse® v 11 Q, — Q possesses the following properties, see [6] for details. If for some
a, R > 0, we assume that

Inllege + lICl[Lge << L

holds, then for any s > 0, o,p € [1,00] and for any 1,( € B, ,(w) N W1 (w), we have that

1%,l8s  us.) + 15, s, usa) S 1+ Inllss, ) (2.10)
1%, — el usa) + 1€, =¥ B ausa) S 1= Cllss @) (2.11)

and
1009, 85 (usa) S 10ullBs ), 1€ WHHI; B} (W) (2.12)

holds uniformly in time with the hidden constants depending only on the reference geometry, on L — «.

3It exists provided that we choose ¢ such that |¢/| < L/cv.
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2.5. Extension and smooth approximation on variable domains. In this subsection, we construct
an extension operator which extends functions from w to the moving domain £, for a given function 7
defined on w. We follow [10, Section 2.3]. Since 2 is assumed to be sufficiently smooth, it is well-known
that there is an extension operator .%o which extends functions from 0 to R? and satisfies

Fq : WIP(OQ) — WoTUpp(R3),
for all p € [1,00] and all 0 > 0, as well as Fqv|sq = v. Now we define .%, by
Fob=Fa((bn)op 1) oW, be WP (w), (2.13)

where ¢ is the function in the parametrization of 9Q. If 7 is regular enough, .%, behaves as a classical
extension. We obtain the following Lemma which is a version of [6, Lemma 2.2], but also includes
differentiabilities larger than 1.

Lemma 2.2. Let 0 > 0 and p € [1,00]. Let n € C%(w) with [Mlree < o < L. Suppose further that
e BZ,;l/p+E’p(w), where p, o and € are related as in (2.3) and (2.4) (if o +1/p € N the choice e =0 is
possible). The operator F, defined in (2.13) satisfies

Ty WP (w) — WoH/PP(QuU S,,)
and (Fyb) o, =bn on w for allb € WP (w). In particular, we have

[ Fnbllwori/vr@usa) S bllwerw),

where the hidden constant depends only on Q,p, o, ||Vy77HL§c, 7l go+1/p420 and L — av.
o,p

Proof. On account of (2.10) we have ¥, ! € BZ;l/p(QUSQ) as well. By (2.3) and (2.4) this implies that
v le M(Wot/rP(QU S,,)). Now (2.5) becomes applicable and we obtain

| Zabllwessimr@us.y S 1 Zal(b0) 0 @™ Hllwen /oy
< [[(bn) o <P71)wa(an) S bllwer (w),
which yields the claim. |

Finally, we prove a smooth approximation result. For that we also require the following solenoidal
extension, see [43, Proposition 3.3].

Lemma 2.3. For a given n € L>=(I; W'2(w)) with [nllLgs, < o < L, there are linear operators
Hy LHw) = R, FIV{ee LNIWH (W) + A (€) = 0} = LHI; Wit (QU Sa)),
such that the tuple (FIN (€ — A,(€)), € — Hy(€)) satisfies
FIN(E = Hp(€)) € L2(T; L () N LT W2 (),
§ =y (€) € LX(I; W2 (w)) N WH(1; L2 (w),
try (F (€ — () = € — A (€),
TV (& = (&)t x) = 0 for (t,a) € T x (2 S,)
provided that we have & € L (I; W22(w)) N Wh°(I; L?(w)). In particular, we have the estimates
[ Z57 (€ = () Lacrwrrusa)) S N€llLarwrp ) + 1€V La(rL0 ()
106 (& — ()l Larizr@usa)) S 10l Lacrszew)) + 1€l La (110 ()
[ F (& — () Larswze@us.)y) S €l acrwzew)) + 1€V 0l La(rL0 @)
+IVENVHlllLacrizr @) + NVl Lo(riLrw))
+ 1€Vl La(r;nr )
100Z57 (€ — () Lacrwrousa)) S N0l La(rwrnw)) + 1€0:V Nl Lo (1 Lo ()
+ M0l nlll Lo (z:Lr wy) + IIVENIenlll La(rirw))
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+ 110V 0l La(z;e ()
for any p € (1,00),q € (1,00].
With the help of Lemma 2.3 we obtain the following.

Lemma 2.4. For any tuple (n,v) belonging to the class
LA (I, W2%°(w)) nWEAI, W22 (w)) x L2 (1; W2 () N CO(T; L2(,)) (2.14)

and satisfying v o ¢, = Oy on w, where |n|Lgs, < o < L there is a sequence (nn, vy) which belongs to
the class (2.14) and satisfies additionally

m € C¥(I xw), v, € WH(LWg2(Q)),

and vy, 0 @, = (Onn — 5 (0inn))n on w, which converges to (n,v) strongly and has uniform bounds in
the spaces given in (2.14).

Proof. The proof is strongly related to [23, Section 6]. We define

\70 =V — j;hv(atﬁn),

which we use as decomposition. Note that d;nn is the trace of the divergence free function v, such that
it is not difficult to derive that (see [43, Lemma 6.3] for more details)

Hn(Oymm) = 0.

This implies that f;“"(@tnn) is well defined. Further v has zero trace on 0€2,,.

Each part can be smoothly approximated. The first part uses 7, as a smooth approximation of 7 for
instance by convolution in space and time. This also makes 9;n,, and 9?7,, smooth. Thus by Lemma 2.3
we obtain

FI(@mm) € WH2(LWH2(Q,)) 0 L2 (1 W22(Q,)) N CO(T; WhH2(Q,).

Moreover, the tuple (1, ZY (9, — A5 (dsmn))n)) converges to the expected limit with respect to the
topology from (2.14). As was already realized in [43, 49] this part of the approximation only uses the
regularity of 7 related to the energy estimate.

It is for the approximation of v that more regularity has to be assumed for n. This is where we use
the Piola transformation .7, that changes the support of a function from 2 to €, without changing the
divergence. It is defined as

Tyw = (V¥,(detV¥,)"'w) o \Il;1 with inverse fn_lw = ((V¥,) H(detV¥,)w) o ¥,
Note that the derivatives of 7w and ,777_1W can naturally be bounded by the respective derivatives of
n. Hence as n € L2(I, W?°°(w)) N W12(I; W?22(w)) we find for any p,q € [1,00] that
Ty Wh2(I; W()l,giv(ﬂ) - wh? (13 W()l,giv(ﬂn))’
Ty + LP(I; LY(Q)) — LP(I; LY(y,)),
Ty (L WEE(9)) 0 L (1 L3(9)) — L2 (1 Woi3, (9,)) N L (1 LA (2)),
with uniform bounds. The same bounds hold for 9{1. Estimates yielding these continuities can be

shown by direct computations. Note, for instance, that the first estimate requires that Vn € L (I x w).
The approximation is then defined by first considering

T, o € L*(I; W(};jiv(g)) NWh2(1; L(Q)).

This function can now be smoothly approximated by a sequence (7, '¥q), C WH?(I; 0%, (Q)), where
(77,_1\70),1 — %‘1\70 almost everywhere as n — oo. This can be achieved by cutting-off the boundary,
then applying a Bogovskij operator to make the function solenoidal and convoluting in time-space. We

remark that all these operations are linear and continuous in the spaces regarded here. Now we fix
‘70,77, = %(%71‘70)71~
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Now, by construction we have vq ,, € w2 (I; Wi{f (Qn)), as required. Furthermore, we find that a.e.

S ¥0)al + V(7 0)ul

with a hidden constant depending on |V?7|. Hence we obtain that
HV{,OWHL?(I,LQ(QH)) 5 HV(%A{’O)TL||L2(LL2(QW)) + H(‘%]floo)nHLm([;Lz(Qn))
S Vol Lzrwiza,y) + Vol e r,20,)
with a hidden constant depending on [[Vn|| e sy, and HVQUHLZ(I;Loo(w))- Combining the above, the
sequence (M, Vo.n + fd“’((amn Jp(0¢nyn))n)) has the desired properties. O

2.6. The concept of solutions. In this subsection, we introduce the notions of solutions to (1.2)—(1.4)

that are under consideration. We start with the definition of a weak solution.

Definition 2.5 (Weak solution). Let (f, g, 70,7+, Vo) be a dataset such that
feL*(I;L},.(R*), geL*(I;L*w)), no€ W*(w) with [|nol| pee(w) < L, (215)

n. € L*(w), vo € L3, (y,) is such that v o ¢, = 7.0 on w. ’

We call the tuple (1, v) a weak solution to the system (1.2)—(1.4) with data (f, g, 70, 1«, Vo) provided that
the following holds:

(a) The structure displacement 7 satisfies

n € WhHe(I; L (w)) N W (I; W3 (w)) N L®(I; W (w)) - with  [|n]| pee (rxw) < L,

as well as n(0) = ng and 9n(0) = n..
(b) The velocity field v satisfies

v € L>(I; L* () N L*(1; Wdli’f(Qn)) with voeg, =0sym on I Xxw,

as well as v(0) = vyq.
(c) For all (¢,¢) € C(I x w) x C=(I;C55,(R?)) with ¢(T,-) =0, ¢(T,-) =0 and ¢ o ¢, = ¢n on
I x w we have

/Igt</w6tn¢dy+/gnv~¢dx>dt

:// (V-6t¢+v®v:V¢—Vv:V¢—|—f~¢)dxdt
1Ja,

+ / / (01006 — Oy Vg + g & — Ay Ayg) dy dt.
IJw

(d) For a.a. t € I, we have

t
5(t)+/ /|8t Vyn|? dyda+// |Vv|? dx do

Qo)
//g@tndyda+// v - fdxdo.
Qo)

where

&)= [ (om@F +1amOP)dy+5 [ voPax

Qe

N |

The existence of a weak solution can be shown as in [36]. The term 0;Ayn is not included there,
but it does not alter the arguments. Note that here we use a pressure-free formulation (that is, with
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test-function satisfying additionally div¢ = 0). If the solution possesses more regularity, the pressure
can be recovered by solving

—Am =div ((v-V)v —f) in I xQ,,
(n™n,) o @t = (|det(Vye)| ™ (970 — i Ayn + AYn — g)) oyt (2.16)
+no<p;1(VV+(VV)T))nnogo;l on I x 0Q,,.

This equation fully determines the pressure. It does also satisfy a Neumann problem, as in the case of the
Navier-Stokes equation with no slip boundary conditions. In this case however, the time-changing mean
has to be determined using the shell equation. This can be done as follows. Setting 7 (t) = mo(t) + ¢ (¢),
where fﬂn(t) mo(t) dx = 0 and ¢, = m — 7p is constant in space, and testing the structure equation with 1

we obtain

cﬁ(t)/ n - n,|det(Vyep,)|dy = / n(Vv + (Vv)T = molsxs) 0 om,| det(Vyp,)| dy

+/3fndyf/gdy-

Since ©,, is C! uniformly in time, the operator A has the usual regularity and uniqueness properties for
C"' domains. In particular, it allows for a unique solution in L?, if the right hand side is in W22 and the
boundary value in W=22 or for a unique solution in W12, provided that its boundary value is in W32
and the right hand side is in W =12, Moreover, in this particular case, the solution of (2.16) satisfies

(2.17)

—Vr=0v+(v-V)v—Av —f

distributionally which implies that

// |v7r|2dxdt5// (10v]? + (v - V)V)[2 + |AV[ + [£?) dx dt
1Jeo, 1Ja,

1 1
2 2
< [ 1o, i+ ( / |v||‘z4<gn>) ( / ||Vv||i4<gn>dt)
+ / I3[, i + / €220, d,

whenever the right hand side is finite, independent of the boundary value of 7 in (2.16). This is the case
for a strong solution defined as follows.

Definition 2.6 (Strong solution). We call the triple (n,v,7) a strong solution to (1.2)-(1.4) provided
that (n,v) is a weak solution to (1.2)—(1.4), which satisfies

n e Whe(LWY(w) nWh (LW (w)) N L= (LW (w)) N WA(T; L (w)) N L1 W2 (),

v e WHA (I L2(Q)) N LA (L;W2(Q)) N L2 (LWH2(Qy)), we L*(LW2(Q,)).
For a strong solution (7, v, 7) the momentum equation holds in the strong sense, that is we have
v+ (v-V)v=Av-Vr+f (2.18)
a.e. in I x €. The shell equation holds in the strong sense as well, that is, we have
Ofn — 0, Ay + Af,n =g —nT7op,n,|det(Vyep,)| (2.19)

a.e. in I x w. Note that for a strong solution, the Cauchy stress 7 = Vv + (Vv)T — 7wl343 possesses
enough regularity to be evaluated at the moving boundary (this is due to the trace theorem and the
uniform Lipschitz continuity of €,).
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2.7. The Stokes equations in non-smooth domains. In this section, we present the necessary frame-
work to parametrise the boundary of the underlying domain  C R? by local maps of a certain regularity.
This yields, in particular, a rigorous definition of a M?®P-boundary. We follow the presentation from [6]
(see also [7]). Eventually, we present an elliptic estimate for the Stokes system under minimal assumption
on the boundary.

We assume that 99 can be covered by a finite number of open sets U!, ... ,U*, for some ¢ € N, such
that the following holds. For each j € {1,...,¢} there is a reference point y/ € R? and a local coordinate
system {el, e}, e}} (which we assume to be orthonormal and set Q; = (el|e}le}) € R3*3), a function
¢;j : R? - R and r; > 0 with the following properties:

(A1) There is h; > 0 such that
W={x=Qz+y eR>: z=(2,23) e R® |2| <r;, |23 — ¢;(z)| < h;}.

(A2) For x € U’ we have with z = Qf (x — y7)
e x € 00 if and only if z3 = ¢;(z’);
e x € Qif and only if 0 < 25 — ¢;(2") < hy;
o x ¢ Qif and only if 0 > 23 — ¢,(2") > —h;.
(A3) We have that
¢
o c|Ju.
j=1
In other words, for any xo € 9 there is a neighbourhood U of xg and a function ¢ : R? — R such that
after translation and rotation*

UNQ=UNG, G={x, z3)eR®:x cR? z3>d(x)}.
The regularity of 02 will be described by means of local coordinates as just described.

Definition 2.7. Let O C R? be a bounded domain, s > 1 and 1 < p < co. We say that 9O belongs to
the class M(W#*?P) if there is £ € N and functions @1, ..., ¢, € M(W?*P)(R?) satisfying (A1)-(A3).

Clearly, we can define similarly a M(W#P?)(d)-boundary for some § > 0 by requiring that ¢1,...,@s €
M(W*P(R?))(5). Analogous definitions apply for various other function spaces such as B3, for s > 0
and g,p € [1,00] or C1® for o € (0,1]. Of particular importance for us is also a Lipschitz boundary,
where ¢1,...,00 € WH(R?). We say that the local Lipschitz constant of O, denoted by Lip(00), is
(smaller or) equal to some number L > 0 provided that the Lipschitz constants of ¢1,..., ¢, are not
exceeding L.

After these preparations let us consider the steady Stokes system

Av — V= —f|
divv =0, (2.20)
v]go = va,

in a domain @ C R? with unit normal n. The result given in the following theorem is a maximal regularity
estimate for the solution of (2.20) in terms of the right-hand side. The boundary data under minimal
assumption on the regularity of 90, see [6, Theorem 3.2 & Remark 3.3].

Theorem 2.8. Let p € (1,00), s > 1+ % and suppose that O is a Lipschitz domain with local Lipschitz

constant § belonging to the class M(W*=Y/PP)(8) for some sufficiently small § > 0. Let £ € W*=2P(0)
and v € We=Y/PP(90) with [,,ve-ndH? = 0. Then there is a unique solution to (2.20) and we have

IVliwsro) + [ITllws-100) S Ifllws-200) + [[Vollws-1/.r00)-

4By translation via y7 and rotation via Q; we can assume that xg = 0 and that the outer normal at xg is pointing in
the negative x3-direction.
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Remark 2.9. Suppose that O is a Bg’p-domain for some 8 > s—1/p (0 > s—1/p if s € N) with locally
small Lipschitz constant. The conditions from Theorem 2.8 are satisfied provided p € (1,00), s > 1+ %
and

o>p if pls—1)>3, o> 2 if pls—1)<3,

are such that 3(% —3)+1<s, cf (2.3) and (2.4).

Remark 2.10. In Section 4 we have to apply Theorem 2.8 to the domain O = Q, ) for a fixed ¢. Here
n: I xw— R and 09, is parametrised via the function ¢, ;) defined on w, see Section 2.4 for details.
We exclude self-intersection and degeneracy by assumption (in particular, 01, X J2¢, # 0 such that
n, ) is well-defined). Given x¢ € 09Q,,(4), for some t € I fixed, we rotate the coordinate system such that
n, ) (y(x0)) = (0,0,1)T and translate it such that xo = 0. Accordingly, it holds

1
det(Vyan(t)) =1, @,= <£g> .
n

Hence the function ¢, is invertible in a neighbourhood U of zg := y(x¢). We define in @, ) (U) the
function

0@ = (o)) = (o2 (@10
¢(2)) Eiy (Pnny) ™ (2))
It describes the boundary 9, ) close to xg. One easily checks that 9.¢(zg) = 0 (since n,)(y(x0)) =

(0,0,1)T) such that 9.¢ is small close to zg. Suppose now that n € L>®(I;W?*% N C(w)) and that
sup Lip(9€2, (1)) is sufficiently small. We can use Sobolev’s embedding for Besov spaces to see that
I

WEA(R?) = B}, (R?) < By (R?).
Then we conclude by (2.3) and (2.5) that

1Dl pgqzrzzy <65 9l <6,

holds uniformly in time for some sufficiently small § in a neighbourhood of zg (using also ¢(zg) = 0 and
8z¢(Z0) = 0)

2.8. Universal Bogovskij operator. Bogovskij operators are natural to be considered in star-shaped
domains. As Lipschitz domains are unions of star-shaped domains, Bogovskij operators are available on
Lipschitz domains as well. Recently, the concept of universal Bogovskij operators was introduced in [30].
Observe that the same Bogovskij operator actually can be used for a family of domains, as long as the
Lipschitz constant is controlled. This allows to use a (locally) steady operator to correct the divergence
in time-changing domains.

More precisely in [30, Corollary 3.4] the following statement was shown:

Theorem 2.11. Let X C R? be a the-dimensional Lipschitz-manifold, M >~ >0, C, > 0, b € C$°(X x
[0,7]) with unit integral. Then there exists a linear, universal Bogovskij operator Bog : C§° (X x [0, M]) —
C§° (2 x [0, M]) such that for any Cr-Lipschitz function (i.e., with Lipschitz constant Cr)n: X — [y, M]
and X, = {(x',z,) € ¥ x [0,M] : 0 < z, < n(x")} the operator Bog maps C§°(8Y,;) to C§°(y,) with
divBog f = f — b [ fdx. In addition,
||B0g(f)||ws+1,p(zn) < stg’prHWs-,p(zn)a
for all1l < p < oo and s > 0 with C3* only depending on s, p, diam(X), Cr,y and the Lipschitz properties
of X.
In order to make this operator admissible for our needs we introduce the following version.

Corollary 2.12. There is a universal Bogouvskij operator, such that for all n : w — (—L,L) with
[Vl 1o () < CL and b€ CG°(Q2\ S1) (where Q, is defined by (2.8)) with unit integral we have

Bog : C3°(Q,)) — C5° () with divBog f = ffb/fdx.
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In addition, it holds
||B0g(f)HWs+1,p(Q,,) < CEpllwas,p(Qn)v
[Bog(div f)”WSvP(Qn) < C}?p”fHWSvP(Qny
for all1 < p < oo and s > 0 with CE¥ only depending on L, ¢, Cy,.

Proof. The proof is by now standard. One covers the domain S;, with balls of finite overlap, such that on
each ball all possible functions 7 can be written as a graph. On these sets one may apply Theorem 2.11.
Hence the partition of unity argument introduced in [47, Section 3.1] allows to construct the desired
operator. O

Remark 2.13 (Time-derivative of Bogovskij operator). Please observe that the same operator can be
applied to a time-changing function with time-changing support. The operator then automatically has
zero trace on the variable support of the function. In particular for sup, |Vn(t)|., < Cr, sup, ||n(t)]], <
L, we find that 9,Bog(fxa,) = Bog(d:fxa,) and Bog(d;fxq,) = 0 on 98,.

3. LOCAL STRONG SOLUTIONS

Our goal in this section is to construct a local-in-time strong solution of (1.2)—(1.4). The main theorem
is the following;:

Theorem 3.1. Suppose that the dataset (f,g,m0,1x, Vo) satisfies (2.15) and in addition
f e L(I; Lf, (R®)) N L*(I; W, (R%)),

loc
No € WS’Q(W)a N« € WLZ(W)a Vo € Wc}f\?(Qno)'

There is a time T* > 0 such that there exists a unique strong solution to (1.2)—(1.4) in the sense of
Definition 2.6.

(3.1)

The main ideas to prove Theorem 3.1 are as follows.

o We transform the fluid-structure system to its reference domain.

e We then linearize the resulting system on the reference domain and obtain estimates for the
linearized system.

e We construct a contraction map for the linearized problem (by choosing the end time small
enough) which gives the local solution to the system on its original domain.

This is reminiscent of the approach in [6, 23, 24, 37].

3.1. Transformation to reference domain. For a solution (n,v,7) of (1.2)-(1.4), weset T =mo ¥,
and Vv =v o ¥, and define

A, =7, (V¥ oW, )TVE, oW,

B,=J,(V¥, 1ow,)",

hy(¥V) = (By, — By) : V¥V,

H,(v,7) = (A, — A,)VV - (B,, — BT,

h, (V) = (Jy, — Jy)OV — J,VV -0, oW, — B, VVV+ J,fo ¥,

where J,, = det(V¥,). Exactly as in the two-dimensional case considered in [6, Lemma 4.2] we obtain
the following result.

Theorem 3.2. Suppose that the dataset (£, g,m0,m«, Vo) satisfies (2.15) and (3.1). Then (n,v,7) is a
strong solution to (1.2)—(1.4) in the sense of Definition 2.6, if and only if (n,V,T) is a strong solution of

B, : VV = h,(¥), (3.2)
Ofn — 0yAyn + A?ﬂ? =g+n"[H,(V,7) — A, ,VV+ B, 7| o on, (3.3)
T 0:V — div(A,, VV) + div(B,,7) = h, (V) — divH, (v, 7), (3.4)

with Vo = (Om)n on I X w.
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3.2. The linearized problem. In this section, we let (g,70,7x,vo) be as before in Theorem 3.2. In
addition, we consider (h,h, H) such that

he LA(LWh(Q)) nWH2 (I, W—H2()) N {h(0,-) = 0},

he L*(IxQ), HecL*(I;W"3(Q)), (3.5)
and study the following linear system
B,, : Vv =1, (3.6)
0P — 0y Ayn + A?,n =g+nT[H- A, Vv +B, 7| oen, (3.7)
Ino OV — div(A,, ) VV) + div(B,,7) = h — divH, (3.8)

with Vo = (0¢n)n on I X w. It is important to note that B, and A, are time-independent and that
(3.7) remain posed on I x w with periodic boundary conditions.

Proposition 3.3. Suppose that the dataset (g, 1o, nx, Vo, b, h, H) satisfies (2.15), (3.1) and (3.5). Then
there exists a strong solution (n,v,7) of (3.6)—(3.8) such that

Sl}p/ (10:Vynl* + IVyAynl?) dy+sultp/ [VV[? dx
w Q
+// (10:Ayn|? + 1070 + |AZn|%) dydt+// (V¥ + |09 + |7]> + |V7[*) dxdt
IJw I1JQ

S/ (Ine? + [Vynal® + [Aynol® + [Vy Aymol*) dy+/ (Wol? + |VVo|*) dx (3.9)

Q
+/Hath||3v,l,2m)dt+// lgl2 dy dt
I IJw

+// (|h|* + |VR[* + |h|* + [H? + [VH|?) dx dt.
I1JQ

Proof. The solution can be rigorously constructed by means of a two-layer approximation scheme similar
to [24]. This is done by first adding the term 9, Af,n, for 0 < € < 1, to the left-hand side of the structure
equation. The resulting system can then be solved by a finite-dimensional Galerkin approximation after
which one obtains a uniform-in-e bound, allowing for the passage to the limit ¢ — 0. We skip this
standard method and proceed to explain how to construct the Galerkin basis for our original system.
The additional term EBtAf,n brings the advantage that the integral below in (3.12) can be directly bounded
without invoking the elliptic Stokes theory which is not available on the Galerkin level. Hence one can
obtain e-dependent acceleration estimates. Eventually, one can obtain estimates for the fluid-system as
in (3.19) below. This guarantees that all terms in the computations below are well-defined.

We first consider a basis for the case h = 0. The general case will be explained below. By solving
the eigenvalue problems of the Stokes operator on §2,,, we construct a smooth orthogonal basis (Xz)geN
of Wolﬁiv(Qno). This provides a divergence-free bases for the reference domain 2,,, with zero boundary
values. We enrich this basis with solenoidal extensions of inhomogenious boundary values, which are
a basis of the shell displacement. For that we solve the eigenvalue problems for the Laplace operator
on w with periodic boundary conditions adjusting the constant invariance such that we gain a smooth
orthogonal basis (Yz)een of the space

{C € W?2(w) : /(m(ocp*l dH? = O}.

We define vector fields Y, by setting Y, = 93:7‘; ((Yyn) o 1), where 9\5;‘; is a solenoidal extension
operator. It can be constructed by means of a standard extension and a Bogosvkii correction and thus
maps W52 (w) — Wk2(R") for k € N such that the Y,’s are smooth and solenoidal.

Now we set Xy := Xy 0 ¥, which yields a basis of

{weWw,?Q): B, : Vw =0}. (3.10)

Mo
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and respectively Y, := ?ZO'IIWO also belong to the function space in (3.10). Now we choose an enumeration
(we)een of (Xe)een U (Ye)een. Note that we use (Y7)een as the Ansatz space for dyn and not 7, as this
is what is related to the fluid-velocity. The terms depending on 7 are hence taken as primitive of the
discretization of ;7.

In the case h # 0, h represents the change of area, which can be removed by solving an auxiliary
problem. For that introduce A(t) = [, h(t) dx, then the following problem is well posed:

Aw=hin €, Jdyw = X on JN.

Now replacing the Ansatz above by 0;n = 0;7) + A and Vv = v + Vw implies the existence of a respective
system solvable using the above basis. Note that all newly appearing perturbation terms are strictly
depending on A with natural bounds. In particular, the shell equation becomes

071 — Oy Ayl + A7+ eA*0yf) = g +nT [H— A, ) VV + B, 7] 0 on — 9 \.

We now give a formal proof of estimate (3.9), which can be made rigorous with the help of the approxi-
mation procedure explained above.

Let us now suppose that h = 0 such that B, : V¥ = 0. Consider the pair of test functions (0;n,V)
for (3.7) and (3.8) respectively. We use the ellipticity of A, to obtain

sup/(|8tn|2+|Ay77|2) dy+// |8tVy77|2dydt+sup/ |V|2dx+// |V |2 dx dt
r Ju 1Jw I Ja 1Jo

< / (7% + | Dg0l?) dy + / / g2 dy dt + / [vol? dx + / / (Ihf? + [H[?) dx dt.
w I Jw Q I1JQ

If we now consider (977, 9;V) as test functions (which can be used as a test-function on the Galerkin level
since B, is time independent) for (3.7) and (3.8), respectively, we obtain

1 1
// \8fn|2dydt+f/ \6tvyn|2dy+// |8ﬁ|2dxdt+f/ V]2 dx
IJw 2 w I1JQ 2 Q

1
25/\Vym|2dy+/l/ (9— Aln+nTHo on)dindy dt

1
+*/|VVQ|2dX+// (h — divH) - §,v dx dt.
2 Ja 1Ja

(3.11)

We note that

[ [aimamaya= [ [ o am-omayaes [ [ 1oagPayar
IJw IJw IJw

1

< ngp/mtvyn\zdwsx;p/ |vyAyn|2dy+// |0:Ayn|? dy dt,
w w IJw

(3.12)

and we thus obtain

//|3t277|2dydt+sup/\@Vyn|2dy+// |8tV|2dxdt+sup/ |Vv|? dx
IJw I Jw 1JQ I JQ

< / Vy[? dy + sup / ¥y Agl? dy + / / (192 + [0 Ayn]?) dy dt (3.13)
w w IJw

+/\|H||§V1,2 dt+/ |vv0\2dx+// (Jbf* + [VH[?) dx dt,
I * Q I1JQ

where we have used the trace theorem yielding

// |H\2dH2dt§/||H||€Vl,zdt.
I1J00Q I *
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We now test (3.7) with —0;Ayn to obtain
[ (05 + 19,800 ay + [ [ 1080 ay
S /w (IVynl* + | Vy Aymol*) dy +/I/w lg|? dy dt (3.14)
+ /I/ |n™(H - A,,VV + B,,,T) 0 on 9, Ayn| dy dt.
For the last term we have by the trace theorem
/I / |nT(H - A,,VV + B, 7) 0 n 8, Ayn| dy dt
< /1 (IHllwi/2200) + IV wir2200) + [Fllwirzeoo) 10:8y0] 120 dt
S [ (Bl + 1990z + Il ) Ol grna (3.15)
S [ (Bl + 199z + 7z ) 10l ol

/ (B0 + 912,00+ 7200 + 192132 ) dt + () / [0 .

where xk > 0 is arbitrary.
Moreover, notice that by using (3.11) to estimate the last term in (3.15), we obtain from (3.14) and (3.11)
that

SI}p/ (10:Vynl* + [VyAynl?) dY+/I/|atAy77|2dydt
/(HVV” 12+||7T||W1 2)dt+c(li)/ (|77*‘2+‘Vyn*|2_~_‘Ayn0|2+|vyAy770|2) dy (316)
+c(k /|v0| dx + c(k //|g|2dydt+c // (|h|* + [h)* + [H> + |[VH|?) dx dt.

To find an estimate for the pressure term in (3.16), we decompose it into T = T + ¢z where fQ Todx =0
and ¢z is only dependent of time. We therefore deduce from (3.7) that

c;/ n'B,, opndy = / (8377 —g—nT [Bnoﬁo +H - AnOVV} o gan) dy,

where we used the zero-mean property of 1. Since B, is uniformly elliptic, it follows from the above and
Poincaré’s inequality that

[ Imlgaats [ (1971 +Imols) e+ | (@2
< [ vl + Imoliz)ae+ [ [ (o8 + o) ayar (317)
4 [ ol + B + 1991, 2)
I

where we have used the trace theorem,
] (ol ony + BN omy + 19913 0)

§/(||7To|| 12+ [H e + V)50 2) dt.
I
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Collecting the inequalities from (3.11), (3.13), (3.16) and (3.17), we conclude that
2 2 . =2
sgp/ (10:Vynl* + [Vy Ayl )dy%t}p/ [VV[”dx
w Q
+// (18:Aynl* +10:Vyn|* + [07n]?) dydt+// |0,V dx dt
1Jw 1Jo

S [ (P +19ym P+ 18ymP + 195 Am ) dy + [ (%P +[7%0P) dx (3.18)

+//Igl2dydt+// (b + |H|* + [VH[?) dx dt
I Jw I1JQ
+/I||8thlliv;1,2 dtJrf‘f/I(H?Tollivi,z+||VV||€V)1,2)dt.

Our next goal is to estimate the k-terms above to get (3.9). For this, we transform (3.6) and (3.8) by
applying lIl;Ol to them. By setting v:=Vo \117701 and m:=To \Il;()l, we obtain

divv =0,
Oy — Av+Vr=J, 'Tho® ! —div(B, Ho ¥, "),

in I x Qy,, with vo, = (0n)n on I x w. Based on the maximal regularity theorem for the classical
unsteady Stokes system (we refer, for instance, to [52]), we obtain

// (10ev]? + |V2v]* + |Vx[*) dx dt
1Jq,,

S [1omlgandes [ [ (how, i (3.19)
I v 1J9,,

+ |(divH) o lIl,701|2) dxdt + / Vv, |? dx.
2770
We now transform back to {2 and interpolate the regularity for the structure function to obtain for any
k>0

// (|07 + | V¥ + |VT|?) dxdt
IJQ
< [ Noudynlty at+ c(e) [ 10l

+c// (|b* +|VH[?) dxdt+c/ |V¥o|? dx.
I1JQ Q

If we now combine this with (3.18), then we obtain the desired estimate (3.9) in the case h = 0 (note
that one can finally control A2z by means of equation (3.7)). As in [6, Sec. 4.2] one can reduce the case
h # 0 to the homogenous case by means of an elliptic problem. O

3.3. Fixed-point argument. Based on Proposition 3.3 we study in this section the existence of the
solution of the nonlinear system (3.2)—(3.4), by employing the Banach fixed-point argument. We assume
that the triplet ({,W,q) are given and we wish to solve

B, : V¥V = h¢(W), (3.20)
Ofn — O Ayn + A?,n =g+nT [HC(W, ) — A, VV+ Bnoﬂ o pn, (3.21)
Ino OV — div(A,;,, VV) + div(B,,7) = h¢ (W) — divH (W, q), (3.22)

with Vo ¢ = (Oyn)n on I, x w. Here, I, := (0,T) is to be determined later. We define the space
Xy, = (WHe (L W2 (w)) N L (L W32 (w)) N W2 (L W22 (w)) N W2 (1,; L (w)))
x (L% (L WH2(Q)) N W2 (L LA()) N LA (L W22())) x L* (L WH2(Q)),
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equipped with the norm

6.0} B, = sup | (DG +10:75C + 185G +175 8, ¢F) dy

I. Jw

[ ] 000y oy + o2c?) ay

I Jw

+Sup/ (W] + |[Vw|?) dx
I. JQ

+ / / (VW] + V> + [0:%]* + [a” + |Val*) dx de.
« JQ

Let Bg’* be a ball defined as
X — . — _ —
BX* = {((,%,7) € X1, with  C(0) =m0, 9C(0) =n., W(0) =0 : |(C, 7. D)%, <R},
for some R > 0 large enough.
Theorem 3.4. There ezists a time T, > 0 and R > 0, such that the map T, defined by
T:Bp" — Bp"

(C?W’ a) H (n7v7ﬁ)7
is a contraction map, which thereby possesses a fixed point in Xy, .
Proof. We would like to show that the map 7 defined above maps the ball Bgl * into itself and that for
any (¢;,W;,q;) € B;’*, for i = 1,2, we can find p < 1 such that

1T (¢, W1, @y ) — T (G2, Wa, @) || xr. < pll(C1, W1, Gy) — (G2, W, @) || xs, -

To present the proof clearly, we divide it into the following two steps.

Step 1: We show that T : Bgl* — Bg’*, i.e., the ball Bgl* is T-invariant. To do this, we need

to show that for any (¢, w,q) € Bgl*, we have
17w, D%, =10, v. D%, <R (3.23)

Indeed, according to (3.9), we deduce the following estimate from (3.20)—(3.22)

10, %, 7)II%,. SD(g,no,n*,Vo)Jr/ (10ehe (W) 1Ty 1.2 () At + [[he (F)[[Fy1.2 () it

*

_ — 3.24
4 [ ey + D) (324)
= D(g7n05n*7v0) +F1 +F2 +F3 +F47
where
D(g, 10511+, V0) = |12y + 1m0 [13p5.2(0) + [F0[13r1.2(0) +/1 191172 () At
Recalling the regularity assumption in (3.1), we choose R > 0 large enough, such that

1
CD(97770777*7V0) S 1R2> (325)

where ¢ > 0 is the hidden constant from (3.24). We show in what follows that the sum of the K, is also
bounded by 3 R? which will give the estimate (3.23).

To estimate K1, we have
We notice that the continuous embedding

L®(L; W32(w)) N W21 W22 (w)) < COVE(I,; W A2(w)) e L®(L; WhH N W24 (w)),  (3.26)
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scales with T*l/g. We thereby obtain from (2.10)—(2.12) that
/ |(Byy —Be) : VW2, 1. dt </ 1By, — Bel2. 1012, dt
= [ 19, — Bl ol
S S}lp\lno = Il OO/I 10:% 7> dt (3.27)

+sup [0 — €122 / 0|2, dt
I, vy JI, *

1/4 —
< w, 9%,

On the other hand, due to the continuous embedding
W22 (L; L (w)) N W (L W2 (w)) = WAL W32 (W) < WL, W (w)),
it follows from Holder inequality that

/ |0:Bc : VW2, dt < / 0B : T2,

< / |0Bc|I2. [ Vw2 dt

) (3.28)
<122( [ Jocliyr) s v,
ST w DI,
Combining (3.27) with (3.28) we have
Ky ST20¢w )k, - (3:29)
To estimate Ko, we note that
|7 ()| + [Vhe(W)] S [(By, — Be) : VW[ +[(By, — B¢) : VW]
+|V(B,, —B¢) : Vw|.
Using the argument from (3.26) again, we derive from (2.10)—(2.12) that
J B B0 T ar+ [ (B, ~ Bo): Vil ar
Ssuplm = Cly [ Vw3, at (3.30)
I
S Ti/“n(c,w,@nx,,
According to the continuous embeddings
L1 W32 (@) < L= (1, W2 (w), (3.31)
and
W2(15 L3(Q)) 1 L2 (L W22(Q)) o WYS2(L; W7/A2(Q) o5 12(1; WH(9), (3.32)
where the latter scales with 7/8, it follows that
V(B ~ BV dt S supllm — Iy [ IV o
I (3.33)

<T1/4||< )%, -
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We obtain from (3.30) and (3.33) that
K2 2 TY(C w0, - (3.34)
To estimate K3, let us recall that
he(W) = (Jyy — JO)OW + J VWOV - LoW, + B, VWW + Jof o U

Due to the continuous embeddings (3.26), it follows from the definition J,, = det(V¥,) and (2.10)-(2.12)
that

[ 16 = )0 1 S sl = g [ o3

< T”“H( w,9)%, -

(3.35)

By using the embeddings

L®(I; W32(w)) < L>®(I,; Wh*>(w)),
W (L W2 (w) N W2 (L; W22 (w) = W (L W22 (w) = WH(L; L(w)),

we obtain that

/1 [ J VWOt o Wl|7, dt

S [ @I ) 19w o ae

L (3.36)
ST s (14 [l ) sup 9w [ 00l a)
e (A [

Also, by using the embedding (3.32) we obtain

/1 IBYw w2, dt < / (L 161 ) 195913 5913 dt

L

S sup (14 [Clyge) sup 713 / Ivw|2, at (3.37)

1/4
ST w D%,

Next, by using (3.26), we obtain

[ et o el at S sup (14 [l <) [ I
I, * ¥ I.

< Tosup [f]Z,.

*

(3.38)

It follows from (3.35)—(3.38) that
K, ST (n(c,w, DI, +sup ||f||ii). (3.39)

Our next goal is to estimate K4. Since

H(w.7) = (A, — AQ)VW + (By, — B),
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due to the continuous embeddings (3.26), (3.32) and (3.31), it follows from (2.10)—(2.12) that

/H o — AV, dt

S [ 19 - AN IV dtt [ 1A, - Al VI

(3.40)
Ssup i — Gl [ IVI3ydt+sup o = (g [ 17w]E;
L Y JIL L Y I,
A —
ST w DI,
Next, we use the embedding
L3 (L W32(w)) O W2 (L W22 (w) 5 WL W32 (w)) < L1 WP (w)),
where the latter scales with T1/°, and W23(w) — W1 (w) to obtain
] 1By = Bl
< [ 198y, BTty de+ [ 1By~ Beliz Va3, di
L L. (3.41)
Souplm = Cllgo [ Nl dt+sulm - Gl [ Tl
Vdy o —
ST w9k,
By using (3.40) and (3.41), it follows that
K s T w ), (3.42)
Collecting the estimates (3.29), (3.34), (3.39) and (3.42), we have shown that
17w D%, = 10,90k, < (1¢Fa)%,, +suw |} (3.43)
, W XI* 7, V Vs XI C XI* Slllp L>2: . .

Clearly, we can choose R such that sup; |f||?, < R{_ Since (¢,W,q) € Bl}%(’*, by choosing T, in

I. = (0,T,) so that T? < %, we find that the right-hand side of (3.43) is bounded by RTZ. This,
together with (3.25), implies (3.23).

Step 2: We prove that T is a contraction map. To show the contraction property, we denote 715 :=
M — N2, Vi := V1 — Vg and Tig := 71 — 72. We derive the system that (112, V12, 7T12) satisfies, which
reads

no : VVi2 = he, (W) — he, (Wa), (3.44)
and
05072 — Y0 Aymiz + aAlma = nT[ — A, VVis + By, Ti2] 0 @n (3.45)
+nT[He, (W1,7) — He, (W2, 75)] o on, '
and
InoOrV12 — div(A,, VVi2) + div(B,, T12) = he, (W1) — he, (W2) (3.46)

— diVHC1 (Wl R 61) + CliVHC2 (Wg, 52)

Since the left-hand side of (3.44), (3.45) and (3.46) are all linear as functions of (1712, V12, 712), it suffices
to estimate their right-hand sides and substitute these estimates into the corresponding right-hand terms
n (3.9). Precisely, we estimate the following integrals:

o= [ 10 (70~ hes Ty sy 0
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Ky = / e, (1) = ey (72) |2y 1.0y I,
Ky = / e, (¥1) = hey ()2 d,

Ky = A ||HC1 (W1a61) - HC2 (WQ?QQ)”%/VLZ(Q) dt.

The estimates for these K;’s can be obtained in the same manner as the corresponding K;’s above when
showing that the mapping 7 maps the ball into itself. However, we proceed to give a summary of the
various estimates.

To estimate K, we need some preliminary estimates. Recalling the definition of h,,(¥) at the beginning
of Subsection 3.1, we write

Olh¢, (W1) = he, (W2)] = (By, = Bg,) : 9, V(W1 — W) + (B¢, = Bg,) : 9, VW
+ 0:(By, — B¢,) : V(W1 — Wa) + 0:(B¢, — Bg,) : VWwa.
Now, just as in (3.27), we obtain from (2.10)—(2.12) and the continuous embedding (3.26) that

/I (1(Byy — Bey) : V(W1 — W)|Pyre + | (Bey — B, )0 VW%, 1) dt

1/4 — —
ST 1.3) = (G W, ) -
Also, as in (3.28), we obtain

/ (||8t(Bn0 — BCl) : V(Wl _WQ)HI%VX_LQ + ||8t(B<1 — B<2) : VW2||$/V;1,2) dt

*

ST 1,3 — (G W, 3) [,
and thus,
Ky S TG W0,3) — (G W, ) - (3.47)
To estimate K5, we first note that
hey (W1) = he, (W2)| 4 [VIhe, (W1) — he, (W2)]|
S 1By, =Bg,) : V(W1 = W2)[ +[(Be, — Bg,) : Vwy|
+|(By, — Be,) : V2(W1 — Wo)| + |(Be, — Be,) : VWa|
+|V(By, —B¢,) : V(W1 —Wa)| + |[V(B¢, — Bg,) : Vwal.
Similar to (3.30), we use (3.26) and (2.10)—(2.12) and obtain

/I (IBy, — Be,) : V(W1 —Wa) 22 + (B, — Be,) : Vo [3z) dt
+ / (I(Byy — Be,) : V(W1 — Wa) 22 + | (Be, — Be,) : V2Wa32) dt (3.48)

ST WL ) — (G W2, D) [,
As in (3.33), we obtain
[ 198y, ~Be) — )l + 9 (Be, ~ Be,) Vwaly)
I (3.49)
5 T*1/4H(Clawlaal) - (CQ7W2762)||.2X1* .
We obtain from (3.48) and (3.49) that
Ko S TG0 W0 ) — (G W, @) - (3.50)
To estimate K3, we need some preliminary estimates. First of all, note that
lhe, (W1) = he,(W2)| S [(Jng = o, )0:(W1 = W) +[(Je, — Je, ) 0w
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+ I, V(W1 = W2)0 W o W | + | (Je, — Jo,) VW20, B! o B,
+ | Je, VW20, (W o W, — Wl oW, )|
+ e, (Vo U, ) V(W — Wo)W |
e, (VO o) — T, (VO 0 We,) T VoW |
+ [Je, (VO 0 We,) VW (W1 — W)
[ Jo (FoWe, —foWe,)| +|(Jo, — Je)f o ¥, .
As in (3.35), using (3.26) and (2.10)—(2.12) we have

/I (1T = Je) (W1 = W2)[Zz + (T, = T )W [7z) dt

(3.51)
,.S T*1/4||(C1,W1761) - (C27W2762)||§(1* :
Similar to (3.36), we obtain
S _ _ _ 2
/ 1Je, V(W1 — W2) 0, Wt o W, H%i dt +/ [(Je, = Jo,) VW20 B oWy, ||, dt
I, I *
_ - _ 2
+/ |[Je, V20, (B 0 We, — W oW, ||}, dt (3.52)
I x
< T1/2 — =\ — = \2
~ L ||(C17W17q1) (C27W27q2)||X1*'
Next, as in (3.37), we obtain
/ 1Je, (V&' o T )V (W - Wz)wlnii dt
L
- _ 2
+ | [ (VO 0 @) — e, (VO 0 0,) | VWaw1 [, dt 5.53)
L x .

+/ e, (V®! o W, )T VWwa (W) —Wo)|72 dt
I,

<TG F1,3) — (G Wa D)%, -
By following the same argument as in (3.38), we obtain
[ €0 @, — 0w, + 06, — o W)
L. (3.54)
<TG %1,3) — (G Wa D)%, -

It follows from (3.51)—(3.54) and the assumptions on f that

K3 S_, T*1/2||(C17W1761) - (C27W2762)”§(u : (355)
Our next goal is to estimate K. First of all, note that
[He, (%1.7,) — He, (W2,3)] S [(Ay, — A, V(W1 — Wo)| + (A, — Ac,) V|
+ |(Bn0 - Bil)(% _62)‘ + |(BC1 - BC2)62|7

holds uniformly. By the same argument as in (3.40), by using (3.26), (3.32) and (3.31), we obtain from
(2.10)~(2.12) that

[ (1A~ AV = W)y dt 4 [(Ag, — Ac) Va2 de

L * (3.56)

1/4 — —
ST (G, W1, @) — (G W, @)%, -
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Finally, we adopt the approach leading to (3.41) and obtain

[ (1B = Be)@ )l + [ 1B ~Boalfe)
TG W00) = (G W, 1),
By using (3.56) and (3.57), it follows that
Ki S TG, W1,30) — (G W @), (3.58)
By collecting the estimates (3.47), (3.50), (3.55) and (3.58) together, we have
176 %0, @) = TG W2, @)l < T2 %0,70) — (G, W2, B) 1%, -

Choosing T in I, = (0,7%) so that T*l/2 < ¢~ ! yields the desired contraction property. O

(3.57)

4. THE ACCELERATION ESTIMATE

In this section, we prove the acceleration estimate for a solution satisfying the Serrin condition. In
order to make the proof rigorous, we work with a strong solution, the existence of which is guaranteed
locally in time by Theorem 3.1. Eventually, we compare weak and strong solution by means of Theorem
5.1 and obtain the desired result for a weak solution in Theorem 6.1. Let (v,7) be a strong solution
(1.2)=(1.4) in the sense of Definition 2.6 with data (f, g, 1o, 7x, Vo), which is in particular a weak solution
(see Definition 2.5) and thus satisfies the standard energy estimates

sup [V, +/ V|2, dt < Co, (41)
Ix * I* *

sup |Ounl; +sup Ayl + [ 10Vl de S Co. 42)
I* y I* Yy I* y
where
Co = Ivolity + -l + IAymlty + [ 161z ae+ [ ol at

The following acceleration estimate (or second order energy estimate) is one of the core results of the
paper and directly leads to the main result in Theorem 6.1. Under the Serrin condition, it holds uniformly
in time allowing us to extend the local solution globally in time.

Theorem 4.1. Suppose that the dataset (f,g,m0, 14, Vo) satisfies (2.15) and (3.1). Suppose that (n,v)
is a strong solution to (1.2)—(1.4) in the sense of Definition 2.6. Furthermore, for some r € [2,00) and
s € (3, 00] we set

Cy = ||VHL7‘(I;L$(QW))7 %—ﬁ- <1, (43)
Cs = [|nll L (1,01 (w))- (4.4)

Finally, suppose that there is no degeneracy in the sense of (2.7). Then we have the uniform-in-time
estimate:

@ |

sup / (18:Vynf? + [VyAyn[?) dy + sup / Vv[? dx
* w Q

* n

—|—/ /(|8tAy77|2—|—|8t277|2) dydt+// (IV2v]? + |9, v]? + |Vr|?) dxdt
" « (4.5)
S [ (g + 1V, By mP)dy + [ [Vvol?ax

QT/O
+// |f|2dxdt+/ /|g|2dydt,
1. JQ, I Jw

where the hidden constant depends only on Cy, Cy and Cs.
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Proof. We use ¢ = 0;v + .%,(0ynn) - Vv and ¢ = 077 as test functions for the fluid and shell equations
respectively. (For this, we give in Remark 4.2 more details). Here .%, is the extension operator introduced
in Section 2.5. From the momentum equation in the strong form (2.18), we obtain for ¢t € I*

(9tV+V'CV . 8tv+ﬂ(8t771|)~Vv dxdo
n
« JQy

LJa, LJa,

where 7 = Vv 4+ VvT — 7l33 is the Cauchy stress. We now aim at integrating by parts in the first term
on the right-hand side obtaining

/ / divt - (8v + %, (9ynm) - Vv) dx do
. Ja,
:f/ /F@fﬁdydo—// Vv : V(Z,(dym) - Vv) dxdo
« Jw « v Qy
_%/ |Vv|2dx—|—%‘/Q |Vv0|2dx+%z /ag (3t?7n)oso;1.nno(p771|VV|2d’H2dG
0 * n

Q'W
+/ / 7 div (%,(0ym) - Vv) dxdo (4.6)
1. Jo,
with
F=-—-n"1op,n,|det(Vyp,)|. (4.7
In the above we used the fact divv = 0 and
(Opv + F)(Oynm) - V) 0 p,, = 07,

which is explained in Remark 4.2. Note that we also used Reynold’s transport theorem applied to
an(t) Vv (t)]? dx:

1d 1
/ Vv:Vovdxdo = - — / |Vv|?dx — 7/ (9ymm) o .t -, 0, | VVEdH? do.
o, 2dt Jo, 2 Joq, " "

Although all the terms in equation (4.6) are well-defined for a strong solution (n,v) this is not true for
its derivation. Hence we apply Lemma 2.4 to obtain a smooth approximation which fully justifies (4.6)
after passing to the limit.

Multiplying the structure equation (2.19) by 87 we obtain from the formal computation (3.12) that

/ /IantQddeS}lp/|8Ny77|2dy

5/|vym\2dy+sgp/ |vyAyn\2dy+/ /IatAyn\Qdydt+/ /(g+F)6fndydt.
w * w w I, Jw

*

It can be made rigorous by means of a spatial regularization argument. Since we consider periodic
boundary conditions a spatial convolution can be applied without further difficulty. Using Young’s
inequality and writing

Fp(Opm) - Vv =v-Vv+ Z,(0ymm) - Vv —v-Vv,
we have

//(atv+v-Vv)~(Gtv+v-Vv+<%7(8t77n)~Vv—v-Vv)dxda

. Ja,

:// |8tv+Von|2dxdo+//(atv+v~Vv)'(Q%,(&nnva)dxda
o, L Ja,

_/* /Qn(atwrv.vv).(v.vv)dxda.



28 DOMINIC BREIT, PRINCE ROMEO MENSAH, SEBASTIAN SCHWARZACHER, AND PEI SU
For the last integral above, we have
/ (Opv+v-Vv)-(v-Vv)dxdo < /-@/ / |0V + v - Vv|? dx do + C(H)/ / |v-Vv|? dxdo.
Q 1. Jo, 1. Ja,
With the similar strategy we estimate the term on f as below:

/ / f-(Ov+v-Vv+.Z%,(0pm) Vv —v.-Vv)dxdo

§/—1// |6tv+v~Vv|2dxda+c(n)// |f|? dx do
// - (Fy(0pm) - Vv)dxdo—!—// |v - Vv|? dx do.

Now combining the fluid part with the solid part together, for £ > 0 small enough we finally arrive at

sup/ |Vv|2dx+/ / |0V + v - Vv\dedt—i—/ /|8fn|2dydt+sup/|8tvyn| dy
// |v - Vv|2dxdt+/ oo, (Oymm) o nnocp;1|Vv|2dH2dt
7// (v +v-VV) - (Z,(0m) - Vv) dx dt

/ / Vv i (%, (0pm)TV?v + V.7, (0mn) VvT) dx dt
I.

/ / 7 div (F,(0ym)Vv) dxdt+/ / Fn(O0ym) - Vv) dx dt

Q, Q,

—|—/ / |f|2dxdt—|—/ \Vv0|2dx+/ \Vyn*|2dy+sup/ |VyAyn|? dy
I, Jw

//wt yn\2dydt+/ [ laayar

=: -+ XIL (4.8)

Notice that in (4.8) the last six terms are already uncritical. In particular, XI will be obtained on the
left hand side via a second test, see (4.18) below. Hence we start the estimate of the terms I-VIL.

In order to control the first term, we make use of Theorem 2.8. Its application to the moving domain
Q, has been justified in Remark 2.10, we thereby have

[Vllwze + Imllwez S 10ev +v - Vviiez + [1f] Lz + 10y, (4.9)
uniformly in time with a constant depending on C5 from (4.4). Note that we also used the estimate
100 0 0 yaras < 10unly 372 (4.10)

which is a consequence of (4.2) and the definition ¢, = ¢ +mm. In fact, ¢, is uniformly bounded in

time in the space of Sobolev multipliers on W3/%2(w) by (2.3) and (2.4) (together with the assumption
D14 X Oa4py, # 0) since 7 is uniformly bounded in time even in W22 (w) by (4.2). Hence the transformation
rule (2.5) applies. For every x > 0 and for s € (3, 00], we estimate using Sobolev’s inequality (recalling
that 0Q,, is Lipschitz uniformly in time with a constant controlled by Cs, cf. (4.4)) and (4.1)

I</Hv|
/\

e 2Vl DIl di

VVH2 2 dE < c/ [|v||?

| /\

IN

badt s [ (10w v Vvl + I + 10mlEyga) d,
I, y
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where the first part of the k-term can be absorbed in the left-hand side of (4.8). Note that r := 2% €
[2,00) since s € (3, 00]. The resulting constant depends on C; from (4.3).
For the boundary integral IT on the right-hand side of (4.8), we have

—1
L L P U ET s O

’ VY2200, IV VIwrazoa,) 100 o o5 Hiwiazea,) dt

/HVVHWl2||VVHW3/42||3t7]HW1/42dt
/ 991 11 3 100l ol -
<x / V92,00 dt + C(r) / 102, [V ]2, dt,
1. * I. y *

where we used that ||| 22 is uniformly bounded in time (see (4.2)) and the embeddings W1/22(0Q,) —
LY(09,) and W/42(09Q,)) — L8/3(0%,), as well as the following interpolation inequalities:

1
Hf”WZ 2(w) ~ Hf||L2 ||f|‘;{/112(w)7

(4.11)
HfHWZ Q(Q ) ~ Hf||L2 (Q”)'
For the third term III, we first have
0T < ,{/ 19 +v - V]2, dt+c(n)/ Vv, (Bm) % dt.
L * I. *
We estimate the second integrals above by
/ IVv. 7, (0im)||2 dt < / |7 (Bemm) |74 [ Vv][7s dt
I. I.
1 3
N / 17 @) 13 0/02 VYN 22 [Vl 12 dt
S [ 10y 19V IV
S [ 10y IV 19
< [ IVl g dt+C00) [ 10l Vv
I, x L. y *
Here we used the 2D interpolation from (4.11) again and
10 (Demm) [[yyz7a.2 S 110l /a2,
which follows from Lemma 2.2 and (4.4), and the inequalities:
[ fllLa,) S N llwsrazq, )
(4.12)

1 3
10z S 11 Ex 11 )

Thus we have the estimate for I1I:
Now we consider estimating the integral IV. For this we have

// Vv : 8t77n)TV vdxdt
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< [ 1932913 1 @)

1,

1 3
S [ 19T 19Vl 7 0om) -
% 1

S [ IV 9V 00l

/ VI N0 9l

< n/ 1v]12,2.2 dt+C(n)/ 012,121V V|72 dt, (4.13)
1. * 1. x *

where we used the energy estimate (4.2), the interpolation inequality (4.11) and (4.12) as well as Lemma
2.2 again. For the second integral in IV we obtain similarly

// Vv :VZ,(0um)VvT dxdt
< / IV 9.2, (@) 3 dt
IV 991 a1 2 (D) gt
S [ IVl VI 0unly e
3 1 1
S PR PRI
< [ Mz dt € [ [ 1ol g VI o (4.14)

Putting the estimate (4.13) and (4.14) together, we arrive at
IV < n/ IVI2 22 dt 4+ C( / 190y 21112 3.0 .
To estimate V, we note that it can be written as
_ / / V- F,(0mn)Vvdx dt + / /69 T Fp(0ym)Vvn, o 90771 dH2 dt.

Now we estimate the two integrals on the right-hand side above one by one. Firstly, we derive using
Lemma 2.2

// V7 - Z,(0ynn) Vv dx dt
7
< [ 19227 o) g9 e
1,
1 3
S [ 19752125 @unm) s IV 191
L . , (4.15)
S [ 197l 0l yga IV 910
I* Yy x x

1 1 3
S [ 197l 10y V01 19910
I, *

S [ (197l + 19vIE12) @t +.CO) [ 10l ol VI, dr
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Using similar technique we also have by the trace theorem

/ / an(amn)VVnnmp;l dH? dt

* 8977

S/I (7l L4 @an) | Fn (Oemm) || s /s (a0, ) [V VI L8/3 (06, dE

5/ [7llw1r2.200,) [Fn () [wi/a200,) IV VIIwiazoa,) At
/||7T||W12H8t’r]||W1/42||VV||W3/42dt
/||7F||W12H3t77|| 12HVVHL2||VV||W12

< [ (g + I¥1Rza) dt+COo) [ 10l I DI
Therefore, we obtain the estimate

vk [ (Il + IMEza) at+ ) [ ol vi, dr
L.

Notice that the sixth integral on the right-hand side of (4.8), i.e., VI, can be treated similarly to (4.15).
Observe from the estimate of V above, we must estimate here also the L?-norm of the pressure, for which
we use (2.17) (noticing that fw n - n,|0yp,|dy is strictly positive by our assumption of non-degeneracy,
cf. (2.7)). We have

/ ||w\|3vx1,2dt,g/ |\V7r||2Lidt+/ 2 dt
L. I I
< [ Ivalzars [ [ iopnpayaes [ [ P aya

+ / Imoll2 o, )t + / R

Using (4.9), for any ¢ € (0,1/2) the last term above can be estimated as

2 2
/I Va0, 4t 5 / T rase0,
< [ 19V, IV, d
<x / (100w +v - DV + 61 + 10l gr2) dit + c / I9v2, dt,
I.

whereas, by Poincaré’s inequalit
b )

[ Mmolis o,y de s [ 19mlis e+ [ moly at s [ 19l at= [ 19
* * * I L

where we used that (mp)q, = 0 by definition. At this stage, the integrals containing the pressure in the
above can now be controlled by means of (4.9).
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Combining all the above estimates, choosing « small enough and using (4.2) once more we conclude

that
sup/ \Vv\de—&—/ / |6tv+v~Vv|2dxdt+/ /|8§n\2dxdt+sup/ 10, Vyn|? dy
I. JQ I, JQ, I, Jw I, Jw

n

< / €25 dt + [ Vvoll2; + / lolf dt+ IVl + [ 9V a

). (4.16)
b VI NIz der [ ol oV ae s [ 1ol e
I I I.
o Vg Ayl + [ 108l
I. y I. y
In the above we used the interpolation for the structure norm ||8t77||‘2/v3 /2t
Yy
”6”7”31/3/2 < N0l 10emllyz2 < 10l 22 + 1Oemll5y .2 (4.17)
Testing the structure equation by 9;Ayn yields®
1 1
pow [ 10y dy+ [ [ joudynPayars Jsu [ 19,8002 dy
2 I. Jw I, Jw 2 I, Jw (4 18)

1 1
:5/ |Vyr]*|2dy+§/|VyAy770|2dy—/I /(g—!—F)&tAyndydt,

where F' has been introduced in (4.7).
Using a similar argument as in (4.10) to control F' by 7 and as in I —IIT and V to estimate 7, we have

/ /F-@tAyndydt
I, Jw

< / 1F {720 o [0 Ayl 12

< / Iz,

§/ (10ev +v - VvliLe + Iflce + 10l 2z + 10700z + llglles ) [10emllyy a2 dt
I Yy Yy

*

|8t77||W3/2,2(w) dt

< [ (10w +v-TvIE + 1815 + 1020l + lglEg) e+ c() [ 0wl e e
I, Y

*

<w [ (0w - Vol + 10l + 10801k + £135) de

I.
+e(w) / 102,22t + () / 9112 dt,
I. 4 I. Y

where we used the interpolation (4.17) in the last step. Hence we derive from (4.2) and Gronwall’s
inequality that

sw [ 10.9yiPay+ [ [0 aydess [ 19,8,02 dy
I. Jw I, Jw I. Jw
(4.19)
< [ 0w+ Vvl +10nly) de + cr)Co
1.

where

éOZCOJF/ \Vyﬂ*|2d}’+/ [VyAynol* dy.

5This test can be rigorously performed by mollifying the structure equation and multiplying it with the mollified test-
function.
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Combining (4.16) and (4.19), we arrive at

sup/ |VV|2dx+// |5‘tv+V~Vv|2dxdt+/ /\8fn|2dydt
I, JQ, « JQy I. Jw

+S}1p/‘atvy77|2dY+/ /I@Ay??IQdydt+S}lp/IVyAyTIIQdy
* I. Jw * w

,s/ Iv]
I.

Note that the condition (4.3) and (4.2) imply that fI* (lv

depending on C7. Therefore, we obtain from Gronwall’s lemma that

sup/ |Vv|2dx+/ / |8tv+v-VV|2dxdt+/ /|6t2n|2dydt§ Cy,
L. JQ « Iy L Jw

n

sup / (10:Tynl? + [Vy Ay l?) dy + / / A2 dy dt < C,,
« w I, Jw

w
2s
s—3
Ls

Vv]2, di + / 102,12 IV vI[2 dt + C.
I, y

_2s_
5+ ||8tn||‘2/v;12) dt < ¢ with a constant ¢

(4.20)

where C, depends on Co, C1 and Cy. We can now use the momentum equation and (4.9) again to obtain

(recall (4.10))
/ / |V2v|2dxdt—|—/ / |V | dx dt
.Ja, L. Ja,

(4.21)
5// \8tv+v.vv\2dxdt+/ ||f||%2 dt+/ ||8t77||€v3/2,2dt§ C,.
« IOy L. * I, y

At this point, we notice that the only term required to obtain (4.5) is a uniform-in-time bound for
I fﬂn |0;v|? dx dt. Since by (4.21), all the terms on the right-hand side of the momentum equation (1.3)
are squared integrable in space-time, our desired estimate follows once we show that the convective term
v - Vv is also squared integrable in space-time. Note that a bound for the sum 9;v + v - Vv as given
in (4.21) does not directly yield a bound for v - Vv. Nevertheless, combining (4.20), (4.21) and Sobolev
embedding, we thereby obtain that

| tvevvPaxaes [ v IvvIE at S suplvige [ 19V < 2
1. Jo, I. . * JI *

which completes the proof. O

Remark 4.2. The test function we used in the proof of Theorem 4.1 make sense. Indeed, recalling the
interface condition v o ¢, = 0ynn, we differentiate it with respect to time and obtain that

Ou(v o) =0vow,+Vvop,dip,.
With the definition of ¢, ¢, (t,y) = ¢(y) + n(t,y)n(y) we have for y € w
I (t,y) = Om(t,y)n(y).
This give us that
(Ov + Z,(0pm) - VV) 0 @,y = Opv 0 o + (Oym) - Vv o o,
— OV o p,) = 0P,
where we used the properties of the extension .%#, introduced in Lemma 2.2.

Remark 4.3. We remark here that the conditions we proposed in Theorem 4.1 as the minimal assump-
tions for the conditional strong solution for the fluid-structure system (1.2)—(1.4). The Serrin condition
for the velocity of the fluid (4.3) is crucial in the estimate of the convective term and the Lipschitz con-
dition for the structure (4.4) plays an important role in the steady Stokes estimate, which are applied
multiple times.
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5. WEAK-STRONG UNIQUENESS

In this section, we are interested in the weak-strong uniqueness of the solutions for the fluid-structure
interaction system (1.2)—(1.4). We aim to compare two solutions (vi,7;) and (va,72), where (vy,7;)
is a weak solution satisfying 7, € L>(I;C%!(w)) and (vg,72) is a strong solution, i.e. satisfies (4.5).
Since the fluid domain depends on the deformation of the shell, we have to transfer the strong solution
by means of a change of variables to the weak domain. We transform vy and 5 (note that we have a
pressure for the strong solution but not for the weak one) to the domain of the weak solution (that is
Q,,) by setting

vyi=voo W, . myi=moW,, ., foi=fHhoW, .. (5.1)

where the Hanzawa transform ¥,,_, :Q, — ,, is defined in (2.9). With this information, we are now
in the position to state the main result of this section.

Theorem 5.1. Let (vy,m1) be a weak solution of (1.2)—(1.4) with data (f1,91,70,1, 7,1, Vo,1) in the sense
of Definition 2.5 and let (vo,12) be a strong solution of (1.2)—(1.4) with data (f2, g2, 10,2, Mx,2, Vo,2) in the
sense of Definition 2.6. Suppose further that

m € L¥(I;C% (w))
and define v, and f, in accordance with (5.1). Assume that f,f, € L*(I;L*(,)) and g1,92 €
L3(I; L*(w)). Then we have

sup/ Vi (1) — vt |dx+sup/ B — ) + 1Ay (m — 1)) dy

tel Q)
/ /9771(0

< /Q [v1(0) — v5(0)[2 dx + / 1011 — ) (O0)? dy + / Ay (m — n2)(0) dy

n0,1
+// \f1—£2|2dxdt+//|gl—g2|2dydt.
1Ja,, 1Jw

Proof. It turned out more suitable to perform the uniqueness and stability analysis on the weaker geom-
etry given by 7. We therefore transfer the strong solution (72, v2) to the geometry given by 7. With
the transformation (5.1) in hand, we obtain the equations for (v,,72) in €2, as follows:

B,,—y : Vv, =0,
at2772 — OrAyna + A§772 =g>—n' [Anz—m Vv, — an—mﬂﬂ O Py Ny 5 (5.4)
Ovy — AV, + Vry = hyo(vy) + div[(Ay, —p, — I3x3) V¥y + (I3x3 — By, —p, )1,

(v1 —22)|2dxdt—|-// 10 Vy (m — n2)|* dy dt
IJw
(5.2)

where

hpp(vy) = (1 - Jnrm)atlz = Jno—m V"zat‘l’ oWy, — By Vo, + Jpy i £,

2=
and the matrices A,,_,, and B,,,_,, are similarly defined as in Subsection 3.1 by replacing the subscript
1 by 172 — 1. As a consequence of (2.10) we obtain the pointwise estimate

‘1 o= m| + ‘Anz m H3x3| + |an—n1 —I3x3| Slm — 772| + |vy(771 — 12| (5.6)

where the hidden constant depends on the L (I;C%!(w))-norms of 7; and 7e. Next we introduce a
suitable Bogovskij operator for our setting:

Bog,, (f) := Bog(fxa,, )

where Bog is defined in Corollary 2.12, depending on |91 1o (75, =t L and [|[Vn1 g (75, =t Cr only.
Note that this is the point where the additional Lipschitz assumption of the weak solution is crucially
needed.

To obtain the difference estimate, we would like to test the equation for (vi — v,,m1 — 12) by the pair
(Vi — vy + Bog,, (divvy), 0 (m — 12)). However, vy is not smooth enough to qualify as a test function
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for the weak equation. We thus consider the following procedure: In the first step, we use the energy
inequality for (vq, 1), that is

t
s [1omiay 4 [1amPay+ [ [ ov,miaydo
+%/ vy |? dx+// |Vvi|? dx do
Q

n1(t) Qo (o)

<1 / 9 (0)? dy + L / Ay (02 dy + 1 / v1(0)]? dx
Dy (0)

/ /91at771 dyd0+/ / vy - fidxdo

Q1 (o)

for a.a. t € I. Next observe that for a.a. ¢

t t o=t
/ /Aym Ot Aynz dy do = —/ /@m - A2y dy do + U AymAyne dy} ;
0 w 0 w w o=0

an identity that can be rigorously shown by using convolution in space. This implies, by testing the
equation for (vi,n1), see Definition 2.5 (c), with (—v, + Bog,, (divvy), —0;n2), that

/ (= Ay () Dya(t) — B (1) Bups(t)) dy + / Ay (0) Ay (0) dy

- /Q vi(t) - (va(t) - Bog,, (divv,(t)) dx

n1(t)

t
+ / / (8¢m1 OFnz — 0Ny - 0V ym2 + g1 0o + Oy An) dy do
0 w

—/ Oy (t) Ogma(t) dy — / vi(t) - (vo(t) — Bog,, (divvy(t))) dx

()

t
+ / / (0 8212 — 0:V 111 - 0, Ve + g1 Oyt — Ayiy rAyny) dy do

/ B (0) 12(0) dy + / v1(0) - (—v5(0) + Bog,, (div v,(0))) dx

n1(0)
/ / —v, + Bog,, (divvy))) + vi @ vi : VBog,, (divy,))) dxdo
Q1 (0)
/ / V)vy - vydxdo — / / [vi|*n - Oymeny, o w;lldHQ do
Qm(o) 1 (o)
/ / — V1 : V(=vy + Bog,, (divyvy)) + fi - (v, 4 Bog, (divy,))) dxdo.
n1(6)

Finally, we multiply the (strong) equation for (—v,, —7m2) by (v1 — v, + Bog, (divvsy), di(m —n2)). This
implies after integration by parts

t
5[ (0mOF +1amOP) dy = [ [ 09m 09y —m)dyar+d [ lax
w 0 01 (t)
. 1
—%// nocpm 5m1nmo<pml|v2|2d7-l2do—// Opvy - vidxdo
0 (o) 2y ()
/ / V(vy —vi)dxdo

n1(a)
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1
-2
21 (0)

/ / his(vy) - (Vi — vy + Bog,, (divy,)) dxdo

W](U)
/ /;2
“/Rn1<m

/ / Ay, —I3x3) Vv, s V(vi — vy + Bog,, (divy,)) dxdo

W](U)

/ / (Isxs — Byy—n, )Ty : V(v1 — ¥y + Bog, (divy,))dxdo

)

t t
+ / [ omayao— [ [ v,amovmayds— [ [ gontm —m)dyao
0 Jw 0 Jw 0 Jw
t
+/ /8t7’}2 Btm dydcrf/[)tng(t) 8t7]1(t) dy
0 Jw w

Combining the above we find that

S m - v |2dx+// V(1 - vy) dxdo
Q)

W1(0)

/\at m—m)(0)? dy+/o /|at y(m—ng)IQdydUJr%/IAy(m—nz)(t)\Qdy
<1 /2 v1(0) — va(0)[2dx + 1 / 1011 — ) ()P dy + 1 / Ay (n1 — ) (0) 2 dy
71 (0) w w

v OF dx+ 5 [ (1m0 18 mOF) dy

v, - 9;Bog, (divv,)dxdo —|—/ v, - Bog, (divv,)dx

n1 (o)

v5(0) - Bog,, () (divv,(0)) dx + / / 5 1 VBog, (divv,)dxdo

Q1 (o)

/ / s m)atvz) (Vl — v, + Bog,, (divyz)) dxdo

Q1 ()

/ / Jo—m V0, ¥ n2 m © Py ny) - (Vi — vy 4 Bog, (divy,)) dxdo

W1(U)

/ / Vv,yvy - (vi — v, + Bog,, (divy,)) dxdo

Q1 (o)

/ /8 no, - (amny,) o e, [vo|*dH? do
Q

n1 (o)

—//89 now@, b (meny,) o ¢, vi|*dH? do

(o)
/0 / B,,—y — ngg)VXzyg : (v1 — v, + Bog,, (ding)) dxdo
m(a)
/ / (Vi — vy) - 9 Bog,, (divv,) dxdo — / (Vi — ¥y) - Bog, (divv,)dx
Ly (o) Ly (1)
+/ (Vi —¥5)(0) - Bog,), (divv,(0)) dx — / / V(v1 —v,) : VBog,, (divv,)dxdo
Ly (0) Ly (o)
/ / A,y — Isx3) Vv, 0 V(vi — vy 4 Bog, (div,)) dxdo

n1(a)
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/ / H3X3 nz—m)l2 : V(vi — vy + Bog,, (divy,)) dxdo

n1(0)

//91 92)0:(m — n2) dyd0+// (Vi —vy) - (f1 — f£5) dxdo
n1(0
‘/‘/"71(0)

Ins—m )fo - (V1 — vy) dxda—i—/ / Iy —ny )E2Bog,, (divv,) dxdo
'Il
/ / v1® vy : VBog, (divvy) dxda—!—/ / vy - Vv - vydxdo
771(0) 771(0)

/ / (f1 — £5)Bog,, (divv,) dxdo

Q1 ()

= Z R;. (5.7)
i=1
Note that Ry, Ro and R3 are in good form and so we start the estimate for the remaining terms on the

right side of (5.7). We benefit multiple times from the estimates for the Bogovskij operator, cf. Corollary
2.12, yielding

[Bog,, (divvy)[lwizq, ) = [IBog,, (div(vy — vi))lwiz@,,) S Vi — Yallwiz,,), (5.8)

and

Bog,, (div¥y)lL2(a,,) = [Bog,, (div(vy —vi))lL2q,,) S V1 = ¥allz2(a,,)- (5.9)
For the terms including the external forcing we obtain

Ria + Rig + Ri7 + Rig + Rig + Ry
t
<3 / (Ivi = Yal3aga,,) + IV = vo)l2aa,y + 110 = Bimal3a ) do

t t
+C) / 1621300l — 2oy do + C () / (g = 92120y + I — Eall3ar, ) o

+C(0)[[v1(0) = ¥5(0) 1220, o))
Using (5.6) and (5.8) we estimate

R4 S / Hl - JV]Z—TII HL4(QU1(U))||at!2||L2(in<g))”V1 -V + Bogv]l (div!2)||L4(Qn (0)) do
< [ = mllwe 052l 120, 0 91~ + Bty (0133 0,

<5 / IV = o), )y do + C() / 190 22cr, oyl = el o
0 0

According to the properties of the map ¥,,_,, discussed in Section 2.4, we continue estimating Rs:

Rs < /\lVV2|\L4(Qm(a))||3t o © W i llzace,, o) IV = ¥allz2(a,, (o)) do
5/0 [vallwaz2(0,, o) 10:(m = n2)llLa@) Vi = ¥allr2(o,, o)) do

t t
<3 [ 107y m = ml ey Ao+ CO) [ ol V1 =l . 0o

For the Ry term, we use the fact that [[Vv,|[z2 is essentially bounded in time and (5.6) to obtain

Ry 5 /0 Isx3 = Buoi—na L, (o V2l @, (o) V1 = YallLae, ) do
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<5 / IV = vo)lEaq,, )y do + C(8 / I e oy 1 = el do
We now start the estimate for Rio. we rewrite div v, as follows:
divvy =1I3x3: Vvy = (Isxz — By, —p, ) 1 Vivy, (5.10)
where we take into account the divergence free condition for v, on €, derived in (5.3). Using the

properties of the Bogovskij operator from Remark 2.13 and (5.8) as well as (5.6) and (2.12) we have

t
Ry < /O Vi = ¥sllze(@,, o) | Tsxs — Bypy—ny ) 3tV!2||W—1,g(QmU)) do

+ /t||V1 —KQHLAI(Q,,I(@)||at(Bnrm) : V| *1’%(9771(0)) do

/ Ivi = Yallwieq,, o lTsxs = Buaen lwiaa,, o 10¥sll20, o) do

/ Ivi = alliota, )Vt =Vallit e, 10V 01 =)l 2[99 2, o) do
<o / 1901 = v) 220, do + 0 / 1907 (= 12) o)

5) / 10 1220, i = () do + C(6) / Vi = VallZe,, ) do

Here we also used that v, € L>(I; W2(€,,)). With (5.10) we have
Rui < |lvi = vl 22, [Bog ((Isxs — B) : Vvy)lz2(,,)
< lvi = ¥allrz, ) [(Isxs — B) : Vvs[lw-12(q,))
< dfva —X2H%2(in) +C(0)[|(Isxs — B) VV2||L ¢(@Q,,)
< Ollvi = ¥ollfeq,,) + COIVYalZziq, ) I Vy(m —m2) 2
< 0lvi — w2, )+ COITy 1 = M)l 19y 0 = 1) e
< Ollvi = ¥allfeaq,,) +elVy(m = ) [frie) + CO ) Vy(m —m2)ll72 ()
< dflvs —X2Hi2(szm) +elVy (m = n2) 3120
+C0,8)[Vy(m —n2)llr2(0,:02(00) [[Vy (M — m2)lwr2(0,6:02(w))
< 6fjvi — XZH%Q(QM) +el[Vy(m = m2) 50y + VIV (= 12) 512 0,002 ()
+C(6,8,0)Im — m2ll720,6w22 ()
where we used
19y (0 = 1)l 02y S 950 = 12120 a5z oy 1V (1 = 712) 1.2 0 0122
Using (5.10) we estimate for Ry3:

t
Rus < / IVt = va)lzac, o) [ VBog,, (div vyl oo, ) do
t
< / IV = ¥o)llzcan, oy llTss — Baa ) Vsl o)
t
§/ V(v = ¥o)ll2@,, (o) I Vy (= m2)llLa@) IVl a9, ()

<5 / IV = Vo), ) + €O / v Baar, ool — el
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where we also used
HVBogm (diVXQ)HLQ(Qm(U)) S ||diVXQHL2(Q,,1(<,))-

Recalling the regularity m, € L*(1, W'2(Q,,)) and v, € L*(I, W?2(Q,,)), we estimate Ri4 and Ry5 in a
similar way. By (5.6) we thus have

t t
Ry < 5/0 IV(vi = ¥o)lli2q, ., do+ 0(5)/0 (Ivallf2z@, oy + Dlim = m2llfyes,) do,

n1 (o) n1 (o)

and

t t
Rus <8 [ 190 =)l 0, ) 4o+ CO) [ (Imalfrae

Now we deal with the estimate of Rg, R7, Rg and Rsg, Ro1 together. We first take an integration by part
of Rog and obtain

)+ D)llm = n2llfye.2 () do

20y (o)

¢
Ry = _/ / v1 - Vvy - Bog, (divv,)dxdo.

291 (0)
Note that there is no boundary term since the Bogovskij operator vanishes on the boundary. We then
rewrite Rg as

R —/ / vy — V1) Vvy(vi — vy + Bog, (divy,)) dxdo

Q1 (o)

/ / (Vi = ¥5)V(vy — vi)(v1 — ¥y + Bog, (divv,)) dxdo

n1(0)

/ / voV(vy — vi)(vi — vy + Bog,, (divy,)) dxdo

n1(0)

/ / v1Vvi(vi — v, + Bog,, (divy,)) dxdo

Q1 (o)

= Reo + Re1 + Re,2 + R 3.
For Rg o we have by (5.9)

t
Re < / Vo = villza@,, o) IV¥allz2(,, (o) VI — Yo + Bog, (divyy)|zaq,, ) do
0
t
2
S [ s =Vl V¥l 260, ) o
t :
S [ =vilka, V01 =)l 00

<5 / IV = vo)l3a, )y do + O / Ivi = Va2, ) o
where we used the fact that v, € L (1, W?(€2,,)) and the interpolation inequality in 3D:

1 3
lvo — V1||L4(Q,,1(c,>) S vy — Vl”iz(gm(g))uvl - Xz”évl.z(gm(a)y

Taking an integration by parts with respect to space, we estimate g 1 as

t
1 .
Rg1 = —/ / : §V|V1 —vo|* (Vi — vy + Bog,, (divv,))dxdo
11 (o)

1/t _ _
-5 / / [vi — vy’ mo@, - (8 — (9¢ma)ny, ) o @, ' dH? do,
o Joq,,

where we have used the fact that

div(vy — vy + Bog,, (divv,)) = div(—v, + Bog, (divy,)) =0 in ,,.
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The estimate of Rg o is straightforward and we get
Raz < [ 190 = 225200, 10l (0, 93 = 3o+ Bog, (@35 |0,

<5 / IV = vo)l3ea,, )y do + C(8 / ¥ e, IV = Yolaga, )y do

Adding Rg, R7, Rs, Rog and Ro; we arrive at
Rg + R7 + Rs + Rog + Ro1

t
<5 / IV =¥l o 47+ CO) [ (14 ¥allivaaca, o) 1 = Vol Ao
1
/ / no g, ! ( V1?0 o @yt — §|V1*22|2(5't771 5”72)09%11) n,, o, 'dH*do
"11

/ / nog, ! ( Vol ?0im 0 ! — [vil*Oima 0 ;) ) n,, o @, 'dH*do, (5.11)
"]1

where we use an integration by parts for the following term

I

To deal with the boundary terms on the right side of (5.11), we notice that

t
1 _ _
vy - Vvividxde :/ /39 pne ‘107711|V1|2(8t771n771) OSomldH2 do.
n1

n1 (o)

1 1 1 B ~
SIvildm o @yl = Slvi = vo (O — Bue) 0 @y + S [val*Oim 0 @yt = va*Oima 0 !
= 5 (Omalu(m —m2)2) 0 5!

on 0, using the boundary conditions for v; and v,. The last two integrals on the right-hand side
of (5.11) are thus bounded by fot 10: (1 — 772)”%2(@ do using also that 9y € L*°(I x w). Putting all

the estimates together, taking the supremum with respect to time on both sides of (5.7) and applying
Gronwall’s lemma we obtain (5.2). O

(5.12)

Remark 5.2. The estimate from Theorem 5.1 also applies when the forcing in the momentum equation
is in divergence form, that is

O — 0y Ayn + A?,n =g—nT(1+F) o pyny,|det(Vyep,)| for all (t,y) € I X w,
v+ (v-V)v=Av-Vr+divF for all (t,x) € I x Q,,
divv=0 for all (t,x) € I x Q,,

for some F : I x Q,, — R3*3. In this case we obtain the estimate

sup /Q [V (t) — v (£)[2 dx + sup / (18 (m — m) D + Ay (11— m) ()[) dy

tel JQ,, () tel

I

|V1(0)—!2(0)\2d><+/ |0 (m —772)(0)|2d.Y+/ Ay (m —12)(0)[* dy

+// |F1—E2|2dth+//\91—92\2dydt,
1Ja,, 1w

V(v1 - vy)? dxdt + / / 10,V (11 — m)|? dy dt
IJw

<
Q

n1(0)

where Fy :=Fy0 W, _, .
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6. THE MAIN RESULT

In the following, we formulate the desired conditional regularity and uniqueness result for (1.2)—(1.4),
which implies Theorem 1.1 and Corollary 1.2. Its proof follows by combining Theorems 3.1, 4.1 and 5.1.

Theorem 6.1. Let T > 0 be given. Suppose that the dataset (£, g,n0,mx, Vo) satisfies (2.15) and (3.1).
Let (v,n) be a weak solution of (1.2)-(1.4) in the sense of Definition 2.5. Suppose that we have

veL(I;L*(Q), 2+2<1, (6.1)
ne L®I;C'(w)). (6.2)

Then (v,n) is a strong solution in the sense of Definition 2.6 on I = (0,t), where t < T only in the case
where §1,, () approaches a self-intersection as s — t or it degenerates® (namely, if 1112(61% X D260p)(8,y) =
s—

0 or lin% n(y) - ny(y) = 0 for some y € w). Moreover, (v,n) is unique in the class of weak solutions
s—

with deformation in L> (I, C%(w)).

Proof. Consider first the problem on the interval (0,7*) in which the strong solution exists by Theorem
3.1. On account of (6.2) Theorem 5.1 applies and thus both solutions coincide. Hence the strong solution
satisfies (6.1) (with a constant independent of T*). Thus we obtain the estimate from Theorem 4.1.
Now we can apply Theorem 3.1 to obtain a strong solution on the interval (T*,27*) with initial data
u(T*),n(T*),0n(T*). This procedure can now be repeated until the moving boundary approaches a
self-intersection or degenerates (that is (01¢,; X O2¢0,))(T,y) = 0 for some y € w). O
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