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AMarkov theorem for generalized plat decomposition

ALESSIA CATTABRIGA AND BOSTJAN GABROVŠEK

Abstract. We prove a Markov theorem for tame links in a connected closed
orientable 3-manifold M with respect to a plat-like representation. More pre-
cisely, given a genus g Heegaard surface 6g for M we represent each link in M
as the plat closure of a braid in the surface braid group Bg,2n = ⇡1(C2n(6g))
and analyze how to translate the equivalence of links in M under ambient isotopy
into an algebraic equivalence in Bg,2n . First, we study the equivalence problem in
6g⇥[0, 1], and then, to obtain the equivalence in M , we investigate how isotopies
corresponding to “sliding” along meridian discs change the braid representative.
At the end we provide explicit constructions for Heegaard genus 1 manifolds, i.e.
lens spaces and S2 ⇥ S1.

Mathematics Subject Classification (2010): 57M27 (primary); 20F38, 57M25
(secondary).

1. Introduction and preliminaries

The connection among links and braids dates back to the thirties when the results
of Alexander [1] and Markov [22] showed that it is possible to represent each link
using a braid, by “closing it up”, and described the equivalence moves connecting
two different braids representing the same link. Forty years later in [6] Joan Birman
investigated another way to use braids with an even number of strands to represent
links: closing them in the so called “plat” way. She proved that each link is the
plat closure of a braid and that two different braids representing the same link are
connected through a stabilization move and moves corresponding to the generators
of a subgroup of the braid group studied by Hilden in [19].

After these pioneer works many important results succeeded one another, as
for example the use of braid representations to construct links invariants. In this
direction an interesting result is a description of the Jones polynomial of a link in
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terms of the action of a braid, having the link as plat closure, over a homological
pairing defined on a covering of the configuration space of n points into the 2n-
punctured disc (see [4]).

In the light of these fruitful connections, many authors investigated the possi-
bility to use braids to represent links also in connected closed orientable 3-mani-
folds different from S3. A first generalization of Markov’s and Alexander’s results
was presented in [28], using the idea of fibered knots, while in [12, 20, 21] another
generalization is reached via mixed braids, i.e., braids having a part of the strands
representing the ambient 3-manifold, via Dehn surgery.

With respect to plat closure, the first attempt to generalize Birman’s and
Hilden’s results was done in [3], using the notion of generalized bridge decom-
position, i.e., plat closure with respect to Heegaard surfaces. More precisely, the
authors proved that, given a connected closed orientable 3-manifold M and a Hee-
gaard surface6 in M , each link can be represented as the plat closure of an element
of B2n(6), the braid group on 2n strings of 6. Moreover, they studied a subgroup
of B2n(6), that they named the generalized Hilden group, acting trivially in the
representation and asked whether, as in the classical case, this group, up to a stabi-
lization move, is enough to describe the equivalence.

In this paper we refer to this question by generalizing Birman’s equivalence
theorem in this setting, i.e., presenting a finite set of moves connecting two braids
in B2n(6) representing isotopic links in the manifold (see Theorem 4.5). The result
is reached in two steps: first we study the equivalence problem in6⇥ I , then we add
“slide like” moves to take care of isotopies that are defined in the whole manifold.
While the moves arising in the first step do depend only on the genus of 6, and so
are the same in each manifold having Heegaard genus at most g, the nature of both
the manifold and the Heegaard surface involved in the representation are encoded
in the slide like moves. In order to represent the moves geometrically we borrow
the idea of arrow diagrams used in [15,25,26].

Our approach seems to be quite flexible, since, once the manifold and the Hee-
gaard surface are fixed, in order to describe explicitly the equivalence, it is enough
to find the words in B2n(6) whose plat closures are the boundaries of two systems
of meridian disks of the Heegaard decomposition associated to 6.

Further development on the topic may include studying the connection among
surface braids when the Heegaard splitting is not fixed, e.g., studying the algebraic
relation between braid representatives of a link with respect to the stabilization of
Heegaard splittings. Another open question is the construction of new link invari-
ants or the revision of old ones in terms of the braid representative. Finally, it could
also be interesting to expand the set of examples, worked out in this paper for Hee-
gaard genus one manifolds, to higher Heegaard genus manifolds.

The paper is organized as follows: in Section 2 we review the notion of gen-
eralized plat decomposition and how a link can be represented through elements
of surface braid groups; in Section 3 we investigate the equivalence in thickened
surfaces while in Section 4 we prove the main theorem of the paper, that is, we de-
scribe the moves connecting braids representing isotopic links. The last section is
devoted to the explicit algebraic description of the equivalence moves in manifolds
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with Heegaard genus at most one: S3, where we obtain Birman’s result, lens spaces
and S2 ⇥ S1.

We end this section by recalling some well-known facts about link isotopy in
3-manifolds in order to fix our notations and conventions. Throughout the text all
the 3-manifolds are supposed to be connected, closed and orientable and we will
consider only tame links (i.e., 1-dimensional closed PL-submanifolds).

Two links L and L 0 in a 3-manifold M are equivalent if there exists an ambient
isotopy of M taking L into L 0, i.e., there exist a PL-map H : M⇥ [0, 1]! M such
that: H(·, t) is a PL-homeomorphism of M for each t 2 [0, 1], H(·, 0) = idM and
H(L , 1) = L 0.

In the PL-category ambient isotopy is realized through a finite sequence of
the so called 1-moves. A 1-move (and its inverse) on a link L in M is a local
elementary combinatorial isotopy move, realized as follows:

(1) Take a closed ball B3 embedded into M and such that L \ B3 is a trivial arc
a properly embedded in B3 (i.e., an arc that co-bounds an embedded disk with
another arc on @B3);

(2) Replace the arc a by two other arcs such that all three arcs span an embedded
triangle in B3 intersecting L only in a. If [V1, . . . , Vn] denotes the (n � 1)-
simplex having V1, . . . , Vn as vertices, the previous move can be combinatori-
ally described as

L  ! (L � [P, Q]) [ [P, R] [ [R, Q]

with {P, Q} = @a and [P, Q, R] \ L = [P, Q].

2. Heegaard surfaces and generalized plat decompositions

In this section we review the notion of generalized plat decomposition, introduced
in [13], and describe how a link can be represented through elements of surface
braid groups (see [3]). We end the section by describing the set of generators of
surface braid groups given in [2].

A Heegaard surface for a 3-manifold M is a connected closed orientable sur-
face 6 embedded in M such that M \ 6 is the disjoint union of two handlebodies
(of the same genus). From an extrinsic point of view, we can say that M is home-
omorphic to H1 [h H2, where H1 and H2 are two oriented copies of a standard
handlebody in R3 (see Figure 2.1) and h : @H2 �! @H1 is an orientation revers-
ing homeomorphism. The triple (H1, H2, h) is called Heegaard splitting of M and
the Heegaard surface is @H1 [h @H2. Each 3-manifold admits Heegaard splittings
(see [18]), moreover, Heegaard splittings are 3-dimensional cases of symmetric ver-
sions of handle decompositions, that holds for each differentiable manifolds of odd
dimension (see [23]). Indeed, one handlebody is obtained by attaching g 1-handles
to a 0-handle, while attaching g 2-handles to one 3-handle, gives, up to duality, the
other handlebody. The Heegaard genus of a 3-manifold M is the minimal genus of
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a Heegaard surface for M: the 3-sphere S3 is the only 3-manifold with Heegaard
genus 0, while the manifolds with Heegaard genus 1 are lens spaces (i.e., cyclic
quotients of S3) and S2 ⇥ S1. While S3, as well as lens spaces, have, up to isotopy,
only one Heegaard surface of minimal genus (and those of higher genera are stabi-
lizations of that of minimal genus), in general, a manifold may admit non isotopic
Heegaard surfaces of the same genus (see for example [24] for the case of Seifert
manifolds).

Heegaard surfaces are the tool that leads to a generalization of the classical
notion of bridge decomposition for links in R3 (or S3) to the case of 3-manifolds
(see [13]). Given a handlebody H , we say that a set of n properly embedded dis-
joint arcs {A1, . . . , An} is a trivial system of arcs if there exist n mutually disjoint
embedded discs, called trivializing discs, D1, . . . , Dn ⇢ H such that Ai \ Di =
Ai \ @Di = Ai , Ai \ Dj = ; and @Di � Ai ⇢ @H for all i, j = 1, . . . , n and
i 6= j . We say that the arc Ai projects onto the arc @Di � int(Ai ) ⇢ @H (via Di ).
Let 6 be a Heegaard surface for M . We say that a link L in M is in bridge position
with respect to 6 if:

(i) L intersects 6 transversally;
(ii) The intersection of L with both handlebodies, obtained splitting M by 6, is

a trivial system of arcs.

Such a decomposition for L is called (g, n)-decomposition or n-bridge decompo-
sition of genus g, where g is the genus of 6 and n is the cardinality of the trivial
system. The minimal n such that L admits a (g, n)-decomposition is called the
genus g bridge number of L . Clearly if g = 0, the manifold M is the 3-sphere and
we get the usual notion of bridge decomposition and bridge number of links in the
3-sphere (or in R3). The notion of (g, b)-decomposition is a useful tool to study
links in 3-manifolds (see for example [7, 8, 10, 16]).

As bridge decompositions of links in S3 (or R3) are connected to plat clo-
sures of classical braids, (g, b)-decompositions can be used to represent links in
3-manifolds via braid groups of surfaces as follows (see also [3, 9]).

Let 6g be a genus g Heegaard surface for a 3-manifold M and let c = {c1, . . .,
cg} and c⇤ = {c⇤1, . . . , c

⇤
g} be the boundaries of two systems of meridian discs of

the two handlebodies.1 In terms of handle decomposition we can think of c as
the attaching circles of the 2-handles and of c⇤ as the dual attaching circles of
the 1-handles, i.e., the attaching circles of the dual 2-handles in the “upside down”
decomposition (see [17]). Starting from the data (6g, c, c⇤) we can reconstruct
M by: considering the thickened surface 6g ⇥ [0, 1], gluing 2-handles along the
curves c ⇥ {1} ⇢ 6g ⇥ {1} and another set of (dual) 2-handles along the curves
c⇤ ⇥ {0} ⇢ 6g ⇥ {0}, and closing the resulting manifold by attaching a 3-handle
and a (dual) 3-handle. Given a Heegaard splitting of a 3-manifold M , we call the

1 Recall that a genus g handlebody is uniquely determined, by the boundary surface and the
boundaries of a system of g disjoint meridian discs whose complement is (homeomorphic to) the
3-ball.
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triple (6g, c, c⇤) Heegaard diagram of the splitting. Up to homeomorphism, we
can always suppose that 6g and c⇤ are as depicted in Figure 2.1, while c depends
on M and on the chosen Heegaard surface.

Referring to Figure 2.1, let P2n = {P1, . . . , P2n} be a set of 2n distinct points
on 6g and denote with Bg,2n , the braid group on 2n-strands of 6g, i.e, the funda-
mental group of the configuration space of the 2n points in 6g. Fix a set of n arcs
�1, . . . , �n embedded into6g, such that �i\� j = ; if i 6= j and @�i = {P2i�1, P2i },
for i, j = 1, . . . , n. Given an element � 2 Bg,2n , realize it as a geometric braid, that
is, as a set of 2n disjoint paths in6g⇥[0, 1] connectingP2n⇥{0} toP2n⇥{1}. The
plat closure b� ⇢ M of � is the link obtained “closing” � by connecting P2i�1⇥ {0}
with P2i ⇥ {0} through �i ⇥ {0} and P2i�1⇥ {1} with P2i ⇥ {1} through �i ⇥ {1}, for
i = 1, . . . , n. Clearly, b� is in bridge position with respect to 6g and so it has genus
g bridge number at most n. Note that this closing procedure does not depend on the
system of meridian curves c, however, as we will see, c characterizes the manifold,
so the isotopy type of the resulting link does depend on it.

c∗1 c∗2 · · · c∗g

P1 P2 P3 P4 · · ·P2n − 1 P2n

γ1 γ1 γn

Figure 2.1. The standard choice for 6g , c⇤ = {c⇤1, . . . , c
⇤
g} and �1, . . . , �n .

In Figure 2.2 an example is represented with g = 1 and n = 2, with 61 ⇠= S1 ⇥ S1
represented as a square with opposite sides identified.

β

−−−−−−−−−→

t = 0

t = 1

Figure 2.2. An example of a closure b� with � 2 B1,4.

As in the classical case, it is possible to prove an Alexander representation theorem,
i.e., each link in M is isotopic to the plat closure of a braid in Bg,2n . This follows
essentially from [3, Proposition 4.6], where, however, a slightly different approach
is used. So here we describe a more topological proof using techniques analogous
to those used in [6, Lemma 2], that will be useful throughout the rest of the text.

Theorem 2.1. Every link L in a 3-manifold M having Heegaard genus at most g, is
isotopic to a geometric braid in Bg,2n , the plat closure of which is equivalent to L .
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Proof. Let (6g, c, c⇤) be a Heegaard diagram for M , where 6g and c⇤ are those
depicted in Figure 2.1. Up to isotopy, we can assume that L ⇢ N (6g), where
N (6g) denotes a closed tubular neighborhood of 6g. We choose a parametrization
N (6g) ⇠= 6g ⇥ I , with I = [0, 1], such that L ⇢ 6g ⇥ [0.25, 0.75] and fix
an orientation on each component of L . By projecting a point of N (6g) onto a
boundary component of @(6g ⇥ I ), we mean moving the point along the I trivial
fibration until the required boundary component is reached. Let Q1, . . . , Qk , be the
vertices in a PL-decomposition of L having the following property:

given a triple of consecutive points (according to the orientation of
L) Qi�1, Qi , Qi+1 there exist an open neighborhood Ni of the I
fibre trough Qi in N (6g) whose intersection with L is contained in
[Qi�1Qi ] [ [Qi Qi+1].

(*)

By a general position argument we can assume that L , up to isotopy, contains no
arcs which are horizontal with respect to the height function associated to the pro-
jection onto the I factor. Moreover, we say that a subarc of L is oriented up-
wards (respectively downwards) if moving along it, with respect to the fixed orien-
tation, its projection over I is increasing (respectively decreasing). Note that each
component of L contains at least one arc oriented upwards and one arc oriented
downwards.

We will construct a link L 0 isotopic to L such that:

(1) L 0 is contained in N (6g);
(2) The link L 0 meets both 6g⇥ {0} and 6g⇥ {1} in n points, and meets 6g⇥ {t},

for each t 2 (0, 1) in exactly 2n points.

For each connected component of L , fix a point inside it contained in an arc oriented
upwards and repeat the following process: moving along the component according
to the fixed orientation and starting from the distinguished point let [Qi , Qi+1]
be the first arc which is oriented downwards; consider the neighborhood Ni of
Qi ⇥ I defined in (*) and let Q0i , Q

00
i be the unique point of intersection of @Ni

with, respectively, [Qi�1, Qi ] and [Qi , Qi+1] and Q+
i be the projection of Qi onto

6g ⇥ {1} (see Figure 2.3). Replace [Qi�1, Qi ] [ [Qi , Qi+1] with [Qi�1, Q0i ] [

Figure 2.3. The braiding process.
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[Q0i , Q
+
i ] [ [Q+

i , Q00i ] [ [Q00i , Qi+1]. This move can be clearly decomposed into
a sequence of 1-moves. Now go on, along the same component of the link, un-
til you meet the first subarc [Qk, Qk+1] which is oriented upwards and replace
[Qk�1, Qk][ [Qk, Qk+1] with [Qk�1, Q0k][ [Q0k, Q

�
k ][ [Q�k , Q00k ][ [Q00k , Qk+1],

where now Q�k is the projection of Qk onto 6g ⇥ {0}. Let L 0 be the link obtained
at the end of the process: clearly L 0 is isotopic to L and L 0 satisfies properties (1)
and (2).

Let Q� = {Q�1 , . . . , Q�n } (respectively Q+ = {Q+
1 , . . . , Q+

n }) be the set of
points in 6g defined by the condition L 0 \

�
6g ⇥ {0}

�
= Q� ⇥ {0} (respectively

L 0 \
�
6g ⇥ {1}

�
= Q+ ⇥ {1}). Referring to Figure 2.1, for each arc �i , let Bi

be an internal point of the arc. Since the configuration space Cn(6g) of n point
in 6g is arc connected (see [5]) there exist two paths p�(t) : I ! Cn(6g) and
p+(t) : I ! Cn(6g) such that p�(0) = {B1, . . . , Bn} = p+(1), p�(1) = Q� and
p+(0) = Q+. Properly rescaling the interval I and deforming L 0 along the graph
of such paths, we obtain an isotopic link L 00 satisfying (1) and (2) and such that
L 00 \

�
6g ⇥ {0}

�
= {B1, . . . , Bn}⇥ {0} and L 00 \

�
6g ⇥ {1}

�
= {B1, . . . , Bn}⇥ {1}.

Then there clearly exists an ⌘ > 0 such that L 00 \[⌘, 1�⌘] is a well defined element
� 2 Bg,2n , with b� equivalent to L 00.

Remark 2.2. The procedure described in the previous proof is called the braiding
process. Since the braiding process is realized in 6g ⇥ I , we have that also each
link in a thickened surface is equivalent to the plat closure of a braid.

Figure 2.4. The generators of Bg,2n .

We end this section by recalling the presentation of Bg,2n given in [2]. The genera-
tors are: �1, . . . , �2n�1, the standard braid ones, and a1, . . . , ag, b1, . . . , bg, where
ai (respectively bi ) is the braid whose strands are all trivial except the first one
which goes once along the i-th longitude (respectively i-th meridian) of 6g (see
Figure 2.4). The relations are the following ones:

• Braid relations:

�i�i+1�i = �i+1�i�i+1 (i = 1, . . . , 2n � 2)
�i� j = � j�i (i, j = 1, . . . , 2n � 1, |i � j | � 2);
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• Mixed relations:

(R1) ar�i = �i ar (1  r  g, i 6= 1)
br�i = �i br (1  r  g, i 6= 1)

(R2) ��11 ar��11 ar = ar��11 ar��11 (1  r  g)

��11 br��11 br = br��11 br��11 (1  r  g)

(R3) ��11 as�1ar = ar��11 as�1 (s < r)

��11 bs�1br = br��11 bs�1 (s < r)

��11 as�1br = br��11 as�1 (s < r)

��11 bs�1ar = ar��11 bs�1 (s < r)

(R4) ��11 ar��11 br = br��11 ar�1 (1  r  g)

(T R)
h
a1, b�11

i
· · ·

h
ag, b�1g

i
= �1�2 · · · � 22n�1 · · · �2�1

where [a, b] := aba�1b�1.

We will depict a braid in Bg,2n using a set of g fixed strands on the left (that in-
tuitively represent the g holes of 6g) and 2n moving strands on the right, which
represent the braid. As depicted in Figure 2.5, we represent the generator ai and its
inverse by the first moving strand winding around the i-th fixed strand and going
over the rest of the fixed strands on the right, for i = 1, . . . , g. We represent bi (re-
spectively b�1i ), for i = 1, . . . , g, by an arrow labelled i on the first moving strand
pointing downwards (respectively upwards).

Figure 2.5. Representing the generators of Bg,2n and their inverses.

3. Markov theorem in thickened surfaces

In this section we study the combinatorial equivalence for links in a thickened sur-
face, generalizing results of [6]. Once the statement is established, the proof given
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in [6] works almost without changes also in this more general setting. Nevertheless,
for readers’ convenience, we report here the main steps of the proof, with the only
exception of [6, Lemma 8] (see Lemma 3.1), which is really technical.

Let 6g be the genus g surface depicted in Figure 2.1. A link L ⇢ 6g ⇥ I is
said to be in standard position if it intersects both6g⇥{0} and6g⇥{1} in n points,
and meets 6g ⇥ {t}, for each t 2 (0, 1) in exactly 2n points. We call the points of
6g ⇥ {1} (respectively 6g ⇥ {0}) upper (respectively lower) boundary points. A
boundary point is either an upper or a lower boundary point, while an interior point
is a point in 6g ⇥ (0, 1).

The proof of Theorem 2.1, along with the Remark 2.2, shows that each link in
6g ⇥ I is isotopic to a link in standard position. Moreover it shows that each link
L in standard position is equivalent to the plat closure of a braid in Bg,2n , where n
is the number of upper (or lower) boundary points of L .

Given a link L in standard position, fix an orientation on it and consider the
following two moves, introduced in [6]:

• The spike move: referring to Figure 3.1, let Q, B, P be consecutive points on
L such that Q, P are interior points, B is a boundary point and [Q, B, P] is an
(embedded) triangle in 6g ⇥ I such that [Q, B, P]\ L = [Q, B][ [B, P]. Let
B0 6= B be another boundary point on the same boundary component as B and
let Q0, P 0 be interior points satisfying the conditions [P, P 0, Q0] \ L = {P},
[Q, P 0, Q0] \ L = {Q} and [P 0, B0, Q0] \ L = ;. We replace [Q, B] [ [B, P]
on L with [Q, Q0] [ [Q0, B0] [ [B0, P 0] [ [P 0, P]. Note that the spike move is
executed by retracting the “spike” at B to the “base” [P, Q] and shooting out a
new spike at B0, which will in general thread in and out of the other arcs of the
link. So, generally it will not be possible to get the same result by moving the
spike at B directly along the boundary surface toward B0, since the other arcs of
L may interfere with such a move;

Figure 3.1. The spike move on an upper boundary point.

• The stabilizing move: referring to Figure 3.2, let R be any internal point on L .
We can always assume, up to isotopy, that the three consecutive points P , R,
Q on L satisfy property (*). Let R0, R00 be the unique points of intersection
of @N (see property (*)) with, respectively, [P, R] and [R, Q] and R+, R� be
the projection of R onto, respectively, 6g ⇥ {1} and 6g ⇥ {0}. We replace
[R0, R] [ [R, R00] on L with [R0, R+] [ [R+, R�] [ [R�, R00].
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Figure 3.2. The stabilization move.

Clearly both the moves do not alter the property of being in standard position and
are compositions of 1-moves. As a consequence, if we apply such moves to a link
in standard position, we will obtain an equivalent link still in standard position.
Moreover, while a spike move does not change the number of upper (or lower)
boundary points, the stabilization move increases or decreases it by one.

In [6, Lemma 8] the converse statement is proved in the case of g = 0, that is
to say, for the classical plat closure in D2⇥ I or S2⇥ I . The proof extends without
changes to the case of higher genus, so we get the following result.

Lemma 3.1. Let L and L 0 be two equivalent links in standard position. Then it is
possible to connect L with L 0 by a finite sequence of spike and stabilization moves.

Consider the arcs �1, . . . , �n depicted in Figure 2.1. In order to get an algebraic
equivalence among braids, we introduce some specific elements of Bg,2n (see Fig-
ure 3.3):

• Braid twists or intervals: are braids exchanging the endpoints of an arc �i ; in
terms of the generators of Bg,2n they are the elements �2i�1, for i = 1, . . . , n;

• Elementary exchanges of two arcs: are braids exchanging two arcs �i and � j ; it
is possible to write them as products of elementary exchanges of neighborhood
arcs, that is, as products of the elements �2i�2i+1�2i�1�2i , exchanging �i and
�i+1 for i = 1, . . . , n � 1;

• Slides of the i-th arc: is a braid obtained by moving the both the endpoints P2i�1
and P2i of an arc �i along parallel paths; any slide of the i-th arc can be written
as c�c�1, where c is an elementary exchange taking the i-th arc into the first one
and � is a slide of the first arc; moreover, a slide of the first arc can be written
as a product of the following slides

(1) A slide under the second arc �2�
2
1 �2;

(2) A slide around the j-th longitude a j��11 a j��11 ;
(3) A slide around the j-th meridian b j��11 b j��11 .
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Figure 3.3. (a) The braid twist of the i-th arc, (b) the elementary exchange of the i-th
and (2i + 1)-th arc, (c) the slide of the fist arc under the second one, (d) the slide of
the fist arc around the j-th longitude, (e) the slide of the fist arc around the j-th merid-
ian.

Note that the slide of the first arc under the i-th one is the product of d�2�
2
1 �2d�1,

where d is an elementary exchange taking the i-th arc into the second one.

Remark 3.2. Let MCG2n (6g) : = ⇡0 (Homeo+ (6g, P2n)) and MCG (6g ) =
⇡0(Homeo+(6g)) and consider the exact sequence (see [5])

· · ·! Bg,2n ! MCG2n(6g)! MCG(6g)! 1.

The image of the above defined elements of Bg,2n belong to the Hilden braid group
Hilgn ⇢ MCG2n(6g) introduced in [3]. Such subgroup can be characterized as
that containing the elements admitting an extension to the couple (H,A), where H
is the handlebody corresponding to the system of curves depicted in Figure 2.1
and A is a system of trivial arcs properly embedded in H and projecting onto
{�1, . . . , �n}.

We are ready to state the main theorem of this section.
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Theorem 3.3. Two elements of [n2NBg,2n determine, via plat closure, equivalent
links in6g⇥ I if and only if they are connected by a finite sequence of the following
moves:

(M1) �1�  ! �  ! ��1

(M2) �2i�2i+1�2i�1�2i�  ! �  ! ��2i�2i+1�2i�1�2i

(M3) �2�
2
1 �2�  ! �  ! ��2�

2
1 �2

(M4) a j��11 a j��11 �  ! �  ! �a j��11 a j��11 for j = 1, . . . , g

(M5) b j��11 b j��11 �  ! �  ! �b j��11 b j��11 for j = 1, . . . , g
(M6) �  ! Tk(�)�2k

where Tk : Bg,2n ! Bg,2n+2 is defined by Tk(ai ) = ai , Tk(bi ) = bi and

Tk(�i ) =

8
><

>:

�i if i < 2k
�2k�2k+1�2k+2�

�1
2k+1�

�1
2k if i = 2k

�i+2 i f i > 2k.

Proof. Following the proof of Theorem 2.1, given L in standard position in order
to find an element � 2 Bg,2n such that b� = L , up to isotopy, we have to choose
two paths p� and p+ in Cn(6g) connecting, respectively, the set of lower boundary
points of L and the set of upper boundary points of L to {B1, . . . , Bn}, where Bi
is an internal point of the arc �i , with i = 1, . . . , n. Clearly the choice of such
paths is not unique: however if p� and q� are two possible choices for the set of
lower boundary points, the composition of p� with the inverse of q� determines
an element in ⇡1(Cn(6g), {B1, . . . , Bn}) that could be realized as a composition of
braid twists, exchanges and slides of the arcs �i . An analogous remark holds for
upper boundary points. So two different elements of Bg,2n obtained as above for
the same link L in standard position are connected by moves (M1), . . . , (M5).

By Lemma 3.1, in order to prove the statement, it is enough to describe how a
stabilization move and a spike move change a braid representative � of a link b�.

We start with the stabilization move. The effect of a stabilization move is to
add a trivial loop to the plat b� at any point. As depicted in Figure 3.4, by “sliding the
stabilization” along a connected component, we may assume, up to spike moves,
that the stabilization is done at the bottom right of an even strand. We have four
different possibilities on how to perform the stabilization move depending whether
(i) we add a loop with a positive or negative twist and (ii) the new strands pass in
front or behind the old ones. Up to spike moves, it is always possible to assume that
the twist is positive (see Figure 3.5) and that the new strands pass in front of the old
ones (see Figure 3.6). With these assumptions, it is straightforward to check that the
braid representative after the stabilization move will be Tk(�)�2k if the stabilization
occurs on the 2k-th strand, that is the stabilization move corresponds to a (M6)
move.
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Figure 3.4. Normalizing the stabilization: always done at the bottom right of an even
strand.

Figure 3.5. Normalizing the stabilization: adding always a positive twist.

Let b� 0 be the plat obtained from b� by applying a spike move. Suppose that the spike
move involves the i-th upper boundary point B+

i , with i 2 {1, . . . , n}. We may
assume that there exists t0 2 (0, 1) such that the segments [P, P 0] and [Q, Q0] lie
in6g⇥ {t0} and that the surface6g⇥ {t0} divides the braid � into an upper braid �1
and a lower braid �2, both contained in Bg,2n , so that � = �1�2. Then there exists
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0

Figure 3.6. Normalizing the stabilization: the new strands pass always in front of the
old ones.

an element � 01 2 Bg,2n such that �
0 = � 01�2. Consider the element �

0��1 = � 01�
�1
1

and denote by (� 0��1)k the k-th strand of the braid � 0��1. It follows from the
definition of spike move that (i) there exists an embedding of a band I ⇥ I into
6g ⇥ I whose boundary is given by �i ⇥ {1}[ (� 0��1)2i�1 [ � j ⇥ {0}[ (� 0��1)2i
with i 2 {1, . . . , n} and (ii) � 0� is in the kernel of the map Bg,2n ! Bg,2n�2
obtained by forgetting the (2i � 1)-th point and 2i-th point (see Figure 3.7). This
means exactly that the element � 0��1 can be written as a product of slides of arcs,
braid twists and exchanges of arcs that correspond to the moves (M1), . . . , (M5).
An analogue reasoning holds in the case of a spike move on a lower boundary point.

Figure 3.7. Braid interpretation of the spike move.

Given two braids we say that they are 6-equivalent if it is possible to connect
them by a finite sequence of the six M-moves (M1), . . . , (M6).
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4. The slide move and the Markov theorem

In this section we establish the main result of the paper, that is, we describe the
moves connecting braids representing isotopic links, by adding slide like moves to
6-equivalence.

Let L1 and L2 be two disjoint links in M and let b ⇠= I ⇥ I be an embedded
band in M , such that b \ L1 = e1 ⇠= I ⇥ {0} and b \ L2 = e2 ⇠= I ⇥ {1}. The band
connected sum of L1 and L2 along b is the link

(L1 � e1) [ (L2 � e2) [ (@b � e1 � e2),

denoted by L1#bL2.

Remark 4.1. In general the band connected sum L1#bL2 depends on the choice of
the band b. For an oriented split link L1[L2 in S3, such that the splitting sphere in-
tersects b transversally in a single arc, we can argue by the lightbulb trick (see [27])
that the band connected sum is independent on the choice of b (up to the choice of
components to which b connects). For a general 3-manifold M , a sufficient con-
dition for the band connected sum to be independent of b (up to the choice of the
component in L1 to which b connects) is that L2 is an unknot contained inside a
3-ball B3, that is disjoint from L1, and b does not intersect the open disk which L2
bounds. We say that such a band b is unlinked with L2.

Next we define a connected sum operation ↵#� for braids ↵ and � so that it holds
d↵#� = b↵#bb� for some band b.

Let ↵ 2 Bg,2m and � 2 Bg,2n be two braids. The plat sum of ↵ and � is the
operation

↵#� := ↵ wm,n � 2 Bg,2(m+n�1),

where

wm,n =
2m�3Y

i=0

2n�3Y

j=0
�2m�i+ j ,

see Figure 4.1 for a geometric interpretation with m = 12 and n = 3.

Figure 4.1. The plat sum ↵#�.
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Let again 6g be a genus g Heegaard surface of M and c = {c1, . . . , cg} the collec-
tion of attaching circles in 6g ⇥ {1} and c⇤ = {c⇤1, . . . , c

⇤
g} the collection of dual

attaching circles in 6g ⇥ {0}.
If we approach the attaching region of the i-th 2-handle in 6g ⇥ {1} with an

arc of a link L ⇢ 6g ⇥ I , we can slide the arc along the 2-handle, which has the
effect of making a connected sum with the attaching circle ci by a small band b:

sli : L �! L#bci , i = 1, . . . , g.

We call this operation the i-th slide move. Similarly, if we approach the attaching
region of the dual i-th 2-handle in 6g ⇥ {0}, this gives rise to the i-th dual slide
move:

sl⇤i : L �! L#bc⇤i , i = 1, . . . , g.
Both types of slide moves are isotopy moves in M , since all ci and c⇤i bound (merid-
ian) discs in M and thus are trivial knots in M .

Lemma 4.2. The curves c and dual curves c⇤ can be expressed as closed plats with
two strands.

Proof. Let Q1, . . . ,Qk be the collection of consecutive vertices in a PL-decomposi-
tion of ci . Since ci lies on 6g ⇥ {1}, all arcs of ci are horizontal with respect to
the height function associated with 6g ⇥ I . By a small perturbation we can isotope
the points so that all arcs [Qi , Qi+1] are oriented downwards and use a 1-move to
replace the arc [Qk, Q1] with [Qk, Q01] [ [Q01, Q1], where [Q01, Q1] is a vertical
upward arc. By the braiding process described in the proof of Theorem 2.1 (see
also Figure 2.3), a knot with only one upward arc can be braided with two strands.
An analogue construction can be made for c⇤i .

If � 2 Bg,2n is a braid representative of L and ci (respectively c⇤i ) is a braid
representative of ci (respectively c⇤i ), then the slide move (respectively dual slide
move) can be expressed in braid form by a plat connected sum as:

psli : � �! ci#�, i = 1, . . . , g,

which we call the i-th plat slide move and

psl⇤i : � �! �#c⇤i , i = 1, . . . , g,

which we name the i-th dual plat slide move. Since ci can be braided with two
strands, both psli (�) and psl⇤i (�) are elements of Bg,2n .

There are several ways we can slide an arc across a 2-handle. Since we are
performing band sums with trivial knots, by Remark 4.1, we have to check that
the above plat slide moves include band connected sums where the band starts at
any position of b� and any position of ci (respectively c⇤i ), assuming that the band
b is unlinked with ci (respectively c⇤i ). The following lemma shows that, up to 6-
equivalence, plat slide moves include band connected sums where the band starts at
any position of b�.
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Lemma 4.3. Given a plat b�, a plat slide move (respectively dual plat slide move)
can be always assumed to take place on top left strand (respectively bottom left
strand) of � as represented in Figure 4.2a. That is, for any braid � and any band
b starting from an arbitrary point in b�, arbitrary linked with b� and connected to ci
(respectively c⇤i ), there exists a 6-equivalent braid � 0 such that ci#bb� is isotopic to
[ci#� 0 (respectively b�#bc⇤i is isotopic to

[� 0#c⇤i ).

Proof. We prove the statement in the non-dual case. As the band b approaches ci
(Figure 4.2b) we can cut b and obtain a link b� 0 isotopic to b� (Figure 4.2c). We
use the braiding process described the proof of Theorem 2.1 (see also Figure 2.3)
and put the new link in plat position with the braid � 0 being 6-equivalent to � and
having the connecting arc at the top left.

Figure 4.2. Normalizing the plat slide move.

Next lemma shows that, up to6-equivalence, the plat slide moves psli (respectively
psl⇤i ) do not depend on the point where the band b is attached to ci (respectively c

⇤
i ).

Lemma 4.4. Let ci#bb� (respectively b�#bc⇤i ) be the band connected sum, where b
is unlinked with ci (respectively c⇤i ) and connected to ci (respectively c⇤i ) at a small
arc e1. Let e01 be another small arc on ci (respectively c⇤i ), then there exists a braid
� 0 which is 6-equivalent to � and a band b0 which is unlinked with ci (respectively
c⇤i ) and connected to ci (respectively c⇤i ) at e

0
1, such that ci#bb� is isotopic to ci#b0b� 0

(respectively b�#bc⇤i is isotopic to b� 0#b0c⇤i ).

Proof. We prove the statement in the non-dual case. By Lemma 4.3 we can assume
that b is connected with the top-left arc of �. Observe that we can slide the small arc
e1 together with the band b along the knot ci towards e01 (see Figures 4.3a and 4.3b
for the case g = 1). In this process it can happen that the connecting band crosses a
lateral surface ofG⇥I , whereG is the fundamental polygon of6g. If we keep track
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of the braiding process before and after that the band crosses a lateral surface, we
see that the two braids differ by either an (M4) or an (M5) move (see Figure 4.3b).
When we reach e01, we can push the braiding of the band to the braid and the entire
process gives rise to a braid � 0 (see Figure 4.3c), which is 6-equivalent to � so it
holds that ci#b0b� 0 is isotopic to the original connected sum ci#bb�.

Figure 4.3. Normalizing the plat slide move.

We are ready to prove the main theorem of this paper.

Theorem 4.5 (Markov theorem). Let L1 and L2 be two links in M such that b�i =
Li with �i 2 [n2NBg,2n , with i = 1, 2. Then L1 and L2 are isotopic if and only if
�1 and �2 differ by a finite sequence of braid isotopy moves (R1), . . . , (R4), (T R);
M-moves (M1), . . . , (M6); plat slide moves psli , i = 1, . . . , g and dual plat slide
moves psl⇤i , i = 1, . . . , g.

Proof. An isotopy between two links in M can be obtained by an isotopy in6g⇥ I
with the additional freedom to slide across the 2-handles described by c and the
dual 2-handles described by c⇤ (sliding across 0-handles and 3-handles is of course
trivial). Isotopy is thus, by Theorem 3.3, described by the M-moves and slide moves
along meridian discs. With Lemmas 4.3 and 4.4 we have shown that it is enough
to consider only the plat slide move psli for each 2-handle and the dual plat slide
move psl⇤i for each dual 2-handle.

If we assume that c⇤ is the system corresponding to the curves depicted in
Figure 2.1, then we have c⇤i = bbi . In this case, as the following proposition shows,
the b-type generators are redundant in order to describe a link in M as the plat
closure of a braid � 2 Bg,2n .

Proposition 4.6. A braid � 2 Bg,2n is equivalent up to M-moves and psl⇤-moves
to a braid � 0 2 Bg,2m admitting a representation without b-type generators.

Proof. First observe that we can push a b-type generator through an a-type gen-
erator using either (R4) or (R3). Pick the last b generator, i.e. a letter b±1

i , in
the word � (Figure 4.4a) and make a stabilization move right after the generator
(Figure 4.4b). For each a-type generator we choose the stabilization strands to go
either under or over the interfering strands of the a-type generator in such a way
that relations (R3) and (R4) can be applied. We can now push b to the bottom and
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Figure 4.4. Removing b-type generators from a braid.

remove it by the sl⇤i move (Figures 4.4c and 4.4d). We repeat this process until all
b-type generators are removed (Figures 4.4e and 4.4f).

5. The case of genus one Heegaard splittings

In this section we provide explicit examples of slide moves for manifolds admitting
genus one Heegaard splittings, that is lens spaces, S2 ⇥ S1 and the 3-sphere.

If M is the lens space L(p, q), where p and q are coprime integers such that
0 < q < p, then M has a genus 1 Heegaard splitting, sending the meridian of H2
to the (p,�q)-curve on the torus T = @H1, see Figure 5.1a for the L(5, 2) case.

The (p,�q) torus knot is the plat closure of the braid with q generators b�11
evenly distributed between p generators a1 (see also [14,15]):

↵p,q =
rY

i=1
b�11 a

d pq e

1 ·
q�rY

i=1
b�11 a

b pq c

1 2 B1,2,

where r ⌘ p (mod q), see Figure 5.1b for the L(5, 2) case.
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1

1

Figure 5.1. Braiding of the torus knot (5,�2).

The plat slide move (respectively dual plat slide move) for L(p, q), which we de-
note by pslp,q (respectively psl⇤p,q ) is thus

pslp,q : � �! ↵p,q#� = ↵p,q �,

psl⇤p,q : � �! �#b1 = � b1.

In particular, for L(p, 1) we have

pslp,1 : � �! b�11 a p1 #� = b�11 a p1 �.

Beside lens spaces, the only other Heegaard genus one manifold is S2 ⇥ S1, which
can be viewed as the degenerate lens space L(0, 1). The manifold S2⇥ S1 admits a
Heegaard splitting (H1, H2, h), where h : @H2 �! @H1 sends the meridian of H2
to the meridian of H1.

The plat slide moves in this case are:

psl0,1 : � �! b1#� = b1 �,

psl⇤0,1 : � �! �#b1 = � b1.

Lastly, the 3-sphere S3, viewed as the degenerate lens space L(1, 0), admits a genus
1 Heegaard splitting (H1, H2, h), where h : @H2 �! @H1 is a homeomorphism
that sends the meridian of H2 to the longitude of H1. We have the following two
plat slide moves:

psl1,0 : � �! a1#� = a1�,

psl⇤1,0 : � �! �#b1 = � b1.

With the same methods of Proposition 4.6 we can kill all a1 generators from a word
� 2 B1,2n by moving them to the top and applying the plat slide move. Every link
L ⇢ S3 can be thus represented as a closed braid without a1 or b1 generators and
the theory collapses to that of the the usual genus zero Heegaard splitting of S3
introduced in [6].
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