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is examined within a bounded domain Ω ⊂ RN with smooth boundary ∂Ω (N ≥ 3). Unlike much of the
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v(x, t) = v∗, (x, t) ∈ ∂Ω× (0,∞).

Here, v∗ is a nonnegative constant, aligning with suggestions from modeling literature. We establish that
for suitably regular initial data, the associated no-flux/Dirichlet initial-boundary value problem possesses a

globally bounded classical solution if α > 1 − 2

N
. Conversely, we construct a finite-time blow-up solution

in the radially symmetric setting when 0 < α < 1 − 2

N
. Our findings underscore αc := 1 − 2

N
as a critical

exponent in our model, distinguishing between global solvability and finite-time blow-up singularity.
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1 Introduction

Chemotaxis is a biological phenomenon where cells or species move towards a more favorable
chemical environment. A prominent mathematical model describing the spatial dynamics of this
effect is the Keller-Segel (KS) system:{

∂tu = ∆u−∇ ·
(
u∇v

)
,

∂tv = ∆v − v + u.
(1.1)

Here, u = u(x, t) represents the density of a cell population, and v = v(x, t) denotes the concentra-
tion of a chemical signal attracting cells. Since Keller and Segel’s seminal work in the 1970s [20, 21],
numerous studies have contributed significantly to understanding this system (see [1, 12, 14] for
surveys). Research in this field has focused on excluding (e.g., [26, 28, 42]) or detecting [25, 43]
finite-time blow-up phenomena and exploring additional qualitative properties (e.g., [29, 47]) within
system (1.1) and related variants, including simplified parabolic-elliptic versions [26, 11, 18, 27, 32].

Blow-up detecting and excluding for KS system with no-flux/no-flux boundary con-
ditions. The Keller-Segel (KS) system (1.1), when posed in bounded domains, is typically accom-
panied by no-flux boundary conditions:

∇u · n = ∇v · n = 0, (x, t) ∈ ∂Ω× (0,∞), (1.2)

where n represents the unit outward normal vector field on ∂Ω. It is well-established that system
(1.1)-(1.2) in bounded planar domains admits globally bounded solutions provided the initial data
(u(·, 0), v(·, 0)) are suitably regular and satisfy

∫
Ω u(·, 0) =: m < 4π ([26]). However, for each

m ∈ (4π,∞) \ {4kπ|k ∈ N}, there exist initial data such that
∫
Ω u(·, 0) = m, leading to unbounded

solutions either in finite or infinite time ([15]). In the three-dimensional case, no mass threshold
phenomenon occurs. Specifically, when the spatial domain Ω is a ball in RN with N ≥ 3, it is proven
that for any prescribed m > 0, there exist radially symmetric positive initial data (u(·, 0), v(·, 0))
with

∫
Ω u(·, 0) = m such that the corresponding solution blows up in finite time [43]. Furthermore,

an essentially explicit blow-up criterion demonstrates that within the space of all radial functions,
the set of such initial data enforcing blow-up is indeed large in an appropriate sense.

Given biological contexts where unbounded population densities are deemed unrealistic, significant
efforts have been directed towards devising modified variants that preemptively prevent explosive
behaviors. One frequently explored refinement involves altering cell motility to depend differently on
population density, particularly at high densities, leading to saturation effects in the cross-diffusion
term, as exemplified in the KS variant:{

∂tu = ∆u−∇ ·
(
uS(u)∇v

)
,

∂tv = ∆v − v + u.
(1.3)

Here, S(u) is a nonnegative function, possibly diminishing at large u, such as S(u) ≲ (1+u)−α with
α > 0. For the associated no-flux/no-flux boundary-value problem in smoothly bounded domains
Ω ⊂ RN (N ≥ 2), it is established that if

S(u) ≤ C(1 + u)−α for all u ≥ 0, (1.4)

with some C > 0 and α > 1 − 2
N , then global bounded classical solutions exist for all suitably

smooth initial data [16, 19]. Conversely, if there exist C > 0 and α < 1− 2
N satisfying

S(u) ≥ C(1 + u)−α for all u ≥ 0, (1.5)

then some solutions may become unbounded for N ≥ 3 [5, 7] and N ≥ 2 [6, 16, 41].
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The saturation effect at high cell densities also enhances the global solvability of the KS system
when coupled with an additional Stokes or Navier-Stokes fluid model, which accounts for chemotactic
movement in a fluid environment. Specifically, it has been demonstrated that if the chemotactic
sensitivity S(u) satisfies (1.4), the no-flux/no-flux/Dirichlet boundary-value problem of the two-
dimensional Keller-Segel-(Navier-)Stokes system yields a unique global bounded classical solution
for arbitrarily large initial data whenever α > 1

2 [35, 37]. In the three-dimensional case, global
weak solutions can be constructed for the Keller-Segel-Navier-Stokes system [24, 34], while global
classical solutions are obtained for the Keller-Segel-Stokes version [45] provided α > 1

3 .

Dirichlet boundary conditions for the signal in chemotaxis system. While homogeneous
Neumann boundary conditions are often used for their mathematical tractability in chemotaxis sys-
tems, recent studies have underscored the relevance of alternative boundary conditions. Notably,
there is a suggestion to adopt more realistic boundary conditions for the chemical signal, as oxy-
gen, for instance, diffuses significantly faster in air than in water. In studies like [3, 4, 8, 9, 33],
it is proposed to maintain a fixed oxygen concentration on relevant boundary parts. Assuming,
for simplicity, that the entire fluid is surrounded by air, recent works have explored chemotaxis-
consumption models where prescribed signal concentrations on the boundary necessitate coupling
the chemotaxis systems with the boundaries:

(∇u− u∇v) · n = 0, v = v∗, (x, t) ∈ ∂Ω× (0,∞), (1.6)

where v∗ is a given nonnegative constant or a function dependent on x and t (see [23, 2, 38, 39, 40]).
This modification in boundary conditions leads to the loss of the global energy structure crucial for
the development of existence theories and asymptotic behavior in chemotaxis(-fluid) systems. In
the context of the 3D chemotaxis-Stokes system with prescribed signal on the boundary, only global
generalized solutions are constructed via local energy estimates [38]. Global classical solvability is
derived under smallness assumptions on initial data in two-dimensional bounded domains [39]. For
the fluid-free chemotaxis-consumption system, in radially symmetric settings, global existence of
bounded classical solutions is established for N = 2, while global weak solutions are constructed for
N ∈ {3, 4, 5} [23].

In the context of the chemotaxis model with signal production akin to the KS system (1.1), the
inclusion of Dirichlet signal boundary coupling can also capture realistic phenomena in biology or
physics [30, 9]. However, it may correspond to significantly different mathematical features. For
example, by replacing the second equation in (1.1) with 0 = ∆v + u and considering boundary
conditions (1.6) with v∗ = 0 in two-dimensional bounded domains, Suzuki [30] demonstrated that
the solution exhibits a collapse in infinite time when the initial total mass is 8π and the domain
is close to a disc. Notably, the solution to such a problem remains bounded near the boundary,
indicating that the blowup set consists of a finite number of interior points. In [9], the parabolic-
elliptic simplification version of (1.1):{

∂tu = ∆u−∇ · (u∇v),

0 = ∆v − v + u
(1.7)

augmented with boundary conditions (1.6) with v∗ = 0 is investigated. The authors unveiled a
further dynamical facet linked to the presence of a secondary mass threshold: in the case of N ≥ 3,
there exists M∗ := M∗(Ω) > 0 such that all nontrivial solutions blow up whenever the initial
mass

∫
Ω u(·, 0) ≥ M∗. This scenario differs from the corresponding no-flux/no-flux boundary-

value problem of the parabolic-elliptic KS system with the second equation in (1.7) replaced by
0 = ∆v− 1

|Ω|
∫
Ω u+u. While a similar secondary critical mass also exists in this alternative setting,

blow-up can only be triggered by initial data that are radially symmetric and, in a specifically
defined sense, more concentrated than the associated spatially homogeneous equilibrium [46].

Main results. Motivated by previous works, this study delves into the fully parabolic KS system
with power-type nonlinear chemotaxis sensitivity, incorporating no-flux boundary conditions for
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u and Dirichlet boundary conditions for v. Specifically, we consider the initial-boundary value
problem: 

∂tu = ∆u−∇ ·
(
uS(u)∇v

)
, (x, t) ∈ Ω× (0,∞),

∂tv = ∆v − v + u, (x, t) ∈ Ω× (0,∞),(
∇u− uS(u)∇v

)
· n = 0, v = v∗, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.8)

where Ω ⊂ RN is a bounded domain with a smooth boundary ∂Ω, v∗ is a nonnegative constant,
and the chemotaxis sensitivity function S ∈ C2

(
[0,∞)

)
satisfies∣∣S(s)∣∣ ≤ KS(1 + s)−α for all s ≥ 0, (1.9)

where KS and α are positive constants. Our objective is to explore how the value of α influences
the global well-posedness of the KS system in this setting involving a Dirichlet boundary condition
for signal. Particularly, we aim to identify a critical value for α that distinguishes global existence
from finite-time blowup for system (1.8) with S(s) = (1 + s)−α.

To ensure coherent interpretation of our findings, we specify that the initial data adhere to{(
u0, v0

)
∈ C0

(
Ω
)
×W 1,∞(Ω),

u0 > 0 in Ω, v0 ≥ v∗ in Ω with v0 = v∗ on ∂Ω.
(1.10)

Then, for suitably large α, system (1.8) sustains global bounded classical solutions. Precisely, we
have

Theorem 1.1 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Suppose that
(1.9) holds with α > 1− 2

N . Then for any (u0, v0) fulfilling (1.10), there exists a unique nonnegative
classical solution (u, v) to system (1.8), which is global and uniformly bounded in the sense that∥∥u(·, t)∥∥

L∞(Ω)
+

∥∥v(·, t)∥∥
W 1,∞(Ω)

≤ C, t ∈ (0,∞)

for some positive constant C.

Next, we aim to identify solutions that blow up at finite time for system (1.8) with a chemotaxis
sensitivity S ∈ C2([0,∞)) given by

S(s) := KS(1 + s)−α, s ≥ 0, (1.11)

where α > 0 and KS > 0. To achieve this, we concentrate on the radial symmetry setting, consid-
ering Ω := BR ⊂ RN (N ≥ 3) with R > 0. Inspired by [13, 14], we introduce the functionals

F(u, v) :=
1

2

∫
BR

|∇v|2 + 1

2

∫
BR

v2 −
∫
BR

uv +

∫
BR

G(u) (1.12)

and

D(u, v) :=

∫
BR

∣∣∆v − v + u
∣∣2 + ∫

BR

∣∣∣ ∇u√
uS(u)

−
√

uS(u)∇v
∣∣∣2 (1.13)

for suitable u and v, where

G(s) :=

∫ s

1

∫ σ

1

1

τS(τ)
dτdσ, s ≥ 0. (1.14)

To state our result, we further introduce the set

B(m,M, v∗) :=
{
(u0, v0) ∈ C0(BR)×W 1,∞(BR)

∣∣∣u0 and v0 are radially symmetric and
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positive in BR, v0 ≥ v∗ in BR, v0 = v∗ on ∂BR, and satisfy

∥u0∥L1(BR) = m, ∥v0∥W 1,2(BR) ≤ M, and

F(u0, v0) ≤ −K
(
M

2N+4
N + 1

)
for some K = K(m, v∗)

}
.

Then we have the following blow-up result.

Theorem 1.2 Suppose that (1.11) holds with 0 < α < 1 − 2
N and N ≥ 3. For any given positive

constants m and M , and v∗ ≥ 0, there exist two positive constants K(m, v∗) and T (m,M, v∗) such
that for any (u0, v0) ∈ B(m,M, v∗), the corresponding solution (u, v) to system (1.8) blows up at
some finite time Tmax ∈ (0,∞), i.e.

lim sup
t→Tmax

∥u(·, t)∥L∞(BR) = ∞,

and the maximal time of existence satisfies Tmax ≤ T (m,M, v∗).

Remark 1.1 For any m > 0 and v∗ ≥ 0, we can follow the proof of Theorem 1.2 in [5] to find
M > 0 such that the set B(m,M, v∗) is nonempty (see also Lemma 6.1 in [43]).

Remark 1.2 Theorem 1.1 and Theorem 1.2 imply that in the radial setting αc := 1− 2
N will be the

critical blow-up exponent for system (1.8) with S(s) = KS(1 + s)−α for some α > 0 and KS > 0.

Remark 1.3 In the two-dimensional setting, we can establish that α > 0 is sufficient to ensure the
global existence and boundedness of solutions to system (1.8) by following a similar proof strategy as
in Section 3. However, the proof presented in Section 4 is not valid for the case α < 0 (see Lemma
4.5). Consequently, it remains an open question whether αc = 1 − 2

N = 0 for N = 2 serves as a
critical blow-up exponent for system (1.8), even within the radial framework.

Main idea and some plans of the paper. In the scenario where α > 1 − 2
N , we first devise

an approximating problem for system (1.8) (see (3.2) below) and then establish the existence of a
globally bounded approximate solution (uε, vε) via an iteration argument. Our pivotal focus lies
in a coupled estimate for the time evolution of uε and ∇v̂ε (Lemma 3.3 - Lemma 3.5). The global
existence of bounded solutions to the original system (1.8) will be secured under additional a priori
estimates along with a limit process.

On the other hand, for 0 < α < 1− 2
N in a radial setting, we will adapt methods from [43, 5] to

construct finite-time blowup solutions. We first establish that the functional F(u, v) defined as in
(1.12) serves as a Lyapunov functional for (1.8) with a dissipation rate D (Lemma 4.1), meaning

d

dt
F(u(·, t), v(·, t)) = −D(u(·, t), v(·, t)) for all t ∈ (0, Tmax).

The subsequent technical approach relies on estimating the dissipation rate D in terms of F (Lemma
4.8). After establishing an ODI for −F (Lemma 4.9), we directly obtain the desired blow-up result.

2 Preliminaries

In this section, we state some basic preliminaries and establish the local solvability of system
(1.8). We begin with recalling two trace theorems.

Lemma 2.1 (Lemma 2.3 in [17]) Let N ≥ 2 and Ω ⊂ RN be a bounded domain with smooth
boundary and let r ∈ (0,∞). Then

W r,2(∂Ω) ↪→ L2(∂Ω)

is a compact embedding.
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Lemma 2.2 (Lemma 2.4 in [17]) Let N ≥ 2 and Ω ⊂ RN be a bounded domain with smooth

boundary. If r > 0, then there exists a linear and bounded map from W r+ 1
2
,2(Ω) onto W r,2(∂Ω).

Then we present the following pointwise inequality for normal derivatives, which will be used to
estimate the boundary integrals appearing in Lemma 3.3.

Lemma 2.3 (Lemma 3.4 in [2]) Let N ≥ 2 and Ω ⊂ RN be a bounded domain with boundary of
class C2, and let K ∈ R denote the maximum of the curvatures on ∂Ω . Then whenever ω ∈ C2(Ω)
and ω∗ ∈ R are such that ω = ω∗ on ∂Ω,

∇|∇ω|2 · n ≤ 2∆ω∇ω · n+ 2K|∇ω · n|2 on ∂Ω.

The following lemma gives the local well-posedness of system (1.8).

Lemma 2.4 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Then for
each (u0, v0) fulfilling (1.10), there exist a maximal time of existence Tmax ∈ (0,∞] and a uniquely
determined (u, v) of functions such that

(u, v) ∈ C
(
Ω× [0, Tmax)

)
∩ C2,1

(
Ω× (0, Tmax)

)
× C

(
Ω× [0, Tmax)

)
∩ C2,1

(
Ω× (0, Tmax)

)
,

that (u, v) solves system (1.8) in the classical sense in Ω×(0, Tmax), and that u > 0 in Ω×(0, Tmax),
v > 0 in Ω× (0, Tmax) and v ≥ v∗ in Ω× (0, Tmax). If Tmax < ∞, then

lim
t↗Tmax

(
∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω)

)
= ∞.

Furthermore, we have ∫
Ω
u(·, t) =

∫
Ω
u0 for all t ∈ (0, Tmax). (2.1)

Proof. The proof is based on a straightforward modification of the arguments in Proposition 2.1 of
Fuhrmann-Lankeit-Winkler [9] after homogenizing the boundary conditions. For this purpose, we
first set

v̂(x, t) := v(x, t)− v∗

and rewrite system (1.8) as its equivalent form
∂tu = ∆u−∇ ·

(
uS(u)∇v̂

)
, (x, t) ∈ Ω× (0,∞),

∂tv̂ = ∆v̂ − v̂ − v∗ + u, (x, t) ∈ Ω× (0,∞),

(∇u− uS(u)∇v̂) · n = v̂ = 0, (x, t) ∈ ∂Ω× (0,∞),

u(x, 0) = u0(x), v̂(x, 0) = v0(x)− v∗, x ∈ Ω.

(2.2)

Then the statements concerning local existence, uniqueness and regularity of solution (u, v̂) to
system (2.2) as well as extensibility criterion can be proved by a standard contraction argument
established in [9]. Therefore, transferring back to the variable v = v̂+v∗, we obtain the corresponding
properties for system (1.8).
The positivity of u and v as well as its comparison with v∗ follows from an application of the

strong maximum principle to system (1.8) due to v∗ ≥ 0.
Finally, the mass conservation (2.1) can be deduced from upon integrating the first equation in

(1.8) over Ω. □

We end this section by stating a quite basic but important property of the second component v.

Lemma 2.5 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. If the initial
data (u0, v0) fulfills (1.10) and v∗ ≥ 0 is a constant, then the classical solution (u, v) satisfies that∫

Ω
v(·, t) ≤ M := max

{∫
Ω
v0,

∫
Ω
u0

}
for all t ∈

(
0, Tmax,ε

)
. (2.3)
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Proof. The fact v(x, t) = v∗ on ∂Ω × (0, Tmax) and v(x, t) ≥ v∗ in Ω × (0, Tmax) imply that
∇v = −|∇v|n on ∂Ω× (0, Tmax) and thus ∇v ·n = −|∇v|. Then by integrating the second equation
in (1.8) over Ω, we obtain

d

dt

∫
Ω
v =

∫
∂Ω

∇v · n−
∫
Ω
v +

∫
Ω
u = −

∫
∂Ω

|∇v| −
∫
Ω
v +

∫
Ω
u ≤ −

∫
Ω
v +

∫
Ω
u0

for all t ∈ (0, Tmax). Therefore, we can employ a direct comparison argument to conclude that
indeed (2.3) holds. □

3 Global existence and uniform boundedness

This section investigates the global existence and uniform boundedness of solutions to system
(1.8). The establishment of the main result will be based on a series of a priori estimates of
approximate solutions to a suitable regularized system.

3.1 Construction of regularized solutions

Let
{
ηε
}
ε∈(0,1) ⊂ C∞

0 (Ω) be a family of standard cut-off functions fulfilling 0 ≤ ηε ≤ 1 in Ω for all

ε ∈ (0, 1) and ηε ↗ 1 in Ω pointwisely as ε ↘ 0, and define

Sε(u) = ηε(x)S(u), (x, u) ∈ Ω× [0,∞)

for each ε ∈ (0, 1). Then we see that Sε vanishes on ∂Ω and satisfies∣∣Sε(u)
∣∣ ≤ KS(1 + u)−α (3.1)

due to (1.9). In order to construct global solutions to system (1.8), we simplify its boundary
conditions via the above cur-off functions and consider the regularized system

∂tuε = ∆uε −∇ ·
(
uεSε(uε)∇v̂ε

)
, (x, t) ∈ Ω× (0,∞),

∂tv̂ε = ∆v̂ε − v̂ε − v∗ + uε, (x, t) ∈ Ω× (0,∞),

∇uε · n = v̂ε = 0, (x, t) ∈ ∂Ω× (0,∞),

uε(x, 0) = u0(x), v̂ε(x, 0) = v0(x)− v∗, x ∈ Ω.

(3.2)

Then for each ε ∈ (0, 1), the following local solvability will be a direct consequence of Lemma 2.4.

Lemma 3.1 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Suppose that
(u0, v0) satisfies (1.10), and that (3.1) holds with some α > 0. Then for each fixed ε ∈ (0, 1), there
exist Tmax,ε ∈ (0,∞] and functions{

uε ∈ C
(
Ω× [0, Tmax,ε)

)
∩ C2,1

(
Ω× (0, Tmax,ε)

)
,

v̂ε ∈ C
(
Ω× [0, Tmax,ε)

)
∩ C2,1

(
Ω× (0, Tmax,ε)

)
such that uε > 0 and v̂ε+v∗ ≥ 0 in Ω×(0, Tmax,ε), that (uε, v̂ε) solves system (3.2) in Ω×(0, Tmax,ε)
in the classical sense, and that if Tmax,ε < ∞, then

lim
t↗Tmax,ε

(
∥uε(·, t)∥L∞(Ω) + ∥v̂ε(·, t)∥W 1,∞(Ω)

)
= +∞.

Furthermore, the following mass conservation for uε holds:∫
Ω
uε(·, t) =

∫
Ω
u0 for all t ∈

(
0, Tmax,ε

)
. (3.3)
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3.2 A priori estimates to the regularized problems

In this subsection, we will devote ourselves to deriving some a priori estimates for system (3.2),
which will eventually result in the global existence and uniform boundedness of (uε, v̂ε). We begin
with showing an estimate for v̂ε from a supposedly present appropriate boundedness property of uε.

Lemma 3.2 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Assume that
(uε, v̂ε) is a solution to system (3.2) in Ω× (0, Tmax,ε). If

∥uε(·, t)∥Lp(Ω) ≤ L for all t ∈ (0, Tmax,ε)

for some p ≥ 1 and positive constant L, then for all q ≥ 1 satisfyingq ∈
[
1,

Np

N − p

)
if p ≤ N,

q ∈ [1,∞] if p > N,

there exists a positive constant C = C(p, q, L) such that

∥v̂ε(·, t)∥W 1,q(Ω) ≤ C for all t ∈ (0, Tmax,ε). (3.4)

Proof. Due to
1

2
+

N

2

(1
p
− 1

q

)
< 1,

we can apply the gradient estimate of the Dirichlet heat semigroup (see, e.g., Lemma 2.4 in [10]) to
the second equation in (3.2) to find some positive constant C1 fulfilling

∥∇v̂ε(·, t)∥Lq(Ω) ≤ C1

(
1 + sup

s∈(0,t)
∥v∗ − uε(·, s)∥Lp(Ω)

)
≤ C1 (1 + v∗ + L) for all t ∈ (0, Tmax,ε).

Since v̂ε = 0 on ∂Ω, we can also infer from the Poincaré inequality that

∥v̂ε(·, t)∥Lq(Ω) ≤ C2∥∇v̂ε(·, t)∥Lq(Ω) ≤ C1C2 (1 + v∗ + L)

with some C2 > 0. Combining the above two inequalities, we obtain (3.4) immediately. □

We next derive a coupled estimate involving the time evolution of ∥uε∥Lp and ∥∇v̂ε∥L2q . The
coupled estimate of this type has been widely used in establishing the global existence of the pure
no-flux initial-boundary value problem of KS system (see e.g. [31, 35, 36]). In our current setting,
we need some new tricks to deal with additional integrals on the boundary arising from the Dirichlet
signal boundary.

Lemma 3.3 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Assume that
(uε, v̂ε) is a solution to system (3.2) in Ω× (0, Tmax,ε). Then for any p ≥ 1 and q ≥ 1, there exists

some positive constant C̃ such that

d

dt

(∫
Ω
upε(·, t) +

1

q

∫
Ω
|∇v̂ε(·, t)|2q

)
+

3(p− 1)

p

∫
Ω

∣∣∇u
p
2
ε (·, t)

∣∣2 + q − 1

q2

∫
Ω
|∇|∇v̂ε(·, t)|q|2

≤ C̃

∫
Ω
up−2α
ε (·, t)|∇v̂ε(·, t)|2 + C̃

∫
Ω
u2ε(·, t)|∇v̂ε(·, t)|2q−2 + C̃

∫
Ω
|∇v̂ε(·, t)|2q + C̃

(3.5)

for all t ∈ (0, Tmax,ε).

Proof. Noting that Sε(uε) = 0 on ∂Ω × (0,∞) due to ηε ∈ C∞
0 (Ω), we can test the first equation

in (3.2) by up−1
ε and then use the Young inequality to obtain that

1

p

d

dt

∫
Ω
upε + (p− 1)

∫
Ω
up−2
ε |∇uε|2 = (p− 1)

∫
Ω
up−1
ε Sε(uε)∇uε · ∇v̂ε

8



≤ p− 1

4

∫
Ω
up−2
ε |∇uε|2 + (p− 1)

∫
Ω
upε|Sε(uε)|2|∇v̂ε|2

for all t ∈ (0, Tmax,ε), which implies that

d

dt

∫
Ω
upε +

3(p− 1)

p

∫
Ω

∣∣∇u
p
2
ε

∣∣2 ≤ p(p− 1)K2
S

∫
Ω
up−2α
ε |∇v̂ε|2 (3.6)

for all t ∈ (0, Tmax,ε) thanks to (3.1).
On the other hand, by applying ∇ to the second equation of (3.2) and multiplying the resulting

equation by 2∇v̂ε on both sides, we have

∂t
(
|∇v̂ε|2

)
= 2∇v̂ε · ∇∆v̂ε − 2|∇v̂ε|2 + 2∇v̂ε · ∇uε,

which together with the identity 2∇v̂ε · ∇∆v̂ε = ∆|∇v̂ε|2 − 2|D2v̂ε|2 yields that

∂t
(
|∇v̂ε|2

)
+ 2|D2v̂ε|2 + 2|∇v̂ε|2 = ∆|∇v̂ε|2 + 2∇v̂ε · ∇uε (3.7)

for all t ∈ (0, Tmax,ε). We then test (3.7) by |∇v̂ε|2q−2 and integrate by parts over Ω to deduce that

1

q

d

dt

∫
Ω
|∇v̂ε|2q + (q − 1)

∫
Ω
|∇v̂ε|2q−4

∣∣∇|∇v̂ε|2
∣∣2 + 2

∫
Ω
|∇v̂ε|2q−2|D2v̂ε|2 + 2

∫
Ω
|∇v̂ε|2q

=

∫
∂Ω

|∇v̂ε|2q−2∇|∇v̂ε|2 · n+ 2

∫
Ω
|∇v̂ε|2q−2∇v̂ε · ∇uε

=

∫
∂Ω

|∇v̂ε|2q−2∇|∇v̂ε|2 · n+ 2

∫
∂Ω

uε|∇v̂ε|2q−2∇v̂ε · n

− 2

∫
Ω
uε|∇v̂ε|2q−2∆v̂ε − 2(q − 1)

∫
Ω
uε|∇v̂ε|2q−4∇v̂ε · ∇|∇v̂ε|2 (3.8)

for all t ∈ (0, Tmax,ε). For the last two terms on the right hand side of (3.8), it follows from the
Young inequality and the pointwise inequality |∆v̂ε|2 ≤ N |D2v̂ε|2 that

− 2

∫
Ω
uε|∇v̂ε|2q−2∆v̂ε − 2(q − 1)

∫
Ω
uε|∇v̂ε|2q−4∇v̂ε · ∇|∇v̂ε|2

≤ 1

N

∫
Ω
|∇v̂ε|2q−2|∆v̂ε|2 +N

∫
Ω
u2ε|∇v̂ε|2q−2 + 4(q − 1)

∫
Ω
u2ε|∇v̂ε|2q−2

+
q − 1

4

∫
Ω
|∇v̂ε|2q−4

∣∣∇|∇v̂ε|2
∣∣2 (3.9)

≤
∫
Ω
|∇v̂ε|2q−2|D2v̂ε|2 +

(
4(q − 1) +N

) ∫
Ω
u2ε|∇v̂ε|2q−2 +

q − 1

4

∫
Ω
|∇v̂ε|2q−4

∣∣∇|∇v̂ε|2
∣∣2.

We now deal with the boundary integrals on the right hand side of (3.8). Due to the homogeneous
Dirichlet boundary condition for v̂ε, we have

∆v̂ε = ∂tv̂ε + v̂ε + v∗ − uε = v∗ − uε on ∂Ω× (0, Tmax,ε),

which together with Lemma 2.3 entails that

∇|∇v̂ε|2 · n ≤ 2∆v̂ε∇v̂ε · n+ 2K|∇v̂ε · n|2 = 2(v∗ − uε)∇v̂ε · n+ 2K|∇v̂ε · n|2

and thus that ∫
∂Ω

|∇v̂ε|2q−2∇|∇v̂ε|2 · n+ 2

∫
∂Ω

uε|∇v̂ε|2q−2∇v̂ε · n

≤ 2v∗

∫
∂Ω

|∇v̂ε|2q−1 + 2K
∫
∂Ω

|∇v̂ε|2q

≤ C1

∫
∂Ω

|∇v̂ε|2q + C1 on ∂Ω× (0, Tmax,ε)

(3.10)

9



with some positive constant C1. Noticing that Lemma 2.1 and Lemma 2.2 yields

C1

∫
∂Ω

|∇v̂ε|2q ≤ C2

∥∥|∇v̂ε|q
∥∥2
W

3
4 ,2(Ω)

≤ q − 1

q2
∥∥∇|∇v̂ε|q

∥∥2
L2(Ω)

+ C3

∥∥|∇v̂ε|q
∥∥2
L2(Ω)

(3.11)

with some positive constants C2 and C3, we can substitute (3.9)-(3.11) into (3.8) to find some
positive constant C4 such that

1

q

d

dt

∫
Ω
|∇v̂ε|2q +

q − 1

q2

∫
Ω
|∇|∇v̂ε|q|2 + 2

∫
Ω
|∇v̂ε|2q ≤ C4

∫
Ω
u2ε|∇v̂ε|2q−2 + C4

∫
Ω
|∇v̂ε|2q + C4

for all t ∈ (0, Tmax,ε). This inequality together with (3.6) yields (3.5). □

To close the estimate in Lemma 3.3, we need to choose some parameters appropriately.

Lemma 3.4 Let N ≥ 3, α > 1− 2
N , p̄ ≥ 1 and q̄ ≥ 2. Then there exist parameters p ≥ max

{
p̄, N

}
,

q ≥ q̄, 1 ≤ s < N
N−1 , r ∈

(
1, N

N−2

)
and b > N

2 such that

p > 2α+ 1, (3.12)

Nq

Nq −N + 2
< r <

Np

(N − 2)(p− 2α)
, (3.13)

Nq

2q +N − 2
< b <

Np

2(N − 2)
(3.14)

and

p− 2α− 1
r

1− N
2 + pN

2

+
2
s − 1 + 1

r

1− N
2 + Nq

s

<
2

N
, (3.15)

as well as

2− 1
b

1− N
2 + pN

2

+
2(q−1)

s − 1 + 1
b

1− N
2 + Nq

s

<
2

N
. (3.16)

Proof. Let

q0(p) :=
Np

2(N − 1)
for p ≥ 1.

We first fix r ∈
(
1, N

N−2

)
and b > N

2 . Then we can find some large p ≥ max {p̄, N} satisfying

q0(p) > q̄, (3.17)

and
p > 2α+ 1

such that

Nq0(p)

Nq0(p)−N + 2
< r <

Np

(N − 2)(p− 2α)
(3.18)

and

Nq0(p)

2q0(p) +N − 2
< b <

Np

2(N − 2)
. (3.19)

Indeed, thanks to r < N
N−2 and b being fixed, we have

r <
Np

(N − 2)(p− 2α)
and b <

Np

2(N − 2)
(3.20)

10



for all sufficiently large p. According to the definition of q0(p), it is clear that q0(p) → ∞ as p → ∞,
which combined with r > 1 and b > N

2 yields that

r >
Nq0(p)

Nq0(p)−N + 2
and b >

Nq0(p)

2q0(p) +N − 2
(3.21)

for all sufficiently large p. It then follows from (3.20) and (3.21) that (3.18) and (3.19) are valid for
sufficiently large p.
On the other hand, we define

h1(q, s) :=
p− 2α− 1

r

1− N
2 + pN

2

+
2
s − 1 + 1

r

1− N
2 + Nq

s

for (q, s) ∈ [2,+∞)×
[
1,

N

N − 1

]
and

h2(q, s) :=
2− 1

b

1− N
2 + pN

2

+
2(q−1)

s − 1 + 1
b

1− N
2 + Nq

s

for (q, s) ∈ [2,+∞)×
[
1,

N

N − 1

]
It follows from α > 1− 2

N that

h1

(
q0(p),

N

N − 1

)
=

p− 2α− 1
r

1− N
2 + pN

2

+
1− 2

N + 1
r

1− N
2 + pN

2

=
p− 2α+ 1− 2

N

1− N
2 + pN

2

<
p− 1 + 2

N

1− N
2 + pN

2

=
2

N
.

By a continuity argument and (3.17), we can choose q close enough to q0(p) such that

q̄ < q < q0(p) (3.22)

and

h1

(
q,

N

N − 1

)
<

2

N
, (3.23)

and that both (3.13) and (3.14) hold thanks to (3.18) and (3.19).
By using a continuity argument again, we can also see from (3.23) that for s ∈

[
1, N

N−1

)
but

closing enough to N
N−1 , it holds that

h1(q, s) <
2

N
, (3.24)

which implies that (3.15) is valid.
Finally, the facts

h2

(
q0(p),

N

N − 1

)
=

2− 1
b

1− N
2 + pN

2

+
p− 3 + 2

N + 1
b

1− N
2 + pN

2

=
p+ 2

N − 1

1− N
2 + pN

2

=
2

N

and

∂h2
∂q

(
q,

N

N − 1

)
=

2(N−1)
N

(
1− N

2 + (N − 1)q
)
−
(
2(N−1)(q−1)

N − 1 + 1
b

)
(N − 1)

(1− N
2 + (N − 1)q)2

=
(N − 1)(2− 1

b )

(1− N
2 + (N − 1)q)2

> 0 for q ∈ [2,+∞)

imply that

h2

(
q,

N

N − 1

)
<

2

N
for q ∈

(
2, q0(p)

)
.
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In particular, for q determined by (3.22) and (3.23), it also holds that

h2

(
q,

N

N − 1

)
<

2

N
.

Thus for s determined by (3.24), it holds that

h2(q, s) <
2

N
,

which implies that (3.16) holds. This completes the proof of Lemma 3.4. □

With Lemma 3.4 at hand, we can now choose appropriate parameters to close the coupled esti-
mates in Lemma 3.3.

Lemma 3.5 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Assume that
(uε, v̂ε) is a solution to system (3.2) in Ω× (0, Tmax,ε). Let (3.1) hold with some α > 1− 2

N . Then
for all (p, q) ∈ [1,+∞)× [1,+∞), there exists some positive constant C such that

∥uε(·, t)∥Lp(Ω) ≤ C for all t ∈ (0, Tmax,ε) (3.25)

and

∥∇v̂ε(·, t)∥L2q(Ω) ≤ C for all t ∈ (0, Tmax,ε). (3.26)

Proof. For any p0 > 1 and q0 > 2, we claim that there exist p > p0 and q > q0 such that

∥uε(·, t)∥Lp(Ω) ≤ C1 for all t ∈ (0, Tmax,ε) (3.27)

and

∥∇v̂ε(·, t)∥L2q(Ω) ≤ C1 for all t ∈ (0, Tmax,ε) (3.28)

for some positive constant C1. Indeed, to achieve this, we let

p̄ := p0, q̄ := q0,

and then fix p > p̄ ≥ 1, q > q̄ ≥ 2, 1 ≤ s < N
N−1 , r > 1 and b > 1 as provided by Lemma 3.4.

For the first and second integral on the right-hand side of (3.5), we apply the Hölder inequality
to obtain that ∫

Ω
up−2α
ε |∇v̂ε|2 ≤

(∫
Ω
ur(p−2α)
ε

) 1
r
(∫

Ω
|∇v̂ε|

2r
r−1

) r−1
r

(3.29)

and ∫
Ω
u2ε|∇v̂ε|2q−2 ≤

(∫
Ω
u2bε

) 1
b
(∫

Ω
|∇v̂ε|

2(q−1)b
b−1

) b−1
b
. (3.30)

By using the Gagliardo-Nirenberg inequality and the mass conservation (3.3), we see(∫
Ω
ur(p−2α)
ε

) 1
r
=

∥∥u p
2
ε

∥∥ 2(p−2α)
p

L
2r(p−2α)

p (Ω)

≤ C1

(∥∥∇u
p
2
ε

∥∥β1

L2(Ω)

∥∥u p
2
ε

∥∥1−β1

L
2
p (Ω)

+
∥∥u p

2
ε

∥∥
L

2
p (Ω)

) 2(p−2α)
p

= C1

(∥∥∇u
p
2
ε

∥∥β1

L2(Ω)
∥u0∥

p
2
(1−β1)

L1(Ω)
+ ∥u0∥

p
2

L1(Ω)

) 2(p−2α)
p

≤ C2

(∥∥∇u
p
2
ε

∥∥β1

L2(Ω)
+ 1

) 2(p−2α)
p

12



≤ C2

(∥∥∇u
p
2
ε

∥∥ 2β1(p−2α)
p

L2(Ω)
+ 1

)
(3.31)

with some positive constants C1 and C2, where

β1 :=
pN − pN

r(p−2α)

pN −N + 2
∈ (0, 1)

due to (p− 2α)r > 1 from r > 1 and (3.12), and r < pN
(N−2)(p−2α) from (3.13). Similarly, we have

(∫
Ω
u2bε

) 1
b

=
∥∥u p

2
ε

∥∥ 4
p

L
4b
p (Ω)

≤ C3

(∥∥∇u
p
2
ε

∥∥β2

L2(Ω)

∥∥u p
2
ε

∥∥1−β2

L
2
p (Ω)

+
∥∥u p

2
ε

∥∥
L

2
p (Ω)

) 4
p

= C3

(∥∥∇u
p
2
ε

∥∥β2

L2(Ω)
∥u0∥

p
2
(1−β2)

L1(Ω)
+ ∥u0∥

p
2

L1(Ω)

) 4
p

≤ C4

(∥∥∇u
p
2
ε

∥∥ 4β2
p

L2(Ω)
+ 1

)
(3.32)

for some positive constants C3 and C4, where

β2 :=
pN − pN

2b

pN −N + 2
∈ (0, 1)

due to b > 1 and the fact b < Np
2(N−2) from (3.14).

Next, we estimate the terms involving ∇v̂ε on the right-hand side of (3.29) and (3.30). From
Lemma 3.2 and the mass conservation (3.3), we know that there exists a positive constant C5 such
that

∥v̂ε∥W 1,s(Ω) ≤ C5 (3.33)

for any 1 ≤ s < N
N−1 < 2 and thus we can employ the Gagliardo-Nirenberg inequality to find some

positive constants C6 and C7 such that(∫
Ω
|∇v̂ε|

2r
r−1

) r−1
r

=
∥∥|∇v̂ε|q

∥∥ 2
q

L
2r

q(r−1) (Ω)

≤ C6

(∥∥∇|∇v̂ε|q
∥∥β3

L2(Ω)

∥∥|∇v̂ε|q
∥∥1−β3

L
s
q (Ω)

+
∥∥|∇v̂ε|q

∥∥
L

s
q (Ω)

) 2
q

≤ C6

(
C5

∥∥∇|∇v̂ε|q
∥∥β3

L2(Ω)
+ C5

) 2
q

≤ C7

(∥∥∇|∇v̂ε|q
∥∥ 2β3

q

L2(Ω)
+ 1

)
, (3.34)

where

β3 :=
Nq

(
1
s −

r−1
2r

)
Nq
s + 1− N

2

∈ (0, 1)

due to r > 1, 1 ≤ s < 2 and the fact r > Nq
Nq−N+2 from (3.13). Similarly, we have

(∫
Ω
|∇v̂ε|

2(q−1)b
b−1

) b−1
b

=
∥∥|∇v̂ε|q

∥∥ 2(q−1)
q

L
2(q−1)b
q(b−1) (Ω)

≤ C8

(∥∥∇|∇v̂ε|q
∥∥β4

L2(Ω)

∥∥|∇v̂ε|q
∥∥1−β4

L
s
q (Ω)

+
∥∥|∇v̂ε|q

∥∥
L

s
q (Ω)

) 2(q−1)
q
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≤ C8

(
C5

∥∥∇|∇v̂ε|q
∥∥β4

L2(Ω)
+ C5

) 2(q−1)
q

≤ C9

(∥∥∇|∇v̂ε|q
∥∥ 2(q−1)β4

q

L2(Ω)
+ 1

)
(3.35)

for some positive constants C8 and C9, where

β4 :=
Nq

(
1
s −

b−1
2(q−1)b

)
Nq
s + 1− N

2

∈ (0, 1)

due to b > 1, 1 ≤ s < 2, q > q̄ ≥ 2 and the fact b > Nq
2q+N−2 from (3.14).

Collecting the estimates (3.29)-(3.35), and then using the Young inequality, we can find positive
constants C10 and C11 such that∫

Ω
up−2α
ε |∇v̂ε|2 +

∫
Ω
u2ε|∇v̂ε|2q−2

≤ C2C7

(∥∥∇u
p
2
ε

∥∥ 2β1(p−2α)
p

L2(Ω)
+ 1

)(∥∥∇|∇v̂ε|q
∥∥ 2β3

q

L2(Ω)
+ 1

)
+ C4C9

(∥∥∇u
p
2
ε

∥∥ 4β2
p

L2(Ω)
+ 1

)(∥∥∇|∇v̂ε|q
∥∥ 2(q−1)β4

q

L2(Ω)
+ 1

)
≤ C10

(∫
Ω
|∇u

p
2
ε |2

)β1(p−2α)
p

(∫
Ω

∣∣∇|∇v̂ε|q
∣∣2)β3

q
+ C10

(∫
Ω
|∇u

p
2
ε |2

) 2β2
p
(∫

Ω

∣∣∇|∇v̂ε|q
∣∣2) (q−1)β4

q

+ C10

(∫
Ω
|∇u

p
2
ε |2

)β1(p−2α)
p

+ C10

(∫
Ω

∣∣∇|∇v̂ε|q
∣∣2)β3

q
+ C10

(∫
Ω
|∇u

p
2
ε |2

) 2β2
p

+ C10

(∫
Ω

∣∣∇|∇v̂ε|q
∣∣2) (q−1)β4

q
+ C10

≤ p− 1

pC̃

∫
Ω
|∇u

p
2
ε |2 +

q − 1

2q2C̃

∫
Ω

∣∣∇|∇v̂ε|q
∣∣2 + C11 (3.36)

with C̃ as fixed in (3.5). Here we used the facts that

β1(p− 2α)

p
+

β3
q

=
N

2

( p− 2α− 1
r

1− N
2 + pN

2

+
2
s − 1 + 1

r

1− N
2 + Nq

s

)
< 1

and
2β2
p

+
(q − 1)β4

q
=

N

2

( 2− 1
b

1− N
2 + pN

2

+
2(q−1)

s − 1 + 1
b

1− N
2 + Nq

s

)
< 1

due to (3.15) and (3.16).
Combining (3.5) and (3.36), we can find positive constant C12 such that

d

dt

(∫
Ω
upε+

1

q

∫
Ω
|∇v̂ε|2q

)
+
2(p− 1)

p

∫
Ω

∣∣∇u
p
2
ε

∣∣2+ q − 1

2q2

∫
Ω

∣∣∇|∇v̂ε|q
∣∣2 ≤ C12

∫
Ω
|∇v̂ε|2q+C12 (3.37)

for all t ∈ (0, Tmax,ε). By the Gagliardo-Nirenberg inequality, (3.3) and the Young inequality, we
have ∫

Ω
upε =

∥∥u p
2
ε

∥∥2
L2(Ω)

≤ C13

(∥∥∇u
p
2
ε

∥∥2β5

L2(Ω)

∥∥u p
2
ε

∥∥2(1−β5)

L
2
p (Ω)

+
∥∥u p

2
ε

∥∥2
L

2
p (Ω)

)
= C13

(∥∥∇u
p
2
ε

∥∥2β5

L2(Ω)
∥u0∥p(1−β5)

L1(Ω)
+ ∥u0∥pL1(Ω)

)
≤ C14

(∥∥∇u
p
2
ε

∥∥2β5

L2(Ω)
+ 1

)
14



≤ p− 1

p

∫
Ω

∣∣∇u
p
2
ε

∣∣2 + C15 (3.38)

for some positive constants C13, C14 and C15, where

β5 :=
(p− 1)N

2 + (p− 1)N
∈ (0, 1)

due to p > p̄ > 1. Similarly, we can use (3.33) to find positive constants C16, C17 and C18 such that

C12

∫
Ω
|∇v̂ε|2q = C12

∥∥|∇v̂ε|q
∥∥2
L2(Ω)

≤ C16

(∥∥∇|∇v̂ε|q
∥∥2β6

L2(Ω)

∥∥|∇v̂ε|q
∥∥2(1−β6)

L
s
q (Ω)

+
∥∥|∇v̂ε|q

∥∥2
L

s
q (Ω)

)
≤ C17

(
∥∇|∇v̂ε|q∥2β6

L2(Ω)
+ 1

)
≤ q − 1

8q2

∫
Ω
|∇|∇v̂ε|q|2 + C18, (3.39)

where

β6 :=
2Nq
s −N

2−N + 2Nq
s

∈ (0, 1)

due to q > q̄ > 2 and s < N
N−1 < 2.

Substituting (3.38) and (3.39) into (3.37) and letting

y(t) :=

∫
Ω
upε(·, t) +

1

q

∫
Ω
|∇v̂ε(·, t)|2q for all t ∈ (0, Tmax,ε),

we can find positive constants C19 and C20 such that

y′(t) + C19y(t) ≤ C20 for all t ∈ (0, Tmax,ε).

Then an ODE comparison argument implies that

y(t) ≤ max
{∫

Ω
up0 +

∫
Ω
|∇v0|2q,

C20

C19

}
for all t ∈ (0, Tmax,ε),

which entails (3.27) and (3.28) for some (p, q) satisfying p > p0 and q > q0.
For general (p, q) ∈ [1,+∞) × [1,+∞), (3.27) and (3.28) can be deduced from the arbitrariness

and the Hölder inequality. This completes the proof of Lemma 3.5. □

Based on the coupled estimates at hand, we can establish the key L∞-estimate of the component
uε.

Lemma 3.6 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. Assume that
(uε, v̂ε) is a solution to system (3.2) in Ω× (0, Tmax,ε). Let (3.1) hold with some α > 1− 2

N . Then
there exists a positive constant C such that

∥uε(·, t)∥L∞(Ω) + ∥v̂ε(·, t)∥W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax,ε).

Proof. In view of Lemma 3.5, we can first fix a p > N and find some positive constant C1 such
that

∥uε(·, t)∥Lp(Ω) ≤ C1 for all t ∈ (0, Tmax,ε), (3.40)

which combined with Lemma 3.2 implies that

∥v̂ε(·, t)∥W 1,∞(Ω) ≤ C2 for all t ∈ (0, Tmax,ε) (3.41)

for some positive constant C2.
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Then applying the variation-of-constants formula to uε and using the smoothing estimate for the
Neumann heat semigroup in Ω (see e.g. Lemma 1.3 in [42]), we can find some positive constant C3

such that

∥uε(·, t)∥L∞(Ω)

≤
∥∥et∆u0∥∥L∞(Ω)

+

∫ t

0

∥∥∥e(t−τ)∆∇ ·
(
uε(·, τ)Sε(uε)(·, τ)∇v̂ε(·, τ)

)∥∥∥
L∞(Ω)

dτ

≤ ∥u0∥L∞(Ω) + C3

∫ t

0

(
1 + (t− τ)

− 1
2
−N

2p

)
e−λ1(t−τ)

∥∥uε(·, τ)Sε(uε)(·, τ)∇v̂ε(·, τ)
∥∥
Lp(Ω)

dτ (3.42)

for all t ∈ (0, Tmax,ε), where λ1 is the first non-zero eigenvalue of −∆ in Ω under the homogeneous
Neumann boundary conditions. Noticing (3.1), (3.40) and (3.41) imply that∥∥uεSε(uε)∇v̂ε

∥∥
Lp(Ω)

≤ KS∥uε∇v̂ε∥Lp(Ω) ≤ KS∥uε∥Lp(Ω)∥∇v̂ε∥L∞(Ω) ≤ KSC4

for some positive constant C4, we see from the fact p > N that∫ t

0

(
1 + (t− τ)

− 1
2
−N

2p

)
e−λ1(t−τ)

∥∥uε(·, τ)Sε(uε)(·, τ)∇v̂ε(·, τ)
∥∥
Lp(Ω)

dτ

≤ KSC4

∫ t

0

(
1 + (t− τ)

− 1
2
−N

2p

)
e−λ1(t−τ)dτ

≤ C5

for some positive constant C5. Therefore, we can conclude from (3.42) that

∥uε(·, t)∥L∞(Ω) ≤ C6 for all t ∈ (0, Tmax,ε)

for some positive constant C6. This together with (3.41) completes the proof of this lemma. □

We now end this subsection by stating the global existence and uniform boundedness of classical
solutions to system (3.2), which is a direct consequence of the boundedness in Lemma 3.6 together
with the blow-up criterion in Lemma 3.1.

Proposition 3.1 Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary and (3.1)
hold for some α > 1 − 2

N . Then for any (u0, v0) fulfilling (1.10), system (3.2) admits a global
classical solution (uε, v̂ε), which is unique and uniformly bounded in the sense that

∥uε(·, t)∥L∞(Ω) + ∥v̂ε(·, t)∥W 1,∞(Ω) ≤ C for all t ∈ (0,∞) (3.43)

for some C > 0 and any ε ∈ (0, 1).

3.3 Passing to the limit: Proof of Theorem 1.1.

In this section, we use an approximate procedure to construct the global bounded solution to
system (1.8). For this purpose, we first combine the uniform bounds in (3.43) and the standard
parabolic regularity theory to establish the estimates in Lemma 3.7-Lemma 3.9 below.

Lemma 3.7 Suppose that the assumptions of Theorem 1.1 hold. Then for all T > 0, there exists a
positive constant C(T ) such that for all ε ∈ (0, 1), we have∫ T

0

∫
Ω
|∇uε(·, t)|2 ≤ C(T ). (3.44)
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Proof. Multiplying the first equation in (3.2) by uε, integrating by parts over Ω, and then using
(3.1), we obtain

1

2

d

dt

∫
Ω
u2ε +

∫
Ω
|∇uε|2 ≤ KS

∫
Ω
|uε|

∣∣∇v̂ε
∣∣|∇uε| ≤

1

2

∫
Ω
|∇uε|2 +

K2
S

2

∫
Ω
u2ε|∇v̂ε|2

for all t ∈ (0,∞), which together with (3.43) entails that

d

dt

∫
Ω
u2ε +

∫
Ω
|∇uε|2 ≤ C for all t ∈ (0,∞)

for all ε ∈ (0, 1). By integrating the above inequality from 0 to T , we obtain (3.44). □

Lemma 3.8 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a positive con-
stant C such that for all ε ∈ (0, 1), we have

∥∂tuε(·, t)∥(
W 2,2

0 (Ω)
)∗ ≤ C for all t ∈ (0,∞). (3.45)

Proof. For any given ϕ ∈ W 2,2
0 (Ω), we deduce from the first equation in (3.2) that∫

Ω
∂tuεϕ = −

∫
Ω
∇uε · ∇ϕ+

∫
Ω
(uεSε(uε)∇v̂ε) · ∇ϕ =

∫
Ω
uε∆ϕ+

∫
Ω
(uεSε(uε)∇v̂ε) · ∇ϕ

for all t ∈ (0,∞) and ε ∈ (0, 1). By using the Hölder inequality and (3.43), we obtain∣∣∣∣∫
Ω
∂tuεϕ

∣∣∣∣ ≤ ∥uε∥L∞(Ω)∥∆ϕ∥L1(Ω) +KS∥uε∥L∞(Ω)∥∇v̂ε∥L∞(Ω)∥∇ϕ∥L1(Ω)

≤ C1∥∆ϕ∥L2(Ω) + C1∥∇ϕ∥L2(Ω) ≤ C2∥ϕ∥W 2,2
0 (Ω)

with some positive constants C1 and C2 for all t ∈ (0,∞), which implies (3.45). □

Lemma 3.9 Suppose that the assumptions of Theorem 1.1 hold. Then there exist some constants
C > 0 and δ ∈ (0, 1) such that for all ε ∈ (0, 1), we have

∥v̂ε(·, t)∥
Cδ, δ2 (Ω×[t,t+1])

≤ C for all t > 0. (3.46)

Moreover, for each t0 > 0, we can find C̃(t0) > 0 such that

∥∇v̂ε(·, t)∥
Cδ, δ2 (Ω×[t,t+1])

≤ C̃(t0) for all t > t0. (3.47)

Proof. Re-interpreting the second equation in (3.2) as

∂tv̂ε = ∆v̂ε − v̂ε − v∗ + uε =: ∆v̂ε + hε(x, t), x ∈ Ω, t > 0.

Since hε is bounded in L∞(
Ω× (0,∞)

)
by (3.43), we can draw on the standard parabolic regularity

theory to obtain (3.46) and (3.47). □

Based on the estimates proved so far, we can now pass to the limit by a standard subsequence
extraction procedure.

Lemma 3.10 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a pair of
function (u, v̂) and a subsequence {εj}j∈N ⊂ (0, 1) with εj ↘ 0 as j → ∞ such that

uε → u in L2
loc

(
Ω× [0,∞)

)
, (3.48)

∇uε ⇀ ∇u in L2
loc

(
Ω× [0,∞)

)
, (3.49)

uε → u a.e. in Ω× (0,∞), (3.50)

v̂ε → v̂ in Cloc

(
Ω× [0,∞)

)
, (3.51)

∇v̂ε → ∇v̂ in Cloc

(
Ω× [0,∞)

)
, (3.52)

∇v̂ε → ∇v̂ weak∗ in L∞(
Ω× (0,∞)

)
(3.53)

as ε = εj ↘ 0.
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Proof. In view of Lemma 3.9, the Arzelà-Ascoli theorem along with a standard extraction procedure
yields a sequence {εj}j∈N ⊂ (0, 1) with εj ↘ 0 as j → ∞ such that (3.51) and (3.52) hold with some
limit function v̂ belonging to the indicated spaces. The estimate (3.43) shows that (3.53) holds
along a further subsequence.
The estimate (3.44) in Lemma 3.7 implies that (3.49) holds for some limit function u belonging

to the indicated spaces after a further extraction of an adequate subsequence. Since {uε}ε∈(0,1)
is bounded in L2

(
(0, T );W 1,2(Ω)

)
, we can use Lemma 3.8 and the Aubin-Lions lemma to obtain

the strong precompactness (3.48) of {uε}ε∈(0,1) in L2
loc

(
Ω× [0,∞)

)
, which combined with Egorov’s

theorem entails (3.50). This completes the proof of Lemma 3.10. □

Proof of Theorem 1.1. We aim to show that solutions to the regularized problems (3.2) will
approach a classical solution of system (2.2) as ε → 0. To this end, we only need to show that the
limit function pair (u, v̂) obtained in Lemma 3.10 is a weak solution of system (2.2) in a natural weak
sense by relying on Lemma 3.10. Indeed, testing the first equation in (3.2) by φ ∈ C∞

0

(
Ω× [0,∞)

)
,

we obtain

−
∫ ∞

0

∫
Ω
uε∂tφ =

∫
Ω
u0φ(·, 0)−

∫ ∞

0

∫
Ω
∇uε · ∇φ+

∫ ∞

0

∫
Ω
uεSε(uε)∇v̂ε · ∇φ

for all ε ∈ (0, 1). Thanks to (3.48) and (3.49), we have∫ ∞

0

∫
Ω
uε∂tφ →

∫ ∞

0

∫
Ω
u∂tφ,∫ ∞

0

∫
Ω
∇uε · ∇φ →

∫ ∞

0

∫
Ω
∇u · ∇φ

as ε = εj ↘ 0, where εj is as provided by Lemma 3.10. Since Sε ∈ C2([0,∞)), we have Sε(uε) →
S(u) a.e. in Ω × (0, T ) due to (3.50). In view of Sε ∈ C2

(
[0,∞)

)
satisfying condition (1.9) and

uε > 0, we obtain the boundedness of Sε(uε) in L∞(
Ω × (0,∞)

)
. Then by continuity of Sε, the

strong precompactness of uε in L2
loc

(
Ω× [0,∞)

)
and a well-known argument (Lemma A.4 in [44]),

we conclude that
uεSε(uε) → uS(u) in L2

(
Ω× (0, T )

)
.

as ε = εj ↘ 0, which combined with (3.52) ensures that∫ ∞

0

∫
Ω
uεSε(uε)∇v̂ε · ∇φ →

∫ ∞

0

∫
Ω
uS(u)∇v̂ · ∇φ

as ε = εj ↘ 0. These results of convergence imply that

−
∫ ∞

0

∫
Ω
u∂tφ =

∫
Ω
u0φ(·, 0)−

∫ ∞

0

∫
Ω
∇u · ∇φ+

∫ ∞

0

∫
Ω
uS(u)∇v̂ · ∇φ.

Taking a similar procedure to the second equation in (3.2), we can see

−
∫ ∞

0

∫
Ω
v̂∂tφ =

∫
Ω
v̂0φ−

∫ ∞

0

∫
Ω
∇v̂ · ∇φ−

∫ ∞

0

∫
Ω
(v̂ + v∗ − u)φ.

Next according to the standard parabolic regularity theory ( see chapter IV in [22]), we can prove
the higher regularity of solutions (u, v̂). By combining the uniform bound estimate (3.43) with the
convergence results of the solutions of the approximating system (3.2), we can conclude that (u, v̂)
is a global bounded classical solution of system (2.2).
Finally, transforming back via v := v̂ + v∗, we can establish the boundedness of the classical

solution of system (1.8). This completes the proof of Theorem 1.1. □
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4 Finite-time blowup

The purpose of this section is to address the blow-up problem for system (1.8) in the radially
symmetric framework. Throughout the sequel, we assume Ω = BR ⊂ RN (N ≥ 3), and the
chemotaxis sensitivity function S ∈ C2

(
[0,∞)

)
satisfies (1.11), i.e.,

S(s) = KS(1 + s)−α, s ≥ 0

for some positive constants KS and α. Let the initial data u0 ∈ C0(BR) and v0 ∈ W 1,∞(BR) be
positive and radially symmetric. According to Lemma 2.4, we know that for such an initial data,
there exists a positive classical solution (u, v) in BR × (0, Tmax). Indeed, such a solution is radially
symmetric.

4.1 The Lyapunov functional

To establish the finite-time blow-up result, we shall first show that the functional F(u, v) defined
by (1.12) is actually a Lyapunov functional for (1.8) with dissipation rate D defined by (1.13).

Lemma 4.1 Assume that (u, v) is a classical solution to system (1.8) in BR × (0, Tmax). Then we
have

d

dt
F
(
u(·, t), v(·, t)

)
= −D

(
u(·, t), v(·, t)

)
for all t ∈ (0, Tmax), (4.1)

where F and D are as defined in (1.12) and (1.13), respectively.

Proof. It follows from (1.8) and the definition of G in (1.14) that∫
BR

∂t
(
G(u)

)
=

∫
BR

(∫ u

1

1

τS(τ)

)
∂tu =

∫
BR

(∫ u

1

1

τS(τ)

)
∇ ·

(
∇u− uS(u)∇v

)
= −

∫
BR

1

uS(u)
∇u ·

(
∇u− uS(u)∇v

)
= −

∫
BR

|∇u|2

uS(u)
+

∫
BR

∇u · ∇v

for all t ∈ (0, Tmax). Then differentiating (1.12) with regard to t directly and using (1.8) again, we
integrate by parts to obtain that

d

dt
F =

∫
BR

∇v · ∇∂tv +

∫
BR

v∂tv −
∫
BR

v∂tu−
∫
BR

u∂tv +

∫
BR

∂t(G(u))

=

∫
BR

∇v · ∇∂tv +

∫
BR

(v − u)∂tv −
∫
BR

(∆u−∇ · (uS(u)∇v))v +

∫
BR

∂t(G(u))

=

∫
BR

∇v · ∇∂tv +

∫
BR

(∆v − ∂tv)∂tv +

∫
BR

(∇u− uS(u)∇v) · ∇v +

∫
BR

∇u · ∇v −
∫
BR

|∇u|2

uS(u)

=

∫
BR

∇v · ∇∂tv −
∫
BR

∇v · ∇∂tv −
∫
BR

|∂tv|2 + 2

∫
BR

∇u · ∇v −
∫
BR

uS(u)|∇v|2 −
∫
BR

|∇u|2

uS(u)

= −
∫
BR

|∂tv|2 −
∫
BR

uS(u)
∣∣∣ ∇u

uS(u)
−∇v

∣∣∣2
= −D(u, v) for all t ∈ (0, Tmax),

where we used the fact that v∗ is a constant and thus that ∂tv = ∂tv∗ = 0 on ∂BR × (0, Tmax). This
completes the proof of Lemma 4.1. □
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4.2 Estimates for the Lyapunov functional

The main idea to derive finite-time blow-up result is to prove that −F(u, v) satisfies an ODI
with nonlinear growth from (4.1). To this end, we devote ourselves to some estimates for the
Lyapunov functional. The main step towards this will be provided by some upper estimate for∫
Ω uv. To establish the latter estimate, we first show a pointwise upper bound for the second
solution component v of system (1.8).

Lemma 4.2 Let κ > N − 2. Then there exists a positive constant C = C(κ) such that for all
radially symmetric and positive functions u0 ∈ C(BR) and v0 ∈ W 1,∞(BR) satisfying v0 ≥ v∗ in
BR and v0 = v∗ on ∂BR, the corresponding solution (u, v) to system (1.8) satisfies

v(r, t) ≤ C(κ)
(
∥u0∥L1(BR) + v∗|BR|+ ∥v0∥L1(BR) + ∥∇v0∥L2(BR)

)
r−κ (4.2)

for some positive constant C(κ) and all (r, t) ∈ (0, R)× (0, Tmax).

Proof. We first represent v̂ by using the variation-of-constants formula as follows

v̂(·, t) = et(∆−1)v̂0 −
∫ t

0
e(t−τ)(∆−1) (v∗ − u(·, τ)) dτ for all t ∈ (0, Tmax).

According to the decay estimate of the Dirichlet heat semigroup (et∆D)t≥0 in BR (see e.g. Lemma 2.1
in [48]), the Poincaré inequality and (2.1), we can find positive constants C1, C2 and C3 depending
only on p such that

∥∇v̂(·, t)∥Lp(BR)

≤
∥∥∇et(∆−1)v̂0

∥∥
Lp(BR)

+

∫ t

0

∥∥∇e(t−τ)(∆−1)(v∗ − u(·, τ))
∥∥
Lp(BR)

dτ

≤ C1∥∇v̂0∥Lp(BR) + C1

∫ t

0

(
1 + (t− τ)

− 1
2
−N

2
(1− 1

p
)
)
e−λ2(t−τ)∥v∗ − u(·, τ)∥L1(BR)dτ

≤ C2∥∇v̂0∥L2(BR) + C2

(
∥v∗∥L1(BR) + ∥u0∥L1(BR)

) ∫ t

0

(
1 + (t− τ)

− 1
2
−N

2
(1− 1

p
)
)
e−λ2(t−τ)dτ

≤ C3

(
∥∇v̂0∥L2(BR) + ∥v∗∥L1(BR) + ∥u0∥L1(BR)

)
for all t ∈ (0, Tmax),

where λ2 is the first eigenvalue of −∆ in BR under the homogeneous Dirichlet boundary conditions,
while p ∈

(
1, N

N−1

)
entailing 1

2 + N
2

(
1− 1

p

)
< 1 is to be determined. Thus,

∥∇v∥Lp(BR) = ∥∇v̂∥Lp(BR) ≤ C3

(
∥∇v̂0∥L2(BR) + ∥v∗∥L1(BR) + ∥u0∥L1(BR)

)
.

Then thanks to Lemma 2.5, we can directly repeat the proof of Lemma 3.2 in [43] to confirm that

v(r, t) ≤ C4(p)
(
∥u0∥L1(BR) + ∥v∗∥L1(BR) + ∥v0∥L1(BR) + ∥∇v0∥L2(BR)

)
r
−N−p

p (4.3)

for some positive constant C4(p) and all (r, t) ∈ (0, R) × (0, Tmax). Due to κ > N − 2, we can fix
p ∈

(
1, N

N−1

)
such that p ≥ N

κ+1 , which implies that N−p
p ≤ κ and thus that

r
− (N−p)

p ≤ R
κ− (N−p)

p r−κ ≤ C(κ)r−κ for all r ∈ (0, R],

which together with (4.3) entails (4.2). □

Lemma 4.2 tells that for κ > N − 2, there exists B > 0 depending only on u0,v0, v∗, R and κ
such that

v(x, t) ≤ B|x|−κ for all (x, t) ∈ BR × (0, Tmax). (4.4)
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This together with (2.1) and (2.3) inspires us to introduce the space

S(m,M,B, κ, v∗) :=
{
(u, v) ∈ C2

(
BR

)
× C2

(
BR

) ∣∣∣u and v are positive and radially symmetric in BR,

and satisfy that ∥u∥L1(BR) = m and ∥v∥L1(BR) ≤ M,

and that v(x) ≤ B|x|−κ in BR\{0} and v = v∗ on ∂BR

}
. (4.5)

We now devote ourselves to establishing the inequality

F(u, v)

Dθ(u, v) + 1
≥ −C(m,M,B, κ, v∗), (u, v) ∈ S(m,M,B, κ, v∗)

for some θ ∈ (0, 1) and positive constant C(m,M,B, κ, v∗), where F and D are defined by (1.12)
and (1.13), respectively. Our main ideas are inspired by [43] and [7], in which the blow-up solutions
are constructed for the homogeneous Neumann boundary value problem. Of course, we need some
new trick due to the different boundary conditions. Note that in the subsequent Lemmata, say,
Lemma 4.3-Lemma 4.8, the symbol (u, v) does not necessarily denote the solution to system (1.8).
We just do some estimates of F(u, v) for (u, v) ∈ S(m,M,B, κ, v∗).

Lemma 4.3 Assume that (u, v) ∈ S(m,M,B, κ, v∗) with κ > N − 2. Then for any η ∈ (0, 1), there
exists a positive constant C(η,m, v∗) such that∫

BR

uv ≤ (1 + η)∥∇v∥2L2(BR) + C(η,m, v∗)
(
M2 + 1

)(∥∥∆v − v + u
∥∥ 2N+4

N+4

L2(BR)
+ 1

)
. (4.6)

Proof. For convenience, we set

f := −∆v + v − u (4.7)

for (u, v) ∈ S(m,M,B, κ, v∗). Multiplying (4.7) by v and integrating by parts over BR, we have∫
BR

uv = −
∫
∂BR

v∗∇v · n+

∫
BR

|∇v|2 +
∫
BR

|v|2 −
∫
BR

fv. (4.8)

Noticing that the radial symmetry of u and v entails(
rN−1vr

)
r
= −rN−1u− rN−1f + rN−1v, (4.9)

we deduce from (4.9) and (4.5) that

−
∫
∂BR

v∗∇v · n = −v∗vr(R)RN−1ωN−1 = −v∗ωN−1

∫ R

0

(
rN−1vr

)
r
dr

= v∗ωN−1

(∫ R

0
rN−1udr +

∫ R

0
rN−1fdr −

∫ R

0
rN−1vdr

)
≤ v∗

(
∥u∥L1(BR) + ∥f∥L1(BR) + ∥v∥L1(BR)

)
≤ v∗∥f∥L1(BR) + v∗(m+M), (4.10)

where ωN−1 is the surface area of ∂B(0, 1). On the other hand, by the Gagliardo-Nirenberg inequal-
ity, the Hölder inequality and (4.5), we can find a positive constant C1 such that∫

BR

|v|2 −
∫
BR

fv

≤ C1

(
∥∇v∥

2N
N+2

L2(BR)
∥v∥

4
N+2

L1(BR)
+ ∥v∥2L1(BR)

)
+ C1

(
∥∇v∥

N
N+2

L2(BR)
∥v∥

2
N+2

L1(BR)
+ ∥v∥L1(BR)

)
∥f∥L2(BR)
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≤ C1

(
∥∇v∥

2N
N+2

L2(BR)
M

4
N+2 +M2

)
+ C1

(
∥∇v∥

N
N+2

L2(BR)
M

2
N+2 +M

)
∥f∥L2(BR). (4.11)

Combining (4.8), (4.10) and (4.11), we can apply the Young inequality to show that∫
BR

uv ≤ v∗∥f∥L1(BR) + v∗(m+M) + ∥∇v∥2L2(BR)

+ C1

(
∥∇v∥

2N
N+2

L2(BR)
M

4
N+2 +M2

)
+ C1

(
∥∇v∥

N
N+2

L2(BR)
M

2
N+2 +M

)
∥f∥L2(BR)

≤ v∗|BR|
1
2 ∥f∥L2(BR) + v∗(m+M) + (1 + η)∥∇v∥2L2(BR) + C2(η)M

2

+ C2(η)M
4

N+4 ∥f∥
2N+4
N+4

L2(BR)
+ C1M∥f∥L2(BR)

≤ (1 + η)∥∇v∥2L2(BR) + C3(η,m, v∗)
(
M2 + 1

)(
∥f∥

2N+4
N+4

L2(BR)
+ 1

)
for any η ∈ (0, 1). This completes the proof of (4.6). □

To appropriately estimate ∥∇v∥2L2(BR) appeared in the right hand side of (4.6), we split it into an

integral over a suitable small inner ball Br0 and a corresponding outer annulus BR\Br0 . We begin
with the outer case.

Lemma 4.4 Assume that (u, v) ∈ S(m,M,B, κ, v∗) with κ > N − 2. Then for any r0 ∈ (0, R) and
η ∈ (0, 1), there exists a positive constant C(η,m, κ, v∗) such that∫

BR\Br0

|∇v|2 ≤ η∥uv∥L1(BR) + η∥∇v∥2L2(BR)

+ C(η,m, κ, v∗)
(
M

2N+4
N +B

N+2
N + 1

)(
r
− 2N+4

N
κ

0 +
∥∥∆v − v + u

∥∥ 2N+4
N+4

L2(BR)
+ 1

)
.

Proof. For (u, v) ∈ S(m,M,B, κ, v∗), we multiply

f := −∆v + v − u,

by v
1
2 and integrate by parts over Ω to obtain∫

BR

fv
1
2 = −

∫
∂BR

v
1
2∇v · n+

1

2

∫
BR

v−
1
2 |∇v|2 +

∫
BR

v
3
2 −

∫
BR

uv
1
2 ,

which together with the boundary condition and a similar estimate as (4.10) implies that

1

2

∫
BR

v−
1
2 |∇v|2 +

∫
BR

v
3
2 = v

1
2
∗

∫
∂BR

∇v · n+

∫
BR

uv
1
2 (·, t) +

∫
BR

fv
1
2

≤ v
1
2
∗
(
∥f∥L1(BR) +m+M

)
+

∫
BR

uv
1
2 +

∫
BR

fv
1
2 . (4.12)

The first term on the left hand side will provide a gradient estimate for v in the annulus. Indeed,
in view of the fact (4.4), we have∫

BR

v−
1
2 |∇v|2 ≥

∫
BR\Br0

v−
1
2 |∇v|2 ≥ B− 1

2 r
1
2
κ

0

∫
BR\Br0

|∇v|2,

which combined with (4.12) yields∫
BR\Br0

|∇v|2 ≤ 2v
1
2
∗ B

1
2 r

− 1
2
κ

0

(
∥f∥L1(BR)+m+M

)
+2B

1
2 r

− 1
2
κ

0

∫
BR

uv
1
2 +2B

1
2 r

− 1
2
κ

0

∫
BR

fv
1
2 . (4.13)
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We only need to further estimate the right hand side of (4.13). For any η > 0, we can use the
Hölder inequality and the Young inequality to find positive constants C1, C2, · · · , C5 depending on
η, m, M , B, κ and v∗ such that

2v
1
2
∗ B

1
2 r

− 1
2
κ

0

(
∥f∥L1(BR) +m+M

)
≤ 2v

1
2
∗ B

1
2 r

− 1
2
κ

0

(
∥f∥L2(BR)|BR|

1
2 +m+M

)
≤ C1B

1
2

(
r
−N+2

N
κ

0 + ∥f∥
2N+4
N+4

L2(BR)

)
+ C2(M + 1)B

1
2

(
r
− 2N+4

N
κ

0 + 1
)

≤ C3(M + 1)B
1
2

(
r
− 2N+4

N
κ

0 + ∥f∥
2N+4
N+4

L2(BR)
+ 1

)
, (4.14)

and

2B
1
2 r

− 1
2
κ

0

∫
BR

uv
1
2 = 2B

1
2

∫
BR

(uv)
1
2 (r−κ

0 u)
1
2 ≤ η

∫
BR

uv +
B

η
r−κ
0

∫
BR

u

≤ η

∫
BR

uv +
mB

η
r
− 2N+4

N
κ

0 R
N+4
N

κ, (4.15)

and that

2B
1
2 r

− 1
2
κ

0

∫
BR

fv
1
2 ≤ 2B

1
2 r

− 1
2
κ

0

∫
BR

(|f |v)
1
2 |f |

1
2

≤
∫
BR

|f |v +Br−κ
0

∫
BR

|f |

≤ ∥f∥L2(BR)∥v∥L2(BR) +Br−κ
0 |BR|

1
2 ∥f∥L2(BR)

≤ C4∥f∥L2(BR)

(
∥∇v∥

N
N+2

L2(BR)
∥v∥

2
N+2

L1(BR)
+ ∥v∥L1(BR

)
+Br−κ

0 |BR|
1
2 ∥f∥L2(BR)

≤ C5∥f∥L2(BR)

(
∥∇v∥

N
N+2

L2(BR)
M

2
N+2 +M

)
+Br−κ

0 |BR|
1
2 ∥f∥L2(BR)

≤ η∥∇v∥2L2(BR) + C6

(
M +B + 1

)(
r
− 2N+4

N
κ

0 + ∥f∥
2N+4
N+4

L2(BR)
+ 1

)
. (4.16)

Substituting (4.14)-(4.16) into (4.13), we complete the proof of Lemma 4.4. □

To perform the L2 estimate of ∇v in the inner ball Br0 , the assumptions N ≥ 3 and 0 < α < 1− 2
N

will be crucially needed.

Lemma 4.5 Let (1.11) hold with 0 < α < 1 − 2
N . Assume that (u, v) ∈ S(m,M,B, κ, v∗) with

κ > N − 2. Then there exist µ ∈ (1, 2) and positive constant C(m) such that∫
Br0

|∇v|2 ≤ C(m)
(
r0
∥∥∆v − v + u

∥∥2
L2(BR)

+ r0

∥∥∥ ∇u√
uS(u)

−
√

uS(u)∇v
∥∥∥2
L2(BR)

+ ∥v∥2L2(BR) + 1
)

+ µ
∥∥G(u)

∥∥
L1(BR)

for all r0 ∈ (0, R), where G is defined by (1.14).

Proof. Noticing that
(4(N−1)

N−2 − 2
)
α ∈ (0, 2) due to α ∈

(
0, 1 − 2

N

)
, we can pick η1 ∈

(
0, 2N−2

R

)
small enough such that

µ1 :=
(4(N − 1)

N − 2
eη1R − 2

)
α ∈ (0, 2).

Then by letting η2 :=
2−µ1

2R ∈
(
0, 1

R

)
, we have

µ := η2R+ µ1 = 1 +
1

2
µ1 ∈ (1, 2). (4.17)
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As before, we set

f := −∆v + v − u and g :=
( ∇u√

uS(u)
−
√

uS(u)∇v
)
· x

|x|
, x ̸= 0. (4.18)

Since both u and v are radially symmetric, we rewrite the above two equalities to(
rN−1vr

)
r
= −rN−1u− rN−1f + rN−1v and vr =

ur
uS(u)

− g√
uS(u)

,

respectively. Then the Young inequality entails that

1

2

(
(rN−1vr)

2
)
r
= −r2N−2uvr − r2N−2fvr + r2N−2vvr

≤ −r2N−2 ur
S(u)

+ r2N−2 |g|u√
uS(u)

+
η1
2

(
rN−1vr

)2
+

1

2η1
r2N−2f2 +

1

2
r2N−2(v2)r

for all r ∈ (0, R). Then by setting

y(r) := r2N−2v2r (r), r ∈ [0, R],

we have

yr − η1y ≤ −2r2N−2 ur
S(u)

+ 2r2N−2 |g|u√
uS(u)

+
1

η1
r2N−2f2 + r2N−2(v2)r

for all r ∈ (0, R). By integrating the above inequality from 0 to r and using y(0) = 0, we obtain

r2N−2v2r (r) = y(r) ≤ −2

∫ r

0
eη1(r−ρ)ρ2N−2 uρ(ρ)

S
(
u(ρ)

)dρ+ 2

∫ r

0
eη1(r−ρ)ρ2N−2

∣∣g(ρ)∣∣u(ρ)√
u(ρ)S

(
u(ρ)

)dρ
+

1

η1

∫ r

0
eη1(r−ρ)ρ2N−2f2(ρ)dρ+

∫ r

0
eη1(r−ρ)ρ2N−2

(
v2(ρ)

)
ρ
dρ

=: I1 + I2 + I3 + I4 for all r ∈ (0, R). (4.19)

Before estimating the integrals on the right-hand side of (4.19), we first claim that

G(s) ≥ 1

KSα(α+ 1)
(1 + s)1+α − 2α

KSα
s− 2α+1

KSα(α+ 1)
for all s ≥ 0. (4.20)

Indeed, in the case of s ≥ 1, we see from the definition of G(s) and (1.11) that

G(s) =
1

KS

∫ s

1

∫ δ

1

1

τ(1 + τ)−α
dτdδ ≥ 1

KS

∫ s

1

∫ δ

1

(1 + τ)α

1 + τ
dτdδ

≥ 1

KSα(α+ 1)
(1 + s)1+α − 2α

KSα
s− 2α+1

KSα(α+ 1)
,

while in the case of 0 < s < 1, we also have

G(s) =
1

KS

∫ 1

s

∫ 1

δ

1

τ(1 + τ)−α
dτdδ ≥ 1

KS

∫ 1

s

∫ 1

δ

(1 + τ)α

1 + τ
dτdδ

≥ 1

KSα(α+ 1)
(1 + s)1+α − 2α

KSα
s− 2α+1

KSα(α+ 1)
.

This confirms our claim. On the other hand, by letting

H(s) :=

∫ s

0

dδ

S(δ)
, s ≥ 0,
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we will have

H(s) =
1

KS

∫ s

0
(1 + δ)αdδ =

1

KS(α+ 1)
(1 + s)1+α − 1

KS(α+ 1)
≥ 0 for all s ≥ 0. (4.21)

We now estimate the integrals on the right-hand side of (4.19) one by one. For I1, it follows from
the definition of H and the integration by parts that

I1 = −2

∫ r

0
eη1(r−ρ)ρ2N−2

(
H(u(ρ))

)
ρ
dρ

= −2r2N−2H
(
u(r)

)
+ 4(N − 1)

∫ r

0
eη1(r−ρ)ρ2N−3H

(
u(ρ)

)
dρ− 2η1

∫ r

0
eη1(r−ρ)ρ2N−2H

(
u(ρ)

)
dρ

≤ −2r2N−2H
(
u(r)

)
+ 4(N − 1)eη1R

∫ r

0
ρ2N−3H

(
u(ρ)

)
dρ for all r ∈ (0, R).

For I2, we can first utilize the Hölder inequality and (1.11) to deduce that

I2 ≤ 2
(∫ r

0
ρN−1 u(ρ)

S
(
u(ρ)

)dρ) 1
2
(∫ r

0
e2η1(r−ρ)ρ3N−3g2(ρ)dρ

) 1
2

≤ 2
( 1

KS

∫ r

0
ρN−1

(
u(ρ) + 1

)1+α
dρ

) 1
2
(
e2η1Rr2N−2

∫ r

0
ρN−1g2(ρ)dρ

) 1
2

≤ 2eη1R

ωN−1

√
KS

rN−1
∥∥(u+ 1)1+α

∥∥ 1
2

L1(BR)
∥g∥L2(BR)

≤ η2
ωN−1KSα(α+ 1)

rN−1
∥∥(u+ 1)1+α

∥∥
L1(BR)

+
α(α+ 1)e2η1R

η2ωN−1
rN−1∥g∥2L2(BR)

for all r ∈ (0, R). Then by

(s+ 1)1+α ≤ KSα(α+ 1)G(s) + 2α(α+ 1)s+ 2α+1 for all s ≥ 0,

which follows from (4.20), we obtain

I2 ≤
η2

ωN−1
rN−1

(
∥G(u)∥L1(BR) +

2α

KSα
∥u∥L1(BR) +

2α+1|BR|
KSα(α+ 1)

)
+

α(α+ 1)e2η1R

η2ωN−1
rN−1∥g∥2L2(BR)

≤ η2
ωN−1

rN−1
(
∥G(u)∥L1(BR) + C1(m)

)
+

α(α+ 1)e2η1R

η2ωN−1
rN−1∥g∥2L2(BR) for all r ∈ (0, R)

with some constant C1(m) > 0. For I3 and I4, a direct calculation yields that

I3 ≤
eη1R

η1
rN−1

∫ r

0
ρN−1f2(ρ)dρ =

eη1R

η1ωN−1
rN−1∥f∥2L2(BR) for all r ∈ (0, R)

and

I4 = r2N−2v2(r)−
∫ r

0

(
(2N − 2)ρ2N−3 − η1ρ

2N−2
)
eη1(r−ρ)v2(ρ)dρ ≤ r2N−2v2(r) for all r ∈ (0, R),

where we used (2N − 2)ρ2N−3 ≥ η1ρ
2N−2 in the last inequality due to η1 ≤ 2N−2

R .
Substituting the above estimates into (4.19), we can find a positive constant C2 = C2(m) such

that

rN−1v2r (r) ≤ −2rN−1H
(
u(r)

)
+ 4(N − 1)eη1R

1

rN−1

∫ r

0
ρ2N−3H

(
u(ρ)

)
dρ+

η2
ωN−1

∥G(u)∥L1(BR)

+
C2

ωN−1
+

C2

ωN−1
∥g∥2L2(BR) +

C2

ωN−1
∥f∥2L2(BR) + rN−1v2(r)

25



for all r ∈ (0, R). Then a direct integration entails that∫
Br0

|∇v|2 = ωN−1

∫ r0

0
rN−1v2r (r)dr

≤ −2ωN−1

∫ r0

0
rN−1H

(
u(r)

)
dr + 4(N − 1)eη1RωN−1

∫ r0

0
r1−N

∫ r

0
ρ2N−3H

(
u(ρ)

)
dρdr

+ η2r0∥G(u)∥L1(BR) + C2r0 + C2r0∥g∥2L2(BR) + C2r0∥f∥2L2(BR)

+ ωN−1

∫ r0

0
rN−1v2(r)dr

≤ −2

∫
Br0

H(u) + 4(N − 1)eη1RωN−1

∫ r0

0
ρ2N−3H

(
u(ρ)

)( ∫ r0

ρ
r1−Ndr

)
dρ

+ η2R∥G(u)∥L1(BR) + C2r0
(
1 + ∥g∥2L2(BR) + ∥f∥2L2(BR)

)
+ ∥v∥2L2(BR) (4.22)

for all r0 ∈ (0, R), where we used the Fubini’s theorem in the last inequality. Noticing that

− 2

∫
Br0

H(u) + 4(N − 1)eη1RωN−1

∫ r0

0
ρ2N−3H

(
u(ρ)

)( ∫ r0

ρ
r1−Ndr

)
dρ

= −2

∫
Br0

H(u) +
4(N − 1)

N − 2
eη1RωN−1

∫ r0

0

(
ρ2−N − r2−N

0

)
ρ2N−3H

(
u(ρ)

)
dρ

≤ −2

∫
Br0

H(u) +
4(N − 1)

N − 2
eη1RωN−1

∫ r0

0
ρN−1H

(
u(ρ)

)
dρ

≤
(4(N − 1)

N − 2
eη1R − 2

)∫
Ω
H(u),

we can deduce from (4.21) and (4.20) that

− 2

∫
Br0

H(u) + 4(N − 1)eη1RωN−1

∫ r0

0
ρ2N−3H

(
u(ρ)

)( ∫ r0

ρ
r1−Ndr

)
dρ

≤
(4(N − 1)

N − 2
eη1R − 2

)(
α∥G(u)∥L1(BR) +

2α

KS
∥u∥L1(BR) +

2α+1

KS(α+ 1)
|BR|

)
≤

(4(N − 1)

N − 2
eη1R − 2

)
α∥G(u)∥L1(BR) + C3 = µ1∥G(u)∥L1(BR) + C3 (4.23)

for some positive constant C3 = C3(m). By substituting (4.23) into (4.22), we obtain

∥∇v∥2L2(Br0 )
≤ µ∥G(u)∥L1(BR) + C2r0

(
1 + ∥g∥2L2(BR) + ∥f∥2L2(BR)

)
+ ∥v∥2L2(BR) + C3

due to (4.17). This completes the proof of Lemma 4.5. □

We further fix a suitable small r0 such that r0
(
∥f∥2L2(BR) + ∥g∥2L2(BR)

)
essentially becomes a

suitable subquadratic power of ∥f∥2L2(BR) + ∥g∥2L2(BR) for f and g defined by (4.18).

Lemma 4.6 Let (1.11) hold with 0 < α < 1 − 2
N . Assume that (u, v) ∈ S(m,M,B, κ, v∗) with

κ > N − 2. Then for any η ∈
(
0, 12

)
, there exist positive constants C(η,m, κ, v∗) and

θ :=
κ(2N + 4)

(2N + 4)κ+N
∈
(N + 2

N + 4
, 1
)
⊂

(1
2
, 1
)
. (4.24)

such that∫
BR

|∇v|2 ≤ C(η,m, κ, v∗)
(
M

2N+4
N +B

N+2
N + 1

)(∥∥∆v − v + u
∥∥2θ
L2(BR)

+
∥∥∥ ∇u√

uS(u)
−
√

uS(u)∇v
∥∥∥2θ
L2(BR)

+ 1
)
+

µ

1− 2η

∥∥G(u)
∥∥
L1(BR)

+
η

1− 2η
∥uv∥L1(BR),

where µ ∈ (1, 2) is determined by Lemma 4.5.
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Proof. As before, we set

f := −∆v + v − u and g :=
( ∇u√

uS(u)
−
√

uS(u)∇v
)
· x

|x|
, x ̸= 0.

Define

r0 := min
{R

2
,
(
∥f∥L2(BR) + ∥g∥L2(BR)

)− 2N
(2N+4)κ+N

}
∈ (0, R).

Then for any fixed η ∈ (0, 12), in view of Lemma 4.4 and Lemma 4.5, we can find positive constants
C1 = C1(η,m, κ, v∗) and C2 = C2(m) such that

(1− η)

∫
BR

|∇v|2 ≤ C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C2r0

(
∥f∥2L2(BR) + ∥g∥2L2(BR)

)
+ C1

(
M

2N+4
N +B

N+2
N + 1

)
r
− 2N+4

N
κ

0 + C2∥v∥2L2(BR)

+ µ
∥∥G(u)

∥∥
L1(BR)

+ η∥uv∥L1(BR) + C1

(
M

2N+4
N +B

N+2
N + 1

)
Since the Gagliardo-Nirenberg inequality, (4.5) and the Young inequality entail that

C2∥v∥2L2(BR) ≤ C3

(
∥∇v∥

N
N+2

L2(BR)
∥v∥

2
N+2

L1(BR)
+ ∥v∥L1(BR)

)2

≤ 2C3

(
∥∇v∥

2N
N+2

L2(BR)
M

4
N+2 +M2

)
≤ η

∫
BR

|∇v|2 + C4M
2

for some positive constants C3 = C3(m) and C4 = C4(η,m), we have

(1− 2η)

∫
BR

|∇v|2 ≤ C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C2r0

(
∥f∥2L2(BR) + ∥g∥2L2(BR)

)
+ C1

(
M

2N+4
N +B

N+2
N + 1

)
r
− 2N+4

N
κ

0

+ µ
∥∥G(u)

∥∥
L1(BR)

+ η∥uv∥L1(BR) + C5

(
M

2N+4
N +B

N+2
N + 1

)
(4.25)

for some positive constant C5 = C5(η,m, κ, v∗).

If ∥f∥L2(BR) + ∥g∥L2(BR) ≤
(
2
R

) (2N+4)κ+N
2N , then r0 =

R
2 . In this case, it is clear that

C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C2r0

(
∥f∥2L2(BR) + ∥g∥2L2(BR)

)
+ C1

(
M

2N+4
N +B

N+2
N + 1

)
r
− 2N+4

N
κ

0

≤ C1

(
M

2N+4
N +B

N+2
N + 1

)( 2

R

) (2N+4)κ+N
2N

· 2N+4
N+4

+ C2R
( 2

R

) (2N+4)κ+N
N

+ C1

(
M

2N+4
N +B

N+2
N + 1

)(R
2

)− 2N+4
N

κ
,

which together with (4.25) implies that there exist a positive constant C6 = C6(η,m, κ, v∗) such
that ∫

BR

|∇v|2 ≤ C6

(
M

2N+4
N +B

N+2
N + 1

)
+

µ

1− 2η
∥G(u)∥L1(BR) +

η

1− 2η
∥uv∥L1(BR)

≤ C6

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR) + 1

)
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+
µ

1− 2η
∥G(u)∥L1(BR) +

η

1− 2η
∥uv∥L1(BR) (4.26)

for any θ > 0. On the other hand, if ∥f∥L2(BR)+∥g∥L2(BR) >
(
2
R

) (2N+4)κ+N
2N , then r0 =

(
∥f∥L2(BR)+

∥g∥L2(BR)

)− 2N
(2N+4)κ+N . In this case, we can first find a positive constant C7 = C7(η,m, κ, v∗) such

that

C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C2r0

(
∥f∥2L2(BR) + ∥g∥2L2(BR)

)
+ C1

(
M

2N+4
N +B

N+2
N + 1

)
r
− 2N+4

N
κ

0

≤ C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C2

(
∥f∥L2(BR) + ∥g∥L2(BR)

)2− 2N
(2N+4)κ+N

L2(BR)

+ C1

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥L2(BR) + ∥g∥L2(BR)

) 2κ(2N+4)
(2N+4)κ+N

≤ C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C7

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥

2κ(2N+4)
(2N+4)κ+N

L2(BR)
+ ∥g∥

2κ(2N+4)
(2N+4)κ+N

L2(BR)

)
.

Then thanks to κ > N − 2 and N ≥ 3, we can take θ as (4.24) and further use the Young inequality
to obtain

C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C2r0

(
∥f∥2L2(BR) + ∥g∥2L2(BR)

)
+ C1

(
M

2N+4
N +B

N+2
N + 1

)
r
− 2N+4

N
κ

0

≤ C1

(
M

2N+4
N +B

N+2
N + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C7

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR)

)
≤

(
C1 + C7

)(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR) + 1

)
,

which implies that∫
BR

|∇v|2 ≤ C8

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR) + 1

)
+

µ

1− 2η
∥G(u)∥L1(BR) +

η

1− 2η
∥uv∥L1(BR) + C8 (4.27)

for some positive constant C8 = C8(η,m, κ, v∗).
Combining (4.26) and (4.27), and fixing θ by (4.24), we end the proof of Lemma 4.6. □

The final step is to control ∥uv∥L1(BR) appeared in Lemma 4.6.

Lemma 4.7 Let (1.11) hold with 0 < α < 1 − 2
N and θ := κ(2N+4)

(2N+4)κ+N . Assume that (u, v) ∈
S(m,M,B, κ, v∗) with κ > N − 2. Then there exists a positive constant C(m,κ, v∗) such that∫

BR

uv ≤ C(m,κ, v∗)
(
M

2N+4
N +B

N+2
N + 1

)(∥∥∆v − v + u
∥∥2θ
L2(BR)

+
∥∥∥ ∇u√

uS(u)
−
√

uS(u)∇v
∥∥∥2θ
L2(BR)

+ 1
)
+ ∥G(u)∥L1(BR) +

1

2
∥∇v∥2L2(BR). (4.28)

Proof. As before, we still set

f := −∆v + v − u and g :=
( ∇u√

uS(u)
−
√
uS(u)∇v

)
· x

|x|
, x ̸= 0

for simplicity and let µ ∈ (1, 2) be the constant determined by Lemma 4.5. Then we can first pick a
constant η1 ∈

(
0, 12

)
fulfilling (1− η1)µ < 1 and then use a continuity argument to find η2 ∈

(
0, 14

)
small enough such that

η1(1− 2η2)

1− 3η2 + η1η2 − η22
<

1

2
and

(1− η1 + η2)µ

1− 3η2 + η1η2 − η22
< 1. (4.29)
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Thus, we can use Lemma 4.3 to find a positive constant C1 = C1(m, v∗) such that

∥uv∥L1(BR) ≤ η1∥∇v∥2L2(BR) + (1− η1 + η2)∥∇v∥2L2(BR) + C1

(
M2 + 1

)(
∥f∥

2N+4
N+4

L2(BR)
+ 1

)
, (4.30)

and similarly, use Lemma 4.6 to find positive constants C2 = C2(m,κ, v∗) and θ = κ(2N+4)
(2N+4)κ+N such

that

∥∇v∥2L2(BR) ≤ C2

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR) + 1

)
+

µ

1− 2η2

∥∥G(u)
∥∥
L1(BR)

+
η2

1− 2η2

∥∥uv∥∥
L1(BR)

.

Substituting the above inequality into the second term on the right hand side of (4.30), we can
obtain (

1− η2(1− η1 + η2)

1− 2η2

)
∥uv∥L1(BR)

≤ η1∥∇v∥2L2(BR) + (1− η1 + η2)C2

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR)

)
+

(1− η1 + η2)µ

1− 2η2

∥∥G(u)
∥∥
L1(BR)

+ C1

(
M2 + 1

)
∥f∥

2N+4
N+4

L2(BR)

+
(
(1− η1 + η2)C2

(
M

2N+4
N +B

N+2
N + 1

)
+ C1

(
M2 + 1

))
,

which together with (4.29) implies that there exists positive constants C3 = C3(m,κ, v∗) and C4 =
C4(m,κ, v∗) such that

∥uv∥L1(BR) ≤
η1(1− 2η2)

1− 3η2 + η1η2 − η22
∥∇v∥2L2(BR) + C3

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR)

)
+

(1− η1 + η2)µ

1− 3η2 + η1η2 − η22

∥∥G(u)
∥∥
L1(BR)

+ C3

(
M2 + 1

)
∥f∥

2N+4
N+4

L2(BR)

+ C3

(
M

2N+4
N +B

N+2
N + 1

)
≤ 1

2
∥∇v∥2L2(BR) + C3

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR)

)
+
∥∥G(u)

∥∥
L1(BR)

+ C3

(
M2 + 1

)
∥f∥

2N+4
N+4

L2(BR)
+ C3

(
M

2N+4
N +B

N+2
N + 1

)
≤ 1

2
∥∇v∥2L2(BR) + C4

(
M

2N+4
N +B

N+2
N + 1

)(
∥f∥2θL2(BR) + ∥g∥2θL2(BR) + 1

)
+
∥∥G(u)

∥∥
L1(BR)

.

Here in the last inequality, we used the fact θ ∈
(
N+2
N+4 , 1

)
and the Young inequality. This completes

the proof of Lemma 4.7. □

We are now in the position to estimate F(u, v) in terms of some sublinear power of D(u, v).

Lemma 4.8 Let (1.11) hold with 0 < α < 1 − 2
N and θ := κ(2N+4)

(2N+4)κ+N . Assume that (u, v) ∈
S(m,M,B, κ, v∗) with κ > N − 2. Then there exist a positive constant C(m,κ, v∗) such that

F(u, v) ≥ −C(m,κ, v∗)
(
M

2N+4
N +B

N+2
N + 1

)(
Dθ(u, v) + 1

)
,

where F and D are given by (1.12) and (1.13), respectively.

Proof. By (4.28), we can find two positive constants C1 = C1(m,κ, v∗) and θ = κ(2N+4)
(2N+4)κ+N such

that

∥uv∥L1(BR) ≤ C1

(
M

2N+4
N +B

N+2
N + 1

)(∥∥∆v − v + u
∥∥2θ
L2(BR)
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+
∥∥∥ ∇u√

uS(u)
−
√

uS(u)∇v
∥∥∥2θ
L2(BR)

+ 1
)
+ ∥G(u)∥L1(BR) +

1

2
∥∇v∥2L2(BR).

Then by the definitions of F and D, we deduce that

F(u, v) ≥ 1

2
∥∇v∥2L2(BR) − ∥uv∥L1(BR) +

∥∥G(u)
∥∥
L1(BR)

≥ −C1

(
M

2N+4
N +B

N+2
N + 1

)(∥∥∆v − v + u
∥∥2θ
L2(BR)

+
∥∥∥ ∇u√

uS(u)
−
√
uS(u)∇v

∥∥∥2θ
L2(BR)

+ 1
)

≥ −C2

(
M

2N+4
N +B

N+2
N + 1

)(
Dθ(u, v) + 1

)
for some positive constant C2 = C2(m,κ, v∗). This completes the proof of Lemma 4.8. □

4.3 Blowup in finite time: Proof of Theorem 1.2

In view of Lemma 4.8 and Lemma 4.1, we can prove the existence of solution (u, v) blowing up
in finite time. We denote by

B̃(m,M,K, v∗) :=
{
(u0, v0) ∈ C0(BR)×W 1,∞(BR)

∣∣∣u0 and v0 are radially symmetric and

positive in BR, v0 ≥ v∗ in BR, v0 = v∗ on ∂BR, and satisfy

∥u0∥L1(BR) = m, ∥v0∥W 1,2(BR) ≤ M, and F(u0, v0) ≤ −K
}
.

Lemma 4.9 Let (1.11) hold with 0 < α < 1− 2
N and κ > N − 2. For any given positive constants

m and M , and v∗ ≥ 0, there exist a positive constants K = K(m,κ, v∗)
(
M

2N+4
N + 1

)
such that for

any (u0, v0) ∈ B̃(m,M,K, v∗), the corresponding solution (u, v) of system (1.8) fulfills

F(u, v) ≤ F(u0, v0)(
1− Ct

) θ
1−θ

for all t ∈ (0, Tmax), (4.31)

where θ = (2N+4)κ
(2N+4)κ+N and C = C(κ,K)

(
−F

(
u0, v0

)) 1−θ
θ with some constant C(κ,K) depending on

κ and K.

Proof. Recalling Lemma 4.2, we see that there exists a positive constant C1 = C1(κ) such that the
second solution component v of system (1.8) satisfies

v(x, t) ≤ C1

(
∥u0∥L1(BR) + v∗|BR|+ ∥v0∥L1(BR) + ∥∇v0∥L2(BR)

)
|x|−κ

≤ C1

(
∥u0∥L1(BR) + v∗|BR|+ ∥v0∥L2(BR)|BR|

1
2 + ∥∇v0∥L2(BR)

)
|x|−κ (4.32)

for all (x, t) ∈ BR\{0} × (0, Tmax). Thus if we set

m := ∥u0∥L1(BR), M := max
{
m,M |BR|

1
2
}
, B := C1

(
m+ v∗|BR|+M |BR|

1
2 +M

)
,

then we see from (2.1), (2.3) and (4.32) that(
u(·, t), v(·, t)

)
∈ S(m,M,B, κ, v∗) for all t ∈ (0, Tmax)

due to κ > N − 2, and that

M ≤ C2

(
M + 1

)
and B ≤ C2

(
M + 1

)
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for some positive constant C2 = C2(m,κ, v∗). Thanks to Lemma 4.8, the assumption (1.11) with
0 < α < 1− 2

N entails that

Dθ
(
u(·, t), v(·, t)

)
≥

−F
(
u(·, t), v(·, t)

)
C3

(
M

2N+4
N +B

N+2
N + 1

) − 1 ≥
−F

(
u(·, t), v(·, t)

)
C4

(
M

2N+4
N + 1

) − 1

for some positive constants C3 = C3(m,κ, v∗) and C4 = C4(m,κ, v∗) and all t ∈ (0, Tmax), where

θ = (2N+4)κ
(2N+4)κ+N . Setting

K = 2C4

(
M

2N+4
N + 1

)
=: K(m,κ, v∗)

(
M

2N+4
N + 1

)
and noticing that −F

(
u(·, t), v(·, t)

)
is nondecreasing with respect to time t due to (4.1) and thus

that
−F

(
u(·, t), v(·, t)

)
≥ −F

(
u0, v0

)
,

we see

Dθ
(
u(·, t), v(·, t)

)
≥

−F
(
u(·, t), v(·, t)

)
K

+
(−F

(
u(·, t), v(·, t)

)
K

− 1
)

≥
−F

(
u(·, t), v(·, t)

)
K

+
(−F

(
u0, v0

)
K

− 1
)

≥
−F

(
u(·, t), v(·, t)

)
K

+
(K
K

− 1
)

=
−F

(
u(·, t), v(·, t)

)
K

for all t ∈ (0, Tmax).

It then follows from (4.1) that

d

dt

(
−F

(
u(·, t), v(·, t)

))
= D

(
u, v

)
≥

(−F
(
u(·, t), v(·, t)

)
K

) 1
θ

for all t ∈ (0, Tmax).

A direct calculation shows that

F
(
u(·, t), v(·, t)

)
≤ F

(
u0, v0

)(
1− 1− θ

θK
1
θ

(
−F

(
u0, v0

)) 1−θ
θ
t
)− θ

1−θ

for all t ∈ (0, Tmax). This confirms (4.31). □

Proof of Theorem 1.2. We first fix an arbitrary constant κ > N − 2 and then let K(m, v∗) :=

K(m,κ, v∗) and T (m,M, v∗) :=
(
C(κ,K)

(
− F

(
u0, v0

)) 1−θ
θ

)−1
with K(m,κ, v∗) and C(κ,K) de-

termined by Lemma 4.9. Therefore, Lemma 4.9 implies that the solution (u, v) will blow up before
the finite time T (m,M, v∗). This completes the proof of Theorem 1.2. □
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