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Abstract

In our previous paper, we investigated the orbits inside attracting basins for polyno-
mials in C. Suppose f(z) is a polynomial of degree at least 2 on C, p is an attracting
fixed point of f(z), 1 is the immediate basin of attraction of p, {f~*(p)} N Qy # {p}.
Let A(p) be the basin of attraction of p, and let ;(¢ = 1,2,---) denote the connected
components of A(p). Then there exists a constant C such that for every point zq inside
any €, there exists a point ¢ € |J,,{f~*(p) }ren inside Q; such that dg, (20, ¢) < C, where
dg, denotes the hyperbolic distance on Q;. If {f~1(p)} N Q1 = {p}, then we proved a
suitably modified version, we choose a point p’ very close to p. In this case, there exists
a q € Up{f ") }ren inside Q; such that dg,(z0,q) < C.

In this paper, we obtained opposite results about the behavior of orbits inside parabolic
basins of polynomials in C. Let f(z) = z + az™™! + (higher terms),m > 1,a # 0. A
complex number vj is called an attraction vector if mav;™ = —1. Suppose P; is an
attracting petal for f(z) for the vector v; at 0, A; = A(0, v;) is the parabolic basin of
attraction associated to vj, and €); is the immediate basin of .A;. We choose an arbitrary
constant C' > 0 and an arbitrary point ¢ = av;j € Pj, a is a small positive real number.
Then there exists a point zy € §; so that for any § € Q == U2 {f~'(f*(¢))} N, (I, k
are non-negative integers), the hyperbolic distance dq,(z0,4) > C, where dg, is the
hyperbolic distance on ;.

In conclusion, for attracting basins, the preimages of the fixed point p or a point p’
inside the immediate basin of the attracting fixed point p will intersect all hyperbolic
disks in the basin with some fixed radius C. However, for parabolic basins, the inverse
images of f¥(q), where ¢ is any point on an attraction vector, will avoid arbitrary large
hyperbolic disks in the basin. Note that f¥(q) can be arbitrarily close to the parabolic
fixed point p.
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1 Introduction

Let C = CuU {0}, f(2) : C — C be a nonconstant holomorphic map with degree at least
2, and f"(z) : C = C be its n-fold iterate. For z € C, we call the set {zp}nen = {21 =
f(20), 22 = f?(20),-- -} the orbit of the point z = zy. If zy = 2o for some integer N, we say
that zg is a periodic point of f(z). If N =1, then zj is a fixed point of f(z).

In complex dynamics [3, 7, 9, 10, 19], there are two crucial disjoint invariant sets, the
Julia set, and the Fatou set of f(z), which partition the sphere C. The Fatou set of f(z)



is defined as the largest open set F where the family of iterates is locally normal. In other
words, for any point z € F, there exists some neighborhood U of z so that the sequence
of iterates of the map, restricted to U, forms a normal family, so the orbits of iteration are
well-behaved. The complement of the Fatou set is called the Julia set.

There have been many studies on probability measures that can describe the dynamics
on the Julia set. We define {f~1(2)} = {w|f(w) = 2z}, that is the set of preimages of the
point z, and {f7"(2) }neny = {w|f™(w) = z}. For example, if z is any non-exceptional point,
the inverse orbits {f7"(2)}nen equidistribute toward the Green measure p which lives on
the Julia set. This was proved already by Brolin [6] in 1965, and many improvements and
generalizations have been made [8, 11]. However, this equidistribution toward p is in the
weak sense, and hence it is with respect to the Euclidean metric. Therefore, it is a reasonable
question to ask how dense {f~"(z) },en is in F near the boundary of F if we use finer metrics,
for instance, the hyperbolic metric. The hyperbolic metric is an important tool in complex
dynamics, see examples in [1, 2, 4, 5].

There are some classical results about the behavior of a rational function on the Fatou set
F as well. The connected components of the Fatou set of f(z) are called Fatou components.
A Fatou component Q C C of f(2) is invariant if f(Q) = Q. At the beginning of the
20th century, Fatou [12, 13, 14] classified all possible invariant Fatou components of rational
functions on the Riemann sphere. He proved that only three cases can occur: attracting,
parabolic, and rotation. And in the ’80s, Sullivan [20] completed the classification of Fatou
components. He proved that every Fatou component of a rational map is eventually periodic,
i.e., there are n,m € N such that f**™(Q) = f™(Q).

The orbits in the rotation domains are easy to describe since the functions are conjugate
to irrational rotations.

The orbits in attracting basins in C are much more complicated. Near the attracting
fixed point, there has a uniform estimate about how fast the orbit converges to the attracting
fixed point, for more details, readers can read Theorem 8.2, Chapter 8 in [19]. If the map
f(2) is hyperbolic on the Julia set, then there is a uniform estimate about how fast the orbit
escapes near the boundary, we refer to Lemma 2.1, Chapter V in [7]. In the paper [16],
we investigated the behavior of orbits inside attracting basins, no matter whether f(z) is
hyperbolic or not, and obtained the following theorem:

Theorem 1.1. Suppose f(z) is a polynomial of degree at least 2 on C, p is an attracting fized
point of f(2), Q1 is the immediate basin of attraction of p, {f~(p)} N Q1 # {p}, and A(p)
is the basin of attraction of p, Q;(i =1,2,---) are the connected components of A(p). Then
there is a constant C, which only depends on f(2) and p, such that for every point zy inside
any ;, there exists a point ¢ € Up{f*(p)}ren inside ; such that dg,(z0,q) < C, where dq,
is the hyperbolic distance on §2;.

This Theorem 1.1 essentially shows that any arbitrary orbit can be tracked by an orbit of
one preimage of the fixed point p. Note that {f~1(p)} NQy # {p} means the set of preimages
of p inside ; should not be only the point p itself. Otherwise, ¢ = p, then dq, (20,q) — o
as zp approaches the boundary of ;. In the case where {f~'(p)} N Q; = {p}, the set of
preimages {f*(p)}ren that intersect ; consists of only a single point. In this situation,
it does not make sense to consider the inverse orbit of p. Thus, instead of considering the



inverse orbit of p, we choose a point p which is inside the immediate basin of the attracting
fixed point p. Then we can consider the orbit {f7%(p)}ren. In this way, we proved a suitably
modified version of Theorem 1.1:

Theorem 1.2. Suppose g(z) = €2 m > 2. We pick a point p € A\ {0}. Then there
exists a constant Cy > 0 such that for every point zy € A\, there exists ¢ € Up{g " (p)}, k >0
satisfying da(zo,q) < Co, where dp denotes the hyperbolic distance on the unit disk /.

We also studied the orbits in attracting basins in C2 in the paper [17]. There are various
interesting results in C?: Theorem 1.1 holds for some holomorphic mappings, but it fails for
some other holomorphic mappings.

It is a natural question to ask if Theorem 1.1 in paper [16] can be generalized to parabolic
basins. In the present paper, we show in the following Theorems A, B and C that the answer
is negative.

Theorem A. Let f(z) = z + 22, We choose an arbitrary constant C' > 0 and the point ¢ =
—1 € A. Then there exists a point zy € A such that for any § € Q := Uﬁzo{f_l(fk(—%))}
(I, k are non negative integers), the hyperbolic distance satisfies d 4(z0,G) > C, where d 4 is
the hyperbolic distance on A.

Here, A = A(0,—1) in Theorem A denotes the parabolic basin of f(z) = z + 2% with
the attraction vector v.= —1, see Definitions 2.1 and 2.4 below in section 2. Note that for
f(z) = z + 22, there is only one attracting vector, that is vj = v = —1.

In this Theorem A, we cannot directly choose to iterate the inverse of the parabolic fixed
point 0, since all preimages {f~%(0)}ren are inside the Julia set of f(z). Then Theorem A is
trivial. However, we still aim to apply the same approach as in Theorem 1.2 for attracting
basins, where we choose to iterate the inverse of a point inside the immediate basin of the
attracting fixed point p. Hence, we choose ¢ € A and iterate it k times. Then f*(q) is getting
arbitrarily close to the parabolic fixed point as k — co. Then we consider the preimages of

f%(q). To simplify, here we choose ¢ = —%.

By Theorem A and Proposition 2.7, we obtain the following Corollary which states that
the set of all such points zy clusters at every point in the boundary of the parabolic basin of
flz) =2+ 2%

Corollary 3.4. Let X C A be the set of all zgp € A such that d4(zo,q) > C for any ¢ € A.
If z € X, then any point w € f~!(z) is in X. Therefore, X is dense in the boundary of A.

We also generalize Theorem A to the case of several petals inside the parabolic basin in
Theorem B:

Theorem B. Let f(2) = z +az™",m > 1,a # 0, and Q; be the immediate basin of
A;. We choose an arbitrary constant C' > 0 and an arbitrary point ¢ = av; € Pj, a is
a small positive real number. Then there exists a point zgp € €); such that for any ¢ €
Q == U2 {f1(f*(q)} N Q; (I, k are non-negative integers), the hyperbolic distance satisfies
da,(20,G) > C, where dg, denotes the hyperbolic distance on ;.



Here vj is an attraction vector in the tangent space of C at 0, P; is an attracting petal
for f(z) corresponding to the vector vj at 0, and A; = A(0,v;) is the parabolic basin of
attraction associated with vj, see Definitions 2.1, 2.4 and 2.5.

In the end, we consider the behavior of orbits inside parabolic basins of general polyno-
mials.

Theorem C. Let f(z) = z+az"™"! + (higher terms), m > 1,a # 0, and ; be the immediate
basin of A;. We choose an arbitrary constant C' > 0 and an arbitrary point ¢ = avj € Pj,
a is a small positive real number. Then there exists a point zy € {2; such that for any
g€ Q= U {fffq)} N (I,k are non-negative integers), the hyperbolic distance
satisfies dq; (20, ) > C, where dg; denotes the hyperbolic distance on €2;.

This paper is organized as follows. In section 2, we recall some definitions and results [19]
about holomorphic dynamics of polynomials in a neighborhood of the parabolic fixed point
and the hyperbolic metric. In section 3, we prove our main results, Theorem A, Theorem B,
and Theorem C.
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2 Preliminary

2.1 Holomorphic dynamics of polynomials in a neighborhood of a parabolic
fixed point.

Let us first recall some definitions and results [19] about holomorphic dynamics of a polyno-
mial f(z) = z + a2z + azz® + --- in a neighborhood of the parabolic fixed point 0.

Definition 2.1. Let f(z) = z + az™! + (higher terms),m > 1,a # 0. A complex number v
will be called an attraction vector at the origin if mav™ = —1, and a repulsion vector at the
origin if mav™ = 1. Note here that v should be thought of as a tangent vector at the origin.
We say that some orbit zg — z1 > zo +— -+ for the map f(z) converges to zero nontrivially if
zn — 0 as n — 00, but no z, is actually equal to zero. There are m equally spaced attraction
vectors at the origin.

Lemma 2.2. If an orbit of f(2) : z9 — 21 = -+ converges to zero nontrivially, then zy is
asymptotic to vj/ Vk as k — 400 for one of the m attraction vectors vj.

Proof. See the proof in chapter 10 of Milnor’s book [19]. O

Definition 2.3. If an orbit 29 — 21 — --- under f(z) converges to zero with z, ~ v;j/ Vk,
we will say that this orbit {z}ren tends to zero along the direction vj.

4



Definition 2.4. Given an attraction vector vj in the tangent space of C at 0, the associated
parabolic basin of attraction A; = A(0,v;) is defined to be the set consisting of all zg € C
for which the orbit zg — 21+ --- converges to 0 along the direction v;.

Definition 2.5. Suppose f(z) = z + az™ + ( higher terms),m > 1,a # 0 is defined and
univalent on some neighborhood N at 0 on C. An open set P; C N 1is called an attracting
petal for f(z) for the vj at O if

(1) f(z) maps Pj into itself, and
(2) an orbit zg +— 2z — --- under f(z) is eventually absorbed by P; if and only if it
converges to 0 along the direction vj.

2.2 The hyperbolic metric

Definition 2.6. The metric

is called hyperbolic (or Poincaré) metric on the unit disk D.

Let v : [0,1] — Q be a piecewise smooth curve. The hyperbolic length of v is defined to
be

1
Lo(y) = / Fi(2,€)|dz] = / Foy ((0), /(1)) |7/ (1) .
Y

For any two points z1 and 23 in Q, the hyperbolic distance between z1 and zs is defined
to be

de (21, 22) = inf{Lg(7) : v is a piecewise smooth curve connecting z1 and zo}.

Note that dQ(zl, z9) is defined when z1 and zy are in the same connected component of Q.

Let g : A — S be a covering map, we define a hyperbolic metric Fs on any hyperbolic
Riemann surface S by declaring that ¢ induces an isometry at every point. In other words,
let

Fo(2) = 2|dw|

= TP for z=g(w)eSs.

If ¢ is a local determination for g—!, then

2|0’ (2
Fp(z) = 1’f ’(¢|)2||dz], z€S.

For example, when S is the upper half-plane, then we can use the conformal map ¢(z) =
% of the upper half-plane H onto the unit disk /. Hence,

20’ 2|(:5) d
Fig = 280 A L\dz[ _lE etiyem
1= gl 1— | y
is the hyperbolic metric on the upper half-plane H. We refer to page 12, chapter 1.4 in [7] for

more calculation details about Fi.



Proposition 2.7 (The distance decreasing property of the hyperbolic metric). Suppose
and Qo are domains in C, z,w € Q1,§ € C, and f(z) : Q1 — Qo is holomorphic. Then

Fo,(f(2), ['(2)€) < Fa,(2,€),  da,(f(2), f(w)) < da, (z,w).
Proof. We refer to Theorem 4.1 on page 12, Chapter 1.4 in [7]. O
Corollary 2.8. Suppose 21 C Qs C C. Then for any z,w € Q1 and & € C, we have
Fo,(2,8) < Fo,(2,¢), da,(z,w) <dg,(z,w).

Proof. We refer to Theorem 4.2 on page 13, Chapter 1.4 in [7]. O

3 Proof of the main theorems

In this section, we will prove our main theorems: Theorem A, Theorem B, and Theorem C.

3.1 Dynamics inside the parabolic basin of f(z) = z + 22

Let us recall the statement of our main Theorem A:

Theorem A. Let f(z) = z + z%. We choose an arbitrary constant C' > 0 and the pomt qg=
—1 € A. Then there exists a point 29 € A such that for any § € Q := Ulg—olf™ S N)
(1, k are non negative integers), the hyperbolic distance satisfies d.4(zo, ) > C, where d 4 is
the hyperbolic distance on A.

Proof. Let Rt = [0,00) and R~ = (—o00, 0] be the positive and negative real axis, respectively.
Then the parabolic basin A G (C\ RT). Let H be the upper half-plane, ¢(z) : C\ R" — H
with ¢(z) = /2 (see Figure 3.8). By Definition 2.6., we know the hyperbolic metric on the
upper half plane is

|dw|

(%

Iy =

for w = u + 4v € H. Hence the hyperbolic metric on C \ R is
||
E = ——|dz z
C\RT Imgo’ = 2|/7| Im\f’ = 2rsin 5

for z = re’® € C\ R*,i.e.,0 € (0,27).

We know that f¥(q) will always be on the negative real axis for any integer k > 0. We
choose 0 < 6y < 5 and two rays Iy := {z = re'® r > 0},1 := {z = re=®%_ r > 0}. Then we
denote by T := {z =re? r > 0,0 < 0 < 27 — 6}, a sector inside C \ RT.

Before continuing with the proof of Theorem A, we have the following well-known Lemma
3.2. For the reader’s convenience and to introduce notation, we include the proof and define
a Left/Right Pac-Man for an easy explanation of the proof.

Definition 3.1. We call a domain Dp := {z=re? 0<r < R0 <0 <210} aleft
Pac-Man and Dg := {z=re"®,0 <r <R, -1+ 60y <0 <7 — 6} a Right Pac-Man.

— |dz|



C\R* H

Figure 1: The map ¢

Lemma 3.2. For any 0y € (0,7/2), there exists Ry such that the Left Pac-Man Dpg, ; TNA.

Proof. We want to know how orbits go precisely near the parabolic fixed point at 0. Let
w=¢(z) = —1/z send 0 to oo, then the conjugated map has the expansion
Fw)=gpofop Hw)=w+1+0(1) as |w| — oo.

We have I1 (I2) is mapped to two new rays 14 := {z = re'("=%) r > 0}(l§ := {z = re!-™t00)});
T' is mapped to T = {re??,r >0,—7 + 6y < 0 < 7 — 6y}; the Left Pac-Man Dpg is mapped
to T"\ D% for any radius R (see Figure 2).

by

Figure 2: The image of a Left Pac-Man

We choose a Right Pac-Man D s such that for any w € T'\ D 1, we have |o(1)| < R

Note here, actually, ro = 79 (6o) should be sufficiently small. Then We draw the upper tangent
line Ly of D1 such that the angle between Ly and the real axis is 2. Then Ly will intersect
¥ and the real axis, we denote these two intersect points Ay and By, respectively. Let
L — max{|OA|,|OBo|} > %, here O is the origin zero, then we choose the Right Pac-Man

T
D1 (see Figure 3).
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Figure 3: The choice of the Right Pac-Man

If we take any wp € 7"\ [)1 F™(wp) = wo +n + o(1) for all positive integers n such that

|F™(wo)| > |wo +n —ne 2], then we know that F™(wp) will never go inside D 1 .
70

Therefore, let Ry = r, Ry = ro, then we have for any z, € Drgr,, f"(20) — 0, hence
Dy, & T'NA, and we also know that f"(Dg,) C Dp_

O]

Lemma 3.3. We can choose a Left Pac-Man Dg; C Dp, such that f”(DRa) C Dg, for all
n=12...

Proof. On the procedure for proving Lemma 3.2, we can draw another upper tangent line

L of Dp, such that the angle between L and the real axis is 7 Then L will also intersect

[¥ and the real axis, we denote these two intersect pomts A and B respectively. Let 1 =
max{|OA|,|OB|}, then we choose the Right Pac-Man D 1 . If we take any w € T"\ D 1, we

know that F"(w) will never go inside of D1 Hence, let R’ = 4, we have f"(D Rry) C DRO
O

We continue with the proof of Theorem A. The idea of the proof is to find a point
20 € D. \ R™ such that for any ¢ € @, we have d(zp,G) > C.

Now, we will consider the following cases of ¢ inside three subsets of A (see Figure 4):
Case 1: § € ((TO.A)\DR/ J\RR™. Let d% (=0, Z) be the hyperbolic distance between zy and
any point Z € 9D, \ R~ (see the blue curve in Figure 4). Then we prove that d4(20,2) > C.

Case 2: ¢ € R™. Let di‘(zo,z/ ) be the hyperbolic distance between z; and any point
2’ € R™ N A (see the pink curve in Figure 4). Then we prove that d%(zo,z") > C.



Case 3: § € AN {S’ ={z=rer>00<6< 90}}. Let d3 (20, 2) be the hyperbolic
distance between zp and any point Z € l; (see the green curve in Figure 4). Then we prove
that d3(z,2) > C.

-
>

e T

0

l

ly

Figure 4: The three hyperbolic distances in A

Remark:

1) In the investigation of these three cases, it will become clear how small 6y needs to be.

2) 0D r;, means the boundary of the Left Pac-Man Dpy . It is the circular curve of Dpgy,
not including the mouth of D R} which belongs to I1 and [o;

3) ¢ can never be inside D, \R™:Ifge Dp, \ R~, more precisely, suppose f~'(f*(q)) €
Dp; \R™ for some integers [, k > 0, we iterate [ times of 74 (f*(q)), we have f*(q) € Dr,\R~
since we know f"(Dp) C Dp, for any positive integer n by Lemma 3.2 and *(q) ¢ R~ since
R) < Ry = r < 19, and f(2) is biholomorphic near 0. Hence Im(f*(q)) # 0. However, this
contradicts Im(f*(g)) = Im(f*(—3)) = 0. Thus ¢ ¢ Dp \R7;

4) if ¢ € A\ Dgy, q is far away from 0Dpy, then we know that d(z0,q) > d!(z0, 2). This
is because dY(z0, Z) is the minimum distance between 2 and any ¢ € ((T N .A) \DRé) \R™.

Hence, we need to prove that we can choose zg so that all these three hyperbolic distances
d (20, 2), d%(20,2"),d% (20, 2) > C for the given constant C. Next, we will estimate these
three hyperbolic distances.



First, we estimate dY (2o, Z). Suppose zy € Ds,

dy (20, Z) Zdg\p+ (20, 2)

= inf F + ! d
L , P OO Ol

1
_inf / o/ ()t
~(t) 2|y(t)| sin 72“‘%(;@)

1
Zinf/ 7 (t)|dt
O

Rl
inf/ ’ @
e T

>—(InRj — Ine),

where 7(t) is a smooth path joining zp to Z. The last inequality holds since there might have
some derivatives of the path (t) are negative in some pieces. In addition, we can see that
dY4(20,2) = 00 as e — 0.

Second, we estimate dil(zo, 2'). Let € = gy, i.e., fix £, and let D1 C T be a scaling of D,
by S(z) sending 29, 2’ to Zp := é—gl, IjTI’
hyperbolic distance de\g+ (20, 2') = de\r+ (20, 2/|20]). Since we hope to prove d% (2, 2") > C,

= \TZol’ respectively. By homogeneity, we know the
we need zg to be far from R™, and so does Z. Let Sy :={z=¢" 60y < 0 < 5 — 0o}, assume
Zo € S and Re Zy > %, then any curve from Z; to ﬁ must pass through a point z’ on the
positive imaginary axis, i.e., Re 2’ = 0. For simplicity, we assume this curve and Z’ lie in the
upper half plane. Hence d% (20, 2') > dc\r+(20,2") = devge+ (20, 2 /|20]) > devge+ (%0, 7). We
have

d%(z0,2") > de\r+ (%0, 2)

!

= 1nf/ F(C\R+ (2)

20
5/

[

5 |2]2sin(0/2)

> x@inf/ 14z
Zo

|z| sin O

>\/§inf/ I‘dZ’

%0 mz

> /2| In(Im #') — In(Im Z)|.

Then there are three situations for the hyperbolic distance between zg and 2’ :

1) If Im 2" > e%|Im Z| or Im ¥ < mélicg(" for the constant C' > 0 (see the blue curves on
Figure 5), then |In(Im z’) — In(Im Z)| > C, hence d%(z0,2’) > C is true.

2)If 2 € L:={z=x+1y, % <y < €Y ImZ]} (see the green curve on Figure 5). We
prove that d4 (2o, 2) > +/2inf f?/ 92| > O for 2 € L.

zZo Imz —

10



77 Yy = eC)|I7’n§()|

N
%

= b1

(8]

"y

Figure 5: Three situations for the hyperbolic distance between Zy and z’

Let z = x + iy € £, then Im 2 < e%|Im Z|. Hence we have

# \dz| ? | da] 7 da| Rezp 1 1
—_— > > C P C 1 C -
5, Imz 5, Imz 5, €Y|Im Zl eV |ImZg| = 2e%|Im Zp

0

Note that the last inequality holds because we choose Re Zy > 1/2.

1 1 Z' |dz|
20eC 20eC? hence féo Imz > C.

3) If 2’ € L, but the curve v between Zp and Z’ gets outside of L starting at some point
z" € yN L for a while (see the red curve in Figure 5), then enter back to £ again, then we still
have d%(z,2') > C is true because de\g+(20,2") > de\g+(Z0,2”) > C. The last inequality
holds since 1) is valid.

As long as 0y < we can choose Zp so that Im 2y <

After these calculations, we fix zo so that dY (20, Z) and d? (2o, ) are both bigger or equal
to C. To obtain d? (29, 2) > C, we will need an even smaller ), see the following calculation.

We know d(z0,2) > deyge+ (20, 2) = deyg+ (%0, 2/|20/). Hence to have d®(z0,2) > C, we
need to estimate de\r+ (20, 2/20])-

When we estimate di‘(zo, 2"), we send zg to Zyp and choose ReZy > 1/2 and Z close to
l1. Hence dg\g+ (20, 2/|20|) might be very small. To handle this situation, we first choose a
disk Ag\R+(20, C') centered at Zp with radius C in the hyperbolic distance. Since this disk
Ag\RJr (%0, C) is a compact subset of C\ RT, there exists a sector " := {z = re?? r > 0,0 <
6 < 60,} such that S” N A(IC(\R+(20,C) = (), here we can assume that 6 < 6y. Therefore,
devrt (20, 2/|20]) > C for any 2/|z| € AN S”. Furthermore, for this new 6, it does not
change the conclusion of the estimation of dY(zo, Z) and d% (2o, 2).

Therefore, there is a point zy such that all these three distances dY(zo, 2), d% (20, 2), d3 (20, 2) >
C for the given constant C.

O
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Corollary 3.4. Let X C A be the set of all zo € A such that d4(z0,q) > C for any ¢ € A.
If z € X, then any point w € f~1(2) is in X. Therefore, X is dense in the boundary of A.

Proof. By Theorem A, we know that X # (). Suppose w ¢ X, then there exists § € @
so that dy(w,q) < C. Since f(z) is distance decreasing, see Proposition 2.7, we have
da(f(w), f(q)) = da(z,q) < C. This contradicts z € X.

Furthermore, we know that { f 7" (z) }nen clusters at every point in Julia set. In particular,
this is true if z € X. More precisely, {f~"(2) }nen equidistributes toward the Green measure.
Therefore, the closure of X contains the boundary of A.

O

3.2 Dynamics inside the parabolic basin of f(z) =z +az™™' ' m >1,a #0

In this subsection, we generalize Theorem A to the case of several petals inside the parabolic
basin. Let us recall the statement of our main Theorem B:

Theorem B. Let f(2) = z +az™" ,m > 1,a # 0, and Q; be the immediate basin of
A;. We choose an arbitrary constant C' > 0 and an arbitrary point ¢ = avj; € Pj, a is
a small positive real number. Then there exists a point zp € €; such that for any ¢ €
Q:= Ufio{f_l(fk(q))} NQ; (I, k are non-negative integers), the hyperbolic distance satisfies
do, (20,q) > C, where dg; denotes the hyperbolic distance on ;.

Proof. We conjugate f(z) using rotation:

z z
ewzl l@lez
wo o ——  g(w)

w > e(e Pw + ale”Pw)™ ) = w + ae7™0w™ . Suppose a = re’¥, then we can choose
0= % such that ae~™? is a real positive number. Then we can assume S := {z = ret r >
0,0 <6< %’r} be the sector with angle 27 /m, including the attracting petal P;, then the

angle between v;j and RT is . We denote the boundary rays of S by l]ll£+ ={z=r>0}
and 12, = {z = retm . r > 0}. We choose fy > 0 and two rays [; := {z = re'® r > 0},1y :=
{z = rei(%_eo),r > 0}. Then we denote by T := {z = re®,r > 0,0y < 0 < 2X — 6} a sector
inside S.

Let (z) : § — H with ¢(z) = 2"/2. Then by Definition 2.6., the hyperbolic metric Fy is

i

| m

T Im % 2r sin( %

As in the proof of Theorem A, we can choose two analogous ” Pac-Man” D% ={z=re"?0<

r < Rj,60) < 6 < %’T — 0o}, Dy = {z = re’? 0 < r < Rp,0p < 0 < 2% — 6o} central at 0
with radius Ry, Ro > 0(Rj < Rp), respectively, such that D} G T'NQ; and f"(Dgg) CDE.

12



Then similarly, we need to estimate the three hyperbolic distances from zg to any point
Z € 0D}, (see the blue curve in Figure 6), 2’ € vj (see the pink curve in Figure 6), and
2eQn{S ={z=re?r>0,0<60<6b}} (see the green curve in Figure 6), and show
that all of them are not less than C.

0 lg+ x

Figure 6: The three hyperbolic distances in €2;

First, suppose 29 € D™ := {z = re? 0 < r < e,0) < 0 < % 0o}, e << R{. Let us
estimate the hyperbolic distance from zp to any point Z on the boundary of Df , and we
denote this distance by dQ (20, 2).

dgy, (20, 2) > ds(20, 7) = inf (t)Fs(v(t))lv'(t)ldt

m m
—inf / o/ (#)|dt > in / M@t
) 2|y()] smw ) 2l ()]

21nf/6 ldr| > %(lnRo—lns)

where 7(t) is a smooth path joining 2y to Z. In addition, we can see that d}]j(zo, Z) = o0 as
e — 0.

Second, we calculate the hyperbolic distance from zy to any point 2’ 6 v; denoted by
3, (zo, . Let € = €p, i.e., fix e, and D" C T be a scaling of D! by S(z) = | T sending zg, z

to Zp : respectively. By homogeneity, we know the hyperbolic distance dg(2g, 2’) =

= Ll \Z K
ds(Z0,7'/|20]). Since we hgpe to prove d%j(zo, z') > C, we need zg to be far from vj, and so
does Zy. Let Sy :={z = 629 00 <0< 5-—06}, assume Zy € St and Re Zy is sufﬁciently big,

then any curve from Zy to | o] must pass through a point Z’ on the ray Y+ := {re Zm ;7> 0}

13



Hence d%j(zo,z’) > dg(z0,2") = ds(Z0, 2" /|20]) > ds(Z0, 2"). Then we have

2/

d%},(zo,z/) > ds(20,7') = inf/ Fs(z)

0
3!

~inf / __mldz]
B 5, 2rsin(mf/2)

0

:inf/gl mTQ . m’dZ‘
% sm("%e) 2r(m0/2)

714
:clinf/g0 |7“Z|

e [ 122
= cicpinf —
5, Tsinf

0
2/
d
= 109 inf/ M
% Im z
> ciez|In(Im 2') — In(Im Z)|.

m9

where ¢ := inf —2, ¢o := inf 33° Smg
S ——
2

Then there are three situations for the hyperbolic distance between Zy and 2’ :

1) If ImZ > e“|Im %] or Im2' < Ilrélicio\ for some constant C' > 1, then |In(Imz’) —
In(Im Zy)| > C, hence d%z,(zo, 2') > C is true.

|Imz0\

)12 e L:={z=ux+1y, <y < €% ImZ)|}. We need to prove that do,(%0,2') >

c1cg inf f~ 1zl > cfor 2 € £

Im z

Let z = x + iy € £, then Im z < | Im Z|. Hence we have

? \dz| ? | da| o |dx| |ReZ —ReZ| 1 1
mz= |- Tmz = Clm c ol 2eC Tm
5 Imz 5, Imz 5, eYIm Zo| e |Im Zp| = 2e%|Im Z|

Note that the last inequality holds since we choose Re Zy sufficiently big so that Zj is close to
l1, and |Rez’ — Re Zp| > 1/2 because z’ will have to be close to 0 since it lies on Y N £ and
its imaginary part is close to 0, which makes d3 (zo, 2') as big as we want.

In other words, as long as y < we have Im zg < In addition, | Re 2 —Re Zy| >

1/2, we obtaln fz =

Im z

200’ 200

3) If Z/ € L, but the curve v between Zp and 2’ get outside of £ starting at some point
Z" € yN L for a while, then enter back to £ again, then we still have d3 ,(20,7") 2 C'is true
because dg(29,2’) > dg(Zg,2"”) > C. The last inequality holds since 1) is valid. We have a
conclusion as same as d%(zo,z’) > C' in the proof of Theorem A.

At last, we estimate the hyperbolic distance from zp to any point z € €; N {S’ =

14



{z =re,r > 0,0 <60 < 6}} denoted by d?zj(zo,é). We know d?zj(zo,é) > ds(20,2) =
dg(éo, §/|Zo|)

We use the method for computing d%j(zo,é) as same as di(zo,é) > C in the proof of
Theorem A. We first choose a disk A% (2, C') centered at Zp with radius C in the hyperbolic
distance. Since this disk A% (%), C) is a compact subset of S, there exists a sector S” := {z =
re r>0m— T <0 <m— I +06,} such that S” N Afg{(éo, C) = 0, here we can assume that
6f, < 0. Therefore, dg(Zo, 2/|20|) > C for any 2/|z| € Q; N S”. Furthermore, for this new 6;,
it does not change the conclusion of the estimation of dslzj (20, 2) and d%j(zo, 2.

O

3.3 Dynamics inside the parabolic basin of f(z) = z+a2™"'+(higher order terms), m >
1,a #0

Finally, in this subsection, we consider the behavior of orbits inside parabolic basins of general
polynomials. Let us recall the statement of our main Theorem C:

Theorem C. Let f(z) = z+az""! + (higher terms), m > 1,a # 0, and ; be the immediate
basin of A;. We choose an arbitrary constant C' > 0 and an arbitrary point ¢ = avj € P,
a is a small positive real number. Then there exists a point zg € 2; such that for any
g€ Q= U {f T f*q)} N (I,k are non-negative integers), the hyperbolic distance
satisfies dq; (20, q) = C, where dg; denotes the hyperbolic distance on €2;.

Proof. The essential idea to prove Theorem C is the same as the proof of Theorem A
and Theorem B. However, we cannot draw the parabolic basin of f(z) = z + az™"! +
(higher order terms) directly as Figure 4 and Figure 6 since there are higher order terms of
f(2), the parabolic basin can be more complicated.

To simplify the discussion, we first consider the case m =1 :

f(2) = z + 2 + (higher order terms).

When there are no higher order terms, the crucial estimate of the hyperbolic metric comes
from the fact that the parabolic basin is contained in C\ R*. Hence we could compare it
with the hyperbolic metric on C\ R*.

In the case of higher order terms, the parabolic basin can be more complicated. However,
we can, instead of C \ R™, use the double sheeted domain

Vi = {z:reie,O <r<R,—0p <0 <21+ 6y}
Next, we investigate the properties of Vz to explain why we choose the double sheeted

domain Vg as above.

Proposition 3.5. Let D := {z = e, 0 <r < R,—0y < 0 < 6y}, A be the whole basin of
f(2), 81 be the connected component of AN Dy which contains {z = re!®,0 < r < R}, and
Sy be the connected component of AN Dg which contains {z = re~"% 0 <r < R}. Then any
two pieces S1,S2 (see the left of Figure 7) are disjoint in Dg.

15



Figure 7: Two pieces S; and S» in Dy

Proof. We know that, inside Vi and near the origin, A contains the Left Pac-Man Dpg :=
{z=re? 0<r<R,0y<0<2r—0}.

If Sp intersects S5, then there is a point z € S7 N Sy. We can draw three curves, ¢; from
ztoly = {z =7e}, ¢ from 2 to Iy := {z = re™*®}, and c3 € Dy which connect ¢; and c,.
Hence A contains a closed curve 7. := ¢1 + ¢2 + ¢3 with the winding number 1 around the
origin (see the right of Figure 7).

We know that f"(z) — 0 when z € ~,, since 7. € A. In addition, by the maximum
principle, we have f(z) — 0 when z is inside the domain bounded by 7.. Hence A contains
a neighborhood of 0, then 0 is an attracting fixed point. However, this contradicts that 0 is
a parabolic fixed point of f(z).

O

By Proposition 3.5, we can use the hyperbolic metric on Vg instead of C\ RT.

First, we know that Vz can be mapped to a sector S := {z = re,r > 0,0, < 6 <
02,01 << 03 < w/2} by ¢1(2) = 2¢/2 when ¢ is sufficiently small. Second, we can change ¢
such that 6, = m — 61 by some map @2(z). At last, by some rotation map 3, we can map S
to the upper half plane H (see the Figure 8).

Therefore, the map ¢(z) := @3 0 w2 0 1 from Vi to the upper half plane H becomes
©(z) = ez, instead of ¢(z) = z!/2, where ¢ is very close to 1. Then, with the above
setting, the rest of the estimation goes through as in Theorem B.

If m > 1, it is difficult to draw the specific parabolic basins of f(z) or the attracting
petals. Let

; 27
Ve=:{z=re r>0,-0) <0< =— 146}
m
We use Figure 9 to illustrate how we can choose Vg (see the domain with pink curves as its

argument). We want to map Vg to the upper half-plane. First, Let z — ¢z, then Vg is
mapped to

. 2
V= {z=re r>00<0< %+290}.

16
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/H/O//x<—@—>o<§

Figure 8: The maps ¢1, 2 and 3

We define (z) = (e'02) % +2% . Then the hyperbolic metric on Vg is

|¥'(2)
Fy, = d,|.
Vr I ® | Z|

And similarly, we have the same properties of Si,S3 as in Proposition 3.5 (see the red
curve and blue curve on Figure 9). Then the rest of the estimation goes through as in

Figure 9: Two pieces S1 and Ss

Theorem B. Thus, we are done.
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