

Dynamics inside Parabolic Basins

Mi Hu

July 7, 2025

Abstract

In our previous paper, we investigated the orbits inside attracting basins for polynomials in \mathbb{C} . Suppose $f(z)$ is a polynomial of degree at least 2 on \mathbb{C} , p is an attracting fixed point of $f(z)$, Ω_1 is the immediate basin of attraction of p , $\{f^{-1}(p)\} \cap \Omega_1 \neq \{p\}$. Let $\mathcal{A}(p)$ be the basin of attraction of p , and let $\Omega_i (i = 1, 2, \dots)$ denote the connected components of $\mathcal{A}(p)$. Then there exists a constant \tilde{C} such that for every point z_0 inside any Ω_i , there exists a point $q \in \bigcup_k \{f^{-k}(p)\}_{k \in \mathbb{N}}$ inside Ω_i such that $d_{\Omega_i}(z_0, q) \leq \tilde{C}$, where d_{Ω_i} denotes the hyperbolic distance on Ω_i . If $\{f^{-1}(p)\} \cap \Omega_1 = \{p\}$, then we proved a suitably modified version, we choose a point p' very close to p . In this case, there exists a $q \in \bigcup_k \{f^{-k}(p')\}_{k \in \mathbb{N}}$ inside Ω_i such that $d_{\Omega_i}(z_0, q) \leq \tilde{C}$.

In this paper, we obtained opposite results about the behavior of orbits inside parabolic basins of polynomials in \mathbb{C} . Let $f(z) = z + az^{m+1} + (\text{higher terms})$, $m \geq 1$, $a \neq 0$. A complex number \mathbf{v}_j is called an attraction vector if $m\mathbf{v}_j^m = -1$. Suppose \mathcal{P}_j is an *attracting petal* for $f(z)$ for the vector \mathbf{v}_j at 0, $\mathcal{A}_j = \mathcal{A}(0, \mathbf{v}_j)$ is the parabolic basin of attraction associated to \mathbf{v}_j , and Ω_j is the immediate basin of \mathcal{A}_j . We choose an arbitrary constant $C > 0$ and an arbitrary point $q = a\mathbf{v}_j \in \mathcal{P}_j$, a is a small positive real number. Then there exists a point $z_0 \in \Omega_j$ so that for any $\tilde{q} \in Q := \bigcup_{l=0}^{\infty} \{f^{-l}(f^k(q))\} \cap \Omega_j$ (l, k are non-negative integers), the hyperbolic distance $d_{\Omega_j}(z_0, \tilde{q}) \geq C$, where d_{Ω_j} is the hyperbolic distance on Ω_j .

In conclusion, for attracting basins, the preimages of the fixed point p or a point p' inside the immediate basin of the attracting fixed point p will intersect all hyperbolic disks in the basin with some fixed radius C . However, for parabolic basins, the inverse images of $f^k(q)$, where q is any point on an attraction vector, will avoid arbitrary large hyperbolic disks in the basin. Note that $f^k(q)$ can be arbitrarily close to the parabolic fixed point p .

Mathematics Subject Classification (2020): 37F10 (primary); 30F45 (secondary).

1 Introduction

Let $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, $f(z) : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a nonconstant holomorphic map with degree at least 2, and $f^n(z) : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be its n -fold iterate. For $z \in \hat{\mathbb{C}}$, we call the set $\{z_n\}_{n \in \mathbb{N}} = \{z_1 = f(z_0), z_2 = f^2(z_0), \dots\}$ the orbit of the point $z = z_0$. If $z_N = z_0$ for some integer N , we say that z_0 is a periodic point of $f(z)$. If $N = 1$, then z_0 is a fixed point of $f(z)$.

In complex dynamics [3, 7, 9, 10, 19], there are two crucial disjoint invariant sets, the *Julia set*, and the *Fatou set* of $f(z)$, which partition the sphere $\hat{\mathbb{C}}$. The Fatou set of $f(z)$

is defined as the largest open set \mathcal{F} where the family of iterates is locally normal. In other words, for any point $z \in \mathcal{F}$, there exists some neighborhood U of z so that the sequence of iterates of the map, restricted to U , forms a normal family, so the orbits of iteration are well-behaved. The complement of the Fatou set is called the Julia set.

There have been many studies on probability measures that can describe the dynamics on the Julia set. We define $\{f^{-1}(z)\} = \{w|f(w) = z\}$, that is the set of preimages of the point z , and $\{f^{-n}(z)\}_{n \in \mathbb{N}} = \{w|f^n(w) = z\}$. For example, if z is any non-exceptional point, the inverse orbits $\{f^{-n}(z)\}_{n \in \mathbb{N}}$ equidistribute toward the Green measure μ which lives on the Julia set. This was proved already by Brolin [6] in 1965, and many improvements and generalizations have been made [8, 11]. However, this equidistribution toward μ is in the weak sense, and hence it is with respect to the Euclidean metric. Therefore, it is a reasonable question to ask how dense $\{f^{-n}(z)\}_{n \in \mathbb{N}}$ is in \mathcal{F} near the boundary of \mathcal{F} if we use finer metrics, for instance, the hyperbolic metric. The hyperbolic metric is an important tool in complex dynamics, see examples in [1, 2, 4, 5].

There are some classical results about the behavior of a rational function on the Fatou set \mathcal{F} as well. The connected components of the Fatou set of $f(z)$ are called Fatou components. A Fatou component $\Omega \subset \hat{\mathbb{C}}$ of $f(z)$ is invariant if $f(\Omega) = \Omega$. At the beginning of the 20th century, Fatou [12, 13, 14] classified all possible invariant Fatou components of rational functions on the Riemann sphere. He proved that only three cases can occur: attracting, parabolic, and rotation. And in the '80s, Sullivan [20] completed the classification of Fatou components. He proved that every Fatou component of a rational map is eventually periodic, i.e., there are $n, m \in \mathbb{N}$ such that $f^{n+m}(\Omega) = f^m(\Omega)$.

The orbits in the rotation domains are easy to describe since the functions are conjugate to irrational rotations.

The orbits in attracting basins in \mathbb{C} are much more complicated. Near the attracting fixed point, there has a uniform estimate about how fast the orbit converges to the attracting fixed point, for more details, readers can read Theorem 8.2, Chapter 8 in [19]. If the map $f(z)$ is hyperbolic on the Julia set, then there is a uniform estimate about how fast the orbit escapes near the boundary, we refer to Lemma 2.1, Chapter V in [7]. In the paper [16], we investigated the behavior of orbits inside attracting basins, no matter whether $f(z)$ is hyperbolic or not, and obtained the following theorem:

Theorem 1.1. *Suppose $f(z)$ is a polynomial of degree at least 2 on \mathbb{C} , p is an attracting fixed point of $f(z)$, Ω_1 is the immediate basin of attraction of p , $\{f^{-1}(p)\} \cap \Omega_1 \neq \{p\}$, and $\mathcal{A}(p)$ is the basin of attraction of p , $\Omega_i (i = 1, 2, \dots)$ are the connected components of $\mathcal{A}(p)$. Then there is a constant \tilde{C} , which only depends on $f(z)$ and p , such that for every point z_0 inside any Ω_i , there exists a point $q \in \cup_k \{f^{-k}(p)\}_{k \in \mathbb{N}}$ inside Ω_i such that $d_{\Omega_i}(z_0, q) \leq \tilde{C}$, where d_{Ω_i} is the hyperbolic distance on Ω_i .*

This Theorem 1.1 essentially shows that any arbitrary orbit can be tracked by an orbit of one preimage of the fixed point p . Note that $\{f^{-1}(p)\} \cap \Omega_1 \neq \{p\}$ means the set of preimages of p inside Ω_1 should not be only the point p itself. Otherwise, $q = p$, then $d_{\Omega_1}(z_0, q) \rightarrow \infty$ as z_0 approaches the boundary of Ω_1 . In the case where $\{f^{-1}(p)\} \cap \Omega_1 = \{p\}$, the set of preimages $\{f^{-k}(p)\}_{k \in \mathbb{N}}$ that intersect Ω_1 consists of only a single point. In this situation, it does not make sense to consider the inverse orbit of p . Thus, instead of considering the

inverse orbit of p , we choose a point \hat{p} which is inside the immediate basin of the attracting fixed point p . Then we can consider the orbit $\{f^{-k}(\hat{p})\}_{k \in \mathbb{N}}$. In this way, we proved a suitably modified version of Theorem 1.1:

Theorem 1.2. *Suppose $g(z) = e^{i\theta}z^m, m \geq 2$. We pick a point $\hat{p} \in \Delta \setminus \{0\}$. Then there exists a constant $C_0 > 0$ such that for every point $z_0 \in \Delta$, there exists $q \in \cup_k \{g^{-k}(\hat{p})\}, k \geq 0$ satisfying $d_{\Delta}(z_0, q) \leq C_0$, where d_{Δ} denotes the hyperbolic distance on the unit disk Δ .*

We also studied the orbits in attracting basins in \mathbb{C}^2 in the paper [17]. There are various interesting results in \mathbb{C}^2 : Theorem 1.1 holds for some holomorphic mappings, but it fails for some other holomorphic mappings.

It is a natural question to ask if Theorem 1.1 in paper [16] can be generalized to parabolic basins. In the present paper, we show in the following Theorems A, B and C that the answer is negative.

Theorem A. Let $f(z) = z + z^2$. We choose an arbitrary constant $C > 0$ and the point $q = -\frac{1}{2} \in \mathcal{A}$. Then there exists a point $z_0 \in \mathcal{A}$ such that for any $\tilde{q} \in Q := \cup_{l,k=0}^{\infty} \{f^{-l}(f^k(-\frac{1}{2}))\}$ (l, k are non negative integers), the hyperbolic distance satisfies $d_{\mathcal{A}}(z_0, \tilde{q}) \geq C$, where $d_{\mathcal{A}}$ is the hyperbolic distance on \mathcal{A} .

Here, $\mathcal{A} = \mathcal{A}(0, -1)$ in Theorem A denotes the parabolic basin of $f(z) = z + z^2$ with the attraction vector $\mathbf{v} = -1$, see Definitions 2.1 and 2.4 below in section 2. Note that for $f(z) = z + z^2$, there is only one attracting vector, that is $\mathbf{v}_j = \mathbf{v} = -1$.

In this Theorem A, we cannot directly choose to iterate the inverse of the parabolic fixed point 0, since all preimages $\{f^{-k}(0)\}_{k \in \mathbb{N}}$ are inside the Julia set of $f(z)$. Then Theorem A is trivial. However, we still aim to apply the same approach as in Theorem 1.2 for attracting basins, where we choose to iterate the inverse of a point inside the immediate basin of the attracting fixed point p . Hence, we choose $q \in \mathcal{A}$ and iterate it k times. Then $f^k(q)$ is getting arbitrarily close to the parabolic fixed point as $k \rightarrow \infty$. Then we consider the preimages of $f^k(q)$. To simplify, here we choose $q = -\frac{1}{2}$.

By Theorem A and Proposition 2.7, we obtain the following Corollary which states that the set of all such points z_0 clusters at every point in the boundary of the parabolic basin of $f(z) = z + z^2$:

Corollary 3.4. Let $X \subset \mathcal{A}$ be the set of all $z_0 \in \mathcal{A}$ such that $d_{\mathcal{A}}(z_0, \tilde{q}) \geq C$ for any $\tilde{q} \in \mathcal{A}$. If $z \in X$, then any point $w \in f^{-1}(z)$ is in X . Therefore, X is dense in the boundary of \mathcal{A} .

We also generalize Theorem A to the case of several petals inside the parabolic basin in Theorem B:

Theorem B. Let $f(z) = z + az^{m+1}, m \geq 1, a \neq 0$, and Ω_j be the immediate basin of \mathcal{A}_j . We choose an arbitrary constant $C > 0$ and an arbitrary point $q = a\mathbf{v}_j \in \mathcal{P}_j$, a is a small positive real number. Then there exists a point $z_0 \in \Omega_j$ such that for any $\tilde{q} \in Q := \cup_{l=0}^{\infty} \{f^{-l}(f^k(q))\} \cap \Omega_j$ (l, k are non-negative integers), the hyperbolic distance satisfies $d_{\Omega_j}(z_0, \tilde{q}) \geq C$, where d_{Ω_j} denotes the hyperbolic distance on Ω_j .

Here \mathbf{v}_j is an attraction vector in the tangent space of \mathbb{C} at 0, \mathcal{P}_j is an *attracting petal* for $f(z)$ corresponding to the vector \mathbf{v}_j at 0, and $\mathcal{A}_j = \mathcal{A}(0, \mathbf{v}_j)$ is the parabolic basin of attraction associated with \mathbf{v}_j , see Definitions 2.1, 2.4 and 2.5.

In the end, we consider the behavior of orbits inside parabolic basins of general polynomials.

Theorem C. Let $f(z) = z + az^{m+1} + (\text{higher terms})$, $m \geq 1, a \neq 0$, and Ω_j be the immediate basin of \mathcal{A}_j . We choose an arbitrary constant $C > 0$ and an arbitrary point $q = a\mathbf{v}_j \in \mathcal{P}_j$, a is a small positive real number. Then there exists a point $z_0 \in \Omega_j$ such that for any $\tilde{q} \in Q := \cup_{l=0}^{\infty} \{f^{-l}(f^k(q))\} \cap \Omega_j$ (l, k are non-negative integers), the hyperbolic distance satisfies $d_{\Omega_j}(z_0, \tilde{q}) \geq C$, where d_{Ω_j} denotes the hyperbolic distance on Ω_j .

This paper is organized as follows. In section 2, we recall some definitions and results [19] about holomorphic dynamics of polynomials in a neighborhood of the parabolic fixed point and the hyperbolic metric. In section 3, we prove our main results, Theorem A, Theorem B, and Theorem C.

Acknowledgement

I appreciate my advisor John Erik Fornæss very much for suggesting this research problem and for his significant comments and patient guidance throughout this project. In addition, I am very grateful for all support from the Department of Mathematical Sciences at NTNU in Norway during my visit, which made this research possible.

2 Preliminary

2.1 Holomorphic dynamics of polynomials in a neighborhood of a parabolic fixed point.

Let us first recall some definitions and results [19] about holomorphic dynamics of a polynomial $f(z) = z + a_2z^2 + a_3z^3 + \dots$ in a neighborhood of the parabolic fixed point 0.

Definition 2.1. Let $f(z) = z + az^{m+1} + (\text{higher terms})$, $m \geq 1, a \neq 0$. A complex number \mathbf{v} will be called an *attraction vector at the origin* if $m\mathbf{v}^m = -1$, and a *repulsion vector at the origin* if $m\mathbf{v}^m = 1$. Note here that \mathbf{v} should be thought of as a tangent vector at the origin. We say that some orbit $z_0 \mapsto z_1 \mapsto z_2 \mapsto \dots$ for the map $f(z)$ converges to zero nontrivially if $z_n \rightarrow 0$ as $n \rightarrow \infty$, but no z_n is actually equal to zero. There are m equally spaced attraction vectors at the origin.

Lemma 2.2. If an orbit of $f(z) : z_0 \mapsto z_1 \mapsto \dots$ converges to zero nontrivially, then z_k is asymptotic to $\mathbf{v}_j / \sqrt[m]{k}$ as $k \rightarrow +\infty$ for one of the m attraction vectors \mathbf{v}_j .

Proof. See the proof in chapter 10 of Milnor's book [19]. □

Definition 2.3. If an orbit $z_0 \mapsto z_1 \mapsto \dots$ under $f(z)$ converges to zero with $z_k \sim \mathbf{v}_j / \sqrt[m]{k}$, we will say that this orbit $\{z_k\}_{k \in \mathbb{N}}$ tends to zero along the direction \mathbf{v}_j .

Definition 2.4. Given an attraction vector \mathbf{v}_j in the tangent space of \mathbb{C} at 0, the associated parabolic basin of attraction $\mathcal{A}_j = \mathcal{A}(0, \mathbf{v}_j)$ is defined to be the set consisting of all $z_0 \in \mathbb{C}$ for which the orbit $z_0 \mapsto z_1 \mapsto \dots$ converges to 0 along the direction \mathbf{v}_j .

Definition 2.5. Suppose $f(z) = z + az^{m+1} + (\text{higher terms})$, $m \geq 1, a \neq 0$ is defined and univalent on some neighborhood N at 0 on \mathbb{C} . An open set $\mathcal{P}_j \subset N$ is called an attracting petal for $f(z)$ for the \mathbf{v}_j at 0 if

- (1) $f(z)$ maps \mathcal{P}_j into itself, and
- (2) an orbit $z_0 \mapsto z_1 \mapsto \dots$ under $f(z)$ is eventually absorbed by \mathcal{P}_j if and only if it converges to 0 along the direction \mathbf{v}_j .

2.2 The hyperbolic metric

Definition 2.6. The metric

$$F_{\mathbb{D}} = \frac{2|dz|}{1 - |z|^2} \quad \text{for } z \in \mathbb{D}$$

is called hyperbolic (or Poincaré) metric on the unit disk \mathbb{D} .

Let $\gamma : [0, 1] \rightarrow \hat{\Omega}$ be a piecewise smooth curve. The hyperbolic length of γ is defined to be

$$L_{\hat{\Omega}}(\gamma) = \int_{\gamma} F_{\hat{\Omega}}(z, \xi) |dz| = \int_0^1 F_{\hat{\Omega}}(\gamma(t), \gamma'(t)) |\gamma'(t)| dt.$$

For any two points z_1 and z_2 in $\hat{\Omega}$, the hyperbolic distance between z_1 and z_2 is defined to be

$$d_{\hat{\Omega}}(z_1, z_2) = \inf\{L_{\hat{\Omega}}(\gamma) : \gamma \text{ is a piecewise smooth curve connecting } z_1 \text{ and } z_2\}.$$

Note that $d_{\hat{\Omega}}(z_1, z_2)$ is defined when z_1 and z_2 are in the same connected component of $\hat{\Omega}$.

Let $g : \Delta \rightarrow S$ be a covering map, we define a hyperbolic metric F_S on any hyperbolic Riemann surface S by declaring that g induces an isometry at every point. In other words, let

$$F_{\mathbb{D}}(z) = \frac{2|dw|}{1 - |w|^2} \quad \text{for } z = g(w) \in S.$$

If φ is a local determination for g^{-1} , then

$$F_{\mathbb{D}}(z) = \frac{2|\varphi'(z)|}{1 - |\varphi|^2} |dz|, \quad z \in S.$$

For example, when S is the upper half-plane, then we can use the conformal map $\varphi(z) = \frac{z-i}{z+i}$ of the upper half-plane \mathbb{H} onto the unit disk Δ . Hence,

$$F_{\mathbb{H}} = \frac{2|\varphi'(z)|}{1 - |\varphi|^2} |dz| = \frac{2\left|\left(\frac{z-i}{z+i}\right)'\right|}{1 - \left|\frac{z-i}{z+i}\right|^2} |dz| = \frac{|dz|}{y}, \quad z = x + iy \in \mathbb{H}$$

is the hyperbolic metric on the upper half-plane \mathbb{H} . We refer to page 12, chapter I.4 in [7] for more calculation details about $F_{\mathbb{H}}$.

Proposition 2.7 (The distance decreasing property of the hyperbolic metric). *Suppose Ω_1 and Ω_2 are domains in \mathbb{C} , $z, \omega \in \Omega_1$, $\xi \in \mathbb{C}$, and $f(z) : \Omega_1 \rightarrow \Omega_2$ is holomorphic. Then*

$$F_{\Omega_2}(f(z), f'(z)\xi) \leq F_{\Omega_1}(z, \xi), \quad d_{\Omega_2}(f(z), f(\omega)) \leq d_{\Omega_1}(z, \omega).$$

Proof. We refer to Theorem 4.1 on page 12, Chapter I.4 in [7]. \square

Corollary 2.8. *Suppose $\Omega_1 \subseteq \Omega_2 \subseteq \mathbb{C}$. Then for any $z, \omega \in \Omega_1$ and $\xi \in \mathbb{C}$, we have*

$$F_{\Omega_2}(z, \xi) \leq F_{\Omega_1}(z, \xi), \quad d_{\Omega_2}(z, \omega) \leq d_{\Omega_1}(z, \omega).$$

Proof. We refer to Theorem 4.2 on page 13, Chapter I.4 in [7]. \square

3 Proof of the main theorems

In this section, we will prove our main theorems: Theorem A, Theorem B, and Theorem C.

3.1 Dynamics inside the parabolic basin of $f(z) = z + z^2$

Let us recall the statement of our main Theorem A:

Theorem A. Let $f(z) = z + z^2$. We choose an arbitrary constant $C > 0$ and the point $q = -\frac{1}{2} \in \mathcal{A}$. Then there exists a point $z_0 \in \mathcal{A}$ such that for any $\tilde{q} \in Q := \bigcup_{l,k=0}^{\infty} \{f^{-l}(f^k(-\frac{1}{2}))\}$ (l, k are non negative integers), the hyperbolic distance satisfies $d_{\mathcal{A}}(z_0, \tilde{q}) \geq C$, where $d_{\mathcal{A}}$ is the hyperbolic distance on \mathcal{A} .

Proof. Let $\mathbb{R}^+ = [0, \infty)$ and $\mathbb{R}^- = (-\infty, 0]$ be the positive and negative real axis, respectively. Then the parabolic basin $\mathcal{A} \subsetneq (\mathbb{C} \setminus \mathbb{R}^+)$. Let \mathbb{H} be the upper half-plane, $\varphi(z) : \mathbb{C} \setminus \mathbb{R}^+ \rightarrow \mathbb{H}$ with $\varphi(z) = \sqrt{z}$ (see Figure 3.8). By Definition 2.6., we know the hyperbolic metric on the upper half plane is

$$F_{\mathbb{H}} = \frac{|dw|}{v}$$

for $w = u + iv \in \mathbb{H}$. Hence the hyperbolic metric on $\mathbb{C} \setminus \mathbb{R}^+$ is

$$F_{\mathbb{C} \setminus \mathbb{R}^+} = \frac{|\varphi'|}{\text{Im } \varphi} |dz| = \frac{1}{2|\sqrt{z}| \text{Im } \sqrt{z}} |dz| = \frac{1}{2r \sin \frac{\theta}{2}} |dz|$$

for $z = re^{i\theta} \in \mathbb{C} \setminus \mathbb{R}^+$, i.e., $\theta \in (0, 2\pi)$.

We know that $f^k(q)$ will always be on the negative real axis for any integer $k \geq 0$. We choose $0 < \theta_0 < \frac{\pi}{2}$ and two rays $l_1 := \{z = re^{i\theta_0}, r > 0\}$, $l_2 := \{z = re^{-i\theta_0}, r > 0\}$. Then we denote by $T := \{z = re^{i\theta}, r > 0, \theta_0 \leq \theta \leq 2\pi - \theta_0\}$, a sector inside $\mathbb{C} \setminus \mathbb{R}^+$.

Before continuing with the proof of Theorem A, we have the following well-known Lemma 3.2. For the reader's convenience and to introduce notation, we include the proof and define a Left/Right Pac-Man for an easy explanation of the proof.

Definition 3.1. *We call a domain $D_R := \{z = re^{i\theta}, 0 < r \leq R, \theta_0 < \theta < 2\pi - \theta_0\}$ a Left Pac-Man and $\tilde{D}_R := \{z = re^{i\theta}, 0 < r \leq R, -\pi + \theta_0 < \theta < \pi - \theta_0\}$ a Right Pac-Man.*

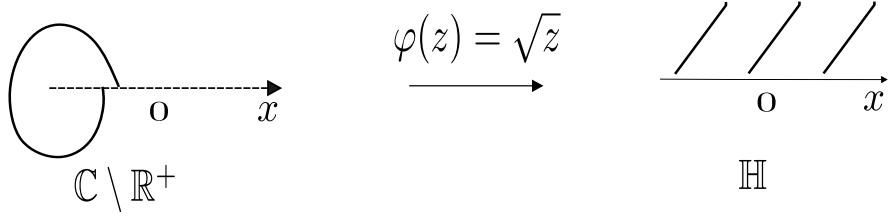


Figure 1: The map φ

Lemma 3.2. For any $\theta_0 \in (0, \pi/2)$, there exists R_0 such that the Left Pac-Man $D_{R_0} \subsetneq T \cap \mathcal{A}$.

Proof. We want to know how orbits go precisely near the parabolic fixed point at 0. Let $\omega = \varphi(z) = -1/z$ send 0 to ∞ , then the conjugated map has the expansion

$$F(\omega) = \varphi \circ f \circ \varphi^{-1}(\omega) = \omega + 1 + o(1) \text{ as } |\omega| \rightarrow \infty.$$

We have $l_1(l_2)$ is mapped to two new rays $l_1^\omega := \{z = re^{i(\pi-\theta_0)}, r > 0\}$ ($l_2^\omega := \{z = re^{i(-\pi+\theta_0)}\}$); T is mapped to $T' = \{re^{i\theta}, r > 0, -\pi + \theta_0 \leq \theta \leq \pi - \theta_0\}$; the Left Pac-Man D_R is mapped to $T' \setminus \tilde{D}_{\frac{1}{R}}$ for any radius R (see Figure 2).

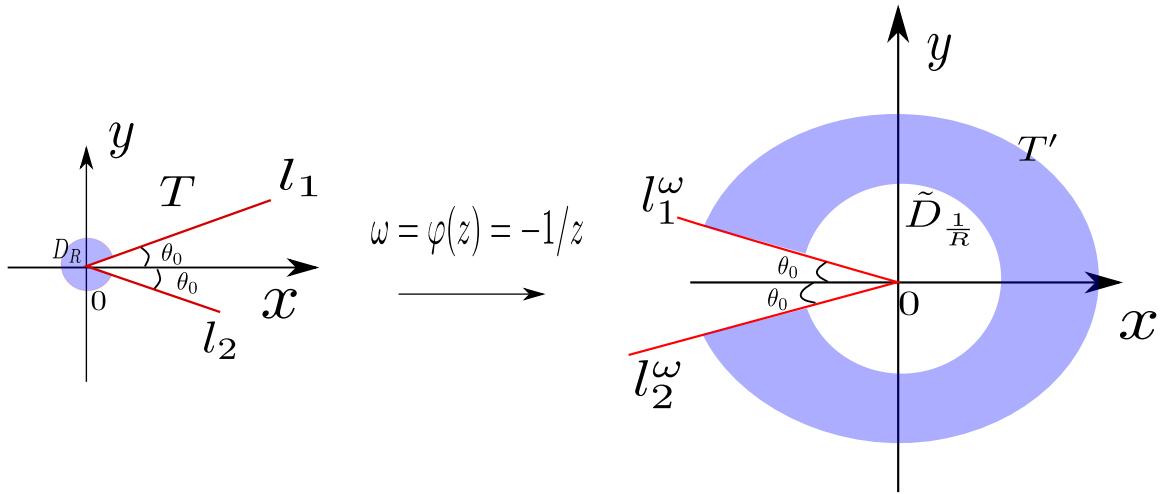


Figure 2: The image of a Left Pac-Man

We choose a Right Pac-Man $\tilde{D}_{\frac{1}{r_0}}$ such that for any $\omega \in T' \setminus \tilde{D}_{\frac{1}{r_0}}$, we have $|o(1)| < \frac{\theta_0}{3}$. Note here, actually, $r_0 = r_0(\theta_0)$ should be sufficiently small. Then we draw the upper tangent line L_0 of $\tilde{D}_{\frac{1}{r_0}}$ such that the angle between L_0 and the real axis is $\frac{\theta_0}{2}$. Then L_0 will intersect l_1^ω and the real axis, we denote these two intersect points A_0 and B_0 , respectively. Let $\frac{1}{r} = \max\{|OA_0|, |OB_0|\} > \frac{1}{r_0}$, here O is the origin zero, then we choose the Right Pac-Man $\tilde{D}_{\frac{1}{r}}$ (see Figure 3).



Figure 3: The choice of the Right Pac-Man

If we take any $\omega_0 \in T' \setminus \tilde{D}_{\frac{1}{r}}$, $F^n(\omega_0) = \omega_0 + n + o(1)$ for all positive integers n such that $|F^n(\omega_0)| \geq |\omega_0 + n - n\frac{\theta_0}{3}|$, then we know that $F^n(\omega_0)$ will never go inside $\tilde{D}_{\frac{1}{r_0}}$.

Therefore, let $R_0 = r, \tilde{R}_0 = r_0$, then we have for any $z_0 \in D_{R_0}, f^n(z_0) \rightarrow 0$, hence $D_{R_0} \not\subseteq T \cap \mathcal{A}$, and we also know that $f^n(D_{R_0}) \subseteq D_{\tilde{R}_0}$.

Lemma 3.3. *We can choose a Left Pac-Man $D_{R'_0} \subseteq D_{R_0}$ such that $f^n(D_{R'_0}) \subseteq D_{R_0}$ for all $n = 1, 2, \dots$*

Proof. On the procedure for proving Lemma 3.2, we can draw another upper tangent line L of \tilde{D}_{R_0} such that the angle between L and the real axis is $\frac{\theta_0}{2}$. Then L will also intersect l_1^ω and the real axis, we denote these two intersect points A and B respectively. Let $\frac{1}{r'} = \max\{|OA|, |OB|\}$, then we choose the Right Pac-Man $\tilde{D}_{\frac{1}{r'}}$. If we take any $\omega \in T' \setminus \tilde{D}_{\frac{1}{r'}}$, we know that $F^n(\omega)$ will never go inside of $\tilde{D}_{\frac{1}{r'}}$. Hence, let $R'_0 = \frac{1}{r'}$, we have $f^n(D_{R'_0}) \subseteq D_{R_0}$.

We continue with the proof of Theorem A. The idea of the proof is to find a point $z_0 \in D_\varepsilon \setminus \mathbb{R}^-$ such that for any $\tilde{q} \in Q$, we have $d_A(z_0, \tilde{q}) \geq C$.

Now, we will consider the following cases of \tilde{q} inside three subsets of \mathcal{A} (see Figure 4):

Case 1: $\tilde{q} \in ((T \cap \mathcal{A}) \setminus D_{R'_0}) \setminus \mathbb{R}^-$. Let $d_{\mathcal{A}}^1(z_0, \tilde{z})$ be the hyperbolic distance between z_0 and any point $\tilde{z} \in \partial D_{R'_0} \setminus R^-$ (see the blue curve in Figure 4). Then we prove that $d_{\mathcal{A}}^1(z_0, \tilde{z}) \geq C$.

Case 2: $\tilde{q} \in \mathbb{R}^-$. Let $d_{\mathcal{A}}^2(z_0, z')$ be the hyperbolic distance between z_0 and any point $z' \in \mathbb{R}^- \cap \mathcal{A}$ (see the pink curve in Figure 4). Then we prove that $d_{\mathcal{A}}^2(z_0, z') \geq C$.

Case 3: $\tilde{q} \in \mathcal{A} \cap \{S' := \{z = re^{i\theta}, r > 0, 0 < \theta \leq \theta_0\}\}$. Let $d_{\mathcal{A}}^3(z_0, \tilde{z})$ be the hyperbolic distance between z_0 and any point $\tilde{z} \in l_1$ (see the green curve in Figure 4). Then we prove that $d_{\mathcal{A}}^3(z_0, \tilde{z}) \geq C$.

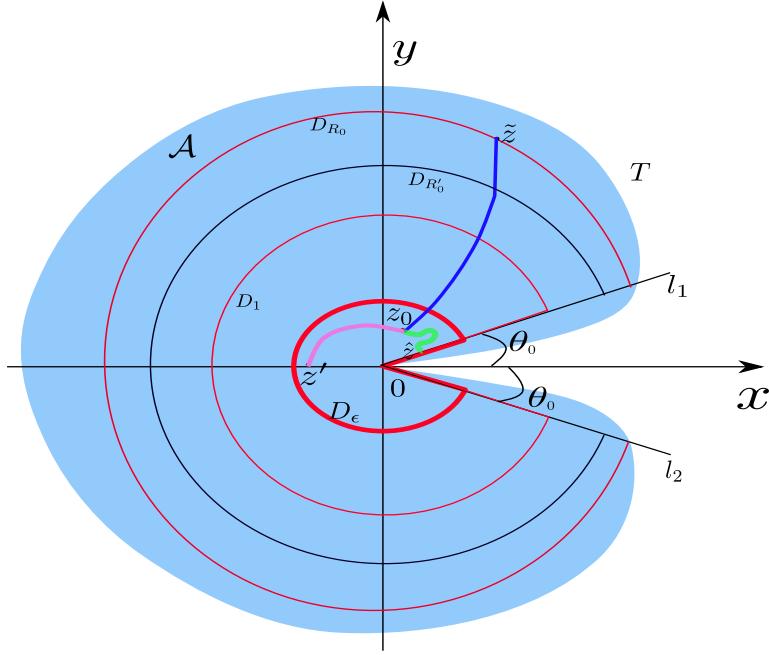


Figure 4: The three hyperbolic distances in \mathcal{A}

Remark:

- 1) In the investigation of these three cases, it will become clear how small θ_0 needs to be.
- 2) $\partial D_{R'_0}$ means the boundary of the Left Pac-Man $D_{R'_0}$. It is the circular curve of $D_{R'_0}$, not including the mouth of $D_{R'_0}$ which belongs to l_1 and l_2 ;
- 3) \tilde{q} can never be inside $D_{R'_0} \setminus \mathbb{R}^-$: If $\tilde{q} \in D_{R'_0} \setminus \mathbb{R}^-$, more precisely, suppose $f^{-l}(f^k(q)) \in D_{R'_0} \setminus \mathbb{R}^-$ for some integers $l, k \geq 0$, we iterate l times of $f^{-l}(f^k(q))$, we have $f^k(q) \in D_{R_0} \setminus \mathbb{R}^-$ since we know $f^n(D_{R'_0}) \subseteq D_{R_0}$ for any positive integer n by Lemma 3.2 and $f^k(q) \notin \mathbb{R}^-$ since $R'_0 < R_0 = r < r_0$, and $f(z)$ is biholomorphic near 0. Hence $\text{Im}(f^k(q)) \neq 0$. However, this contradicts $\text{Im}(f^k(q)) = \text{Im}(f^k(-\frac{1}{2})) = 0$. Thus $\tilde{q} \notin D_{R'_0} \setminus \mathbb{R}^-$;
- 4) if $\tilde{q} \in \mathcal{A} \setminus D_{R'_0}$, \tilde{q} is far away from $\partial D_{R'_0}$, then we know that $d_{\mathcal{A}}(z_0, \tilde{q}) \geq d_{\mathcal{A}}^1(z_0, \tilde{z})$. This is because $d_{\mathcal{A}}^1(z_0, \tilde{z})$ is the minimum distance between z_0 and any $\tilde{q} \in ((T \cap \mathcal{A}) \setminus D_{R'_0}) \setminus \mathbb{R}^-$. Hence, we need to prove that we can choose z_0 so that all these three hyperbolic distances $d_{\mathcal{A}}^1(z_0, \tilde{z}), d_{\mathcal{A}}^2(z_0, z'), d_{\mathcal{A}}^3(z_0, \tilde{z}) \geq C$ for the given constant C . Next, we will estimate these three hyperbolic distances.

First, we estimate $d_{\mathcal{A}}^1(z_0, \tilde{z})$. Suppose $z_0 \in D_\varepsilon$,

$$\begin{aligned}
d_{\mathcal{A}}^1(z_0, \tilde{z}) &\geq d_{\mathbb{C} \setminus \mathbb{R}^+}(z_0, \tilde{z}) \\
&= \inf \int_{\gamma(t)} F_{\mathbb{C} \setminus \mathbb{R}^+}(\gamma(t)) |\gamma'(t)| dt \\
&= \inf \int_{\gamma(t)} \frac{1}{2|\gamma(t)| \sin \frac{\arg(\gamma(t))}{2}} |\gamma'(t)| dt \\
&\geq \inf \int_{\gamma(t)} \frac{1}{2|\gamma(t)|} |\gamma'(t)| dt \\
&= \frac{1}{2} \inf \int_{\varepsilon}^{R'_0} \frac{|dr|}{r} \\
&\geq \frac{1}{2} (\ln R'_0 - \ln \varepsilon),
\end{aligned}$$

where $\gamma(t)$ is a smooth path joining z_0 to \tilde{z} . The last inequality holds since there might have some derivatives of the path $\gamma(t)$ are negative in some pieces. In addition, we can see that $d_{\mathcal{A}}^1(z_0, \tilde{z}) \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

Second, we estimate $d_{\mathcal{A}}^2(z_0, z')$. Let $\varepsilon = \varepsilon_0$, i.e., fix ε , and let $D_1 \subset T$ be a scaling of D_{ε_0} by $S(z) = \frac{z}{|z_0|}$, sending z_0, z' to $\tilde{z}_0 := \frac{z_0}{|z_0|}, \frac{z'}{|z_0|}$, respectively. By homogeneity, we know the hyperbolic distance $d_{\mathbb{C} \setminus \mathbb{R}^+}(z_0, z') = d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, z'/|z_0|)$. Since we hope to prove $d_{\mathcal{A}}^2(z_0, z') \geq C$, we need z_0 to be far from \mathbb{R}^- , and so does \tilde{z}_0 . Let $S_T := \{z = e^{i\theta}, \theta_0 < \theta < \frac{\pi}{2} - \theta_0\}$, assume $\tilde{z}_0 \in S_T$ and $\operatorname{Re} \tilde{z}_0 > \frac{1}{2}$, then any curve from \tilde{z}_0 to $\frac{z'}{|z_0|}$ must pass through a point \tilde{z}' on the positive imaginary axis, i.e., $\operatorname{Re} \tilde{z}' = 0$. For simplicity, we assume this curve and \tilde{z}' lie in the upper half plane. Hence $d_{\mathcal{A}}^2(z_0, z') \geq d_{\mathbb{C} \setminus \mathbb{R}^+}(z_0, z') = d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, z'/|z_0|) \geq d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}')$. We have

$$\begin{aligned}
d_{\mathcal{A}}^2(z_0, z') &\geq d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}') \\
&= \inf \int_{\tilde{z}_0}^{\tilde{z}'} F_{\mathbb{C} \setminus \mathbb{R}^+}(z) \\
&= \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{|z| 2 \sin(\theta/2)} \\
&\geq \sqrt{2} \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{|z| \sin \theta} \\
&\geq \sqrt{2} \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\operatorname{Im} z} \\
&> \sqrt{2} |\ln(\operatorname{Im} \tilde{z}') - \ln(\operatorname{Im} \tilde{z}_0)|.
\end{aligned}$$

Then there are three situations for the hyperbolic distance between \tilde{z}_0 and \tilde{z}' :

- 1) If $\operatorname{Im} \tilde{z}' \geq e^C |\operatorname{Im} \tilde{z}_0|$ or $\operatorname{Im} \tilde{z}' \leq \frac{|\operatorname{Im} \tilde{z}_0|}{e^C}$ for the constant $C > 0$ (see the blue curves on Figure 5), then $|\ln(\operatorname{Im} \tilde{z}') - \ln(\operatorname{Im} \tilde{z}_0)| \geq C$, hence $d_{\mathcal{A}}^2(z_0, z') \geq C$ is true.
- 2) If $\tilde{z}' \in \mathcal{L} := \{z = x + iy, \frac{|\operatorname{Im} \tilde{z}_0|}{e^C} < y < e^C |\operatorname{Im} \tilde{z}_0|\}$ (see the green curve on Figure 5). We prove that $d_{\mathcal{A}}(\tilde{z}_0, \tilde{z}') \geq \sqrt{2} \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\operatorname{Im} z} \geq C$ for $z \in \mathcal{L}$.

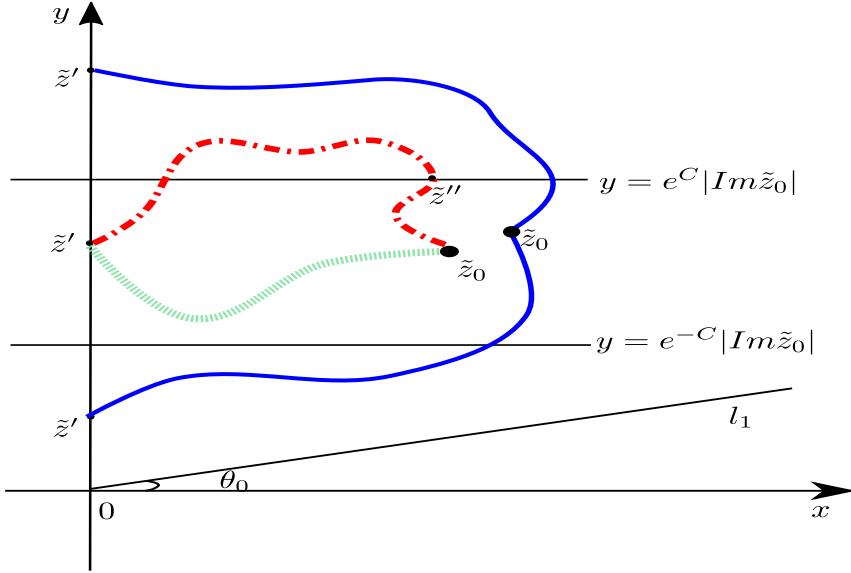


Figure 5: Three situations for the hyperbolic distance between \tilde{z}_0 and \tilde{z}'

Let $z = x + iy \in \mathcal{L}$, then $\operatorname{Im} z \leq e^C |\operatorname{Im} \tilde{z}_0|$. Hence we have

$$\int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\operatorname{Im} z} \geq \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dx|}{\operatorname{Im} z} \geq \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dx|}{e^C |\operatorname{Im} \tilde{z}_0|} = \frac{\operatorname{Re} \tilde{z}_0}{e^C} \frac{1}{|\operatorname{Im} \tilde{z}_0|} > \frac{1}{2e^C |\operatorname{Im} \tilde{z}_0|}.$$

Note that the last inequality holds because we choose $\operatorname{Re} \tilde{z}_0 > 1/2$.

As long as $\theta_0 < \frac{1}{2Ce^C}$, we can choose \tilde{z}_0 so that $\operatorname{Im} \tilde{z}_0 < \frac{1}{2Ce^C}$, hence $\int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\operatorname{Im} z} > C$.

3) If $\tilde{z}' \in \mathcal{L}$, but the curve γ between \tilde{z}_0 and \tilde{z}' gets outside of \mathcal{L} starting at some point $\tilde{z}'' \in \gamma \cap \mathcal{L}$ for a while (see the red curve in Figure 5), then enter back to \mathcal{L} again, then we still have $d_{\mathcal{A}}^2(z_0, z') \geq C$ is true because $d_{\mathbb{C} \setminus \mathbb{R}^+}(z_0, z') \geq d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}'') \geq C$. The last inequality holds since 1) is valid.

After these calculations, we fix z_0 so that $d_{\mathcal{A}}^1(z_0, \tilde{z})$ and $d_{\mathcal{A}}^2(z_0, z')$ are both bigger or equal to C . To obtain $d_{\mathcal{A}}^3(z_0, \tilde{z}) \geq C$, we will need an even smaller θ'_0 , see the following calculation.

We know $d_{\mathcal{A}}^3(z_0, \tilde{z}) \geq d_{\mathbb{C} \setminus \mathbb{R}^+}(z_0, \tilde{z}) = d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}/|z_0|)$. Hence to have $d_{\mathcal{A}}^3(z_0, \tilde{z}) \geq C$, we need to estimate $d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}/|z_0|)$.

When we estimate $d_{\mathcal{A}}^2(z_0, z')$, we send z_0 to \tilde{z}_0 and choose $\operatorname{Re} \tilde{z}_0 > 1/2$ and \tilde{z} close to l_1 . Hence $d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}/|z_0|)$ might be very small. To handle this situation, we first choose a disk $\Delta_{\mathbb{C} \setminus \mathbb{R}^+}^K(\tilde{z}_0, C)$ centered at \tilde{z}_0 with radius C in the hyperbolic distance. Since this disk $\Delta_{\mathbb{C} \setminus \mathbb{R}^+}^K(\tilde{z}_0, C)$ is a compact subset of $\mathbb{C} \setminus \mathbb{R}^+$, there exists a sector $S'' := \{z = re^{i\theta}, r > 0, 0 < \theta < \theta'_0\}$ such that $S'' \cap \Delta_{\mathbb{C} \setminus \mathbb{R}^+}^K(\tilde{z}_0, C) = \emptyset$, here we can assume that $\theta'_0 < \theta_0$. Therefore, $d_{\mathbb{C} \setminus \mathbb{R}^+}(\tilde{z}_0, \tilde{z}/|z_0|) \geq C$ for any $\tilde{z}/|z_0| \in \mathcal{A} \cap S''$. Furthermore, for this new θ'_0 , it does not change the conclusion of the estimation of $d_{\mathcal{A}}^1(z_0, \tilde{z})$ and $d_{\mathcal{A}}^2(z_0, z')$.

Therefore, there is a point z_0 such that all these three distances $d_{\mathcal{A}}^1(z_0, \tilde{z})$, $d_{\mathcal{A}}^2(z_0, z')$, $d_{\mathcal{A}}^3(z_0, \tilde{z}) \geq C$ for the given constant C .

□

Corollary 3.4. *Let $X \subset \mathcal{A}$ be the set of all $z_0 \in \mathcal{A}$ such that $d_{\mathcal{A}}(z_0, \tilde{q}) \geq C$ for any $\tilde{q} \in \mathcal{A}$. If $z \in X$, then any point $w \in f^{-1}(z)$ is in X . Therefore, X is dense in the boundary of \mathcal{A} .*

Proof. By Theorem A, we know that $X \neq \emptyset$. Suppose $w \notin X$, then there exists $\tilde{q} \in Q$ so that $d_{\mathcal{A}}(w, \tilde{q}) < C$. Since $f(z)$ is distance decreasing, see Proposition 2.7, we have $d_{\mathcal{A}}(f(w), f(\tilde{q})) = d_{\mathcal{A}}(z, \tilde{q}) < C$. This contradicts $z \in X$.

Furthermore, we know that $\{f^{-n}(z)\}_{n \in \mathbb{N}}$ clusters at every point in Julia set. In particular, this is true if $z \in X$. More precisely, $\{f^{-n}(z)\}_{n \in \mathbb{N}}$ equidistributes toward the Green measure. Therefore, the closure of X contains the boundary of \mathcal{A} .

□

3.2 Dynamics inside the parabolic basin of $f(z) = z + az^{m+1}, m \geq 1, a \neq 0$

In this subsection, we generalize Theorem A to the case of several petals inside the parabolic basin. Let us recall the statement of our main Theorem B:

Theorem B. Let $f(z) = z + az^{m+1}, m \geq 1, a \neq 0$, and Ω_j be the immediate basin of \mathcal{A}_j . We choose an arbitrary constant $C > 0$ and an arbitrary point $q = a\mathbf{v}_j \in \mathcal{P}_j$, a is a small positive real number. Then there exists a point $z_0 \in \Omega_j$ such that for any $\tilde{q} \in Q := \bigcup_{l=0}^{\infty} \{f^{-l}(f^k(q))\} \cap \Omega_j$ (l, k are non-negative integers), the hyperbolic distance satisfies $d_{\Omega_j}(z_0, \tilde{q}) \geq C$, where d_{Ω_j} denotes the hyperbolic distance on Ω_j .

Proof. We conjugate $f(z)$ using rotation:

$$\begin{array}{ccc} z & \xrightarrow{f(z)=z+az^{m+1}} & f(z) \\ \downarrow e^{i\theta}z & & \downarrow e^{i\theta}z \\ w & \xrightarrow{g} & g(w) \end{array}$$

$w \mapsto e^{i\theta}(e^{-i\theta}w + a(e^{-i\theta}w)^{m+1}) = w + ae^{-im\theta}w^{m+1}$. Suppose $a = re^{i\psi}$, then we can choose $\theta = \frac{\psi}{m}$ such that $ae^{-im\theta}$ is a real positive number. Then we can assume $S := \{z = re^{i\theta}, r > 0, 0 < \theta < \frac{2\pi}{m}\}$ be the sector with angle $2\pi/m$, including the attracting petal \mathcal{P}_j , then the angle between \mathbf{v}_j and \mathbb{R}^+ is $\frac{\pi}{m}$. We denote the boundary rays of S by $l_{\mathbb{R}^+}^1 := \{z = r > 0\}$ and $l_{\mathbb{R}^+}^2 := \{z = re^{i\frac{2\pi}{m}}, r > 0\}$. We choose $\theta_0 > 0$ and two rays $l_1 := \{z = re^{i\theta_0}, r > 0\}, l_2 := \{z = re^{i(\frac{2\pi}{m} - \theta_0)}, r > 0\}$. Then we denote by $T := \{z = re^{i\theta}, r > 0, \theta_0 < \theta < \frac{2\pi}{m} - \theta_0\}$ a sector inside S .

Let $\varphi(z) : S \rightarrow \mathbb{H}$ with $\varphi(z) = z^{m/2}$. Then by Definition 2.6., the hyperbolic metric F_S is

$$F_S = \frac{|\varphi'|}{\text{Im } \varphi} |dz| = \frac{m}{2r \sin(\frac{\theta m}{2})} |dz|.$$

As in the proof of Theorem A, we can choose two analogous "Pac-Man" $D_{R'_0}^m := \{z = re^{i\theta}, 0 < r < R'_0, \theta_0 < \theta < \frac{2\pi}{m} - \theta_0\}$, $D_{R_0}^m := \{z = re^{i\theta}, 0 < r < R_0, \theta_0 < \theta < \frac{2\pi}{m} - \theta_0\}$ central at 0 with radius $R'_0, R_0 > 0$ ($R'_0 < R_0$), respectively, such that $D_{R_0}^m \subsetneq T \cap \Omega_j$ and $f^n(D_{R'_0}^m) \subset D_{R_0}^m$.

Then similarly, we need to estimate the three hyperbolic distances from z_0 to any point $\tilde{z} \in \partial D_{R_0}^m$ (see the blue curve in Figure 6), $z' \in \mathbf{v}_j$ (see the pink curve in Figure 6), and $\tilde{z} \in \Omega_j \cap \{S' := \{z = re^{i\theta}, r > 0, 0 < \theta < \theta_0\}\}$ (see the green curve in Figure 6), and show that all of them are not less than C .

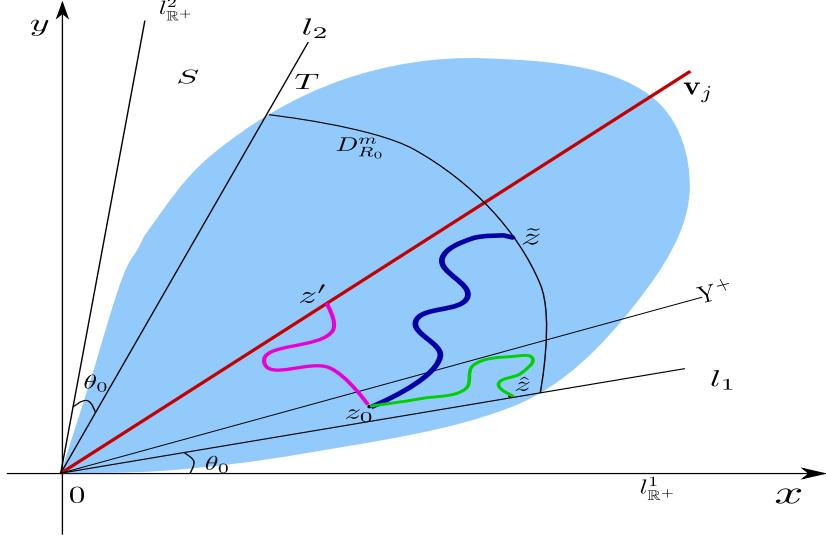


Figure 6: The three hyperbolic distances in Ω_j

First, suppose $z_0 \in D_\varepsilon^m := \{z = re^{i\theta}, 0 < r < \varepsilon, \theta_0 < \theta < \frac{2\pi}{m} - \theta_0\}, \varepsilon \ll R'_0$. Let us estimate the hyperbolic distance from z_0 to any point \tilde{z} on the boundary of $D_{R_0}^m$, and we denote this distance by $d_{\Omega_j}^1(z_0, \tilde{z})$.

$$\begin{aligned} d_{\Omega_j}^1(z_0, \tilde{z}) &\geq d_S(z_0, \tilde{z}) = \inf \int_{\gamma(t)} F_S(\gamma(t)) |\gamma'(t)| dt \\ &= \inf \int_{\gamma(t)} \frac{m}{2|\gamma(t)| \sin \frac{m \arg(\gamma(t))}{2}} |\gamma'(t)| dt \geq \inf \int_{\gamma(t)} \frac{m}{2|\gamma(t)|} |\gamma'(t)| dt \\ &= \frac{m}{2} \inf \int_{\varepsilon}^{R_0} \frac{|dr|}{r} \geq \frac{m}{2} (\ln R_0 - \ln \varepsilon), \end{aligned}$$

where $\gamma(t)$ is a smooth path joining z_0 to \tilde{z} . In addition, we can see that $d_{\Omega_j}^1(z_0, \tilde{z}) \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

Second, we calculate the hyperbolic distance from z_0 to any point $z' \in \mathbf{v}_j$ denoted by $d_{\Omega_j}^2(z_0, z')$. Let $\varepsilon = \varepsilon_0$, i.e., fix ε , and $D_1^m \subset T$ be a scaling of $D_{\varepsilon_0}^m$ by $S(z) = \frac{z}{|z_0|}$, sending z_0, z' to $\tilde{z}_0 := \frac{z_0}{|z_0|}, \frac{z'}{|z_0|}$, respectively. By homogeneity, we know the hyperbolic distance $d_S(z_0, z') = d_S(\tilde{z}_0, z'/|z_0|)$. Since we hope to prove $d_{\Omega_j}^2(z_0, z') > C$, we need z_0 to be far from \mathbf{v}_j , and so does \tilde{z}_0 . Let $S_T := \{z = e^{i\theta}, \theta_0 < \theta < \frac{\pi}{2m} - \theta_0\}$, assume $\tilde{z}_0 \in S_T$ and $\operatorname{Re} \tilde{z}_0$ is sufficiently big, then any curve from \tilde{z}_0 to $\frac{z'}{|z_0|}$ must pass through a point \tilde{z}' on the ray $Y^+ := \{re^{i\frac{\pi}{2m}}, r > 0\}$.

Hence $d_{\Omega_j}^2(z_0, z') \geq d_S(z_0, z') = d_S(\tilde{z}_0, z'/|z_0|) \geq d_S(\tilde{z}_0, \tilde{z}')$. Then we have

$$\begin{aligned}
d_{\Omega_j}^2(z_0, z') &\geq d_S(\tilde{z}_0, \tilde{z}') = \inf \int_{\tilde{z}_0}^{\tilde{z}'} F_S(z) \\
&= \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{m|dz|}{2r \sin(m\theta/2)} \\
&= \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{\frac{m\theta}{2}}{\sin(\frac{m\theta}{2})} \cdot \frac{m|dz|}{2r(m\theta/2)} \\
&= c_1 \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{r\theta} \\
&= c_1 \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{\sin \theta}{\theta} \cdot \frac{|dz|}{r \sin \theta} \\
&= c_1 c_2 \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{r \sin \theta} \\
&= c_1 c_2 \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\text{Im } z} \\
&\geq c_1 c_2 |\ln(\text{Im } \tilde{z}') - \ln(\text{Im } \tilde{z}_0)|.
\end{aligned}$$

where $c_1 := \inf \frac{\frac{m\theta}{2}}{\sin \frac{m\theta}{2}}, c_2 := \inf \frac{\sin \theta}{\theta}$.

Then there are three situations for the hyperbolic distance between \tilde{z}_0 and \tilde{z}' :

- 1) If $\text{Im } \tilde{z}' \geq e^C |\text{Im } \tilde{z}_0|$ or $\text{Im } \tilde{z}' \leq \frac{|\text{Im } \tilde{z}_0|}{e^C}$ for some constant $C > 1$, then $|\ln(\text{Im } \tilde{z}') - \ln(\text{Im } \tilde{z}_0)| \geq C$, hence $d_{\Omega_j}^2(z_0, z') \geq C$ is true.
- 2) If $\tilde{z}' \in \mathcal{L} := \{z = x + iy, \frac{|\text{Im } \tilde{z}_0|}{e^C} < y < e^C |\text{Im } \tilde{z}_0|\}$. We need to prove that $d_{\Omega_j}(\tilde{z}_0, \tilde{z}') \geq c_1 c_2 \inf \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\text{Im } z} \geq C$ for $z \in \mathcal{L}$.

Let $z = x + iy \in \mathcal{L}$, then $\text{Im } z \leq e^C |\text{Im } \tilde{z}_0|$. Hence we have

$$\int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\text{Im } z} \geq \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dx|}{\text{Im } z} \geq \int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dx|}{e^C |\text{Im } \tilde{z}_0|} = \frac{|\text{Re } \tilde{z}' - \text{Re } \tilde{z}_0|}{e^C} \frac{1}{|\text{Im } \tilde{z}_0|} > \frac{1}{2e^C |\text{Im } \tilde{z}_0|},$$

Note that the last inequality holds since we choose $\text{Re } \tilde{z}_0$ sufficiently big so that \tilde{z}_0 is close to l_1 , and $|\text{Re } \tilde{z}' - \text{Re } \tilde{z}_0| > 1/2$ because \tilde{z}' will have to be close to 0 since it lies on $Y^+ \cap \mathcal{L}$ and its imaginary part is close to 0, which makes $d_{\Omega_j}^2(z_0, z')$ as big as we want.

In other words, as long as $\theta_0 < \frac{1}{2Ce^C}$, we have $\text{Im } \tilde{z}_0 < \frac{1}{2Ce^C}$. In addition, $|\text{Re } \tilde{z}' - \text{Re } \tilde{z}_0| > 1/2$, we obtain $\int_{\tilde{z}_0}^{\tilde{z}'} \frac{|dz|}{\text{Im } z} > C$.

- 3) If $\tilde{z}' \in \mathcal{L}$, but the curve γ between \tilde{z}_0 and \tilde{z}' get outside of \mathcal{L} starting at some point $\tilde{z}'' \in \gamma \cap \mathcal{L}$ for a while, then enter back to \mathcal{L} again, then we still have $d_{\Omega_j}^2(z_0, z') \geq C$ is true because $d_S(z_0, z') \geq d_S(\tilde{z}_0, \tilde{z}'') \geq C$. The last inequality holds since 1) is valid. We have a conclusion as same as $d_{\mathcal{A}}^2(z_0, z') \geq C$ in the proof of Theorem A.

At last, we estimate the hyperbolic distance from z_0 to any point $\hat{z} \in \Omega_j \cap \{S' :=$

$\{z = re^{i\theta}, r > 0, 0 < \theta < \theta_0\}$ denoted by $d_{\Omega_j}^3(z_0, \hat{z})$. We know $d_{\Omega_j}^3(z_0, \hat{z}) \geq d_S(z_0, \hat{z}) = d_S(\tilde{z}_0, \hat{z}/|z_0|)$.

We use the method for computing $d_{\Omega_j}^3(z_0, \hat{z})$ as same as $d_{\mathcal{A}}^3(z_0, \hat{z}) \geq C$ in the proof of Theorem A. We first choose a disk $\Delta_S^K(\tilde{z}_0, C)$ centered at \tilde{z}_0 with radius C in the hyperbolic distance. Since this disk $\Delta_S^K(\tilde{z}_0, C)$ is a compact subset of S , there exists a sector $S'' := \{z = re^{i\theta}, r > 0, \pi - \frac{\pi}{m} < \theta < \pi - \frac{\pi}{m} + \theta'_0\}$ such that $S'' \cap \Delta_S^K(\tilde{z}_0, C) = \emptyset$, here we can assume that $\theta'_0 < \theta_0$. Therefore, $d_S(\tilde{z}_0, \hat{z}/|z_0|) \geq C$ for any $\hat{z}/|z_0| \in \Omega_j \cap S''$. Furthermore, for this new θ'_0 , it does not change the conclusion of the estimation of $d_{\Omega_j}^1(z_0, \hat{z})$ and $d_{\Omega_j}^2(z_0, \hat{z}')$.

□

3.3 Dynamics inside the parabolic basin of $f(z) = z + az^{m+1} + (\text{higher order terms}), m \geq 1, a \neq 0$

Finally, in this subsection, we consider the behavior of orbits inside parabolic basins of general polynomials. Let us recall the statement of our main Theorem C:

Theorem C. Let $f(z) = z + az^{m+1} + (\text{higher terms}), m \geq 1, a \neq 0$, and Ω_j be the immediate basin of \mathcal{A}_j . We choose an arbitrary constant $C > 0$ and an arbitrary point $q = a\mathbf{v}_j \in \mathcal{P}_j$, a is a small positive real number. Then there exists a point $z_0 \in \Omega_j$ such that for any $\tilde{q} \in Q := \cup_{l=0}^{\infty} \{f^{-l}(f^k(q))\} \cap \Omega_j$ (l, k are non-negative integers), the hyperbolic distance satisfies $d_{\Omega_j}(z_0, \tilde{q}) \geq C$, where d_{Ω_j} denotes the hyperbolic distance on Ω_j .

Proof. The essential idea to prove Theorem C is the same as the proof of Theorem A and Theorem B. However, we cannot draw the parabolic basin of $f(z) = z + az^{m+1} + (\text{higher order terms})$ directly as Figure 4 and Figure 6 since there are higher order terms of $f(z)$, the parabolic basin can be more complicated.

To simplify the discussion, we first consider the case $m = 1$:

$$f(z) = z + z^2 + (\text{higher order terms}).$$

When there are no higher order terms, the crucial estimate of the hyperbolic metric comes from the fact that the parabolic basin is contained in $\mathbb{C} \setminus \mathbb{R}^+$. Hence we could compare it with the hyperbolic metric on $\mathbb{C} \setminus \mathbb{R}^+$.

In the case of higher order terms, the parabolic basin can be more complicated. However, we can, instead of $\mathbb{C} \setminus \mathbb{R}^+$, use the double sheeted domain

$$V_R := \{z = re^{i\theta}, 0 < r < R, -\theta_0 < \theta < 2\pi + \theta_0\}.$$

Next, we investigate the properties of V_R to explain why we choose the double sheeted domain V_R as above.

Proposition 3.5. Let $\bar{D}_R := \{z = re^{i\theta}, 0 < r < R, -\theta_0 < \theta < \theta_0\}$, \mathcal{A} be the whole basin of $f(z)$, S_1 be the connected component of $\mathcal{A} \cap \bar{D}_R$ which contains $\{z = re^{i\theta_0}, 0 < r < R\}$, and S_2 be the connected component of $\mathcal{A} \cap \bar{D}_R$ which contains $\{z = re^{-i\theta_0}, 0 < r < R\}$. Then any two pieces S_1, S_2 (see the left of Figure 7) are disjoint in \bar{D}_R .



Figure 7: Two pieces S_1 and S_2 in \bar{D}_R

Proof. We know that, inside V_R and near the origin, \mathcal{A} contains the Left Pac-Man $D_R := \{z = re^{i\theta}, 0 < r < R, \theta_0 < \theta < 2\pi - \theta_0\}$.

If S_1 intersects S_2 , then there is a point $z \in S_1 \cap S_2$. We can draw three curves, c_1 from z to $l_1 := \{z = re^{i\theta_0}\}$, c_2 from z to $l_2 := \{z = re^{-i\theta_0}\}$, and $c_3 \in D_R$ which connect c_1 and c_2 . Hence \mathcal{A} contains a closed curve $\gamma_c := c_1 + c_2 + c_3$ with the winding number 1 around the origin (see the right of Figure 7).

We know that $f^n(z) \rightarrow 0$ when $z \in \gamma_c$, since $\gamma_c \in \mathcal{A}$. In addition, by the maximum principle, we have $f^n(z) \rightarrow 0$ when z is inside the domain bounded by γ_c . Hence \mathcal{A} contains a neighborhood of 0, then 0 is an attracting fixed point. However, this contradicts that 0 is a parabolic fixed point of $f(z)$. \square

By Proposition 3.5, we can use the hyperbolic metric on V_R instead of $\mathbb{C} \setminus \mathbb{R}^+$.

First, we know that V_R can be mapped to a sector $S := \{z = re^{i\theta}, r > 0, \theta_1 < \theta < \theta_2, \theta_1 << \theta_2 < \pi/2\}$ by $\varphi_1(z) = z^{c/2}$ when c is sufficiently small. Second, we can change c such that $\theta_2 = \pi - \theta_1$ by some map $\varphi_2(z)$. At last, by some rotation map φ_3 , we can map S to the upper half plane \mathbb{H} (see the Figure 8).

Therefore, the map $\varphi(z) := \varphi_3 \circ \varphi_2 \circ \varphi_1$ from V_R to the upper half plane \mathbb{H} becomes $\varphi(z) = e^{i\psi} z^{\frac{c}{2}}$, instead of $\varphi(z) = z^{1/2}$, where c is very close to 1. Then, with the above setting, the rest of the estimation goes through as in Theorem B.

If $m > 1$, it is difficult to draw the specific parabolic basins of $f(z)$ or the attracting petals. Let

$$V_R =: \{z = re^{i\theta}, r > 0, -\theta_0 < \theta < \frac{2\pi}{m} + \theta_0\}.$$

We use Figure 9 to illustrate how we can choose V_R (see the domain with pink curves as its argument). We want to map V_R to the upper half-plane. First, Let $z \rightarrow e^{i\theta_0} z$, then V_R is mapped to

$$V'_R := \{z = re^{i\theta}, r > 0, 0 < \theta < \frac{2\pi}{m} + 2\theta_0\}.$$

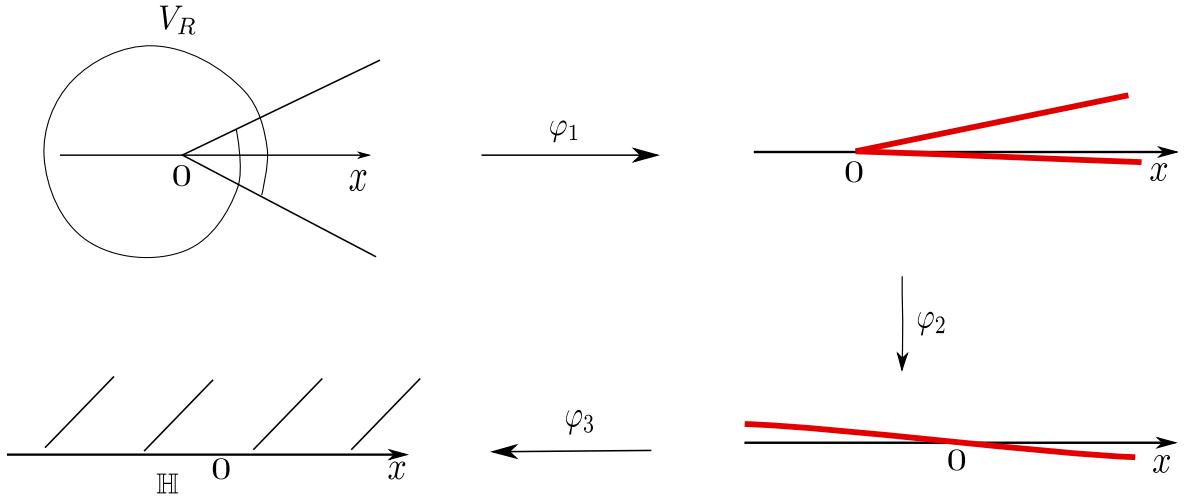


Figure 8: The maps φ_1, φ_2 and φ_3

We define $\varphi(z) = (e^{i\theta_0} z)^{\frac{\pi}{2m+2\theta_0}}$. Then the hyperbolic metric on V_R is

$$F_{V_R} = \frac{|\varphi'(z)|}{\operatorname{Im} \varphi} |dz|.$$

And similarly, we have the same properties of S_1, S_2 as in Proposition 3.5 (see the red curve and blue curve on Figure 9). Then the rest of the estimation goes through as in

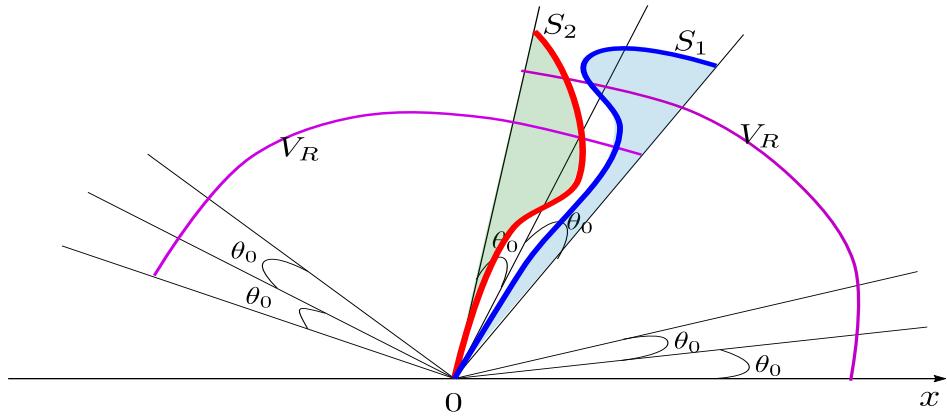


Figure 9: Two pieces S_1 and S_2

Theorem B. Thus, we are done. □

References

- [1] M. Abate, “The Kobayashi distance in holomorphic dynamics and operator theory”, Metrics and dynamical aspects in complex analysis, L. Blanc-Centi ed., Springer, 2017.
- [2] M. Abate and J. Raissy “Backward iteration in strongly convex domains”, *Adv. in Math.*, **228** (2011), Issue 5, 2837–2854, corrigendum, 2020.
- [3] A. F. Beardon, “Iteration of Rational Functions”, Springer-Verlag, New York, 1991.
- [4] F. Bracci, “Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disc”, *Ann. Univ. Mariae Curie-Sklodowska Sect. A*, **73** (2019) 2, 21-43.
- [5] F. Bracci, J. Raissy and B. Stensønes, “Automorphisms of \mathbb{C}^k with an invariant non-recurrent attracting Fatou component biholomorphic to $\mathbb{C} \times (\mathbb{C}^*)^{k-1}$ ”, *JEMS*, **23** (2021), 2, 639-666.
- [6] H. Brolin, “Invariant sets under iteration of rational functions”, *Ark. Mat.* **6** (1965), 103-144.
- [7] L. Carleson and T. W. Gamelin, “Complex dynamics”, Springer-Verlag, New York, 1993.
- [8] T C. Dinh and N. Sibony, “Equidistribution speed for endomorphisms of projective spaces”, *Math. Ann.* **347** (2010), 613–626.
- [9] A. Douady and J. Hubbard, “Étude dynamique des polynômes complexes, (Première Partie)”, Publ, Math. d’Orsay, 1984, 84-02.
- [10] A. Douady and J. Hubbard, “Étude dynamique des polynômes complexes, (Deuxième Partie)”, Publ, Math. d’Orsay, 1985, 85-02.
- [11] D. Drasin and Y. Okuyama, “Equidistribution and Nevanlinna theory”, *Bulletin of the London Mathematical Society*, **39** (2007), 4, 603–613.
- [12] P. Fatou, “Sur les équations fonctionnelles”, *Bull. Soc. Math. France*, **47** (1919), 161–271.
- [13] P. Fatou, “Sur les équations fonctionnelles”, *Bull. Soc. Math. France*, **48** (1920), 33–94.
- [14] P. Fatou, “Sur les équations fonctionnelles”, *Bull. Soc. Math. France*, **48** (1920), 208–314.
- [15] J. E. Fornæss, “Dynamics in Several Complex Variables”, CBMS Regional Conference Series in Mathematics, 1996.
- [16] M. Hu, “Interior Dynamics of Fatou Sets”, *Annali di Matematica Pura ed Applicata* (1923 -), **202** (2023), 2903–2914.
- [17] M. Hu, “Dynamics inside Fatou Sets in Higher Dimensions”, *Ann. Sc. Norm. Super. Pisa Cl. Sci.*, **26** (2025), 245-257.

- [18] S. Krantz, “The Caratheodory and Kobayashi Metrics and Applications in Complex Analysis”, *The American Mathematical Monthly*, **115** (2008), 304-329.
- [19] J. Milnor, “Dynamics in One Complex Variable”, Princeton University Press, Princeton, 2006.
- [20] D. Sullivan, “Quasiconformal Homeomorphisms and Dynamics I. Solution of the Fatou-Julia Problem on Wandering Domains”, *Annals of Mathematics, Second Series*, **122** (1985), 2, 401-418.

University of Parma, Department of Mathematical, Physical and Computer Sciences,
Parco Area delle Scienze, 53/A, 43124 Parma PR, Italy

Email address: humihqu@gmail.com