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Abstract

In our previous paper, we investigated the orbits inside attracting basins for polyno-
mials in C. Suppose f(z) is a polynomial of degree at least 2 on C, p is an attracting
fixed point of f(z), Ω1 is the immediate basin of attraction of p, {f−1(p)} ∩ Ω1 ̸= {p}.
Let A(p) be the basin of attraction of p, and let Ωi(i = 1, 2, · · · ) denote the connected
components of A(p). Then there exists a constant C̃ such that for every point z0 inside
any Ωi, there exists a point q ∈

⋃
k{f−k(p)}k∈N inside Ωi such that dΩi

(z0, q) ≤ C̃, where
dΩi

denotes the hyperbolic distance on Ωi. If {f−1(p)} ∩ Ω1 = {p}, then we proved a
suitably modified version, we choose a point p′ very close to p. In this case, there exists
a q ∈ ∪k{f−k(p′)}k∈N inside Ωi such that dΩi(z0, q) ≤ C̃.

In this paper, we obtained opposite results about the behavior of orbits inside parabolic
basins of polynomials in C. Let f(z) = z + azm+1 + (higher terms),m ≥ 1, a ̸= 0. A
complex number vj is called an attraction vector if mavj

m = −1. Suppose Pj is an
attracting petal for f(z) for the vector vj at 0, Aj = A(0,vj) is the parabolic basin of
attraction associated to vj, and Ωj is the immediate basin of Aj . We choose an arbitrary
constant C > 0 and an arbitrary point q = avj ∈ Pj , a is a small positive real number.
Then there exists a point z0 ∈ Ωj so that for any q̃ ∈ Q := ∪∞

l=0{f−l(fk(q))} ∩ Ωj (l, k
are non-negative integers), the hyperbolic distance dΩj

(z0, q̃) ≥ C, where dΩj
is the

hyperbolic distance on Ωj .
In conclusion, for attracting basins, the preimages of the fixed point p or a point p′

inside the immediate basin of the attracting fixed point p will intersect all hyperbolic
disks in the basin with some fixed radius C. However, for parabolic basins, the inverse
images of fk(q), where q is any point on an attraction vector, will avoid arbitrary large
hyperbolic disks in the basin. Note that fk(q) can be arbitrarily close to the parabolic
fixed point p.

Mathematics Subject Classification (2020): 37F10 (primary); 30F45(secondary).

1 Introduction

Let Ĉ = C ∪ {∞}, f(z) : Ĉ → Ĉ be a nonconstant holomorphic map with degree at least
2, and fn(z) : Ĉ → Ĉ be its n-fold iterate. For z ∈ Ĉ, we call the set {zn}n∈N = {z1 =
f(z0), z2 = f2(z0), · · · } the orbit of the point z = z0. If zN = z0 for some integer N , we say
that z0 is a periodic point of f(z). If N = 1, then z0 is a fixed point of f(z).

In complex dynamics [3, 7, 9, 10, 19], there are two crucial disjoint invariant sets, the
Julia set, and the Fatou set of f(z), which partition the sphere Ĉ. The Fatou set of f(z)
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is defined as the largest open set F where the family of iterates is locally normal. In other
words, for any point z ∈ F , there exists some neighborhood U of z so that the sequence
of iterates of the map, restricted to U , forms a normal family, so the orbits of iteration are
well-behaved. The complement of the Fatou set is called the Julia set.

There have been many studies on probability measures that can describe the dynamics
on the Julia set. We define {f−1(z)} = {w|f(w) = z}, that is the set of preimages of the
point z, and {f−n(z)}n∈N = {w|fn(w) = z}. For example, if z is any non-exceptional point,
the inverse orbits {f−n(z)}n∈N equidistribute toward the Green measure µ which lives on
the Julia set. This was proved already by Brolin [6] in 1965, and many improvements and
generalizations have been made [8, 11]. However, this equidistribution toward µ is in the
weak sense, and hence it is with respect to the Euclidean metric. Therefore, it is a reasonable
question to ask how dense {f−n(z)}n∈N is in F near the boundary of F if we use finer metrics,
for instance, the hyperbolic metric. The hyperbolic metric is an important tool in complex
dynamics, see examples in [1, 2, 4, 5].

There are some classical results about the behavior of a rational function on the Fatou set
F as well. The connected components of the Fatou set of f(z) are called Fatou components.
A Fatou component Ω ⊂ Ĉ of f(z) is invariant if f(Ω) = Ω. At the beginning of the
20th century, Fatou [12, 13, 14] classified all possible invariant Fatou components of rational
functions on the Riemann sphere. He proved that only three cases can occur: attracting,
parabolic, and rotation. And in the ’80s, Sullivan [20] completed the classification of Fatou
components. He proved that every Fatou component of a rational map is eventually periodic,
i.e., there are n,m ∈ N such that fn+m(Ω) = fm(Ω).

The orbits in the rotation domains are easy to describe since the functions are conjugate
to irrational rotations.

The orbits in attracting basins in C are much more complicated. Near the attracting
fixed point, there has a uniform estimate about how fast the orbit converges to the attracting
fixed point, for more details, readers can read Theorem 8.2, Chapter 8 in [19]. If the map
f(z) is hyperbolic on the Julia set, then there is a uniform estimate about how fast the orbit
escapes near the boundary, we refer to Lemma 2.1, Chapter V in [7]. In the paper [16],
we investigated the behavior of orbits inside attracting basins, no matter whether f(z) is
hyperbolic or not, and obtained the following theorem:

Theorem 1.1. Suppose f(z) is a polynomial of degree at least 2 on C, p is an attracting fixed
point of f(z), Ω1 is the immediate basin of attraction of p, {f−1(p)} ∩ Ω1 ̸= {p}, and A(p)
is the basin of attraction of p, Ωi(i = 1, 2, · · · ) are the connected components of A(p). Then
there is a constant C̃, which only depends on f(z) and p, such that for every point z0 inside
any Ωi, there exists a point q ∈ ∪k{f−k(p)}k∈N inside Ωi such that dΩi(z0, q) ≤ C̃, where dΩi

is the hyperbolic distance on Ωi.

This Theorem 1.1 essentially shows that any arbitrary orbit can be tracked by an orbit of
one preimage of the fixed point p. Note that {f−1(p)}∩Ω1 ̸= {p} means the set of preimages
of p inside Ω1 should not be only the point p itself. Otherwise, q = p, then dΩ1(z0, q) → ∞
as z0 approaches the boundary of Ω1. In the case where {f−1(p)} ∩ Ω1 = {p}, the set of
preimages {f−k(p)}k∈N that intersect Ω1 consists of only a single point. In this situation,
it does not make sense to consider the inverse orbit of p. Thus, instead of considering the
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inverse orbit of p, we choose a point p̂ which is inside the immediate basin of the attracting
fixed point p. Then we can consider the orbit {f−k(p̂)}k∈N. In this way, we proved a suitably
modified version of Theorem 1.1:

Theorem 1.2. Suppose g(z) = eiθzm,m ≥ 2. We pick a point p̂ ∈ △ \ {0}. Then there
exists a constant C0 > 0 such that for every point z0 ∈ △, there exists q ∈ ∪k{g−k(p̂)}, k ≥ 0
satisfying d△(z0, q) ≤ C0, where d△ denotes the hyperbolic distance on the unit disk △.

We also studied the orbits in attracting basins in C2 in the paper [17]. There are various
interesting results in C2: Theorem 1.1 holds for some holomorphic mappings, but it fails for
some other holomorphic mappings.

It is a natural question to ask if Theorem 1.1 in paper [16] can be generalized to parabolic
basins. In the present paper, we show in the following Theorems A, B and C that the answer
is negative.

Theorem A. Let f(z) = z + z2. We choose an arbitrary constant C > 0 and the point q =
−1

2 ∈ A. Then there exists a point z0 ∈ A such that for any q̃ ∈ Q := ∪∞
l,k=0{f−l(fk(−1

2))}
(l, k are non negative integers), the hyperbolic distance satisfies dA(z0, q̃) ≥ C, where dA is
the hyperbolic distance on A.

Here, A = A(0,−1) in Theorem A denotes the parabolic basin of f(z) = z + z2 with
the attraction vector v = −1, see Definitions 2.1 and 2.4 below in section 2. Note that for
f(z) = z + z2, there is only one attracting vector, that is vj = v = −1.

In this Theorem A, we cannot directly choose to iterate the inverse of the parabolic fixed
point 0, since all preimages {f−k(0)}k∈N are inside the Julia set of f(z). Then Theorem A is
trivial. However, we still aim to apply the same approach as in Theorem 1.2 for attracting
basins, where we choose to iterate the inverse of a point inside the immediate basin of the
attracting fixed point p. Hence, we choose q ∈ A and iterate it k times. Then fk(q) is getting
arbitrarily close to the parabolic fixed point as k → ∞. Then we consider the preimages of
fk(q). To simplify, here we choose q = −1

2 .

By Theorem A and Proposition 2.7, we obtain the following Corollary which states that
the set of all such points z0 clusters at every point in the boundary of the parabolic basin of
f(z) = z + z2:

Corollary 3.4. Let X ⊂ A be the set of all z0 ∈ A such that dA(z0, q̃) ≥ C for any q̃ ∈ A.
If z ∈ X, then any point w ∈ f−1(z) is in X. Therefore, X is dense in the boundary of A.

We also generalize Theorem A to the case of several petals inside the parabolic basin in
Theorem B:

Theorem B. Let f(z) = z + azm+1,m ≥ 1, a ̸= 0, and Ωj be the immediate basin of
Aj . We choose an arbitrary constant C > 0 and an arbitrary point q = avj ∈ Pj , a is
a small positive real number. Then there exists a point z0 ∈ Ωj such that for any q̃ ∈
Q := ∪∞

l=0{f−l(fk(q))} ∩Ωj (l, k are non-negative integers), the hyperbolic distance satisfies
dΩj (z0, q̃) ≥ C, where dΩj denotes the hyperbolic distance on Ωj .
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Here vj is an attraction vector in the tangent space of C at 0, Pj is an attracting petal
for f(z) corresponding to the vector vj at 0, and Aj = A(0,vj) is the parabolic basin of
attraction associated with vj, see Definitions 2.1, 2.4 and 2.5.

In the end, we consider the behavior of orbits inside parabolic basins of general polyno-
mials.

Theorem C. Let f(z) = z+azm+1+(higher terms),m ≥ 1, a ̸= 0, and Ωj be the immediate
basin of Aj . We choose an arbitrary constant C > 0 and an arbitrary point q = avj ∈ Pj ,
a is a small positive real number. Then there exists a point z0 ∈ Ωj such that for any
q̃ ∈ Q := ∪∞

l=0{f−l(fk(q))} ∩ Ωj (l, k are non-negative integers), the hyperbolic distance
satisfies dΩj (z0, q̃) ≥ C, where dΩj denotes the hyperbolic distance on Ωj .

This paper is organized as follows. In section 2, we recall some definitions and results [19]
about holomorphic dynamics of polynomials in a neighborhood of the parabolic fixed point
and the hyperbolic metric. In section 3, we prove our main results, Theorem A, Theorem B,
and Theorem C.
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2 Preliminary

2.1 Holomorphic dynamics of polynomials in a neighborhood of a parabolic
fixed point.

Let us first recall some definitions and results [19] about holomorphic dynamics of a polyno-
mial f(z) = z + a2z

2 + a3z
3 + · · · in a neighborhood of the parabolic fixed point 0.

Definition 2.1. Let f(z) = z + azm+1 + (higher terms),m ≥ 1, a ̸= 0. A complex number v
will be called an attraction vector at the origin if mavm = −1, and a repulsion vector at the
origin if mavm = 1. Note here that v should be thought of as a tangent vector at the origin.
We say that some orbit z0 7→ z1 7→ z2 7→ · · · for the map f(z) converges to zero nontrivially if
zn → 0 as n → ∞, but no zn is actually equal to zero. There are m equally spaced attraction
vectors at the origin.

Lemma 2.2. If an orbit of f(z) : z0 7→ z1 7→ · · · converges to zero nontrivially, then zk is
asymptotic to vj/

m
√
k as k → +∞ for one of the m attraction vectors vj.

Proof. See the proof in chapter 10 of Milnor’s book [19].

Definition 2.3. If an orbit z0 7→ z1 7→ · · · under f(z) converges to zero with zk ∼ vj/
m
√
k,

we will say that this orbit {zk}k∈N tends to zero along the direction vj.
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Definition 2.4. Given an attraction vector vj in the tangent space of C at 0, the associated
parabolic basin of attraction Aj = A(0,vj) is defined to be the set consisting of all z0 ∈ C
for which the orbit z0 7→ z1 7→ · · · converges to 0 along the direction vj.

Definition 2.5. Suppose f(z) = z + azm+1 + ( higher terms),m ≥ 1, a ̸= 0 is defined and
univalent on some neighborhood N at 0 on C. An open set Pj ⊂ N is called an attracting
petal for f(z) for the vj at 0 if

(1) f(z) maps Pj into itself, and

(2) an orbit z0 7→ z1 7→ · · · under f(z) is eventually absorbed by Pj if and only if it
converges to 0 along the direction vj.

2.2 The hyperbolic metric

Definition 2.6. The metric

FD =
2|dz|

1− |z|2
for z ∈ D

is called hyperbolic (or Poincaré) metric on the unit disk D.
Let γ : [0, 1] → Ω̂ be a piecewise smooth curve. The hyperbolic length of γ is defined to

be

LΩ̂(γ) =

∫
γ
FΩ̂(z, ξ)|dz| =

∫ 1

0
FΩ̂

(
γ(t), γ′(t)

)
|γ′(t)|dt.

For any two points z1 and z2 in Ω̂, the hyperbolic distance between z1 and z2 is defined
to be

dΩ̂(z1, z2) = inf{LΩ̂(γ) : γ is a piecewise smooth curve connecting z1 and z2}.

Note that dΩ̂(z1, z2) is defined when z1 and z2 are in the same connected component of Ω̂.

Let g : △ → S be a covering map, we define a hyperbolic metric FS on any hyperbolic
Riemann surface S by declaring that g induces an isometry at every point. In other words,
let

FD(z) =
2|dw|

1− |w|2
for z = g(w) ∈ S.

If φ is a local determination for g−1, then

FD(z) =
2|φ′(z)|
1− |φ|2

|dz|, z ∈ S.

For example, when S is the upper half-plane, then we can use the conformal map φ(z) =
z−i
z+i of the upper half-plane H onto the unit disk △. Hence,

FH =
2|φ′(z)|
1− |φ|2

|dz| =
2
∣∣( z−i
z+i

)′∣∣
1−

∣∣ z−i
z+i

∣∣2 |dz| = |dz|
y

, z = x+ iy ∈ H

is the hyperbolic metric on the upper half-plane H. We refer to page 12, chapter I.4 in [7] for
more calculation details about FH.
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Proposition 2.7 (The distance decreasing property of the hyperbolic metric). Suppose Ω1

and Ω2 are domains in C, z, ω ∈ Ω1, ξ ∈ C, and f(z) : Ω1 → Ω2 is holomorphic. Then

FΩ2(f(z), f
′(z)ξ) ≤ FΩ1(z, ξ), dΩ2(f(z), f(ω)) ≤ dΩ1(z, ω).

Proof. We refer to Theorem 4.1 on page 12, Chapter I.4 in [7].

Corollary 2.8. Suppose Ω1 ⊆ Ω2 ⊆ C. Then for any z, ω ∈ Ω1 and ξ ∈ C, we have

FΩ2(z, ξ) ≤ FΩ1(z, ξ), dΩ2(z, ω) ≤ dΩ1(z, ω).

Proof. We refer to Theorem 4.2 on page 13, Chapter I.4 in [7].

3 Proof of the main theorems

In this section, we will prove our main theorems: Theorem A, Theorem B, and Theorem C.

3.1 Dynamics inside the parabolic basin of f(z) = z + z2

Let us recall the statement of our main Theorem A:

Theorem A. Let f(z) = z + z2. We choose an arbitrary constant C > 0 and the point q =
−1

2 ∈ A. Then there exists a point z0 ∈ A such that for any q̃ ∈ Q := ∪∞
l,k=0{f−l(fk(−1

2))}
(l, k are non negative integers), the hyperbolic distance satisfies dA(z0, q̃) ≥ C, where dA is
the hyperbolic distance on A.

Proof. Let R+ = [0,∞) and R− = (−∞, 0] be the positive and negative real axis, respectively.
Then the parabolic basin A ⫋ (C \ R+). Let H be the upper half-plane, φ(z) : C \ R+ → H
with φ(z) =

√
z (see Figure 3.8). By Definition 2.6., we know the hyperbolic metric on the

upper half plane is

FH =
|dw|
v

for w = u+ iv ∈ H. Hence the hyperbolic metric on C \ R+ is

FC\R+ =
|φ′|
Imφ

|dz| = 1

2|
√
z| Im

√
z
|dz| = 1

2r sin θ
2

|dz|

for z = reiθ ∈ C \ R+, i.e., θ ∈ (0, 2π).

We know that fk(q) will always be on the negative real axis for any integer k ≥ 0. We
choose 0 < θ0 < π

2 and two rays l1 := {z = reiθ0 , r > 0}, l2 := {z = re−iθ0 , r > 0}. Then we
denote by T := {z = reiθ, r > 0, θ0 ≤ θ ≤ 2π − θ0}, a sector inside C \ R+.

Before continuing with the proof of Theorem A, we have the following well-known Lemma
3.2. For the reader’s convenience and to introduce notation, we include the proof and define
a Left/Right Pac-Man for an easy explanation of the proof.

Definition 3.1. We call a domain DR := {z = reiθ, 0 < r ≤ R, θ0 < θ < 2π − θ0} a Left
Pac-Man and D̃R := {z = reiθ, 0 < r ≤ R,−π + θ0 < θ < π − θ0} a Right Pac-Man.
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Figure 1: The map φ

Lemma 3.2. For any θ0 ∈ (0, π/2), there exists R0 such that the Left Pac-Man DR0 ⫋ T ∩A.

Proof. We want to know how orbits go precisely near the parabolic fixed point at 0. Let
ω = φ(z) = −1/z send 0 to ∞, then the conjugated map has the expansion

F (ω) = φ ◦ f ◦ φ−1(ω) = ω + 1 + o(1) as |ω| → ∞.

We have l1(l2) is mapped to two new rays lω1 := {z = rei(π−θ0), r > 0}(lω2 := {z = rei(−π+θ0)});
T is mapped to T ′ = {reiθ, r > 0,−π + θ0 ≤ θ ≤ π − θ0}; the Left Pac-Man DR is mapped
to T ′ \ D̃ 1

R
for any radius R (see Figure 2).

Figure 2: The image of a Left Pac-Man

We choose a Right Pac-Man D̃ 1
r0

such that for any ω ∈ T ′ \ D̃ 1
r0

, we have |o(1)| < θ0
3 .

Note here, actually, r0 = r0(θ0) should be sufficiently small. Then we draw the upper tangent
line L0 of D̃ 1

r0

such that the angle between L0 and the real axis is θ0
2 . Then L0 will intersect

lω1 and the real axis, we denote these two intersect points A0 and B0, respectively. Let
1
r = max{|OA0|, |OB0|} > 1

r0
, here O is the origin zero, then we choose the Right Pac-Man

D̃ 1
r
(see Figure 3).
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Figure 3: The choice of the Right Pac-Man

If we take any ω0 ∈ T ′ \ D̃ 1
r
, Fn(ω0) = ω0 + n+ o(1) for all positive integers n such that

|Fn(ω0)| ≥ |ω0 + n− n θ03 |, then we know that Fn(ω0) will never go inside D̃ 1
r0

.

Therefore, let R0 = r, R̃0 = r0, then we have for any z0 ∈ DR0 , f
n(z0) → 0, hence

DR0 ⫋ T ∩ A, and we also know that fn(DR0) ⊆ DR̃0
.

Lemma 3.3. We can choose a Left Pac-Man DR′
0
⊆ DR0 such that fn(DR′

0
) ⊆ DR0 for all

n = 1, 2, . . .

Proof. On the procedure for proving Lemma 3.2, we can draw another upper tangent line
L of D̃R0 such that the angle between L and the real axis is θ0

2 . Then L will also intersect
lω1 and the real axis, we denote these two intersect points A and B respectively. Let 1

r′ =

max{|OA|, |OB|}, then we choose the Right Pac-Man D̃ 1
r′
. If we take any ω ∈ T ′ \ D̃ 1

r′
, we

know that Fn(ω) will never go inside of D̃ 1
r
. Hence, let R′

0 =
1
r′ , we have fn(DR′

0
) ⊆ DR0 .

We continue with the proof of Theorem A. The idea of the proof is to find a point
z0 ∈ Dε \ R− such that for any q̃ ∈ Q, we have dA(z0, q̃) ≥ C.

Now, we will consider the following cases of q̃ inside three subsets of A (see Figure 4):

Case 1: q̃ ∈
(
(T ∩A)\DR′

0

)
\R−. Let d1A(z0, z̃) be the hyperbolic distance between z0 and

any point z̃ ∈ ∂DR′
0
\R− (see the blue curve in Figure 4). Then we prove that d1A(z0, z̃) ≥ C.

Case 2: q̃ ∈ R−. Let d2A(z0, z
′) be the hyperbolic distance between z0 and any point

z′ ∈ R− ∩ A (see the pink curve in Figure 4). Then we prove that d2A(z0, z
′) ≥ C.
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Case 3: q̃ ∈ A ∩
{
S′ := {z = reiθ, r > 0, 0 < θ ≤ θ0}

}
. Let d3A(z0, ẑ) be the hyperbolic

distance between z0 and any point ẑ ∈ l1 (see the green curve in Figure 4). Then we prove
that d3A(z0, ẑ) ≥ C.

Figure 4: The three hyperbolic distances in A

Remark:

1) In the investigation of these three cases, it will become clear how small θ0 needs to be.

2) ∂DR′
0
means the boundary of the Left Pac-Man DR′

0
. It is the circular curve of DR′

0
,

not including the mouth of DR′
0
which belongs to l1 and l2;

3) q̃ can never be inside DR′
0
\R− : If q̃ ∈ DR′

0
\R−, more precisely, suppose f−l(fk(q)) ∈

DR′
0
\R− for some integers l, k ≥ 0, we iterate l times of f−l(fk(q)), we have fk(q) ∈ DR0 \R−

since we know fn(DR′
0
) ⊆ DR0 for any positive integer n by Lemma 3.2 and fk(q) /∈ R− since

R′
0 < R0 = r < r0, and f(z) is biholomorphic near 0. Hence Im(fk(q)) ̸= 0. However, this

contradicts Im(fk(q)) = Im(fk(−1
2)) = 0. Thus q̃ /∈ DR′

0
\ R−;

4) if q̃ ∈ A\DR′
0
, q̃ is far away from ∂DR′

0
, then we know that dA(z0, q̃) ≥ d1A(z0, z̃). This

is because d1A(z0, z̃) is the minimum distance between z0 and any q̃ ∈
(
(T ∩ A) \DR′

0

)
\ R−.

Hence, we need to prove that we can choose z0 so that all these three hyperbolic distances
d1A(z0, z̃), d

2
A(z0, z

′), d3A(z0, ẑ) ≥ C for the given constant C. Next, we will estimate these
three hyperbolic distances.
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First, we estimate d1A(z0, z̃). Suppose z0 ∈ Dε,

d1A(z0, z̃) ≥dC\R+(z0, z̃)

= inf

∫
γ(t)

FC\R+(γ(t))|γ′(t)|dt

= inf

∫
γ(t)

1

2|γ(t)| sin arg(γ(t))
2

|γ′(t)|dt

≥ inf

∫
γ(t)

1

2|γ(t)|
|γ′(t)|dt

=
1

2
inf

∫ R′
0

ε

|dr|
r

≥1

2
(lnR′

0 − ln ε),

where γ(t) is a smooth path joining z0 to z̃. The last inequality holds since there might have
some derivatives of the path γ(t) are negative in some pieces. In addition, we can see that
d1A(z0, z̃) → ∞ as ε → 0.

Second, we estimate d2A(z0, z
′). Let ε = ε0, i.e., fix ε, and let D1 ⊂ T be a scaling of Dε0

by S(z) = z
|z0| , sending z0, z

′ to z̃0 := z0
|z0| ,

z′

|z0| , respectively. By homogeneity, we know the

hyperbolic distance dC\R+(z0, z
′) = dC\R+(z̃0, z

′/|z0|). Since we hope to prove d2A(z0, z
′) ≥ C,

we need z0 to be far from R−, and so does z̃0. Let ST := {z = eiθ, θ0 < θ < π
2 − θ0}, assume

z̃0 ∈ ST and Re z̃0 > 1
2 , then any curve from z̃0 to z′

|z0| must pass through a point z̃′ on the

positive imaginary axis, i.e., Re z̃′ = 0. For simplicity, we assume this curve and z̃′ lie in the
upper half plane. Hence d2A(z0, z

′) ≥ dC\R+(z0, z
′) = dC\R+(z̃0, z

′/|z0|) ≥ dC\R+(z̃0, z̃
′). We

have
d2A(z0, z

′) ≥ dC\R+(z̃0, z̃
′)

= inf

∫ z̃′

z̃0

FC\R+(z)

= inf

∫ z̃′

z̃0

|dz|
|z|2 sin(θ/2)

≥
√
2 inf

∫ z̃′

z̃0

|dz|
|z| sin θ

≥
√
2 inf

∫ z̃′

z̃0

|dz|
Im z

>
√
2| ln(Im z̃′)− ln(Im z̃0)|.

Then there are three situations for the hyperbolic distance between z̃0 and z̃′ :

1) If Im z̃′ ≥ eC | Im z̃0| or Im z̃′ ≤ | Im z̃0|
eC

for the constant C > 0 (see the blue curves on
Figure 5), then | ln(Im z̃′)− ln(Im z̃0)| ≥ C, hence d2A(z0, z

′) ≥ C is true.

2) lf z̃′ ∈ L := {z = x+ iy, | Im z̃0|
eC

< y < eC | Im z̃0|} (see the green curve on Figure 5). We

prove that dA(z̃0, z̃
′) ≥

√
2 inf

∫ z̃′
z̃0

|dz|
Im z ≥ C for z ∈ L.

10



Figure 5: Three situations for the hyperbolic distance between z̃0 and z̃′

Let z = x+ iy ∈ L, then Im z ≤ eC | Im z̃0|. Hence we have∫ z̃′

z̃0

|dz|
Im z

≥
∫ z̃′

z̃0

|dx|
Im z

≥
∫ z̃′

z̃0

|dx|
eC | Im z̃0|

=
Re z̃0
eC

1

| Im z̃0|
>

1

2eC | Im z̃0|
.

Note that the last inequality holds because we choose Re z̃0 > 1/2.

As long as θ0 <
1

2CeC
, we can choose z̃0 so that Im z̃0 <

1
2CeC

, hence
∫ z̃′
z̃0

|dz|
Im z > C.

3) If z̃′ ∈ L, but the curve γ between z̃0 and z̃′ gets outside of L starting at some point
z̃′′ ∈ γ∩L for a while (see the red curve in Figure 5), then enter back to L again, then we still
have d2A(z0, z

′) ≥ C is true because dC\R+(z0, z
′) ≥ dC\R+(z̃0, z̃

′′) ≥ C. The last inequality
holds since 1) is valid.

After these calculations, we fix z0 so that d1A(z0, z̃) and d2A(z0, z
′) are both bigger or equal

to C. To obtain d3A(z0, ẑ) ≥ C, we will need an even smaller θ′0, see the following calculation.

We know d3A(z0, ẑ) ≥ dC\R+(z0, ẑ) = dC\R+(z̃0, ẑ/|z0|). Hence to have d3A(z0, ẑ) ≥ C, we
need to estimate dC\R+(z̃0, ẑ/|z0|).

When we estimate d2A(z0, z
′), we send z0 to z̃0 and choose Re z̃0 > 1/2 and z̃ close to

l1. Hence dC\R+(z̃0, ẑ/|z0|) might be very small. To handle this situation, we first choose a

disk ∆K
C\R+(z̃0, C) centered at z̃0 with radius C in the hyperbolic distance. Since this disk

∆K
C\R+(z̃0, C) is a compact subset of C \R+, there exists a sector S′′ := {z = reiθ, r > 0, 0 <

θ < θ′0} such that S′′ ∩ ∆K
C\R+(z̃0, C) = ∅, here we can assume that θ′0 < θ0. Therefore,

dC\R+(z̃0, ẑ/|z0|) ≥ C for any ẑ/|z0| ∈ A ∩ S′′. Furthermore, for this new θ′0, it does not
change the conclusion of the estimation of d1A(z0, z̃) and d2A(z0, z

′).

Therefore, there is a point z0 such that all these three distances d1A(z0, z̃), d
2
A(z0, z

′), d3A(z0, ẑ) ≥
C for the given constant C.

11



Corollary 3.4. Let X ⊂ A be the set of all z0 ∈ A such that dA(z0, q̃) ≥ C for any q̃ ∈ A.
If z ∈ X, then any point w ∈ f−1(z) is in X. Therefore, X is dense in the boundary of A.

Proof. By Theorem A, we know that X ̸= ∅. Suppose w /∈ X, then there exists q̃ ∈ Q
so that dA(w, q̃) < C. Since f(z) is distance decreasing, see Proposition 2.7, we have
dA(f(w), f(q̃)) = dA(z, q̃) < C. This contradicts z ∈ X.

Furthermore, we know that {f−n(z)}n∈N clusters at every point in Julia set. In particular,
this is true if z ∈ X. More precisely, {f−n(z)}n∈N equidistributes toward the Green measure.
Therefore, the closure of X contains the boundary of A.

3.2 Dynamics inside the parabolic basin of f(z) = z + azm+1,m ≥ 1, a ̸= 0

In this subsection, we generalize Theorem A to the case of several petals inside the parabolic
basin. Let us recall the statement of our main Theorem B:

Theorem B. Let f(z) = z + azm+1,m ≥ 1, a ̸= 0, and Ωj be the immediate basin of
Aj . We choose an arbitrary constant C > 0 and an arbitrary point q = avj ∈ Pj , a is
a small positive real number. Then there exists a point z0 ∈ Ωj such that for any q̃ ∈
Q := ∪∞

l=0{f−l(fk(q))} ∩Ωj (l, k are non-negative integers), the hyperbolic distance satisfies
dΩj (z0, q̃) ≥ C, where dΩj denotes the hyperbolic distance on Ωj .

Proof. We conjugate f(z) using rotation:

z f(z)

w g(w)

f(z)=z+azm+1

eiθz eiθz

g

w 7→ eiθ(e−iθw + a(e−iθw)m+1) = w + ae−imθwm+1. Suppose a = reiψ, then we can choose
θ = ψ

m such that ae−imθ is a real positive number. Then we can assume S := {z = reiθ, r >
0, 0 < θ < 2π

m } be the sector with angle 2π/m, including the attracting petal Pj , then the
angle between vj and R+ is π

m . We denote the boundary rays of S by l1R+ := {z = r > 0}
and l2R+ := {z = rei

2π
m , r > 0}. We choose θ0 > 0 and two rays l1 := {z = reiθ0 , r > 0}, l2 :=

{z = rei(
2π
m

−θ0), r > 0}. Then we denote by T := {z = reiθ, r > 0, θ0 < θ < 2π
m − θ0} a sector

inside S.

Let φ(z) : S → H with φ(z) = zm/2. Then by Definition 2.6., the hyperbolic metric FS is

FS =
|φ′|
Imφ

|dz| = m

2r sin( θm2 )
|dz|.

As in the proof of Theorem A, we can choose two analogous ”Pac-Man” Dm
R′

0
:= {z = reiθ, 0 <

r < R′
0, θ0 < θ < 2π

m − θ0}, Dm
R0

:= {z = reiθ, 0 < r < R0, θ0 < θ < 2π
m − θ0} central at 0

with radius R′
0, R0 > 0(R′

0 < R0), respectively, such that Dm
R0

⫋ T ∩Ωj and fn(Dm
R′

0
) ⊂ Dm

R0
.
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Then similarly, we need to estimate the three hyperbolic distances from z0 to any point
z̃ ∈ ∂Dm

R0
(see the blue curve in Figure 6), z′ ∈ vj (see the pink curve in Figure 6), and

ẑ ∈ Ωj ∩
{
S′ := {z = reiθ, r > 0, 0 < θ < θ0}

}
(see the green curve in Figure 6), and show

that all of them are not less than C.

Figure 6: The three hyperbolic distances in Ωj

First, suppose z0 ∈ Dm
ε := {z = reiθ, 0 < r < ε, θ0 < θ < 2π

m − θ0}, ε << R′
0. Let us

estimate the hyperbolic distance from z0 to any point z̃ on the boundary of Dm
R0

, and we
denote this distance by d1Ωj

(z0, z̃).

d1Ωj
(z0, z̃) ≥ dS(z0, z̃) = inf

∫
γ(t)

FS(γ(t))|γ′(t)|dt

= inf

∫
γ(t)

m

2|γ(t)| sin m arg(γ(t))
2

|γ′(t)|dt ≥ inf

∫
γ(t)

m

2|γ(t)|
|γ′(t)|dt

=
m

2
inf

∫ R0

ε

|dr|
r

≥ m

2
(lnR0 − ln ε),

where γ(t) is a smooth path joining z0 to z̃. In addition, we can see that d1Ωj
(z0, z̃) → ∞ as

ε → 0.

Second, we calculate the hyperbolic distance from z0 to any point z′ ∈ vj denoted by
d2Ωj

(z0, z
′). Let ε = ε0, i.e., fix ε, and Dm

1 ⊂ T be a scaling of Dm
ε0 by S(z) = z

|z0| , sending z0, z
′

to z̃0 :=
z0
|z0| ,

z′

|z0| , respectively. By homogeneity, we know the hyperbolic distance dS(z0, z
′) =

dS(z̃0, z
′/|z0|). Since we hope to prove d2Ωj

(z0, z
′) > C, we need z0 to be far from vj, and so

does z̃0. Let ST := {z = eiθ, θ0 < θ < π
2m − θ0}, assume z̃0 ∈ ST and Re z̃0 is sufficiently big,

then any curve from z̃0 to z′

|z0| must pass through a point z̃′ on the ray Y + := {rei
π
2m , r > 0}.

13



Hence d2Ωj
(z0, z

′) ≥ dS(z0, z
′) = dS(z̃0, z

′/|z0|) ≥ dS(z̃0, z̃
′). Then we have

d2Ωj
(z0, z

′) ≥ dS(z̃0, z̃
′) = inf

∫ z̃′

z̃0

FS(z)

= inf

∫ z̃′

z̃0

m|dz|
2r sin(mθ/2)

= inf

∫ z̃′

z̃0

mθ
2

sin(mθ2 )
· m|dz|
2r(mθ/2)

= c1 inf

∫ z̃′

z̃0

|dz|
rθ

= c1 inf

∫ z̃′

z̃0

sin θ

θ
· |dz|
r sin θ

= c1c2 inf

∫ z̃′

z̃0

|dz|
r sin θ

= c1c2 inf

∫ z̃′

z̃0

|dz|
Im z

≥ c1c2| ln(Im z̃′)− ln(Im z̃0)|.

where c1 := inf
mθ
2

sin mθ
2

, c2 := inf sin θ
θ .

Then there are three situations for the hyperbolic distance between z̃0 and z̃′ :

1) If Im z̃′ ≥ eC | Im z̃0| or Im z̃′ ≤ | Im z̃0|
eC

for some constant C > 1, then | ln(Im z̃′) −
ln(Im z̃0)| ≥ C, hence d2Ωj

(z0, z
′) ≥ C is true.

2) lf z̃′ ∈ L := {z = x+ iy, | Im z̃0|
eC

< y < eC | Im z̃0|}. We need to prove that dΩj (z̃0, z̃
′) ≥

c1c2 inf
∫ z̃′
z̃0

|dz|
Im z ≥ C for z ∈ L.

Let z = x+ iy ∈ L, then Im z ≤ eC | Im z̃0|. Hence we have∫ z̃′

z̃0

|dz|
Im z

≥
∫ z̃′

z̃0

|dx|
Im z

≥
∫ z̃′

z̃0

|dx|
eC | Im z̃0|

=
|Re z̃′ − Re z̃0|

eC
1

| Im z̃0|
>

1

2eC | Im z̃0|
,

Note that the last inequality holds since we choose Re z̃0 sufficiently big so that z̃0 is close to
l1, and |Re z̃′ −Re z̃0| > 1/2 because z̃′ will have to be close to 0 since it lies on Y + ∩L and
its imaginary part is close to 0, which makes d2Ωj

(z0, z
′) as big as we want.

In other words, as long as θ0 <
1

2CeC
, we have Im z̃0 <

1
2CeC

. In addition, |Re z̃′−Re z̃0| >
1/2, we obtain

∫ z̃′
z̃0

|dz|
Im z > C.

3) If z̃′ ∈ L, but the curve γ between z̃0 and z̃′ get outside of L starting at some point
z̃′′ ∈ γ ∩ L for a while, then enter back to L again, then we still have d2Ωj

(z0, z
′) ≥ C is true

because dS(z0, z
′) ≥ dS(z̃0, z̃

′′) ≥ C. The last inequality holds since 1) is valid. We have a
conclusion as same as d2A(z0, z

′) ≥ C in the proof of Theorem A.

At last, we estimate the hyperbolic distance from z0 to any point ẑ ∈ Ωj ∩
{
S′ :=

14



{z = reiθ, r > 0, 0 < θ < θ0}
}

denoted by d3Ωj
(z0, ẑ). We know d3Ωj

(z0, ẑ) ≥ dS(z0, ẑ) =

dS(z̃0, ẑ/|z0|).
We use the method for computing d3Ωj

(z0, ẑ) as same as d3A(z0, ẑ) ≥ C in the proof of

Theorem A. We first choose a disk ∆K
S (z̃0, C) centered at z̃0 with radius C in the hyperbolic

distance. Since this disk ∆K
S (z̃0, C) is a compact subset of S, there exists a sector S′′ := {z =

reiθ, r > 0, π− π
m < θ < π− π

m + θ′0} such that S′′ ∩∆K
S (z̃0, C) = ∅, here we can assume that

θ′0 < θ0. Therefore, dS(z̃0, ẑ/|z0|) ≥ C for any ẑ/|z0| ∈ Ωj ∩S′′. Furthermore, for this new θ′0,
it does not change the conclusion of the estimation of d1Ωj

(z0, z̃) and d2Ωj
(z0, z

′).

3.3 Dynamics inside the parabolic basin of f(z) = z+azm+1+(higher order terms),m ≥
1, a ̸= 0

Finally, in this subsection, we consider the behavior of orbits inside parabolic basins of general
polynomials. Let us recall the statement of our main Theorem C:

Theorem C. Let f(z) = z+azm+1+(higher terms),m ≥ 1, a ̸= 0, and Ωj be the immediate
basin of Aj . We choose an arbitrary constant C > 0 and an arbitrary point q = avj ∈ Pj ,
a is a small positive real number. Then there exists a point z0 ∈ Ωj such that for any
q̃ ∈ Q := ∪∞

l=0{f−l(fk(q))} ∩ Ωj (l, k are non-negative integers), the hyperbolic distance
satisfies dΩj (z0, q̃) ≥ C, where dΩj denotes the hyperbolic distance on Ωj .

Proof. The essential idea to prove Theorem C is the same as the proof of Theorem A
and Theorem B. However, we cannot draw the parabolic basin of f(z) = z + azm+1 +
(higher order terms) directly as Figure 4 and Figure 6 since there are higher order terms of
f(z), the parabolic basin can be more complicated.

To simplify the discussion, we first consider the case m = 1 :

f(z) = z + z2 + (higher order terms).

When there are no higher order terms, the crucial estimate of the hyperbolic metric comes
from the fact that the parabolic basin is contained in C \ R+. Hence we could compare it
with the hyperbolic metric on C \ R+.

In the case of higher order terms, the parabolic basin can be more complicated. However,
we can, instead of C \ R+, use the double sheeted domain

VR := {z = reiθ, 0 < r < R,−θ0 < θ < 2π + θ0}.

Next, we investigate the properties of VR to explain why we choose the double sheeted
domain VR as above.

Proposition 3.5. Let D̄R := {z = reiθ, 0 < r < R,−θ0 < θ < θ0}, A be the whole basin of
f(z), S1 be the connected component of A ∩ D̄R which contains {z = reiθ0 , 0 < r < R}, and
S2 be the connected component of A∩ D̄R which contains {z = re−iθ0 , 0 < r < R}. Then any
two pieces S1, S2 (see the left of Figure 7) are disjoint in D̄R.
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Figure 7: Two pieces S1 and S2 in D̄R

Proof. We know that, inside VR and near the origin, A contains the Left Pac-Man DR :=
{z = reiθ, 0 < r < R, θ0 < θ < 2π − θ0}.

If S1 intersects S2, then there is a point z ∈ S1 ∩ S2. We can draw three curves, c1 from
z to l1 := {z = reiθ0}, c2 from z to l2 := {z = re−iθ0}, and c3 ∈ DR which connect c1 and c2.
Hence A contains a closed curve γc := c1 + c2 + c3 with the winding number 1 around the
origin (see the right of Figure 7).

We know that fn(z) → 0 when z ∈ γc, since γc ∈ A. In addition, by the maximum
principle, we have fn(z) → 0 when z is inside the domain bounded by γc. Hence A contains
a neighborhood of 0, then 0 is an attracting fixed point. However, this contradicts that 0 is
a parabolic fixed point of f(z).

By Proposition 3.5, we can use the hyperbolic metric on VR instead of C \ R+.

First, we know that VR can be mapped to a sector S := {z = reiθ, r > 0, θ1 < θ <
θ2, θ1 << θ2 < π/2} by φ1(z) = zc/2 when c is sufficiently small. Second, we can change c
such that θ2 = π − θ1 by some map φ2(z). At last, by some rotation map φ3, we can map S
to the upper half plane H (see the Figure 8).

Therefore, the map φ(z) := φ3 ◦ φ2 ◦ φ1 from VR to the upper half plane H becomes
φ(z) = eiψz

c
2 , instead of φ(z) = z1/2, where c is very close to 1. Then, with the above

setting, the rest of the estimation goes through as in Theorem B.

If m > 1, it is difficult to draw the specific parabolic basins of f(z) or the attracting
petals. Let

VR =: {z = reiθ, r > 0,−θ0 < θ <
2π

m
+ θ0}.

We use Figure 9 to illustrate how we can choose VR (see the domain with pink curves as its
argument). We want to map VR to the upper half-plane. First, Let z → eiθ0z, then VR is
mapped to

V ′
R := {z = reiθ, r > 0, 0 < θ <

2π

m
+ 2θ0}.
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Figure 8: The maps φ1, φ2 and φ3

We define φ(z) = (eiθ0z)
π

2π
m +2θ0 . Then the hyperbolic metric on VR is

FVR =
|φ′(z)|
Imφ

|dz|.

And similarly, we have the same properties of S1, S2 as in Proposition 3.5 (see the red
curve and blue curve on Figure 9). Then the rest of the estimation goes through as in

Figure 9: Two pieces S1 and S2

Theorem B. Thus, we are done.
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