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ABSTRACT. We provide a new proof of the Riemannian Penrose inequality for time-symmetric
asymptotically flat initial data with a single black—hole horizon. The proof proceeds through
a newly established monotonicity formula holding along the level sets of the p—capacitary
potential of the horizon boundary, in any asymptotically flat 3-manifold with nonnegative
scalar curvature.

1. A MONOTONICITY FORMULA FOR p—CAPACITARY POTENTIALS.

In the last decades, level set methods have proven to be a very powerful tools for the
comprehension of geometric phenomena. A nowadays classical field of application is for
example the existence theory for various fundamental geometric evolution equations, notably,
the mean curvature flow [15, 22, 23], or the inverse mean curvature flow [29]. On one hand,
these theories are tailored for providing very general and flexible notions of weak solutions,
on the other hand, understanding properly their qualitative behaviors and their geometric
features usually requires a considerable amount of work. This is due not only to the inborn
lack of regularity, but also to the fact that, in general, the evolution described by the weak
solutions can be geometrically different from the one dictated by the classical theory, even
for small times. Viceversa, classical solutions may count on a definitely less flexible existence
theory, which is compensated by a much more transparent geometric behavior, as most of the
formal computations that one can perform turn out to be rigorously justified.

A major challenge is then providing weak solutions with a sufficiently large tool-set for
their qualitative analysis, eventually leading to relevant geometric conclusions. A significant
and successful example in this sense is given by the masterful work of Huisken and Ilmanen
in the proof of the Riemannian Penrose inequality [29]. Briefly speaking, this inequality says
that the total ADM mass and the area of the horizon boundary of an asymptotically flat
3-manifold (M, g) are related as follows,

|0M|
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In their celebrated paper, Huisken and Ilmanen settle the theory of weak solutions to the
inverse mean curvature flow and — even more remarkably — provide them with an effective
monotonicity formula, which in turn paves the way to the proof of the above geometric
inequality. To put this fundamental work in perspective, it is worth recalling that the smooth
counterpart of the whole procedure, namely, the Geroch monotonicity formula for the Hawking
mass along the smooth inverse mean curvature flow [26], was already available since the early
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seventies (see also [30]). In other words, it took more than twenty years to pass from the
classical computation along the smooth flow to the full justification of the monotonicity
formula along the weak flow. This is reflected in the fact that the proof of Huisken and
Ilmanen is extremely sophisticated and requires a number of deep conceptual and technical
insights.

The aim of our work is to propose an alternative and simplified approach to the Riemannian
Penrose inequality, where the weak inverse mean curvature flow is replaced by the level set
flow of the p—capacitary potential of the black—hole horizon. This is a p—harmonic function
solving the Dirichlet boundary value problem (1.1), for which both the existence and the
regularity theory are nowadays well understood. On this regard, it is also worth mentioning
that, thanks to the result of Moser [34], and its recent extension [33], it is actually possible to
use p—harmonic functions to recover the existence theory for the weak inverse mean curvature
flow. However, at a first sight, in the absence of corresponding monotonicity formulas, the
p—harmonic approach seemed to be essentially ineffective for drawing geometric conclusions.
This perspective has changed completely after a series of recent works [2, 11, 25], where some
monotonicity formulas were established along the level sets flow of p—harmonic functions
and subsequently employed to deduce new general versions of the Minkowski inequality in
the classical Euclidean framework, as well as on complete manifolds with nonnegative Ricci
curvature. These works were inspired and preceded by their harmonic counterparts [1, 4, 18,
19], starting with Colding’s breakthrough [17].

In a very recent paper [6], a more sophisticated version of these monotonicity formulas
was finally made available for the level sets flow of the Green’s functions, in the context of
asymptotically flat 3—manifolds with nonnegative scalar curvature, leading to a simple proof
of the positive mass theorem (see also [3, 5, 13, 28, 35, 38] for related results and methods).
In the same paper [6, Section 3] a Geroch—type computation was also performed along the
smooth level sets flow of p—harmonic functions with nowhere vanishing gradient, to obtain a
new proof of the Riemannian Penrose inequality under such (and some other minor) favorable
assumption.

In the present paper, we are going to analyze in full details the general situation, where
the p—capacitary potential of the horizon boundary is allowed to have critical points, hence
the corresponding flow is possibly no longer smooth for all times, might experience jumps
and the level sets could be subject to topological changes. In this spirit, our work parallels
the effort made by Huisken and Ilmanen in their extension of the Geroch monotonicity result
to the weak solutions of the inverse mean curvature flow. On the other hand, we hope that
lowering the technical level of the proof would make the result more accessible, setting the
stage for further investigations.

Acknowledgement. The authors are grateful to Riccardo Benedetti, Stefano Borghini and
Bruno Martelli for several useful discussions about the topological aspects of the proof. They
also thank Luca Benatti for some very useful insights about the asymptotic analysis involved
in the final part of the proof. The authors are members of the Gruppo Nazionale per I’Analisi
Matematica, la Probabilita e le loro Applicazioni (GNAMPA), which is part of the Istituto
Nazionale di Alta Matematica (INdAM).

1.1. Setting and preliminaries. Let (M, g) be a 3-dimensional, complete, noncompact
Riemannian manifold with nonnegative scalar curvature and smooth, compact and connected
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boundary OM. For 1 < p < 3, let us assume that the following problem

Apu=0 inM
u=0 ondM (1.1)
u—1 at oo

admits a weak solution u, € €% (M) NWHP(M), where Ayu = div (|Vu[P~2Vu) denotes the
p-Laplacian operator of (M, g). Natural conditions ensuring the existence of the function wu,
will be introduced in Section 2 (see Definition 2.1). By the maximum principle for p—harmonic
functions (see [27, Lemma 3.18 and Theorem 6.5]), such solution is unique and takes values
in [0,1). In particular, we have that OM coincides with the level set {u, = 0} and that
up : M — [0,1) is proper, by virtue of the third condition in problem (1.1). We also observe
that, by the results in [20, 21], the function w, is smooth outside its critical set

Crit(up,) = {zr € M : Vuy(z) =0}.

In particular, the boundary datum is attained smoothly, as the Hopf lemma (see [11, Section 2]
and references therein) implies that ¢ = 0 is a regular value of u,. To proceed, we recall that
for any 1 < p < 3, the p—capacity of M is defined as

Cap,(0M) = inf { / |\VolPdup: ve (M), v=1on 8M} (1.2)
M
and it is related to u, through the following identities
Cap, (M) = [ [V, d = [ [Vu,l~tdo (1.3)
M {up=t}
for every regular value ¢ of u,, see [11, Section 2]. For the sake of notation, let us set
1
Cap,(OM)\»—1
= ——— . 14
o= (250) (1.4

Let us also point out that, whenever there is no possibility of misunderstanding, we will
systematically drop the subscript p and we will simply denote by u is the solution of prob-
lem (1.1). With these notations at hand, we now consider the vector field

p—

¥ = 3 |Vul[P~2Vu N V|Vu| - %VU n |Vu|Vu (15)
- =1 -1 3-p (1 _ 3— 2 '
(Sa-w] | 9 AN =L

Notice that X is well defined and smooth away from the critical points of u. Denoting by ()
the scalar product given by the metric g, we introduce the function

Fy(t) :/ <X,’§Z‘> do | (1.6)

{u=ap(t)}

where
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and the variable ¢ ranges in [¢,,+00). The function F}, is then well defined whenever oy,(t) is
a regular value of u. To make the definition of F}, more explicit, we observe that, expanding
the equation A,u = 0 away from the critical points, one gets
(V|Vu|, Vu)
[Vl

Consequently, the mean curvature H of a regular level set {u = 7} computed with respect to
the outward unit normal Vu/|Vu| can be expressed as

H - Au <V\Vu|, Vu> _ p-1) (V|Vul, Vu)

~ IV M Valz

Taking into account the above expression together with (1.3) and (1.4), it is easy to check
that Fj, can be expressed as

Au = (2 —p) (1.8)

(1.9)

2 5-p
1 t —1
F,(t) = 4nt — v / |Vu|Hdo + I;T / |Vul? do . (1.10)

P
{u=ap(t)} {u=ap(t)}

We mention that setting p = 2 and ¢, = 1 in this formula, one gets the same monotone
quantity as the one employed in [6] to provide a Green’s function proof of the positive mass
theorem.

We are then ready to state the following monotonicity result.

Theorem 1.1 (Monotonicity along the regular values). Let (M, g) be a 3—dimensional, com-
plete, noncompact Riemannian manifold with nonnegative scalar curvature and smooth, com-
pact and connected boundary OM . Moreover, assume that Ho(M,0M;7Z) = {0} and suppose
that, for every 1 < p < 3, problem (1.1) admits a unique solution u, € V(M) N WLP(M).
Let s,t € [tp, +00) be such that a,(s) and ay(t) are regular values for u,. Then, the following
implication holds true
s<t = Fy(s) < Fyt),
where F, is the function defined in formula (1.6).

The proof of this theorem will occupy the rest of the section and, for the sake of exposition,
we proceed with a series of steps of increasing difficulty and generality. In the first step
(Subsection 1.2), we will treat the case where u has no critical points. As this is the smooth
flow case, the proof here reduces to a Geroch—type computation, similar to the one outlined
in [6, Section 3]. The second step (Subsection 1.3) deals with the case where u has a negligible
set of critical values. This step constitutes the core of our analysis, as it faces the major
conceptual and geometric difficulties caused by the presence of critical points. To understand
this, one should consider that — unlike for harmonic functions — no a priori bound is available
for the Hausdorff dimension of the critical set of a p~harmonic function, when n > 3 (the only
known result is about p~harmonic functions in the plane and it is due to Alessandrini [7] and
Manfredi [32]). As a consequence, the critical points of u might be even arranged in subsets
of positive top—dimensional measure. From the point of view of the level sets flow, these
clusters of critical points would correspond to jumps, similar to the ones experienced by the
weak inverse mean curvature flow of Huisken and Ilmanen. As such, they represent the most
serious geometrical obstacle to the extension of the monotonicity formula of Subsection 1.2
to the weak flow. Also notice that integrating |Vu| on the critical set Crit(u) = {z €
M : Vu(z) = 0} and using the coarea formula, it is immediate to deduce that the set
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{r€]0,1) : 2" 1(Crit(u) N{u = 7}) > 0} must have zero measure. Hence, the assumption
of negligible critical values is by no means sufficient to exclude jumps along the flow. If
p = 2, one can get rid of this assumption by using Sard theorem, since harmonic functions
are smooth. On the other hand, when p # 2, the optimal regularity available for p—harmonic
functions is only €#, which is clearly not enough to invoke Sard theorem. Albeit it is a
common belief that critical values of p—harmonic functions should not have positive measure,
this possibility is not excluded by any result in the literature, so far. We will overcome this
technical issue in the third step (Subsection 1.4), by using an approximation scheme originally
introduced by Di Benedetto [20].

Apart from the case where the p—capacitary potential u has no critical points, so that the
level sets are all immediately diffeomorphic to the boundary M = {u = 0}, in treating the
other two steps, we will employ the triviality of the second relative homology group. Thanks
to an argument similar to the one of [29, Lemma 4.2], this will ensure that any level set of w is
connected, even in the presence of critical points. It is important to notice that the condition
Hy(M,0M;Z) = {0} is automatically satisfied under the natural assumption that (M, g) is
an asymptotically flat exterior region, as observed in [29, Lemma 4.1].

1.2. Monotonicity without critical points. With the help of the Bochner formula, the
twice contracted Gauss equation and formulas (1.8), (1.9), the divergence of the vector field
X in formula (1.5) can be expressed as

p—1 o
v et [Vt R VEVWPE R P
{Hu—u)]g:‘l’“ Gt 2 Va2 02
p—1
2
. H
45 713 — Vel -5 (1.11)
b ot (1—u)

where R*(z), V* and }Ol(l’) represent the scalar curvature, the Levi-Civita connection and the
trace—free second fundamental form of the regular level set ¥ = {u = u(z)} passing through
the point z € M. Also notice that in order to establish the above formula, one can employ
the following Kato—type identity for p—harmonic functions,

(p—1)

|VVul* - [1—1— 5

o —1 2
] VIVal? = [VuPh|* + [1 - (1’2)] V¥ |Vl

Let us observe that if u has no critical points, then all the values in the range of u are regular,
and the monotonicity can be easily deduced by means of the following computation, using
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the divergence theorem, the coarea formula and identity (1.11).

B -F5= [ <X,,§;‘|>da— / <X,|§Z’>da

{u=ap(t)} {u=ap(s)}

= / div X dy = / dr M do
[Vul

{op(s)<u<ap(t)} (ap(s),ap(t)) {u=T}

p=1
_ / ey " dr / Vupt  R®)
3— = i 2

(ap(s),p(1)) [ po1 (1= T)} s

iS]

=l o
cp tdr |VE|Vu|> R |h?
+ —1 ———5— +t =+ —|do
3—p gfp_‘_l |vu‘2 2 2
(ap(s),00p (1)) |: p—1 (1- 7_):| {u=r}
p—l 2
3—p _ H
" / — Bl / - 119 3 ~ — 5 |d
3— 3=p p— S7P (1 —
(ap(s),p (1)) |: pT? (1 - T)} : {u=7} p—1 ( ’LL)
p—1
> / cp ” [Am — 27rx({u_1: H] ir > 0.
=+

el | R (=7

Observe that in the last passage, we used the identities (1.3) and (1.4) in combination with
the Gauss—Bonnet theorem, obtaining the Euler characteristic X({u = T}) of the level set
{u = 7}. The conclusion follows since, in the absence of critical points, all the level sets are
diffeomorphic to the boundary OM = {u = 0}. As the latter is a smooth connected closed
surface, one has that 47 — 2rx({u = 7}) > 0, for every 7 € [0,1).

1.3. Monotonicity with negligible critical values. Let us now consider the case where
the solution w of problem (1.1) is allowed to have a nonempty set of critical points Crit(u).
Before dealing with the general case, let us first prove the monotonicity of Fj, under the
favorable assumption that the set of the critical values of u is a negligible set. As already
observed, this case contains all the major conceptual and geometric difficulties caused by the
presence of critical points. In particular, we are going to show how the monotonicity formula
of Subsection 1.2 still holds despite the possible presence of jumps along the flow. To make
the computations simpler, it is convenient to set

v — cr VIVu| — ‘@—Z'VU n |Vu|lVu
- p—1 3_ _ 2
Fra-w] Lo )
p=1
_ ey P VT|Vul + (p — 1)V V| N |Vul? Vu

=
—

p—

EE P (1 - ) EREnEE



RIEMANNIAN PENROSE INEQUALITY VIA NONLINEAR POTENTIAL THEORY 7

where V" |Vu| and V+|Vu| denote the tangential and the normal component of V|Vu|, respec-
tively. Observe that V' = V>, by the well known properties of the Levi-Civita connection.
Noticing that the vector fields X and Y are well defined where Vu # 0 and that they are
related by the formula

_(@=p)(p=1) VulP—2v
X = oo 1Vl L4y,
3— 3—p
-]
it is immediate to observe
—1
_ 5 |Vul RE VT2 R |02
divy = S ) 2 T v T2t
3—p 3—p
[m(l—u)}
2
- H
Loop Vel H) L (1.12)
AN =

We now consider a sequence of smooth, nondecreasing cut—off functions 7y, : [0, +00) — [0, 1],
with the following structural properties

1 3 ]
2k 7 2k 1
for every k € N. It is immediate to realize that the functions 7, monotonically converge to

the characteristic function of (0,+oc0) in the pointwise sense. Using these cut—off functions,
we introduce the vector fields

ne(7) =0 in [O,i}, 0 < (1) <2k in[ ne(7) =1 in [%,4—00),

—1)|Vu
S I\

-]
which are well defined and smooth on the whole manifold. It is readily checked that, for

every x € M \ Crit(u), the sequence of vectors Yj(z) converges by construction to Y (x), as
k — 400. An easy computation yields

1
divyi = | — =DV Gy

ra- o)

(p— DIV |Vl +|(p — 1)V V| + T4V _

-1 = P(1-w)
o[ @DV ) - [Ee)
[EE =p-w)| ™7

S BNV 7 S

era- )
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Thus, setting

_(@2-p)(p-1) ‘vu|p—2vu
37
Xe = ¢ @7 o + Yk,

=

one immediately gets

_(2-p)(p-1)

cp UV |Vl (p—1)[Vul

ra ] 5 [z -0]

Now, we let s,t € [t,,+00) be as in the statement of Theorem 1.1. As for large enough k£ € N
the vector field X}, coincides with X on the boundary of {a,(s) < u < ayp(t)}, the divergence

theorem yields

R B = [ (02 Ve [ (v

divY.

div X >

{u=ap(t)} {u=ayp(s)}
= / div X dp
{ap(s)<u<ap(t)}

_<2*(§)(P)*1)

VP 1A%

2 / - ’JH 1 3(p ) “l divY b du.

3— 3—p _ —
{ap(s)<u<ap(t)} |:pT]1)(1 - u)] [pTI{(l — u)] P

We now claim that the rightmost hand side converges to

_ (2*(27)(17)*1)
c = \VulP .
/ L Vel + Inncrit(u) divY o dp,

P41
(apter<ucano) | [2RA—w)] T

as k — 400, where I\ crit(u) denotes the characteristic function of M\ Crit(u). Indeed, using
the Gauss equation in combination with formulas (1.8) and (1.9), we can rework formula (1.12)
to obtain divY = P + D, with

p—1
¢S7? |Vul IVT|Vul2 o, H2 (V|Vul, Vu)?
P= P h? + —=—+ (2— )
e (g >W+l[ LR S e i
pTI —Uu
S 2
_ VYl [ VT [Vul]? FIRE + (p—1)(3—p) (VIVul, Vu)
30 () )F‘;H [Vul? 2 [Vult
p—1
p—1
Do o [Vl [Ricwu,vm +<p—1><5—p>< VuP _p)<V|Vur,Vu>>]'
'wu_u)}?—éﬂ [Vul? B-p? \(1-u)? (1 —u)|Vul
_pil
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As usual, the above identities are valid outside Crit(u). We now notice that the term P is
nonnegative, while D is bounded on every compact subset of M. The claim follows by apply-
ing the dominate convergence theorem to the sequence 7, D and the monotone convergence
theorem to the sequence 7 P.

To complete our argument, we are now going to use the assumption that A' = u(Crit(u))
is negligible. Using the coarea formula, the identity (1.12) and the Gauss—Bonnet theorem,
we can further develop the above computation, getting

_2=p)(p=1)
cp O |Vupt divY

Fy(t) — Fp(s) > / dr

TA\ Crit(w) —=— ¢ d
= 5y %4_1 + M\Crit(u) \Vu| g
(ap(s).ap()  {u=r} [ﬁ(l—U)}
_(@2-p)(p—-1)
cp, UV VuPt divy

do

= dr —
— 11 |V’U,‘
oW () | [0 -w]T

div X
= / dr / vl do

(ap(s),ap(t)\N {u=7}

1

p—
3—p p—1 b

= / @ dTp;l_,_l / <|VCZ‘—1 - R2) do

(ap(s),ap(t)\WNV [%(1 - 7-):| o {u=r} b

-1

3—p o _
/ s [4m 27rx({i1+17})] i > 0.
(g ()0 (1)) \W [%(1 - T)} o

The last inequality holds because all the regular level sets of u are closed and connected
surfaces, so that 47 — 2nrx({u = 7}) > 0, for every 7 € [0,1) \ V.

For the reader’s convenience, we now include an argument, inspired by the one presented
in [29, Lemma 4.2], showing that the assumption Ha(M,0M;Z) = {0} is sufficient to infer
the connectedness of the regular level sets of u.

We let 7 € (0,1) be a regular value of u, and we consider the regular level set {u = 7}. We
first observe that the sub-level set {u < 7} is necessarily connected. More precisely, we claim
that each connected component of {u < 7} has a nonempty intersection with M = {u = 0}.
Indeed, by the properness of u, every connected component of {u < 7} must be bounded.
Now, if some of these connected components would not intersect 0M, then u would achieve
an interior minimum on it, which is forbidden by the strong maximum principle (see [27,
Theorem 6.5]). As OM is connected, it follows that {u < 7} is also connected.

Let now S C {u = 7} be a connected component of {u = 7}. As Ho(M,0M;Z) = {0}, we
have that the surface S is homologous to (an integer multiple of) 9M. We claim that S is
disconnecting M into two connected components A and B, so that M = AL SUB. In fact, if
M\ S would have a unique connected component, then there would exist a simple closed loop
~ intersecting transversally S at a single point, with vy N dM = (). This is forbidden by the
intersection theory (see [14, Chapter 6, Section 11]), as the parity of the intersection with a
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given loop should be (generically) the same, within a given homology class. Hence, the claim
is proven, and we have the decomposition M = AU S U B.

Without loss of generality, we may assume that M C A. By the previous reasoning, this
implies that the sub-level set {u < 7} is also contained in A, since both A and {u < 7} are
open and connected and they both contain M. In particular, we have that {u = 7} = 0{u <
T} C AUS, where the first equality holds because 7 is a regular value of u. Now suppose by
contradiction that {u = 7} contains another connected component ¥, with ¥ NS = @. By
virtue of the latter condition, ¥ lies necessarily in the interior of A. Hence, at any x € ¥ C A,
we have that

u(x) = 7 = maxu.
0A

In other words, the point z is an interior maximum for w in A. Once again, this forbidden
by the strong maximum principle (see [27, Theorem 6.5]). Then, the only possibility is that
S is the unique connected component of {u = 7}.

1.4. An approximate monotonicity formula. To achieve the general result, we are going
to locally approximate the p-capacitary potential w,, solving problem (1.1), with a family
of smooth functions, solving a perturbed version of such problem. More concretely, we fix
T € (0,1) such that {u, = T} is a regular level set of u,, and for every € > 0, we consider the
(unique) solution g, to the following problem

div (|[Vulf*Vu) =0 in Mp = {0 <wu, <T},
u=0 ondM, (1.13)
u=T on{u,=T},

where |Vul. = /|Vu|? 4- £2. The functions uj, were first introduced in [20, 21] to establish the

nowadays classical €18 -regularity result for p-harmonic functions, as they actually converge
in the €% topology on the compact subsets of My to the (a priori only) W1 P-solution uy, of
problem (1.1), when £ — 0. In the same papers it is also proven that they converge smoothly
to up on the compact subsets of My \ Crit(u,). To list some of the basic properties of the
functions uy,, we observe that they satisfy a nondegenerate quasilinear elliptic equation, with
smooth coefficients, in divergence form. As such, the weak and the strong maximum principle
as well as the Hopf lemma are in force, as it is proven in [37]. Using these fundamental tools,
one can prove that the functions u;, are smooth up to the boundary (see, e.g. [31]), that they
take values in [0, 7] and that their gradient is never vanishing on the level sets {uj, = 0} = M
and {u, =T} = {u, =T}.

From our perspective, the key advantage of working with the functions u;, instead of u,
comes from the fact that they are smooth, hence, Sard theorem applies and the set of crit-
ical values is negligible. Adapting the procedure described in the previous subsection, we
eventually establish the validity of an approximate monotonicity formula in Lemma 1.2. The-
orem 1.1, will then be achieved in Subsection 1.5, letting & — 0.

To keep the notations simpler, we drop the subscripts p and e, whenever there is no
possibility of confusion and we simply write u for u5. In analogy with formula (1.5), we
define the following vector fields

£
D

_ A
cpe’ |Vult~*Vu VIVu| - |VZ\VU |Vu|Vu
o1 — + +

[?’;P(l—u)]ﬂ pe =AC) [;’%’1’(1—@}

5 (1.14)
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where Vug, # 0, with the constant ¢, given by

1 1
Al = i / |Vu|P~2|Vu| do = e / |Vu|P~2|Vu| do .

D,E
oM {u:oag(t)}

Notice that the second equality holds for every t such that a;(t) is a regular value of u, by
divergence theorem. In analogy with formula (1.6), we introduce the functions

Vu
F:(t) = Xe, —— 1.1
0= [ (X (1.15)
fu=a5 (1)}

where

p

€ t; % . 15 p— 1 ﬁ
ozp(t) =1- " , with ty = (cp@ E) ,

1—
and the variable ¢ ranges in [t;, to(1— T)ﬁ} The assignment F};(t) is clearly well defined,

whenever o (t) is a regular value of u. In order to make the expression of F; more explicit,

we observe that, away from the critical set, the equation div (\Vu]€_2Vu) = 0 is equivalent
to

|Vul? (V|Vul, Vu)
Vulz  [Vu]
As a consequence, the mean curvature H of a regular level set of u, computed with respect to
the unit normal Vu/|Vul, is given by

Au  (VIVu|,Vu)y  (p—1)|Vu]?+ % (V|Vu|, Vu)

= — — . 1.17
|Vl |Vul|? |Vu|? + &2 |Vul|? (L.17)

Au = (2 —p) (1.16)

Using these identities, F;(t) can be written as

2 5—
= = )
Fy(t) = 4Ant — / |Vu|Hdo + — |Vul® do .
Cpﬁ Cp,e
{u=ag(t)} {u=ag(t)}

The above expression should be compared with formula (1.10).
We can now state our approximate monotonicity Lemma.

Lemma 1.2. Let (M, g) be a 3—dimensional Riemannian manifold satisfying the assumptions
of Theorem 1.1 and let u be the solution to problem (1.13). Let s and t be real values such
that

1—p

t, <s <t <t(1-T)3»,

and such that ag(s) and ag(t) are regular values for u. Then, the following inequality holds

p—1

p+1y? / e|Vul cpe’ |Vul?
Fo(t)—F,(s) 2 —e (— | !
p(t) = Fp(s) 2 —¢ <p—1> 2(p + 1)|Vul? + 3¢ [3— ]gzl’”’ "

{5 (s)<u<ag ()} (1 —w)

iS]

where Fy is the function defined in formula (1.15).
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Proof. A long but straightforward computation, performed in the same spirit as the one
leading to formula (1.11), provide us with the expression for the divergence of X, away from

V. AGOSTINIANI, C. MANTEGAZZA, L. MAZZIERI, AND F. ORONZIO

the critical set,

divX, =

p=1 .
e [Vl Vule |Vl _ R® | VI[VUl[? R |
=l Ft 2 |Vu|? 2 2
{3;10 (1— u)} 3-p j
p—1
n 5—p |Vul p—1 |Vul? {V|Vu|, Vu)
_ - 2 2
p—1 i’f’f(l—u) 2 |Vul? [Vl

+52<

_52(

2

be (p— 1) |[Vul? (V|Vul], Vu)

p+1 2 as |Vul
3—p

where the coefficients a. and b, are defined as

It is easy to realize that, if |Vu| # 0 everywhere, then the thesis follows from a simple
integration by parts, as in Subsection 1.2. To treat the general case, it is convenient to

1

_ 2
p 1 ﬁ(l—u) 2 ‘VU’|€
P+ 1)2 1 |Vul|?

—1) 2(p+1)|Vul|? 4+ 3¢2 3= 2
p (p )| ‘ [%(1_@]

2 1 2 2
and b — V2(p + 1)[Vul? + 3¢

e = \/2(p +1)|Vul|? + 3¢2

(p+ D[Vul?

proceed as in Subsection 1.3, defining the vector field Y; as

Y.

Then, the fields Y; and X, are related through the formula
IVulf 2V

X

_(@2-p-1)
(3—p)

= Cpe

3—p
p—1

(1-w]””

Of course, the above definition makes sense only outside the critical set of u, however, using
the cut—off functions 7 introduced in Subsection 1.3, we may consider, for every k € N, the

p—

P Y.

p=l Au
cpet VI|Vu| - Su VU |Vu|Vu
3— 5= 32 (1 —w) 3—p ?
(1 —w) p—1 [ﬁ(l—u)}
p—1
cpe’ VT |Vu| + (p — 1)V V| |Vul? Vu
3 = 30 (1 —q) * 3—p 2 |Vul
ple)(l—u) p—1 U [m(l—u)}
N (2—p)e2 VIV
24 2 3_
|Vu|? + ¢ I% (1—u)

[Vul?

2
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vector fields

1 _2-pe-D p—2
Yor = m (v )WuL Y. and X.p = cpe O [Vul2 vup;l + Yo
-] Fra-]

p—1
Notice that X, and Y, ; are well defined and smooth on the whole M7, as they are vanishing
in a neighborhood of Crit(u). Computing as in Subsection 1.3, we get

—Yv
divYe, = m (p—1)] “L divY,

I
p—1
- DIV + \<p VLV 4 17T
n 772; (p—1)|Vul = S (1—u)
_1 25 _3
=T Lk
—_p)e2 u ul,Vu
bout | e B (- DIV Tl + [P T)
+77;<: (p_ )| u‘l CS? 3 ﬁ( 7U)
0w SRR
—1
B BRCER Y\
_ 3—
-]
ul? —1)2|Vu?+(p—1)e? |1 2
(p— DIV Va2 + — L @I Vu e 171 gy
+ 77]:; (p_ 1)’VU| 1 ]%E; [%(1_@] 3 | -
(2 -w]™ (=2 —w)]™”
po | @DV ) B 20— DIVUP +pe [Vl (9]u], V)
"\ 1 5] [Vul? + &2 3—p =
—1
S e L2 7
_ 3—
-]
2 -1
5=t 2p—1)|Vul* tpe®
A =1V (p—1)|Vul e | VVl
Tk 3 = 3 = (p—1>2nf‘l4aTX 3 =
— - — - — —p
a-u] ) \[ra-ol 20 )

Noticing that
2(p — 1)|Vu|? + pe?
(p—1)[Vu|® + pe 3p— 9

Vul2 + 2
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in M7 and n/(7) 72 < 9/2k < 5/k for every 7 € [0, +00), we finally arrive at

(p—1)|Vul 5 c% 3p—2 e |[VVul
1 F R W T

=2 -w]™” -]

In particular, the last summand in the right hand side converges to zero uniformly on My, as
k — 4o00. Now, for every s,t as in the statement and every k € N, we have that the vector
fields X,y coincide with the vector field X. on the boundary of {a5(s) < u < ag(t)}, for
every k large enough. Hence, the divergence theorem yields

. . Vu Vu
Fp(t)—Fp(S) = / <X57k,’vu‘>d0' — / <X57k,wu‘>d0'

divYer > m divY;

{u=ap(t)} {u=ap(s)}
= / div X, dp
{ap(s)<u<ap(t)}
( _epeen
e _
g / vae ‘VULEP;JY:” + leYvEJC d,u
3=p (1 _ 3-p
{ap(s)<u<ap(1)} [p_l( U)]
(
c_(Q_(g)_(g)_l)Wu|p_2Wu|2 (p—1)|Vu|
> / P sp T + Nk P — | divY: p du
B 3 = 3- E=
{ap(s)<u<anp(t)} [Fp(l—U)] ’ [pfﬁ’(l —U)] ’
5 =l 3p—2
— — |M7| ep® P 5 max Vvl e (1.18)
k (p—1)* Mr [3;,,(1_“)]@
p—1

To proceed, we need to let £k — 400 in the above inequality. Reasoning as in Subsection 1.3
and using formulas (1.16) and (1.17), we write divY: = P. + D,, with

-1

-t 2
P i P |Vl [ | VT | Vaul|? T (p—1)3—p) (VIVu|,Vu)

=1 Sl (v 2 [Vul?
p—1
5 2|Vul? + &2 <V]Vu\,Vu>2
+ ¢
2|Vul4 |Vl

p—1

D. — cpe’ |Vl Ric(Vu, Vu) (p—1)(5—-p) |Vul?
6 = T G-p?  (0-up?

0w

_l’_

(5—p)(p = DIVul’ + (p+ 1) > (V|Vu|, Vu) }
(3 —p)IVul2 (1—u)|Vul |-
Noticing that P. is nonnegative and D, is bounded and applying the monotone convergence

theorem and the dominated convergence theorem respectively to the sequences 7 P- and
Nk De, one has that the integral of 7 divY; in formula (1.18) converges to the integral of
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Tpz\Crit(uy div Yz, as k — 400, where I/, crit(w) denotes the characteristic function of My \
Crit(u). Hence, passing to the limit and using the coarea formula, one gets

_(2—(2)(11)—1) 9 N
cpe " [VuleT|Vy| .
SO ORI B S " L gy AV Y.
— -P
(op<ucagn | [ 2F Q-]
_(@2-p)(p=1) 9
cpe T VUl (V| | divYe

= dT dU

(o (). (D) We  {u=r) [%(1—@
_ div X,

= / dr / vl do,

(o5 ()05 (D)\Wz {u=T}

where M, = u(Crit(u)) is the set of the critical values of u. It is important to notice that
in the second passage we benefit from the possibility of using the Sard theorem. Recalling
the expression for div X, given at the beginning of the proof and using the Gauss—Bonnet
theorem, we arrive at

}é’é“ |Vl

p—1
cpet (4m = 2 ({u = T}))
151 154
Fy(t) — F;(s) > - e dr
CHORTONNE [p%{ (1- T)}
p—1

1 2 3—p 2
_ €(p+ / dr S / IVl
p—1 3 p E=+3 2(p+ 1)|Vul|? + 3¢

(O‘Z(S)7C"Z(t))\/\/~s |:pTl (1 - T)] {u=7}

The conclusion then follows by observing that every regular level set of u is connected. The
argument follows the very same lines presented at the end of the previous subsection, so we
let the details to the reader. ]

1.5. Proof of Theorem 1.1. We want to show that, under the assumptions of the statement,
the following implication holds true

s<t = Fy(s) < Fyt),

for every s,t € [t,, +00) such that a,(s) and a,(t) are regular values of u,. First we notice
that if s = ¢,, then {u, = ap(s)} = {up, = 0} = OM, which is a regular level set of u,. As
OM is compact, we have that the tubular neighborhood {a,(s) < u), < a,(t)} is foliated by
regular level sets of u,, provided ¢ — ¢, is small enough. In this case, the conclusion follows
by the direct argument presented in Subsection 1.2.

To prove the remaining cases, we assume then by contradiction that there exist real numbers
tp < s <t < 400, such that ay,(s) and a,(t) are regular values for the p—capacitary potential
up, but F,(t) < Fy(s). In particular, we can choose a sufficiently small real number § > 0
such that

0> =20 > Fy(t) — Fy(s). (1.19)
Choosing T' > oy (t), regular value of u,, we have that both the level sets {u = a,(s)} and
{u = a,(t)} are contained in My = {0 < u, < T'}. Now, we recall that on any compact sets
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sitting inside My \ Crit(u), the solutions u; to the approximate problems (1.13) converge to
uy, in the €*topology, for every k € N, as ¢ — 0. By means of this property, we are going
to prove the following approximation lemma for the function F,, holding at regular values of
the corresponding p—capacitary potential u,,.

Lemma 1.3. Let t, <t <T < +oo be such that a,(t) is a reqular value for the solution w,
of the problem (1.1) and let F}, and F; be the functions defined in formulas (1.6) and (1.15),
respectively. Then, we have
(1) —
lm F5(1) = Fylt).
Proof. Let n > 0 be such that the tubular neighborhood %, = {o,(t — 1) < up < a,(t +1)}
is entirely foliated by regular level sets of u,. Choosing a small enough 7 > 0, we can assume
that also the level sets {u, = a,(t —n)} and {u, = o,(t + n)} are regular. Since F), is

continuous at the regular values of wu,, one has that for every § > 0 there exists 7 =7(6) > 0
such that [F(t) — Fp(t —n)| < 6/2, for every 0 < n < 7. As the functions u;, converge
uniformly (actually, in the €*~topology) to the function up on %, it is easy to check that
there exists € = £(7) > 0 such that {u;, = a5(t)} C %,, provided 0 < ¢ <. In particular, up
to choosing ¢ small enough, we have that {u = a(t)} N{up = ap(t —n)} = @. Moreover,
possibly considering a smaller € > 0, it turns out that for every 0 < & <, the set {uj, = a5(t)}
is a regular level set of ug, as Vuy, # 0 on W, and |Vug| converge uniformly to [Vu,| on such
a tubular neighborhood. We may then proceed with the following estimate,

|Fp(t) = Fy(H)] < |Fp(t) = Fy(t = m)| + |Fy(t —n) — F5(t)]

YVu Vu‘E
< 6/2 X P \Ndo — X
<op s f < ’|Vup\> - <€’rw|>

{up=ap(t=n)} {ug=ag ()}

Vuy,
0/2 + / <X X, — >da
/ V!

{up=0p(t—n)}

IN

Vu Vu€
X, P VNdo — / X,
" / < 6’rwp|> 7 < 5’\Vu>
{up=ap(t—n)} {us=a5 (1)}
< §/2 ""(@X |X_Xa|>‘{up:ap(t_77)}} + diVXadM'
U,
! U {ug<as(t)}

IN

5/2 + (“%ZX X = Xe| ) [{up = ot = m)}] + (n;;x div X.| ) %) .

where the vector fields X and X. are defined by formulas (1.5) and (1.14), respectively
referring to u, and ug. Again, by the smooth convergence of the functions u; to u, on ,, we
get that X, converge smoothly to X on the same set. In particular, up to choosing 77 = 77(9)
and € = £(7(9)) small enough, the last two summands can be made smaller than §/2 and we
are done. 0
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We can now conclude the proof of Theorem 1.1. By the choice of T' and Lemma 1.3, there
exists 5 > 0 such that
|Fp(s) — F5(s)] <6/2  and |Fp(t) — F5(t)| < 6/2,

for every 0 < £ < g5. Combining this information together with the assumption (1.19), it
follows that

=20 > Fy(t) = Fy(s ) = Fp(t) = Fp(t) + F (1) — Fy(s) + F; (s) — Fp(s)

> F,(t) — F;(s ‘F ;(t)‘—]Fp(s)—F]f(s)] = F,(t)—F,(s)—9.

Using Lemma 1.2, one then has that for every 0 < € < &4, there holds
p—1

142 e|Vus, e’ |Vus |?

_52_€(p+)/ [Vug| pe | |,1 "
1 2o+ DVuP 32 5 EaE
{ag(s)<ug<as(t)} [Iﬁ(l UIE;)}
p 1
PV 2
> _% <p+1) cpe” | Up’ dy

L3
(esto<ig<azion | 228 (1 - ug)]
where we used the elementary inequality
elVug)| 1

< .
2(p+1)|Vus|? +3¢2 — 6

Letting € — 0, we have that the integral in the rightmost hand side of the above inequality
converges to

p—1
2243

3—
(ap<ir<an(®}| 22 (1= up)
as u, — up in the €% —topology on the compact subsets of My = {0 < up < T'}. This implies
that the right hand side is in turn converging to zero, when ¢ — 0, leading to the desired
contradiction.

2. PROOF OF THE RIEMANNIAN PENROSE INEQUALITY FOR A SINGLE BLACK HOLE

In light of the monotonicity result obtained in Theorem 1.1, we present in this section a
new proof of the Riemannian Penrose inequality, first proved by Huisken-Ilmanen [29] in the
case of a single black hole, and by Bray [12] in the general case of multiple black holes. In
order to present the precise statement in Theorem 2.2 below, let us first set up and recall
some basic notations and definitions.

Definition 2.1. A complete 3—dimensional Riemannian manifold (M, g), with or without

boundary, with one single end, is said to be €Y —asymptotically flat with decay rate T, or

simply c57-1’0‘faésymptotically flat, with a € (0,1) and 7 > 0, if the following conditions are
satisfied:

(i) There exists a compact set & C M such that the end £ = M \ K is diffeomorphic

to the complement of a closed ball in R? centered at the origin, through a so—called

asymptotically flat coordinate chart (E, (z!, 2%, 23)).
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(ii) In such a chart, the metric tensor can be expressed as
g9 = gij de' @ de? = (035 + vij) de' @ da?
with
oLzl + Y e Oy + D 12T [yila = O(1), (2.1)
2% i,5,k i,4,k

as |x| — 400, where

)

|Okvij(q) — Okvij(p)|
Orijla (p) = sup
Octigle () = S L) — )
for every p € E.

According to the physicists Arnowitt, Deser and Misner, who first introduced it in [8], the
ADM mass of an asymptotically flat Riemannian 3—manifold is defined as the limit

1
mapm = lim —— / (9j9i5 — Digjj)

:L,’L

||

do
oo 167 eucl »

{lz|=r}
in an asymptotically flat coordinate chart.
It can be shown that if the scalar curvature of (M, g) is nonnegative and the decay rate
T is strictly larger than 1/2, the ADM mass is a well defined geometric invariant, i.e., the
above limit exists (possibly equal to +o00) and its value does not depend on the particular
asymptotically flat coordinate chart that is used to compute it (see [9] and [16]).

We are now in the position to state and prove the main result of this section.

Theorem 2.2 (Riemannian Penrose inequality for a single black hole). Let (M, g) be a 3-
dimensional, complete, connected, noncompact Riemannian manifold with a smooth, compact,
connected boundary and one single end. Assume that:
(i) The metric g has nonnegative scalar curvature R > 0.
(ii) (M,g) is ‘511’6“ —asymptotically flat, moreover the following Ricci curvature lower bound
holds,

C
Ric > _W g, for some C' > 0. (2.2)

(iii) OM is the unique closed minimal surface in (M, g).
Then, the ADM mass satisfies
[OM|
167
Remark 2.3. In [16] Chrusciel was able to show that the ADM mass is well defined, under a

slightly weaker decay assumption than the one proposed in Definition 2.1. More precisely, it
is sufficient to require that

Dol gl + D a7 9| = 0(1),  as x| — oo, (2.3)

2¥] V]

MADM =

with 7 > 1/2 and without any further condition on the decay of the Holder quotients of the
functions O7v;;. In accordance with the terminology employed in Definition 2.1, it is then
natural to refer to condition (2.3) as to € —asymptotical flatness. On this regard, it is worth
pointing out that in [29] the Riemannian Penrose inequality was established for the larger
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class of ¢} —asymptotically flat manifolds satisfying the Ricci lower bound (2.2). Let us also
observe that in [12] the decay conditions

Z ‘$‘2+T \Bgamm = 0(1), as|z|— +o0
Z‘?j’k?e

|x]C|R] = 0(1), as|z|— +o0

for some 7 > 1/2 and ¢ > 3, were added to assumption (2.3). In other words, in order to
achieve the general result, Bray asked for a ¢?-asymptotical flatness, together with an extra
decay assumption on the scalar curvature.

Proof of Theorem 2.2. Let us consider the solution u of problem (1.1), whose existence and
uniqueness are guaranteed by [24, Theorem 4.1] (taking also into account [24, Remark 4.2]
and [36, Theorem 3.2]). By virtue of assumption (iii) and the classical facts collected in [29,
Lemma 4.1], we have that M is diffeomorphic to R?\ B? and M to S?. In particular, we
have that Ho(M,0M;Z) is trivial and we can invoke Theorem 1.1 to deduce that, for every
1 < p < 3, the function F, defined in formula (1.6), is monotone nondecreasing along the
regular values of u. This implies that

Fy(tp) < ZETOO Fy(To), (2.4)
for any sequence T, — +o0 satisfying the condition that oy, (7}) is a regular value of u, for
every ¢ € N. Using formula (1.10) and recalling that {u = a,(t,)} = {u =0} = OM is a
minimal surface, one immediately gets

5 =
Fy(t,) = dmt, — L /|Vu|Hd0 + p2 /\Vu|2do' > Anty,.
c c
Yoo P oM
A simple algebraic computation based on formulas (1.7) and (1.4), gives
2p p— IN5 -
(47) 5> (%)3 Y Cap, (OM)T5 = 4drt, < Fy(t,). (2.5)
We now claim that
lim F,(Ty) < 8mmapwm, (2.6)
L—+00

and we defer the proof of such an estimate after the forthcoming Lemmas 2.5. Here, we
observe that the claim, in combination with inequalities (2.4) and (2.5) leads to

<p -1 )é’_; Cap,(0M)
3—p 47
Using [24, Theorem 1.2] (see also [2, Theorem 5.6]) and letting p — 1, there holds
lim Cap,(OM) = |0M].
Jim, Cap, (M) = |OM]

e
> "< 2mapu. (2.7)

Indeed, assumption (iii) easily implies (see [29, Lemma 4.1]) that OM is also outward mini-
mizing, meaning that for any smooth domain E containing M it holds |[0M| < |0E|. Using
this piece of information, the Riemannian Penrose inequality simply follows by letting p — 17
in inequality (2.7) (we underline that this passage to the limit is the reason why we cannot
treat the equality case as in [12] and [29]). However, for the sake of completeness, we provide
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with the following lemma an explicit lower bound for the p—capacity of M in terms of its
area |0M|, that is clearly sufficient for our purposes, once it is combined with estimate (2.8).

Lemma 2.4. Under the assumptions of Theorem 2.2, we have that

3—p\32
VoM _E (OM)57 (2.8)
c3o-D2E-p) = TPp ’ '
Sob
for some positive constant Cgop, > 0.

Proof. As (M, g) is asymptotically flat, it supports a Sobolev inequality (see [36, Theorem 3.2]
for details), that is, there exists a constant Cgop > 0 such that

2/3
(/ v3/2du>/ éCsob/ V| dp
M M

for any nonnegative v € €1 (M). It is well known that, applying this inequality to the function
2
vﬁ, one gets the LP—Sobolev inequality, forany 1 <p <3
" (3-p)/3 3
(/ o dp) < (= ~ Csol / VolPdu,  with  pt=
M 3—0p

To proceed, we recall that the kcapamty of OM can be defined in analogy to the p—capacities
(see formula (1.2)) as

Cap,(OM) = inf { / [Vwldp : we (M), w=1on 8M} .
By truncation and density arguments, an equivalent definition is given by

Cap,(0M) = inf{ /\Vw[p dp: w e €M), w take values in [0,1], w = 1 on OM } ,
M

holding for every for 1 < p < 3. Using the latter definition, if v € €}(M) is a function taking
values in [0, 1] with v = 1 on OM, then w = v? is a valid competitor for Cap,(9M), provided
q > 1. By the Holder inequality we get

1P (r—1)/ 1/
Capy (@) < [ 1Vt au=g [ v (Teldp < o [ o005 a)" ([ weran) ™
i M M

M
(r=1) _

Choosing ¢ = 1 + p*
inequality to obtain

Cap, (M) 32_pp (/M o du) (p—1)/p (/M Vol d,u) 1/p

2p \2P/B3=D) _3(p-1)/(3—p) 2/(3—p)

< R — p

- (3—p) CSOb (/‘VU’ du) ’
M

i—pp > 1 in this expression, we can use the above LP—Sobolev

IN

Taking the infimum in the right hand side of this inequality over the family of functions
vECHM),v: M —[0,1] and v =1 on M, we conclude that

2p \2p/(3-p) 1) /(3—
Camy(@1) < (22O Can, orr . 29)
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We now observe that in our setting the l-capacity of OM is always larger than its area,
namely

Cap, (M) > [OM]
Indeed, the coarea formula implies that, for any function w € €>°(M) with w =1 on M,

1
‘/WVw<ﬁbzl/ {w=t}|dt > inf {|0E| : OM C E, 9E smooth} > |oM]|.
0

Notice that the last inequality in the above chain holds since OM is outward minimizing, as
already observed. An alternative argument is by contradiction. If the latter inequality were
false, then one could minimize the perimeter among the family of sets that are containing
OM. This would provide a new minimal surface in M. Moreover, such a surface would be
different from OM, as is would have a strictly smaller area, against the assumption (iii) in
the statement of Theorem 2.2.

Combining the inequality Cap,(0M) > |0M| with the estimate (2.9), we easily get the
desired conclusion. O

We now turn our attention to the proof of claim (2.6). As the metric g is %ll’a—asymptotically
flat, with « € (0, 1), it follows from [10, Theorem 3.1] that u obeys the asymptotic expansion
-1
w=1-2"> Cp — + oa(|z| " ’1’)_ (2.10)
- mp

In terms of the function v =u—1+ 2 = p this corresponds to

E \zﬁ
_3-p
\v|+Z\xHav\+Z|x|2y 20 = o(|z| +1).

A first consequence of the expansion (2.10) is that there exists a real number ¢ € [t,, +00) such
that a,(t) is a regular value of u, for every ¢ > ¢, so that limy_, o F,(Ty) = limy_ 4o Fp(2).
The latter limit can be estimated as follows:

= ot
dr — ti—p [ IVu|Hdo + Y25 [ |Vul]*do
. {u=ayp(t)} " {u=ap(t)}
lim F,(t)= lim
t oo t—+o00 1/t
d >t ot
i [477 - “;p [ IVu|Hdo + Y [ |Vul*do
. {u=ap(t)} " {u=ap(t)}
<1 o211
= O —1/¢? (&1

where the last inequality follows from the generalized version of de 'Hopital’s rule in [39,
Theorem II]. To apply this result one should actually check that

= T )
lim 47 — — |Vu|Hdo + —5— |\Vul|*do = 0
t—+o0 cp Cp
{u=ap(t)} {u=ap(t)}
This condition can be rewritten as
! S VU PH T [Vuft
lim —— [1 - Vel > [Vl 2} VulP~tde = 0
t—+o0o0 CP B(1—u) [pfll’(l—u)]

{u=ay(t)} p-1
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In view of (1.3) and (1.4), it is sufficient to prove that

—1 2—p —1 3—p
- |Vul|*PH N |Vl = o1).
ot (=) [p f-w]

The latter statement follows from the expansions

\ ro

|Vu| = (1+0(1)) and H=

B |

(1+0(1)),

8

which are straightforward consequences of (2.10). Hence, the estimate (2.11) is now justified.
Computing the derivative at the numerator of (2.11) (see also [6, Section 3]), one can continue
the estimate as follows

_ 92 2
thgfn F()Slimsup[—;(gpl))t/ IvWL—H>da
T t—+00 p—= 1—

AN = G
— ¢ / LZWUHQJFEJrﬁ do
|Vu|? 2 2
{u=ap(t)}
) H2
{u=cp ()} {u=cp ()}
< limsup /da —t/dcr
t—+o00
{u=cp(t)} {u=ap(t
= limsup E (16% - / H? do), (2.12)
t——+o0 4
{u=ap(t)}

where the last identity follows by the Gauss—Bonnet theorem, as, for large ¢, the level sets are
all diffeomorphic to a 2-dimensional sphere. Motivated by the above estimate, we now set

My(t) = % (167r —/ H2da),

{u=ap(t)}

and we analyze its behavior at infinity with the next lemma.
Lemma 2.5. Under the assumption of Theorem 2.2, we have

lim sup M, (t) < 8mmapm -

t——+o0
Proof. In the same spirit as in [29], we are going to compare the expression of M, with
an analogous expression in which the geometric quantities are computed with respect to the
Fuclidean background metric. For this reason, it is convenient to explicitly write the subscript
g, when a quantity is referred to the original metric. At the same time, we agree that if a
quantity is referred to the Euclidean metric, it will be let free of subscripts. The covariant
derivative with respect to g will be denoted by V, whereas the symbol D will indicate the
Euclidean covariant derivative. Finally, the level set {u = a,(¢)} will be simply denoted by
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M,(t) = 3 <167T —/Hg dag>.

P

>t. With these agreements,

Our first task is to obtain an expansion for the g-mean curvature H, of 3; in terms of its
Euclidean mean curvature H. In order to do that, we work in an asymptotically flat coordinate
chart, like the one of Definition 2.1. As the unit normal vectors to a regular level set ¥; are
given by

Vu q Du
Vg = —— an V= ——"),
T |Vl [Dul
the mean curvatures are readily computed,
» - ViViu y . .. D;Dsu
H, = (¢¥Y — v tJ and H = (69 — 7)) =12
o= (9 g g) Vul, ( ) Du|

respectively. The g—unit normal is related to the Euclidean one through the formula

vy = (14 222 o gk 4 o).

where i = §%~;),. Moreover, according to formula (2.1), there holds
g9 = 59— 5 + O,
where ~% = §%§%~,,, hence, it follows

g9 — V;Vg = 6 — I — (5““ - Vil/k) Vi ((W — ijg) + O(|z| 7).

Noticing that |DDu|/|Du| = O(|z|~!), by expansion (2.10) and setting % = 67 — v'v7, we
then arrive at

+O(|z|7%),

V(v v) ij 1 k ke DiDju
Hy = <1 + )H —n" <aj9ik - 5&9@)” =00 Ve \ZDzZ|

which implies

g 1 o D.D:u B
H, = (1+~(v,v)) H® —2H 7" (ajgik - §3kgz‘j>vk —2H Uan]E’Wﬁ +O(|z|™).

As the metric induced on ¥ by g can be written as g — C‘l%%ff, the area element can be
g
expressed as
1 ..
do, = [1 + 50+ O(yx\*Q)} do . (2.13)

Putting all together, the Willmore energy integrand then satisfies

77”7'-
Hz dog = [(1 +y(v,v) + e w) H?

DiDju

—_— 0 o. .
Do+ O™ do. (219)

3 1 .
—2Hn" (8jgik - §akgij>7/k — 2H "
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Now, we further refine the above expression in light of the asymptotic expansion of the p—
capacitary potential. Indeed, by means of formula (2.10) again, we readily compute

Dufu]ru N \alc\ (6 - I% S B’ +0(1) )
H = é' (1+0(1)) 219
which implies
2H ™1 i D|[])) \u ];an’me +o(|2] 7). (2.16)

Plugging this information in formula (2.14), we obtain

4 2 4 .. 1 _
Hz dog = H? + T YW v) = =i — =" (0j9ik — 50kgij vk +o(|z|7?)| do.
|| || || 2

To proceed, we now claim that
4 2 . 2, ) B
—5 W) = Sy = S (190igit — divs,w ") + oflz|?), (2.17)
|z || |z

where w is the differential 1-form defined by w = 'yjkukdxj and w' denotes its tangential
component. To prove the claim, let us first observe that

du du D;Dou
T T k 74 4
w=w +w) Dl w +v(v,v) Dul an it =1 “Dul
By means of the expansions (2.15) and (2.16), we compute
. . g D;Dju
17 0igjk1* = 07 O™ = 070wy — i e Dul
1
= divw — Q' — mn“'yzj +o(|z|7?)

1
= divg,w' + v(v,v)H — 777@]%‘3' +o(]z|7?)

. 2
= leZtWT + HV(V, V) | |77 ’Y’Lj +O(|x‘ 2)

Claim (2.17) then follows with the help of some simple algebra. As a consequence, the
expression for the Willmore energy integrand becomes

2 2 4 .. 2
Hg dog = [HQ — —divg,w' + —nwaigjkuk - —nmajgikuk + —n’]ﬁkgijl/k +o(|z|73)| do
|| || || ||
2 2 B
= [H2 - mlegth — mé” (959 — Orgij)V"* + o(|z| )| do . (2.18)

Before integrating this formula, let us observe that, since u = 1 — (t,/t)3=P/®P=1) on ¥, it
follows from expansion (2.10) that

1

Ein ¥+0(|x\ ) and 2 < |Vulfm < 5 on X,

t2
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for some positive constants A, B. Then, integrating |Vu|§71 on ¥; with the help of equa-
tions (1.3) and (1.4), we get

Arh! drch!
B A
and by virtue of equation (2.13), the same estimates hold for the Euclidean area || in place of

|X¢|g, up to a different choice of the constants. In view of these considerations, formula (2.18)
becomes

2 < |5y, < 12

2 2 .
Hg dog = [HQ - zdiVEth — Eé” (aigjk — akgij)uk + o(t_S)] do, on Y.

Now we have

M,(t) = 2 (1677 —/Hgdag>

¢
t 2 1 . T 1 i k
= 1 16w — H*do | + 5 leth do + 5 57(8¢gjk — 8kgij)1/ do + 0(1) .
t Et Et

The first summand in the right hand side is nonpositive by the Fuclidean Willmore inequality
(see [40]), the second summand vanishes by the divergence theorem and it is well known
(see [9, Proposition 4.1]) that the third summand tends to 8mmapy, as t — +o0. O

Combining Lemma 2.5 with the estimate (2.12), we get

éléllloo F(T;) = tLi«IFoo F,(t) < liril_is_gop My(t) < 8mmapm -

This proves the claim (2.6) and concludes the proof of the theorem. O
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