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ABSTRACT. The Prym map P in genus 6 is dominant and generically finite of degree 27. When

0

restricted to the divisor of curves with an odd semicanonical pencil 7, it is still generically
finite, but of degree strictly smaller. In this paper, we prove that Pg restricted to 7¢ is birational
and that the monodromy group over the image of 7¢ is the Weyl group W Ds. Thus, there
are two other irreducible divisors in the moduli space of Prym curves R¢ and the degree of Ps
restricted to them is 10 and 16. Moreover, we study the geometry of the divisor where Pg has
degree 10.

1. INTRODUCTION

It is a classical fact, dating back to Wirtinger, that a general principally polarized abelian variety
(ppav) of dimension < 5 is a Prym variety. In other words, the Prym map Py : Ry — Ag—1
between the moduli spaces R, (of étale double covers of smooth genus g curves) and Ag_; (of
(g —1)-dimensional ppavs) is dominant for g < 6. This allows to understand ppavs of dimension
< 5 in terms of geometry of curves, with applications ranging from unirationality of their moduli
space ([Don84, Ver84]) to the geometry of theta divisors ([IvS95, ITW17, FGSMV14]).

In the case g = 6, the Prym map is generically finite of degree 27, as proved by Donagi-Smith
[DS81]. Furthermore its monodromy group equals the Weyl group W Eg C Sa7, and Donagi’s
tetragonal construction endows its general fiber with the incidence structure of the 27 lines on a
smooth cubic surface ([Don81, Don92]). It turns out that the rich geometry of the map Pg can
be used to describe effective divisors on both moduli spaces Rg and As, and the monodromy
group of Pg over such divisors becomes an interesting question.

The purpose of this note is to study this problem in a concrete geometric example. More pre-
cisely, let T, C M, denote the divisor of (isomorphism classes of) curves C' with a semicanonical
pencil' (i.e., with a theta-characteristic L € Pic?~! C such that h°(C, L) is even and positive).
The preimage of 7, in R, (via the forgetful map © : Ry — M,) decomposes as the union
of two divisors, according to a parity condition. We denote these two divisors by 7, and 77
(for even and odd Prym semicanonical pencils, respectively), which are known to be irreducible
([IMPR23]).

Recent work by the first three authors [LNR23] addresses the study of the Prym map restricted
to 7, and 7. Whereas the case of 7 is relatively elementary, the analysis for 7 is substantially
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harder and is often related to rich geometry. For instance, the study of P5 |7-50 reveals enumerative
properties of lines on cubic threefolds ([LNR23, Section 6]).

In the case g = 6, it is proved that 776\7;50 is generically finite onto its image, of degree strictly
less than 27 (in contrast to Pg|7e). This opens the way to consider other effective divisors on
R, namely the irreducible components of Pyt (Ps(7?)). The degree of Pg restricted to each

component, as well as the monodromy group of Pg over Pg(7), arise as natural questions in
this context.

Our main result is:

Theorem A. Let Z C As denote the divisor obtained as the closure of Ps(T¢). Then the
preimage 776_1(2) consists of three irreducible components, namely:

(1) T¢, which is birational to Z: deg (Pe|7e) = 1.
(2) 77_11), where

D = {[C] € Mg | 3M € W (C) and z,y,z € C withwc ® M~' = Oc(2z + 2y + 22) }

is the divisor whose general point is a genus 6 curve admitting a plane sextic model with a
tritangent line. The equality deg (Pg|r-1p) = 10 holds.
(3) A third component L, which satisfies deg (Ps|z) = 16.

Furthermore, the monodromy group of 736_1(2) — Z equals W Ds.

Let us sketch briefly the argument. Since Z is not the branch divisor of Pg, the general fiber
of Py 1(Z) can be identified with the set of 27 lines on a smooth cubic surface: two elements in

the fiber are tetragonally related if, and only if, the corresponding lines intersect.

In a first part, we apply the tetragonal construction to a general element (C,n) € 7¢; indepen-
dently of the chosen g} on C, one always recovers two elements in 71D (with their tritangent
g}). Conversely, the tetragonal construction applied to a general element in 7D (after choos-
ing a tritangent g}) returns an element in 7¢ and another element in 71D (again with a
tritangent g}).

Since the general curve in D has a unique tritangent g}, this implies deg (776|7%o) =1, 7 'DcC
Ps 1(Z) and deg (Ps|,-1p) = 10. In particular, the monodromy group of Py ' (Z) — Z must be
contained in W Dj (the stabilizer in W Eg of a line).

In a second part, we prove that the monodromy is the entire W D5. We exploit the fact that

the Jacobian locus is contained in Z to consider an appropriate blown-up map Pg 1(Z) — Z ,
for which we can determine W D5 as its monodromy group. The idea is inspired by [Don92,
Theorem 4.4], but does not follow from the results there; some other arguments, involving degree
4 del Pezzo surfaces and transversality of 7 with the locus of coverings of trigonal curves, must
be employed.
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2. PRELIMINARIES

In this section, we review some basics that we will need later. Through the paper, we work over
the field of the complex numbers.

2.1. The Prym map and the divisors of Prym semicanonical pencils. Consider the
moduli space of smooth Prym curves of genus g

Ry ={(C,n) | [C] € My, n € JCI2)\ {Oc}}/ =

parametrizing étale, irreducible double covers of smooth genus g curves. Given (C,7n) € R4 and
f: C — C its associated cover, one can define the Prym variety P := P(C,n) as the connected
component of the kernel of the induced norm map Nmy : J C — JC that contains 0 ;& The
principal polarization on JC restricts to twice a principal polarization on P ([Mum?74, Section
3]), thus we obtain the Prym map

Pg : Rg — Agfl.

Let 7, C M, be the irreducible divisor given by curves admitting a semicanonical pencil, i.e. a
theta-characteristic L € Pic?~! C such that h%(C, L) is even and positive. In the literature our
semicanonical pencils are also called vanishing theta-nulls, but later we will use the theta-null

divisor in the context of abelian varieties, so we prefer to use this name to avoid any confusion.

By using the forgetful map 7 : Ry — My, we consider the following irreducible divisors:

Ty ={(C,n) € Ry | C has a semicanonical pencil L with h°(C,L ®n) even}
Ty = {(C, n) € Ry | C has a semicanonical pencil L with ho(C, L @ n) odd} i

Thanks to the description of the singularities of the theta divisor of a Prym variety provided
in [Mum74, Section 7], it is known that P, maps 7, to the divisor 6,y C Agy—1 of principally
polarized abelian varieties whose (symmetric) theta divisor contains a singular 2-torsion point
of even multiplicity. More precisely, let

Pt = {M € Pic®2(C | Nm¢(M) = we and ho(é, M) is even}

be a presentation of the Prym variety in Pic?~2C. Then Xt = {M € P* | %(C, M) > 2} is
a “canonical” presentation of the theta divisor of P. This shows that an even semicanonical
pencil provides an easy example of a singular (exceptional) point in 3. The 2-torsion property

follows from the fact that 2-torsion points of P in Pic? C are, in P, the theta characteristics
of C lying in PT.
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In [LNR23, Theorems A-BJ, the first three authors showed that 7,6 = P, (6un) for g > 3 and
that ’7'go dominates Ay_1 as long as dim 7;0 > Ag—1. Furthermore, they proved that if g > 6
then the restrictions Pg|7e and Ps|7e are generically finite onto their image. In particular, when
g = 6, the Prym map 776\7;9 has generically degree 27, whereas 736|7%o has generically degree
strictly smaller than 27.

2.2. Brill-Noether loci on Prym varieties. Given an étale double cover (C,n) € Ry, one
can consider a Brill-Noether theory for the Prym variety P. This is due to Welters ([Wel85]),
who defined the Prym-Brill-Noether loci as follows:

V'(C,n) = {M € Pic¥2(C | Nm;(M) = wc, KO(C,M)>r+1, h°(C,M) = r + 1(mod 2)},

with the scheme structure defined by P+ N ng_Q(CN’) when r is odd, and by P~ N W5, _,(C)
when r is even (here P~ is defined analogously to P, by requiring an odd number of sections).

In particular, we have V°(C,n) = P~ and V1(C,n) = . Moreover, being T'(C) the theta-dual
of the Abel-Prym curve C inside P (which parametrizes the translates of C' C P contained in
the theta divisor), we have V2(C,n) = T(C) if g > 4 and C is not hyperelliptic ([LN13]).

If (C,n) € T and L is a semicanonical pencil on C' with hO(L ® n) odd, then f*L € VZ(C,n).
Moreover f*L is a singular point of V2(C,n) (see for instance [LNR23, Lemma 2.2]); if P~ is
identified with P(C,n) by using a theta-characteristic of C lying in P~, then V2(C,n) becomes
a symmetric subvariety of P(C,n) which is singular at a 2-torsion point.

2.3. Trigonal and tetragonal constructions, and the Prym map in genus 6. The clas-
sical trigonal construction due to Recillas [Rec74] provides a bijection between étale double
covers of genus g trigonal curves and tetragonal curves of genus g — 1. More precisely, the
Prym variety attached to a cover T — T of a trigonal curve is isomorphic, as a principally
polarized abelian variety, to the Jacobian of a curve X equipped with a gi M. Moreover, one
can recover T (with its natural involution) from JX as the locus of elements p 4+ ¢ € X(? such
that h%(X, M (—p —q)) > 0.

Similarly, Donagi [Don81] found the so-called tetragonal construction, which produces from an
étale double cover C; — Cy of a genus g curve C; with a fixed gi Mj, the data of two more
such covers of tetragonal curves (CNQ — C;, M;), i = 2,3, such that the three Prym varieties
P(C; — C;) are isomorphic. He reformulated in [Don92, Lemma 5.5] this construction in the

following way, which is more convenient for our purposes:

Lemma 2.1. There is a bijection between the following two sets of data:

(1) Triples (T,N,W), where T € Mgy is a trigonal curve, N is a g% onT and W =
{0, w1, pa, us} C JT[2] is a totally isotropic subgroup with respect to the Weil pairing.
(2) A tetragonally related triple {(Cy,mi, M;)}iz1,2,3 with (Ci,n;) € Ry and M; a g} on C;.

In this bijection, the triplet (T', N, ;) corresponds to (C;, M;) via Recillas’ construction, whereas
;i € (wi)t (j # i) corresponds to n; € JC;[2] via Mumford’s exact sequence describing the 2-
torsion subgroup of a Prym variety ([Mum74, Section 3]).
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Finally, let us recall the main properties of the Prym map in genus 6, as discussed in [DS81]
and [Don92]:

Theorem 2.2. The Prym map P : Re — As is dominant and generically finite, of degree 27.

Moreover:

(1) The general fiber of Ps can be identified with the set of 27 lines on a smooth cubic surface,
and two elements in the fiber are tetragonally related if, and only if, the corresponding
lines intersect.

(2) The monodromy group of Re over As is the Weyl group W Eg, the symmetry group of

the incidence of the 27 lines on a smooth cubic surface.

2.4. Compactifications. In order to compute complete fibres of the Prym map, it is convenient
to compactify the involved moduli spaces. Abusing notation, 7 will also denote the closure
of this divisor in Rg (the Deligne-Mumford compactification) or in Rj (Beauville’s partial
compactification by admissible covers). We will denote by P§: Ry — As Beauville’s proper
extension of the Prym map ([Bea77]).

Following [FGSMV14], we consider the rational Prym map P : Rg --+ A5 obtained by extending
the Prym map to the open subset of Rg lying over the locus of stable curves in Mg with at most
one node. Here As stands for the perfect cone compactification of As, whose rational Picard
group Pic(As)g is generated by the Hodge class L and the class D of the irreducible boundary

divisor. In [LNR23, Proposition 7.3], it was proved that the class of the divisor Z = Ps(7)
appearing in Theorem A is proportional to 10584 — 1320D.

Arguing as in loc. cit., it is easy to conclude that the fiber of Pg at a general point of Z is
contained in Rg and consists of 27 coverings, all different to each other.

3. PROJECTIVE GEOMETRY OF TRIGONAL CURVES OF GENUS 6

In this section, we present some results on genus 6 curves, all of them related with trigonal
curves. First, we consider the locus D in Mg of curves which can be represented as plane
sextics (with four nodes) with a tritangent line. We will easily prove that the trigonal locus
./\/lé”g C Mg is contained in D. As we will see in the next section, these sextics appear naturally

when we apply the tetragonal construction to elements in 7.

Definition 3.1. Let D’ be the moduli space of pairs (C, M) with C € Mg and M € Pic* C,
such that h%(C, M) = 2 and there exist three points z1,rs, 23 € C satisfying wec @ M~! =
Oc(2x1 + 2x9 + 223). This is a locus in the moduli space of genus 6 curves with a marked gi;
we define D C Mg as the closure of the image of the forgetful map restricted to D’.

We have the following inclusion:

Lemma 3.2. The trigonal locus is contained in D.

Proof. Let T € Mg be a general trigonal curve, and let N denote the g% on T. On the one
hand, h%(T,wr ® N=2) = h°(T, N?) — 1 by Riemann-Roch. On the other hand, since 7T is not

hyperelliptic we have h(T, N?) < 4, whereas the natural inclusion Sym? H(T, N) ¢ H(T, N?)
yields h?(T, N?) > 3. Tt follows that |wy ® N~2|is a g} on T, which proves the result. O
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Observe that, geometrically, a non-trigonal (C, M) lies in D’ if the image of the curve by the
morphism attached to we ® M1 (a plane sextic with four nodes) has a tritangent line. There
are four additional tetragonal series on C, by considering the pencils of lines through each of
the nodes. Recall that generically, a curve of genus 6 has five g. We fix one of the nodes p and
denote by M,, the line bundle attached to the pencil. Since the canonical series corresponds to
the cubics through the four nodes, the linear series |we ® M, 11'is cut out by conics through
the other three nodes. Then (C, M,) € D’ if, and only if, one of these conics is tangent to C' at
three points. The next proposition asserts that this is not possible generically.

Proposition 3.3. For a general plane sextic with four nodes and one tritangent line (at three
smooth points of the sextic), there are no conics passing through three of the nodes and tangent
to the sextic in three smooth points. In other words, the forgetful map D' — D has degree 1.

Proof. Since the existence of a tritangent line and a tritangent conic (passing through three of
the four nodes) are closed properties, it is enough to exhibit a sextic with (at least) four nodes
and one tritangent line for which such a conic does not exist.

We consider a smooth plane quartic D C P? with a fixed bitangent line I. Set P € [\ (IN D) and
choose two different lines r1, 7o, with P € r{Nrg and I # 71, ro. Our sextic is S = DUryUrs, and
the four nodes are two points in D Nr; and two points in D Nro. The line [ is, by construction,
tangent to S at three points different from the nodes. A conic through three of the nodes will
be tritangent to S (at three points different from the nodes) if passes through some other point
in ;N D and it is bitangent to D. We want to see that for a general choice of P and ry, 79, this
conic does not exist for S.

To this end, we define two natural sets in the symmetric product D® of the quartic. First we
consider [ ZO to be the closure of

{(:El + x9,x3+ x4) € D@ x D®? | x129, x324 are different lines and zyxe Nz3xy € l} ,
and let I; be the image of Il0 under the addition map D® x D@ — D@ This closed set has
dimension 3, and parametrizes sets of four nodes in a sextic of the form D U7y U rs.
The second set W, is defined as the preimage of the surface 2D?)  Pic* D by the surjective
map (with 1-dimensional general fiber)

¢ :DW 5 Pic* D; Ew Op(2H — E),

where H is the divisor obtained by intersecting D with a line. Notice that W parametrizes sets
of 4 points in D such that there is a bitangent conic through the points.

To conclude the proof, we only need to show that I; and W are different threefolds inside
D@, More precisely, it is enough to see that I; is not contained in W. This is an immediate

consequence of the following claim.

Claim. The map 1 restricted to I; is dominant.

Indeed, let E = p; + ...+ ps € D@ a general effective divisor of degree 4 in the quartic D.
That is, Op(E) is a general element in Pic! D. Let fg: D — P! = PH%(D,2H — E)* the map
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sending € D to the conic through pi, p2,ps3,p4s and z, and let I'y C D® be the closure of the
set of pairs x + 2/ with fg(x) = fr(2/).

There is a natural involution vz in I'g and a natural I'y — P! of degree 6. We denote by T the
quotient I'g/vg. Note that Tx is trigonal and parametrizes the vertices of diagonal triangles
of sets of vertices V1, Va, V3, V4 such that p1, po, p3, pa, V1, Vo, V3, V4 lie on a conic. In particular,
Tg can be seen as a curve in the same projective plane. Then, consider a point in T NI. By
construction, there is an element in [; mapping to E. Hence, 7, is dominant. O

Remark 3.4. It will follow from Theorem A that D is an irreducible divisor of M.

In the second part of this section, we consider trigonal curves of genus 6 as curves of bidegree
(3,4) in P! x P!, Indeed, for a trigonal curve (T, N) of genus 6, wr ® N~2 is a g} and we can
consider the map T'— P! x P! provided by wr ® N~2 and N in each factor.

Let C34 be the set of all smooth (3,4)-curves in P' x P!, modulo the action of the linear
transformations in each projective line. Observe that dimC®*% = dim Mg”g = 13, and there is
a birational map Mé”g ——5 3,

For later use we need to study those curves which are bitangent to a vertical line. We define
Cég’4) c C3% as the closure of the set of classes of curves C' € |Op1yp1(3,4)| for which the first

projection C' — P! has a fiber of the form 2z + 2y. The general element of the preimage in
./\/lé”g is a curve T whose unique g%,, N, satisfies that wy ® N2 has a divisor of this form.

Proposition 3.5. The set C,S3’4) (and its preimage in ./\/lémg) s a generically reduced divisor.

Proof. We use coordinates ([z : y],[u : v]) in P! x P!, We consider the following 1-dimensional
family of (3,4)-curves V = {P,(z,y,u,v) =0 | a € C} C |Op1yp1(3,4)|, where:

Po(z,y,u,v) = (2 + y3)u? — 223030 + (1 — a)23u?0? + 2az3uv® + (—ax® + 2%y + ).

By abuse of notation, we still denote by P, the curve with equation P,(z,y,u,v) = 0. Notice
that the class of Py determines a general point inside CéSA) since it is smooth and Py(1,0,u,v)

has two double roots.

It is a well known fact from polynomial algebra that an equation of the form Au* + Bu3v +
Cu?v? + Duv?® 4+ Ev* = 0 is biquadratic if, and only if, the following two equations (in terms of
the coefficients) hold:

A(A,B,C,D,E) = 256 A3FE3 — 192A? BDE? — 128 AC?E? 4 144A*CD*E — 27A*D*
+ 144AB*CE? — 6AB*D?E — 80ABC?DE + 18ABCD? + 16AC*E
—4AC®D? — 27B*C? + 18B3CDE — 4B3D?® — 4B?C3E + B*C*D? =0,
d(A,B,C,D,FE) = 64A%E — 16A%C* + 16AB?C — 16A’BD — 3B* = 0.
By replacing A = 23 +y3, B = —223, C = (1—a)2?, D = 2023, E = —ax? + 2%y +y3, we obtain
the family of equations Ay (z,y) = 0,dq(z,y) = 0, depending on the parameter . By using
resultants it is not hard to see that there is no « # 0 and near 0, such that A, and d, share
a root. Therefore, for these a, P, has not a vertical bitangent line, in particular Py(x,y, u,v)

and P,(z,y,u,v) are not projectively equivalent. Thus, V defines an actual curve around the
class of Py in C34),



8 MART{ LAHOZ, JUAN CARLOS NARANJO, ANDRES ROJAS, AND IRENE SPELTA
Consider the P'-bundle
W = {(P.,Da) | Do € gi = |Kp, —293|} =V
ay Ya e 94 o g3 .

Around Py € V we have a section of this P'-bundle given by the fiber at the point [z : y] = [1 :
0] € P!, which is given by the zeroes of the polynomial:

(u —v)?(u? — av?).

On this section we always have a double root, hence the intersection with the preimage of Cé3’4)

corresponds to the locus where the corresponding homogeneous degree 4 equation has a second
double root. Due to previous discussion we have to impose the equation d,(z,y) = 0, which in

our case is:

~16a” — 320v.
Since the linear term of this polynomial in « is not zero, we conclude that the locus C£3’4) is
reduced. O

Remark 3.6. As suggested by Jieao Song, one could prove alternatively this proposition by
checking that the hypersurface in |Op1 «p1(3,4)| of curves with a vertical bitangent line is integral
of degree 24. Indeed, this hypersurface is dominated by the incidence variety

{(Jao : a1], F) € P! X [Opiyp1(3,4)] : F(ag,a1,u,v) is a perfect square in u,v},

which has a structure of P'°-bundle over P! x P? (here P? is parametrizing perfect square
polynomials of degree 4 in u, v); hence both, the incidence and the hypersurface, are irreducible.
A Chern class computation says that the degree of the hypersurface is 24; then, by picking a
random pencil in |Op1 yp1(3,4)| with Macaulay?2, one finds 24 distinct intersection points, which
proves that the hypersurface is also reduced.

4. THE TETRAGONAL CONSTRUCTION ON 7T¢’

Given the structure of the Prym map in genus 6 (see Theorem 2.2), in order to describe
Py 1(736(760)) it becomes essential to understand the tetragonal construction applied to a general

element in 7. This was partially done in [LNR23, Proposition 7.2, where it was proved:

Proposition 4.1. Let (C;,n;, M;) (i = 1,2,3) be a tetragonally related triple of smooth Prym
curves (Cy,m;) € Re with a g M; on C;. If (C1,m) € T is general, then JCq, JC3 € P7(TF).

More precisely the pairs (Co, M), (Cs3, M3) correspond, under Recillas’ trigonal construction,
to two covers (T, p2), (T, u3) € T of the same trigonal curve T of genus 7. It is thus important
to understand Prym varieties of covers of trigonal curves endowed with an odd semicanonical

pencil. This is the content of the next proposition:

Proposition 4.2. Let (T, u) be a trigonal, non-hyperelliptic Prym curve of genus g > 6, and
let C be the curve of genus g — 1 (endowed with a g5 M) obtained by trigonal construction. If
(T,p) €Ty, then

we @M1 200 (201 + ... +74-4))

for some x1,..., 144 € C.
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Proof. We will exploit the fact that (a suitable translate of) the Prym-Brill-Noether locus
V2(T, 1) is symmetric with a singular 2-torsion point, since (T, 1) € 77 We have
VAT, 1) 2 Wys(C) U (—W,4(C))

(see [Hoel2, Section 4.C]). More precisely, recall that the double cover T — T can be canonically
embedded in Pic? C as

T={p+qeC® | W(L(-p—q) >0} c C?® = Pic*C,
Thus, for a fixed pg + qo € f, we can consider the (non-canonical) Abel-Prym curve
T < Pic’C, p+q—Ocp+q—po—q).
Using this embedding, we have a model of V(T 1) in Pic? =2 C as the theta-dual of T*
VAT, ) = {€ € Pier2C | T+ ¢ € O}
(where ©¢ C PicY~? C denotes the Riemann theta divisor), which consists of two components:

o Wy—4(C) + po + qo-
o Ko —rg— 59— Wy_4(C), where rg, so € C satisty M = Oc(po + qo + 0 + so)-

Note that if C' is non-hyperelliptic, then W,_4(C') does not admit a symmetric translate. Indeed,
suppose that Wy_4(C)—a = —W,_4(C)+a, that is, there exists o such that for all z1+.. . 4244
there exists y1 + ...+ yg—4 such that 2o =z +... +24g—4 +y1 + ...+ yg—4. Then ro(C, 2a) >
g —4 4+ 1, and since dega = 2g — 8, this implies that the Clifford index of C is 0, hence
hyperelliptic.

Therefore, W,_4(C) does not admit symmetric translates and V?(T,u) C Pic?~2C becomes
symmetric exactly when its two components are exchanged by the involution L — we ® L™! on
Pic9™2 C (recall that in the torsor Pic?~2 C of JC, the inversion map —1 corresponds to taking
the adjoint line bundle). This is equivalent to translate by a € Pic’ C' such that

Wy—a(C) +po+qo+ = Wy_4(C) + 19+ 50 — a,
namely a®? = Oc(rg + 5o — po — qo)-
Note that any theta-characteristic on C' (which now plays the role of a 2-torsion point in
Pic9~2 ) lying in this symmetric model of V(T 1) is automatically a singular point of V(T 1)
(since it lies in both components). The condition of Wy_4(C) 4+ po + qo + @ containing a theta-

characteristic is easily seen to be equivalent to the existence of z1,...,24_4 € C such that
2(z1 + ...+ 2y-4) € lwec ® M|, which finishes the proof. O

By combining the two propositions above, we obtain the following relation between 74 and the
locus D introduced in section 3:

Corollary 4.3. Let (C;,n;, M;) (i = 1,2,3) be a tetragonally related triple of smooth Prym
curves (Ci,m;) € Re with a g M; on C;. If (C1,m) € T is general, then the pairs (Ca, Mo)
and (Cs, Mz) belong to D'.

An immediate consequence of this discussion is:
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Corollary 4.4. The locus D C Mg is a divisor.

Conversely, a general element in 7—'D (with no condition on the 2-torsion line bundle!) is

tetragonally related to a Prym curve in 7¢:

Proposition 4.5. Let (C;,n;, M;) (i = 1,2,3) be a tetragonally related triple of smooth Prym
curves (Cy,m;) € Re with a g5 M; on C;. If (Ca, Ma) € D' is general, then we have (C1,m1) € TY
and (03, Mg) eD.

Proof. Let T € M7 denote the trigonal curve and {0, u1, o, s} C JT[2] the totally isotropic
subgroup associated to the tetragonally related triple by Lemma 2.1, so that P(T, u;) = JC;

under Recillas’ construction.

By arguing as in the last two paragraphs of the proof of Proposition 4.2, one sees that the
assumption (Co, My) € D’ is equivalent to V2(T,u2) having a symmetric translate with a
singular 2-torsion point. We claim that (7', o) € 7.

Indeed, let f : To — T be the étale double cover corresponding to (T, p2). When V(T up) is
translated from P~ (T, uz2) to the actual Prym P(T, us), the symmetric models for V(T uz)
are obtained with translation by a theta-characteristic of 7' lying in P~ (T, u2). Such a theta-
characteristic is of the form f*Lp, for some theta-characteristic Ly on T. Since f*Lp €
P~(T, p2), we have h®(Lr) + h°(Ly ® p2) = hP(f*Ly) > 3 is odd. Hence (after possibly
replacing Ly by Ly ® us), we have one of the following:

e Either Ly is a semicanonical pencil such that L7 ® pg is odd, which implies (T, o) € T7.
e Or Ly is an odd theta-characteristic with h°(Ly) > 3. This implies that 7 has Maroni
invariant 3 (see [OV05, Proposition 3.2]), which is impossible if (Cq, M>) is a general
element of D', since the locus of trigonal genus 7 curves with Maroni invariant 3 has

dimension 13.

Now by the Riemann-Mumford relation (see [Mum71] or [Har82, Theorem 1.13]), we have
h(T, Ly) + (T, Ly ® 1) + h(T, Ly ® p2) + h°(T, Ly ® p3) =0 (mod 2)

(here we use that ug = 1 ® pg), which implies that Ly ®p; and Ly ® us are theta-characteristics
of distinct parities.

Say (T,p1) € T and (T,u3) € T°. Then on the one hand, the pair (Cs, M3) lies in D’ by
Proposition 4.2 and, on the other hand, JC; = P(T,pu1) € Opui C Ag, namely C1 € Ts.
Moreover, since 7¢ is closed under the tetragonal construction (see [LNR23, Proposition 7.2]),
it follows that (C1,m1) € 7, which finishes the proof. O

Since the general C' € D has a unique g} whose adjoint defines a plane with a tritangent line
(see Proposition 3.3), we obtain the following part of Theorem A:

Theorem 4.6. Let Z C As the divisor obtained as the closure of Pe(T¢). Then:

(1) The restricted Prym map Ps|7e is generically injective.
(2) 771D C Py H(Z), and deg (Ps|,-1p) = 10.
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Proof. Recall that, in the general fiber of Pg, the tetragonal relation equals the incidence relation
on the 27 lines of a cubic surface.

By Corollary 4.3, starting with an element of (C1,71) € 7, we obtain 10 elements of the fiber
which lie in 771D (by tetragonal construction with any of the five gi’s of C1). To determine
the rest of the fiber, we must fix any pair (C2,n2), (C3,n3) tetragonally related to (C1,n1), and
apply the tetragonal construction to (Ca,72) and (C3,n3) by using the rest of the gi’s on Co
and C3. By Proposition 3.3, Cy and C3 have no more “tritangent g}’s”, hence the tetragonal
construction can’t bring us back to 7 (again by Corollary 4.3). Therefore (C4,n;) is the unique

element of the fiber which lies on 7, which proves (1).

In order to prove (2), observe that for any C' € D and n € JC3 \ {O¢}, (C,n) is tetragonally
related to an element in 72 (by Proposition 4.5). This implies 7~'D C Py '(Z). Furthermore,
deg (Pg|r—1p) = 10, since Corollary 4.3 and Proposition 4.5 show that elements of 771D in the
fiber are exactly those tetragonally related to the unique element of 7. O

Also note that from Lemma 3.2 and Theorem 4.6.(2) we directly obtain that

Corollary 4.7. The Jacobian locus is contained inside Z.

5. MONODROMY ARGUMENT

In this section we compute the monodromy group of Pz *(Z) — Z. Note that Theorem 4.6.(1)
already shows that, as a subgroup of the monodromy W Eg of the entire Prym map Pg, it is
contained in the stabilizer W Dj5 of a fixed line.

We start by recalling the geometric objects in the fiber of Pg over the Jacobian locus of As, as
they are introduced in [DS81]. Then we adapt part of Donagi’s strategy ([Don92, Section 4])

to our context.

Let X be a general smooth curve of genus 5. The canonical map embeds X in P* = PH(X,wx)V
as the complete intersection of three quadrics; we will denote by Ix(2) the vector space of the
equations of the quadrics containing X . The singular quadrics in |Ix(2)| = P? define a smooth
plane quintic I', which admits the Brill-Noether curve W41 (X) C JX as an étale double cover;
over a singular quadric cone Q € T, one has two g}’s (adjoint to each other) swept out by the
two families of 2-planes on Q.

By Recillas’ construction, there is a trigonal (T, 1) € Rg attached to any M € Wj(X). The
isomorphism P(T,u) = JX provides a natural identification HY(T,wr ® u) = H°(X,wx) of
their tangent spaces at the origin. By considering the Prym-canonical embedding of T" in

PH(T,wr @ pn)" =P =PH(X,wx)",

quadrics of |Ix(2)| cut on T its unique basepoint-free g (namely K1 — 2g3) plus a base locus
which is the ramification locus R of the g%. Furthermore, the singular quadric Qs € I' associated
to M is the unique quadric containing both X and T' ([DS81, Part III]).

Now let Rtgig C Ry denote the closure in R of the locus of double covers of smooth trigonal
curves, and let J C As denote the Jacobian locus. Let JX be a general element in 7, and
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let (T, pu) € Rgﬂg be a smooth element in Py *(JX). If N denotes the gi on T, then we have

canonical identifications:
N}/.A5,JX = IX(2)7

RIS R (o) H(T,wi(—R)) 2 H°(T,wr ® N7?)

(see [Gri70] and [DS81, §II1.4 & Appendix], respectively).
Proposition 5.1 ([DS81, Corollary 4.3]). The projectivization of the codifferential of Pg

(5.1) dPs: N7)a5.0x = N%g”g/Re,(T,u)

sends a quadric of |Ix(2)| to its intersection with T (minus the ramification R). Namely, it is
the projection from the quadric Quy € T' (containing both X and T ) to a supplementary line.

Remark 5.2. It follows that the points of ]P( Rris /Re,(T,u)) o P(/\/'Rérig /RG,(T,,LL)) are in corre-

spondence with degree 4 del Pezzo surfaces containing X and contained in Q.

In [Don92, Section 4], Donagi considers a blown up map ﬁé, obtained by blowing up Ry and
As along several geometric loci. This enables him to prove Theorem 2.2.(2). The map ﬁé is
generically finite over the strict transform J of the Jacobian locus, and he also proves that W D5
is the monodromy of 75é over J. For the convenience of the reader, we sketch the argument for

the second assertion. The picture is the following:

P

(5.2) ﬁgi‘q C BlRériguRQ+ Rg Bls As D .7

|

trig /
REW C R,

As D T
Ps
Here RQ™ is a component of the locus of double covers of plane quintics, and 756 is the blown
up map from the blow up of Ry along Ry ™ URQ™T to the blow up of As along the Jacobian

locus J. We denote by RO , Rémg and J the corresponding exceptional divisors. Then:

e The fiber of J over a general Jacobian JX € 7 is ]P)(NJ/A57JX) >~ |Ix(2)]V, namely the
set of degree 4 del Pezzo surfaces containing X.

e The fiber of R§™ over a general (T,u) € Ry is ]P)(NRgrig /Re,(T,u))' By Remark 5.2
this is the set of degree 4 del Pezzo surfaces containing X and contained in the singular
quadric Qpy, where M € W} (X) is obtained from (T, 1) by Recillas’ construction.

If Ps(T, ) = JX, then the induced map at the level of exceptional divisors is clear in terms of
this description.

Let (X, S) be a general element in J , namely X € Mj is general and S is a degree 4 del Pezzo
surface containing the canonical model of X. The preimage under 73{3 of (X,S) consists of 27
points: one element in @Jr, its 10 tetragonally related elements (all of them in ﬁg”g ) and 16
Wirtinger covers (corresponding to the 16 lines in S). Therefore, the monodromy group of ﬁé
over J , as a subgroup of the entire monodromy W Fjg, is contained in W Ds.
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In order to conclude that it equals W Ds, one observes that by fixing a general curve X € M5
and considering all degree 4 del Pezzo surfaces containing X, one obtains all (isomorphism
classes of) degree 4 del Pezzo surfaces. Since the monodromy group of the universal family of
16 lines on smooth degree 4 del Pezzo surfaces is isomorphic to W Ds, the assertion follows.

Now we adapt these ideas to study the monodromy of the Prym map restricted to the preimage
of Z. We prove the following theorem which is part of Theorem A.

Theorem 5.3. The monodromy of Pg: 736_12 — Z is WDs.

Since Z contains the Jacobian locus J by Corollary 4.7, we can consider Z =Bl 7 Z which is
the strict transform of Z in Bl L7 As. If we want to study the monodromy over Z, it is enough
to consider paths inside Z N J (the exceptional divisor of Bly Z = Z).

To this end, it is absolutely essential to understand the normal bundle N7 /z at a general point
of J. Naively, we can consider the diagram

P

tmg ﬁTO C B]. t'r‘zngo 7%0 — BIJZ D) jﬂZ

|

REINTL C T ZoJ.

6

(we warn the reader that this diagram is not the analogue of (5.2), where the entire blown up
map is depicted). Since P§ defines a birational map between 7 and Z, we can identify the
normal bundle N g/z at a general point of 7 with the normal bundle NRgngm%,, JTo

Before going to the proof of Theorem 5.3, we need two results about the intersection Rgig NTg.

Lemma 5.4. The intersection Rgig NTg is generically transverse.

Proof. Since Rg — Mg is étale, it is enough to prove that the intersection ./\/l6 "9 Tg s
transverse. We claim that the general point in thg N Tg consists of a trigonal T" € Mg such
that its unique gi N satisfies that N(z + y) is a semicanonical pencil, for some z,y € T.

Indeed, let T € thg be non-hyperelliptic and N € W4 (T), and suppose that L is a sem-
icanonical pencil on 7. We want to prove that L ® N1 is effective. This is equivalent to
(T, L& N) > 4, since h°(T, L& N~1) = h%(T, L® N) — 3 by Riemann-Roch and Serre duality.

If the multiplication map
pry : HY(L) ® HY(N) — H(L ® N)
is injective, then h%(L ® N) > 4. Otherwise, by the basepoint-free pencil trick 0 # ker(uz n)

HY(N ® L‘l( )), where B is the base locus of L. In particular, B has degree 2 and L(—B)
defines the gi N, which also proves the claim.

Our claim implies that the general point in ./\/lmg N7 can be interpreted as a curve of bidegree
(3,4) in P! x P!, whose g} admits a fibre of the form 2z + 2y. In other words, it gives a point
of Cy(3,4). Thus, the transversality follows from Proposition 3.5. O

We also want to prove that the intersection ng N T¢ is still dominant over 7.
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Remark 5.5. Let us observe that combining Recillas’ birational map together with Proposi-
tion 4.2, we have that giving a general element of Rg”g N T is equivalent to giving a general
pair (X, M) such that X € M5, M € W}(X) and wy = M (2p + 2q) for some p,q € X.

Proposition 5.6. The map Pj: Rg”g NTg — J 1is generically finite, hence dominant.

Proof. According to Remark 5.5, we need to show that the forgetful map
{(X,M) | X € M5, M € WH(X), wx = M(2p+ 2q) for some p,q} — M

is dominant (or equivalently, generically finite).

This follows from a cohomological computation. Indeed, let Ci C X (1) be the subvariety
parametrizing effective divisors of degree 4 on X which move in a linear series of dimension at

least 1. By [ACGHS5, Theorem p. 326], its fundamental class in N'(X®)) is
1
ch = (6% — 220)
2
where, as usual, z is the class of p+ X ®) for some point p, and @ is the class of the theta divisor
of JX (pulled back to X via the Abel-Jacobi map).

On the other hand, let Ay € X denote the image of the diagonal map
X2 X(4), p+q— 2p+ 2q.

By [ACGHS5, Chap. VIIIL, Prop. 5.1], we have that Ay = 4(322% + 62 — 1026). Therefore, it
follows from [Kou93, Lemma 1] that

el Ay =1042%0% + 20" — 2426° — 1282360 = 240,

which gives the finite degree we were looking for. U
Now we are ready to prove the main theorem of this section.

Proof of Theorem 5.3. By Proposition 5.6, given X a general smooth curve of genus 5, there
exists a finite number of (T, u) € Ry NT¢ (with T smooth) such that JX = P(T, ).

Let us choose such a (T, ) € RE™ N T, and let M € W} (X) be the g} obtained in X by
applying the trigonal construction to (7, u). First we claim that the map (5.1) factors through

* * = *
NJ/AE),JX - NJ/Z7JX - NRéTig/R67(T7M).

The factorization is clear, thus we need to prove that the second morphism is bijective. If X is
a general curve of genus 5, it is enough to prove that Z is not singular at JX. Since Z is not
contained in the branch divisor of P and we have a birational map 7 — Z (by Theorem 4.6),
by Proposition 5.6, we get

NG ~ N .
J/2.JX Re INTL T (Tope)

Since the intersection Rg”g N7 is generically transverse by Lemma 5.4, we have

* ~ N*
_ ~ N
R NT/T(Tn) — 7 R /Re(T.pp)

which proves the claim.
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Now, as a consequence of the discussion after diagram (5.2), we have that the projectivized
normal bundle

P(N7/z,0x) = P(N7a50x) = Ix(2)]"

is identified with the pencil of degree 4 del Pezzo surfaces S containing X and contained in the
singular quadric Qu = Q er-1 € I' C [Ix(2)|. Let us also recall that, by Remark 5.5, the gj
wx ® M~ has a divisor of the form 2p + 2¢. In other words, the quadric cone Qs contains a
2-plane m C Qs such that S N7 is of the form 2p + 2q.

Finally, recall that by Theorem 4.6.(1) the monodromy group of Ps: Py 12z — Z is contained in
W Ds. Thus, if we prove that for any smooth degree 4 del Pezzo surface S C P* there exists a
2-plane m C P4 such that SN is of the form 2p + 2¢, we will be done because, even considering
paths inside ZnJ , we will still recover all (isomorphism classes of) degree 4 del Pezzo surfaces,
whose full symmetric group of line configuration is W Ds.

This holds true, since for every pair of distinct points p,q € S, we can consider the 2-plane

obtained as the intersection of:

e The hyperplane spanned by ¢ and the tangent 2-plane to S at p.
e The hyperplane spanned by p and the tangent 2-plane to S at q.

Any quadric cone containing this 2-plane will intersect S in an appropriate genus 5 curve, which
completes the proof. O

Proof of Theorem A. By Theorem 5.3 Py 1(Z) consists of three irreducible components, corre-
sponding to the three orbits of the action of W D5 C Go7 on the general fiber of 736\7)51(2).
Furthermore, these three components dominate Z with degrees 1, 10 and 16.

On the other hand, it follows from Theorem 4.6 that the irreducible component mapping with
degree 1 must be 7.2, and the irreducible component mapping with degree 10 must be 7='D. O
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