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Abstract

The goal of this note is to prove the Half Space Property for RCD(0, V) spaces, namely that if (X,d,m) is a
parabolic RCD(0, V) space and C' C X X R is locally the boundary of a perimeter minimizing set and it is contained
in a half space, then C is a locally finite union of horizontal slices.

The same result is proved for RCD (K, N) spaces, for any K € R and N € (1, 00), under the stronger assumption
that C' is the boundary of a globally perimeter minimizing set.

As a consequence, we obtain oscillation estimates and a Half Space Theorem for minimal hypersurfaces in
products M x R, where M is a parabolic smooth manifold (possibly weighted and with boundary), satisfying a
Ricci curvature lower bound.

On the way of proving the Half Space Property, we also extend to the RCD setting some classical results on
Green’s functions and parabolic manifolds.

Contents
1 Introduction
2 Preliminaries

1

2.1 Sobolev spaces and the RCD condition . . . . . . . . .. ...
2.2 Poisson problem and regular sets . . . . .. ... e e
2.3 Sets of finite perimeter . . . . . . . . L L e

Green’s functions in parabolic metric measure spaces
Proof of Theorem 1.1
Proof of Theorem 1.2

Applications

Introduction

11

22

31

37

In [55] Hoffman and Meeks proved the Half Space Theorem, stating that a connected, proper, non-planar minimal
surface in R? cannot be contained in a half space. Analogous results in the Riemannian setting were then obtained by
different authors ([53], [31], [30], [34], etc.) and in [72] Rosenberg, Schulze and Spruck gave the following definition.

Definition. A Riemannian manifold M has the Half Space Property if every proper minimal hypersurface S ¢ M xR
not intersecting M x {0} equals a horizontal slice M x {c}.

The study of this property, which generalizes the Half Space Theorem, is linked to the understanding of the
following more general problem: what are the conditions such that two minimal submanifolds S;, S2 of a Riemannian
manifold M must intersect? And if they do not intersect, do they influence each other’s geometry?
Classical results in this direction, aside from the Half Space Theorem, are the fact that the only positive solutions
of the minimal surface equation in Euclidean space are constant functions ([17]) and Frankel’s Theorem, stating that
two compact minimal hypersurfaces in a closed manifold with positive Ricci curvature must intersect ([37]).



More recently, in the aforementioned work [72], it was proved that the Half Space Property holds for parabolic
manifolds with bounded sectional curvature and the result was then extended to parabolic manifolds with a uniform
lower bound on the Ricci curvature in [27]. It was then proved in the very recent work [32] that even the lower
bound on the Ricci curvature can be removed, so that the Half Space Property holds for general parabolic manifolds.
We recall that a manifold is parabolic if it does not admit a positive Green’s function for the Laplacian and we
note that without the parabolicity assumption the Half Space Property fails in general, the catenoid in R* being a
counterexample.

The validity of the Half Space Property for parabolic smooth Riemannian manifolds with lower Ricci curvature
bounds and the recent generalization of Frankel’s Theorem to the setting of RCD spaces ([68]), i.e. non-smooth spaces
with a synthetic lower bound on the Ricci curvature, suggest that also the Half Space Property might hold in the
non-smooth setting.

We recall that an RCD(K, N) space is a metric measure space where K € R plays the role of a lower bound on the
Ricci curvature, while N € [1,+00) plays the role of an upper bound on the dimension; this class includes measured
Gromov-Hausdorff limits of smooth manifolds with uniform Ricci curvature lower bounds and finite dimensional
Alexandrov spaces with sectional curvature bounded from below. Moreover, since a hypersurface in a smooth
manifold is minimal if and only if it is locally the boundary of a perimeter minimizing set, it is natural, in the
non-smooth setting, to replace minimal hypersurfaces with local boundaries of local perimeter minimizers. Recall
that a set C' C X is locally the boundary of a perimeter minimizing set if, for every « € X there exists a (small) metric
ball B, (z) and a set of finite perimeter £ C X, minimizing the perimeter in B, (x), such that CN B,.(x) = 0EN B, (z)
(see also Remark 2.34).

We can now state the main results of this note.

Theorem 1.1. Let (X,d,m) be a parabolic RCD(0, N) space and let C C X x R. Then the following two assertions
are equivalent:

1. C s locally the boundary of a perimeter minimizing set, and C is contained in a half space, i.e. there exists
to € R such that C C X X [tg,0);

2. C is a locally finite union of horizontal slices, i.e. there exists a discrete set D C [tg,00) such that

C=JXx{d}.

deD

Under the additional assumption that C' is the boundary of a globally perimeter minimizing set, a result analogous
to Theorem 1.1 holds for possibly negative lower bounds on the synthetic Ricci curvature. This is the content of
Theorem 1.2 below (see also Theorems 5.8 and 5.9 for slightly more general results).

Theorem 1.2. Let (X,d,m) be a parabolic RCD(K, N) space and let E C X x R. Then the following two assertions
are equivalent:

1. FE is perimeter minimizing, it has connected boundary, and it is contained in a half space, i.e. there exists tg € R
such that E C X X [tg, 00);

2. E =X X [tg,00) for some ty > 0.

The previous theorems, in particular, are part of a wider class of recent results that aim at generalizing to the
non-smooth setting properties of perimeter minimizing sets ([14], [35], [20], [68], etc.). It is interesting to note that,
while in the smooth category the Half Space Property holds for parabolic manifolds even without the lower bound
on the Ricci curvature, the same is not true for metric measure spaces (see Example 5.10). In particular, in the
non-smooth setting, once we remove the RCD assumption, it is not clear which conditions should be imposed (in
addition to parabolicity) to guarantee the validity of the Half Space Property.

Specializing Theorem 1.1 to the smooth category, we obtain that the Half Space Property holds for certain free
boundary minimal surfaces on weighted manifolds with boundary. This is the content of Theorem 1.3. Given a
manifold (M, g) we denote by m, its volume measure and by d, its distance. If V' : M — R is a smooth function,
we say that the metric measure space (M",dg, e~V my) is a weighted manifold. A hypersurface S in the weighted
manifold M is minimal if it is a critical point of the weighted area functional. We say that the boundary of M is
convex if its second fundamental form w.r.t. the inward pointing unit normal is positive.



Theorem 1.3. Let (I\/I”7dg,efvmg) be a parabolic weighted manifold with convex boundary such that there exists

N > n satisfying
VV @ VV
Ricp + Hessy — YV eVy >0 onM)\OIM.
N —n
If S C M x (0,+00) is a properly embedded connected minimal hypersurface intersecting OM x R orthogonally, then
S is a horizontal slice.

The previous result is new already in the boundaryless weighted setting and in the framework of unweighted
manifolds with boundary.

A consequence of Theorem 1.2 is that the oscillation of area minimizing hypersurfaces in an appropriate class of
pointed manifolds grows with a uniform rate as one moves away from the base point in each manifold. This is stated
precisely in Theorem 1.4 below.

We say that a function P : [0, 4+00) — (0, 4+00) is a modulus of parabolicity if f;roo tP(t)~tdt = 400 and we say
that a pointed metric measure space (X,d, m,x) has modulus of parabolicity P if m(B,(x)) < m(By(x))P(r) for every
r > 0. We say that a hypersurface S C X is an area minimizing boundary in an open set A C X if the exists a set
E C A minimizing the perimeter in A such that 9EFN A =S5. If S C X x R and (x,0) € S we define the oscillation
of S as

Oscy - (S) :=sup{Jt| : (y,t) € SN B, (x) x (—r,r)}.

Theorem 1.4. Let K € R, let n € N, and let P be a modulus of parabolicity. For every t,r,T > 0 there exists
R > 0 such that for every pointed manifold (M™, g,x) with modulus of parabolicity P and Ricyr > K, and for every
area minimizing boundary S in Br(x) X (—R, R) containing (x,0), if Oscy »(S) >t then Osc, r(S) > T.

Remark. In Section 6 we actually prove a more general result dealing with weighted manifolds with boundary and
with a stronger notion of oscillation (see Theorem 6.8), but we preferred to state Theorem 1.4 in this form for the
sake of simplicity.

Now we comment on the proof of Theorem 1.1.

The proof of the implication 2 = 1 is a standard calibration argument, we will thus only discuss the implication
1=2.

The proof that we give is totally different from the ones covering the analogous results in the smooth setting. In
the works [72] and [27] the general principle is that if S C M X R is minimal and contained in a half space then, given
a compact set D # (), it will be possible to construct a solution to the minimal surface equation v : M\ D — R which
is bounded from below and is not constant if S is not a slice. The next step is then to prove a suitable generalization
of De Giorgi’s a priori gradient estimate for solutions of the minimal surface equation and to use the lower bound
on u to obtain a uniform bound on its gradient. Finally one combines the parabolicity of M with the bound on
the gradient of u to deduce that also the graph of u is parabolic, and since u is harmonic on its graph, by general
properties of parabolic manifolds, it has to be constant and S has to be a slice.

There are several points of this strategy that it is not clear how to adapt to the non-smooth framework. A key
issue is that the a priori gradient estimate on u under a lower Ricci curvature bound is a consequence of the second
variation formula for minimal surfaces, and such formula relies crucially on the smoothness of the ambient space.
Moreover, even if such estimate were available, the graph of a regular function on an RCD space is not known, in
general, to be an RCD space and so, losing even this mild regularity, it would be difficult to adapt the previous
technique, as it is based on the parabolicity of the graph.

Our proof is instead closer to the one used in [68] to generalize Frankel’s Theorem. The key idea taken from such
proof is that if M is a manifold with non-negative Ricci curvature and S is a minimal hypersurface contained in
M x (0, +00), then the function d := dg — dmx {0}, defined on M x (—o0,0), has negative Laplacian, it is positive and
if it is constant then S is a slice. Hence the goal is to use the maximum principle for super-harmonic functions to
show that d is constant. This is immediate if M is compact, as in this case d achieves its minimum on all the points
of the geodesic realizing the distance between M x {—1} and S.

If M is not compact, the argument is by contradiction. Exploiting the geometric properties of distance functions
and the super-harmonicity of d, one shows that if d is not constant, then there exist an open bounded set A C
M x (—00,0) and 7 > 0 such that

Ae™4>00n M x (—00,0), Ae 4> 7 on A



If the product M x R is parabolic, then there exists a continuous function ¢ : M x R — R such that
Ap>0o0on M x (—00,0), A¢p>-7TonA

which tends to —oo at infinity (as it happens on R and R? because of their parabolicity). As a consequence, the
function e~ + ¢ is sub-harmonic and has a maximum in M x (—oo,0]. Moreover, since e~9 increases as we move
down a vertical line, by constructing ¢ in an appropriate way we can assume that the maximum of e~ 9+ ¢ actually
lies in M x (—00,0). The maximum principle then implies that e~9 + ¢ is constant, contradicting the condition at
infinity on ¢.

If M x R is not parabolic the previous argument has to be modified, and working with metric measure spaces
instead of Riemannian manifolds becomes crucial. Consider on M x R the distance dy induced by the product
Riemannian metric and the measure my which is the product volume measure. Using the parabolicity assumption
on M and the particular form of the function e™9, it is possible to replace the measure m, with a measure m, such
that the product space (M x R,dy,1ity) is an RCD(K, N) space (possibly for K < 0), it is parabolic and, calling A
the Laplacian in this modified space, we have that there exists 7/ > 0 such that

Ae=¢>00n M x (=0, 0), Ae=94> 7" on A.

To conclude, we can now repeat the previous argument involving the construction of an auxiliary function ¢ and the
maximum principle that, in this case, is used on the modified space (M x R, dy,my).

This strategy works for RCD(0, N) spaces, but not on RCD(K, N) spaces when K < 0, as in this case it is not
true in general that the function d is super-harmonic. In particular, the problem of generalizing Theorem 1.1 to
RCD(K, N) spaces remains open. Theorem 1.2 is a step in this direction. For an overview of the proof of Theorem
1.2, we refer to the beginning of Section 5.

Finally, to implement the previously outlined strategy, we need to generalize to RCD(K, N) spaces some classical
properties of parabolic manifolds. This is obtained by extending the work done in [22], [68] and [21] on Green’s
functions in the non smooth setting. Theorems 1.5 and 1.6 are the main results in this regard. Given an RCD(K, N)
space (X,d, m) we denote by p; the corresponding heat kernel and we refer to Section 3 for the precise definitions of
Green’s functions, regular sets, and capacities.

Theorem 1.5. Let (X,d, m,x) be a pointed RCD(K, N) space with infinite diameter. The following are equivalent:
1. There is no positive Green’s function on X with pole x.

2. For every (z,y) € X x X we have f1+°° pi(x,y) dt = +o0.

3. There exists (x,y) € X X X such that f1+°° pe(z,y) dt = 4o00.

4. Let {B;}ien be an exhaustion of regular sets containing x. Let G be the Green’s function on B; with pole x.
Then for every y # x we have G (y) — +00 as i — +00.

5. For every compact set K C X, it holds Cap(K) = 0.
Theorem 1.6. Let (X,d,m) be an RCD(K, N) space. If there exists ©x € X such that

Foo t
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then X is parabolic. This condition is also necessary if K = 0.

The note is organized as follows. Section 2 contains preliminaries. Section 3 concerns the theory of Green’s
functions on RCD spaces and contains the proofs of Theorems 1.5 and 1.6. In Section 4, we rigorously prove,
following the previously outlined strategy, the Half Space Property for RCD(0, N) spaces, i.e. Theorem 1.1. In
Section 5, we prove Theorem 1.2, while in the final section we deal with applications in the smooth setting, proving
Theorems 1.3 and 1.4.
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Horizon 2020 research and innovation programme, via the ERC Starting Grant “CURVATURE”, grant agreement
No. 802689.



2 Preliminaries

Throughout the note we will work on metric measure spaces (X,d, m), where (X,d) is a separable complete metric
space where balls are precompact and m is a non-negative Borel measure on X which is finite on bounded sets and
whose support is the whole X. Given a smooth manifold (M, g) we denote by d, and m, respectively the distance
induced by g and the volume measure. Given an open set @ C X we denote by Lip(£2), Lip;,.(£2) and Lip,(Q)
respectively Lipschitz functions, locally Lipschitz and Lipschitz functions with compact support in Q. If f € Lip(Q),
we denote its Lipschitz constant by L(f). If f € Lip;,.(2) and z € 2 we define

: o |f(z) — f(y)|

lip(f) () : hr;lj;lp iy
Given a closed interval I C R, we say that a curve v : I — X is a geodesic if its length coincides with the distance
between its endpoints. Unless otherwise specified we assume that geodesics have constant unit speed.

We will consider pointed measured Gromov Hausdorff convergence of metric measure spaces, and we refer to [41]
for the relevant background. We recall that in the case of a sequence of uniformly locally doubling metric measure
spaces (X;,d;, m;,x;) (as in the case of RCD(K, N) spaces), pointed measured Gromov-Hausdorff convergence to
(X,d,m,x) can be equivalently characterized by asking for the existence of a proper metric space (Z,d,) such that
all the metric spaces (X;,d;) are isometrically embedded into (Z,d,), x; — x and m; — m weakly in duality with
continuous boundedly supported functions in Z. In this case we say that the convergence is realized in the space Z
(see [41]). Given a metric measure space (X,d,m) and = € X, we denote by Tan,(X) the (possibly empty) collection
of (isometry classes of) metric measure spaces that are pointed measured Gromov Hausdorff limits as r | 0 of the
family (X,r~1d, m(B,(z)) " 'm, x).

2.1 Sobolev spaces and the RCD condition

We now recall the definition of Sobolev spaces in the setting of metric measure spaces, the main references being
[25], [7], [8] and [40].

Definition 2.1 (Sobolev spaces). Let (X,d, m) be a metric measure space, 2 C X an open set and let p > 1. A
function f € LP(f2) is said to be in the Sobolev space W1P(Q) if there exists a sequence of locally Lipschitz functions
{fitien C Lip;y.(€2) converging to f in LP(Q2) such that

limsup/ lip(fi)? dm < 4o0.
Q

1—~+o00

A function f € L? (Q) is said to be in the Sobolev space W}'*(Q) if for every 7 € Lip,(Q) we have fn € WhP(Q).

loc loc

For any f € WLP(Q) one can define an object |V f| (a priori depending on p, but independent of the exponent in
the spaces that we will work on) such that for every open set A C 2 we have

J 19517 dm =i {tmint [ V()7 dm{ (), € L7(4) O it (A) 1 = Fllrca) =0}

The quantity in the previous expression will be called p-Cheeger energy and denoted by Ch,(f) while |V f| will be
called relaxed gradient. We define || f|lw1.»q) := [|f|lLr(2) + Chp(f). One can check that with this norm the space
W1LP(Q) is Banach. Later we will often write Ch in place of Chy for simplicity of notation. A deep result of Cheeger
[25] implies that if f € Lip;,.(X) then |V f| = lip(f), m-a.e., provided (X,d,m) is a Pl-space, so in particular this
holds for RCD(K, N)-spaces, N € [1,00). We now introduce functions of bounded variation following [66] (see also
[4])-

Definition 2.2 (Functions of bounded variation). Let (X,d, m) be a metric measure space and let Q C X be an open
set. A function f € L1(£2) is said to be of bounded variation if there exists a sequence of locally Lipschitz functions
{fi}ien C Lip,ye () converging to f in L!(€2) such that

limsup/ lip(f;) dm < 4o00.
1—+oo JQ

The space of such functions is denoted by BV(Q2). A function f € L, .(Q) is said to be in BV;y(Q) if for every
n € Lip.(©2) we have fn € BV(Q).



For any f € BV(2) and any open set A C £ we define

1D714) = int { T inf [ Wp(£,) din](F,) © L) O Lipie(A) 1o = flluca = 0}

One can check that the quantity in the previous expression is the restriction to the open subsets of € of a finite
measure. We define || f||gv(q) := || fllL1 (@) + |Df](£2). One can check that with this norm the space BV(X) is Banach.
A function f belongs to WH(Q) if f € BV(Q2) and |Df| < m. In this case we denote by |V f| the density of |Df|
with respect to m.

Definition 2.3. Let (X,d, m) be a metric measure space and let 2 C X be an open set. For every p > 1 we denote
by W5 (Q) the closure in WP(Q) of Lip,(Q).

The previous definition is particularly suitable for proper spaces, while other definitions are to be preferred if one
works without this assumption. Since we will work in the setting of RCD(K, N) spaces with N € [1,00) (and these
are proper) we do not consider more general definitions.

Definition 2.4 (Infinitesimal Hilbertianity). We say that a metric measure space (X,d, m) is infinitesimally Hilber-
tian if the space W12(X) is a Hilbert space.

1,1

1o (£2) we define the measurable

If (X,d, m) is infinitesimally Hilbertian and €2 C X an open set, for every f,g € W
function Vf - Vg: Q — R by
IV(f+9)P = V([ - 9)l?
1 .

As a consequence of the infinitesimal Hilbertianity assumption, the previously defined product of gradients is bilinear
in both entries. We then recall the definition of Laplacian in the metric setting.

Vf-Vg:=

Definition 2.5 (Functions with L? Laplacian). Let (X,d, m) be infinitesimally Hilbertian and let 2 C X be an open
set. Let f € WH2(Q). We say that f € D(A, Q) if there exists a function h € L() such that

/ghdm:—/Vg~Vfdm for anygéWé’Z(Q).
Q Q

In this case we say that Af = h in Q.
We also have the following more general definition.

Definition 2.6 (Functions with measure-valued Laplacian). Let (X,d, m) be infinitesimally Hilbertian and let Q C X
be an open set. Let f € Wlloi(ﬂ) and let p be a Radon measure on ). We say that Af = p in Q in distributional
sense if

/gduz—/Vgidm for any g € Lip,(€2).
Q Q

We now recall some properties of RCD(K, N) spaces, i.e. infinitesimally Hilbertian metric measure spaces with
Ricci curvature bounded from below by K € R and dimension bounded from above by N € [1,+00) in synthetic
sense.

The Riemannian Curvature Dimension condition RCD (K, co) was introduced in [8] (see also [40, 6]) combining
the Curvature Dimension condition CD(K, 00), previously pioneered in [73, 74] and independently in [64], with
the infinitesimal Hilbertianity assumption. The finite dimensional counterpart RCD(K, N) is obtained coupling the
finite dimensional Curvature Dimension condition CD(K, N) with the infinitesimal Hilbertianity assumption and was
formalized in [40]. For a thorough introduction to the topic we refer to the survey [1] and the references therein.
Let us also mention that in the literature one can find also the (a priori weaker) RCD*(K, N). It was proved in [33,
10], that RCD*(K, N) is equivalent to the dimensional Bochner inequality. Moreover, [23] (see also [63]) proved that
RCD*(K, N) and RCD(K, N) coincide.

We now recall the properties that we will use later on in the note. The RCD(K, N) condition implies that the
measure is locally doubling (see [73]) and the validity of a Poincaré inequality (see [71]). In particular if f is a locally
Lipschitz function on a RCD(K, N) space, its relaxed gradient coincides with its local Lipschitz constant lip(f) (see
[54, Theorem 12.5.1] after [25]).



We now recall a Bishop-Gromov type inequality for RCD(K, N) spaces that can be found in [74]. We define
Vie,n(r) == Nwn [ (sx,n(t))N =" dt, where wy is the volume of the N-dimensional Euclidean ball and

Nelsin (4/+5) K >0
SK7N(t):: r K=0

Mdsinn (1/55) K <0,
Proposition 2.7. Let (X,d,m) be an RCD(K, N) space. Then for every x € X and R > r > 0 we have

m(Bgr(r)) _ Vi n(R)
m(B,(z)) = Vin(r)

Remark 2.8. Let (X, d, m) be an RCD(K, N) space. Proposition 2.7, together with the explicit expression of Vi n(7),
implies that for every z € X and R > 0 there exists a constant C' > 0 such that m(B,.(z)) > Cr" for every r € (0, R).

<

The next theorem follows from [67, 21]. We denote by d. the Euclidean distance.

Theorem 2.9. Let (X,d,m) be an RCD(K, N) space. There exists k € NN [1, N], called essential dimension of X,
such that for m-a.e. x € X we have Tany(X) = {(R¥,d.)}. Any such point will be called a regular point for X.

The next result follows from [58, 43] (see also [9, Theorem 4.1]).
Proposition 2.10. Let (X,d,m) be an RCD(K, N) space of essential dimension k > 1. Then for m-a.e. x € X we

have
m(B,())

lim
’I‘k

r—0+

€ (0, 400).

The next proposition is taken from [60, Theorem 1.1].

Proposition 2.11. Let (X,d,m) be an RCD(K, N) space of essential dimension 1. Then X is isometric to a closed
connected subset of R or to S'(r) :=={x € R? : |z| =r}.

We now recall some properties of the heat flow in the RCD setting, referring to [6, 8] for the proofs of these results.
Given an RCD(K, N) space (X,d,m), the heat flow P; : L2(X) — L%(X) is the L?(X)-gradient flow of the Cheeger
energy Ch.

It turns out that one can obtain a stochastically complete heat kernel p; : X x X — [0, 4+00), so that the definition
of P(f) can be then extended to L* functions by setting

B(f)(a) = / F)pe(,y) dm(y).

The heat flow has good approximation properties, in particular if f € WH2(X), then Pi(f) — f in WH2(X); while if
f e L®(X), then P, f € Lip(X) for every ¢t > 0.

We conclude the section with two propositions on the heat kernel taken respectively from [57, Theorem 1.1] and
[57, Lemma 3.3] (see also [38]).

Proposition 2.12. Let (X,d, m) be an RCD(K, N) space. There exist constants C > 1 and ¢ > 0 such that for every
z,y € X and every t >0

7d2(xay)
Cm(B_;(x)) eXp{ 3t

—d(a,
fct} <pi(z,y) < m(BSZ(QTD exp{ d 5(t v) +ct}.

Moreover for every x € X we have that pi(x,-) is locally Lipschitz in X\ {z} and for m-a.e. y € X and everyt >0

_dz(‘rv y)
< \/im(B\/g(a:)) exp { 5 + ct}.

lip(pe(,-))(y) = [Vpe(z,-)|(y)

If K =0 we can take ¢ = 0 in the previous estimates.



Proposition 2.13. Let (X,d,m) be an RCD(K, N) space with K < 0 and N € [1,400). For any 0 < s <s+1<
t < 400 and x,y,z € X it holds

d(z,2)2y /1 — /3 \N/2, 1 ¢2Ks/3 | N/2
pt(l‘7y) > ps(fl%z) eXp{ - 262K/3 }(1 _ €2K/3) (m)

Finally, we recall a tensorization property of infinitesimally Hilbertian spaces that can be found in [12] and [8].
Given f: X xR — R and (z,t) € X x R we denote by f* and f® respectively the restriction of f to X x {t} and to
{z} x R. We denote by dx and my respectively the product distance and the product measure in the space X x R.

Proposition 2.14. Let (X,d,m) be an RCD(K, N) space and let f € Lip(X x R). Then we have

IVFI2(z,t) = |[VfE2(t) + [V (z)  for my-a.e. (x,t) € X xR.

2.2 Poisson problem and regular sets

For the results of this subsection, unless otherwise specified, (X,d, m) is an RCD(K, N) space and 2 C X is an open
set. The next proposition is the maximum principle on RCD(K, N) spaces and can be found in [44].

Proposition 2.15. Let Q C X be open and connected and let f € WH2(Q)NC(Q) be a function whose distributional
Laplacian satisfies Af > 0. If there exists x € Q such that f(x) = max,cq f(y), then f is constant.

The next proposition is taken from [68, Theorem 2.58].
Proposition 2.16. Let B CC X be open with m(X\ B) > 0, f € C(B), and g € WY2(X). Then there exists
h € WY2(B) satisfying

Ah=f €B
h+geWy*(B).

The next two propositions are taken from [56].
Proposition 2.17. Let f € D(A,Q) be such that Af is continuous, then f has a locally Lipschitz representative.

Proposition 2.18. Let r > 0 and x € X, then there exists a constant ¢ > 0 depending on r such that if f € D(A, A)
for every A CC X and Af is continuous, then

IV Lo B, () < cllfllie Bs, (@) + I1AfllLe (B, (2)))-

Definition 2.19 (Regular sets). An open precompact subset B C B C X is said to be regular if for every f € W'?(B)
admitting a representative which is continuous on 0B, there exists a function v € D(A, B)NC(B) such that Au =0
on B, u— f € W,*(B) and u = f on dB.

The next proposition concerns existence of regular sets and is taken from [16, Theorem 14.1]. In the aforemen-
tioned book the setting is the one of doubling spaces supporting a Poincaré inequality and Newtonian Sobolev spaces,
but the statement that we are interested in, concerning precompact sets, holds also in the RCD(K, N) setting (taking
into account that Newtonian Sobolev spaces coincide with the ones we are using by [7, Theorem 6.2]).

Proposition 2.20. Let X have infinite diameter. There exists a sequence {Q;}ien of regular sets such that ; CC
Q11 for every i € N and X = U,;Q;. Such a sequence of sets is called an exhaustion of X with regular sets.

The next proposition follows from [15, Theorem 4.1], noting that by the maximum principle functions with neg-
ative Laplacian are super-harmonic in the sense of [15]. The two subsequent corollaries are immediate consequences
of Proposition 2.21.

Proposition 2.21. An open precompact set B C B C X is regqular if for every x € OB there exists a barrier i.e. a
function u, € D(A, B) N C(B), strictly positive on B, such that Au, <0 and

lim wu,(y) = 0.
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Corollary 2.22. An open precompact set B C B C X is regqular if and only if for every x € OB there exists a
function u, € D(A, B) N C(B), strictly positive on B, such that Au, =0 and

Lim v, (y) =0.
Corollary 2.23. Let (X,d,m) and (X',d’,m’) be RCD(K, N) spaces for K < 0. Let BCC X and B’ CC X’ be regular
sets. Then B x B’ is reqular in the product space.

We now recall the definition of test functions in the RCD(K, N) setting, referring to [39] for the proofs of the
results that we subsequently list.

Definition 2.24 (Test functions). We set
Test(X) = {¢ € D(A,X) NL2(X) : [Vf] € L=(X),Af € L(X) mWLQ(X)}

and
Test.(Q) := {qb € Test(X) : supp(¢) CC Q}

It has been proved that Test(X) is dense in W'2(X), while Test.(€) is dense in Wy?(Q2). Moreover if f €
WL2(X)NL>®(X) then P(f) € Test(X). Finally, it has been proved in [11] that if K C € is compact then there exists
n € Test.(€2) such that n = 1 on a neighbourhood of K.

We then give a version of Weyl’s Lemma in RCD(K, N) spaces that follows from [70, Theorem 1.3].

Proposition 2.25. Let u € L} () be a function such that

loc

/ uAgpdm =0 for every ¢ € Test.(Q),
Q

then u € W2 (Q).

loc

2.3 Sets of finite perimeter

For the results of this section, unless otherwise specified, we will implicitly assume that we are working on a fixed
RCD(K, N) space (X,d,m).

Definition 2.26 (Perimeter of a set). Let E C X. We say that F has locally finite perimeter if 15 € BV,,.(X). For
every Borel subset B C X. We denote |D1g|(B) by P(E, B).

Definition 2.27 (Convergence in L! sense). Let (X;,d;,m;,x;) be a sequence of RCD(K, N) spaces converging in
pmGH sense to (Y,d, m,y). We say that the Borel sets E; C X; of finite measure converge in L' sense to a set £ C'Y
of finite measure if m;(E;) — m(E) and 1g,m; — 1gm weakly in duality w.r.t. continuous compactly supported
functions in the space (Z,d,) realizing the pmGH convergence.

We say that the Borel sets E; C X; converge in L} . sense to a set E C Y if E; N B,(z;) — EN B,.(y) in L' sense
for every r > 0.

The next proposition is taken from [3, Corollary 3.4].

Proposition 2.28. Let (X;,d;, m;,x;) be a sequence of pointed RCD(K, N) spaces converging in pmGH sense to
(Y,d,m,y). Let E; C X; be Borel sets such that

sup P(E;, Br(z;)) < 0o for every r > 0.
€N

Then there exists a (non relabeled) subsequence and a Borel set F C Y such that E; — F in L}

loc*

Definition 2.29 (Reduced boundary). Let E C X be a set of finite perimeter. We say that a regular point z € X
such that @ € JF is in the reduced boundary FE of E if for every sequence {e¢;};cn decreasing to zero the sets

E; := E in the rescaled spaces (X, e; 'd,m(B,, (z))"'m,z) converge in L}, to a half space in R.



The next proposition is taken from [20, Corollary 3.15].
Proposition 2.30. Let E C X be a set of finite perimeter. Then the perimeter measure is concentrated on FE.

The next proposition is taken from [19, Theorem 5.2 and Proposition 6.1]. We first introduce some notation. Let
A CC X be a set of finite perimeter and let g € Lip;,.(X). Assume that g has distributional Laplacian which is a
finite Radon measure. Then there exist measures 1, ue << |D1 4] such that as t — 0 we have

14VP(14)-Vg— p1 and 1eqVPi(14) Vg — po
in weak sense testing against functions in Lip.(X). We denote the density of p1 and pe w.r.t. |D1 4] respectively by
(Vg -vg)ine and (Vg -vVE)ext-
Moreover we denote by A™M) the set of points of X where A has density 1.

Proposition 2.31. Let A CC X be a set of finite perimeter and let g € Lip,,.(X). Assume that g has distributional
Laplacian which is a finite Radon measure. Then for any f € Lip,(X) we have

/ fdAg+/ Vf-Vgdm=— f(Vg-vg)in: dPer
AQ) A FA
and
/ fdAg+/Vf-ngm:—/ f(Vg-vE)ext dPer.
AMUFA A FA
We now turn our attention to minimal sets.

Definition 2.32 (Perimeter minimizing sets). Let 0 C X be an open set. Let E C Q be a set of locally finite
perimeter. We say that F is globally perimeter minimizing in € (or simply perimeter minimizing in ) if for every
x€Q,r>0and F C Qsuch that FAE CC B,(z) N we have that P(E, B,.(x) N Q) < P(F, B,(z) N Q). If we say
that E is perimeter minimizing we implicitly mean that = X.

Definition 2.33 (Locally perimeter minizing sets). Let £ C X be an open set. Let F C € be a set of locally finite
perimeter. We say that E is locally perimeter minimizing in Q if for every x € Q there exists r > 0 such that for
every F' C Q such that FAE CC B,(z) NQ we have P(E, B,.(x) N Q) < P(F, B-(z) N Q). If we say that F is locally
perimeter minimizing we implicitly mean that Q = X.

Remark 2.34. Locally perimeter minimizing sets admit both a closed and an open representative, and these have
the same boundary which in addition coincides with the essential boundary and it is m-negligible (see [59]). Whenever
we consider the boundary of a locally perimeter minimizing set, we will implicitly be referring to the boundary of its
closed (or open) representative.

Definition 2.35 (Sets that are locally boundaries of perimeter minimizers). We say that a set C' C X is locally the
boundary of a perimeter minimizing set if for every = € X there exists an open neighbourhood U, of x and a set
E C U, minimizing the perimeter in U, such that U, NC = dF N U,.

It is immediate to check that if C' C X is locally the boundary of a perimeter minimizing set then it is closed.
The next proposition can be found in [68] (see also [42] for the extension to the collapsed case).

Proposition 2.36. Let (X,d,m) be an RCD(0, N) space, let Q C X be an open set and let E C Q be the relatively
closed representative of a locally perimeter minimizing set in Q. Let dg : °E — R be the distance function from E.
Then Adg < 0 in distributional sense on every open subset Q' CC °ENK, where

Ki={zeX:JyedENQ:dg(z) =d(z,y)}.
The next proposition is taken from [68, Theorem 2.43].
Proposition 2.37. Let (X;,d;,m;,x;) be a sequence of RCD(K, N) spaces converging in pmGH sense to (Y,d, m,y).

Let E; C X; be a sequence of Borel sets converging in Lj,, sense to E C Y. Assume that each E; is perimeter

minimizing in By, (x;) and that r; T +00. Then E is perimeter minimizing and in the metric space realizing the
convergence we have that OF; — OF in Kuratowski sense.

We conclude the section by recalling the global Bernstein property in Euclidean space. This is a classical result
and the proof can be found in [45, Theorem 17.4].

Theorem 2.38. Let E C RN be a non empty perimeter minimizing set contained in a half space. Then E is itself
a half space.
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3 Green’s functions in parabolic metric measure spaces

The goal of this section is to prove Theorems 1.5 and 1.6. The techniques that we use generally follow the lines of the
arguments in [22, 68, 21|, although we work in higher generality since we do not assume any non collapsing condition
on the space X. Throughout the section we assume that we are working on a fixed RCD(K, N) space (X, d, m).

Definition 3.1 (Parabolic RCD(K, N) spaces). The space (X,d, m) is said to be parabolic if f1+oc pe(x,y) dt = 400
for every (z,y) € X x X.

In the smooth setting there are many possible equivalent definitions of parabolicity. In Theorem 1.5 we show that
also in the RCD(K, N) setting the previous definition is equivalent to the more classical one involving non existence
of Green’s functions. In the RCD(K, N) setting it is convenient to start from Definition 3.1 because it allows to
exploit the good properties of the heat flow.

Proposition 3.2. The space (X,d, m) is parabolic if and only if there exists (x,y) € Xx X such that f;roo pe(z,y)dt =
+00.

Proof. 1t follows immediately by Proposition 2.13. O
We now define Green’s functions on RCD(K, N) spaces.

Definition 3.3 (Regular sets). Let A CC X be a regular set and let © € A. We say that

Gs € Wy (A) NC(A\ {z})

is a Green’s function on A with pole x if AG, = —§, in distributional sense in A and G, = 0 on JA. Similarly we
say that
G € Wige (X) N C(X\ {z})

is a Green’s function on X with pole z if AG, = —§, in distributional sense.

Note that our definition of Green’s functions on proper subsets of X requires a pointwise boundary condition
as this will be important later on in the proof of Theorem 1.1. This is also the reason why we only define Green’s
functions on regular sets and not on arbitrary bounded precompact sets. We will indeed show that with our definition
if a bounded precompact set admits a Green’s function then it is regular and viceversa.

The next proposition shows that a regular set admits at most one Green’s function.

Proposition 3.4 (Uniqueness of Green’s functions). Let A C X be a regular set and let x € A. Then there exists at
most one Green’s function with pole x on A.

Proof. Let f1, fo be two such functions. Then f; — f5 is harmonic in distributional sense, so that by Proposition
2.25 it belongs to W, (A). This implies that for every Q cC A we have f; — fo € D(A,Q) and A(f; — f2) = 0. In

loc

particular, since we have that f; — fo € C(A\ {z}), we obtain that f; — fo € C(A).
Suppose now that f; — fo # 0, so that there exists a point where such difference is positive (or negative).
Restricting to an appropriate precompact set of A and using the maximum principle we obtain a contradiction. [

Now we give a series of lemmas that are needed to prove existence of Green’s functions on regular domains, which
is the content of Proposition 3.10. The proof of the next lemma is immediate.

Lemma 3.5. Let x € X and let r > 0. If f : X = R satisfies lip(f)(y) < ¢ for every y € B,(x), then f is Lipschitz
m Br/4($)

Let T > 0 and define GI : X = R by GL(y) := fOT pe(x,y) dt. The function GT is summable as

/XGf(y) dm(y) —/()T/>(pt(x7y) dm(y)dt =T.

As a consequence, GT is real valued m-a.e. on X and the definition is well posed.

Lemma 3.6. The function GL is locally Lipschitz in X\ {z}.

11



Proof. Let y € X\ {z}. Thanks to Proposition 2.12 there exist constants ¢, co > 0 such that for every ¢ € (0,7T) the
function p¢(x, ) is Lipschitz in By(y,,)/s(y) with local Lipschitz constant bounded from above by

c1 exp{_d2(x’y) }

Vim(B s (z)) cat
As a consequence, for every z € By(,,,)/s(y), using Fatou Lemma we get
lip(GT)(2) = limsup /T Ipe(@,21) = pel@ 2| o, /T a exp{_dz(m7y)}dt. (1)
o z1—z Jo d(zh Z) —Jo \/im(B\/;(x)) cat

Moreover from Remark 2.8 we have that there exists a constant C' > 0 such that m(B,.(z)) > Cr" for every r < V/T,
so that the r.h.s. of (1) is bounded. Hence G is locally Lipschitz in a neighbourhood of y € X\ {z} because of
Lemma 3.5. Since y was arbitrary GZ is locally Lipschitz in X\ {z}. O
Lemma 3.7. GT ¢ W21 (X).

loc

Proof. Consider for every € > 0 the function sz : X — R given by

T

It is easy to see that these converge in L'(X) to GI and, using Proposition 2.12 and Fatou Lemma, that for every
yeX

: T c1 —d?(z,y) T 3
I|p(GZI)(y) < /E \/Zm(B\/g(x)) exp{ " }dt < /€ m dt < +o0.

In particular GZ, € Lip(X) C WE1(X). So if we prove that for every ball B,(z) C X with r > T + 1, the functions

GT restricted to B,(z) are a Cauchy sequence in W1'1(B,.(z)), we obtain that the limit GI is in Wlloi (X) as well. So
we compute

[, 196 =Tt = [ ([ e ) ans

BT (gc) €1

€2 C4 —d?(z,y)
= /BT(I) /61 \/fm(B\/z(aj)) eXp{ cst ’ }dt dm(y),

where for the last inequality we passed the Lipschitz constant inside the integral using Fatou Lemma. Switching
the integrals and applying a version of Fubini’s Theorem (i.e. Cavalieri principle, see [5]) we then obtain that the
expression in (2) can be bounded as follows:

(2)

“ Cy —dQ(x, )
/51 /Br(f) \/im(B\/g(@) P { st . } dm(y) dt

= / JM(glﬁ(a:))/o m({ eXp{w} > s} 0 B.(2)) dsdt
i oo m(Bys(a) N B, ()
S/el \/65»233%1/0 ‘ (B G

We now prove that the supremum in the previous expression is finite, keeping in mind that this is sufficient to prove
that our sequence is Cauchy. We compute:

+oo m(B N B, (z
sup / e ¢ Bz (@) ds
2ef0,11Jo m(B 7))
1 7’2/2 m(B +o00 B
S/ e “Pds+ sup (/ 670757( \/E(w)) ds—|—/ 676757111( r(®) ds)
0 zefo,1 \J1 m(B /z) e m(B z))

2

re/z V; B
<cs+ sup (/ 6757S—K’N( Vo) ds + 0967‘37’"2/2,2’]\’/2)
zel0,1] NJ1 Vi N (B /z())
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where the last inequality is a consequence of Remark 2.8. It is clear that the finiteness of the last expression follows
if we can prove the finiteness of

T2 z
sup / / 67673—VK’N(B\/§(I)) ds.
20,11 Vi.N (B /z())

Since when s € (1,72/z) we have /zs € (0,7), there exists a constant c;o depending on 7 such that Vi, N (B yzs(2)) <
c10(s2)N/? whenever s € (1,72/z). Hence combining with Remark 2.8 once again we get

2

re/z V; B —,. r2/z +o0
sup / 67678M ds < sup / crie 5 sV/2 s < / c11e N2 ds < +oo.
20,111 Vie N (B /z()) zef0,11J1 1

Concluding the proof that GT € WH1(B,.(z)). O

Lemma 3.8. Let Q C X be an open set and let x € ) and g € Wé’l(Q), If for every ¢ € Test.(Q2,d, m) we have

/Q a(1) A(y) dm(y) = —6(x),

then Ag = —4, in distributional sense in ).

Proof. Let ¢ € Lip.(©) and consider its extension to 0 in X, which we still denote by ¢. Consider the heat flow
P,¢ € Test(X,d,m). Let now n € Test.(2) be a positive function which is equal to 1 on an open set containing the
support of ¢. Since the test functions are an algebra, we get nP;¢ € Test.(£2,d, m). Moreover nP;¢ — ¢ in Wh2(X)
and uniformly, while the functions nP;¢ are uniformly Lipschitz because ¢ is bounded. Hence using the Dominated
Convergence Theorem we get

[ V9w Voty) dniy) = liny [ Tg(u)- VnPis) dm(y) =~ by | 90)A@P0) dmy) =l nro(e) = o(o),
Q Q Q

concluding the proof. O

Lemma 3.9. Let B C X be a reqular set, x € B, f € C(X), and g € Lip,,.(B\{x}). There exists h €¢ W-2(B)NC(B)
such that Ah = f on B, h+g is identically zero on B and for every positive nj € Lip,(B) equal to 1 in a neighbourhood
of & and taking value in [0,1] we have (1 —n)(h + g) € Wy ?(B).

Moreover, if in addition we have that g € WY2(B), then we can ask that h + g € Wy *(B).

Proof. Let U DD B be an open precompact subset of X and consider the function h; € Wé’Q(U) such that Ah; = f
on U. By Proposition 2.17 this function is Lipschitz on B.

Let now 1 € Lip,(B) be as in the statement, then (1—1n)g € WH2(B)NC(B) so that, B being regular, there exists
hy € WH2(B)NC(B), harmonic on B, such that hy 4 hy + g is identically zero on dB and hy +ho+(1—1n)g € Wy*(B).
We then set h := hs + h; and we note that this function has all the required properties.

The case when g € W12(B) is analogous. O

We are finally in position to prove the existence of Green’s functions.

Proposition 3.10 (Existence of Green’s functions). Let B C X be a regular set and let © € B. For every T > 0
there exists g& € WH2(B) N C(B) such that G, := GL + gL is the Green’s function on B with pole x.

Moreover for every n € Lip.(B) equal to 1 in a neighbourhood of x and taking value in [0, 1] we have (1 —n)G, €
Wy?(B).

Proof. Let g € WH2(B) N C(B) be the function given by Lemma 3.9 such that
Agy = —pr(z,), g3 +Gy =0 ondB

and such that for every 7 as in the statement (1 — 7)(¢Z + GL) € W(l)’Z(Bz. Now we define G, : B — R by
G.(y) == GT(y) + g7 (y) and we note that by construction G, € W' (B) N C(B\ {z}).

13



We now check that G, is a Green’s functions: let ¢ € Test.(B,d, m) and note that
/GT YAG(y) dm(y / /pt z,y)Ad(y) dm(y) dt = / Py AG(z) dt

= [ arswa= [ Erowa= [ priepowant) - o)

where the last inequality comes from the fact that the trajectories of the heat flow at a fixed point are locally absolutely
continuous. From the previous computation and the definition of G, we deduce that for every ¢ € Test.(B,d, m) we
have

/B G (1) Ad(y) dm(y) = —o(x),

which by Lemma 3.8 implies that G, is a Green’s function for the Laplacian. O
We have two corollaries.

Corollary 3.11. Let B C X be regular, let x € B, and let G, be the Green’s function on B with pole x. Then, there
exists a continuous representative of G, with values in [0, +00].

Proof. Taking into account Proposition 3.10, it is enough to prove the claim for G := fo pe(x, ) dt. If fo pr(x,x) <
+00, then GT is continuous with values in R by Proposition 2.12 and Dominated Convergence Theorem If instead

fo pi(x, x) = 400, then Proposition 2.12 implies

T 1
/0 m(B (@) " =

Applying Proposition 2.12 once again, it follows that G (y) — 400 as y — . O
Corollary 3.12. The function G, constructed in Proposition 3.10 is positive.

Proof. We would like to use the maximum principle on G, but this function is only W*(B) N C(B\ {«}), while we
would need a function in W?(B) N C(B) to apply such theorem.
For every € > 0 consider the function G¢ € W2(B) N C(B) given by

T
Ge(y) = / P, y) dt + gT (y).

We have that AGS = —pe(x,-) and G = — [ p¢(«,-) dt on OB.
By the maximum principle, this function attams 1ts minimum on the boundary, so that on B we have

G¢ > min — dt 3
> 2 min /Opt(x,y) (3)

At the same time it is easy to check that as e decreases to zero also the quantity in the right hand side of (3) goes
to zero. Moreover G5 — G, pointwise in B\ {z} as € — 0, so that passing to the limit in (3) we conclude. O

As a consequence of this corollary we get the following proposition.

Proposition 3.13. Let By CC By be regular sets, let x € By and let GL and G2 be the corresponding Green’s
functions. Then G2 > GL.

Proof. By Proposition 2.25 the restriction to B; of the difference G2 — G lies in W,'(By) N C(By).

loc

At the same time G2 — G > 0 on B; by Corollary 3.12, so that using the maximum principle we conclude. [

The next proposition shows that we can use the Green’s function to construct functions with prescribed Laplacian.

14



Proposition 3.14 (Representation of functions with prescribed Laplacian). Let B C X be regular, and let ¢ €

Lip.(B). Then
- /B G (y)6(y) dm(y)

is the unique function such that f € D(A, B)NW{?(B) N C(B) with Af = —¢ and f =0 on dB.
Proof. By Lemma 3.9 we have that there exists a function
f € D(A,B)NWy*(B)NC(B)

with Af = —¢ and f = 0 on 0B. By the maximum principle such function is unique. Since f € W(l)’2(B) it is easy
to check that there exists a sequence { f; }ien C Lip.(B) of functions such that || f; — f|lw:2() — 0 and such that for
every K CC B we have f; = f on K for i sufficiently large. In particular, since f; € Lip.(B) and G, is a Green’s
function with pole x, we have

— /B VG, (y) - Vii(y) dm(y),

so that to conclude it is sufficient to prove that as i — 400 we have

/ VG, (y) - Vfily) dm(y) = — / G (1) A f () dm(y). (4)
B B

To this aim fix € > 0 and let n € Lip(B) be a function taking value in [0, 1] which is equal to zero in a neighbourhood
of z, equal to 1 out of a precompact open subset U of B and such that

[ Gewsst)dnt) - [ 0665w dmiy)| <

and for every i € N sufficiently large

|| VGaw) - Vi dms) — [ V0G0)- VL) dmiy)| <.

B

Note that such 5 can be constructed because Af € L>°(B) and, for i sufficiently large, we have that
IVfil = VflinU.

In particular, thanks to the arbitrariness of €, to obtain (4) it is now sufficient to show that
/ V(nG)(y) - Vfi(y) dm(y) — — / (nGz)(y)Af(y)dm(y) asi— +oo.
Since nG, € Wé’Q(B) by Proposition 3.10, we can rewrite the difference of the previous quantities as
- [ VG Vi dn) - [ G dmiy)

—’—/VnG)sz()dm + [ V0G) - V1) dmiy)|
< nGzllwez I fi = fllwezsy) — 0,
concluding the proof. O
We now turn our attention to constructing a global Green’s function for X.

Lemma 3.15. Let (X,d,m) be non parabolic. Let S CC X and x € X. There exists a sequence t; — +00 such that
pe, (z,-) and fltﬁ_l pie(x, ) dt are uniformly bounded in S.

Proof. The non parabolicity of X implies that there exists a sequence ¢; — +o0 such that p;, (x,z) < 1. By Proposition
2.13 there exists a constant C' > 0 such that p;(x,y) < Cpy1(z, x) for every y € S and ¢t > 1. Putting these facts
together it is easy to check that the sequence {t;};en has the desired properties. O
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Proposition 3.16 (Existence of global Green’s functions on non-parabolic spaces). Let (X,d, m) be non parabolic
and let © € X. Then the function G, ( fo pe(x,y) dt is a Green’s function for X with pole x.

Proof. First of all we prove that G, € LZOP(X). Let S C 2 be a compact set. By Proposition 2.13 we deduce that
there exists C' > 0 depending on K, N, S such that Cp;(x,z) > pi—1(x,y) for every t > 1 and every y € S. As a
consequence for every y € S we have

+oo +oo
/ pe(x,y)dt < C’/ pe(z,x) dt < 400, (5)
1 2

so that by Dominated Convergence Theorem and the Holder continuity of the heat kernel the function | 1+°O pe(x,-)dt
is continuous in S. Using such continuity and the stochastic completeness of the heat kernel we then get

400 [eS) o0
// (z,y)dt dm(y / /pt x,y) dm(y) dt + m(S) max/ pe(z,y)dt <1+ m(S) max/ pe(z,y) dt,
1

yeS

showing that G, € L}, (X), as desired.
We now claim that for every ¢ € Test(X,d, m) N Lip.(X) we have

/X G (y)Ad(y) dm(y) = —(x). (6)

To this aim fix such a ¢ and observe that

[ cwaow /m/ptxym ) dm(y) dr

too g
| rsota= [ arowa= [ 4o

0

= dim | pel@g)ely) dm(y) = ().
We now claim that the limit appearing in the last expression is zero (we know that the limit exists since the integral
appearing at the beginning of the computation is well defined). To prove the claim we note that since ¢ is supported
in a compact set S we have

+00 +oo +oo
/ ’/pt(x,y)qb(y) dm(y)| dt < cym(S) sup/ pe(x,y)dt < czm(S)/ pe(z, x) dt < +oo, (7)
1 X

yesSJ1 1

where in the last inequality we used Proposition 2.13. As a consequence there exists a sequence {t;};en increasing
to +o0 such that [y pe, (z,y)¢(y) dm(y) — 0, as claimed.
To conclude the proof we only need to prove that

Go € WELX)NO(X\ {z}). (8)

Indeed if this holds, we can combine equation (6) and Lemma 3.8 (which can be used in our setting via a cut off
argument) to obtain that G, is a Green’s function for X with pole z.
To prove (8) it is sufficient to prove that f1+°° z,-)dt € WL (X) N C(X\ {x}) since fo pr(x, ) dt lies in such

loc

space by Lemmas 3.6 and 3.7. Consider the family of functlons indexed by T given by f 1 pelw,-)dt and observe that

these are in L1(X) N Wlloi (X) and converge to f1+oo pi(z,-) dt in L}, (X) by repeating the argument of (7), so that if

we prove that their Lipschitz constants are locally unlformly bounded we are done.
To this aim we recall that for every T' > 0 we have the distributional equation

T
A / pe(, ) dt = pr(z, ) — pa(, ).
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Fix then a compact set S, by Lemma 3.15 there exists a sequence {t;};cn increasing to +oo such that

t;+1 t;+1
A/ pt(%')dtzptﬂrl(ﬂ?w) —pl(%') and / pt(l‘,')dt
1 1

are uniformly bounded in the compact S. As a consequence, by the a priori estimates on the gradient of solutions of
the Poisson problem given in Proposition 2.18, we deduce that the functions flt o, (x,-) dt have locally uniformly
bounded Lipschitz constants as desired. O

Remark 3.17. The function G, that we constructed is not only continuous but also locally Lipschitz in X\ {z}.
Definition 3.18 (Capacity). Let (X,d, m) be an RCD(K, N) space. Let A C X be open and let K C A be compact.
The capacity of K in A is defined as
Cap(K, A) := inf {/ |Vu|>dm :u € Lip.(A), u=1on K}
A

The capacity of K in X is denoted Cap(K).

The proof of the next result follows the lines of the corresponding one in the smooth setting (see, for instance,
[47]). We remark that, if A C X is a regular set, € A, and G, is the Green’s function on A with pole z, then for
every ¢ > 0 the set {G, > ¢} is compact in A by Corollary 3.11.

Lemma 3.19. Let A C X be a regular set, let x € A and let G, be the corresponding Green’s function. Let ¢ > 0,
let F, := {G, > ¢}, and assume that F, has finite perimeter in X. Then, Cap(F., A) = ¢ L.

Proof. The function u := 1 A (¢"1G,) is harmonic in A\ F,, it is equal to 0 on JA, and it is equal to 1 on OF..

Hence, since harmonic functions minimize the Dirichlet energy, it holds

Cap(Fe ) = [ [VuPdm=c? [ VG, dm,
A\F, A\F.

Let 0 < € < ¢ be such that {G, < €} has finite perimeter. The vector field VG, is defined in a neighbourhood of
{e < G, < ¢}, where it is bounded and admits bounded divergence, so that we can apply Proposition 2.31 to get

/ |VG,|? dm = —c/ (VG: - 4, <c})ext dPer — e/ (VGy - Vieci,})eat dPer.
{e<Gy<c} O{Gz<c} O{G,y>e€}

Using the definitions, it is then easy to check that

/ (VGQ; : V{Gw<c})ext dPer = —/ (VGQC . V{GwZC})int dPer,
0{Gy<c} 0{Gy>c}

so that, taking into account that AG, = —J, and using again Proposition 2.31, we obtain

/ |VG$|2 dm = c/ (VGo - via,>c})int dPer — e/ (VG - ViG> e} )ext dPer = c — €.
{e<G<c} {Gz>c} - {Gy>e}

Letting € — 0, we obtain fA\F_ |VG.|*dm = ¢, so that Cap(F,., A) = ¢! as claimed. O
We are now in position to prove Theorem 1.5, that we recall below.

Theorem 4. Let (X,d,m,x) be an RCD(K, N) metric measure space with infinite diameter. The following are
equivalent:

1. There is no positive Green’s function on X with pole x.

2. For every (x,y) € X X X we have f1+oo pe(x,y) dt = 4o0.

3. There exists (x,y) € X x X such that f1+oo pe(x,y) dt = +o0.
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4. Let {B;}ien be an exhaustion of regular sets containing x. Let G be the Green’s function on B; with pole x.
Then for every y # x we have G*(y) — +00 as i — +00.

5. For every compact set K C X, it holds Cap(K) = 0.

Proof. The equivalence 2 < 3 has been shown in Proposition 3.2, while 1 = 2 was proved in Proposition 3.16. So
we only need to show that 2 =4 = 5= 1.

(2 = 4) By Proposition 3.10, for every i € N the Green’s function G¢ can be written as G¢(y) = fOTi (X, y)dt +
gTi (y) where gl* € WH2(B;) N C(B;) satisfies

T;
AQXT’ = —PT1; (X7 ) on BZ and ng1 = _/ pt(xv ) on aBl
0

Taking into account the parabolicity assumption, it is sufficient to prove that we can choose a sequence T; increasing
to 400 in such a way that gZ¢(yo) is bounded from below uniformly in 1.
Since Agl" < 0, by the maximum principle it is sufficient to consider the restriction of g¢ to the boundary of
B;, where the minimum is attained. So the problem reduces to choosing T; increasing to +oo in such a way that
T . .
fo pi(X, ) dt is uniformly bounded when y € 9B;.
This is clearly possible if we can show that for T fixed, the quantity

T
sup/ pe(x,y) dt
0

y€OB;

converges to zero as ¢ — +00, and this follows from Proposition 2.12 and the hypothesis on the diameter.
(4 = 5) Let B C X be a ball, and let z € B. Let {B;};en be an exhaustion of regular sets containing B, let G¢,
be the Green’s functions relative to B;, and let ¢; := mingp G. By our assumption (combined with Proposition 3.13
and Dini’s Lemma), it holds ¢; — +o00. Set F; = {G% > ¢;}. By the maximum principle, it holds B C F;. Hence,
Cap(B) < Cap(F;). Combining with Lemma 3.19, it follows Cap(B) < ci_l, concluding the proof of this implication.
(5 = 1) Assume by contradiction that there exists a positive Green’s function G, on X. Let B C X be a ball, and
let x € B. Let {B;}ien be an exhaustion of regular sets containing B, let G, be the Green’s functions relative to B;,

and let ¢; := maxpp G%. Set F; = {G > ¢;}. By the maximum principle, it holds B D F;. Hence, by Lemma 3.19,
Cap(B, B;) > Cap(F;, B;) = ¢; .

Since Cap(B) = 0 by assumption, it follows
lim ¢; = +o0.
1—+00
Hence, maxgp G — +00. At the same time, it holds G, > G% on B; by the maximum principle, a contradiction. [J

Now we turn our attention to proving Theorem 1.6. To this aim we need the following technical lemma.

Lemma 3.20. Let (X,d,m) be a non parabolic RCD(K, N) space with infinite diameter and essential dimension
k> 2. Let x € X be a regular point such that

m(B,(z))

lim
rk

r—0+

€ (0, +00).

Consider an exhaustion {; }ien of reqular sets of X containing z, and for each of these sets consider the corresponding
Green’s function G.

These functions admit continuous representatives with values in [0, +0c] such that Gi(x) = +oo. Using these
representatives, there exist T > 1 and a sequence {c¢;}ien € (1,T) such that

re{ycQ:G(y) >c;}NBy(x) CC By(xz) for everyi € N
and each of the sets {y € Q; : Gi(y) > ¢;} is open, has finite perimeter in X and satisfies

HyeQi:Gily)>ci}=0{ycQi:GL(y) <c;}={yeQ:G(y) =ci}.
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Proof. We will write {G% > ¢;} instead of {y € Q; : Gi(y) > ¢;}. Consider the Green’s function G, given by
Proposition 3.16. Since z is a regular point and X has essential dimension k > 2, using the bounds of Proposition
2.12 and the explicit expressions for G, and G, we get

lim G, (y) = lim G (y) = 400 for every i € N. 9)

Hence, we have the desired continuous representatives. Moreover, since G, is bounded on compacts of X \ {z} we
can pick ¢ > 0 such that {G, >t} N Bi(x) contains x and

{G, >t} N Bi(z) cC By(z).
At the same time, using again (9) and the fact that G, > G%, we get that for every t' € [t,¢ + 1] we have
{GL >t} N By(z) C {G, >t} N Bi(x) CC By(x),

and that {G? > t'} is open and contains . Moreover, since G% is locally Lipschitz on compact subsets of X\ {z}
(and tends to infinity in x, so that the level sets stay away from z), for A-a.e. t’ € [t,t + 1] we have that {GL > t'}
has finite perimeter and m({G% = t'}) = 0. We claim that this implies

IH{GL >t} =0{GL <t'} ={G., =t'}. (10)

For the first equality we only show that 9{G% > '} C 9{G% < t'}, the other case being analogous. Let y € 0{G%, > t'}
and consider a small ball B.(y) which is precompact in X \ {x}. Observe that G%(y) = t' and that the ball cannot
be contained in {GY = '}, because otherwise this set would have positive measure. At the same time it cannot
be contained in {GY > t'}, otherwise the maximum principle would imply that G is constant in the ball. As a
consequence such ball intersects {G% < t'}, and since € was arbitrarily small, we have that y € 9{G% < '}, as
claimed.

The second equality in (10) follows because {G% = t'} cannot contain any balls since it has zero measure, and so
it is contained in O{G%, # t'}, but since d{G%L > t'} = 0{GL, < '} we get

G #1'} =0{GL > '} = 0{G: < t'}.

The fact that 0{G%, < t'} C {GY = t'} is trivial. Then we define T := ¢ + 1 and for every i € N we pick ¢; € [t,t+ 1)
to be one of the ¢’ with the previously proved properties. O

The next proposition is the key step to prove Theorem 1.6. The idea is adapted from the proof of the analogous
fact in the smooth setting given in [62], but some crucial adjustments have been made to avoid integrating by parts
on sets that might not be regular enough. This is achieved by replacing balls in the original proof with level sets of
Green’s functions.

Proposition 3.21. Let (X,d,m) be an RCD(K, N) space with essential dimension k. If there exists x € X such that

o TB(@)

r—0t rk

€ (0,+00) and dt = 400,

o0 1
/1 P(By(z),X)
then X is parabolic.

Proof. Consider first the case when X has finite diameter and assume by contradiction that it is non parabolic. Note
that the finiteness of the diameter implies that X is compact. Consider then the functions g.(y) := f:oo pe(z,y) dt,
which converge in L*(X) to the Green’s function G, given by Proposition 3.16. Using ideas appearing in previous
proofs one can show that these function are Lipschitz (hence in W12(X)), satisfy Age = —pc(z,-) < 0 and have a
minimum since X is compact. Hence by the maximum principle they are all constant, so that also G is constant, a
contradiction.

So we can suppose that X has infinite diameter. Suppose by contradiction that X is non parabolic and assume
first that the essential dimension of X is not 1. Pick an exhaustion {€;};cn of regular sets of X containing x, and for
each of these sets consider the corresponding Green’s function G¢. By Lemma 3.20 there exist 7' > 1 and a sequence
{¢i}ien € (1,T) such that

r€{G. > ¢;} N By(z) CC By(z) foreveryi € N
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and each of the sets {G > ¢;} is open, has finite perimeter and satisfies
I{GL > ¢;} = 0{GL < ¢;} = {GL = ¢;}.

We can suppose without loss of generality that By (x) C §; for every i € N.
We then define 4
I = sup {d(z,2):GL(z) >c;}
2€B1 (x)

and claim that we have

T> ——————dr.
N /z P(B,(2),X)

k3

To prove the claim let 0 < € << 1 such that
G > e} =0{GL < e} ={G = ¢}

and such that, setting

s = zlenéi{d(L z): Gi(z) < €},

it holds s{ > [;. The first condition can be achieved by the same argument of Lemma 3.20, while the second can be
obtained using that G > 0 on ; and G = 0 on 99;. B
Consider the function g; : X — R such that g(y) is equal to ¢; in By, (), is equal to € in “Bg(x), and in
Bse(x) \ By, (z) is defined by
: ~1
Jaloyy P(Br(@),X) " dr

[ P(B,(x),X) " dr

9i(y) = (ci —¢€)

Let
A i ={y e Bi(z) : GL(y) < c;} U{y € Q;N°B1(0) : GL(y) > €}.

Thanks to our conditions on {G% > ¢;} and {G, > €} we have that the set A{ is open, contains By (z) \ By, (z) and
its boundary is made of disjoint connected sets where G% takes either the value ¢; or e. As a consequence, modulo
translations and inversions, we can use G%, as a barrier in Proposition 2.21 to show that A$ is a regular set.

Hence there exists a unique function h € D(A, AS) N C(A¢) such that h — g; € Wy (AS), Ah=0and h — g; = 0
on JAS. From this it follows that h = G, which in particular gives G¢, — g; € W(l]’z(Af.). Hence, using the fact that
harmonic functions minimize the Dirichlet energy, we get

/|VG;|2dmg/ |Vg;|* dm.
A As

At the same time, using the coarea formula, one can check that

-1

/AE Vil dim = (ci—e)2(/lsE P(B.(x).X) " dr)

i

so that
-1

/ VG dm < (c; —6)2(/ ’ P(BT(x),X)*ldr) . (11)
A¢ l;

Moreover by construction we have that the vector field VG is defined in a neighbourhood of A¢, where it is bounded
and admits bounded divergence, so that we can apply Proposition 2.31 to get

/ IVGL|? dm = —ci/ (VG - vac)ext dPer — e/ (VG - vac) et dPer.
As 8{Gc<c;}NB; (x) ‘ a{Gs>e} ‘

Using the definitions it is then easy to check that

(VG - vag)ear dPer = —/ (VG - V(e ac))int dPer,

/B{Gf<ci}ﬂBl(w) {G¢>c;i}NB1(x)
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so that, taking into account that AG; = —4, and using again Proposition 2.31, we obtain
/ IVGL|? dm = ci/ (VG - Ve ae))int dPer — e/ (VGE - V<) et dPer = ¢; — .
As 8{Ge>c;}NB; (x) ' o{Ge>e} ‘

Putting together this with (11) we obtain

ci—€> / P(B,(z),X)" " dr,
1

i

and letting ¢ — 0 we deduce that

T > ————dr
- /z P(By(z),X)

i

for every i € N, as claimed.
Taking into account that I; < 1 and letting ¢ — 400 we obtain that

+oo 1
T> / S S
1 P(BT(.’L‘),X)

a contradiction.

We now need to consider the case when X has essential dimension 1. A space with infinite diameter and essential
dimension 1 must be a weighted version of either R or of a closed half line by Proposition 2.11. In this case we can
repeat an analogous proof, replacing the sets {G% > ¢;} with a fixed interval containing z. This is sufficient because
on each endpoint of this interval each G¢, will trivially have a singleton as image, allowing to construct the analogue
of the function g; in the previous case. Similarly the computation to estimate [ A |[VGE|? dm can be carried out in

the same way, replacing A§ with an appropriate union of two intervals and exploiting their regularity. O

Corollary 3.22. Let (X,d,m) be an RCD(K, N) space. If there exists x € X such that

+o0 t
/1 m(B(@) T

then X is parabolic.

Proof. 1t is clear that if the condition of the statement holds for « € X, then, thanks to Proposition 2.10, it holds
also for a regular point 2’ € X satisfying

m(B,(z"))

lim
T‘k

r—0t

€ (0,+00),

where k is the essential dimension of X. The statement then follows from the previous proposition repeating the
strategy of [48, Corollary 2]. O

Putting this together with the heat kernel estimates of Proposition 2.12 we obtain Theorem 1.6.
Theorem 5. Let (X,d,m) be an RCD(K, N) space. If there exists x € X such that

“+o0 t d
/1 w(B, () T

then X is parabolic. This condition is also necessary if K = 0.

Proof. Thanks to Corollary 3.22 we only need to prove that if K = 0 the condition of the statement is also necessary.
This follows immediately since by Proposition 2.12 we have that

/+oo ( ) +oo ¢
pe(z, x dtg/ —— dt,
o 1 m(B()

concluding the proof O
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Definition 3.23 (Spaces with slow volume growth). An RCD(K, N) space (X,d,m) is said to have slow volume
growth if there exists x € X such that
+oo t
———— dt = 4o0.
/1 m(B(2))

We conclude the section with a proposition taken from [49, Example 3.19] concerning spaces with finite measure.

Proposition 3.24. Let (M,d,, e’Vmg) be a geodesically complete weighted manifold with finite measure. Then for
every (x,y) € M x M, setting m := e_vmg, we have

pe(z,y) — as t — 4o00.

1
m(M)
Corollary 3.25. If (X,d, m) is parabolic and (M,dg, e~Vm,) is a geodesically complete weighted Riemannian manifold
with finite mass then the product space is parabolic.

Proof. Tt follows immediately from the previous proposition, the definition of parabolicity, and the tensorization
properties of heat kernels. O

4 Proof of Theorem 1.1

In this section (X,d, m) will be a fixed parabolic RCD(0, N) space and C' C X x R will be locally the boundary of a
perimeter minimizing set. We assume moreover that C' C X x R;. We will denote by d¢ : °C' — R the distance from
C, by dg the signed distance from X x {0} with positive sign in the negative half space and negative sign otherwise,
and by d : X x (—00,0) — R the difference dc — dg. Observe that d > 0 since C' is contained in the upper half space.

Generic points in X x R will be usually denoted by z = (z,t,,), the canonical distance and the canonical measure
in the product space will be dx and my respectively.

We now develop the simple machinery needed to prove Propositions 4.3 and 4.8, which are crucial steps in the
previously outlined argument to prove Theorem 1.1.

Definition 4.1 (Connectors). Given Z € X x R we say that a geodesic v : [0,dc(Z)] — X x R is a connector if it
realizes the distance between T and C. We say that such connector is vertical if its image is contained in a set of the
form {z} x RC X x R.

Connectors will be useful because their behavior is related to the gradient of the function d. The next lemma is
taken from [44, Lemma 2.6].

Lemma 4.2. For my-a.e. T € X x (—00,0) there exists a unique connector.
Proposition 4.3 (Laplacian bounds for d¢). de : °C' — R admits negative distributional Laplacian.

Proof. From [24, Lemma 4.16] we get that do admits distributional Laplacian in its domain and that the singular
part of such distributional Laplacian is a negative Radon measure. Hence we only need to show that the regular
part of this measure is negative as well. To this aim let Z ¢ C be a point with a single connector, and let § € C be
such that d¢(Z) = d(Z,7). Let Uy > § and E C Uy be the sets as in Definition 2.35. We claim that there exists a
neighbourhood Vz of Z such that

Vi C{ze€C:32 €Uy:de(z) =d(z, 1)}

If this were not the case we could find a sequence z, — & whose connectors’ endpoints lie outside of Uy. Modulo
passing to a subsequence we then have that the endpoints of these connectors converge to a point z € “Uy, and the
geodesic connecting T and Z will be a second connector for Z, a contradiction.

Hence we can apply Proposition 2.36 to obtain that the distributional Laplacian of d¢ is negative in Vz. Repeating
the same argument for every point with a single connector and taking the union of the resulting open sets we get an
open set of full measure where the distributional Laplacian of d¢ is negative. This implies that the regular part of
the distributional Laplacian of d¢ is negative on its domain, concluding the proof. O

The next Lemma shows the first link between connectors and the quantity |Vd|.
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Lemma 4.4. For my-a.e. T € X x (—00,0) with a vertical connector we have |Vd|(z) = 0.

Proof. For my-a.e. point in € X x (—00,0) we have
|Vd|(Z)? = 2 — 2Vdc - Vdo(Z)

so that we only need to prove that for my-a.e. point Z with a unique vertical connector we have Vd¢ - Vdo(Z) = 1.
Since distance functions have local Lipschitz constant 1 everywhere, for my-a.e. point & we get

Moreover one can easily check that for my-a.e. £ we have

Vde - Vdo(7) = lim lip(de + edo)?(Z) — “P(dc)z(f)'

e—0 2€

Then, moving along the vertical connector, we deduce that lip(de + edp) > 1 + €, so that for my-a.e. T

_ . (14+e?2-1

. > -~ 7 0000 =
Vde - Vdo(Z) llH(l) 5 1,
concluding the proof. O

Definition 4.5 (Slope of a connector). Let Z = (z,t;) € X x (—00,0), let v : [0,dc(Z)] = X x R be a connector and
let § = (y,ty) :=v(dc(Z)). We define the slope s(Z,7v) > 0 of v by

ty — 1
s(z,7):=1-— [t = t|

do(z)
The role played by the slope of a connector is clarified in the next lemma.

Lemma 4.6. Let £ € X X (—00,0) and v be a connector for &. Then

lip(d)(z) > s(z,7).

Proof. The projection of v to R is a geodesic of constant speed 1 — s(Z,~) so that

do(7(s)) = do(z) — (1 = s(Z,7))s,
while, since 7 is a connector, we have
do(1(s)) = do(@) - 5.
Using these facts we obtain

d(7(s)) —d(z) = do(7(s)) = do(v(s)) — de(Z) +do(7) = —s + (1 = s(Z,7))s = —ss(, 7).

Dividing both sides of the previous equation by s and taking the limit as s goes to zero we immediately obtain that

lip(d)(z) > s(z,7). O

The next lemma shows that the slope is continuous in points with a single connector. It is easy to check that the
statement may fail for general points.

Lemma 4.7. Let T € X X (—00,0) be a point admitting a unique connector . Let {Zn}neny C X X (—00,0) be a
sequence such that T, — &, and {7y, }nen a corresponding sequence of connectors. Then

lim  s(Zn, vn) = s(Z,7).

n—-+oo
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Proof. For every n € N we define
Yn 1= fYn(dC(:fn)) eC

and we note that these points have uniformly bounded distance from Z because of the triangular inequality. We claim
that the sequence ¥, converges to the endpoint of the connector ~. If we are able to prove the claim, the statement
of the lemma immediately follows by noting that the slope of a connector depends continuously on the positions of
the starting point and the endpoint.

To prove the claim we observe that, modulo passing to a (non relabeled) subsequence, we have that g, — g € C.
Moreover, since do(Z,) = dx (Zn, Un), passing to the limit and using the continuity of distance functions we obtain
that

dC(f) = dx(fvy)

This implies, by the uniqueness of the connector in Z, that g is the endpoint of . In particular the limit point does
not depend on the subsequence that we chose, so that the full sequence {7, }nen converges to g, as claimed. O

Proposition 4.8. Ifd : X x (—00,0) — R is not constant, then there exist a ball B C X x (—00,0) and a real number
T > 0 such that |Vd(Z)| > 7 for my-a.e. T € B.

Proof. Since d is not constant there exists a set of positive measure in X x (—00,0) where |Vd| > 0. By Lemmas
4.2 and 4.4, this implies that there exists a point T € X x (—00,0) with a single non vertical connector v such that
s(Z,v) > 0. By lemma 4.7 and a standard argument by contradiction, this implies that there exists 7 > 0 such that
for every 7 in a sufficiently small ball centered in Z, and every connector ~5 of g, we have p(y,~vy) > 7. The conclusion
immediately follows by Lemma 4.6. O

Remark 4.9. A direct computation shows that Ae=d > ¢ |Vd|2. Combining this with the previous proposition we
deduce that there exists a ball B C X x (—o00,0) and ¢ > 0 such that

Aed >clp.

The next proposition follows from a standard computation and gives the explicit dependence of the Laplacian on
the weight in a weighted RCD space.

Proposition 4.10 (Formulas for Laplacians in weighted spaces). Let (Y,d,,m,) be an RCD(K, N) space and let
Ve Wlloi(X) Suppose that the space (Y, d,, m,) withm = e~Vm, is RCD(K', N') for a suitable couple (K', N') € Rx

[1,+00). Then for every u € Lip;,.(Y), denoting by A the Laplacian in (Y,d,,®,), we have that Au = Au—Vu-VV
in distributional sense.

The next step to prove Theorem 1.1 is to replace the product measure my on X x R with a measure my, such
that the resulting space is parabolic and the Laplacian bounds given by Remark 4.9 are preserved (modulo reducing
c) w.r.t. the new measure. To this aim consider the modified metric measure space (R,d.,e™" A!) where d, is the
Euclidean distance and the function V' : R — R is defined as follows.

Let Z = (pu,tz) € X x (—00,0) and 7,¢ > 0 be such that |Vd| > 7 on B.(Z) C X x (—00,0). Note that this is
possible thanks to Proposition 4.8. Let f : R — R be an odd increasing function such that f(0) = 0, f(¢) = 1 for
every t > 1 and f(t) = —1 for every t < —1. Define

V(s) = /t F(t—t,) dt.

Note that V' is symmetric w.r.t. ¢, and that V'(s) =1if s € [t, +1,400), V'(s) € (-1,1) if s € (t, — 1,t, + 1) and
V/(s) = —1if s € (—o0,t, — 1]. In particular [p eV ds < +o0.
As anticipated, we use such function to modify the measure in the product space X x R.

Proposition 4.11 (Mild regularity for the weighted X x R). There ezists a couple (K, N) such that
(X x R,dy, eV (7% m, ),

is an RCD(K, N) space.
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Proof. Note that (R,d., eV (790)\1) is an RCD(Ky, Ny) space for some Ky € (—o0,0) and Ny € (1, +00). Since
(X X Rv d>< 9 e7V(7d0)rn><) = (X7 d7m) ® (Rv d€7 67‘/)\1)’
we deduce that also (X x R,dy, eV (=49)m, ) is an RCD(Ky, N + Ny) space, as desired. O

Proposition 4.12 (Parabolicity of the weighted X x R). The space
(X x R, dy,e”V(=do)m )
s parabolic.

Proof. As we noted earlier the factor (R,d.,e”"'A!) has finite mass. The statement follows applying Corollary
3.25. -

In what follows we denote by fii, the measure e~V (~9)m, and by A the laplace operator in (XxR,dyx,my). We
recall that both in (X x R,dy,my) and (X x R,dy, my) the relaxed gradient of a Lipschitz function coincides with
the local Lipschitz constant, so that in particular it does not change depending on the space that we consider. The
next theorem contains the crucial computation showing that the Laplacian bounds of Proposition 4.8 are preserved
in the modified product space.

Theorem 4.13 (Weighted Laplacian bounds for e=9). _The function e~9 satisfies Ae™9 > 0 in X x (—00,0). Moreover
there exist 7 > 0 and B.(Z) C X x (—00,0) such that Ae™4 > 7 >0 on B.(z).

Proof. Using the chain rule for Laplacians and taking into account Proposition 4.10 we have that

Aem® = e™(=Ad + |Vd?) = ¢ ¥(~Ad + Vd - VV(=dy) + |Vd]*) = ¢4 (=Ad — V/(~do)Vd - Vdo + |Vd[*). (12)
By the fact that Adg = 0 and Proposition 4.3 we have that —Ad = —Ad¢ > 0. Moreover
|Vd]? =2 —-2Vde - Vdy and Vd-Vdy = Vde - Vdo — 1,

so that (12) is bounded below by

e 4(V'(=dg) — V'(=dg)Vde - Vdg + 2 — 2Vd¢ - Vdy)

- - Va 2
=e 424 V/(—do))(1 = Vd¢ - Vdo) = e 9(2+ V’(fdo))%.
Summing up we obtain ~
< . 3 , |Vd|?
Ae ™ >e 24V (_do))T' (13)
Since by construction |V’'(—dg)| < 1 the first part of the statement follows. For the second part it is sufficient to
apply Proposition 4.8 to equation (13). O

The next proposition concerns regularity of sets in the modified product space and is an immediate consequence
of Corollary 2.23.

Proposition 4.14. Let B C X be a regular set in (X,d, m) and let I := (t, —t,t, +1t) C (R,de,e”VA!). Then B x I,
is reqular in (X x R,dy,my).

The next two lemmas concern some simple geometric properties of d.
Lemma 4.15. Let y € X and t € (—o0,0). Then d(y,0) > d(y,t).
Proof. By triangular inequality we have d¢(y,t) < de(y,0) + ¢, so that
d(y,t) = dc(y,t) — t < dc(y,0) = d(y,0),

as claimed. O
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The next lemma follows easily by the definition of product distance.

Lemma 4.16. Suppose that C' and X x {0} have positive distance and that there exists a geodesic 7y : [0,dy (C, X x
{0})] = X x R realizing such distance. Then v is vertical, i.e. its image is contained in a set of the form {z} x R.

The next theorem is the key step to prove the Half Space Property. In the proof we follow the argument outlined
in the Introduction.

Theorem 4.17 (Key step: constancy of d). The function d : X x (—00,0) — R is constant.

Proof. Suppose that the statement does not hold.

Assume first that X has finite diameter. In this case X is compact, so that the restriction dg : X x {—1} — R has
a minimum on a point € X x {—1}. Let v be the connector of z to C' and note that it has to be vertical by Lemma
4.16. In particular d attains its minimum on all the points in its domain that are in the image of 7. By Proposition
4.3 and the maximum principle this implies that such function is constant.

Assume now that X has infinite diameter. Then by Theorem 4.13 there exist & = (z,t;) and €,7 > 0 such that
Ae=4>7>0o0n B, (Z). Modulo replacing x with a sufficiently close point we may also suppose that x is regular for
X and that

€ (0, +00),

where k € N is the essential dimension of X.

Let ¢ € Lip.(Be(Z)) be a positive function, which is equal to 7 on B /5(), takes values in [0, 7], and is symmetric
with respect to X x {t,}. It is clear that such a function exists. Let also {B;}ien be an exhaustion of (X, d, m) with
regular sets containing x.

Consider now for every i € N and z € B; x [t, —i,t, + i] the Green’s function G with pole z relative to the set

Bi X [ty —i,t, +1i] C (X x R,dy,my),

and note that such function exists thanks to Propositions 4.14 and 3.10.
In addition, since the space (XxR,dx, M) is parabolic by Proposition 4.12, then for every § # Z (and 4 sufficiently
large) we get by Theorem 1.5 that .
GL(y) = o0 as it +oo.
We claim that this implies that for every S CC X x R we have

inf G&(7) — oo as it 4oo. (14)
yeS

This follows because for every § # Z the sequence {G%(7)}ien increases as i increases by Proposition 3.13 while,
considering the [0, +-oc]-valued continuous representative given by Lemma 3.20, we have that G%(Z) = +oco (here we
are using our particular choice of the point x € X and the fact that the essential dimension of the product space
X x R is greater than or equal to 2).

Consider now for every i € N the function g; : B; X [ty — ¢,t, + i) — R defined by

6i(z) = /X  GL@)ow) din 1),

By Proposition 3.14 each of these functions, in its domain of definition, satisfies Ag; = —¢, is locally Lipschitz and
continuous up to the boundary, and takes value zero on the boundary itself.
Moreover using (14) and the fact that ¢ =7 on B, /3(Z) it is easy to check that

9i(Z) = 400 asi— +oo.

In particular we can pick iy large enough so that g;,(Z) > 2 and ip > |t;|. Consider now the function e+ gi,- This
function must have a maximum in
B;, % [tx — 10, by + io] N X x (—O0,0}

since 1t 1s continuous an e__—&—gi T) > 2 while e__—i—gi y) < 1 for every
ince it is continuous and (e=9 + g;,)(z) > 2 while (e=9 + g;,)(7) < 1 fi

7€ By, X [ta — io, ts +i0] N X x (—00,0]) \ X x {0}. (15)
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Moreover by Theorem 4.13 we have
Ale 94 g;) >0 in By, X [ty — i, s + io] N X x (—00,0),
so that if we can prove that the maximum lies in

Bio X [tm — ioﬂfm + Zo] N X x (—0070),

then by the maximum principle we would obtain that e~ + g;, is constant, which contradicts the fact that (e™9 +
iy )(T) > 2 while (e79 + g;,)(7) < 1 on the set in (15).

To prove that a maximum lies in the desired set we suppose by contradiction that all the maximum points lie in
X x {0}. Let (yo,0) be such maximum point, and observe that by Lemma 4.15 we have

eia (y07 QtI) > eia (y07 O)a

so that if we can prove that
Gio (Y0, 2t2) = Giy (40, 0) (16)

we would obtain that also (yo,2t,) is a maximum point, a contradiction.
To this aim observe that the function g;, is the only function in

Wy (Bi, X (te — io,ta +i0)) N C(Biy X [tz — i0s e + i0]) (17)

taking value zero on the boundary and such that Agio = —¢. On the other hand, given that ¢ and m, are symmetric
w.r.t. X x {t;}, also the reflected function g; (a,t.) = gi,(a,2t, — t,) belongs to the set in (17), is zero on the

boundary, and satisfies Aggo = —¢. In particular g; = g;,, implying (16). O
Corollary 4.18. There exists a € (0,+00) such that X x {a} C C' and
CNXx (—o0,a) =10

Proof. By the previous proposition the function de : X — R is constant. Let a > 0 be its constant value. It is clear
that C' N X x (—o0,a) = @. To show that X x {a} C C suppose by contradiction that there exists x € X such that
(z,a) ¢ C. Then there exists a ball B.(z,a) C X x R such that B.(z,a) N C = () and this implies that do(z) > q,
which is a contradiction. O

The remaining part of the section is dedicated to showing that C' is actually a union of horizontal slices. The
idea is that, using the previous corollary, we can prove that C'\ X x {a} is locally a boundary of a locally perimeter
minimizing set. Then, reapplying Corollary 4.18 to the aforementioned set, we obtain that C'\ X x {a} contains a
set of the form X x {b} for some b > a and X x (—o00,b) N C' = X x {a}. Finally, iterating this procedure, we obtain
that C' is made of horizontal slices.

To follow such a plan we first need a few intuitive results whose proofs are quite technical. These are presented
in the next lemmas. We will repeatedly use the fact that P(X x (—o0,¢), A x R) = m(A) for every ¢ € R.

Lemma 4.19. Let x € X be a regular point for X and let U, o) and E C U, ) be the sets given by Definition 2.35
applied to C at x. Modulo passing to the complement of E we can suppose that E C X x (a,+00) N Uy q). Then
there exists €g > 0 such that for every € € (0, €)

Be(x) x (a+€,a+ 2¢) C E.
Proof. We first claim that there exists ¢y > 0 and an open set
Ba, (x) x (@ — 2€p,a +2¢9) C X xR
such that for every (y,t) € X x (a,400) NOE N By, (x) X (a — 2€p, a + 2¢p) we have

t—al _
d(z,y)
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To prove the claim we suppose by contradiction that there exists a sequence {(z,,t,)} C XX (a, +00)NOE converging
to (z,a) and satisfying
|tn — a
d(z,z,)

Let k be the essential dimension of X. Let (Z,dz) be the space realizing the blow up of X at x along the scales
{|tn — a|7'} en, and observe that (Z x R,d. x dz) naturally realizes the blow up of X x R at (z,a) along the same
scales. When doing such blow up the set E converges in Llloc to a perimeter minimizing set E' C R* x R such that

>1 for every n € N. (18)

R* x {0} C OFE', E’' CR* x (0,+400).

Moreover, because of (18) and Proposition 2.37, there exists a’ > 0 such that (0,a’) € OF’. This is a contradiction
because of the global Bernstein Property on R**!. This proves our initial claim.
Hence the set

{(y,t) c BQeo(Jj) X (CL— 250’a+2€0) N X x (a, +OO) : th(; Z') > 1}

is either contained in ¢E or in E. If we manage to prove that it is contained in E we are done.

So suppose by contradiction that the previous set is contained in “E. Then repeating the same blow up argument
that we used at the beginning of the proof we obtain a perimeter minimizing set E/ C R¥ x R such that

R* x {0} C OF', E' CR* x (0, +00)

and
{(z,t) e RF xR : |t| > |z|} C °E'.

This is again a contradiction by the global Bernstein Property in Euclidean space. O

Lemma 4.20. Let x € X and let Uy q) and E C U, o) be the sets given by Definition 2.35 applied to C at x. We
can assume w.l.o.g. that U q) = A X I, where A C X is open and I is an interval, and that E lies above the slice
X x {a}. Then for every 6 > 0 there exist 0 < € < §/2 and an open set A" C A such that

m(A\ A) <5, and A" x (a+e,a+2€) CE.

Proof. For every regular € A consider the neighbourhood V, C A and the number ¢, > 0 given by the previous

lemma. Define then
Ap={x € A:e, >t}

and, choosing € small enough, we have that m(A\ A.) < 4. Setting
A= U 7
TEA,
we conclude. O

In the next lemmas the symbols U, 4), 4, I and E will denote the objects introduced in the statement of the
previous lemma.

Lemma 4.21. We have
P(E,A x {a}) > m(A).

Proof. Fix § > 0 and consider the open set A’ C A and the number 0 < € < §/2 such that
m(A\ 4") <4§, and A’ x (a+¢€,a+2€) C E.

We claim that
P(E,A" x (a—d,a+0)) >m(A). (19)

If the claim holds we then obtain that

P(E,A X (a—¥d,a+0)) >m(A) -4,
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and passing to the limit on both sides as § goes to zero we conclude.
To prove (19) consider a sequence {f;}ien € Lipjp.(A’ X (@ — §,a + §)) such that

fi =1 in YA x (a—6a+9))
and

P(E, A" x (a—6§,a+9)) = lim lip(f;) dmy. (20)
=400 J A/ x (a—5,a+5)

We claim that we can replace each f; with functions g; mantaining the same properties and such that g; = 0 on
A" x{a—3e/2} and g; = 1 on A’ x {a+ 3¢/2}. This is possible because (20) implies, though a lower semi-continuity
argument and the fact that A’ x (a +€,a+ 2¢) C E and A’ x (a —2¢,a —€) C °F, that

lim lip(f;)dmy = lim lip(f;) dmy = 0.
t—++00 A’ % (a+5€/4,a+5¢€/3) t—+00 A’ x(a—be/3,a—5e/4)

These identities allow, though a cut off argument, to construct g; € Lip;,.(A’ X (a — d,a + ¢)) such that
gi—)lE in LI(A/X(CL—(S,G-F(S)),

P(E,A" x (a—d,a+0)) = lim lip(g:) dmy
=100 J A’ x (a—5,a+5)

and
gi=0o0n A" x {-3¢/2}; ¢;=1on A x {3¢/2}.

In particular, denoting by lip, the local Lipschitz constant of a function restricted to the vertical component of the
product space, we obtain

/ lip(g;) dmy 2/ lip,(g;) dmy :/ / lip(g;) ds dm,
A’ x(a—8,a+5) A’ x (a—8,a+5) ' J(a—8,a+9)

and by the condition on the values of g; on the horizontal slices the quantity f(a_6 at6) lip,(g;) ds is greater than 1
for every x € A, so that the last integral is greater than or equal to m(A’). Summing up we obtained

P(E, A" x (a—¥§,a+d)) = lim lip(gi) dmy >m(A'),
=400 J A% (a—5,a46)

as desired. O
Lemma 4.22. For every 61,092,603 > 0 there exists 0 < € < d1 such that
P(ENX X (—oo,a+e€),A x (a,a+ d2)) > m(A) — d5.
Proof. Let § := min{dy, d2,5}. By Lemma 4.20 there exist 0 < ¢ < §/2 and an open set A’ C A such that
m(A\A)<d, and A" x (a+¢€,a+2¢) C E.
Setting € := 3€¢//2, and taking into account that we have
ENXx(—oco,a+€e)NA x (a+e,a+2)=Xx(—00,a+e)NA x(a+¢€,a+2€),

we get that
P(ENX X (—o0,a+¢€),Ax (a,a+5)) >m(A") >m(A) -4,

which immediately implies the statement. O

In what follows we will use the notation E’ := EUX X (—00,a). The next lemma is the key step to show that
C'\ X x {a} is locally a boundary of a locally perimeter minimizing set.
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Lemma 4.23. We have that

P(E,AxI)—P(Xx (—o00,a),AxI)>P(E'SAxI).
Proof. By Lemma 4.21 we have that

P(E,AxI)— P(Xx (—00,a),AxI)>P(E,A x (a,b))
and this last quantity can be rewritten as
P(E,A x (a,b)) = P(E',A x (a,b)) = P(E',Ax I) — P(E', A x {a}).
In particular to conclude we only need to show that
P(E'; A x {a}) = 0. (21)

To this aim fix § > 0 and, using Lemma 4.22, pick a sequence decreasing to zero {¢;};cn such that

P(ENXx (—00,a+¢€¢;),AX (a,a+6)) >m(4) —1/i. (22)
So, by the lower semi-continuity of perimeters,

P(E';Ax (a—¥d,a+0)) < lliinng(EUX X (—00,a+¢€;), A X (a—68,a+9))
= ll_igleigofP(E UX X (—00,a+¢€),A % (a,a+9)).
Using (22) we get
P(EUX X (—00,a+ €),A X (a,a+9))
<P(E,AXx (a,a+9))+m(A)— P(ENXx (—o0,a+¢€;),A X (a,a+9))
< P(E,AXx (a,a+9))+ 1/i.
Summing up we obtained that
P(E';Ax (a—6,a+6)) < P(E,Ax (a,a+94)),

which implies (21). O
Proposition 4.24 (Key Step: E’ is locally perimeter minizing). E’ is perimeter minimizing in U g q).

Proof. Let B C X x R be a Borel set such that BAE' cC U(z,q) and note that B N X x (a,+00) is a competitor
for E'in U, q)- In particular, using subadditivity of perimeters first and the fact that £ minimizes the perimeter in
Ulz,a) later, we get

P(B, U(La)) > P(B N X x (a, JrOO)7 U($7a)) — P(X X (a, +OO)7 U(%a))

> P(E7 U(m,a)) - P(X X (a, +OO), U(x,a))~
By Proposition 4.23 this last quantity is greater than or equal to P(E’,U,,q)), so that summing up we obtained
P(Bv U(a;,a)) > P(E/a U(m,a))v
concluding the proof. O

Lemma 4.25. Let y € A be a reqular point of X, then (y,a) ¢ OE'. In particular there exists a small ball B C X xR
containing (y,a) such that BN OE' = ().

Proof. Suppose by contradiction that y € OE’. Now let (Z,dz) be the space realizing the blow up of X at y and
observe that (Z x R,d. x dz) naturally realizes the blow up of X x R at (y,a) along the same scales. When doing

such blow up the set E’ converges in L}, to a perimeter minimizing set E” C R¥ x R such that

R* x (—00,0) C E” and 0€ dE".

Moreover 0 € J(E” NR* x (0,+00)) since E” N R* x (0,+00) is the blow up of E at (y,a). In particular the
complement ¢E” cannot be a half space, contradicting the global Bernstein Property in Euclidean space. O
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Corollary 4.26. OE'NX x {a} NU(zq) = 0.

Proof. Suppose by contradiction that (y,a) € IE'NXx {a}NU(y ). Consider then the function dgps +|do| defined in
a small neighbourhood of (y,a) in X X (=00, a). If the neighbourhood is small enough this function is super-harmonic
(since E’ is locally perimeter minizing) and attains its minimum on each point of the vertical line connecting (y, a)
and (y,0) (since (y,a) € OF’). Hence the aforementioned function has to be constant, contradicting the previous
lemma. O

Lemma 4.27. (C'\ X x {a})NXx{a} = 0. In particular C\ X x {a} is still locally a boundary of a locally perimeter
minizing set.

Proof. Tt is immediate to check that for every x € X we have
U(%a) N(C\Xx{a})NXx {a} C U(x,a) NOE NX x {a}
and this last set is empty by the previous lemma. O

The next theorem gives the explicit description of C' and this immediately implies the Half Space Property for
RCD(0, N) spaces, i.e. Theorem 1.1.

Theorem 4.28 (C' is made of horizontal slices). There exists a sequence {a;}ien C (0, +00] increasing to +oo and
N € NU {400} such that
c= |J Xx{a}

i€EN, i<N

Proof. We know that there exists a; := a > 0 such that
Xx (=00,a1)NC =0 and Xx{a1} CC.

If C = X x {a1} we have nothing left to prove, so suppose that this is not the case. Then the set Cy := C\ X x {a1}
is still locally a boundary of a perimeter minimizing set, so that there exists a2 > a; such that

Xx (=00,a2)NCL =0 and Xx {az} C Ch.

If Cy := C1 \ X x {az} = 0 the proof is concluded, otherwise we apply the same argument to Cy := C; \ X x {az2}
and we keep iterating this process as long as Cj, # 0. If there exists N € N such that Cy = @ we set a; = +oo for
every i > N + 1 and the proof is concluded. If this is not the case, and a; — +o0c we set N := 400 and the proof is
again concluded.

We claim that the previous two cases are the only possible. Indeed if Cy # () for every k and there exists b € R
such that a; 1 b, then in any neighbourhood of a point in X x {b} the set F whose boundary locally coincides with
C would have infinite perimeter, a contradiction. O

5 Proof of Theorem 1.2

The goal of this section is to prove Theorem 5.8, which implies Theorem 1.2 from the Introduction. The proof of
this result is similar in spirit to the proofs of the Half Space Property on manifolds given in [72, 27, 32]. The idea is
the following. Let X be a parabolic RCD(K, N) space and let E C X x R be a perimeter minimizing set contained
in X x (0,400). If OF is not made of horizontal slices, one is able to construct functions u; € BV(X) which solve an
obstacle problem and have large oscillations. This is due to the fact that OF acts as a barrier, so that the graph of
each u; lies at the same time above the obstacle and below E, forcing u; to oscillate. In [72, 27, 32], OF can be used
as a barrier since, in a Riemannian manifold, minimal hypersurfaces that are tangent to each other must coincide
due to the maximum principle. We recall that the maximum principle can be applied thanks to the ellipticity of
the minimal surface equation, which crucially relies on the smoothness of the ambient space. In our setting, we can
use OF as a barrier thanks to a comparison argument that relies instead on the assumption that F is perimeter
minimizing.

Then, by using the fact that X is parabolic, one obtains that the functions u; have to converge to a constant
function, violating the previous condition on the oscillation. In [72, 27, 32], this is obtained by working on the
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graphs of the functions u; and exploiting the regularity properties of minimal graphs (e.g., harmonicity of the height
function on the graph and second variation formulas). In our setting, we only rely on integration by parts arguments
which require no additional regularity for the functions w; (which are only BV in our setting).

We now recall the definition of area functional on RCD spaces (see [12], [13], [51], [50], and [28]) and a few basic
properties that are needed to prove Theorem 5.6.

Definition 5.1 (Area functional). Let (X,d, m) be an RCD(K, N) space, let 2 C X be an open set and let u € BV(Q).
For every measurable E C ) we define the area of u on E as

A(u, E) := / V1+|Vu|?2dm + |D°u|(E).
E
Let  C X and let u: Q@ — R. We set
Hyp(u) :={(z,t) CQ xR :t <wu(z)}, Epi(u):={(z,t) CAXR:t>u(z)}.
The next result can be found in [13] (see also [12] and [28]).

Theorem 5.2 (Area Formula). Let (X,d,m) be an RCD(K, N) space. Let Q@ C X be an open bounded set and let
u € BV(Q). For every Borel set E C ) it holds

P(Hyp(u), E x R) = A(u, E).

Definition 5.3 (Symmetrized function). Let (X,d, m) be an RCD(K,n) space. Let  C X be open. Let E C X x R
be such that Q x (—00,0) C E and Q x (—00,0)AE CC 2 x R. We then define w(F) : Q@ — R by

+oo
w(E)(x) ::/0 1g(x,s)ds.

The proof of the next proposition follows by adapting arguments from [29, Section 3.2] and we report it for the
sake of completeness.

Proposition 5.4. Let (X,d,m) be an RCD(K,n) space. Let Q C X be open. Let E C XXR be such that Q2x (—o00,0) C
E and Q x (—00,0)AE CC Q x R. Then, w(FE) € BV(Q) and A(w(E),Q) < P(E,Q x R).

Proof. Let ¢ > 0 be such that Qx (—o0,0)AE CC Qx(—o0,c) and let € > 0. Consider a sequence f,, € Lip(Q2x(—¢,c))
converging in L}(Q2 x (—¢,¢)) to 1z and such that

i [DF(9 % (—6,)) = P(B,Q x R).

Modulo truncating, we can assume that f, =1 on Q x {—€} and f, =0 on Q x {c}. We then define w.(f,): @ = R
and we(E) : Q@ — R as

c —+oo
wlf)@) = [ faesds, wB)w)i= [ et ds

—€ —€

The functions w(f,) are Lipschitz since

‘we(fn)(x)_WE(fn)(y)l ¢ |fn(xa8)_fn(ya5)|
d(z,y) = / d(z.y)

We now use the notation defined before Proposition 2.14. By reverse Fatou Lemma and the fact that each f, is
Lipschitz, for m-a.e. x € X it holds

ds < (c+ €)L(fn)-

[Vwe(fn)l(2) = lip(we (f2))(x) < /_ IV al(x) ds. (23)
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Moreover, using the tensorization property of Proposition 2.14, it holds

IV fnl(z,s)dmds = /

Qx(—e,c

Dl % (—e.0)) = /

Qx(—e,c)

: VIV i2(z) + [V £2]2(s) dm ds

> s [ @IV + @)V () dmds,
(a,0)eC(Q)xC(Q) JOx (—e,c)
a?4b%<1
a,b>0
Combining with (23) and the fact that f,, =1 on Q x {—€} and f,, =0 on Q x {c}, we deduce
IDfnl(2 x (=€,¢)) = sup / a(x)|Vwe(fn)|(z) + b(z) dm = A(we(fn), ©2).
(a,h)eC(Q)xC(Q) Jo
a?+b2<1
a,b>0
Since
/ \we(fn)fwe(E)\de/ |fn(z,s) — 1g(x,s)|dmds,
Q Qx(—e,c)

it holds w(f,) — we(E) in L1(Q) as n — +oo. These facts imply that w.(E) € BV(Q). Concerning the area of
we(E), we get

A(we(E), Q) < liminf A(we(fn), Q) < liminf |Df,|(Q x (—e,¢)) = P(E,Q x R).

n——+oo n—-+4oo
Since w(E) = w(E) — €, the statement follows. O

Lemma 5.5. Let (X,d,m) be an RCD(K, N) space. Let B C X be a perimeter minimizing set. Let A C X be a set
of finite perimeter such that AN B CC Q for some open set  CC X. Then, P(AN°B,Q) < P(A,Q).

Proof. By the usual perimeter identities (see [2]),
P(AN°B,N) < P(A,Q)+ P(B,Q) — P(AU°B,Q).
Since B is perimeter minimizing, it holds P(B,) — P(AU°B, ) < 0, concluding the proof. O
The next theorem is the key result to prove Theorem 5.8.

Theorem 5.6 (Key Step for Theorem 1.2). Let (X,d,m) be a parabolic RCD(K, N) space. Let E C X xR be a
perimeter minimizing set such that OE C XX (0,400). Then, there exists a > 0 such that JENX x (—o0,a] = Xx {a}.

Proof. In this proof, E will denote the open representative. Modulo passing to the complement, we assume that
E C X x (0,+00). If the statement fails, then there exist x € X, s,h > 0 such that Bs(z) x [0,h] N E = (), while
X x [0,h] N E # . For simplicity, we assume h = 1.

For every ¢ € N with ¢ > s consider functions u; € BV(X) such that

A(ui, Biyi1(z)) = min{A(u, Bit1(z)) : uw € BV(X), u =1 on Bs(x), v =0 on X\ B;(z)}. (24)

These functions exist since the area functional is lower semicontinuous. Note that each u; only takes values in [0, 1].
We now divide the proof in steps
Step 1: We set v; := w(Hyp(u;) \ E) and we claim that

A(vi, Bipa1(x)) = Aui, Biga(2)).
To prove the claim, note that by Proposition 5.4, it holds
A(vi, Bit1(2)) < P(Hyp(u;) \ E, Bi1(x) x R).
Since F is perimeter minimizing, by Lemma 5.5 it holds

P(Hyp(u;) \ E, Biy1(z) x R) < P(Hyp(u;), Biy1(2z) x R) = A(uy, Big1(x)).
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Since w(Hyp(u;) \ E) is equal to 1 on Bg(x) and to 0 on X\ B;(z), we also have A(u;, Bi11(x)) < A(vi, Biv1(z)).
This concludes the proof of Step 1.

Step 2: We claim that, modulo passing to a subsequence, the functions v; converge to 1 in L}, .(X).

To prove the claim, it suffices to show that for every compact K C X, it holds |Dv;|(K) — 0 as i T +o00. If this
holds, the claim follows by lower semicontinuity of total variations.

Fix then K cC X and let i € N be large enough. Let ¢ € Lip.(X) be a non-negative function compactly supported
in B;(r) which is equal to 1 on K. Observe that (1 — v;)¢? is nonnegative. By the chain rule (see [18, Proposition
4.35]), for ¢ small enough it holds

|Dv; (1 — t¢*)|(X) = /X(1 — t$?) d|D%v;|.

Combining this with standard arguments involving Dominated Convergence Theorem (see [36, Theorem 2.27]),
we obtain that the function f(t) := A(v; + t(1 — v;)$?, B;11(x)) is differentiable in t = 0 with

1 _ 2
/ Vo - V({0 — vi)¢7) / 62 d| D). (25)
V14 Vo2 + V14 Vo2

By Step 1, v; is also a minimizer of the problem (24). Combining with (25), it holds

2 2
im0 ST [ gt

f1+\vm2 Vit vere ™

Rearranging and using Young’s inequality, it holds

¢2 Vil dm +/¢2d|sti|_ /¢2 [Voil” dm +8/|V¢|2dm.
V1+ Vo2 2 V1+ Vo X

Hence, using that Cap(K) = 0 by Theorem 1.5, it holds |Dv;|(K) — 0 as ¢ T +o0 as claimed, concluding the
proof of Step 2.

We reach a contradiction since X x [0,1] N E # @, so that, by definition of v;, it holds v; <1 — € on an open set
for € > 0 small enough. O

Let E C X be a perimeter minimizing set such that 0E C X x (0, +00) and E C X x (0, +00). Let a > 0 be given
by Theorem 5.6 and set B’ := E'UX x (—o0,a). Note that all the results from Lemma 4.19 to Lemma 4.25 hold for
this choice of £ and E’ with U, 4) = V xR, where V' is any open bounded set of X (the arguments are formally the
same replacing Corollary 4.18 with Theorem 5.6 and using our stronger assumptions on E).

The next lemma shows that an analogue of Corollary 4.26 holds as well. This does not follow automatically, since
in the proof of Corollary 4.26 we use the assumption that X is RCD(0, N). In the next lemma, OE’ is the boundary
of the closed (or open) representative of E’, which exists by Proposition 4.24.

Lemma 5.7. Let (X,d, m) be a parabolic RCD(K, N) space. Let E C X x R be a perimeter minimizing set such that
OF C X% (0,40) and E C X X (0,+00). Let a > 0 be given by Theorem 5.6 and set E' := EUX x (—00,a). Then,
OF' NXx{a} =10

Proof. Observe that by Lemma 4.25, 9F' N X x {a} # X x {a}. By Proposition 4.24 and Theorem 5.6 (applied to
the complement of E’), it holds OE' N X x {a} = 0. O

Theorem 5.8 (General version of Theorem 1.2). Let (X,d,m) be a parabolic RCD(K,N). Let E C X xR be a
perimeter minimizing set such that E C X x (0,4+00). There exists a sequence {a;}ien C (0,400] increasing to +oo
and N € NU {+o0} such that

oE= |J Xx{a}.

i€N, i<N

In particular, if OF is connected, then it is a horizontal slice.
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Proof. The proof is now similar the one of Theorem 4.28. We know that there exists ag > 0 such that
XX (—=00,a9) NOE =0 and X x {ap} C IFE.

If 0F = X x {ap} we have nothing left to prove, so suppose that this is not the case. Then, the set Fy :=
EUX x (—o00,aq) is still a perimeter minimizing set by Proposition 4.24 and it has Fy N X x {ag} = 0 by Lemma
5.7. Hence, by Theorem 5.6 (applied to “Ep), there exists a; > ag such that

XX (—00,a1)NOEy =0 and X x {a1} COEy C IFE.

If 0Fy \ X x {a1} = 0 the proof is concluded, otherwise we set Ey := “EgUX X (—00,a1). Hence, we find as > a;
such that
XX (—00,a3)NOF; =0 and X x {az} COE; C IF.

We then define Ey := “E; UX X (—00,a3) and we keep iterating this process, setting Ej, := “Ex_1 U X X (—00, ay)
as long as OF_1 \ X x {ax} # 0. If there exists N € N such that 0Ey_1 \ X X {ay} = 0} we set a; = +oo for every
i > N + 1 and the proof is concluded. If this is not the case, and a; — 400 we set N := 400 and the proof is again
concluded.

We claim that the previous two cases are the only possible. Indeed if 9F_1 \ X X {ax} # 0 for every k and there
exists b € R such that a; T b, then F would have infinite perimeter, a contradiction. O

The next theorem deals with the case where the space (X, d, m) has slow volume growth (see Definition 3.23). We
remark that if X is an RCD(0, V) space, having slow volume growth is equivalent to being parabolic by Theorem
1.6.

Theorem 5.9 (Variant of Theorem 1.2 for spaces with slow volume growth). Let (X,d, m) be an RCD(K, N) space
with slow volume growth. Let E C X x R be a perimeter minimizing set such that E C X x (0,+00). Then, there
exists a > 0 such that E = X x [a, +00).

Proof. By the previous theorem, the boundary of E is made of horizontal slices. We assume by contradiction that
OF has more than 1 connected component.
Suppose first that X is compact. In this case subtracting from F its lowest connected component we obtain a
competitor for F with strictly less perimeter, a contradiction. So we can suppose that X has infinite diameter.
Let C' > 0 be the distance between the lowest and the second lowest connected component of 0E. We claim that
there exists s > 0 such that
CP(B;s(x),X) < 2m(Bs(x)). (26)

Recall that, by coarea formula, the function s — m(B,(x)) is absolutely continuous and satisfies %m(Bs(x)) =
P(Bs(x)) for a.e. s > 0. Hence, if (26) fails for every s > 0, it would follow that %m(Bs(x)) > 2C 'm(Bs(x))
and thus m(B;(x)) grows exponenentially in s. This contradicts the slow volume growth assumption and proves the
claimed inequality (26).

So let sop > 0 be a value satisfying (26), let X x (a,a + C') C E be the lowest connected component of E (up to
replacing E with its complement, we may assume that the lowest connected component has this form), let € > 0 be
small enough so that X x (a,a+ C +€)NE =X x (a,a+ C) and consider the set

A= (X\ By, (x)) X (a,a+ C).
Observe that AAE CC Bgy41(x) X (@ —€,a + C + ¢€), while at the same time we have that

P(A, Bsy11(x) X (a —€,a+ C +¢))
= OP(Bs,(x),X) + P(X x (a,a + C), (Bsy11(x) \ Bs,(x)) x (a — €,a+ C +¢))
< 2m(Boy () + P(X % (@0 + O), (Bays1(x) \ Bay () % (a— €0+ C + )
= P(E,Bgy+1(x) x (a —e,a+ C +¢)),

contradicting the fact that E is a perimeter minimizer and proving that JF has only 1 connected component, which
then implies the statement. O
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We conclude the section with an example showing that there exists an infinitesimally Hilbertian metric measure
space which is parabolic (meaning that it admits a point 2 with no positive Green’s function with pole z) and does
not have the Half Space Property.

Example 5.10. Consider the metric measure space (X, d, m) obtained by gluing ([0, +00),d., (zA1)A) and (R, d., A!)
in the respective origins. Using the fact that weighted manifolds are infinitesimally Hilbertian (see [65]), and that
such space is a weighted manifold outside of the gluing point, we obtain that X is infinitesimally Hilbertian as well.
We now show that X is parabolic in 2 steps.

Step 1: Denote by (ag, bg) intervals in (R,d.,A!) and by (ay, by) intervals in ([0, +00),d., (z A 1)A!). We claim
that, given cg € (0,1), if a function u € Wh((—cg, cg) U (Oy, cy)) is harmonic in its domain, then the restriction of
u to (—cg, cr) is affine.

To this aim note that the restriction of u to (—cg, cr) belongs to WH1((—cg, cg)) and in particular it is continuous.

Moreover by restricting u to open sets of its domain that do not contain the gluing point we obtain, by harmonicity,
that u is affine in (—cg,Og) and (Og, cg) (possibly with different slopes) and that u is smooth in (Oy,cy). Hence, if
we manage to prove that the restriction of u to (—cg,cgr) is C* we conclude the proof of Step 1.

To this aim let ¢ € Lip,((—cg,cr) U (Oy, cy)) and consider the harmonicity condition (we are using that relaxed
gradients coincide with local Lipschitz constants in our space and we are denoting by u’ and ¢’ standard derivatives):

0

0= / Vu-Védm = o (x)¢! (x) dA + /CR u'(x)¢' (z) dA! + /CY o' (2)¢! (z)x dA ().
(—cr,cr)U(0v,cy) —cr 0

Oy

Integrating by parts and using the previously found regularity we obtain
0= (;5(0)( lim o/(z) — lim u’(x)),

z€(—cr,0) z€(0,cr)
z—0 z—0

which shows that the restriction of u to (—cg, cg) is C* and concludes the proof of Step 1.

Step 2: We now prove that X is parabolic.
By step 1 we deduce that if x € R\ {0} and G, is the corresponding Green’s function on X, then the restriction
of G, to R is a Green’s function on the standard real line. This in particular implies that G, cannot be positive,
proving that X is parabolic.

We finally show that the Half Space Property fails on X. This is done again in two steps.

Step 1. Consider the function 1g : X — R defined as 1g = 1 on R and 1g = 0 on X\ R. We claim that its
epigraph Epi(1g) C X x R satisfies P(Epi(1g), {0} x R) = 0.
Since P(Epi(1r), {0} x {0,1}) = 0, to prove the above claim it is sufficient to show that P(Epi(1g), {0} x[e,1—¢€]) =0
for every € > 0 small enough. This would follow if we can show that for § > 0 fixed we have

P(Epi(1r), B{(0) x [e,1 — ¢]) = 0.
So let 6 > 0 be fixed and consider the sequence f, given by
fn((@,1)) :=1(0y,1,)(#)((1 = nd(0,2)) V 0) + 1r(z).

Using this as approximating sequence in the definition of perimeter we get

1/n
P(Epi(1g), BX(0) x [¢,1 — €]) < liminf(1 — 26)71/ xdr =0,
0

n—-+oo

concluding the proof of Step 1.
Step 2: We now show that Epi(1g) is a perimeter minimizer.
By Step 1 we obtain that in any set of the form B}(0) x (—1,2) C X x R we have

P(Epi(lR),Bé(O) x <_172)) = P(X x [0’ +OO)7B§(O) X (_172))a
while one can check that if EAEpi(1g) CC BX(0) x (—1,2), then
P(E, By (0) x (~1,2)) = P(X x [0, +00), B(0) x (~1,2)).

Putting these facts together we deduce that F is a perimeter minimizer, as claimed.
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6 Applications

In this section, whenever we consider a manifold M and a hypersurface S C M, we implicitly mean that the hy-
persurface is properly embedded. Given a manifold (M, g) with boundary we say that OM is convex if its second
fundamental form IT w.r.t. the inward pointing normal is positive. Moreover, given a hypersurface S C M, we denote
by H its mean curvature vector. The next proposition can be obtained repeating an argument in [52, Theorem 2.4].

Proposition 6.1. Let (M",d,, e~V dm,) be a weighted manifold with convex boundary such that for a number N > n

VV @ VV
RicM+HessV—%ZK on M\ OM,

then (M",d,, e~V dm,) is an RCD(K, N) space.

Definition 6.2 (Minimal hypersurfaces in weighted manifolds). Let (M",d,, e~V dm,) be a weighted manifold (pos-
sibly with boundary). We say that a hypersurface S C M is minimal if its mean curvature vector satisfies H = VV'+
on S\ OM, where VV'* is the projection of VV on the normal bundle of S.

As in the classical case, one can characterize minimality in terms of variations of the weighted area functional.
In [26] it is shown that in a weighted manifold (M",d,, e~"dm,) without boundary a hypersurface S is minimal if
and only if the first variation of the weighted area functional vanishes at S. Moreover the same paper shows that S
is minimal in a weighted manifold without boundary (M",d,,e~"dm,) if and only if it is minimal in the manifold
(M, g"), where ¢ := e_%vg. It is convenient to notice that the weighted area in (M",d,,e~"dm,) and the area
with respect to the conformal metric ¢’ coincide, and that orthogonality of vectors is preserved under conformal
changes of the metric.

Now we state two results that are needed to obtain Corollary 6.5, which shows that minimal hypersurfaces are
locally boundaries of locally perimeter minimizing sets. The next lemma is a consequence of the general properties
of tubular neighbourhoods and Fermi coordinates in smooth manifolds (see for instance [46, Lemma 2.7]).

Lemma 6.3. Let (M, g) be a manifold with boundary and let ~ : [0,1] — M be a geodesic intersecting OM orthogonally
in v(1). Then there exists an interval I = [1—e¢,1) such that for every t € I the curve  realizes the distance between
OM and ~(t). In particular, in an appropriate neighbourhood of v(1), any other curve branching from ~ and ending
on OM has length greater than or equal to the one of .

The proof of the next lemma can be performed adapting the one in [61, Theorem 2.1] and is just sketched, while
the subsequent corollary follows from standard approximation arguments.

Lemma 6.4. Let (M™,dg,eVdmy) be a weighted manifold (possibly with boundary). Let S C M be a minimal
hypersurface intersecting OM orthogonally. Then S locally minimizes the weighted area among smooth competitors.

Proof. Modulo considering the manifold (M, ¢'), where ¢’ := e~ itV g, we can suppose that the weight V' is identically
zero. We then repeat the argument of [61, Theorem 2.1].

We first consider € S\OM and we claim that .S minimizes the area w.r.t. smooth competitors in a neighbourhood
of z. Let U be a sufficiently small neighbourhood of x in M. To prove the claim let C' C S be an n — 2 dimensional
submanifold of S containing x, let Py : SNU — C be the nearest point projection from SNU to C, and let P, : U — S
be nearest point projection from U to S, and let P := Py o P;. Using the coarea formula we can rewrite the area of
SNU as

n—1 o 1 n—2 c
H (SmU)/C/UOSCWH(HS)dH dH" ()

where S, := P! ({c}) NS and J,_2(Ps) is the appropriate coarea factor. Since P~ ({c}) intersects S orthogonally,
we have that J, 2(Ps) = Jn—2(P) on S. (while in general we would have J,,_2(Pg) < J,_2(P)), so that we can
rewrite

H" 1 (SNU) :/c/ms 1/Ju_o(P)dH! dH"2(c) :/Clength(ScﬂU) dH"%(¢),

where the length of each S, N U is computed w.r.t. the metric obtained multiplying the standard metric on {P = ¢}
by 1/J,—2(P). The minimality of S implies, through the previous equation, that each curve S. is a geodesic in
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{P = ¢} with the modified metric. In particular, modulo restricting U, we have that each S. N U is also length
minimizing in {P = ¢} with the modified metric.
With this in mind we have that if S’ is a competitor of S, denoting S’ := S’ N {P = ¢}, then

H”*%S’HCU::/[

length(S., NU)dH"2(c) > / length(S. NU)dH"2(¢) = H*1(SNTU). (27)
C

c
This proves the statement for points lying outside of OM.

For boundary points, one can repeat the previous argument, replacing the fact that geodesics locally minimize
the length with Lemma 6.3 to justify the inequality in (27). O

Corollary 6.5. Let (M",dg,eVdm,) be a weighted manifold (possibly with boundary). Let S C M be a minimal
hypersurface intersecting OM orthogonally, then S is locally a boundary of a locally perimeter minimizing set.

Next, we deduce Theorem 1.3 from the Introduction.

Theorem 6.6. Let N € (1,00). Let (M",d,,e~Vdm,) be a parabolic weighted manifold with convex boundary such

that N > n and IV @ UV
Ricy + Hessy — YV oOVY >0 onM\JIM.
N—n
Let S C M x (0,400) be a connected minimal hypersurface intersecting OM x R orthogonally, then S is a horizontal
slice.

Proof. The manifold (M™,dg,e~"dm,) is an RCD(0,N) space by Proposition 6.1. The manifold S is locally a
boundary of a locally perimeter minimizing set and it is a slice by the Half Space Property. O

Definition 6.7 (Modulus of parabolicity). Let (X,d, m,x) be an RCD(K, N) space. We say that a function P :
[0,4+00) — (0,+00) is a modulus of parabolicity if

+oo t
/ gt = 1o,
1 P()

We say that X has modulus of parabolicity P if m(B,(x)) < m(B;(x))P(r) for every r > 0.

By Theorem 1.6, if an RCD(K, N) space (X,d, m,x) has a modulus of parabolicity, then it is parabolic, and this
condition is also necessary if K = 0. In general, there are manifolds that are parabolic but do not have a modulus
of parabolicity, as shown, for example, in [47, Example 7.2].

We say that a set S C X is an area minimizing boundary in an open set A C X if the exists a set £ C A minimizing
the perimeter in A such that 9F N A =S. Let S C X x R be such that (x,0) € S. We define

Oscy r(S) :=sup{[t| : (y,t) € SN B(x) x (—r,7)};

Osc;,.(S) :=sup{|¢| : (y,t) € SN B.(x) x (0,7)};
and
Osc, ,.(S) :=sup{[t| : (y,t) € SN B, () x (—r,0)}.

The next result implies Theorem 1.4 from the Introduction.

Theorem 6.8 (General version of Theorem 1.4). Fiz K € R, N € (1,+00). Let P be a modulus of parabolicity. For
every t,r,T > 0 there exists R(K, N, P,t,r,T) > 0 such that if (X,d,m,x) is an RCD(K, N) space with modulus of
parabolicity P and E C Br(x) X (—R, R) is a perimeter minimizer in Br(x) X (—R, R) such that (x,0) € OF and
Oscy - (OF) > t, then

Osc z(0E) > T and Osc, z(0E) > T.
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Proof. Suppose by contradiction that the statement is false. Then, there exist ¢,7,T > 0, a sequence {R;};en C
(0, +00) increasing to +00, a sequence of RCD(K, N) spaces {(X;, d;, m;,x;) }ien with modulus of parabolicity P, and
sets E; C X; X (—R;, R;) such that (x;,0) € OF;, Oscy, (0E;) >t and

Osc;Ri (OF;) <T or Osc;Ri (OF;) < T.

Moreover, if we replace each measure m; with its normalized version m;(B; (xi))_lmi, we have that each set F; is
still perimeter minimizing in the normalized product space and that the spaces (X;,d;, m;(B1(x;)) " m;, x;) still have
modulus of parabolicity P. Hence it is not restrictive to assume that the measures m; satisfy m;(B;(x;)) = 1.

Without loss of generality and passing to a (non relabeled) subsequence we may then suppose that for every ¢ € N
we have

Oscy, g, (OF;) < T,

so that modulo replacing F; with its complement we may also suppose that
E;N BRi (Xl) X [7Ri, Rl} C BRi (Xz) X [7T, +OO). (28)

Up to passing to another subsequence we have that the spaces (X;,d;, m;, x;) converge in pmGH sense to an RCD(K, N)
space (X, d, m,x). By the continuity of the mass under pmGH convergence, X has modulus of parabolicity P and, in
particular, it is parabolic.

Passing to yet another subsequence we have that the sets F; converge in LlloC sense to a perimeter minimizing set
E C X x R. Observe moreover that if (Z,d,) is the metric space realizing the convergence of the sets X; to X, then
(Z x R,d, x d) realizes the convergence of the corresponding product spaces.

Combining this with the Kuratowski convergence in Z x R of the boundaries of the sets F; to the boundary of
the set £ given by Proposition 2.37, we deduce that

Oscy - (OF) > t (29)

and
E CXx[-T,400).

By Theorem 5.9, F is a perimeter minimizing set whose boundary is an horizontal slice, contradicting the oscillation
(29). O

In Theorem 6.8 asking for the parabolicity of the spaces involved without requiring the existence of a common
modulus of parabolicity is not enough, as the next example shows.

Example 6.9. Consider a bounded non constant solution u of the minimal surface equation in the hyperbolic space
(H?2, g, x). Such solution exists thanks to [69]. We claim that for every i € N there exists a metric g; on Bj,;(x) which
coincides with g on BY(z), and such that (B, (z), ;) is complete, parabolic and satisfies Ric(Bg. (2),01) = —1-

If we are able to do so, then Graph(u) N BY(z) x R C (BY(z),g;) will be area minimizing in B}’ (z) for every
i € N, but these minimal submanifolds will have uniformly bounded oscillation, showing that Theorem 6.8 fails in
this setting.

To construct the metric g; we first consider a smooth surjective function f; : [0,42i) — [0, +00) which is constant
if ¢ <4 and has positive first and second derivative. Then we consider the graph of the function y — f;(dy(x,y)) on
Bj.(z) and we define g; to be the pullback metric of such graph on BS,(z). The fact that lim,_,o; f(r) = 400 makes
g; a complete metric and implies that there exists a constant ¢; such that

my; (ng (x)) <ar,

making (BS,(z), g;) parabolic by Theorem 1.6. At the same time, using the convexity of f; together with the Gauss-

Codazzi equations one can check that Ric(gs(s) g,y = —1.
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