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Abstract

Two generic properties of the Neumann–Poincaré operator are investigated. We
prove that non-zero eigenvalues of the Neumann–Poincaré operator on smooth bound-
aries in three dimensions and higher are generically simple in the sense of Baire cat-
egory. We also prove that the functions defined by the fundamental solutions to the
Laplace operator located at points outside the surface are generically cyclic vectors in
the sense that the collection of those points where the functions are not cyclic vectors
is of measure zero.
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1 Introduction

Let Ω be a bounded domain in Rd (d ≥ 2) with the C1,α-smooth boundary for some α > 0.
The Neumann-Poincaré (abbreviated to NP) operator K∗∂Ω on H−1/2(∂Ω) (the L2-Sobolev
space of order −1/2) is defined by

K∗∂Ω[ψ](x) :=

∫
∂Ω
∂nxΓ(x, y)ψ(y) dSy, x ∈ ∂Ω, (1.1)

where ∂nx denotes the outer normal derivative (with respect to x) on ∂Ω, Γ the funda-
mental solution to the Laplacian, namely,

Γ(x, y) =


1

2π
log |x− y|, d = 2,

−1

d(d− 2)cd

1

|x− y|d−2
, d ≥ 3,
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cd the volume of the unit ball in Rd, and dSy the surface element on ∂Ω.
Let S∂Ω be the single layer potential on ∂Ω, namely,

S∂Ω[ψ](x) :=

∫
∂Ω

Γ(x, y)ψ(y) dSy, x ∈ Rd. (1.2)

If we consider S∂Ω[ψ](x) for x ∈ ∂Ω, then S∂Ω maps H−1/2(∂Ω) into H1/2(∂Ω). As such
an operator, S∂Ω is invertible if d ≥ 3. If d = 2, it may not be invertible. But, if it is so, we
may dilate Ω and the single layer potential on the dilated surface is invertible. Since the
NP spectrum (spectrum of the NP operator) is invariant under dilation, we may assume
from the beginning that S∂Ω : H−1/2(∂Ω) → H1/2(∂Ω) is invertible. Let 〈·, ·〉 denote the
H−1/2-H1/2 pairing on ∂Ω. Then the bilinear form

〈ϕ,ψ〉∂Ω := −〈ϕ,S∂Ω[ψ]〉 (1.3)

on H−1/2(∂Ω) becomes an inner product, and K∗∂Ω is self-adjoint on H−1/2(∂Ω) equipped
with this inner product.

If ∂Ω is C1,α as we assume in this paper, the NP operator K∗∂Ω is compact on
H−1/2(∂Ω), and hence K∗∂Ω admits sequences of nonzero eigenvalues of finite multiplicities
converging to 0 while 0 may or may not be an eigenvalue. These NP eigenvalues (eigen-
values of the NP operator) may have multiplicities higher than 1. For example, 0 is the
only NP eigenvalue (other than 1/2) on disks. It is shown in [10] (see also [9]) that 0 is
an NP eigenvalue of infinite multiplicities on lemniscates. If Ω is a ball in R3, then NP
eigenvalues are 1

2(2k+1) with the multiplicity 2k + 1 (k = 0, 1, 2, . . .). In this paper, we
show that the hypersurface with non-simple nonzero NP eigenvalues is rare by showing
that nonzero NP eigenvalues are generically simple. Here, the notion ‘generic’ means the
collection E with such a property in a topological space X contains an intersection of at
most countable number of open dense subsets in X. The terminology is in general used
when X is a Baire space: in such spaces the set E is dense and said to be Baire typical.
There are many works on generic properties of eigenvalues and eigenfunctions (see [15]
and references therein). We also mention the article [1] which motivates the study of this
paper. There the generic simplicity of eigenvalues of the Laplace-Beltrami operator on
compact Riemannian manifolds is proved.

To define the class of boundary surfaces, let D be a domain in Rd (d ≥ 3) with the
smooth boundary ∂D. Fix constants L > 0 and c > 0 (c to be chosen), and define

M :={G = (g1, g2, . . . , gd) | G is smooth in a neighborhood of ∂D,

‖G− I‖C1(∂D) ≤ c, |G(x)−G(y)| > L|x− y| for all x 6= y ∈ ∂D}, (1.4)

where I stands for the identity mapping. We choose c so small that G(∂D) is the boundary
of a bounded domain for each G ∈ M which we denote by DG, namely, ∂DG = G(∂D).
We introduce the metric on M:

pn(G) =

(
d∑
i=1

max
x∈∂D, |α|≤n

|∂αgi(x)|2
)1/2

for n = 0, 1, . . . , where α is multi-indices. The distance on M is defined by

ρ(F,G) =
∑
n

1

2n
pn(F −G)

1 + pn(F −G)
.
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Note that M is the collection of all smooth functions G = (g1, g2, . . . , gd) satisfying

|G(x)−G(y)| ≥ L|x− y|

for all x, y ∈ ∂D and (M, ρ) is a complete metric space.
We have the following theorem regarding generic simplicity of the NP eigenvalues in

three dimensions and higher. The two-dimensional case is excluded since the proof heavily
relies on the Hadamard’s variation formula for the NP eigenvalues derived in [6]. As far
as we are aware of, the formula for two-dimensions has not been derived, and we don’t
know if generic simplicity of the NP eigenvalues holds in two dimensions.

Theorem 1.1. Let D be a domain in Rd (d ≥ 3) with the smooth boundary ∂D and let
M be the set defined in (1.4). The set Ms of all G ∈ M such that all non-zero NP
eigenvalues on ∂DG are simple is Baire typical in (M, ρ).

The second generic property is regarding cyclic vectors. Let K be a bounded operator
on a separable Hilbert space H. For ξ ∈ H, we denote by Lξ the cyclic subspace generated
by ξ, namely,

Lξ = span{Knξ | n = 0, 1, 2, . . .}. (1.5)

The vector ξ is called a cyclic vector for K if

Lξ = H. (1.6)

We also consider N -cyclic vectors. The N -tuple (ξ1, ξ2, . . . , ξN ) of vectors in H is called
N -cyclic vectors for if

Lξ1 + Lξ2 + · · ·+ LξN = H. (1.7)

It is worth mentioning that E = (ξ1, ξ2, . . . , ξN ) is called N -supercyclic vectors for K if
∪∞n=0K

n(E) is dense in H.
In relation to N -cyclic vectors for the NP operator K∗∂Ω on ∂Ω, we seek a class of

explicit functions on ∂Ω which provides N -cyclic vectors generically in some sense, under
the assumption that the spectral multiplicity of K∗∂Ω is finite. The spectral multiplicity
is the maximal multiplicity of the eigenvalues (see [7, Section 51]). As candidates of such
functions, we consider

qz(x) := v · ∇zΓ(z − x), x ∈ ∂Ω (1.8)

for z ∈ Rd \ Ω where v is a constant vector. Actually functions qz were used to extract
spectral information of the NP operator on polygons numerically in [8].

We obtain the following theorem.

Theorem 1.2. Let Ω be a bounded domain in Rd (d ≥ 2) with the C1,α boundary for some
α > 0. Suppose that the spectral multiplicity of K∗∂Ω on H−1/2(∂Ω) is N < +∞. Then
(qz1 , qz2 , . . . , qzN ) are N -cyclic vectors for K∗∂Ω for almost all (z1, z2, . . . , zN ) ∈ (R3 \Ω)N ,
namely,

Lqz1 + Lqz2 + · · ·+ LqzN = H−1/2(∂Ω). (1.9)

We emphasize that any (qz1 , qz2 , . . . , qzM ) with M < N cannot generate H1/2(∂Ω) (see
Lemma 3.1). If all eigenvalues are simple, qz is a cyclic vector for K∗∂Ω for almost all
z ∈ Rd \ Ω.

We also obtain the following theorem with the same proof.
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Theorem 1.3. Let Ω be a bounded domain in Rd (d ≥ 2) with the C1,α boundary for
some α > 0. Let ϕn, n = 1, 2, . . ., be an orthogonal system of eigenfunctions of K∗∂Ω. For
almost all z ∈ R3 \ Ω, qz satisfies the following property:

〈qz, ϕn〉∂Ω 6= 0 for all n. (1.10)

The above theorem shows that for almost all z, qz contains all eigenmodes. The
theorem remains true for any system of functions φ belonging to a countable subset of
H−1/2(Ω).

The rest of the paper is devoted to proving Theorem 1.1 (section 2) and Theorems 1.2
and 1.3 (section 3). This paper ends with a short discussion.

2 Proof of Theorem 1.1

We restrict ourselves to R3 even though the argument can be applied to Rd, d ≥ 3.
For a bounded domain Ω with the smooth boundary ∂Ω, we define the perturbation

Ω(ha) for a smooth function a with maxx∈∂Ω |a(x)| ≤ 1 and a small real parameter h as

∂Ω(ha) = {x+ ha(x)n(x) ; x ∈ ∂Ω}. (2.1)

The proof of this section relies heavily on the following Hadamard variational type
formula obtained in [6]. We also mention [13, section 136] and references therein for
general theory for analytic branches of eigenvalues and eigenvectors for perturbation of a
self-adjoint operator on a Hilbert space.

Theorem 2.1 ([6]). Let Ω be a smooth bounded domain in R3, and let λ 6= 0, 1/2 be an
eigenvalue of the NP operator K∗ on ∂Ω with the eigenspace E. Then there are h0 > 0
and real analytic functions h 7→ λ(i)(h), h→ e(i)(h) defined for |h| < h0, i = 1, . . . ,dimE,
such that

(i) λ(i)(0) = λ for all i and {e(1)(0), . . . , e(dimE)(0)} is a basis of E,

(ii) for each h the numbers λ(i)(h) are eigenvalues of K∗h (the NP operator on ∂Ω(ha))
with eigenfunctions e(i)(h) satisfying

〈e(i)(h), e(i)(h)〉∂Ω(ha) = 1. (2.2)

For each analytic branch λ(i)(h) and e(i)(h), we have

dλ(i)

dh
(0) =

∫
∂Ω
a
[
|∇∂S[e(i)(0)]|2 − c(λ)(∂nS[e(i)(0)]|−)2

]
dσ, (2.3)

where S is the single layer potential on ∂Ω, the subscript − indicates the limit (to ∂Ω)
from Ω, ∇∂u(i) = ∇u(i) − (∂nu

(i))n on ∂Ω, and

c(λ) =
1 + 2λ

1− 2λ
.

Some remarks on Theorem 2.1 are in order. The normalization (2.2) differs from [6]
by the constant factor and (2.3) differs accordingly. There the normalization is given by
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‖∇Sh[e(i)(h)]‖L2(∂Ω(ha)) = 1. Using divergence theorem and the jump formula for the
normal derivative of the single layer potential, namely,

∂nSh[ϕ]|± =

(
±1

2
I +K∗h

)
[ϕ] on ∂Ω, (2.4)

one can see

‖∇Sh[e(i)(h)]‖2L2(∂Ω(ha)) = (1/2− λ(i)(h))〈e(i)(h), e(i)(h)〉∂Ω(ha).

The function e(i)(h) is analytic in the sense that there is a sequence of functions ψ
(i)
0 , ψ

(i)
1 , ψ

(i)
2 , . . .

in H−1/2(∂Ω) such that

e(i)(h) = ψ
(i)
0 + hψ

(i)
1 + h2ψ

(i)
2 + · · · .

which converges in H−1/2(∂Ω).
Note that the perturbation (2.1) is in the direction of the normal vectors while the

perturbation in the class M which is under consideration in this paper is given in terms
of diffeomorphisms. So, in order to be able to apply Theorem 2.1 to the context of this
paper, we need to show that perturbations by diffeomorphisms can be realized locally as
perturbations of the form (2.1) (and vice versa). The following lemma does it.

Lemma 2.2. For each F ∈ M, there is a constant C > 0 such that for any sufficiently
small ε > 0 the following hold:

(i) If ρ(F,G) < ε, then there is a ∈ C∞(∂DF ) with maxx∈∂DF |a(x)| ≤ 1 such that

∂DG = ∂DF (Cεa). (2.5)

(ii) If a bounded domain Ω with the smooth boundary satisfies ∂Ω = ∂DF (εa) for some
a ∈ C∞(∂DF ) with maxx∈∂DF |a(x)| ≤ 1, then there is G ∈ M with ρ(F,G) < Cε
such that

∂Ω = ∂DG. (2.6)

Proof. (i) Fix F ∈ M and suppose that G ∈ M satisfies ρ(F,G) < ε. Let H := G ◦ F−1.
Then, H(∂DF ) = ∂DG. Since |H(x)− x| < Cε for some C for all x ∈ ∂DF , we have

d(y, ∂DF ) < Cε ∀y ∈ ∂DG. (2.7)

We claim that for each x ∈ ∂DF , there is unique t such that x + tn(x) ∈ ∂DG.
Moreover, t satisfies |t| < Cε. Once the claim is proved, we denote such a t by Cεa(x).
Then it is easy to prove, using implicit function theorem, that a(x) is a smooth function.
So, (2.5) is proved.

To prove the claim, let x0 ∈ ∂DF . After rotation and translation if necessary, we may
assume that x0 = (0, 0, 0) and there is an open neighborhood U ⊂ ∂DF of x0 which is
represented as a graph of a smooth function f satisfying f(0, 0) = 0 and ∇f(0, 0) = 0,
namely, U = {(u, f(u)) | u ∈ Br} for some r > 0. Here Br = {u ∈ R2 | |u| < r}. In
particular, n(x0) = (0, 0, 1). Then H(U) ⊂ ∂DG. Let π be the projection π(x1, x2, x3) =
(x1, x2). Since |H(x)− x| < Cε, we have

Br−Cε ⊂ π(H(U)) ⊂ Br+Cε.
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Thus, if ε is sufficiently small, then (0, 0) ∈ π(H(U)), which implies that (0, 0, t) ∈ H(U) ⊂
∂DG for some t. Because of (2.7), |t| < Cε.

To prove uniqueness of such t, let ηF be a defining function for ∂DF , namely, ηF is
smooth in a neighborhood V of ∂DF , ∂DF = η−1

F (0) and minx∈∂DF |∇ηF (x)| ≥ C1 for
some C1 > 0. Because of (2.7), we may assume that ∂DG ⊂ V . Since n(x0) = (0, 0, 1),
we have |∂ηF∂x3

(x0)| ≥ C1. Thus there is δ > 0 such that∣∣∣∣∂ηF∂x3
(0, 0, s)

∣∣∣∣ ≥ C1

2
if |s| < δ. (2.8)

Note that ηG := ηF ◦ H−1 is a defining function for ∂DG. Suppose that there are two
different t1, t2 with |tj | < Cε such that (0, 0, tj) ∈ ∂DG. Then

0 = ηG(0, 0, t1)− ηG(0, 0, t2) =
∂ηG
∂x3

(0, 0, t∗)(t1 − t2)

for some t∗. Thus, ∂ηG∂x3
(0, 0, t∗) = 0, and hence |∂ηF∂x3

(0, 0, t∗)| < Cε. Thus, if ε is sufficiently
small, then this contradicts (2.8).

(ii) Suppose ∂Ω = ∂DF (εa). If ε is sufficiently small, the mapping x 7→ x+ εa(x)n(x)
is bijection from ∂DF onto ∂Ω, which can be extended to a tubular neighborhood of ∂DF

as an injective mapping. In fact, the mapping x+ tn(x) 7→ x+ (εa(x) + t)n(x), |t| < δ for
some δ > 0, is such an extension. Denote the extended mapping by Q. Then, there is a
constant C > 0 such that

|Q(x)−Q(y)| > (1− Cε)|x− y|

for all x, y ∈ ∂DF . Let G := Q ◦ F . Then there is LF > L such that

|G(x)−G(y)| > (1− Cε)|F (x)− F (y)| > (1− Cε)LF |x− y|

for all x, y ∈ ∂D. Thus, if ε is sufficiently small, then

|G(x)−G(y)| > L|x− y|

for every x 6= y ∈ ∂D, which implies G ∈ M. If x ∈ ∂D, then G(x) − F (x) =
εa(F (x))n(F (x)), and hence ρ(F,G) < Cε. This completes the proof.

The following lemma will be used to prove Lemma 2.4. We emphasize that estimates
in the lemma are not optimal.

Lemma 2.3. Let Ω be a bounded domain in Rd (d ≥ 3) with the smooth boundary and let
a be a smooth function on ∂Ω such that maxx∈∂DF |a(x)| ≤ 1. Let Ψ(x) := x+ εa(x)n(x)
for x ∈ ∂Ω. Denoting by K∗ and K∗ε the NP operators on ∂Ω, ∂Ω(εa), respectively, and by
S, Sε the single layer potentials, the following hold: there is a constant C > 0 such that

‖K∗[ϕ]−K∗ε [ϕ ◦Ψ−1] ◦Ψ‖L2(∂Ω) ≤ Cε‖ϕ‖L2(∂Ω) (2.9)

and
‖S[ϕ]− Sε[ϕ ◦Ψ−1] ◦Ψ‖H1/2(∂Ω) ≤ Cε‖ϕ‖L2(∂Ω). (2.10)

for all sufficiently small ε > 0 and ϕ ∈ L2(∂Ω).
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Proof. We assume that d = 3 since the case for higher dimensions can be dealt with in
the same way. Let K(x, y) (x, y ∈ ∂Ω) be the integral kernel for K. Fix x0 ∈ ∂Ω. Using
the local coordinates, we may assume that x0 = 0 and ∂Ω near x0 is given as a graph,
namely (u, f(u)) where u ∈ Br and f is a smooth function in Br. If x = (u, f(u)) and
y = (v, f(v)) lie on ∂Ω, then by Taylor’s theorem we have

K(x, y) =
1

4π
√

1 + |∇f(u)|2
f(u)− f(v)−∇f(u)(u− v)

(|u− v|2 + |f(u)− f(v)|2)3/2

=
1

4π
√

1 + |∇f(u)|2
(u− v) ·R(u, v)(u− v)

|u− v|3(1 + E(u, v))3/2
, (2.11)

where R(u, v) = (Rij(u, v)) with

Rij(u, v) =

∫ 1

0
(1− t)∂i∂jf((1− t)u+ tv)dt (2.12)

and

E(u, v) =
|f(u)− f(v)|2

|u− v|2
. (2.13)

If x = (u, f(u)), then we have

Ψ(x) = (T (u), F (u)) (2.14)

where

T (u) = u− εã(u)∇f(u)√
1 + |∇f(u)|2

(2.15)

and

F (u) = f(u) +
εã(u)√

1 + |∇f(u)|2
. (2.16)

Here ã(u) := a(u, f(u)). Thus there is r1 ≤ r such that ∂Ω(εa) near Ψ(x0) is given as a
graph (u, fε(u)), u ∈ Br1 , where

fε(u) = F (T−1(u)).

Let Kε(x, y) be the integral kernel of Kε. If x′ = (u, fε(u)) and y′ = (v, fε(v)) lie on
∂Ω(εa), then Kε(x

′, y′) is given by (2.11) with f replaced by fε.
Let x = (u, f(u)), y = (v, f(v)) ∈ ∂Ω and x′ = Ψ(x) and y′ = Ψ(y). Then, by (2.14),

we have

Kε(Ψ(x),Ψ(y)) =
1

4π
√

1 + |∇fε(T (u))|2
(T (u)− T (v)) ·Rε(u, v)(T (u)− T (v))

|T (u)− T (v)|3(1 + Eε(u, v))3/2
,

where Rε(u, v) = (Rεij(u, v)) with

Rεij(u, v) =

∫ 1

0
(1− t)∂i∂jfε((1− t)T (u) + tT (v))dt (2.17)

and

Eε(u, v) =
|fε(T (u))− fε(T (v))|2

|T (u)− T (v)|2
=
|F (u)− F (v)|2

|T (u)− T (v)|2
. (2.18)
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Since
T (u) = u+ εT1(u), F (u) = f(u) + εa1(u), fε(u) = f(u) + εa2(u)

where T1, a1, a2 are smooth functions in Br1 bounded independently of ε (T1 is a R2-valued
function), it is straight-forward to see that

Kε(Ψ(x),Ψ(y)) = K(x, y) + εA(x, y),

where A(x, y) satisfies

|A(x, y)| ≤ C

|x− y|
(2.19)

for some constant C. Let A be the integral operator defined by A(x, y). It is easy to see
that A is bounded on L2(∂Ω).

The Jacobian determinant |JΨ(x)| of Ψ on ∂Ω is of the form |JΨ(x)| = 1 + εb(x) for
some bounded smooth function b. Let ϕ ∈ L2(∂Ω). We have

K∗ε [ϕ ◦Ψ−1](Ψ(x)) =

∫
∂Ω
Kε(Ψ(x),Ψ(y))ϕ(y)(1 + εb(y))dSy,

and hence

K∗ε [ϕ ◦Ψ−1](Ψ(x))−K∗[ϕ](x) = εA[ϕ(1 + εb)](x) + εK∗[ϕb](x).

Thus (2.9) follows.
Note that

S∗ε [ϕ ◦Ψ−1](Ψ(x)) =
1

4π

∫
∂Ω

ϕ(y)(1 + εb(y))

|Ψ(x)−Ψ(y)|
dSy.

It is easy to see that
1

|Ψ(x)−Ψ(y)|
=

1

|x− y|
+ εB(x, y), (2.20)

where B(x, y) satisfies

|B(x, y)| ≤ C

|x− y|
(2.21)

and

|B(x, y)−B(x′, y)| ≤ C|x− x′|
|x− y|2

(2.22)

for some constant C and for all x, x′, y ∈ ∂Ω. Let B be the integral operator defined by
B(x, y). Then, we have

S∗ε [ϕ ◦Ψ−1](Ψ(x))− S∗[ϕ](x) = εB[ϕ(1 + εb)](x) + εS∗[ϕb](x).

It is known that an integral operator whose kernel satisfies (2.21) and (2.22) is bounded
from L2(∂Ω) into Hs(∂Ω) for any s < 1 (see, for example, [4, Theorem A.1]). So, in
particular, (2.10) follows.

For F ∈ M, we denote by K∗F and SF the NP operator and the single layer potential
on ∂DF . Let, for ease of notation,

〈ϕ,ψ〉F := 〈ϕ,ψ〉∂DF (2.23)

for ϕ,ψ ∈ H−1/2(∂DF ), and let
‖ϕ‖2F := 〈ϕ,ϕ〉F . (2.24)

The following lemma shows that the number of NP eigenvalues in an interval away
from 0 is invariant under small perturbation in M.
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Lemma 2.4. Let F ∈M and a, b ∈ (0, 1/2) be numbers such that −a, b are not eigenvalues
of K∗F . Let I be either (−1/2,−a) or (b, 1/2). There is ε > 0 such that if ρ(F,G) < ε,
then

#(I, F ) = #(I,G) (2.25)

where #(I, F ) denotes the number of eigenvalues of K∗F in I counting multiplicities.

Proof. We only prove lemma for the case when I = (b, 1/2). Suppose that #(I, F ) = N ,
and let λi, 1 ≤ i ≤ N , be the eigenvalues of K∗F in I. Suppose that ρ(F,G) < ε for a suffi-
ciently small ε. Then, by Lemma 2.2 (i), there is a ∈ C∞(∂DF ) with maxx∈∂DF |a(x)| ≤ 1
such that ∂DG = ∂DF (ε1a) (ε1 = Cε). Let h0 be the number appearing in Theorem
2.1. If ε1 < h0, then there are real analytic functions λ(i)(h), e(i)(h) (1 ≤ i ≤ N)
defined for |h| < h0 such that λ(i)(0) = λi, ϕi := e(i)(0) is the corresponding eigenfunc-
tion, and λ(i)(ε1) is an eigenvalue of K∗G with the corresponding eigenfunction e(i)(ε1)
where all the eigenfunctions are normalized by (2.2). Thus #(I,G) ≥ N . We note that
each ϕi belongs to L2(∂Ω). In fact, since K∗F is bounded from H−1/2(∂Ω) into L2(∂Ω),
ϕi = (λFi )−1K∗F [ϕi] ∈ L2(∂Ω).

Suppose #(I,G) > N . Then there is ψ ∈ H−1/2(∂DG) such that ‖ψ‖G = 1, K∗G[ψ] =
λψ for some λ ∈ I, and

〈e(i)(ε1), ψ〉G = 0, 1 ≤ i ≤ N.

As before, we have ψ ∈ L2(∂DG). Let Ψ(x) = x + ε1a(x)n(x) for x ∈ ∂DF . Then Ψ is a
diffeomorphism between ∂DF and ∂DG and can be extended to a tubular neighborhood
of ∂DF as a diffeomorphism as explained in the proof of Theorem 2.1. We then have

|〈e(i)(ε1) ◦Ψ, ψ ◦Ψ〉F | ≤ Cε, 1 ≤ i ≤ N. (2.26)

In fact, since ψ ∈ L2(∂DG), we have

〈e(i)(ε1) ◦Ψ, ψ ◦Ψ〉F = −〈e(i)(ε1) ◦Ψ,SF [ψ ◦Ψ]〉
= −〈e(i)(ε1) ◦Ψ,SG[ψ] ◦Ψ〉+O(ε)

= 〈e(i)(ε1), ψ〉G +O(ε) = O(ε),

where the second equality holds thanks to (2.10) and the third equality holds since |JΨ|−
1 = O(ε) where |JΨ| is the Jacobian of Ψ.

Since h 7→ e(i)(h) is real analytic, we have ‖e(i)(ε1) ◦ Ψ − ϕi‖F ≤ Cε for some C > 0
for all i. Thus we infer using (2.26) that

〈ϕi, ψ ◦Ψ〉F = 〈ϕi − e(i)(ε1) ◦Ψ, ψ ◦Ψ〉F + 〈e(i)(ε1) ◦Ψ, ψ ◦Ψ〉F = O(ε), 1 ≤ i ≤ N.

Let

ϕ := ψ ◦Ψ−
N∑
i=1

〈ϕi, ψ ◦Ψ〉Fϕi.

Then 〈ϕi, ϕ〉F = 0 for i = 1, 2, . . . , N . Moreover, we have

‖ϕ‖2F = 〈ψ ◦Ψ, ψ ◦Ψ〉F −
N∑
i=1

〈ϕi, ψ ◦Ψ〉2F

= 〈ψ,ψ〉G +O(ε2)

= 1 +O(ε2).
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Thanks to (2.9), we also have

〈ϕ,K∗F [ϕ]〉F = 〈ψ ◦Ψ,K∗F [ψ ◦Ψ]〉F −
N∑
i=1

λFi 〈ϕi, ψ ◦Ψ〉2F

= 〈ψ,K∗G[ψ]〉G +O(ε2)

= λ+O(ε2).

Thus, we have
|〈ϕ,K∗F [ϕ]〉F |
‖ϕ‖2F

=
|λ|+O(ε2)

1 +O(ε2)
∈ I

if ε is sufficiently small.
So far, we proved that E := {ϕ1, ϕ2, . . . , ϕN , ϕ/‖ϕ‖F } is an orthonormal set such that

for each f ∈ E, we have 〈f,K∗F [f ]〉F ∈ I. This implies via the Min-Max Principle that
there are at least N + 1 eigenvalues of K∗F in I. This contradicts the assumption that
#(I, F ) = N . Thus (2.25) holds.

Let F ∈ M. For a nonzero eigenvalue λ of K∗F and the corresponding normalized
eigenfunction ϕ, let

Iϕ(x) = |∇∂SF [ϕ](x)|2 − c(λ)(∂nSF [ϕ]|−(x))2, x ∈ ∂DF . (2.27)

Note that Iϕ is the function appearing in the formula (2.3).
We will also use the following lemma.

Lemma 2.5. Let F ∈M. If λ is a nonzero, non-simple eigenvalue of K∗F , then there are
two normalized eigenfunctions ϕ1, ϕ2 corresponding to λ such that

Iϕ1(x) 6= Iϕ2(x) for some x ∈ ∂DF . (2.28)

Proof. Let ϕ1, ϕ2 be orthonormal eigenfunctions corresponding to the eigenvalue λ and
assume that (2.28) does not hold, that is, Iϕ1(x) = Iϕ2(x) for all x ∈ ∂DF . Then, we have(

∇∂u1(x)−∇∂u2(x)
)
·
(
∇∂u1(x) +∇∂u2(x)

)
= c(λ)

(
∂nu1|−(x)− ∂nu2|−(x)

)(
∂nu1|−(x) + ∂nu2|−(x)

)
, (2.29)

where uj = SF [ϕj ] (j = 1, 2).
Let x0 be the maximum point of u1−u2 on DF . Since u1−u2 is a harmonic function,

x0 ∈ ∂DF by the maximum principle (see [5]) and hence

∇∂(u1 − u2)(x0) = 0. (2.30)

However, by Hopf’s lemma, we have

0 < ∂n(u1 − u2)|−(x0).

We then infer from (2.29) that

∂nu1|−(x0) + ∂nu2|−(x0) = 0. (2.31)

In particular, we have
∂nu1|−(x0) 6= 0. (2.32)
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We now consider the following function:

Λ(θ) := I(cos θ)ϕ1+(sin θ)ϕ2
(x0), θ ∈ R. (2.33)

We show that Λ is not constant. Suppose on the contrary that Λ is constant. Then, we
have

dΛ

dθ
= 2
(
− sin θ∇∂u1(x0) + cos θ∇∂u2(x0)

)
·
(

cos θ∇∂u1(x0) + sin θ∇∂u2(x0)
)

+ 2c(λ)
(
− sin θ∂nu1(x0) + cos θ∂nu2(x0)

)(
cos θ∇nu1(x0) + sin θ∇nu2(x0)

)
= 0

for any θ ∈ R. Choosing θ = 0, we have

∇∂u1(x0) · ∇∂u2(x0)− c(λ)∂nu1(x0) · ∂nu2(x0) = 0. (2.34)

It then follows from (2.30) and (2.31) that

|∇∂u1(x0)|2 + c(λ)|∂nu1|−(x0)|2 = 0.

Since c(λ) > 0, we have ∂nu1|−(x0) = 0, which contradicts (2.32). Thus, Λ(θ) is not con-
stant in θ. Choose θ0 such that Λ(θ0) 6= Λ(0), namely, I(cos θ0)ϕ1+(sin θ0)ϕ2

(x0) 6= Iϕ1(x0).
By replacing ϕ2 with (cos θ0)ϕ1 + (sin θ0)ϕ2, we achieve (2.28).

Let F ∈ M. We denote eigenvalues of K∗F by λ±,Fj counting multiplicities where +
means positive eigenvalues and − negative ones. They are enumerated in such a way that

1

2
> |λ±,F1 | ≥ |λ±,F2 | ≥ · · · → 0.

We mentioned that 1/2 is a simple eigenvalue. We also mention that K∗F may have only
finitely many negative eigenvalues. For example, if DF is strictly convex, it is the case as
proved in [11].

For a positive integer k, let

M±k := {F ∈M | λ±,Fi is simple for 1 ≤ i ≤ k}. (2.35)

Then we have

Ms =
∞⋂
k=1

(M+
k ∩M

−
k ). (2.36)

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1. We shall show that each M±k is open and dense in the complete
metric space M. It follows from Baire’s theorem (see, for example, [12]) and (2.36) that
Ms is Baire typical in M as desired.

We only prove M+
k is open and dense in M since the case for M−k can be dealt

with in the same way. To prove that M+
k is open, let F ∈ M+

k . Choose b > 0 so that

λ+,F
k > b > λ+,F

k+1. If ρ(F,G) < ε for a sufficiently small ε, then the number of eigenvalues
of K∗G in (b, 1/2) is k. Moreover, like the proof of Lemma 2.4, we use by Lemma 2.2 (i)
and Theorem 2.1 to show that they are all different. Thus G ∈M+

k .
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We now show that M+
k+1 is dense in M+

k for k = 0, 1, . . . with M+
0 = M. Put

λ+
0 = 1/2. Suppose that F ∈M+

k \M
+
k+1. Then there is integer N ≥ 2 such that

λ+,F
k > λ+,F

k+1, = . . . = λ+,F
k+N > λ+,F

k+N+1. (2.37)

Let λ := λ+,F
k+1 = . . . = λ+,F

k+N . Choose b so that

λ+,F
k+N > b > λ+,F

k+N+1.

Suppose that N = 2. Then λ is an eigenvalue of multiplicity 2. By Lemma 2.5, there
are two normalized eigenfunctions ϕ(1), ϕ(2) corresponding to λ satisfying

Iϕ1(x) 6= Iϕ2(x) for some x ∈ ∂DF .

Choose a ∈ C∞(∂DF ) with maxx∈∂DF |a(x)| ≤ 1 such that∫
∂Ω
aIϕ(1)dσ 6=

∫
∂Ω
aIϕ(2)dσ.

Then, by Theorem 2.1, there are analytic branches, say λ(k+1)(h) and λ(k+2)(h), such that
λ(k+1)(0) = λ(k+2)(0) = λ and

dλ(k+1)

dh
(0) 6= dλ(k+2)

dh
(0). (2.38)

Then λ(k+1)(ε) 6= λ(k+2)(ε) for all sufficiently small ε. We may assume that λ(k+1)(ε) >
λ(k+2)(ε) without loss of generality. Let λ(i)(ε) be the analytic functions given in Theorem
2.1 such that λ(i)(0) = λ+,F

i , 1 ≤ i ≤ k. Since λ(1)(0) > λ(2)(0) > . . . > λ(k)(0) > λ, we
have

λ(1)(ε) > λ(2)(ε) > . . . > λ(k)(ε) > λ(k+1)(ε) > λ(k+2)(ε)

for all sufficiently small ε. By Lemma 2.2 (ii), there is G ∈ M with ρ(F,G) < Cε such
that ∂DG = ∂DF (εa). Moreover, the number of eigenvalues of K∗G lying in (b, 1/2) is k+2.
Thus we have

λ+,G
1 > λ+,G

2 > . . . > λ+,G
k+2.

In particular, G ∈Mk+1 and ρ(F,G) < Cε. Thus M+
k+1 is dense in M+

k if N = 2.

Suppose thatN ≥ 3. We choose two normalized eigenfunctions ϕ(1), ϕ(2) in E satisfying
(2.5). Extend them to a basis of the eigenspace corresponding to λ and denote them by
ϕ(1), ϕ(2), . . . , ϕ(N). By the same argument as above, we see that there G ∈ M with
ρ(F,G) < Cε such that

λ+,G
1 > λ+,G

2 > . . . > λ+,G
k+1 ≥ λ

+,G
k+2 ≥ . . . ≥ λ

+,G
k+N

and at most N − 1 of λ+,G
k+1, . . . , λ

+,G
k+N can be identical. If λ+,G

k+1 is simple, then we are

done. If not, then λ+,G
k+1 = . . . = λ+,G

k+M for some 2 ≤ M < N . We then repeat the same
arguments until M = 2. This completes the proof.
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3 Proof of Theorems 1.2 and 1.3

We first prove the following simple lemma.

Lemma 3.1. Let H be a separable Hilbert space and let K be a self-adjoint compact
operator on H. Suppose that the maximal multiplicity of eigenvalues of K is N < +∞. If

Lξ1 + Lξ2 + · · ·+ LξM = H,

then M ≥ N .

Proof. Let ξ1, ξ2, . . . , ξM ∈ H with M < N . Let E be an eigenspace corresponding
to an eigenvalue λ such that dimE = N . Let P be the orthogonal projection on E.
Then, dimP (span{ξ1, ξ2, . . . , ξM}) ≤ M < N . Thus there exists φ ∈ E such that φ ⊥
P (span{ξ1, ξ2, . . . , ξM}). Since Pφ = φ, φ ⊥ ξl for all l. It then follows that

〈Kkξl, φ〉 = λkj 〈ξl, φ〉 = 0 ∀k ∈ N, ∀l = 1, 2, . . . ,M,

and hence
φ ∈ (Lξ1 + · · ·+ LξM )⊥.

So Lξ1 + · · ·+ LξM 6= H.

The following theorem characterizes those N -cyclic vectors ξ1, ξ2, . . . , ξN ∈ H.

Theorem 3.2. Let H be a separable Hilbert space and let K be a self-adjoint compact
operator on H. Suppose that the maximal multiplicity of the eigenvalues of K is N < +∞.
Then, (1.7) holds if and only if for any eigenvalue λ of multiplicity Nλ the Nλ×N matrix
Aλ := (〈ϕj , ξk〉) satisfies

rankAλ = Nλ, (3.1)

where {ϕ1, ϕ2, . . . , ϕNλ} is an orthonormal basis of the eigenspace of λ.

If N = 1, namely, all the eigenvalues are simple, then the condition (3.1) amounts to

〈ξ, ϕ〉 6= 0 for any eigenfunction ϕ. (3.2)

Thanks to (3.1), it is now easy to construct N -cyclic vectors. Suppose that the maximal
multiplicity of the eigenvalues of a self-adjoint compact operator K is N < +∞. Let
{λ1, λ2, . . .} be the eigenvalues of K and Nj be the multiplicity of λj . Then Nj ≤ N . Let
{ϕj,1, ϕj,2, . . . , ϕj,N} be such that the first Nj of them are orthonormal vectors spanning
the corresponding eigenspace and the rest are zero vectors. Then, define for k = 1, 2, . . . , N

ξk :=
∞∑
j=1

cj,kϕj,k

where cj,k 6= 0 for any j, k. These vectors ξ1, ξ2, . . . , ξN constitute N -cyclic vectors for K.

Proof of Theorem 3.2. Suppose that (1.7) holds. Let λ be an eigenvalue of K and let
{ϕ1, ϕ2, . . . , ϕNλ} be an orthonormal basis of the eigenspace of λ. Then, ϕj ∈ Lξ1 +

· · · + LξN for j = 1, 2, . . . , Nλ. Thus, for any ε > 0, there are polynomials pjk, 1 ≤ k ≤
N, 1 ≤ j ≤ Nλ, such that ψj :=

∑N
k=1 p

j
k(K)ξk satisfies ‖ψj − ϕj‖ < ε. We then have
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〈ψj , ϕj〉 > 1− ε. Moreover, since 〈ϕj , ϕl〉 = 0 if j 6= l, we have |〈ψj , ϕl〉| < ε if j 6= l. We
have

N∑
k=1

〈ϕj , ξk〉plk(λ) =
N∑
k=1

〈plk(K)ϕj , ξk〉 = 〈ϕj , ψl〉 , j, l = 1, 2, . . . , N.

So, if we set B be the N ×Nλ matrix B = (plk(λ)), the diagonal entries of AλB are larger
than 1− ε in their absolute values, off-diagonal ones are less than ε. So, if ε is sufficiently
small, then AλB is invertible, and hence (3.1) holds.

Conversely, assume that (1.7) does not hold. Then there is a normalized eigenfunction
ϕ of K such that ϕ ∈ (Lξ1 + · · · + LξN )⊥. Let λ be the eigenvalue corresponding to ϕ
and {ϕ1, ϕ2, . . . , ϕNλ} be an orthonormal basis of the eigenspace of λ with ϕ1 = ϕ. Since
ϕ1 ∈ L⊥ξk for all k, we have 〈ξk, ϕ〉 = 0 for all k. Thus, we have

rank (〈ϕj , ξk〉) ≤ Nλ − 1.

This completes the proof.

We now prove Theorem 1.2.

Proof of Theorem 1.2. We assume d = 3 since the same proof works for the case d ≥ 2.
Let λ be an eigenvalue of K∗∂Ω on H−1/2(∂Ω), and let Nλ be the multiplicity of λ and
ϕ1, ϕ2, . . . , ϕNλ be corresponding orthonormal eigenfunctions. Let ψj = S∂Ω[ϕj ]. Then,
we have

Fj(z) := 〈qz, ϕj〉∂Ω = v · ∇
∫
∂Ω

Γ(z − x)ψj(x)dσ(x), (3.3)

namely,
Fj(z) = v · ∇S∂Ω[ψj ](z), z ∈ R3 \ Ω.

Note that Fj is harmonic in Rd \Ω. We emphasize that Fj is not identically zero. In fact,
if Fj ≡ 0 for some constant vector v, we may assume v = (1, 0, 0) by rotation if necessary.
There is a harmonic function u of two variables such that

S∂Ω[ψj ](z1, z2, z3) = u(z2, z3)

for all z = (z1, z2, z3). Since S∂Ω[ψj ](z)→ 0 as |z| → ∞, we infer u(z2, z3) = 0 by sending
z1 to ∞. Thus S∂Ω[ψj ](z) = 0 for all z ∈ R3 \ Ω. In particular, S∂Ω[ψj ] ≡ 0 on ∂Ω. Since
S∂Ω[ψj ] ∈ H1/2(∂Ω), it follows from the uniqueness of the solution to Dirichlet’s problem
that S∂Ω[ψj ](z) = 0 for all z ∈ Ω. By the jump formula (2.4), we have

ψj = ∂nS∂Ω[ψj ]|+ − ∂nS∂Ω[ψj ]|− on ∂Ω.

Thus ψj = 0 which is absurd. So, Fj is not identically zero.
Choose N different points z1, . . . , zN /∈ Ω and let ξk := qzk . Then, the matrix Aλ =

(〈ξk, ϕj〉) is given by
Aλ = (Fj(zk)).

Let Aλ,m, m = 1, 2, . . . ,Mλ :=

(
N
Nλ

)
, be Nλ ×Nλ submatrices of Aλ. Let

Gλ(z1, . . . , zN ) :=

Mλ∑
m=1

(detAλ,m)2.
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Note that rankAλ < Nλ if and only if Gj(z1, . . . , zN ) = 0.
Let

Zλ := {(z1, . . . , zN ) ∈ (R3 \ Ω)N | Gλ(z1, . . . , zN ) = 0}.

Then, rankAλ = Nλ for any eigenvalue λ of K∗∂Ω if (z1, . . . , zN ) /∈ ∪Zλ where the union is
taken over all eigenvalues λ of K∗∂Ω. Since Fj is harmonic in R3 \Ω, Gλ is real analytic and
hence Zλ is of Lebesgue measure zero, and so is ∪Zλ. Thus (1.9) follows from Theorem
3.2.

Proof of Theorem 1.3. Let {ϕ1, ϕ2, . . .} be an orthonormal system of eigenfunctions for
H−1/2(∂Ω). Let Zj be the zero set of the function Fj defined by (3.3). Then each Zj is of
measure zero and for any z /∈ ∪∞j=1Zj , (1.10) holds.

Discussion

It would be interesting to know whether the injectivity of the NP operator is also generic
among all smooth, closed hypersurfaces in Euclidean space. There are hypersurfaces where
0 is an NP eigenvalue. For example, 0 is an NP eigenvalue of infinite multiplicities on
lemniscates in two-dimensions as mentioned in Introduction. Some oblate spheroids have
0 as its NP eigenvalue [14] (see also [3]).
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