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ABSTRACT. In this paper, we study the critical points of the heat kernel on
two-dimensional flat tori. By using methods related to theta functions, we
determine that the heat kernel exhibits four and six critical points on rectan-
gular and hexagonal tori, respectively. Furthermore, on a rhombic torus, the
number of critical points of the heat kernel depends on the geometry of torus.
We have also established a connection between the heat kernel, linear elliptic
equations with singularity, and particle energy. This connection allows us to
recover partial results of the Green function in [[15] and provides a positive an-
swer to the conjecture regarding Mueller-Ho Conjecture in [20]. An intriguing
finding of our study is that all three functions exhibit uniform critical points
on rectangular and hexagonal tori.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

1.1. The critical points of the heat kernel on tori. A function that is defined
on a n-dimensional torus can also be considered as a function on R™ with period-
icity. The study of geometric or analytic problems on tori is a common theme in
mathematics and physics, with examples including Weierstrass’ elliptic functions
[14], the minima of physical energy, such as the Thomas-Fermi model [4, p], and
periodic particles energy [[19, 26]. The characteristics of these functions are closely
tied to the geometric structure of tori.

In this paper, we consider two-dimensional tori. Geometrically, these tori are
diffeomorphic to linear transformations. From this perspective, the geometry and
differential equations on tori “may be” similar across different tori. In fact, in
reality, mathematical and physical problems on tori frequently concentrate on rect-
angular tori. Interestingly, Lin and Wang [15] presented a surprising finding that
differential equations on different tori can exhibit essential differences. Their re-
search revealed that the Green function on a torus must possess either three or five
critical points based on the torus’ geometry. Besides, the solvability of the mean
field equation is closely related to the critical points of the Green function.

This article is inspired by the research presented in [[15] and [[16]. In this paper,
we demonstrate that the critical points of the heat kernel on a torus depend crucially
on the geometry of the torus, which is similar to the result in [15]. Additionally,
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we present two applications about elliptic equation and Mueller-Ho Conjecture in
Section 1.2 and Section 1.3.

Consider the flat torus T = C/(Zw; ® Zws), where wi,ws € C = R? with
wi,ws # 0 and wy/wy ¢ R (as the complex division). Throughout this article,
we treat R? and C as equivalent. The heat kernel on a flat torus T is the unique
function on T x (0, +00) which satisfies

{atu(z,t) = Ayu(z,t), (2,t) € T x (0,+00),

(L.1) u(z,0) = do(z), z € T.

Here, the initial condition means lim+ u(z,t) = dp(z) in weak sense. That is, for
t—0

any v € C>(T),

(1.2) lim [ u(z,t)v(z)dz = v(0),

t—0t J
where the differential dz will be considered the standard Lebesgue measure on R?
throughout this article.

For any wy,ws € C =2 R?, it is well-known that (EI) has an unique solution

1
(1.3) p(z,t) = yi E ' emrmwtnoatz® oy s g
/I
n,mez

In order to help readers understand the heat kernel, we provide a brief verification in
Section 2. The heat kernel is a crucial component in mathematics and physics. For
an introduction to heat kernels on manifolds we refer to the textbook of Grigor’yan
[10].

For any fixed t > 0, we consider the critical points of the heat kernel p(z,t)
concerning z. Since p(z,t) is even and has two periods w; and wg with respect to
z, it is elementary to verify that 0, %wl, %wg, and %wl + %wz are the four critical
points. Furthermore, other critical points must appear in pairs. These four critical
points are present for any even function on the torus, so they are considered as
trivial critical points. The question that arises is whether p(z,t) has non-trivial
critical points, and if so, how many are there?

To the best of our knowledge, the specific critical points of the heat kernel on
the torus have not been studied before. Previous works have primarily focused on
extremal problems related to the heat kernel, such as those discussed in [I], 2, 9].
References [[l] and [9] have demonstrated that the maximum point of the heat
kernel is always 0, and the minimum points are %wl + %wg and %wl + %wg for
rectangular and hexagonal tori, respectively. Baernstein has also showed in [[1] that
the minimum point on general tori might be near the barycenter of a fundamental
triangle.

In this article, we employ a novel technique utilizing theta functions to determine
all critical points of the heat kernel p(z,t) on rectangular, hexagonal, and rhombic
tori. The connections between heat kernel and theta functions have long been
known and are mentioned in previous articles/textbooks, like [2, 9, 29]. While, the
technique for handling theta functions in this article is original, which can locate
all critical points of the heat kernel on the three types of tori mentioned above.
Surprisingly, The results are similar to those obtained for the Green function, as
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FIGURE 1. The graph of the heat kernel p(z,t) on the rectangular
torus T = C/(Zwy @ Zws) with w; = 1,wy =4 and t = 0.1.

FIGURE 2. The graph of the heat kernel p(z,t) on the hexagonal
torus T = C/(Zwy @ Zws) with wy; = 1,wy = % + 3§z and t = 0.1.

reported in [@] For general tori, we forecast that the results will resemble those
for the special tori discussed, and we formulate that question in Section 7.

Theorem 1.1. Consider the rectangular torus T = C/(Zwy @ Zws), wi,wa € C
with wa/wy = bi,b > 0. For any t > 0, the heat kernel p(z,t) defined in (@) has
only four trivial critical points 0, %wl, %wg, %wl + %wz on T.

Moreover, 0 is the mazimal point and %wl + %wg is the minimal point. The
remaining two critical points %wl, %wg are saddle points, as illustrated in Figure |1.

Theorem 1.2. Consider the hexagonal torus T = C/(Zwy ® Zws), w1,ws € C with
wo/wy = 3 + ‘/ng =e'5. For anyt > 0, the heat kernel p(z,t) defined in ) has
exact six critical points, including the trivial critical points 0, %wl, %wg, %wl + %wg
and a pair of non-trivial critical points %wl + %wg, %wl + %wg on T.

Moreover, 0 is the maximal point and %wl + %wg, %wl + %wg are minimal points
with the same values, as illustrated in Figure E It is worth noting that these critical
points are all independent of t.

Remark 1.3. (1) Ttisindeed surprising that the critical points of the heat kernel
p(z,t) remains unchanged for all ¢ > 0 on rectangular and hexagonal tori.
It is desirable that the critical points of p(z,t) are always independent of
t. However, for general tori, this might not hold, such as the conditions
in Theorem [L.4. This raises the question of that under what conditions,
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Critical points<!

(A) b€ (0,b1(t)) case.

(B) b € (ba(t), +00) case.

FIGURE 3. The non-trivial critical points of p(z,t) on rhombic tori.

the number of the critical points is independent of ¢ > 0. We leave it as a
problem in Section 7.

(2) The invariance of the critical points on rectangular and hexagonal tori
may indicate a more general result. In fact, in Section 1.2, we find that
the solutions of certain elliptic equations on tori also exhibit these critical
points.

For a general flat torus, we extend our results to the case of a rhombic torus,
e, we/wy = % + bi,b > 0. We prove that the number of critical points of p(z,t)
varies with b, and p(z,t) has at most a pair of non-trivial critical points.

Theorem 1.4. Consider the rhombic torus T = C/(Zwi ® Zws), wi,ws € C with
wo/wi = 1 +bi,b > 0. For anyt > 0, there exists % < bi(t) < 3 <bo(t) < ?
which depend on t such that

(1) if b € [b1(t),ba(t)], the heat kernel p(z,t) defined in ) has only four
trivial critical points 0, %wl, %wg, %wl + %wg on T.

(2) if b € (0,b1(¢)) U (b2(t), +00), except for four trivial critical points, p(z,t)
has another pair of non-trivial critical points which are located on the long
diagonal of rthombic T.

fi(b,t)

In fact, for b € (0,b1(t)), the non-trivial critical points are given by =3~w, and

%#Mwh where fu(b,t) € (3,1) depends on b and t. When b € (ba(t),+00), the
non-trivial critical points are PDT(b’t)wl + (b, t)ws and H%Mwl + (—(b,t))wa,
where v(b,t) € 5) depends on b and t, as illustrated in Figure |. e specific

h (b,t) € (0,3) depend b and t, 1l d_in Fig The specifi
values of fi(b,t) and v(b,t) are derived from Theorem l4.d.
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Moreover, by (t) and by(t) are implicitly determined by

945 (0; 167t 0; 45t
b1(t) is the unique zero point of (O 16:252 — EO p ;,b € (0, +00),

( ’ b2
9! 4nt
. . . U5(0; 3508)  95(0; 16mti)
ba(t) is the unique zero point of 7,(0; 417?1) 520 1677752) ,b € (0,400),

where, V2,73 are the theta functions defined in (@) and 2 19, T) is the limit of :’;—:2
3

at zero.
Additionally, the critical values by (t), ba(t) change with respect to t > 0, but they
always satisfy the equality by (t) - ba(t) = §,Vt > 0.

Remark 1.5. Theorem [1.4 presents the results for rhombic tori and includes a partial
overview of Theorems [L.1| and @ Specifically, when b = %, the torus T = C/(Zw; ®
Zws) with respect to wy/w; = % + %z corresponds to the square torus. Moreover,

when b = ?, T becomes the hexagonal torus. Furthermore, all of the rectangular,
hexagonal and rhombic tori have the same results like Theorems [L.1), and

In fact, there are some rotation and scaling invariances of heat kernel which can be
seen in Section 2.

The main proofs of Theorems @ to Theorem @ rely on the relationship between
the heat kernel and theta functions. This is not surprising since theta functions are
fundamental functions on tori and have been extensively utilized in related studies,
as referenced in [0, g, L5, 16]. We believe that our methods can be applied to all
general tori by utilizing a general expression of the heat kernel.

1.2. The critical points of the solution for linear elliptic equation with
singularity. In this subsection, we study a special function arising from the heat
kernel and explore its critical points. Suppose the torus T = C/ (Zwy @ Zw2) and
p(z,t) is the heat kernel on T. For any A > 0, consider

(1.4) F(z) = /Om M (p(z,t) ITI) dt,z €T,

where |T| = | det(wy,ws)| = |w1 Xwa| is the volume of torus T. By direct verification,
the function F)\(z) is well-defined in T\ {0} and exhibits a singularity at the origin.
Moreover, F)(z) is the unique solution of elliptic equation

1
(1.5) — Au(z) = —du(z) + do(z) — ik zeT
with fT z)dz = 0. The detailed derivation can be found in Proposition @ Here,
do is the standard Dirac measure at zero.

We study the critical points of Fy(z) on rectangular, hexagonal, and rhombic tori.
The method also relies on the properties of theta functions and bears resemblance
to the approach utilized in the heat kernel case.

Theorem 1.6. Given any fixed parameter A > 0.

(1) On the rectangular torus T = C/(Zwy & Zws), wi,ws € C with we/wy =
bi,b > 0, the function F,\( ) defined in (u) has only three trivial critical
points 1w1, éwg, éwl + wg on T. Moreover, ;wl + wg is the minimal
point and the other two cmtzcal points are all saddle poz’nts.
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(2) On the hexagonal torus T = C/(Zwy ® Zws), wi,ws € C with wy/wy =
V3

% + 5 = e'3, except for three trivial critical points, %wl + %wg and
%wl + %WQ are the non-trivial critical points of Fy(z). Moreover, they are

the minimal points with the same values.

It’s worth noting that the critical points of F)\(z) are one fewer than those of
p(z, 1) since 0 is a singularity of F)\(z) while it remains a critical point of p(z,1).

Theorem @ demonstrates that F)(z) exhibits three trivial critical points and
a pair of non-trivial critical points on rectangular and hexagonal tori, resembling
the behavior observed in the heat kernel. This raises an intriguing question: Does
F\(z) possess at most a pair of non-trivial critical points for all tori?

For the rhombic torus, this assertion may hold true. We nearly prove this result
by using a method akin to that employed in Theorem @, with the exception of
two monotonic gaps () and (@) Although numerical computations suggest
the validity of these two gaps, direct verification like Theorem might require
new techniques. Consequently, we present it as a conjecture.

Conjecture 1.7. On the rhombic torus T = C/(Zw; ® Zws), wi,ws € C with
wo/wi = & + bi,b > 0. For any A > 0, there exists % < Bi(\) < 5 < B2(\) < ?
which satisfy Bi(A) - B2(A) = 1 such that
(1) if b € [B1(\), B2(\)], then F)(z) has only three trivial critical points Sw;,
%(A}Q, %wl + %wg on T.
(2) ifb € (0, B1(N\)U(Ba(N), +00), except for three trivial critical points, F)(z)
has another pair of non-trivial critical points which are located on the long
diagonal of rhombic T.

Remark 1.8. If Conjecture @ holds true, it suggests that both the heat kernel p(z, t)
and function F)(z) have at most a pair of non-trivial critical points on rectangular,
hexagonal and rhombic tori. This implies the existence of a fundamental principle
capable of explaining this property across a wide range of functions.

Recall that the Green function G(z) on flat torus T = C/(Zw; @ Zws) is the
unique function on T which satisfies
1
(1.6) — AG(z) = do(z) — |
and [ G(z)dz = 0. Lin and Wang [15] gave an interesting result of the critical
points of Green function:

Theorem A([15]). The Green function has three or five critical points with respect
to the geometry of tori. Specially, the rectangular torus has three critical points and
the hexagonal one has five.

The formula (@) clarifies that F\(z) corresponds to the Green function on tori
when A = 0. This observation allows us to recover a partial result from [15].

Corollary 1.9. (1) The Green function has only three trivial critical points
%wl, %wg, %wl + %wg on rectangular tori and %wl + %wg is the minimal
point.

(2) Except for three trivial critical points %wl, %wg, %wl + %wg, the Green func-
tion has another two critical points %wl + %wg, %wl + %wg on hexagonal tori
and they are the minimal points with the same values.
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1.3. The application to Mueller-Ho Conjecture. In this subsection, we ex-
plore an application of the heat kernel to Mueller-Ho Conjecture, which is a con-
jecture for competing systems of Bose-Einstein condensates (BEC) [24]. In [22],
Matthews al first observed that periodic vortices appeared in rotating two-component
BEC. Since then, Mueller and Ho [24] observed experimentally that these vortices
presented hexagonal-rhombic-square-rectangular lattice distribution depending on
rotational velocity of the condensate. Following the pioneering work of Mueller
and Ho, many authors have studied the lattice shape in two component BEC, for
instance [11, 12, 13].

The mathematical expression of Mueller-Ho Conjecture is related to the lattice

energy under the Gaussian potential. Suppose lattice A, = /== (Z & Z71),T €

S(7)
H={r=a+bicC:b>0}and z € C. The lattice energy under the Gaussian

energy f(|-[?) =e """ is

(1.7) 0(z7) = flot+z)= > ¢~ T |mnr e/

weA, n,mezZ

In Mueller and Ho [24], they have reduced the minimization problems on lattices
to the minimization problems about ¥(z; 7).
1

S0

Mueller-Ho Conjecture [24]: Consider « € [—1,1] and z = v

N %T with v, € [0,1]. For a two-component Bose gas, the most favorable

lattice minimizing min 6(0;7) + af(z;7) are
TeH,zeC

(a)a < 0: The vortices of the two components coincide with each other (v =
1 =0) to form a triangular lattice (7 = e'5 = 1 + ?Z)

(b)0 < a < 0.172: The vortex lattice in each component remains triangular
(T = €'3). However one lattice is displaced to the center of the triangle of
the other (v =p = 1).

(c)0.172 < o < 0.373: (v, ) jumps from the center of the triangle (i.e., half
of the unit cell) to the center of the rhombic unit cell (v = p = 1). The
angle jumps from 60° to 67.95° at & = 0.172, and increases continuously to
90° as « increases to 0.372.

(d)0.373 < a < 0.926: The two lattices are “modelocked” into a centered square
structure throughout the entire interval (7 =i,v = p = 1).

(€)0.926 < « < 1: The lattice type again varies continuously with interaction
a. Each component’s vortex lattice has a rectangular unit cell (7 = bi)

whose aspect ratio |7| increases with a.. At o = 1, the aspect ratio is v/3.

Luo and Wei [20] have made substantial advancements in the Mueller-Ho Con-
jecture (as v = p = 0, %, %) A natural approach to addressing the Mueller-Ho
Conjecture involves initially studying the minimum of ¥(z; 7) with respect to z for
a fixed 7, and subsequently determining the minimum 6(0; 7)+af(z; 7) with respect

to 7. In fact, in [20], a key conjecture is proposed regarding ¥(z; 7).

Conjecture 1.10 ([20]). Suppose A, = ,/% (Z®Zr), € H and 6(z;7) is
defined in (@) There holds
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(1) Alternative: The function 6(z;7) concerning the z € T, := R?/A, has
either four or six critical points depending on 7, i.e., it has four trivial
critical points and at most a pair of non-trivial critical points.

(2) The rectangular torus has only four critical points and the hexagonal one
has six.

(3) Invariance: If 6(z; 7) has four critical points on T, then 6(z;T'(7)) has four
critical points on Tp(;y. On the other hand, the six critical points cases are
the same. Here the modular group is

(1.8) FESLQ(Z):{<CCL Z) :ad—bc:l,a,b,c,dez}

and I'(1) = 4L,

As mentioned in [20], if Conjecture holds true, by using the methods in
[20], Mueller-Ho Conjecture will likely be proven completely. Based on the results
regarding the critical points of the heat kernel, we make progress towards addressing
Conjecture m and provide a positive result as follows.

Theorem 1.11. The conjectures (2) and (3) in Conjecturdl.1( are correct.

The paper is structured as follows: In Section 2, we present the derivation and
basic properties of the heat kernel. Section 3 contains properties of classical theta
functions, which are used in the proofs of Theorem to Theorem [1.6. Moving on
to Section 4, we complete the proofs of Theorem to Theorem [1.4. In Sections 5
and 6, we provide applications of our methods and establish the proofs of the theo-
rems in Section 1.2 and Section 1.3. Lastly, in Section 7, we explore generalizations
and pose open questions.

2. THE HEAT KERNEL ON TORI

We start with the derivation and some basic properties of the heat kernel. For
any wy,ws € C = R?, suppose flat torus T = C/(Zw; @ Zws). Let the function
1

(2.1) p(z,t) = It Z e mlmertnwata® e € > 0,
7r

n,mez
Note that this summation is convergent for all z € C and ¢ > 0, so (@) is well-
defined.

From the definition (EI), for any z € C and ¢t > 0, p(z + w1, t) = p(z + wa, t) =
p(z,t). So p(z,t) can be regarded as a function on the torus T. Moreover, p(z,t) is
a smooth function by the fast decay of e~I'1*. Now we provide a brief verification
that p(z,t) is the heat kernel on T.

Lemma 2.1. The function p(z,t) defined in @) satisfies some properties at
following.

(1) For any (z,t) € T x (0,409), dip(2,1) = A.p(z,t).

(2) Forallt >0,
/p(z,t)dz =1.
T
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(3) Suppose v € C°(T) is a smooth function on the torus T, it has
li o(2)dz = v(0).
Jm Tp(z Ju(z)dz = v(0)
Proof. The property (1) can be verified directly, so we omit that.
For the property (2), by using the Levi’s Theorem,

/ (Z t dZ— —_— Z /e 4f‘mw1+nw2+z\ dZ
T

1 10,02
— —zlAl gy = 1.
Tt Jp © ?
Next, suppose v € C*°(T), for any 5 > 0, there exists €1 > 0, such that |v(z) —
v(0)| < 4,Vz € B.,, where B., = {z € C: |z] < €1} is a ball with center at origin
and radius of 7.

(2.2)

To verify (3), we can suppose T = [—1, 2]w; x [—1, L]ws since p(-,t) and v(-) are

doubly-periodic functions. Choose 0 < & < min{ey,  min{|mw; + nws| : (n,m) €
Z2\ {(0,0)}} }, by using formula (@),

(2.3)
[reeea) = ([ [ ) 5 3 ettt o) o0
T T\B- n,meZ
Note that for all n,m 6 Z and z € T\ Be, |mwy + nws + z| > € has a positive
lower bound. Thus, 4—@ fzlmwitnwa+2l* qocreases to zero uniformly as ¢ decreases
to 0. Therefore, by usmg the Lebesgue’s Dominated Convergence Theorem,
(2.4) lim S e dilmertnen =y (2) — p(0)]dz = 0.

t—0+ 4
T\ B n,me”z

On the other hand,
(2.5) /B (2 )(z) = 0(0)]dz < 5/35 (1) < 6.
Combining (2.3), (£4) and (£.9),
tl_i>r(1)1+ /Tp(z,t)v(z)dz — U(O)‘ < 0.

The result follows from § — 0%. O

From Lemma EI, p(z,t) is the heat kernel which satisfies (EI) Besides, the
uniqueness of p(z,t) follows from the uniqueness of the standard linear parabolic
equation [L0].

Let A = Zwy @ Zwy = {mw; + nwy : n,m € Z} be a lattice on R? = C, then
T=C/A=[-1 1w x [—1, 2w, = [0, 1wy x [0, 1w, can be regarded as a single
domain of lattice A. Please note that the above expressions of T do not affect the
critical points of p(z,t) under the double periods. Suppose z = vw; + pws, with
v, i € [0,1], then p(z,t) can be rewritten by

E: o~ 3 | (mAv)wr+(ntpwa|?

n,me”Z

(26) p(zv t) = p(y, 122 ) 47Tt
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In this viewpoint, to find the critical point V,p(z,t) = 0, we only need to solve
,p = 8,p = 0 in (2.9).

If we focus on (v, i) instead of z, then formula (@) is invariant under the rotation
(w1,ws) = (w1€",wee™),V¥n € [0,2r]. Therefore, z = vwy + pws is a critical point
of p(z,t) on T = C/(Zw; ® Zws) if and only if 2 = vwie’ + uwee' is a critical
point on T = C/(Zw1e™ @ Zwze™),n € [0, 27].

Similarly, under the scaling (w1, ws) — (kwi, kws) for some k > 0, point (vw; +
pwa, t) is a critical point of p(z,t) on T = C/(Zw; ® Zws) if and only if (vkw; +
pkwa, k?t) is a critical point on T = C/(Zkw; © Zkws).

Based on the above discussion and the symmetry of {wy,ws}, without loss of
generality, we suppose w1 = l,ws = 7 € H. In this case, lattice A = Z & Z7t =
{m+n7:n,m € Z} and the heat kernel

1 1 2
_ — a7 lm+nT+z|
(2.7) pzt) = — > s , zeT,t>0.
n,mez
We recall the following well-known Poisson summation formula on R?
(2.8) Y fla+y) = A > fyer™ v, vf e S(R?), z € R?,
yeEA | | yeEAL
where |A| = vol(R?/A) = |T| is called the volume of lattice A, S(IR?) is the standard

Schwarz space on R?, the Fourier transform

fly)= | fla)e ™ vd,
]RZ

and the dual lattice AL of lattice A is
(2.9) At ={2€R?*: 2 - wcZVwec A}

Here - is the standard inner product in R2. The right-hand side of formula (@)
can be verified directly to be the Fourier series of the left-hand side. Also, we give
the reference [[f] and [25].

For the A = Z @ Z generated by {1,7 = a + bi}, the dual lattice A+ = ;(ZTT) @
ZQZT) is generated by {;ZTT) = boai l & = =1}

By the Poisson Summation Formula (@) the heat kernel on torus T = C/A =
C/(Z & Z7) can be rewritten by

1 1 2 1 2,112 .
_ — 4wtz —4Antlw|® 27iz-w
p(zt) = Amrt Z “r -~ S(n) Z ¢ ‘

w€eA w
(2.10) Lo A
_ 2 Z e—%’Tf‘(n2b2+(m—na)2)627ri(m,u+nl/),
n,mez

where z = v + u7, with v, u € [0, 1].

3. THETA FUNCTIONS AND SOME PROPERTIES

In this section, we present some properties of theta functions. These properties
are used to prove Theorem to Theorem
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Let 7 =a+bi,b> 0 and g = ™7 with |¢| = ™™ < 1. For any z € C, the theta
functions are the exponentially convergent series:

o0

Oz 1) = —i Z (_l)nq(n+%)2€(2n+1)m‘z’
%) ) ‘ 1
7.92(2;7’) — n;oo q(n+§)26(2n+1)ﬂ'zz _ 191 (Z + 2;’7’) 7
(3.1) -
Ia(z7) = Y q" e
19 (Z )_ i (_1)n nzeQnTriz _79 Z+1
4\Z3T) = el q — U3 2a7— .

These four theta functions are holomorphic function with respect to z. First, we
outline some basic properties of theta functions.

Proposition 3.1. For any 7 =a + bi,b > 0 and z € C,
(1) Da(z;7) = ™+ Y3(2 + 375 7).
(2) 9a(z;7) = 2(—2;7) = —a(2 + 1; 7).
(3) Vs(z;7) = Vs(—2;7) = s5(2 + 15 7).
(4) Yoz +7;7) = ¢ e 22y (2;7),93(2 + 73 7) = ¢ e 25 (25 7).
(5) each theta function has only one simple zero inside cell T = C/(Z @ Zt).
It follows that the zeros of ¥4, 1,193,194 with respect to z are the points
congruent respectively to 0, %, % + %T, %T.
These properties can be referenced in ([29] Section 21). Please note that the
symbols in [29] may slightly differ from ours. For the further reference of theta
functions we refer to the textbooks [§, 29].

Next, we recall the well-known Jacobi triple product formula

(3.2) H (1 _ x2m>(1 +x2m—1y) (1 +:L,2m—1y—1) — Z xnzyn
m=1 n=—oo

for any x,y € C with |z| < 1,y # 0.

From the Jacobi triple product formula and Proposition @, theta functions
P9, U3 can be rewritten by product expression

(3.3) U3(z;7) = H (1 —¢*™)(1 +2¢°" ! cos(2m2) + ¢ 72),

n=1

| mir 1
Va(z;7) = e Yy (z + —7; T>

2
(34) — o™it H(l _ q2n)(1 + q2n627rzz)(1 + q2n—2€—27r1z)
n=1
= 2q% cos(7z) H (1 —¢*™)(1 + 2¢*" cos(27mz) + ¢*™).
n=1

These expression (@) and (@) will be used frequently in Section 3 and Section 4.
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1 1.1

0.5 1.05
0 1
0.5 0.95
o 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
(A) The behavior of J2(x;1) (B) The behavior of ¥3(x;1)

FIGURE 4. The graphs of J5(x;Ti) and 95(x; Ti) with respect to
T=1,z¢€][0,1].

The next lemma shows the graph of 95,93 on real axis z = x € R with 7 = T'i.
Among them, results (1)(3) bear similar conclusions to that found in reference [23].

Lemma 3.2. For any 7 = T4, T > 0, the theta functions 92,93 are smooth with
respect to z = x € [0, 1] and satisfy
(1) 193(x Ti) > 0,Vx € [0 1].
(2) Yo(z;Ti) > 0,2 € [0, )andﬁg( Ti) <0,z € (
(3) V4(z;Ti) < 0,z € (0,2) and ¥4(2;Ti) > 0,2 € (
(4) 95(x;T4) < 0,Vz € (O 1).

The precise graphs of ¥o(x; T%) and ¥3(x;T%) can be seen in Figure H

2,11
1
2

).

Proof. The key point is using the expression (@) and (@) Note that when 7 = T,
there is ¢ = e™™ = ¢~ € (0,1). Therefore,

14 2¢*cos(2nz) + ¢** > 0, Vo € [0,1],k € Z,.
The conclusion (1) and (2) follow directly from (@) and (@)

Moreover, note that - cos(27m) and - cos(mz) are negative on z € (0,3).
Thus, ¥%(z;T%) < 0 on z € (0,3) and V) (a: Tz) < 0onz € (0,1]. The conclusion
(3) and (4) follow directly from the symmetries ¥2(1 — z;7%) = —V2(x;Ti) and

O

In the remaining part of this section, we prove some equalities and inequalities
related to theta functions. The equalities in Propositionq@ and Proposition
will be used to find the unique pair of non-trivial critical points of the heat kernel.

Proposition 3.3. For any z € C and 7 € H,
Da(zm)0s(z = Lirs(z 4 4ir)  Val(sim)da(e — im)da(e + L)

93(32;37) 92(32;37)

(1—g*)°

=
&
=L

—

—3

(1= g)

n=1

are independent on z, where ¢ = ™"
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Proof. From Proposition @(3)(4)(5), the zeros of the theta function ¥3 are all
simple zeros at points z = % + %T + n + m7, with n,m € Z. Therefore 95(3z; 37)
has only simple zero at ¢ + 37+ tn +m7 and V3(z;7)03(2 — 5;7)U3(2 + +;7) has
the same zeros. For this reason, if we fixed 7 € H,
Os(z;7)03(2z — 3:7)03(2 + 33 7)

93(32; 37)

(3.6) F(z1) =

has no poles with respect to z € C.

Besides, associated with the periods in Proposition @(3)(4), F(z;7) is a doubly-
periodic function with periods 1 and 7, i.e., elliptic function. Because a non-
constant elliptic function must have at least two poles (including multiplicity)
[14, R9], F(z;7T) is a constant function independent of z.

The value of this constant can be obtained by putting z = 0. By using (@), we
obtain

3

- 1. 1. (1—q2”)3
57 MO ST

Il
-

(1 _ q6n)
1

—2

n

The other part of the formula (@) about 5 is similar to ¥3 by using the formula
(@) and Proposition B.1]. .

Proposition 3.4. Fixed 7 € H, for any u,v € C, we have
P3(u 4+ v)03(u — v)I5(u)d3(—u) — I3(2u)¥3(0)¥3(—v)d3(v)
= — ’192 (u + U)’L92 (U — 1])192 (U)’ﬁQ(—U) + 192(2111)’[92 (0)192(—1})792 (1})

Here, we omit the fixed 7 without any ambiguity.

(3.8)

Proof. First, we need a result in reference ([29] Section 21). Consider a’,y’, 2", w’
be defined in terms of z,y, z,w € C by the set of equations

2 = —z+y+z+w,
r_
e
' =z+y+z—w.
For brevity, we write
(3.10) [r] = 9 ()90 ()0 (2) 00 (w), [r]" = 00 (&")0r (4 )07 (2 )00 (w")
for r € {1,2,3,4}.

Under these symbols, E.T.Whittaker and G.N.Watson, in [29] Section 21, showed
two formulas between [r] and [r]" :

(3.11) 2121 =[1) +[2) + [3] — [4].

(3.12) 2[3] = —[1) + [2]" + [3]" + [4]’.

The proof of the above two formulas is nearly the same as Proposition @
Precisely, let the right-hand side of the equation divide by the left-hand side of
the equation. Their quotient is a doubly-periodic function with, at most, a single
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simple pole in cell T = C/(Z @ Z7). By using the property of elliptic, their quotient
is a constant. The complete proof can be seen in ([29] Section 21).

Adding () and (), we have
(3.13) [2] +[3] = [2]" + [3]'.
By choosing (z,y, z,w) = (u + v,u — v, u, —u), we obtain Proposition @ immedi-

ately.
|

Finally, we_prove some inequalities in Proposition @, Proposition @, and
Proposition B.7, which will be used to demonstrate that there are no other non-
trivial critical points of the heat kernel.

Proposition 3.5. Suppose z € R and 7 = T4, T > 0, theta functions 95, V3 satisfy

d 1
(3.14) o (3 (z;7) — 93(257)) > 0, Vz € <k k + 2) k€ Z,
d 2 2
3.15 — (95(x;7) —95(x; 7)) <0, Vo € k:+ Jk+1),keZ.
de * 3
Proof.
(3.16)
> T 2 . T 2
I3(x; T1) — O (x; T7) = Z e~ "1 (2n)" g2nmiz _ Z e~ "1 (nt+1)" o (nt1)mix
_ Z (_1)me—ﬂm emTrzw
m=—o0
oo .
_ — L2 ompi kL _ 'T’+1E
—m;ooe e 2 —193(2 1)
Similarly,
(3.17)
193(I,TZ)+192(1‘,T’L) _ Z (2n) 2n7rwc+ Z 67% 2n+12 (2n+1)7mz
= — T2 277L7TZ z Ti
s (20
m_z_:ooe 4 ’ 3(2’ 4)

Combine with the formula (@)7 we attain

20 9200 z+1 T4 x T
I3(x; T%) — 95(x; Ti) = 193( 5 ,4>193(2,4

(3.18) oo
H (1—¢* —2¢°" L cos(mz) 4+ ¢*" ) (1 + 2¢°" 7 cos(nz) 4 ¢*" )

n=1
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100

80 - 1

60 1

40+ 1

20r 1

0 L L L
0 0.1 0.2 0.3 0.4 0.5

FIGURE 5. The graph of g%gi;g with respect to T =1,z € (0, 3).
3T

=T

where ¢ = ™7 = e~ € (0,1). From the above formula (), we obtain
V% (z; Ti) — 19%(3: T4) > 0 and

di In (93 (z; T4) — 95 (2; T))

oo

B Z 27q*" L sin(nx) . —27q*" Lsin(mx)
(3.19) N 1—2¢*tcos(mz) + ¢**=2 1+ 2¢>"1cos(ma) + ¢*7—2

el
=2 gin(2nx)

> 4mq
N Z (1 —2¢*"— 1 cos(mz) + q*"=2)(1 + 2¢2" 1 cos(wz) + ¢*n—2)"

Thus, we get the formulas () and () based on the positivity and negativity
of sin(27z). O

Proposition 3.6. Suppose 7 =T4%,T > 0, theta functions 95,93 satisfy
Us(0;7) _ 5(0;37)
B2(0;7) " D2(0;37)

Proof. By using the formula (B () and Lemma @, we obtain ¥3(x; T9) > Va(x; T4) >
0, Vz € (3%, 3). According to Proposition B.3, we have

05(0;37)  Ds(0;7)0s(5; 7)0s(—557) _ 95(057)

(3.20)

3.21 = > .
(21 02(0:37)  0a(0:7)0a(5ir)0a(—Li7)  Ba(057)
O
Proposition 3.7. For any 7 =T%,T > 0 and = € (0, %), there is
d (9 (x;T9)
3.22 — 2] >0
(322) dx (19’ (x;Ti))
Where 19’ ,j = 2,3 is the derivative of ¥; with respect to x. The graph of ¥ 19, ;;3

is shown in Figure

Proof. We divide the value range (0, 1) into two cases: (0, 1) and [, 1).
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Case 1: z € [1 1), By direct calculation

da (0’2(95)) _ U5(x)5(x) — J5(x)05(x)

da \ U3(x) (95(x))? 7

where in this proof we omit the fixed 7 = T'i without any ambiguity. We will judge
the positivity of () For any T' > 0 and n € Z, suppose

(3.23)

(3.24) fn(x) = fol@;T) =1+ 2¢" cos(27x) + ¢*",Vr € R,
where ¢ = e~ € (0,1). Under this symbol and formula (@),
(3.25) da(z) = [J(1—¢** H fan—1(
k=1

Note that, for any z € [, 1),
(3.26) fhn_1(x) = —4mg®"sin(2mz) < 0
and
(3.27) 1 (x) = —812¢* ! cos(2mx) > 0.

Therefore, from ()—(), we get U4(z) > 0,Vz € [%,3). combining with
93(1 — ) = 95(x), there is

13
12
(3.28) 19()>OV:1:€[4 4}
In addition, by using the formula (), we obtain that for any x € [i, %),

1 1
(3.29) 95 (s Ti) = V(a; T) = 0% (x; T > >0
and

1 1
(3.30) 9 (@2 71) — 0} (a2 Ti) = L (x; T ) -0,
where we used Lemma @ and () Therefore, combining with ()—() and
Lemma B.9, we obtain that for any « € [i, 5),

(3.31) 95 (x)03(x) =05 ()95 (2) = (95 () =5 (2))05 () + 05 () (V3 (x) — 93 (2)) > 0.
Case 2: z € (0,1). Take the derivative of (@) with respect to v and let
v=uz€ (0, 411) we obtain equality

(3<)r(3-) ()0 (o) -2) )

—203(1)93(0)93(2)5(x)

1 1 1 1 /1 1
A (50) e (5-0) 3 (5) + e (3+9) 2 (52) 2 3)
+202(1)92(0) 92 (2) V3 (2),
where we used ¥3(—2) = ¥3(z), ¥2(—2) = ¥2(z). Besides, by using U3 (5 + z;T%) =
V3 (% — Ti) and J9 (%, Ti) = 0, the formula () can be rewritten by
(3.33)
1

2004 (; + x) U3 <2 - x> 92 <;) — 202(0)93 ()05 (x) = —203(0)D2 ()95 (z).

u-2,

(3.32)
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That is,
Uh(x) _ 93(0) Us(x) 93 (5) Y% (5 +2) U5 (5—2)
/ 2 2 /
) o) " O %) BO) )
930) 930)
Next, we claim that for any = € (0, 1),
(3.35) %11 (@) >0, %Ig(x) <0.

Then, for any z € (0, 1), () follows directly from () and ()

At last, our target is to prove claim () Note that, when = € (Oié),

95 (3 + ) > 0,95 (z) < 0 and V3 is always positive. So based on formula (B.34),
B0 5 R — ) Ao e
Thus,
d o U(@)da(z) — Va(w)dh(x)
" (94 ()2
(3:37) 9(0) B3(a)

) (1a(0) - 523
T5()?

53

>

2(9”)) > 0,Vz € (0, %)7

where the last inequality comes from Lemma @ and ¥3 > 15 which comes from
() On the other hand,

%12(@ :W < " (; 4 x) 9 (; _ x) (@) (2)
— 9, <; + x) 9, (; _ ac) 9, (2)05 ()
. 9, (; + x) 9 (; _ x) 9 (2)0a(2)
g, (1 + a:) 9 (; _ x) ﬂg(z)ﬂ;(x))

By using Lemma @, the terms —0% (% + z) ¥4 (3 — 2) V5(2)V2(z) and —0% (5 + z)
U3 (3 — z) ¥%(x)V4(x) are negative for all = € (0,1). For the other two terms of
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() let f,(x) be defined in (), by using the formula (),
)

3
(2) =95 (3 +2) 95(@) 05 (5+2) d5(2) d5(5+2) 0§ (2)
+ )’19 x) ?93(%4-33) 93 (x) U3 (%‘i‘

—
w

N

9
U5 (3+a

) 95
I (

f2k 1$

1—1—96) > f (1+$)f' (1—1—36) = fo_1(2)
2n—1 \2 2n—1 \2 2m—1 \2 J2k—1\"/

Note that for any n,k € Z; and z € R\ %Z,

(3.40) fu(3+e) = g2 (5+2) = -1,

and

G AC R
(@) fil@)
Therefore, from the formulas () and (), we obtain

(3.41)

9 (34 0) 9e) — 94 (4 + ) (o)
U3 (l + .13) 193(.13)
_ o (Sona (5+2) foma (5+2) fopa(@)
_n,%:l,; <f2n 1 (é +$) Joam—1 (% +~T) far—1()
n#m
(342) =S S (ferea @ S () S (3 57)
woiim o1 (@) fom1 (2) - for—1 (5 +2)
n#m
< i io- i io_o, Vi € (0, )
n,;‘rz:l k=1 n,r;zl k=1

Where the last inequality comes from the positivity and negativity of f,, and f/.
Thus, for any « € (0, %), from () and Lemma @

1 1 1
To sum up, from the formula (), 4 I(z) <0,z € (0,1) and we verify the claim

(B34

O
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4. THE PROOF OF THEOREM TO THEOREM

In this section, we study the critical points of the heat kernel p(z,¢) on the
rectangular, hexagonal, and rhombic tori, and prove Theorem , Theorem
and Theorem [1.4. The main idea is that p(z,t) can be explicitly expressed in terms
of theta functions.

4.1. Rectangular torus. The case of the rectangular torus is trivial, but it gives
us preliminary inspiration to express the heat kernel with theta functions. We
consider the torus T = C/A generated by rectangular lattice A = Z & Z7 with
T=0bi,b>0. Let T = % € (0,+00) and z = v + ur, where v, u € [0,1], then the
heat kernel in () can be rewritten by

bp(z,t) = Z o~ T (n262+m?) 2mi(mp+ny)
(4.1) iy
= O3 (p; Ti)95(v; b*T).

Proof of Theorem . From the formula (Ell), the critical point satisfies Vp = 0 if
and only if 94 (u; T4) = 95 (v; b2Ti) = 0.

By using the Lemma @(3) and Y3(z;7) = 93(z + 1;7) = ¥3(—2;7), we obtain
that 9% (u; T) = 0 if and only if u = 0,3,1. Note that for p = 0 and p = 1,
z = v + pt are the same points on torus T, so we only need to consider pu = 0, %
Moreover, ¥3(0; T') = 93(1; T'i) are the maximal points and 93 (5; T%) is the minimal
point of ¥3(y;T4). The another part ¥3(v;b2Ti) is similar. Therefore, we attain
Theorem immediately. (|

Remark 4.1. Based on the expression (EI)7 the heat kernel on a rectangular torus is
essentially the same as a one-dimensional heat kernel. Therefore, it can be regarded
as a direct corollary of the one-dimensional results of heat kernel/theta functions,
such as [23]. This is true for rectangular torus for any dimension.

4.2. Hexagonal torus. The case of the hexagonal torus is much different from
the case of the rectangular torus. In this instance, besides the 4 trivial critical
points, p(z,t) also has a pair of fixed non-trivial critical points at z = % + %T and
z:§+§7forallt>0.

We consider the torus T = C/A generated by hexagonal lattice A = Z ® Z7 with
T= % + ?z Let T = % € (0,400) and z = v + ur, where v, u € [0,1], then the
heat kernel in () can be rewritten by

(4.2)
§p<z’ t) _ Z e—wT(nQ-i-mz—mn) eQ-rri(mu+nu)

n,me”Z

( E + E ) § e—ﬂT(n—%)Q627\'1'(71—%)Ue—wT%m262ﬂim(;L+%)
m=2k m=2k+1/ n€z

_ Z 95 (v; Ti)efﬂTBkQ o2kmi(2u+v)
kEZ
+ Z Do (v; Ti)e—‘n-TS(k+%)2e(2k+1)m‘(2u+v)
1/
=05(v; Ti)93(20 + v; 3T%) + 92 (v; T4) 92 (21 + v; 3T7%).
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0.5 .

(@)
(@]
R~
[uy

FIGURE 6. The domain of variables (7, fi).

The special case z = 0 of the formula (@) has been found in the textbook [E]
Let i =2u + v and ¥ = v, then
V3

(4.3) TP(Z’ t) = ¥3(0; T1)¥3(fa; 3T%) + 92 (0; T4) 92 (f; 3T4).

Because 7, i are linear independent, the critical point satisfies V,p(z,t) = 0 if

and only if 9pp = Jzp = 0. That is, we only need to find (7, i) such that
95(v; T)03(ja; 3T40) + V5 (05 Ti)9o (15 3T1) = 0, ()
I3(; T4)0%5 (f1; 3T%) + 9o (5 T4)9%5 (a5 3T0) = 0.(xx)

To give a complete discussion, we solve (@) forall 7, p € Rand T > 0. Note that
for any z € C,7 € H, ¥2(z + 2;7) = ¥2(2z;7) and 93(z + 2;7) = ¥3(z; 7). Because
of these periodicities, we only need to solve equation (@) on v, e [-1,1].

By using Proposition @(2)(3), if (7. f) is a solution of (@), then (-7, i),
(0,—0), (—, —@) are all solutions of ({.4). Thus, we could consider 7, i € [0, 1].

Further more, for any z € C and 7 € H, also from Proposition @(2)(3),

U3(1 — 2;7) = U3(—2;7) = U5(2;7)
and 95(1 — z;7) = —05(2; 7). Similarly, ¥2(1 = 2;7) = —¥2(2z;7) and 95(1 — z;7) =
¥5(z;7). Therefore, (7, i) is a solution of (.4) if and only if (1 — 7,1 — f) is a
solution.

(4.4)

To summarize. without loss of generality, we consider 7 € [0, 1] and i € [0,1] to
solve equation (Q) We categorize the variables (7, i) into three cases: half-integer
points, boundary part, and inner part (the red, black, and blue parts in Figure
respectively). These three cases correspond to three lemmas as follows.

Lemma @ aims to find critical points at half-integers, which are the trivial
critical points of the heat kernel.
Lemma 4.2 (Half-integer points). Suppose T > 0, when v € {0,1} and i €
{0, %, 1}, the solutions (v, i) of ) are (0,0),(0,1), (%, %)
Proof. By using Lemma @, for any 7 = T on the imaginary positive half axis,
we obtain 95(0;7) = 9% (3:7) = U5(1;7) = 95(0;7) = 95(1;7) = 2 (3;7) = 0 and
9% (%;T) ,02(0;7),92 (1;7) # 0.

Substitute these properties into (@), we obtain directly that half-integer solu-
tions are (0,0), (0,1), (3, ). O
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Lemma @ is to find critical points on the boundary part, which is the unique
pair of non-trivial critical points of the heat kernel.

Lemma 4.3 (Boundary part). Suppose T'> 0 and
(4.5)

- 1 1 1 1 1 1
wne((02) {%’1}) U({oa) < (2))U({a) < (21)
then the unique solution (v, i) of @) in @ is (7, 1) = (3,1).
Proof. We prove this lemma in three steps.

Step 1: if (7,1u) € (0 l) X {O, %,1} is the solution of (@), we utilize the

9
positivity and negativity of theta functions to determine the necessary conditions

for (7, 1). By using Lemma 3.9,
94 (0; T4),95(v; Ti) < 0, and 93(jz; 3T4) > 0.

Therefore, if (@)(*) is correct, ¥2(ji;37%) must be negative. So, we obtain =1
Now, we claim that (7, 1) = (3, 1) is the unique solution in (0, 3) x {0, 3,1}.

By using Proposition @, the equation (Q)(*) can be rewritten by
-1 . +
9 (; )03( Tz)ﬁg,( . z>193(”3 T)
1
(7 )192( T@)ﬁg( . i)ﬁg(u;— T)

Take the derivative of (@) with respect to v and let u = v

(4.6)

, by using

|| Wl

05(5; Ti) = —04(—5; Ti) = —05(3; T0) and 95(5;T0) = —05(—5; T ) 05(3: T),
we have
(1 ) 1 . 1.
— 305 <;Tz> 93(0; 1) (;Tz) I3 (;Tz)
3 3 3
(4.7)

— 39, (; )ﬂg(o Ti)o, ( ;);Ti)ﬂg (;Tz>
) =

Combine (@) and ( (7, i) = (3,1) is the solution of (@)(*) Besides, there
is also the solution of (4.4))(xx) by 95(1;3T%) = 9¥4(1;3T%) = 0._Therefore, (7, 1) =
(:1,)7 1) is the solution of (4.4). In addition, by using Proposition B.7, as the necessary
condition it = 1, the equation (Q)(*)

v Ti) _ 93(1;3T1)
Ti)  99(1;3T%)

has at most one solution # € (0, ). Therefore, (7, i) = (3,1) is unique in this step.

Step 2: if (v, 1) {0, 2} ( , 2) is the solution of @) By using Lemma @,
9% (13 314, 95 (ji; 3T%) < 0, and 93(v; Ti) > 0.

Therefore, similar to step 1, if (@)(**) is correct, ¥o(7;T%) must be negative.
While this is impossible for 7 € {0, %} Thus, there is no solution in this step.

Step 3: if (7, i) € {0,1} x (3,1) is the solution of (@) Because
9% (113 3T4) > 0, 95(fa; 3T4) < 0, and I3(v;T4i) > 0,
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the solution (7, 1) satisfies (@)(**) implies that ¥2(7;T%) > 0. Then U must be
zero. However, when 7 = 0, we have the following contradiction

U3(0;T)  95(ps3T9) _ 95(1 — s 3T1)
05(0;Td) — 94(p:3T4) (1 — pu; 3T4)
O5(1— i 3Ti) _ 95(0:3T4) _ 9(0:Ti)
O2(1 — 1;3T4) ~ 02(0;3T4) ~ 92(0;T4)
Here, we utilized sequentially (@) (#), Proposition @, formula (), and Propo-
sition B.§. Consequently, there is no solution in step 3.

(4.8)

To sum up, (7, i) = (3,1) is the unique solution in (@)
(I

Lemma @ aims to prove that the heat kernel does not have any more critical
points in the inner part.

Lemma 4.4 (Inner part). Suppose T > 0 and

o one(6)- 620D+
then the solution (7, i) of {-4) in (4-4) is not existent.

Proof. We prove this lemma in two steps.
Step 1: for the case (7, i) € ((O7 %) x (0, %)), by using Lemma(), we have
945 (0; Ti)03(f; 3T1) + 95 (05 T1)92(a; 3T4) < 0+ 0 =0, VT > 0.
Therefore, (7, i) can not be the solution of (@)
Step 2: for the case (7, 1) € ((0,%) x (3,1)), if (¥, ) is the solution of (@),
then
V303 Ti) _ 95(s3T0) O 3T0) _ O(03T6) _ 93(w; 1)
Vo (5 T'%) 95 (f; 3T1) Po(;3T%)  95(;Ti) ~ o(v;Ti)’
where the equalities are based ?ﬁ) and the inequalities are based on Proposition
and Lemma B.2. Because (4.10) is a contradiction, there is no solution (7, i) of

() in (9. 0

Lemma @ to Lemma @ study the solutions of (@) completely. Based on these
three lemmas, we find the critical points of the heat kernel on the hexagonal torus.

(4.10)

Proof of Theorem . From the discussion in Section 2, we only need to consider
the torus T = @/A generated by hexagonal lattice A = Z @ Z7 with 7 = % + @z
From Lemma {.2, Lemma and Lemma {.4, we obtain that the solutions (7, i) €
[0, 2] x [0, 1] of equation (4.4) are (v, 1) = (0,0),(0,1),(3,3), (3,1). By using the

eriodicities and symmetries of theta functions (see the discussion above Lemma
@), for any T > 0, all solutions of (4.4) are

(4.2?/2) _ {(0’ 0), (0,+1), <i; i;) , <j::1)) il) ,(£1,£1), (£1,0), (i?O) }
+ 27 @ 27.
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Because 7 = v, i = 2u+v and z = v+ ur, from the expression (@), the critical
points of p(z,t) on the hexagonal torus T are
11 1 1 1 1 2 2
4.12 €0,>, =7, =+ =7 =+ -1, =+ = 7o Ir.
(4.12) z {22724—2734—3734—37}4—@7
Finally, we verify the extremum properties of these critical points. At first, by
using the formula (EL for any z € T and ¢t > 0,

1 —4rn?t|w|? 2miz-
)| = ot w TiZ W
Pl = |5y 2 e
(4.13) weh
1 —4r?t|w|? 2mwiz-w
S5y X [etmerenee] = p(0,0).
weAL

Therefore, 0 is always the maximal point of the heat kernel. In fact, this formula
() holds true for any torus T. Similar formulas compared to formula () were
derived by Bétermin and Faulhuber [B, 9].

On the other hand, in the previous articles [Il] and [9], they studied the minimal
point of the heat kernel and found that the point % + %T is the minimal point of
p(z,t) on hexagonal torus. Besides, from the property

p(z,t) = p(—Z,t) =p(l+7—21),

% + %T and % + %T are both the minimal points with the same values.

4.3. Rhombic torus. The case of the rhombic torus is a generalization of the
situation for the hexagonal torus. We consider the torus T = C/A generated by
rhombic lattice A = Z & Z7 with 7 = 1 + bi,b > 0. Let T = 43t € (0,400) and
z_ = v+ pr, where v, € [0,1]. Similar to the formula (@), the heat kernel in
() can be rewritten by

bp(z’t) = (Z + Z ) Z e—rrT(m—%)26271'1'(771—%),ue—ﬂ'b?Tnze%rin(y—i-%)

n=2k n=2k+1/ meZ
_ Z D5 (1 T,L-)efw4b2Tk262k7ri(2u+u)
kez
+ Z 192(% Ti)e—w4b2T(k+%)26(2k+1)7ri(21/+p,)
kez
=03 (p; Ti)03 (20 + p; 462 T0) + 9o (u; T0) 92 (20 + p; 46°Ti).

(4.14)

Let ¥ = p and i = 2v + p, then
(4.15) bp(z,t) = V3(0; Ti)93(fi; 4b°Ti) + 9o (; Ti) V2 (i; 46> T'i).

As the same derivation in Section 4.2, to find the critical points of p(z,t), we
only need to solve (7, i) € [0, 1] x [0, 1] satisfy
(416) {1%(&; Ti)03(j1; 46°T) + 05 (7; Ti) Vo (fi; 46°Ti) = 0, ()
‘ =0.

I3(7; Ti) 0% (1 46*T4) + 9o (5 Ti) 0% (1i; 4b°T) (k)
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By employing the same discussion as in Lemma @, Lemma, @ and Lemma
, except for the trivial critical points (7, ) € {(0,0),(0,1),(3,3)}, the other
solutions of () can only appear on two boundaries

(4.17) (0,11) € <<o;) X {1}) U <{0} X <;1)>

Let’s consider these two situations separately.

Case 1: When i = 1 and # € (0, 3), the equation ()(**) is always correct
since ¥5(1) = ¥4(1) = 0. Therefore, we attribute the problem to solve
(4.18) 05 (0; Ti) _193(1;4sz1') ~ 93(0;4b%T%)

' 95 (0; i) 99(1;4b2T0)  92(0;462T)

onve(0,3).
Case 2: When v = 0 and [ € (1,1), the equation (4.16)(*) is always correct
since ¥5(0) = ¥4(0) = 0. Therefore, we attribute the problem to solve
U3(0; T4) _19’2(ﬂ;4b2Ti) _ 05(1 — 1; 4b%T%)
92(0;T5)  4(;4b2T4) 0% (1 — f1;4b2T)°
on i € (%,1 . _There is a sufficient and necessary condition for the existence of
solution in ({.1§) and ()
Lemma 4.5. The equations (@) and ) both have at most one solution.
Moreover, ) has a solution v € (0, %) if and only if
95(0; T) - 93(0; 4b%T7)
95(0; i)~ 92(0;46%T%)’
and ) has a solution i € (%7 1) if and only if
9%(0; 46°T) - 3(0;T%)
95(0;4b2T0) ~ 92(0; %)
19/
Here the meaning of the left hand sides of @) and ) are the limit of 19—,2 at

3

(4.19)

(4.20)

(4.21)

ZEro.

Proof. By using Lemma @, there is a direct observation that
9(7:T)

li =L = .
oo U TE)

In addition, g—é is strictly increasing based on the Proposition @ Therefore, if
3
95(0;T4)  93(0; 4b%T)
95(0;T%) ~ 92(0; 462T%)’
() has a unique_solution 7 € (0, %) Conversely, no solution. The proof of
another equation () is similar.

t
Now, we give a complete result of the solutions of () and ()

Theorem 4.6. For any t > 0, let T = 43 there ewists % <bi(t) < 3 <bo(t) <
§ depend on t such that
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(1) the equation ) has one solution fi(b,t) € (5,1) if b € (0,b1(t)), and no
solution i as b € [by(t), +00).
(2) the equation (4.18) has one solution (b,t) € (0,%) if b € (ba(t), +00), and
no solution U as b € (0,ba(t)].
Proof. To solve the equation ()7 we define a function
95(0; 04)  93(0; zevi)
4.22 Fryo) = 21—~ — =
(422) (z;0) 95(0; 1) 92(0; zavi)’
Note that from Proposition B.5,
95(0; i) 93(0; i)
95(0; i)~ 92(0; i)
Thus F(1; ) > 0,Va > 0. Moreover, from Proposition @ and step 1 of the proof
of Lemma §.3, for any a > 0,

with z, o € (0, 4+00).

,Va € (0, 400)

U5(0;ai)  Uh(5500)  U3(1;3ad)  93(0;3)

95(0; i)~ O (%; o) 99(1;3cd)  92(0;3ai)
So, we have F(3;a) < 0,Va > 0. Next, we will prove that F(x;«) is strictly
decreasing with respect to x.

By using the equation 4mid7T9;(z; 1) = 02029,(z;7),Vj = 2, 3, we obtain
Va(0szai) OF (z37) 0 log (193(0;$Oéi)>
93(0;zai) Oz ox 92(0; zavi)

i (87193(0; zai)  0T02(0; xai))

4.2
(423) 93(0; zavi) P2(0; zavi)
_ o (05(0;zai)  U5(0;zai)
 An \93(0;zd)  99(0;z008) )

According to the formulas () and ()7 we have the estimations

(4.24) 94 (0; zai) — 95 (0; zai) > 0 and Y2(0; zai) — I3(0; zad) < 0.
Note that ¥4 (0; zai) < 0 from the formula (@) Therefore,
(4.25)

94 (05 zavi) 92 (05 wai) — 95 (0; zavi)93(0; wai)

=095 (0; zavi) — 945 (0; zavi) )92 (0; zavi) + 9% (05 zavd) (92(0; zai) — 93(0; zai)) > 0.

Based on () and (), for any « > 0, function F(z;«) is strictly decreas-
ing with respect to € (0,400). Therefore, F(x;«) exists a unique zero point
x1(a) € (1,3) which depends on « > 0. Moreover, F(x;a) > 0,Vz € (0,21(a)] and
F(z;a) < 0,Vz € (z1(a), +00).

From the Lemma @, the equation () has one solution i € (3,1) if and only
if F(qz;16mt) <0, ie., b< m with @ = 167t. Choose by (t) = ,/4:011(&) €
(?, 1) with a = 167t, then we obtain result (1).

On the other hand, to solve the equation (), we similarly define a function

W (0;zai)  V3(0; i)
4.26 H(za) = -2~ — =
(4.26) (z30) 9505 zai)  92(0;ad)’

Similar to the proof in case (1), for any « > 0, the function H(x;«) is strictly

increasing on (0,+00) with H($;a) < 0 and H(1;0) > 0. Therefore, H(z;)

with z, o € (0, +00).
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exists a unique zero point z2(e) € (3,1) which depends on a > 0. Moreover,
H(z;a) < 0,Vz € (0, z2(c)) and H(z;a) > 0,Vx € [x2(a), +00).
From the Lemma @ the equation () has one solution € (0, 1) if and only

if H(p=;16mt) <0, ie., b> ﬁ with a = 167t. Choose bo(t) = 4I;(a) c

(3, %) with a = 167¢, then we obtain result (2).

O
At the end of this section, we prove Theorem @ by using Theorem @

Proof of Theorem . From the discussion in Section 2, we only need to consider
the torus T = C/(Z & Zr) with 7 = 1 4+ bi,b > 0. For any ¢ > 0, let by (t) and bo(t)
be defined as in Theorem

Case_1: If b € [b1(¢), bo(t)], by using the Theorem @ and the discussion above
Lemma 1.5, the equation (&) only has trivial solutions (7, 1) € {(0,0), (0,1), (3, 3)}.
Thus, by using the periodicities and symmetries of theta functions, as in the proof
of Theorem [1.2, the critical points of the heat kernel p(z,t) on the torus T are

11 1 1
4.2 7 ® 1.
(4.27) ze{022 2+27}+ ®Zt
Case 2: If b € (0.b(t)), from Theorem @ except for trivial solutions i.e., half-
period solutions, (4.16) has one non-trivial solution (7 (b, t), (b, t {0} ( 1).
Therefore, also following the same steps as the proof of Theorem @ the crltlcal
points of the heat kernel p(z,t) on the torus T are

11 1 1 i
(4.28) z € {O, =T, =+ =T, u<b’t),1 - M(b’t)} +7Z @ L.

27272 2 2 2

Besides, the non-trivial critical points @ and 1 — @ are located on the long
diagonal &(z) = 0 of rhombic T

Case 3: If b € (b2(t), +00), this case is similar to the case 2, and () has one
non-trivial solution (#(b,t), u(b,t)) € (0, %) x {1}. The same as above, the critical
points of p(z,t) are

(4.29)
11 1 1 1-0(bt)

{O,,T —+ -7, + (b, t)T,

1+ (b, t)
2°2°2 2 2 2

+ (1 - (b, t))T} +Z®Lr

Note that H‘%(bt) +(1—w(b,t))T and HDTM +(—=(b,t))7 are the same points on T.
Therefore, the non-trivial critical points PDTM + (b, t)T and HDT(W) +(=o(b,t))T
are located on the long diagonal R(z) = % of rhombic T.

Finally, we prove by (t)-ba(t) = i, Yt > 0. In Section 2, we have shown that p(z,t)
has the same number of critical points under the rotation and the scaling of the
torus T. For any b > 0, note that the torus T = C/(Z @ (1 + bi)Z) is equivalent to
T = C/(Z & (5 + 34)Z) up to rotation and scaling, so p(z,t) has the same number
of critical points on them. Therefore, by (t) - ba(t) = 1,Vt > 0 is obtained directly.

O
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5. THE PROOF OF THEOREM

Suppose the lattice is A = Zwy ® Zws and the torus is T = C/A. To verify
that F(z) is well-defined in (@) and to find the equation it satisfies, we need the
following infinite estimation of Fy(z).

Lemma 5.1. Suppose
(5.1) I :=min{|w|:we AT\ {0}} >0

is the minimal length of lattice A-. For any z € T, the heat kernel p(z,t) has the
following uniform estimation on infinity

1
(5.2) p(z,t) = | + 0(674ﬂ2l2t), as t — +o0.

Proof. By using the Poisson Summation Formula (@)

1 1 2 1 2 2 :
t) = — — g lw+z] - —4Ant|w|® 2miz-w
plst) = e A 2 e

w A w BN
(5.3) 1 61 Z = TQAQ ,
- 4+ — e—4Am tw]® 2mizw
|T‘ |T| weA+L\{0}

For any w € A+ and |w| > [, the function |4 "t (=47 el ¢2miz-w)| exponentially
decreases as t — +o00. Note that there are only finite points w € At such that
|w| = 1. Thus,

lim (|T|p(z,t) — 1)€4ﬂ2l2t < limsup g \e4ﬂ2t(12_|“|2)62”z‘“’|
t—+oo t—+o00
weAL\{0}

s 4r2t(12—|w|?)
o tlggloo Z € g c.
weAL\{0}

(5.4)

Here, this constant C' is independent of z.
O

By utilizing the infinite estimation presented in Lemma EI, we verify that Fy(z)
satisfies the equation ([L.9).

Proposition 5.2. For any A > 0, the function F)\(z) defined by (@) is well defined
and is smooth in T \ {0}. Besides, it is the unique solution of

1

(5.5) — Au(z) = =du(z) + do(z) — il

in weak sense with
(5.6) / u(z)dz = 0.
T

Proof. Because p(z,t) is a doubly-periodic function with periods 1 and 7, F)(z)
defined by (|L.4) has periods 1 and 7. From the estimation (@) and the property

(5.7) Jim p(z,¢) = do(2)

of heat kernel, Fi(z) is well defined and smooth in T\ {0} and has a singularity at
Z€ro.
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By using the Lemma @ there exists M > 0 and constant C; > 0 such that

‘p(z t) — ‘ Cre "t \ft > M, z € T. Therefore,
Y 1 M = At
e t) — ’ dtdz = / / Jr/ e~ (z,1) ‘dtdz
/ / =kl “m
o0 272
// p(z,t) — — dtdz—l—// e MOye ™ Utdtd
IT| M

// p(z,t)dtdz + C < 0.

Where, the last inequality comes from [, p(z,t)dz = 1. Therefore, F)(z) is abso-
lutely integrable on T. By using the Fubini’s Theorem and fT p(z,t)dz = 1 again,

/T Fu(2)dz = /jr /O T en (p(z,t) m)dtdz
:/OOO/Te—M (p(z,t) IT|> dtdz = 0,

For any g(z) € C*(T), by using the Fubini’s Theorem,
(5.10)

/ N dz—/ Fa(2)0g(2)dz

/A < z,t) — m)AQ( Vdtd
_/o L (Wﬁ - m) Ng(z)dzdt
- /OOO /Teﬂtﬂp(m)g(z)dzdt
7 [ ot gt
_ /OOO/Tat <(p(z,t) _ 11r|) extg(z)>
+ e (p(z,t) _ le) o)zt
_ _/T ((p(m) - &‘I) e‘“g(z)>
50~ [ (3 + o) s

Therefore, the function F)\(z) satisfies the equation (@) in weak sense.

(5.9)

h —/)\F)\(z)g(z)dz
t=0 T

At last, we prove the uniqueness of F)\(z). Consider the characteristic equation
on torus T = C/A

(5.11) — Au(z) = du(z), z € T.
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The eigenvalues A\, and eigenfunctions e, (z) with respect to () are given by

1 .
(5.12) Ao = 4% |w]?) ey(2) = —=—=€2"2% Yw € AT

VIAI

Moreover, from the formula (), we have a new expression of the heat kernel by
eigenfunctions

(5.13) plzt) = Y e ey (2)en(0).

For an introduction to the relationship between the heat kernel and the eigenfunc-
tions we refer to the textbook of Grigor’yan [[10].

Suppose ¢(z) is the other function satisfies (@) and [} g(z)dz = 0. We obtain
that
(5.14) — A(FA(2) — 9(2)) = —A(Fx(2) — 9(2))-
That is, F)(z) — g(z) is the eigenfunction with respect to eigenvalue —\.

If A > 0, then the characteristic equation () has a negative eigenvalue — A\,
which is a contradiction with (5.19).

If A =0, from the expression ()7 the eigenfunction with regard to eigenvalue
0 has only \/ﬁ So, eigenfunction Fy(z) — g(z) of () must be a constant. Note

that,
/FA(z) —g(z)dz = 0.
T
Therefore, F(z) — g(z) = 0. To sum up, the solution F)(z) is unique. O

Remark 5.3. In R?, the relationship between the heat kernel pg:(z,t) and the Green
function Ggz(z) is

(5.15) G (2) = /O " pga (1)t

This is a bit distinct from (@), as the coefficient ITITI is absent in () If we
regard R? as a torus with “infinite volume”, then an analogous expression arises for

formulas (@) and ()

Next, we discuss the critical points of F(z) on rectangular, hexagonal and rhom-
bic tori.

Proof of Theorem , Similar to the discussion of (@) regarding p(z,t) in Section
2, to find the critical points of F)\(z), we only need to consider the torus T =
C/(Z ® Zr) with T € H.

Step 1, suppose the rectangular torus T = C/(Z ® Z7) with 7 = bi, b > 0. From
the formulas (@) and (@)

> 1
(5.16) F\(z) = / e M (193(M;Ti)193(u;b2Ti) - Tl) dt,

0
where z = v+ pur and T = %. The critical points V,F) = 0 if and only if
O0vE\ = 0,F) = 0. Therefore, from Lemma (3) and zero is a singularity, F has

only three trivial critical points %, %7’, % + %T on T.
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In addition, because p(z,t) has the uniform minimal point 3 + 37 for all ¢ > 0,
% + %T is also the minimal point of F\(z) for any A > 0. Besides, from Lemma

the critical points ;, %7’ are both saddle points.
Step 2. suppose the hexagonal torus T = C/(Z & Z7) with 7 = 1 + ?z From
Theorem [L.9, the heat kernel p(z,t) exhibits uniform non-trivial critical points at

% + %T and % + %T, which are the minimal points with the same values on T.
Consequently, for any A > 0, there are also the minimal points of F)(z) with the
same values.

Unfortunately, we are unable to prove the nonexistence of other non-trivial crit-
ical points here. This limitation arises due to monotonic gaps in our method, as
indicated in Conjecture [L.7. (]

At the end of this Section, we present a partial proof of Conjecture @ which
is the same as Theorem completely except for two monotonic gaps. Thus,we
outline the proof framework and omit redundant details.

Partial proof of Conjecture . Same as before, we also only need to consider the
rhombic torus T = C/(Z & Z7) with 7 = 1 + bi,b > 0. Based on the formulas (@)
and (), let z = v + u7, we have

e 4rt
Fy(z) = / e~ M (193 <u; ;z) I3(2v + p; 167ti)
0

(5.17) dnt 1
+ Yy (,u, 2 ) 92(2v + p; 167td) — |’]I‘> dt.
Let 7 = p and i = 2v + p. To find the critical points of Fy(z), we just need to
solve (7, [i) satisfy
(5.18)

/ <19/ ( 4;Tt > O3 (f1; 167ti) + 9% < 4;;tz‘) o (f; 167rti)> dt =0, (x)

0

/ <193 ( 4;? ) 9% (5 167t7) + 9 ( v; bzt ) 95 ([ 167775@)) dt = 0.(xx)
0

Similar to the discussion in Section 4.3, the non-trivial solution (7, i) can only exist
within (7, ) € (0, 3) x {1} and (7, z) € {0} x (3, 1). Therefore, we focus on solving
the following two equations which are similar to (4.1§) and ()

(5.19) /Ooo (19’ ( 4;”5 >193(0 167ti) — ¥ ( 4;# )192(0 16m)) dt =0

onv € (0,1). And
(5.20)

< 47t | _ . 47t _ .
/O e M (193 (0; 1)22) 95(1 — fi; 167ti) — Vo <0; bQZ) V(1 — f; 1677“)) dt =0

on i € (3,1).
We begin by considering equation () To repeat the methods shown in Sec-
tion 4.3, we rely on the following monotonic property:

S5 e (0% (5 25ti) 9(0; 16ti)) dt
-2 dv (fo e (9 (*,42;%) 5(0; 167rti))dt> 0.
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for all 7 € (0,4),b > 0 and A > 0. We believe _that () is consistent with (),

while it might not be verified directly from () Therefore, we leave it as a gap.

If formula () is_correct, we can replicate the procedure in Lemma @ and
obtain that equation () has at most one solution. Moreover, there exists unique
solution 7 € (0, 3) if and only if
JoT e (95 (0; 45L1) 92(0; 167ti)) di
IS e (9 (0; 45E1) 95(0; 167ti)) di

(5.22)

Now we require another monotonic property which is similar to (4.24). For any
x € (0,400) and A > 0,
(5.23)

] e~ (9} (0; 216mti) 92 (0; 167t)) dt
—H(x;\) > 0, where H(x;\) = Jo e x16mti) U2(0; 167ti))

% e (0 (0; 216mti) U5 (0; 167td)) dt

We are also unable to verify () directly by using (), so we leave it as the
second gap. If () is confirmed, following the process in Theorem §.6, equation

() possesses a solution 7 € (0, 3) if and only if b > By(\) = ,/ﬁ()\). Where

Z2(A) € (3,1) is the unique zero point of H(x; \).

The solution to equation () follows a similar procedure, yielding Bi(\) €
(\e’f7 ;) such that () possesses a unique solution fi € (%, 1) if and only if b €
(0,B1(\)). At last, the remaining proof is the same as Theorem [L.4’s proof in

Section 4.3. We omit these repetitive proof details. (Il

Formulas () and () are so similar to () and () that we believe

that they are correct. We sincerely hope that someone can resolve these two gaps.

6. THE PROOF OF THEOREM

For any 7 € H, suppose lattice A, = #T) (Z ® Z7). Compare the definition

(L) with (L.4), we have
(6.1) 0(z7) = p (Z 4;) _

The formula (EI) is also expressed in [E] In this viewpoint, the energy 6(z;7) and
the heat kernel p(z,t) have similar properties.

Proof of Theorem . By employing formula (@) along with Theorem @ and
Theorem [L.2, we establish directly that 6(z; 7) possesses four critical points on the
rectangular torus, and the hexagonal one exhibits six critical points.

Next, we proceed to prove the invariance of the number of critical points. Sup-
pose z = vwy + pwe with v, p € [0, 1], we consider the general 6(z; A)

(6 2) Z efﬂ\w+z| Z 677r| m+1/)w1+(n+u)w2|2
' wEA n,mez

with A = Zw; @ Zw,. Similar to the discussion of (@) in Section 2, the number of
critical points of 0(z; A) is invariant up to the rotation and scaling of (w1,ws).
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It is easy to check that the two-dimensional lattice A, = 1/%(Z @ Z7) has

some important invariance:
AT = A-,—+1 = Af% = A,‘T-,

up to the rotation and reflection, as referenced in [18, 20, 21, 23, 28]. Therefore,
under the modular transform

[ € SLy(Z) = span { (é 1) ’ (—01 (1)) } ’

as 7 — I'(7), lattice A, = % (Z ® Z7) is invariant up to the rotation and
reflection. Thus, the number of the critical points of 0(z; ) is invariant under the
transform 7 — I'(7), VI € SLy(Z).

O

For the further reference of modular form and modular properties we refer to
the textbook of Serre [27] (Chap. VII, Modular Forms).

7. GENERALIZATIONS AND OPEN PROBLEMS

In Theorem @ through Theorem @, we observe that the heat kernel p(z,t)
possesses at most a pair of non-trivial critical points on rectangular, hexagonal,
and rhombic tori. An intriguing question arises: does the heat kernel p(z, t) exhibit
this property for all general tori T? Additionally, we note that the number of
critical points between the Green function [15] and the heat kernel is equivalent
on rectangular and hexagonal tori. This observation leads us to expect that the
number of critical points between them remains the same on other types of tori as
well.

Open problem 7.1. Suppose the general torus T = C/(Zw;i ® Zws), wi,ws € C
and let the heat kernel p(z,t) be defined in (@)

(1) whether p(z,t) has at most one pair of non-trivial critical points for any
t > 0 on two-dimensional T? And under what conditions, the number of
critical points of p(z,t) is independent on ¢ > 0.

(2) Suppose that the pair of non-trivial critical points of p(z,t) exist, whether
they are the minimal points with the same values?

(3) For which tori T is the number of critical points between the heat kernel
and the Green function the same?

In Sections 1.2 and 1.3, we delve into the critical points of F)\(z),A > 0 and
0(z,a;A),a > 0. It is noteworthy that their critical points bear resemblance to
those of the heat kernel. Thus, we are inclined to believe that there exists a funda-
mental conclusion to elucidate this properties for extensive functions.

Open problem 7.2. Suppose the torus T = C/(Zw; & Zws) with wy,ws € C, and
f is an even function defined on T. Under what conditions does f have no or have
one pair of non-trivial critical points? Additionally, what type of function f has
more critical points?

Acknowledgements. We are very grateful to the anonymous referee for numerous
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