CONVERGENCE OF THE VOLUME PRESERVING FRACTIONAL MEAN
CURVATURE FLOW FOR CONVEX SETS

VESA JULIN AND DOMENICO ANGELO LA MANNA

ABSTRACT. We prove that the volume preserving fractional mean curvature flow starting
from a convex set does not develop singularities along the flow. By the recent result of
Cesaroni-Novaga [6] this then implies that the flow converges to a ball exponentially fast.
In the proof we show that the a priori estimates due to Cinti-Sinestrari-Valdinoci [10] imply
the C'*_regularity of the flow and then provide a regularity argument which improves this
to C***-regularity of the flow. The regularity step from C'** into C*** does not rely on
convexity and can be adopted to more general setting.

1. INTRODUCTION

We say that a given set Ey ¢ R™! evolves under the volume preserving fractional mean
curvature flow if there exists a flow (Ey)e[o,7) of sets starting from FEjp, which satisfies the
equation

(1.1) Vi =-(Hg, - Hg,) on 0FE;,
where V; is the normal velocity, Hj, with s € (0,1) is the fractional mean curvature defined as
d d
(1.2) H(w) - R R
R+ E |y _ x|n+1+s B |y _ x|n+1+s

and H £, 1s its integral average. The flow (1.1) bears many similarities to the classical volume
preserving mean curvature flow, in particular, it can be seen as a gradient flow of the fractional
perimeter. The flow (1.1) can also be seen as a perturbation of the fractional mean curvature
flow, with the difference that (1.1) preserves the volume and can thus be interpreted as the
evolutionary counterpart of the fractional isoperimetric inequality.

The study of the fractional perimeter problem goes back to [3], where the authors prove so
called e-regularity result, i.e., partial regularity of the perimeter minimizers. As with minimal
surfaces, also in the fractional case the perimeter minimizers may have singularities in higher
dimensions. The question of optimal regularity has been studied extensively and we merely
refer to [25], which is the best known result on the size of the singular set at the moment.
We also refer to [1], where the authors provide a bootstrap argument to obtain higher order
regularity outside the singular set. The related isoperimetric problem, which states that the
ball minimizes the fractional perimeter under the volume constraint, follows from standard
symmetrization argument and the sharp quantitative version is proven in [15] (see also [16]).
Moreover, the fractional version of the Alexandrov theorem, which states that the only regular
set with constant fractional mean curvature is the ball, is proven independently in [2, 11].
This is important as it essentially implies that, if the flow (1.1) is well defined for all times,
then it converges to the ball.

In [19] we prove the short time existence of the classical solution of (1.1) for Ct!-regular
initial sets. This result also applies to the fractional mean curvature flow, in which case the
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existence of the level set solution is proven in [18] and another weak solution is constructed in
[7]. As usual with geometric flows, the fractional mean curvature flow may develop singular-
ities in finite time such as neckpinching [9] and fattening [4]. However, at the moment there
is no systematic classification of the possible types of singularities in the fractional setting
similar to the classical mean curvature flow [21]. We are also not aware of a construction of
a weak solution for (1.1).

A natural problem is whether we may avoid the formation of singularities, if we constraint
ourselves to special type of initial sets. In [6] the authors prove, that if the initial set is
close enough to the ball, then the flow (1.1) remains smooth and converges exponentially fast
to a translation of the ball. Another special case is when the initial set is a subgraph of a
Lipschitz function. Note that then the set is unbounded and therefore, instead of (1.1), it
is natural to study the standard fractional mean curvature flow. In this setting the authors
[24] prove important a priori estimates, which essentially imply that if the flow starts from
Lipschitz graph with bounded fractional curvature, these quantities are preserved along the
flow. This problem is studied further in [5], where the authors show that in the above setting
the fractional mean curvature flow does not develop singularities and converges to the flat
surface exponentially fast. This is the fractional counterpart of the Ecker-Huisken result [13]
for the mean curvature flow with the only difference that the initial set is assumed to have
bounded fractional curvature. Due to the results [22, 26] one might expect the result to hold
without the curvature assumption, but to the best of our knowledge this is not known at the
moment.

As we already mentioned, here we consider the case of convex initial sets, which are bounded
and C'-regular. In the case of the classical volume preserving mean curvature flow the result
by Huisken [17] implies that the flow remains smooth and converges expontially fast to the ball.
In the fractional setting, this result is proven in [6] and [8] under the additional assumption
that the flow remains C?*®-regular. Here we show that this additional regularity assumption
is conditional, or in other words, this regularity assumption can proven for convex initial sets,
and thus we obtain the Huisken result in the fractional setting.

Main Theorem. Let Fy c R be Clt-regular conver set with |Eo| = |Bi|. Then the classical
solution of (1.1) exists for all times (Ey)is0 and converges to the ball Bi(xzg), for some
zo ¢ R™ in C* for every k € N exponentially fast. To be more precise, there is T > 1
depending on the initial set Ey and on the dimension, such that we may write the moving
boundaries by the height functions over the unit sphere h(-,t) :S™ - R as

OFE; = {h(z,t)x +x0: 2 eS"}

for xg € R™Y when t > T and it holds |h(-,t) - Uler(gny < Cre ', where the constants ci, > 0
and Cy > 1 depend on n,k,T and on the initial set E.

Let us comment the proof of the Main Theorem. First, we remark that the C! assumption
on Fj is needed only to guarantee the existence of the flow, as our proof relies on the short
time existence result in [19]. As we mentioned above, the proof relies on the a priori estimates
proven in [6, 8, 10]. Indeed, by the result in [8] the sets E; along the flow remain convex, while
the estimates in [10] imply that their fractional mean curvature remains uniformly bounded,
ie.

sup Hp, (z) <C
te[0,T)
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and there are radii 0 < r < 1 < R such that B, (z;) ¢ E; ¢ Bg(z¢) as long as the flow is classically
defined. These important estimates are our starting point and we first prove in Proposition
2.3 that for convex sets the above fractional curvature bound implies uniform C'**-Holder
regularity. We then recall that the authors in [6] (see also [10]) show that, if we would be
able to improve the C'**-regularity into uniform C?*®-regularity, then the flow (1.1) does not
develop singularities and converges exponentially fast to a ball. Our main contribution here
is to prove this regularity step. Roughly speaking, the idea is that geometric flows do not
develop singularities under uniform C'*®-regularity estimate, unless the singularity is due to
change of topology. This is due to the fact that one may parametrize the equation such that
it becomes a quasilinear PDE. We use this idea in [20] in a more complicated equation, and
since we know that in our case the flow (1.1) remains convex, and thus the topology does not
change, we may adopt it in this setting.

The first technical issue in the proof is to find a good parametrization of the flow. The
idea is to differentiate the equation (1.1) with respect to space and parametrize the equation

VxyVe=-VxwHg;  on 0F,

where X (¢) is a vector field on the moving boundary dE;. By doing this we obtain a quasilinear
PDE for the derivative of the height function, where all the error terms are lower order. We
point out that we could also first parametrize the original equation (1.1) by the height function
and differentiate that, but this leads to much more complicated calculations. We then improve
some of the methods developed in [19] and prove the C?** regularity of the flow in Section
5. The main difference to [19] is that here we need sharp estimates for the error terms in
order to show that they do not blow up in finite time. Another issue is that here our equation
is not a small parturbation of the fractional heat equation with respect to the sphere, and
we need Schauder estimates for general linear parabolic equations defined on the unit sphere
(see Section 4). Similar Schauder estimates are proven in [22] in the case of evolving periodic
graphs.

The paper is organized as follows. In Section 2 we recall some results in the existing litera-
ture and prove the C'*5-estimate of the flow. Section 3 is mostly devoted to the calculations
of the parametrization of the equation. In Section 4 we generalize the Schauder estimates
for general linear parabolic equations in the Euclidean setting proven in [23] (see Theorem
2.2) to the case of the sphere (see Theorem 4.1). Since the result in the Euclidian setting is
scattered in literature, we decide to give a self-contained proof in the Appendix. Finally in
Section 5 we prove that C''**-regularity of the flow implies uniform C?***®-regularity, which
concludes the proof of the Main Theorem.

2. NOTATION AND PRELIMINARY RESULTS

Throughout the paper C' > 1 and ¢ > 0 stand for generic constants which may change from
line to line. If needed, we specify their dependence on relevant parameters. We denote the
open ball with radius r centered at x by B,(x) and by B, if it is centered at the origin. The
notation does not specify the dimension of the ball, but in order to avoid possible confusion,
we write B,.(z) c R¥ to point out that the ball is k-dimensional. We denote the inner product
of z,y e R"! by (x,y).

For a given smooth and bounded set £ c R™! the fractional mean curvature of order
s€(0,1) at x € OF is defined as (1.2) in the principal valued sense. In order to define the
normal velocity we say that a family of smooth sets (Ey)[o,r) is a smooth flow starting from
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Ey, if there is a family of diffeomorphisms ®; : R™*! — R"*! such that ¢ = ®;(x) is smooth,
®,(Ey) = Ey and ®p(z) = . The normal velocity at y = ®4(x) € JE; is then defined as
Vi(y) = (%@t(:c), vE,(y)). Finally we say that a smooth flow (E;)[o,r) starting from Ej is a
solution to (1.1), if it satisfies the associated equation point-wise.

We recall that if the initial set Ey ¢ R™*! is bounded and Cl!-regular, i.e., its boundary
is Cbl-regular hypersurface, then by [19] the equation (1.1) has a solution for a short time
(Et)teo,ry and the sets Ey for ¢ > 0 are smooth (C* -regular hypersurfaces). In this paper
we restrict to convex initial sets Ey, which are C*!-regular. Then by the results in [8, 10] we
know that the sets E; remain convex, there are r > 0, R > 1 such that B,(z;) c E; ¢ Br(xy)
for some points z; € R”*! and it holds

sup sup Hy, (z)<C,
te(0,T") veOEy
where the constant is independent of the time of existence T. We remark that by these results,
we may parametrize the flow via the height function over the unit sphere S”, which means
that for every ¢ € [0,T") there is a function h(-,t) : S - R such that

(2.1) OFE; = {h(z,t)x+x4:2xeS"}

for some z; € R**'. Moreover there are ¢ > 0 and C > 1 such that ¢ < h(z,t) < C for every
x € S". We show later in Proposition 2.3, that the above estimate on the fractional mean
curvature implies that the functions h(-,t) are uniformly C1**-regular.

Recall that our aim is to improve the C'**-regularity into C?*®regularity. In other words,
we show that the height functions h(-,¢) defined in (2.1) are in fact, uniformly C**5*< regular
for small o > 0.

2.1. Hoélder norms and Schauder estimate. The notation V*F stands for the k:th order dif-
ferential of a vector field F': R® - R™. For matrix A € R™* we denote by |A| its Frobenius
norm. We define the usual Holder norms of F': R" - R by

F(y) - F(x
Fleogay = sup [F@)] and [ Flosga = sup D= EOl oy
xeR™ |y—l‘|

zxyeR"

for 5 € (0,1]. We extend this to C'-norm, for I = k + 3, with k e N and 8¢ [0,1) as

k .
|Flciny = 3 199 Fllcogny + 19" Fllos gny.-
J=0

We then have the standard interpolation inequality [27, Section 2.7] i.e., assume [; and I are
positive numbers, 6 € (0,1) and denote

=001+ (1-0)ls.
Then there is a constant C' > 1 such that for every smooth and bounded function u: R™ - R
it holds
(2.2) lullcrgny < Clulge gy lelg gny-

We will mostly deal with functions defined on the unit sphere S™, which we interpret as the
boundary of the unit ball 9B; c R™*!. Since S" is embedded in R™*!, we may extend every
continuously differentiable vector field F': " - R¥ to R"*! and denote the extension still by
F. We define the tangential differential of F' at x € S™ as

V:F(z):=VF(z)-(VF(z)z)®x
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and note that it does not depend on the chosen extension. For real valued functions v : S - R
we define the tangential gradient V,u as the transpose of the tangential differential, and define
the tangential Hessian of u:S" — R as VZu(z) = V,-(V,u)(z). If ¢; is a basis vector for R
we denote
Viu = (Vru,e;)

for the tangential partial derivative and V;V;u = (VZue;,e;). We may then define the third
order tangential derivatives as V,V;V;u and iteratively for every k = 3,4,.... We note that
such a definition of V¥u does not agree with the standard definition of a covariant derivative.

We define the Holder norms on S™ as in the FEuclidian setting. That is for u : S" - R we
define

w(y) —ul(x
fullngsry = sup (e and Julosiony = sup PZHI 4 pujen,

TEYeS™ |y - xlﬁ
for 3 € (0,1] and for C'-norm, with [ =k + §, ke N and 8 €[0,1), as
k

. ] k
luleisny = 2 IVIulcony + | Vil os sny.-
J=0

The interpolation inequality (2.2) extends immediately to S™.

Proposition 2.1. Assume Iy and ly are positive numbers, 6 € (0,1) and denote
=0l +(1-0)ls.
Then there is a constant C > 1 such that for every smooth function u:S™ - R it holds
6 1-6
[ullorgsny < Clull, o lul 5 gny-
Let us return to functions defined in R™. We recall the definition of the fractional Laplacian
of order v € (0,2)
u(y +x) —u(z
Nraey - [ D) )
R™ [yl
which has to be interpreted in the principal valued sense. We need parabolic Schauder esti-
mates for equations with general linear fractional-type operator of order v = 1+s. To this aim

we say that A(-) : R™ - R" x R"™ is symmetric and elliptic matrix field, if there are constants
A>0 and A > 1 such that for every x € R” the matrix A(z) is symmetric and satisfies

(2.3) MNEPZ < (A(2)E,€) < Al€? for all z, € e R™.

For a symmetric and elliptic matrix field A(-) we define linear operator as

(2.4) La[u](z) := / uly +z) —u@)

9

n+l+s

(A(z)y,y) 2
Our aim is to give a simple proof of Schauder estimate for the Cauchy problem

{Otu(z:,t) = Da[u] + f(x,1)

(2:5) u(z,0) =0,

where A(-,t) is symmetric, elliptic and uniformly Holder continuous for every ¢ € [0,7T).

The following Schauder estimate can be found for instance in [23]. For the sake of com-
pleteness and for the reader’s convenience, we provide a proof based purely on PDE methods
in the Appendix.
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Theorem 2.2. Assume o > 0 is such that o < min{s, 1-s} and fix T > 0. Assume that for every
te[0,T), A(-t) is symmetric and elliptic, and assume that sup,r |A(:,t)|ca@mny < Co. Let
fR"%[0,T) = R be such that sup,.r | f(+,) | ca®rn) < 00 and assume u is the solution of (2.5)
such that limg)_, e u(xz,t) < C. Then there exists a constant Cp, depending on a, A, A, Co,~, T
and on the dimension, such that

sup u(:,t)[ gresta(mny < Crsup | f (1) | o (gn)-
t<T t<T
We will prove later, in Theorem 4.1, that the analogous result holds on the sphere.

2.2. Preliminary results. As we already mentioned, we know that the evolving sets F; remain
convex and satisfy the a priori estimates from [10] stated at the beginning of this section. Next
we show that these a priori estimates imply that the sets E; are uniformly C'**-regular.

Proposition 2.3. Assume that E c R™! is a conver set such that B, c E c Bg and

sup Hy(z) < C.
ze0F

Then E is uniformly C***-reqular and the boundary can be written as
OF ={h(z)x:xeS"}
with |h]|cresgny < C.
Proof. The assumptions on E imply that there is rg > 0 such that for every x € OF we may

write the boundary locally as a graph of a bounded convex function, i.e., OE n By, (z) is
contained on graph of a convex function which is uniformly bounded. Our goal is to prove

(z-y,ve(x)) <C.

2.6 sup
( ) y2zedE |y_l.|1+s

The estimate (2.6) will then imply the claim by the following argument. Indeed, let us fix a
point zp € F and without loss of generality we may assume zg = 0 and vg(zg) = —€,41. As
we mentioned above, we may write

OFE N By, c {(z',u(z")) e R : 2" ¢ B,, c R"}

for a bounded convex function u : By, c R" - R. Let us choose =,y € B, /2 € R™. Note that
since u is convex and bounded in By, it is uniformly Lipschitz continuous in B, /. Then
(2.6) implies

((y, - lj? u(y,) - U(l‘,)), (—VU($,), 1))
< OVI+[vu(@) (' -2 + (u(y') - u(z'))?) F < Cly’ - /|
In other words
(u(y) —u(z") = vu(z'),y -2’y < Cly' = 2')"**  for every ',y ¢ B,y /2-
Since u is convex, then u(y’) — u(z’) > (Vu(z'),y’ — 2’). The above then implies that
Hu||c1+s(3m/4) < C (see e.g. (H4) in [14, Appendix A]). Hence, we need to prove (2.6).

We argue by contradiction and assume that there are sets Fj which satisfy the assumptions
and points y # x3, € O}, such that |y, — zx| = 1, < 274", with rj, - 0, and

(xk = Yk, vE, (T1))
ly — g1+

> k.

(2.7)
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FIGURE 2.1. A picture of the argument used in the proof of Proposition 2.3.
In green we have the set Ej, in orange FEy, i.e. the reflection of Fj over the
plane {z,+1 =0} and in blue the set Uy

Again we may assume that zj =0, vg, (0) = —ep41. Since Ej, is convex then

Epc{y e R™" < (y -y, vp, (yx)) < 0}.
Then the following wedge-type region
Uk :={y € Bar, 1 yn+1 >0, (Y = vk, vE, (yx)) > 0}
is contained in the complement of Ey, i.e., Uy n E; = @. Note that (2.7) implies that

(ykaen+1) 2 kr]?—s-

Therefore we deduce that there is a uniform constant ¢ > 0 such that

(2.8) [Uk| 2 cherptt+s,
Recall the definition of the fractional mean curvature
d d
15, 0) - EEN v
Ry, [Y[PS S fy|vrs

By convexity and by vg, (0) = —e,1 it holds Ej ¢ {y : yn+1 > 0}. Therefore, denoting by o
the reflection of Ej, with respect to the hyperplane {x,.1 = 0}, we obtain that Ej c E} and
Uy ¢ (E U E)¢ which implies

d d d d
/ niJlJrs dy < / ~ nillJrs = / n+y1+s _/ n+yl+s <C
Uk |y R+IN(ERUEL) ly| RP+INE), |yl E, Yl

By the definition of the set Uy it holds Uy c {y € R™ gy > 0} \ Ex. Moreover, the definition
of Uy implies that |y| < 27y for all y € Ug. Therefore by (2.8) and by the above inequality we

have
Cz/ dy . Ul >ck,
Uy

|y|n+1+s - ,,,2+1+s

where the constant ¢ > 0 does not depend on k. Hence, we obtain a contradiction when
k — oo. ]
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At the end of the section we prove continuity estimates for functions defined via convolution
over kernels. We define elliptic and symmetric matrix field on S”, A(-) : S - R"*1 x R"*! as
in (2.3), i.e., there are 0 < A <1 < A such that

MNP < (A(2)€,€) < AlE]* for all € eR™and xeS™

We consider kernels K : S" x S" \ {(z,z) : x € S} > R of the type

1
(29> KA(y7 x) = nt+l+s ?
(A(@)(y-2),(y-=)) =
where A(-) is symmetric, elliptic and ||Af ca(sny < C. In order to simplify the notation, we
denote the induced norm by

(2.10) 1%y = (A(2)&,8)  for £eR™.
We may then denote K defined in (2.9) as K(y,x) = |y - xH;{(L;)l’S.

The following lemma is easy to prove and thus we omit it.

Lemma 2.4. Assume that A(-) is symmeltric, elliptic and |A|cesny < C for 0 <a <min{s, 1~
s}. Then the kernel K4 defined in (2.9) satisfies the following two conditions:

(i) K4 is continuous on S" x S" N\ {(z,x) : x € S*} and satisfies
|Ka(y,z)| < =z

i) For all x,1,z € S™ with 0 < |z — x| < |y — 2| it holds
2

|Ka(y,z) - Ka(y,z)| < C

‘y _ x‘n+2+s |y _ x‘n+1+s :

We note that the above conditions agree with the assumptions in [19, Definition 4.1] with
the difference that the second condition is slightly weaker. The following lemma is almost the
same as [19, Lemma 4.3].

Lemma 2.5. Assume that A(-) is symmeltric, elliptic and | A|cesny < C for 0 <a <min{s, 1~
s}, and the kernel K4 is defined in (2.9). Assume that the function F' € C(S™ xS™) satisfies
the following conditions.

(1) For all z,y € S" it holds
|F(y,2)| < roly — a7
(2) For all z,y,z € S™ with |z - x| < 1|y - 2| it holds
|F(y,2) = Fy,2)| < ro(|z = al*ly - 27 4 [z = 2"y - ).
Then the function
wa) = [ P Ka.o)
is Holder continuous and || cesny < Cko.

Proof. The proof is almost the same as in [19, Lemma 4.3] but we write it for the reader’s
convenience since the assumptions are slightly different. The condition (i) in Lemma 2.4
and the assumption (1) for F' immediately implies that || oo < Cko. To show the Holder
continuity we fix z, z € S™ and divide the sphere into two sets as S_ = {y € S" : |[y—x| < 2|z — x|}
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and S, = {y € S" : |y—z| > 2|z—z|}. Note that for y € S_ it holds |y—z| < |y —z|+|z — x| < 3|z —x|.
We use the condition (i) in Lemma 2.4 and the assumption (1) for F' to deduce

1

y = 2me

3|z-x|
/ |F(y,2)Ka(y, z)|dH; < Clio/ dH, < CKJQ/ >t dp = Crolz - z|°.
S S 0
Similarly it holds [ |F(y,z)Ka(y,z)|dH] < Crolz - x|*.
Note that for y € S, it holds |y — 2| > |y -z - |z - x| > 4|y — 2|. We use the conditions (i) and
(ii) in Lemma 2.4 and the assumption (1) and (2) for F' to estimate

1P 2 Ka(2) = Floa) Ka)|

< / F(y,2) — F(y, )| K a(y, 2)| dH + / F (. o)Ay, 2) - Ka(y,z)| dH?
St S_

1 1
< Crolz — x|® — —dH'+Ck z—ms+°‘/ — dH"
ol | /S+ ly — xfro2 " o | s, Jy—ares Y

1 n
+CH0‘Z—$|/S+ Wd%y

. 1 . . . 1 n .
Since gaparz is not singular, we obtain [ Wd?—[y < C. Since |z —z| < |y — x| we
estimate the last term by

|z — x| |z — x|**

|y _ x|n+1—o¢ - |y _ x|n+s

which then implies
1 n s+ 1 n s+ 2 -s—1 «
|Z—ZL'| 5 Wd?‘[yﬁ|z—l'| g WdﬂySC|Z—$| 1% SC|Z—3§'| .

B

Therefore we have
/S’ |F(y7 Z)KA(y,Z) - F(y,.T)KA(y,.T” dHn < CH0|Z - x|0£

and the claim follows. O

Remark 2.6. The above lemma holds also in R" for a kernel defined as in (2.9), if we change
the assumptions on F': R" x R™ - R as follows.

(1) For all x € R™ it holds
|F(y,l‘)| < Ko mln{|y - l’|, 1}1+8+Ot‘
(2) For all z,y,z € R" with |2 - 2| < 3|y — 2| it holds

|F(y,2) - F(y,z)| < /{0(|z - z|* min{|y — x|, 1}1+S+°‘/2 + |z = 2" min{|y - z|, 1})

3. EQUATION FOR THE HEIGHT FUNCTION

As we mentioned in the introduction, instead of the original equation (1.1), we will differ-
entiate it with respect to space and parametrize the equation

(3.1) VxwyVe = -Vxu)He; on OF;,
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where X (t) is a vector field on the moving boundary 0F;, which we will define shortly, and
Vx(t) is the derivative in the direction of X(t). Note that the derivative of the integral
average H %, vanishes.

We parametrize the flow using the height function similarly as in (2.1), with the difference
that we assume we may write locally in time

OFE; = {h(x,t)x +xo: 2z eS"},
for some fixed z¢ € R™*! and for t € [0,T). We denote
n(x,t) = h(x,t)x.

We choose the vector field X (t) as follows. Fix a basis vector e;, i = 1,...,n+1 of the ambient
space R™""!. We obtain a tangent field on S™ as

Ti(x) = €; — z; x, for zeS",
where z; = (x, ;). This induces a tangent field on the moving boundary 9E;, which we denote
by X (t) = X(-,t), defined as
X(n(xz,t),t) :== Dn(z,t)r(x) = h(z, t)7i(x) + Vih(z, t)z for z eS"™.

We may then write the derivative Vx () f of any given function f € C1(OE;) at the point
n(x,t) € OF; for x € S™ as

(Vxw (1)) = Vi(fon(, 1)) (x).
We will assume throughout the section that the height function satisfies the uniform bound
|h(-,t)|lc1+s < C and ¢ < h(z,t) < C for all t and x € S™.
Let us first deal the LHS of (3.1). This is rather easy as we may write the normal as
h(z,t)x -V, h(z,t)
VI (2, t) + |[V-h(z, 1)

ve,(n(z,1)) =

and the normal velocity then is
h(zx,t)

(3.2> Vi(n(x,t)) = Oth(x,t) \/h2(1',t) n ‘VTh(%t)P'

Hence, it holds

(VxmyV)(n(z,t)) = v; (&sh(x,t h(x,t) )

) V2 (x,t) + |V h(z, )2
h(z,t)
VE2 (2, t) + |V (2, )2
. h(z,t)
Oth(z,t)Vi ( Vh2(x,t) + |V h(z,t)? ) '

Let us then focus on the RHS of (3.1). We recall that following the argument in [15, 24]
we may write

(3.4) VxwHg, = 2/
OFE;

(3.3) = 0,Vih(z,t)

(X(),ve,(y) on
|y_$|n+1+s dHy
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n+l+s

Indeed, by regularizing the kernel, say by Ks(t) = (t2 +0)” 2 , and differentiating in z;
direction (see [15, Formula (6.17)]) we have

v, (/E Killy -~ [ K5<|y—m|>dy)

- [ sty [y ap )
Ef Y-zl B

Ldy
ly -2
—~ [ aivy(stly = abeydy+ [ divy(Kaly - olen) dy
t t

_ / 2K5(ly - 2|) (i, vm, (y)) dH,
oE,

where the last equality follows from divergence theorem. Letting § — 0 yields (3.4).
We parametrize (3.4) on S”, by recalling the formula for the normal vg, (n(z,t)) above and
the Jacobian determinant of 7 as

I (x) = h(x,t)n_l\/hz(z:, t) +|V-h(x,t)?.

For simplicity we omit the time-dependence for a moment and write hA(x) = h(z,t). Then we
may write

<h($)7’l(l') + Vih(x)x’ h(y)y - Vﬂ'h(y»
\h(y)y = h(z)z|r+1+s

VxoHh =2 [ b ax;

We continue and write the terms as
h(z)7i(x) + Vih(x)z =h(y)7i(y) + Vih(z)y
+ (h(x)7i(x) - h(y)7i(y)) + (z - y) Vih(z).
This gives us the following expression

s n-1 {P(W)Ti(Y) + Vih(2)y, h(y)y - V-h(y))
Vo 2 [ 1" (hw)y ~ h(z)al 155

dH} + R

where the error terms are

~ (h(z)7i(x) = h(y)7:(y), h(y)y - V-h(y))
me | () — h(z)a]1+

*2 . a6

Note that we may write the error terms as

_ Fk(yah(y))_Fk(xah(x)) n
Ry = zk:ak(a:,h, Vq—h) /Sn |h(y)y— h(:c)x|"+1+5 bk(y,h,VTh) dHy

for smooth functions F}, ay, bx. But since

(h(y)7i(y) + Vih(2)y, h(y)y - V-h(y)) = (Vih(z) - Vih(y))h(y)

O

we obtain

Vih(y) - Vih(a)
3.5 ~Vx H, :2/
(3:5) XoHE =2 | 0Ny = h(@)dios

h(y)" dH + Ry
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We further linearize the first term on the RHS of (3.5), which is the leading order term in
the equation. We write using (x - y,y) = —%|.1‘ —y[?

B (y)y = k(@) = |h(z)(z - y) + (h(z) - h(y))y[
= 12(@)ly - af” + h(2) (h(y) = h(2))|z = yI* + [h(y) = k().
We write the Taylor expansion of h at = as
To[h](y) = h(y) - h(x) = (V-h(x),y - x)
and note that for € [0,1] it holds
(3.6) T[] ()] < |hlcresly - 27
Therefore we deduce that we may write
(3.7) h(y)y = h(@)zl* = B> (@)|y - 2* + (V-h(2),y - 2)* + g (y, )
= H‘T - y||,24(x) + gh(ya :E)

where the matrix is given by tensor product A(z) = h?(z)I + V,h(z) ® V,h(z), the norm
I€]| ¢z) is defined in (2.10), and the error term is
gn(y, ) = h(x) (h(y) = h(@))|z = yI* +2(h(y) - h(2)) To[h](y) - [T [R) (W)

The precise form of gj, is not relevant. Instead, it is important to notice that it satisfies the
following two conditions. For all z,y € S™ and 0 < @ < min{s, 1 — s} it holds

(3-8) l9n(y. 2)| < Cllhlressaly - 2>+

and for all z,y,z € S with |z - 2| < 1|y - 2| it holds

(3.9) 190(y,2) = g (y, 2)| < C|[B] grvssalz =y - 2.

Indeed, the estimate (3.8) follows by using (3.6) for 5 =0 and 5 = s + «, and recalling that

|Agi+s < C . The estimate (3.9) follows from the fact that for |z — 2| < 1|y - 2| it holds
IT.[P)(y) = To[P)(y)| = [(h(y) = h(2) = (V-h(2),y = 2)) = (h(y) = h(z) = (V-h(2),y - z))|

(3.10) = [(h() = h(=) = (V+h(=).2 = ) + ((V7h(x) = V-h(2).y - 2))|

2|7 4 | b sz — 20y - 2

< ||h||Cl+s+a|Z -
<2|h|crestalz — 2"y — 2|
Therefore we use the notation for gp,(y, ), which is defined in (3.7), and the norm || 4(z),
which is defined in (2.10), and write

/ Vih(y) - Vih(z)
so |h(y)y — h(x)z[ri+s

h(y)" dH,

_ n+l+s
(3.11) ly xHA(x)
n+l+s
2 nagre
Vih(y) - Vih(z) [t d ly =%
+ - — h(y)" dudHy,
. ly-2l5 5 o du\Ty=22,, + non(v. o) v

where A(z) = h*(2)I + V. h(z) ® V. h(z).
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Recall again the a priori estimates for the height function, i.e.,

sup |h(-t))|ci+s <C and  h(z,t) >c.
te[0,T)

We may thus finally write the equation (3.1) by (3.3), (3.5) and (3.11) as
(3.12) Vih = Lao[Vih]+ Ro(z,t) + Ry(x,t) + ;h B(x, h,V.h) : V2h.

Here B is a smooth matrix-field and the linear operator is defined as

(313) Lalul(a) = an(ant) | SO 00
" A(z,t)

for symmetric elliptic matrix field
A(z,t) = W (z, )] + V. h(x,t) ® V-h(z,t)

and the coefficients ag, by > cg satisfy

(3.14) sup ao(+,t)|cssny <C and  sup [bo(:,t) |1 sny < C.
t<T t<T
The error terms are
(3.15)
n+l+s
1 _ 22 2
Vih(y,t) — Vih(z,t) d ly = =l% ., .
RO(‘Tut) :aﬂ(xut)/ / (y ) n+1+£ )d_ P} (=) bO(yvt) dudﬂy
st Jo ”y_:U”A(LQ 2 ||y—1’”A(x7t) + pgn(y, )
and
N
Fk(yvh(yat))_Fk($7h(x7t))
3.16 Ri(z,t) =) ay x,h,VTh)/ bi(y, h, V. h)dH,,
(316)  Ra(mt)= 2 oul 3 Wy, )y - A, )l v

where ay, b, and Fj, for k > 1 are smooth functions.
Next we state the following technical lemma, which we use later to bound the error term
Ry defined in (3.15).

Lemma 3.1. Assume that A(-) is symmetric elliptic matriz field as defined in (2.3) such that
|A()|lce £ C for 0 < a <min{s,1 - s} and assume that g:S™ x S™ - R satisfies the following
two conditions. For all x,y € S™ it holds |y - mHi(w) +9(y,x) > cly -z, for some ¢>0, and

|2+s+a
)

l9(y, x)| < kly -
and for all z,y,z € S™ with |z — x| < %|y — x| it holds

‘2+s+oz).

9(y,2) = g(y, 2)| < 6(Jz =2y —al* + |z - 2|y -z

2|2 q
Denote G(y,x) = % (”y_I”“yg I”fl(g(y x)) , for pe(0,1),q>1, and assume vy € C1(S"), vq €
A(z) ’

C(S™) and vg € C*(S™). Then the function

Y(x)= [ (vi(y)—vi())va(y)vs(z)G(y, 2) Ka(y,z) dH,
STL

is Holder continuous and

1Y)l ca(sny < Cklvi]crsmyllvzlcosny vl ca(gny-
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Proof. Let us first prove that it holds for all y,z e S",y #

(3.17) |G(y, )| < Crly — x|

and for all 2,y,z € S™ with 0 < |z - z| < 1|y - 2

(3.18) |G(y,2) - G(y,z)| < CI{(|Z -2y - 2|7 + ]z - x|s+a).
To this aim we denote ®(t) = (1+¢)79,

’ ||y—x\|?4(x)

and notice that we may write G(y,z) = ®'(uG(y,z))G(y, x). Since ® is smooth we deduce
that it is enough to show that G satisfies the conditions (3.17) and (3.18). We obtain (3.17)
immediately from the ellipticity of A and from the first assumption on ¢ as

$|2+5+o¢

IG(y,z)| < C/i|y < Ckly — x|,

ly - «?
To prove (3.18) we fix 2,y, z € S with 0 < |z—2| < 1|y —2|. Note that then |y —z| < |y-2| <
2|y — z|. We then write

- ~ _ _ g\r,z)—gly,z
IG(y,Z)—G(y,fL“)ISlg(y,Z)HHy—ZIIAQ(Z)—Ily—x\\AQ(x)\+‘ ) 2( I
”3/ - $”A(m)

We may estimate the last term by the second condition on g as

|2+s+a

l9(z,2) —9(w.2)| _ ., [z=al"ly—af +]|z-ally -2
v-21e, y—aP

< Cr(|lz—z" + |z — 2|y —2|°"%).

For the first term we observe that
ly - 22y - Iy - i
= {A(2)(y = 2). (¥~ 2)) = (A(z) (y ~ ), (y ~ 2)))|
< [{((A(2) = A@)(y = 2), (y = )| + [{A(@) ((y = 2) + (y - 2)), (= = 2)))|
<Clz-z|y-z>+Cly - z||z - z|.

We use the fact that |z — 2| < 1|y — 2| to deduce |z — x| < |z —z[***|y - z['~*~. Therefore it holds

_ - g\y,z
oo 2l = =15y =l =l < S L2y =21 = b =l
Ck

2
< m(lz — 2|y - af” + |y - 2|z - =)

<Cr(lz —o|*y — x| + |z — 2|")

and (3.18) follows.
We proceed by defining F: S" xS"™ - R as

F(y,z) = (vi(y) - vi(z) Jva(y)vs(2)G (y, )

when y # x and F(x,z) =0. We prove that F' satisfies the assumptions of Lemma 2.5 for

f= kvt er[vz]colvs]oa-
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This will then yield the claim. The first condition follows immediately from (3.17) as

F(y,2)] = [o1(y) = vi(@)| [o2 ()| [vs(2)] |G (y, )| < CRly = 2>+
for all z #y eS"™.
To show the second condition we fix z,y,z € S* with 0 < [z - 2| < 1|y — 2|. We will in fact
show that
|[F(y.2) = Fy. )| < CR(|z = al*fy — 2 + |2 = 2"y ~ z]),

which is slightly stronger than what we need. To this aim we write

[F(y,2) = F(y,2)] = o2 ()| (v1.(y) = 01(2) Jv3(2)G(y, 2) = (v1.(y) — v1 (@) )v3(2) G (y, )]

< o2 (W)lvs(2) |Gy, 2)[[v1(2) = vi(2))
+[v2(y)|lvs(2)l[v1(y) - vi(2)[|G(y, 2) - G(y, )|
+ [v2(Y)lv1(y) - v1 (@) |G (y, 2)llvs(2) - vs()]-
We estimate the first term term on the RHS by (3.17) and by |z —z| < |y — z| as
[o2()lvs(2)|G(y, 2)lv1(2) - vi(@)] < CRly — 2”2 - 2] < CRly - x|z - 2>
We estimate the last similarly
[o2(y)l[o1(y) =1 (@)[|G (y, 2)|[vs(2) = vs(w)| < CRly — 2"z — 2|

Finally, we estimate the second term by (3.18) as

w2 (W)llos()llor (y) = 01 (@)1Gy, 2) = Gy, x)| < K|z = 2|y = 2] 7 + |z = 2y - 2).
We thus have the claim by Lemma 2.5. g

We conclude the section with a technical lemma, which is analogous to [19, Lemma 4.4].

Lemma 3.2. Assume that A(-) is symmetric, elliptic and |A|cesny < C for 0 <a <min{s, 1~
s}, and the kernel K4 is defined in (2.9). Assume further vy € C1HT(S"), vy € C5T(S™)
and v € C*(S™). Then the function

0@ = [ (00) = 0i(@))oa(w)s @) K ()

is Holder continuous and
[Vl ca(sny < Clui] cresta(gny [va] csvesny [vs] ca(sny-

Proof. The claim follows from [19, Lemma 4.4] once we show that the function

Y(x) = /Sn(y—fU)KA(y,a:) dH;

is uniformly a-Holder continuous. Indeed, even if the condition (ii) in Lemma 2.4 is slightly
weaker than [19, Definition 4.1], the claim still follows from the proof of [19, Lemma 4.4]. Let
us first prove the Holder continuity of ¢ under the additional assumption that at every point
x € S™ it holds

(3.19) (A(z)z,w)=0 for every w orthogonal to x.

To this aim fix z and notice that, by the symmetry of the sphere and by (3.19) for all
vectors w orthogonal to x, it holds

| (- waty.o) s -
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Therefore
() = /S (y— ) Ka(y,z) dHD = 2 /S (v — 2.2V K a(y, ) dH.

For all y € S" it holds (y - z,z) = -]y — |*. Therefore we have

v@) =5 [ el Kat.o) ar;.

Obviously the function F(y,z) = -3y - z|? satisfies the assumptions of Lemma 2.5 and
therefore we deduce that |1 ce(gny < C.
Let us then consider the general case. We write A(x) = Ag(x) + A1(x), where

Ap=A-(Az) @z -2 ® (Az) +2(Az,z)(z ® x)

and A1 = A-Ap. Then Ay(-) is symmetric, elliptic and satisfies the condition (3.19). Moreover,
recalling (y — z,z) = —%|y —z/? and arguing as in (3.8) and (3.9) we observe that g(y,z) =
(A1(z)(y - x),y — ) satisfies the following two conditions: for x,y € S™ it holds

(3.20) l9(y, )| < Cly - =’
and for all z,y,z € S" with |2 — 2| < 4|y — 2] it holds
(3.21) 194, 2) = 9o (y,2)| < C|z - ally - z* + |z - 2|*|y - =)

Since the argument is similar as before, we leave the details for the reader. At the end, since
we may write

0@) = [ o Kalno) aity = [ (=) Ky (o)

n+l+s

1 _ 2 2
d ly 33”,40(;3)
o[ - oKae) [ 4 Ay
L =K | du(Hy—wHio(m)wg(y,w) v

the conclusion follows from Lemma 3.1. O

4. SCHAUDER ESTIMATES FOR THE FRACTIONAL PARABOLIC EQUATION

In this section we extend Theorem 2.2 from R™ to the unit sphere S”. We consider linear
operator of the form

(4.1) Lalul(@) = | %a(mb(m ar,

where the norm | - || 4 is defined in (2.10), A(,t) is symmetric elliptic matrix field for every
t € [0,T) such that sup;.p |A(+, )] ce(sny < C and the coefficients satisfy a(z,t),b(x,t) >¢>0
for all x € S™ and t € [0,T") and

sup [a(-,t)|cssny <€ and  sup[bo(-,t)[cr(sny < C-
t<T t<T

We also assume without mentioning that all functions are continuous with respect to time.
We prove the following Schauder estimate on the sphere.
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Theorem 4.1. Let T > 0 and « such that 0 < o < min{s, 1-s}. Assume that A(-,t) is symmetric
and elliptic such that sup,.p |A(-,t)|cosny < C and let La be the operator defined in (4.1).
Let f:S" x[0,T) — R be such that sup,r | f(,t)|cosny < 0o and let u:S" x[0,T) - R be
the solution of the problem

Ou = La[u] + f(z,t) (x,t) eS"x (0,T)
(42) {u(x, 0)=0 xeS".

There exists a constant Cp such that
sup [[u(:,t) [ crestagny < Crsup || f(+, 1) | o sny-
t<T t<T

Proof. By approximation we may assume that all the functions in the assumptions are smooth.
Moreover, we note that we may absorb the coefficient a(x,t) in (4.1) into the matrix field
A(z,t) and thus obtain another symmetric elliptic matrix field which we still denote by
A(x,t). We also adopt the notation (2.9) for the kernel K 4, which means that

1

n+l+s”

Ka(y,x) =
N PRI

First, it follows from the maximum principle that
(4.3) sup (-, t)[ cogny < T'sup | f (- 8) | co(sn)-
t<T t<T

Indeed, fix a small ¢ > 0 and define w.(z,t) = (t + &) "tu(x,t). Then w is smooth and
w(x,0) =0. Assume that w attains its maximum on S"x (0,7 —-¢] at (xq, to) with tg € (0,T—-¢].
Then by the maximum principle it holds

0 < dpw (o, to) = Oru@oto) _ ulzosto) g gy La[w](zo,t0) = Laful(o,to)

to+¢ (t0+€)2 to+¢€

The equation (4.2) implies

u(zo,to)

< f(zxg,t0)-
fo+ 2 f(zo,t0)

By letting € - 0 and repeating the argument for —u we obtain (4.3).

Let us fix x¢ € S” and by rotating the coordinates we may assume that it is the north pole,
i.e., xg = eps1. Let us first localize the equation around xy. To this aim fix a small § > 0 and
choose a smooth cutoff function 7: R — [0, 1] such that n(r) =1 for |r| < 6/2 and n(r) =0 for
r> 4. In the following we write z = (2', 2,,41) € R*! with 2’ € R". We denote

v(z,t) = n(4lz'u(z,t).

Then clearly [v(:,t)[cssny € Clu(, 1) cs(snnBs(z0)) for B € [0,2]. In order to find an equation
for v we multiply the equation (4.2) by n(4]z'|) and obtain

Opv(a,t) = n(4lz") Lalu](z,t) + n(4]z"]) f (@, 1).

We organize the terms as

n(dlz']) (u(y, t) - u(z, 1)) = vy, t) = vz, t) = uly,t) (n(4ly]) - n(42"))
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and write
(DLl ) = [ 190000 =0 0)) K)o ) 07
e [ Q=) (0000) = ) Ky o)

- [ Yol = D) K aC) b0 8

The last term is Holder continuous due to Lemma 3.2. Since v(z,t) = 0 for |2| > §/4, then
the Kernel (1-7(]y’|))Ka(y,z) in the function

Ry(,t) = /Sn (1 =n(y'D)(v(y.t) = v(z, 1)) Kaly, ) by, t) dH;

is non-singular and therefore |R1(:,t)[ca(sny < Cs|u(-,t)|ce(sny, where the constant depends
on § > 0. Therefore we deduce that it holds

@d) Gt = [ n (o0t = o)) K)ot 4 + it

and fi satisfies

(4.5) If1C ) | ca(sny < Csllul ) esvaisny + Csll £ ) [ ca(sny.-
We further manipulate the leading order term in (4.4) by writing

[ D (0000) = ) K ) b1y 7

(4.6)
= [ 00 D(008) = o) K)o 0T PR + R,

where
Ry(x,t) = /S (') (v(y, 1) = v(@, 1)) Kaly,x) (0(y, 1) = blens1, )1 - [y'[?) dHy
Let us define ¥(y,t) = n(|y’'|)(b(y,t) = b(en+1,t)\/1 —|y’'|?). Then at the north pole it holds
Y(ens1,t) = 0. Therefore, since v is Cl-regular we have
|9, t) [ gsrasny < C57
Therefore again Lemma 3.2 yields
(4.7) | Ra (-, t) | ga(smy < C8 7% |ul gresra(snny (a0)) -

Note that since b(e,+1,t) depends only on time, we may absorb it into the matrix field A(y, t)
on the RHS of (4.6) and denote the new matrix field still by A(y,t).
Let us then consider the RHS in (4.6). We write the unit sphere locally as a graph of the

function ¢(z") = /1 — [2/|2. Then we may write y,z € S” with |y'|,|z| < § as

e - o
oY) =) (Vo) y' -2') ) " \Twlel(y))’
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where T/ [p](y') = (y') —p(2') = (Ve(a'),y" —2"). Let us define the (n+1xn) - matrix field
Jo(x") such that for £ € R™ it holds

A A 5,
Tol@)e = (<w<x'>,5'>) '

Then we may write y —z = J,(2")(y' - 2") + T [¢](y')en+1. We may write
(A(z,t)(y —2), (y - 2)) = (A(z, ) (y' = 2"), (v =2")) + 9(y, z)

for
(4.8) Az, t) = Jo(2") Az, ) T (2)
and

9(y,x) = 2Tw [0](y) (A(z, 1) Jp(2') (' = 7). ens1) + (Twr[0](4) (A2, t)ens1, ).
Using |Tw [¢](y")| < Cly — 2> and arguing as in (3.8) and (3.9), we deduce that g satisfies the
conditions (3.20) and (3.21). We also note immediately that the new (n x n) - matrix field
A(-,t) defined in (4.8) is symmetric and elliptic in R", and also in this case, with a little abuse

of notation, we write Hg”,zi(x = (A(z,t)€,€) for € e R™. We denote

Golyo) - Iy =215
Y,r)=——
g du\ ly' =", )~ 1oy, )

n+l+s
2

and write the RHS term in (4.6) as
/S 01y (0w, 1) — v(a,£) ) K sy, )T~ [P dH?
(4.9) .
Y, v(z,t n
/ () "D R g + (),

” ! ,”A($,t)
where )
’U(y,t) —’U(:L‘,t) n
R3(z,t) =/ / (Y NGy, )= V1 = [y dp dHy,.
SmJO Hy - ||A(I,t)
We may use Lemma 3.1 to deduce

(4.10) IR3(,t) | ce(sny < Clufersny-

Finally we map the RHS term in (4.9) to R", by slight abuse of notation we write v(2',t) =
v((2',0(2")),t), A(z',t) = A((2', ¢(z")),t), and obtain

v(y,t) —v(x,t) TR gy v(y',t) —v(a’,t)
/ (| |) ” /I _ /||n~+1+5 |y |2dH = |) Hy/_a:/HQ+1+s dy,
A(z,t) Az’ t)

:/ U(y ,t)—’l)(l'/,t) dy,+R4($, t)

Iy -5 T

where

R4(x,’t):_/Rn(l—n(ly'l))v(y B =vu(@t)

” ! /”n+1+s
Az’ t)
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Since v has compact support in Bs/, and =1 in Bg/y, the integral in the definition of Ry is

non-singular and we deduce that

IR4(, )| coqrny < Csllv(-,t) [ comny < Cslul-,t) | cosn)-
We then use Theorem 2.2 and (4.4), (4.5), (4.6), (4.7), (4.9), (4.10) and the above to conclude
that v is a solution of the equation

at’l) = LA(U) + f2

and satisfies

sup[v(-, )| gresta@mny < Csup [ fa(-, 1) | ca@n)

t<T t<T

< sup (CsluC, ) (smy + O Jul-, )| crearasnnsy (ze)) + Csl £ (1) | ca(smy)-
<
We first observe that
Sup [u D)l cresra(snapy s (zo)) < C'sup [v(, 8) [gresea ).

We repeat the argument in balls Bgs(z;) which cover the sphere, and use a standard covering
argument to conclude that

sup Ju(:, ) |oresva sn) < sup (Colul Dlor(sm) + O Jul D)loressasny + Col F( Dlon(sm)-
< <
Choosing 6 > 0 so small that C§'="% < % implies
Sup lu () | oresra(sny < Sup (Csllu(, ) crsny + FluC,t) [ oresiagny + Csll £ ) [ ga(sny)-
< <
We use the interpolation inequality (2.2) and Young’s inequality
a8t sy < Ol )| gomy Lt ) gy < s 8)|rosea sy + ColuC D)l eogeny.
This yields
Sup lu (-, t) | cresra(gny < Sup ((Cs+ Pl )| cressa(sny + Celul, t) | cosny + Csl £ () | ga(smy )-
< <
We then choose € > 0 so small that eCy < }l and have
sup [u(:,t)|cresra(sny < Csesup(ul-,t) cosny + [ £(5 1) [ca(sny)-
t<T t<T
The claim then follows from (4.3). O

5. C2*®_ESTIMATES FOR THE FLOW

Proof of the Main Theorem. By the result [19] the equation (1.1) has C*°-solution for a time
interval (0,7p) and we denote it by (E¢)c(o,1,)- We assume that Ty is the maximal time of
existence and our aim is to show that Ty = oo, i.e., the flow does not develop singularities. We
argue by contradiction and assume Tj < oo.

By the result [8] the sets E; are convex and by [10] they satisfy
(5.1) sup | Hp, [ L= (ar,) < C

t<Top

where the constant is independent of Tp. Moreover again by [10] there are points z; € R™*!
such that

(5.2) B,.(z¢) c Ey c Br(xt)
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for 0 < r < R, which are independent of Tp. By translation we may assume that x7, = 0. By
(5.1) it holds that the normal velocity of the flow is bounded

sup |Vi| pe(ok,) < C-
t<Tp

This implies that there is ¢ € (0,7p) such that B, ¢ Ey ¢ Bag for all t € [to,Tp]. By
restarting the flow at {yp and by reparametrizing the time, we may assume that ¢y = 0 and
denote the maximal time of existence by T.

From these results we deduce that we may parametrize the sets E; via the height function
over the unit sphere, i.e., there are h(-,t) : S” - R such that h(x,t) > ¢o > 0 and

OF; = {h(z,t)x:2eS"} for all ¢t € [0,T).
By (5.1) and Proposition 2.3 it holds
(5.3) sup [ h(+, )] c1es(sny < C.
t<T

As we mentioned in the introduction, our goal is to improve the estimate (5.3) to

(5.4) sup | (-, 1) | g2vsta(sny < C,
t<T

where a > 0 is such that a < min{§,1-s}. The bound « < } is technical and the reason will be

clear later. The authors in [6] (see also [10]) already point out that the estimate (5.4) implies
that the maximal time of existence is infinity. Let us briefly recall why it is so. If we have
(5.4) and if we assume T < oo, then by continuity, the solution of the equation (1.1) exists up
to the endpoint [0,T]. Since the set Er is C%-regular, by [19] we may restart the flow and
obtain by the semigroup property that the solution exists for the time interval [0,T + ] for
some 0 > 0. This contradicts the fact that T is the maximal time of existence. Hence, once
we have (5.4) we obtain that the flow exists globally in time. The fact that the flow (E})s0
converges to some ball Bj(zg) exponentially fast follows from [6, Corollary 3.5]. Hence, we
need to show (5.4).
By (3.12) we may write the equation (3.1) using the height functions as

0:Vih = LA[VZ'h] + Ro(.%',t) + Rl(a:,t) + 0:h B(a:, h, VTh) : V?_h

with initial condition h(-,0) = ho, where hg € C*(S™). Here Ry is defined in (3.15) and R; in
(3.16). We define u(x,t) := V;h(x,t) — V;ho(z) and deduce that it is a solution of

owu = LA[U] + fi(.%',t) + LA[VJL()]
with u(x,0) =0 for
fi(x,t) = Ro(,t) + Ry (x,t) + 0;h B(x, h, V+h) : V2h.
Theorem 4.1 implies
(5.5) sup [u(-, )| cresva(gny < C(sup [ fi( 1) | casny + [ La[Viko] cosny)-
t<T t<T
We use this for every direction e; and obtain

sup Hh(',t)”c2+s+a(§n) < Csup' max ”fi("t)HCO‘ + C(Hho ||C2+s+a + ”LA[VzhO]”CO‘)
t<Ty t<T i=1,...,n+1

We are then left to estimate the RHS of (5.5), i.e., for every i = 1,...,n+ 1 we need to bound

(5.6) |LalViho]lca(sn) + [Ro(, ) ca(sny + [R1 ()| ca(sny + [0k B(a, b, Vrh) : Vih| oo gny.-
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The first term is easy to bound, since hg € C*°. Indeed, by Lemma 3.2 it holds || L4[V;ho]| cosny <
CHhOHC2+s+a < C

For the second term on the RHS of (5.6) we recall that the term Ry(-,t) is given by (3.15).
We denote

d H?J_$”,24(mt)
5.7 G (x,y)=— .
57 u(wy) du(\y—ﬂf'”i(mffﬂgh(yaﬁ)

n+l+s

and recall that by (3.8) and (3.9) the function gj satisfies the conditions of Lemma 3.1 with
k = C|h|c1+s+a. Since we may write

1
vzh 7t _vih Il?,t n
R0 =ao(et) [ [ T‘y D=V G o, y)bo(y, 1) da dH
s /0 Y7 a@n

we may use Lemma 3.1 with v; = V;h(-,t),v2 = bo(-,t) and v3 = ao(-,t) and recall that the
coefficients ag and by satisfy the conditions (3.14) to deduce

(5.8) sup | Ro(-,t)[ca < sup ClACt)|cresea [R(, )] c2-
t<T t<T

To treat the term |R1(:,t)[ce(sn) in (5.6) we recall that it is of the form (3.16). We fix ¢
and write Fi(z) = F(y, h(z,t)),ax(x) = ax(z, h, V-h) and bg(y) = bi(y, h, V,h) for short, and
note that then

(5.9) ||Fk ||Ck+ﬁ < C”h”c’k+6, Hak ||Ck+ﬁ < C”h”ck+1+ﬁ and kuHCmﬁ < C”hHC}c+1+B

for all £ =0,1,2,... and 8 €[0,1]. We use the argument from (3.11) and write for A(z,t) =
h(z,t)2I + V., h(z,t) ® V.h(z,t)

Fi(y) - Fi(z)
b n
f om0 s e
=Pl
Fk Y _Fk x n
=/ ak(x)bk(y)%d}[y
sn Y A(z,t)
[ oy OB [ lv-alen  \T ) s (e)
+ | ap(2)bp(y)—————= | — - dpudH, = p1(z) + p2(x),
. ly-al s Jo du\Ty=elBy + Hon(2) v

where gy is given by (3.7). To estimate the Holder norm of the first term p; on the RHS
above, we use Lemma 3.2, (5.3),(5.9) and deduce that we may bound its C*-norm by

2
[orlce < ClEk]cresealbrlosrallarca < Clhlcrvsea | bl cressa B crea < ClR[G1ssra-

To estimate the Holder norm of the second term ps, we argue exactly as in (5.8), define G, as
in (5.7) and recall that it satisfies the conditions of Lemma 3.1 with £ = C'|h|c1+s+a. We may
then estimate [|p2||ce by Lemma 3.1 with vy = Fj,ve = by and v3 = ap and by (5.9) to deduce

2
lp2lce < Cllh|crsstal Filetlibolcollaolce < Clhlcrvstal bRl crva < Cllh]crrsta.
In conclusion we have

(5.10) sup [R1(-,t)|ca <sup Ch(, 1) [Zrvsra < sup CA(, 1) | crrssal h(-, 1) o2,
t<T t<T t<T
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We are left with the last term in (5.6). We first use (5.3) and obtain
(5.11) |10;h B(x, h, V1h) : V2h|ce < C|0:hVEh|ca < C|0:h| ca| b c2va.
We claim that when o < 5 1t holds
(5.12) sup |Osh|ce < sup C(1 + ] E2a).
t<T t<T
Note that the assumption a < min{$,1 - s} implies a < %
To this aim we recall that the normal velocity of the flow is bounded, i.e.,
sup | Ve[ L=(om,) < C.
t<T
We then use the parametrization of the normal velocity (3.2), the a priori estimates h > ¢y

and (5.3) to deduce that
sup |0¢h|co < C.
t<T

We use the interpolation inequality from Proposition 2.1 to estimate
(5.13) |0ch]lca < ClOch|21 18k 56 < C|h| G
Recall that V;h is a solution of the equation
0:Vih = La[Vih] + fi(x,1).
Lemma 3.2 yields |La[V;h]|ce < C|h|c2+s+a and thus by Theorem 4.1 we have
Sup [0:hlcr < Sup |0:hllcree < sup,_max | CA+1fi¢ D) lee)-

yeees Tl

We use this, (5.8), (5.10), (5.11), (5.13) and Young’s inequality to estimate
211113 ”athncl < C’sup (1 + ||hHCl+s+a Hh”cQ + ||athHCa Hh||02+0‘)
<

< sup (C +C|h|Zs + Ce||8th||ca +C. ||h|\02+a)
< sup (C + C”th? +Ce|0ih| e + Ce Hh||02+a)
By choosing € so small that Ce < 5 we have
sup |0thlcr < C'sup (1+ 1h)E: + IIhHCM)

When a < % it holds ﬁ < 2. Therefore we obtain (5.12) from (5.13) and from the above.
Now it follows from (5.11) and (5.12) that

sup [0sh B(z, b, V+h) : V2h|ca < sup C(1 + | R 522).
t<T t<T
Therefore we obtain by (5.5), (5.8), (5.10) and from the above that
sup [ (-, )| c2rsva < sUp C(1+ [AC, 1) |oresea [R () o2 + R ( )] 6522
t<Tp t<T
We use the interpolation inequality from Proposition 2.1 to estimate first

[R(, ) crvssa < CIAC, )] 55t va IR t)Héﬁ‘i‘s
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and then

[hC ) lcz < [R(, D) c2ve < ClAC, t)llclzi‘ém I Bl E-

Recall that (5.5) implies sup,.p |h(-, )| c1+s < C. Therefore we obtain by combining the above
inequalities

e = < (1+2a)
(5.14) Sup [R (s t) [2essa < Sup C(1+|h(, t)llcéﬁm I, t)ll(}%m ).
Recall that we choose o < . This implies
1-s5+2 1 1-
srea <1 and ﬂ(l 2a)< <1
1+« 1+« 1+
Thefore we obtain from (5.14) that
sup [ (1) gavsee < o1 +sup A, t)Hé*;:m)

which implies

sup (1) | c2esta < C

t<T
and the claim (5.4) follows. O

APPENDIX A.

In the appendix we give a self-contained proof of Theorem 2.2. Recall that we consider
linear operator

Lalul(z) = u(y + ) —u(x) dy = /n o u(y) —u(z)

R (A, 1)y, y) 2 2, t)(y - ), (y - 2)) 2

In the following, we denote by F[u](£) the Fourier transform of u evaluated at a point £
1©= [ ata)eeien
RTL
and denote by F~! the inverse Fourier transform, i.e.,
T)a) = [ aeernien)
Rn

The proof of Theorem 2.2 follows from a small perturbation argument. We begin with an
easy lemma.

n+1+s y

Lemma A.1. Let A(t) be elliptic and symmetric matriz which is constant w.r.t x. Then

(A1) F(Lalu])(€) = ~a(&,D)IEI* Flul(€)

where a(§,t) is 0-homogeneous function w.r.t to & given by

oo 1 —cos(2mr {5, w))
a’(é t / / |£| n+l+s d"ﬂd%z—l'
gn-1 7"2+5 A(t)w w) 2

Moreover, it holds

1 1
(A.2) ES (&,t)<C and |8ﬁa(§,t)|£q5|w for €40 and te (0,7T).
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Proof. Since A(t) is constant with respect to the space and we are applying Fourier transform
with respect to space, we drop the time dependence. Setting u,(z) := u(y + ), we have

Fluy](€) = > EN Fu](€). By linearity of the Fourier transform, we get

FlLal(©) - ]—“[ [, ](5) [ Ao,

_Ful(€) 1- COS(ZWE))

Re (Ay,y) 2
i 1+5}_ (5)/ /wl—cos(Qm“(K, w)) drdHZ_l.

n+l+s
r2ts(Aw,w) 2

From this formula and the fact that a(§) is 0-homogeneous it is immediate to obtain the
bounds (A.2) O

In order to prove Theorem 2.2, we first consider the case of coefficients which are constant
in space. To that aim we recall that we may characterize the Holder continuity by its Fourier
transform using the Hardy-Littlewood decomposition. Let n € C5°(R™)be such that 0 <7 <1,
supp7 © By, and n(¢) = 1 for € € By. Define then §(¢) = (&) - n(2¢). Then the functions
§(279¢) form a partition of unity, i.e.

1= > §(277¢), for € #0.
j=—o0
Next we define ¥ : R"® - R via its Fourier transform
FL¥](€) = 0(8) = n(&) - n(28).
We write W;(z) = t™"W(z/t). Then we have by scaling F[¥y;](£) = §(277¢). Finally we
define the operator A; by convolution

Ai(f)=f*Tyy.
Note that since Flu * v] = F[u]- F[v] we may write
Ai(f) = FFLf]-6(279)).
We recall that when v > 0 is not an integer it holds (see e.g. [27])
1 :
(A.3) g flor@ny <510 27185 (N~ < Clflov@m.
7>

We assume that A(t) is an elliptic and symmetric matrix field which is continuous w.r.t to
time.

Theorem A.2. Let u e C1™5*(R™) be a solution of
(A.4) Oyu = L [u] + f(z,1),
u(z,0) =0

where the matrix field is symmetric, elliptic, continuous w.r.t. time and constant in space.
For a <min{s, 1 - s} it holds

sup |[u(:,t)[ cresta < Crsup [ f(-,8)] e,
t<T t<T
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where the constant C' depends only on a, s,n,T and on the ellipticity constants of A(-).

Proof. Applying Fourier transform to the equation (2.5) and using Lemma A.1 we obtain
OF[u](€,1) = ~a(& O Flul (€, 1) + F[F1(E ).
Multiplying the above by elél™* Jo e dr e have
at(]:[u](g’t)eg(f,t)lf\“s) - j:[f](g’t)elﬁl“sg(&t)

where we have set g(§,t) = fg a(§,7)dr. Integrate over (0,t), recall that u(z,0) =0, and get

t
f[u] (g’t)eg(tf)‘ﬂlﬂ? _ / fl:f](f’ T)eg(T7£)|£|1+s dr.
0

Thus we may write the solution as

Flul(&,1) = /0 F [F](€, r)e@ED-gEm ™ g

We need to estimate |A;(u(-,t))|r=. Since 0 is a cutoff function it is enough to estimate

| FH(FLul(€, 1) -6°(276)) | o= < /0 t | F 1 (em@EN-9EME 1 £1(¢,7)62(277€) )| Lo dr.
Since the product becomes a convolution we have
|77 (e ED-9 @M £ 11(¢, 7)0%(277€) ) =

= [ F (e EN-9ECONEIT 527 )) » FHF[£1(6,7)8(27€)) | 1o

< | FH (e o ED-aEIET 59T g) ) | o | FTH(FLF1(E, T)E2TE)) | -
Since f(-,t) € C*(R™) for every 7 <t we have by (A.3)

|7 (FLE S T)) e < C2 sup | (1) oy

We need therefore to show

t
(A.5) / ||j:—1(e—(g(&t)—g(&f))lﬁl“s5(2—1‘5))”Ll dr < 02 i(1+s).
0

Obviously it is enough to prove (A.5) for j > 2. Recalling the definition of g(§,t) and using
(A.2) we have for 7 <t

g(&t) = g(&,7) 2 co(t-7) and [07(g(&,t) - g(&, 7)) < C|5|T§_|—|;|-

Using these one may prove that, if v = (y1,...,7,) is a multi index of length n, then we have
— _ T 1+s s n - _ - 1+s
@76 (9(&:t)-g(&m))IEN™| < C’;(l + (t=7)[€| o)k e e -9 (e

<C(1+(t- T)|§|1+3)”‘é‘l*nefco(tfr)\ﬂhs’

where the constant C' depends on the index n. Therefore we have by the above and by
5(2_]6) =0 for & ¢ Byj+1 \ By;-1 that

|8g(ef(g(ﬁyt)*g(ﬁff)”ﬂ“s5(2—j€))| < C(]. n (t _ T)|£|1+s)n|§|7n6760(t77—)‘5|1+sS(Q’jg)7
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where 4 is a smooth function such that 5(5) =0 for £ ¢ Byjs1 \ Byj-1. Using Cauchy-Schwarz
inequality, Plancherel’s theorem and recalling that 6(277¢) =0 for £ ¢ Byj+«1 \ Byj-1 have that

B a _ r 1+s —9
IF 1(6 (9(&:)-9(&mIE™ 52 1) 11

N

1

1
2
o L4 1202 )2| L (e ED-9ENIE 50973 ¢)) 2 d)
S( re (1+[272])2 x) (/Rn( +[20a")|F (e (27))f da

lylsn /R™

. 2
< 27 ( Z ‘anag(e—(g(&t)—g(ﬁﬁ))§|1+35(2—j§))‘2d€)

<cr¥ ( /B o Prase- T)|£\“S)”|£\neco<“>'£'“s|2dx)
2j+1\ 2j-1

< C(1+ (t —7)20 D) nemeolt=)2 D

where in the last inequality we used that £ € Byj+1 \ Bgj-1 and the assumption j > 2. Finally
we have

¢ ¢ .
/ ||]:—1(e—(g(&t)—g(&ﬁ))lf\“s5(2—j£))||L1 dr < C’/ (1+ (£ - 7)20 DA+ eo(t=r)207D0) g
0 0

< 09 G-D(14s) /Oo(l 4 92(158) yngmeon g, ¢ (roi(1+9),
0

and we obtain (A.5). O

We are now ready prove Theorem 2.2. The proof follows from small perturbation argument,
where we localize the equation and freeze the coefficients. The argument is similar to the
proof of Theorem 4.1, with the difference that the Euclidean space is not compact. We may
overcome this by using Remark 2.6 instead of Lemma 2.5.

Proof of Theorem 2.2. We begin by noticing that applying the maximum principle, as in
the proof of Theorem 4.1, we have

(A.6) sup [u(- )| corny < C(1+T)sup | f(-; )| comny-
t<T t<T
For the Holder continuity we localize the equation. First, fix § € (0,1) and choose ty € (0,7")
and xg € R” such that

|Vu(y,t) — Vu(x,t)| |Vu(y,to) = Vu(zo,to)

(A.7) sup sup <2 sup
t<T |y¢x|e]1§72 Iy - l’|5+a yeBs 3 (w0) |y — x0|5+°‘
y—z|<

Let n:R - [0,1] be a smooth cutoff function such that n(r) =1 for |r| < %, n(r) =0 for |r| > 1,

denote
T — Z0
Nz (z)=n ('f;')

and let v = u(x,t)n,, (z). Notice that

Lalo) = sy Lalul + [ a0 g

n+l+s

ly - x”A(:c,t)
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If u is a solution of the equation dyu = La[u] + f(z,t), then v = un,, solves

O = L, [v] + f(2,1),
where A, = A(xo,t) and

-1

—_—
3 z — Mo\ T
= nx0f+ (LA _LAIO)[U] _/ u(y7t)n Oy(zi)x||g+ffs ) dy = narof-i-fl —I.
A(z,t)

Theorem A.2 implies

sup [v(-,t) | reseaqrny < C sup | f(t) | ca(mny-
(0,1)

)

We claim that it holds
(A.R)
sup ([ 11f o (rny + [L2|ca@ny) < C6% sup [v(-,t)|cr+sra(mny + Cs sup [, t) || cressarz(gny-
(0,1) 1) (0,1)
Since in the argument to prove (A.8) the time does not play any role, we drop it in order
to simplify the notation. For € [0,1] we denote A, (z) = (1 - p)A(xo) + pA(z) and write Iy
as

n+l+s
2

1
(La-La )@ = [ 0w [ (s )y
_ _niles (v(y) —v(=)) (((A(ﬂf)—A(Io))(y—ﬂ?)a(y—ﬂ:)))
2 // @O w-0 -\ A@-o. - )Y
_ n+1+s/ / (v(y) —v(@) - n(ly - 2[)(Vv(z),y - x))(((A(x)—A(wo))(y—rﬂ)v(y—x»
n (Au(x)(y-2), (y-2))" 2" (Au(x)(y - 2), (y - 1))
where the last equality follows from symmetry. Let us define F': R" x R" - R as
ot ota) it o (A = A@)) - 2), (g - )
Fl0.) = (o) o) =y~ ) (90(0). -y (A AN D)),

for y # x and F(z,2) = 0. Then one may check that F satisfies the conditions in Remark 2.6
with a constant

) dpdy,

Ro = C” ||U||Cl+s+a + 05HUH01+3+<1/2-

We leave the details for the reader as it follows from (3.10) and using an argument similar to
the one in the proof of Lemma 3.1 . We may thus use Remark 2.6 and obtain

||Il(-, t)”Ca(]Rn) < Co” ”’U(', t)||Cl+s+a(IRn) +Cs Hv(-, t) ||Cl+s+a/2(Rn)
< (Of ”’U(', t) ||Cl+s+a(Rn) + 05 HU(, t) ||Cl+s+a/2(Rn) .
The argument to bound the term I5 is similar. We write it as

IQZ/HU( )(nxo(y) Nz (2)) _/n ((y) = (@) (oY) =1 (2)) |\

v =575 v -5
20 (Y) = Nxo(Z) =Ny — Z|)(V N (), y —
vute) [ al0) o )” T]_(L”w?s( e (2)y=2)
Y~ TlA)
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We apply Remark 2.6, by first choosing

Fi(y,2) = (u(y) = u(@)) (o (¥) = 120 (2))
and then
EFy(y,2) = 120 (y) = Mo () = n(ly = [) (Ve (2),y — @)
to infer
112(-,t) | ca(rry < Cslu(-t)llor -
Hence we have (A.8).
Let us finally show how the claim follows from (A.8). First, by choosing ¢ small we have

sup [v(, t)[ gresra@ny < Cssup([u-,t) | cressarp@ny + 1f (5 ) ca@n))-
t<T t<T

By using HU(‘,t)”c'1+s+a(Ba/2(l.O)) < v, t)|¢restamny and by the choice of zg and ¢ in (A.7)
we deduce

sup u(, ) gresra(mny < Cssup(fu(, ) [oressarzny + 1 (5 ) | co@ny)-
t<T t<T
By interpolation (2.2) we have
Ju,t) | resarz gy < CHu(-,t)Hecmm(Rn) HU(‘J)”}JB(%W)

S E“U(, t) Hcl+s+a(Rn) + Cg ||u(, t) HCO(Rn) .
By choosing € small we then have

sup [u(:, t)[ cresta(mny < Csup(|f (1) |ca(gny + [ul- )| comn))-
t<T t<T

The claim then follows from (A.6). O
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