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Abstract. We prove that the volume preserving fractional mean curvature flow starting
from a convex set does not develop singularities along the flow. By the recent result of
Cesaroni-Novaga [6] this then implies that the flow converges to a ball exponentially fast.
In the proof we show that the a priori estimates due to Cinti-Sinestrari-Valdinoci [10] imply
the C1+α-regularity of the flow and then provide a regularity argument which improves this
to C2+α-regularity of the flow. The regularity step from C1+α into C2+α does not rely on
convexity and can be adopted to more general setting.

1. Introduction

We say that a given set E0 ⊂ Rn+1 evolves under the volume preserving fractional mean
curvature flow if there exists a flow (Et)t∈[0,T ) of sets starting from E0, which satisfies the
equation

(1.1) Vt = −(Hs
Et
− H̄s

Et
) on ∂Et,

where Vt is the normal velocity, Hs
E with s ∈ (0,1) is the fractional mean curvature defined as

(1.2) Hs
E(x) =

ˆ
Rn+1∖E

dy

∣y − x∣n+1+s
−
ˆ
E

dy

∣y − x∣n+1+s

and H̄s
Et

is its integral average. The flow (1.1) bears many similarities to the classical volume
preserving mean curvature flow, in particular, it can be seen as a gradient flow of the fractional
perimeter. The flow (1.1) can also be seen as a perturbation of the fractional mean curvature
flow, with the difference that (1.1) preserves the volume and can thus be interpreted as the
evolutionary counterpart of the fractional isoperimetric inequality.

The study of the fractional perimeter problem goes back to [3], where the authors prove so
called ε-regularity result, i.e., partial regularity of the perimeter minimizers. As with minimal
surfaces, also in the fractional case the perimeter minimizers may have singularities in higher
dimensions. The question of optimal regularity has been studied extensively and we merely
refer to [25], which is the best known result on the size of the singular set at the moment.
We also refer to [1], where the authors provide a bootstrap argument to obtain higher order
regularity outside the singular set. The related isoperimetric problem, which states that the
ball minimizes the fractional perimeter under the volume constraint, follows from standard
symmetrization argument and the sharp quantitative version is proven in [15] (see also [16]).
Moreover, the fractional version of the Alexandrov theorem, which states that the only regular
set with constant fractional mean curvature is the ball, is proven independently in [2, 11].
This is important as it essentially implies that, if the flow (1.1) is well defined for all times,
then it converges to the ball.

In [19] we prove the short time existence of the classical solution of (1.1) for C1,1-regular
initial sets. This result also applies to the fractional mean curvature flow, in which case the
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existence of the level set solution is proven in [18] and another weak solution is constructed in
[7]. As usual with geometric flows, the fractional mean curvature flow may develop singular-
ities in finite time such as neckpinching [9] and fattening [4]. However, at the moment there
is no systematic classification of the possible types of singularities in the fractional setting
similar to the classical mean curvature flow [21]. We are also not aware of a construction of
a weak solution for (1.1).

A natural problem is whether we may avoid the formation of singularities, if we constraint
ourselves to special type of initial sets. In [6] the authors prove, that if the initial set is
close enough to the ball, then the flow (1.1) remains smooth and converges exponentially fast
to a translation of the ball. Another special case is when the initial set is a subgraph of a
Lipschitz function. Note that then the set is unbounded and therefore, instead of (1.1), it
is natural to study the standard fractional mean curvature flow. In this setting the authors
[24] prove important a priori estimates, which essentially imply that if the flow starts from
Lipschitz graph with bounded fractional curvature, these quantities are preserved along the
flow. This problem is studied further in [5], where the authors show that in the above setting
the fractional mean curvature flow does not develop singularities and converges to the flat
surface exponentially fast. This is the fractional counterpart of the Ecker-Huisken result [13]
for the mean curvature flow with the only difference that the initial set is assumed to have
bounded fractional curvature. Due to the results [22, 26] one might expect the result to hold
without the curvature assumption, but to the best of our knowledge this is not known at the
moment.

As we already mentioned, here we consider the case of convex initial sets, which are bounded
and C1,1-regular. In the case of the classical volume preserving mean curvature flow the result
by Huisken [17] implies that the flow remains smooth and converges expontially fast to the ball.
In the fractional setting, this result is proven in [6] and [8] under the additional assumption
that the flow remains C2+α-regular. Here we show that this additional regularity assumption
is conditional, or in other words, this regularity assumption can proven for convex initial sets,
and thus we obtain the Huisken result in the fractional setting.

Main Theorem. Let E0 ⊂ Rn+1 be C1,1-regular convex set with ∣E0∣ = ∣B1∣. Then the classical
solution of (1.1) exists for all times (Et)t≥0 and converges to the ball B1(x0), for some
x0 ⊂ Rn+1, in Ck for every k ∈ N exponentially fast. To be more precise, there is T ≥ 1
depending on the initial set E0 and on the dimension, such that we may write the moving
boundaries by the height functions over the unit sphere h(⋅, t) ∶ Sn → R as

∂Et = {h(x, t)x + x0 ∶ x ∈ Sn}

for x0 ∈ Rn+1 when t ≥ T and it holds ∥h(⋅, t) − 1∥Ck(Sn) ≤ Cke
−ckt, where the constants ck > 0

and Ck ≥ 1 depend on n, k, T and on the initial set E0.

Let us comment the proof of the Main Theorem. First, we remark that the C1,1 assumption
on E0 is needed only to guarantee the existence of the flow, as our proof relies on the short
time existence result in [19]. As we mentioned above, the proof relies on the a priori estimates
proven in [6, 8, 10]. Indeed, by the result in [8] the sets Et along the flow remain convex, while
the estimates in [10] imply that their fractional mean curvature remains uniformly bounded,
i.e.

sup
t∈[0,T )

Hs
Et
(x) ≤ C
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and there are radii 0 < r < 1 < R such thatBr(xt) ⊂ Et ⊂ BR(xt) as long as the flow is classically
defined. These important estimates are our starting point and we first prove in Proposition
2.3 that for convex sets the above fractional curvature bound implies uniform C1+s-Hölder
regularity. We then recall that the authors in [6] (see also [10]) show that, if we would be
able to improve the C1+s-regularity into uniform C2+α-regularity, then the flow (1.1) does not
develop singularities and converges exponentially fast to a ball. Our main contribution here
is to prove this regularity step. Roughly speaking, the idea is that geometric flows do not
develop singularities under uniform C1+α-regularity estimate, unless the singularity is due to
change of topology. This is due to the fact that one may parametrize the equation such that
it becomes a quasilinear PDE. We use this idea in [20] in a more complicated equation, and
since we know that in our case the flow (1.1) remains convex, and thus the topology does not
change, we may adopt it in this setting.

The first technical issue in the proof is to find a good parametrization of the flow. The
idea is to differentiate the equation (1.1) with respect to space and parametrize the equation

∇X(t)Vt = −∇X(t)HEs
t

on ∂Et,

whereX(t) is a vector field on the moving boundary ∂Et. By doing this we obtain a quasilinear
PDE for the derivative of the height function, where all the error terms are lower order. We
point out that we could also first parametrize the original equation (1.1) by the height function
and differentiate that, but this leads to much more complicated calculations. We then improve
some of the methods developed in [19] and prove the C2+α regularity of the flow in Section
5. The main difference to [19] is that here we need sharp estimates for the error terms in
order to show that they do not blow up in finite time. Another issue is that here our equation
is not a small parturbation of the fractional heat equation with respect to the sphere, and
we need Schauder estimates for general linear parabolic equations defined on the unit sphere
(see Section 4). Similar Schauder estimates are proven in [22] in the case of evolving periodic
graphs.

The paper is organized as follows. In Section 2 we recall some results in the existing litera-
ture and prove the C1+s-estimate of the flow. Section 3 is mostly devoted to the calculations
of the parametrization of the equation. In Section 4 we generalize the Schauder estimates
for general linear parabolic equations in the Euclidean setting proven in [23] (see Theorem
2.2) to the case of the sphere (see Theorem 4.1). Since the result in the Euclidian setting is
scattered in literature, we decide to give a self-contained proof in the Appendix. Finally in
Section 5 we prove that C1+s-regularity of the flow implies uniform C2+s+α-regularity, which
concludes the proof of the Main Theorem.

2. Notation and preliminary results

Throughout the paper C ≥ 1 and c > 0 stand for generic constants which may change from
line to line. If needed, we specify their dependence on relevant parameters. We denote the
open ball with radius r centered at x by Br(x) and by Br if it is centered at the origin. The
notation does not specify the dimension of the ball, but in order to avoid possible confusion,
we write Br(x) ⊂ Rk to point out that the ball is k-dimensional. We denote the inner product
of x, y ∈ Rn+1 by ⟨x, y⟩.

For a given smooth and bounded set E ⊂ Rn+1 the fractional mean curvature of order
s ∈ (0,1) at x ∈ ∂E is defined as (1.2) in the principal valued sense. In order to define the
normal velocity we say that a family of smooth sets (Et)t∈[0,T ) is a smooth flow starting from
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E0, if there is a family of diffeomorphisms Φt ∶ Rn+1 → Rn+1 such that t ↦ Φt(x) is smooth,
Φt(E0) = Et and Φ0(x) = x. The normal velocity at y = Φt(x) ∈ ∂Et is then defined as
Vt(y) = ⟨ ∂∂tΦt(x), νEt(y)⟩. Finally we say that a smooth flow (Et)t∈[0,T ) starting from E0 is a
solution to (1.1), if it satisfies the associated equation point-wise.

We recall that if the initial set E0 ⊂ Rn+1 is bounded and C1,1-regular, i.e., its boundary
is C1,1-regular hypersurface, then by [19] the equation (1.1) has a solution for a short time
(Et)t∈[0,T ) and the sets Et for t > 0 are smooth (C∞ -regular hypersurfaces). In this paper

we restrict to convex initial sets E0, which are C1,1-regular. Then by the results in [8, 10] we
know that the sets Et remain convex, there are r > 0,R > 1 such that Br(xt) ⊂ Et ⊂ BR(xt)
for some points xt ∈ Rn+1 and it holds

sup
t∈(0,T )

sup
x∈∂Et

Hs
Et
(x) ≤ C,

where the constant is independent of the time of existence T . We remark that by these results,
we may parametrize the flow via the height function over the unit sphere Sn, which means
that for every t ∈ [0, T ) there is a function h(⋅, t) ∶ Sn → R such that

(2.1) ∂Et = {h(x, t)x + xt ∶ x ∈ Sn}
for some xt ∈ Rn+1. Moreover there are c > 0 and C ≥ 1 such that c ≤ h(x, t) ≤ C for every
x ∈ Sn. We show later in Proposition 2.3, that the above estimate on the fractional mean
curvature implies that the functions h(⋅, t) are uniformly C1+s-regular.

Recall that our aim is to improve the C1+s-regularity into C2+α-regularity. In other words,
we show that the height functions h(⋅, t) defined in (2.1) are in fact, uniformly C2+s+α regular
for small α > 0.

2.1. Hölder norms and Schauder estimate. The notation ∇kF stands for the k:th order dif-
ferential of a vector field F ∶ Rn → Rm. For matrix A ∈ Rm×k we denote by ∣A∣ its Frobenius
norm. We define the usual Hölder norms of F ∶ Rn → R by

∥F ∥C0(Rn) ∶= sup
x∈Rn
∣F (x)∣ and ∥F ∥Cβ(Rn) ∶= sup

x≠y∈Rn

∣F (y) − F (x)∣
∣y − x∣β

+ ∥F ∥C0(Rn)

for β ∈ (0,1]. We extend this to C l-norm, for l = k + β, with k ∈ N and β ∈ [0,1) as

∥F ∥Cl(Rn) ∶=
k

∑
j=0

∥∇jF ∥C0(Rn) + ∥∇kF ∥Cβ(Rn).

We then have the standard interpolation inequality [27, Section 2.7] i.e., assume l1 and l2 are
positive numbers, θ ∈ (0,1) and denote

l = θl1 + (1 − θ)l2.
Then there is a constant C ≥ 1 such that for every smooth and bounded function u ∶ Rn → R
it holds

(2.2) ∥u∥Cl(Rn) ≤ C∥u∥θCl1(Rn)
∥u∥1−θ

Cl2(Rn)
.

We will mostly deal with functions defined on the unit sphere Sn, which we interpret as the
boundary of the unit ball ∂B1 ⊂ Rn+1. Since Sn is embedded in Rn+1, we may extend every
continuously differentiable vector field F ∶ Sn → Rk to Rn+1 and denote the extension still by
F . We define the tangential differential of F at x ∈ Sn as

∇τF (x) ∶= ∇F (x) − (∇F (x)x) ⊗ x
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and note that it does not depend on the chosen extension. For real valued functions u ∶ Sn → R
we define the tangential gradient ∇τu as the transpose of the tangential differential, and define
the tangential Hessian of u ∶ Sn → R as ∇2

τu(x) = ∇τ(∇τu)(x). If ei is a basis vector for Rn+1

we denote
∇iu = ⟨∇τu, ei⟩

for the tangential partial derivative and ∇j∇iu = ⟨∇2
τuej , ei⟩. We may then define the third

order tangential derivatives as ∇τ∇j∇iu and iteratively for every k = 3,4, . . . . We note that

such a definition of ∇k
τu does not agree with the standard definition of a covariant derivative.

We define the Hölder norms on Sn as in the Euclidian setting. That is for u ∶ Sn → R we
define

∥u∥C0(Sn) ∶= sup
x∈Sn
∣u(x)∣ and ∥u∥Cβ(Sn) ∶= sup

x≠y∈Sn

∣u(y) − u(x)∣
∣y − x∣β

+ ∥u∥C0(Sn)

for β ∈ (0,1] and for C l-norm, with l = k + β, k ∈ N and β ∈ [0,1), as

∥u∥Cl(Sn) ∶=
k

∑
j=0

∥∇j
τu∥C0(Sn) + ∥∇k

τu∥Cβ(Sn).

The interpolation inequality (2.2) extends immediately to Sn.

Proposition 2.1. Assume l1 and l2 are positive numbers, θ ∈ (0,1) and denote

l = θl1 + (1 − θ)l2.
Then there is a constant C ≥ 1 such that for every smooth function u ∶ Sn → R it holds

∥u∥Cl(Sn) ≤ C∥u∥θCl1(Sn)∥u∥
1−θ
Cl2(Sn).

Let us return to functions defined in Rn. We recall the definition of the fractional Laplacian
of order γ ∈ (0,2)

∆γu(x) =
ˆ
Rn

u(y + x) − u(x)
∣y∣n+γ

dy,

which has to be interpreted in the principal valued sense. We need parabolic Schauder esti-
mates for equations with general linear fractional-type operator of order γ = 1+s. To this aim
we say that A(⋅) ∶ Rn → Rn ×Rn is symmetric and elliptic matrix field, if there are constants
λ > 0 and Λ ≥ 1 such that for every x ∈ Rn the matrix A(x) is symmetric and satisfies

(2.3) λ∣ξ∣2 ≤ ⟨A(x)ξ, ξ⟩ ≤ Λ∣ξ∣2 for all x, ξ ∈ Rn.

For a symmetric and elliptic matrix field A(⋅) we define linear operator as

(2.4) LA[u](x) ∶=
ˆ
Rn

u(y + x) − u(x)
⟨A(x)y, y⟩

n+1+s
2

dy.

Our aim is to give a simple proof of Schauder estimate for the Cauchy problem

(2.5)

⎧⎪⎪⎨⎪⎪⎩

∂tu(x, t) = LA[u] + f(x, t)
u(x,0) = 0,

where A(⋅, t) is symmetric, elliptic and uniformly Hölder continuous for every t ∈ [0, T ).
The following Schauder estimate can be found for instance in [23]. For the sake of com-

pleteness and for the reader’s convenience, we provide a proof based purely on PDE methods
in the Appendix.
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Theorem 2.2. Assume α > 0 is such that α <min{s,1−s} and fix T > 0. Assume that for every
t ∈ [0, T ), A(⋅, t) is symmetric and elliptic, and assume that supt<T ∥A(⋅, t)∥Cα(Rn) ≤ C0. Let
f ∶ Rn×[0, T ) → R be such that supt<T ∥f(⋅, t)∥Cα(Rn) < ∞ and assume u is the solution of (2.5)
such that lim∣x∣→∞ u(x, t) ≤ C. Then there exists a constant CT , depending on α,λ,Λ,C0, γ, T
and on the dimension, such that

sup
t<T
∥u(⋅, t)∥C1+s+α(Rn) ≤ CT sup

t<T
∥f(⋅, t)∥Cα(Rn).

We will prove later, in Theorem 4.1, that the analogous result holds on the sphere.

2.2. Preliminary results. As we already mentioned, we know that the evolving sets Et remain
convex and satisfy the a priori estimates from [10] stated at the beginning of this section. Next
we show that these a priori estimates imply that the sets Et are uniformly C1+s-regular.

Proposition 2.3. Assume that E ⊂ Rn+1 is a convex set such that Br ⊂ E ⊂ BR and

sup
x∈∂E

Hs
E(x) ≤ C.

Then E is uniformly C1+s-regular and the boundary can be written as

∂E = {h(x)x ∶ x ∈ Sn}
with ∥h∥C1+s(Sn) ≤ C.

Proof. The assumptions on E imply that there is r0 > 0 such that for every x ∈ ∂E we may
write the boundary locally as a graph of a bounded convex function, i.e., ∂E ∩ Br0(x) is
contained on graph of a convex function which is uniformly bounded. Our goal is to prove

(2.6) sup
y≠x∈∂E

⟨x − y, νE(x)⟩
∣y − x∣1+s

≤ C.

The estimate (2.6) will then imply the claim by the following argument. Indeed, let us fix a
point x0 ∈ ∂E and without loss of generality we may assume x0 = 0 and νE(x0) = −en+1. As
we mentioned above, we may write

∂E ∩Br0 ⊂ {(x
′, u(x′)) ∈ Rn+1 ∶ x′ ∈ Br0 ⊂ R

n}
for a bounded convex function u ∶ Br0 ⊂ Rn → R. Let us choose x′, y′ ∈ Br0/2 ⊂ R

n. Note that
since u is convex and bounded in Br0 , it is uniformly Lipschitz continuous in Br0/2. Then
(2.6) implies

⟨(y′ − x′, u(y′) − u(x′)), (−∇u(x′),1)⟩

≤ C
√
1 + ∣∇u(x′)∣2(∣y′ − x′∣2 + (u(y′) − u(x′))2)

1+s
2 ≤ C ∣y′ − x′∣1+s.

In other words

⟨u(y′) − u(x′) − ∇u(x′), y′ − x′⟩ ≤ C ∣y′ − x′∣1+s for every x′, y′ ∈ Br0/2.

Since u is convex, then u(y′) − u(x′) ≥ ⟨∇u(x′), y′ − x′⟩. The above then implies that
∥u∥C1+s(Br0/4)

≤ C (see e.g. (H4) in [14, Appendix A]). Hence, we need to prove (2.6).

We argue by contradiction and assume that there are sets Ek which satisfy the assumptions
and points yk ≠ xk ∈ ∂Ek such that ∣yk − xk∣ = rk ≤ 2−4nr0, with rk → 0, and

(2.7)
⟨xk − yk, νEk

(xk)⟩
∣yk − xk∣1+s

≥ k.
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Ẽk
{xn+1 = 0}

ykUk
kr1+sk

Ek
2rk

Figure 2.1. A picture of the argument used in the proof of Proposition 2.3.
In green we have the set Ek, in orange Ẽk, i.e. the reflection of Ek over the
plane {xn+1 = 0} and in blue the set Uk

Again we may assume that xk = 0, νEk
(0) = −en+1. Since Ek is convex then

Ek ⊂ {y ∈ Rn+1 ∶ ⟨y − yk, νEk
(yk)⟩ ≤ 0}.

Then the following wedge-type region

Uk ∶= {y ∈ B2rk ∶ yn+1 > 0, ⟨y − yk, νEk
(yk)⟩ > 0}

is contained in the complement of Ek, i.e., Uk ∩Ek = ∅. Note that (2.7) implies that

⟨yk, en+1⟩ ≥ kr1+sk .

Therefore we deduce that there is a uniform constant c > 0 such that

(2.8) ∣Uk∣ ≥ c k rn+1+sk .

Recall the definition of the fractional mean curvature

Hs
Ek
(0) =

ˆ
Rn+1∖Ek

dy

∣y∣n+1+s
−
ˆ
Ek

dy

∣y∣n+1+s
≤ C.

By convexity and by νEk
(0) = −en+1 it holds Ek ⊂ {y ∶ yn+1 ≥ 0}. Therefore, denoting by Ẽk

the reflection of Ek with respect to the hyperplane {xn+1 = 0}, we obtain that Ẽk ⊂ Ec
k and

Uk ⊂ (Ek ∪ Ẽk)c which impliesˆ
Uk

dy

∣y∣n+1+s
dy ≤

ˆ
Rn+1∖(Ek∪Ẽk)

dy

∣y∣n+1+s
=
ˆ
Rn+1∖Ek

dy

∣y∣n+1+s
−
ˆ
Ek

dy

∣y∣n+1+s
≤ C.

By the definition of the set Uk it holds Uk ⊂ {y ∈ Rn+1 ∶ yn+1 > 0}∖Ek. Moreover, the definition
of Uk implies that ∣y∣ ≤ 2rk for all y ∈ Uk. Therefore by (2.8) and by the above inequality we
have

C ≥
ˆ
Uk

dy

∣y∣n+1+s
≥ c ∣Uk∣

rn+1+sk

≥ c k,

where the constant c > 0 does not depend on k. Hence, we obtain a contradiction when
k →∞. □
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At the end of the section we prove continuity estimates for functions defined via convolution
over kernels. We define elliptic and symmetric matrix field on Sn, A(⋅) ∶ Sn → Rn+1 ×Rn+1 as
in (2.3), i.e., there are 0 < λ < 1 < Λ such that

λ∣ξ∣2 ≤ ⟨A(x)ξ, ξ⟩ ≤ Λ∣ξ∣2 for all ξ ∈ Rn+1 and x ∈ Sn.
We consider kernels K ∶ Sn × Sn ∖ {(x,x) ∶ x ∈ Sn} → R of the type

(2.9) KA(y, x) =
1

⟨A(x)(y − x), (y − x)⟩
n+1+s

2

,

where A(⋅) is symmetric, elliptic and ∥A∥Cα(Sn) ≤ C. In order to simplify the notation, we
denote the induced norm by

(2.10) ∥ξ∥2A(x) ∶= ⟨A(x)ξ, ξ⟩ for ξ ∈ Rn+1.

We may then denote K defined in (2.9) as K(y, x) = ∥y − x∥−n−1−sA(x) .

The following lemma is easy to prove and thus we omit it.

Lemma 2.4. Assume that A(⋅) is symmetric, elliptic and ∥A∥Cα(Sn) ≤ C for 0 < α <min{s,1−
s}. Then the kernel KA defined in (2.9) satisfies the following two conditions:

(i) KA is continuous on Sn × Sn ∖ {(x,x) ∶ x ∈ Sn} and satisfies

∣KA(y, x)∣ ≤
C

∣y − x∣n+1+s
.

(ii) For all x, y, z ∈ Sn with 0 < ∣z − x∣ ≤ 1
2 ∣y − x∣ it holds

∣KA(y, z) −KA(y, x)∣ ≤ C
∣z − x∣

∣y − x∣n+2+s
+C ∣z − x∣α

∣y − x∣n+1+s
.

We note that the above conditions agree with the assumptions in [19, Definition 4.1] with
the difference that the second condition is slightly weaker. The following lemma is almost the
same as [19, Lemma 4.3].

Lemma 2.5. Assume that A(⋅) is symmetric, elliptic and ∥A∥Cα(Sn) ≤ C for 0 < α <min{s,1−
s}, and the kernel KA is defined in (2.9). Assume that the function F ∈ C(Sn × Sn) satisfies
the following conditions.

(1) For all x, y ∈ Sn it holds

∣F (y, x)∣ ≤ κ0∣y − x∣1+s+α.
(2) For all x, y, z ∈ Sn with ∣z − x∣ ≤ 1

2 ∣y − x∣ it holds

∣F (y, z) − F (y, x)∣ ≤ κ0(∣z − x∣α∣y − x∣1+s+α/2 + ∣z − x∣s+α∣y − x∣).
Then the function

ψ(x) =
ˆ
Sn
F (y, x)KA(y, x)dHn

y

is Hölder continuous and ∥ψ∥Cα(Sn) ≤ Cκ0.

Proof. The proof is almost the same as in [19, Lemma 4.3] but we write it for the reader’s
convenience since the assumptions are slightly different. The condition (i) in Lemma 2.4
and the assumption (1) for F immediately implies that ∥ψ∥C0 ≤ Cκ0. To show the Hölder
continuity we fix z, x ∈ Sn and divide the sphere into two sets as S− = {y ∈ Sn ∶ ∣y−x∣ ≤ 2∣z−x∣}
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and S+ = {y ∈ Sn ∶ ∣y−x∣ > 2∣z−x∣}. Note that for y ∈ S− it holds ∣y−z∣ ≤ ∣y−x∣+ ∣z−x∣ ≤ 3∣z−x∣.
We use the condition (i) in Lemma 2.4 and the assumption (1) for F to deduce
ˆ
S−
∣F (y, z)KA(y, z)∣dHn

y ≤ Cκ0
ˆ
S−

1

∣y − z∣n−α
dHn

y ≤ Cκ0
ˆ 3∣z−x∣

0
ρα−1 dρ = Cκ0∣z − x∣α.

Similarly it holds
´
S− ∣F (y, x)KA(y, x)∣dHn

y ≤ Cκ0∣z − x∣α.
Note that for y ∈ S+ it holds ∣y − z∣ ≥ ∣y −x∣ − ∣z −x∣ ≥ 1

2 ∣y −x∣. We use the conditions (i) and
(ii) in Lemma 2.4 and the assumption (1) and (2) for F to estimateˆ

S+
∣F (y, z)KA(y, z) − F (y, x)KA(y, x)∣dHn

y

≤
ˆ
S+
∣F (y, z) − F (y, x)∣∣KA(y, z)∣dHn

y +
ˆ
S−
∣F (y, x)∣∣KA(y, z) −KA(y, x)∣dHn

y

≤ Cκ0∣z − x∣α
ˆ
S+

1

∣y − x∣n−α/2
dHn

y +Cκ0∣z − x∣s+α
ˆ
S+

1

∣y − x∣n+s
dHn

y

+Cκ0∣z − x∣
ˆ
S+

1

∣y − x∣n+1−α
dHn

y .

Since 1
∣y−x∣n−α/2 is not singular, we obtain

´
S+

1
∣y−x∣n−α/2 dH

n
y ≤ C. Since ∣z − x∣ ≤ ∣y − x∣ we

estimate the last term by
∣z − x∣

∣y − x∣n+1−α
≤ ∣z − x∣

s+α

∣y − x∣n+s

which then implies

∣z − x∣
ˆ
S+

1

∣y − x∣n+1−α
dHn

y ≤ ∣z − x∣s+α
ˆ
S+

1

∣y − x∣n+s
dHn

y ≤ C ∣z − x∣s+α
ˆ 2

∣z−x∣
ρ−s−1 ≤ C ∣z − x∣α.

Therefore we haveˆ
S+
∣F (y, z)KA(y, z) − F (y, x)KA(y, x)∣dHn

y ≤ Cκ0∣z − x∣α

and the claim follows. □

Remark 2.6. The above lemma holds also in Rn for a kernel defined as in (2.9), if we change
the assumptions on F ∶ Rn ×Rn → R as follows.

(1) For all x ∈ Rn it holds

∣F (y, x)∣ ≤ κ0min{∣y − x∣,1}1+s+α.

(2) For all x, y, z ∈ Rn with ∣z − x∣ ≤ 1
2 ∣y − x∣ it holds

∣F (y, z) − F (y, x)∣ ≤ κ0(∣z − x∣αmin{∣y − x∣,1}1+s+α/2 + ∣z − x∣s+αmin{∣y − x∣,1}).

3. Equation for the height function

As we mentioned in the introduction, instead of the original equation (1.1), we will differ-
entiate it with respect to space and parametrize the equation

(3.1) ∇X(t)Vt = −∇X(t)HEs
t

on ∂Et,
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where X(t) is a vector field on the moving boundary ∂Et, which we will define shortly, and
∇X(t) is the derivative in the direction of X(t). Note that the derivative of the integral

average H̄s
Et

vanishes.
We parametrize the flow using the height function similarly as in (2.1), with the difference

that we assume we may write locally in time

∂Et = {h(x, t)x + x0 ∶ x ∈ Sn},

for some fixed x0 ∈ Rn+1 and for t ∈ [0, T ). We denote

η(x, t) ∶= h(x, t)x.

We choose the vector field X(t) as follows. Fix a basis vector ei, i = 1, . . . , n+1 of the ambient
space Rn+1. We obtain a tangent field on Sn as

τi(x) = ei − xi x, for x ∈ Sn,

where xi = ⟨x, ei⟩. This induces a tangent field on the moving boundary ∂Et, which we denote
by X(t) =X(⋅, t), defined as

X(η(x, t), t) ∶=Dη(x, t)τi(x) = h(x, t)τi(x) + ∇ih(x, t)x for x ∈ Sn.

We may then write the derivative ∇X(t)f of any given function f ∈ C1(∂Et) at the point
η(x, t) ∈ ∂Et for x ∈ Sn as

(∇X(t)f)(η(x, t)) = ∇i(f ○ η(⋅, t))(x).

We will assume throughout the section that the height function satisfies the uniform bound
∥h(⋅, t)∥C1+s ≤ C and c ≤ h(x, t) ≤ C for all t and x ∈ Sn.

Let us first deal the LHS of (3.1). This is rather easy as we may write the normal as

νEt(η(x, t)) =
h(x, t)x −∇τh(x, t)√
h2(x, t) + ∣∇τh(x, t)∣2

and the normal velocity then is

(3.2) Vt(η(x, t)) = ∂th(x, t)
h(x, t)√

h2(x, t) + ∣∇τh(x, t)∣2
.

Hence, it holds

(∇X(t)Vt)(η(x, t)) = ∇i
⎛
⎝
∂th(x, t)

h(x, t)√
h2(x, t) + ∣∇τh(x, t)∣2

⎞
⎠

= ∂t∇ih(x, t)
h(x, t)√

h2(x, t) + ∣∇τh(x, t)∣2

+ ∂th(x, t)∇i
⎛
⎝

h(x, t)√
h2(x, t) + ∣∇τh(x, t)∣2

⎞
⎠
.

(3.3)

Let us then focus on the RHS of (3.1). We recall that following the argument in [15, 24]
we may write

(3.4) ∇X(t)H
s
Et
= 2
ˆ
∂Et

⟨X(t), νEt(y)⟩
∣y − x∣n+1+s

dHn
y .
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Indeed, by regularizing the kernel, say by Kδ(t) = (t2 + δ)−
n+1+s

2 , and differentiating in xi
direction (see [15, Formula (6.17)]) we have

∇xi (
ˆ
Ec

t

Kδ(∣y − x∣)dy −
ˆ
Et

Kδ(∣y − x∣)dy)

= −
ˆ
Ec

t

K ′δ(∣y − x∣)
⟨y − x, ei⟩
∣y − x∣

dy +
ˆ
Et

K ′δ(∣y − x∣)
⟨y − x, ei⟩
∣y − x∣

dy

= −
ˆ
Ec

t

divy(Kδ(∣y − x∣)ei)dy +
ˆ
Et

divy(Kδ(∣y − x∣)ei)dy

=
ˆ
∂Et

2Kδ(∣y − x∣)⟨ei, νEt(y)⟩dHn
y ,

where the last equality follows from divergence theorem. Letting δ → 0 yields (3.4).
We parametrize (3.4) on Sn, by recalling the formula for the normal νEt(η(x, t)) above and

the Jacobian determinant of η as

Jη(⋅,t)(x) = h(x, t)n−1
√
h2(x, t) + ∣∇τh(x, t)∣2.

For simplicity we omit the time-dependence for a moment and write h(x) = h(x, t). Then we
may write

∇X(t)H
s
Et
= 2
ˆ
Sn
h(y)n−1 ⟨h(x)τi(x) + ∇ih(x)x,h(y)y −∇τh(y)⟩

∣h(y)y − h(x)x∣n+1+s
dHn

y

We continue and write the terms as

h(x)τi(x) + ∇ih(x)x =h(y)τi(y) + ∇ih(x)y
+ (h(x)τi(x) − h(y)τi(y)) + (x − y)∇ih(x).

This gives us the following expression

∇X(t)H
s
Et
= 2
ˆ
Sn
h(y)n−1 ⟨h(y)τi(y) + ∇ih(x)y, h(y)y −∇τh(y)⟩

∣h(y)y − h(x)x∣n+1+s
dHn

y +R1

where the error terms are

R1 = 2
ˆ
Sn

⟨h(x)τi(x) − h(y)τi(y), h(y)y −∇τh(y)⟩
∣h(y)y − h(x)x∣n+1+s

h(y)n−1 dHn
y

+ 2
ˆ
Sn

⟨x − y, h(y)y −∇τh(y)⟩
∣h(y)y − h(x)x∣n+1+s

∇ih(x)h(y)n−1 dHn
y .

Note that we may write the error terms as

R1 = ∑
k

ak(x,h,∇τh)
ˆ
Sn

Fk(y, h(y)) − Fk(x,h(x))
∣h(y)y − h(x)x∣n+1+s

bk(y, h,∇τh)dHn
y

for smooth functions Fk, ak, bk. But since

⟨h(y)τi(y) + ∇ih(x)y, h(y)y −∇τh(y)⟩ = (∇ih(x) − ∇ih(y))h(y)

we obtain

(3.5) −∇X(t)H
s
Et
= 2
ˆ
Sn

∇ih(y) − ∇ih(x)
∣h(y)y − h(x)x∣n+1+s

h(y)n dHn
y +R1.
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We further linearize the first term on the RHS of (3.5), which is the leading order term in
the equation. We write using ⟨x − y, y⟩ = −1

2 ∣x − y∣
2

∣h(y)y − h(x)x∣2 = ∣h(x)(x − y) + (h(x) − h(y))y∣2

= h2(x)∣y − x∣2 + h(x)(h(y) − h(x))∣x − y∣2 + ∣h(y) − h(x)∣2.

We write the Taylor expansion of h at x as

Tx[h](y) = h(y) − h(x) − ⟨∇τh(x), y − x⟩

and note that for β ∈ [0,1] it holds

(3.6) ∣Tx[h](y)∣ ≤ ∥h∥C1+β ∣y − x∣1+β.

Therefore we deduce that we may write

∣h(y)y − h(x)x∣2 = h2(x)∣y − x∣2 + ⟨∇τh(x), y − x⟩2 + gh(y, x)
= ∥x − y∥2A(x) + gh(y, x)

(3.7)

where the matrix is given by tensor product A(x) = h2(x)I + ∇τh(x) ⊗ ∇τh(x), the norm
∥ξ∥A(x) is defined in (2.10), and the error term is

gh(y, x) = h(x)(h(y) − h(x))∣x − y∣2 + 2(h(y) − h(x))Tx[h](y) − ∣Tx[h](y)∣2.

The precise form of gh is not relevant. Instead, it is important to notice that it satisfies the
following two conditions. For all x, y ∈ Sn and 0 < α <min{s,1 − s} it holds

(3.8) ∣gh(y, x)∣ ≤ C∥h∥C1+s+α ∣y − x∣2+s+α

and for all x, y, z ∈ Sn with ∣z − x∣ ≤ 1
2 ∣y − x∣ it holds

(3.9) ∣gh(y, z) − gh(y, x)∣ ≤ C∥h∥C1+s+α ∣z − x∣s+α∣y − x∣2.

Indeed, the estimate (3.8) follows by using (3.6) for β = 0 and β = s + α, and recalling that
∥h∥C1+s ≤ C . The estimate (3.9) follows from the fact that for ∣z − x∣ ≤ 1

2 ∣y − x∣ it holds

∣Tz[h](y) − Tx[h](y)∣ = ∣(h(y) − h(z) − ⟨∇τh(z), y − z⟩) − (h(y) − h(x) − ⟨∇τh(x), y − x⟩)∣
= ∣(h(x) − h(z) − ⟨∇τh(z), x − z⟩) + (⟨∇τh(x) − ∇τh(z), y − x⟩)∣
≤ ∥h∥C1+s+α ∣z − x∣1+s+α + ∥h∥C1+s+α ∣z − x∣s+α∣y − x∣
≤ 2∥h∥C1+s+α ∣z − x∣s+α∣y − x∣.

(3.10)

Therefore we use the notation for gh(y, x), which is defined in (3.7), and the norm ∥ξ∥A(x),
which is defined in (2.10), and writeˆ

Sn

∇ih(y) − ∇ih(x)
∣h(y)y − h(x)x∣n+1+s

h(y)n dHn
y

=
ˆ
Sn

∇ih(y) − ∇ih(x)
∥y − x∥n+1+s

A(x)

h(y)n dHn
y

+
ˆ
Sn

∇ih(y) − ∇ih(x)
∥y − x∥n+1+s

A(x)

ˆ 1

0

d

dµ

⎛
⎝

∥y − x∥2A(x)
∥y − x∥2

A(x)
+ µgh(y, x)

⎞
⎠

n+1+s
2

h(y)n dµdHn
y ,

(3.11)

where A(x) = h2(x)I +∇τh(x) ⊗∇τh(x).
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Recall again the a priori estimates for the height function, i.e.,

sup
t∈[0,T )

∥h(⋅, t))∥C1+s ≤ C and h(x, t) ≥ c.

We may thus finally write the equation (3.1) by (3.3), (3.5) and (3.11) as

(3.12) ∂t∇ih = LA[∇ih] +R0(x, t) +R1(x, t) + ∂thB(x,h,∇τh) ∶ ∇2
τh.

Here B is a smooth matrix-field and the linear operator is defined as

(3.13) LA[u](x) ∶= a0(x, t)
ˆ
Sn

u(y) − u(x)
∥y − x∥n+1+s

A(x,t)

b0(y, t)dHn
y ,

for symmetric elliptic matrix field

A(x, t) = h2(x, t)I +∇τh(x, t) ⊗∇τh(x, t)

and the coefficients a0, b0 ≥ c0 satisfy

(3.14) sup
t<T
∥a0(⋅, t)∥Cs(Sn) ≤ C and sup

t<T
∥b0(⋅, t)∥C1(Sn) ≤ C.

The error terms are
(3.15)

R0(x, t) = a0(x, t)
ˆ
Sn

ˆ 1

0

∇ih(y, t) − ∇ih(x, t)
∥y − x∥n+1+s

A(x,t)

d

dµ

⎛
⎝

∥y − x∥2A(x,t)
∥y − x∥2

A(x,t)
+ µgh(y, x)

⎞
⎠

n+1+s
2

b0(y, t)dµdHn
y

and

(3.16) R1(x, t) =
N

∑
k=1

ak(x,h,∇τh)
ˆ
Sn

Fk(y, h(y, t)) − Fk(x,h(x, t))
∣h(y, t)y − h(x, t)x∣n+1+s

bk(y, h,∇τh)dHn
y ,

where ak, bk and Fk for k ≥ 1 are smooth functions.
Next we state the following technical lemma, which we use later to bound the error term

R0 defined in (3.15).

Lemma 3.1. Assume that A(⋅) is symmetric elliptic matrix field as defined in (2.3) such that
∥A(⋅)∥Cα ≤ C for 0 < α < min{s,1 − s} and assume that g ∶ Sn × Sn → R satisfies the following
two conditions. For all x, y ∈ Sn it holds ∥y − x∥2A(x) + g(y, x) ≥ c∣y − x∣

2, for some c > 0, and

∣g(y, x)∣ ≤ κ∣y − x∣2+s+α,

and for all x, y, z ∈ Sn with ∣z − x∣ ≤ 1
2 ∣y − x∣ it holds

∣g(y, z) − g(y, x)∣ ≤ κ(∣z − x∣s+α∣y − x∣2 + ∣z − x∣α∣y − x∣2+s+α).

Denote G(y, x) = d
dµ (

∥y−x∥2
A(x)

∥y−x∥2
A(x)+µg(y,x)

)
q

, for µ ∈ (0,1), q ≥ 1, and assume v1 ∈ C1(Sn), v2 ∈
C(Sn) and v3 ∈ Cα(Sn). Then the function

ψ(x) =
ˆ
Sn
(v1(y) − v1(x))v2(y)v3(x)G(y, x)KA(y, x)dHn

y

is Hölder continuous and

∥ψ∥Cα(Sn) ≤ Cκ∥v1∥C1(Sn)∥v2∥C0(Sn)∥v3∥Cα(Sn).
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Proof. Let us first prove that it holds for all y, x ∈ Sn, y ≠ x

(3.17) ∣G(y, x)∣ ≤ Cκ∣y − x∣s+α

and for all x, y, z ∈ Sn with 0 < ∣z − x∣ ≤ 1
2 ∣y − x∣

(3.18) ∣G(y, z) −G(y, x)∣ ≤ Cκ(∣z − x∣α∣y − x∣s+α + ∣z − x∣s+α).

To this aim we denote Φ(t) = (1 + t)−q,

G̃(y, x) = g(x, y)
∥y − x∥2

A(x)

and notice that we may write G(y, x) = Φ′(µG̃(y, x))G̃(y, x). Since Φ is smooth we deduce

that it is enough to show that G̃ satisfies the conditions (3.17) and (3.18). We obtain (3.17)
immediately from the ellipticity of A and from the first assumption on g as

∣G̃(y, x)∣ ≤ Cκ ∣y − x∣
2+s+α

∣y − x∣2
≤ Cκ∣y − x∣s+α.

To prove (3.18) we fix x, y, z ∈ Sn with 0 < ∣z−x∣ ≤ 1
2 ∣y−x∣. Note that then

1
2 ∣y−x∣ ≤ ∣y−z∣ ≤

2∣y − x∣. We then write

∣G̃(y, z) − G̃(y, x)∣ ≤ ∣g(y, z)∣∣∥y − z∥−2A(z) − ∥y − x∥
−2
A(x)∣ +

∣g(x, z) − g(y, z)∣
∥y − x∥2

A(x)

.

We may estimate the last term by the second condition on g as

∣g(x, z) − g(y, z)∣
∥y − x∥2

A(x)

≤ Cκ ∣z − x∣
s+α∣y − x∣2 + ∣z − x∣α∣y − x∣2+s+α

∣y − x∣2
≤ Cκ(∣z−x∣s+α+∣z−x∣α∣y−x∣s+α).

For the first term we observe that

∣∥y − z∥2A(z) − ∥y − x∥
2
A(x)∣

= ∣⟨A(z)(y − z), (y − z)⟩ − ⟨A(x)(y − x), (y − x)⟩∣
≤ ∣⟨(A(z) −A(x))(y − z), (y − z)⟩∣ + ∣⟨A(x)((y − z) + (y − x)), (x − z)⟩∣
≤ C ∣z − x∣α∣y − x∣2 +C ∣y − x∣∣z − x∣.

We use the fact that ∣z−x∣ ≤ 1
2 ∣y−x∣ to deduce ∣z−x∣ ≤ ∣z−x∣s+α∣y−x∣1−s−α. Therefore it holds

∣g(y, z)∣∣∥y − z∥−2A(z) − ∥y − x∥
−2
A(x)∣ ≤

∣g(y, z)∣
∣y − x∣4

∣∥y − z∥2A(z) − ∥y − x∥
2
A(x)∣

≤ Cκ

∣y − x∣2−s−α
(∣z − x∣α∣y − x∣2 + ∣y − x∣∣z − x∣)

≤ Cκ(∣z − x∣α∣y − x∣s+α + ∣z − x∣s+α)

and (3.18) follows.
We proceed by defining F ∶ Sn × Sn → R as

F (y, x) ∶= (v1(y) − v1(x))v2(y)v3(x)G(y, x)

when y ≠ x and F (x,x) = 0. We prove that F satisfies the assumptions of Lemma 2.5 for

κ̃ ∶= κ∥v1∥C1∥v2∥C0∥v3∥Cα .
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This will then yield the claim. The first condition follows immediately from (3.17) as

∣F (y, x)∣ = ∣v1(y) − v1(x)∣ ∣v2(y)∣ ∣v3(x)∣ ∣G(y, x)∣ ≤ Cκ̃∣y − x∣1+s+α

for all x ≠ y ∈ Sn.
To show the second condition we fix x, y, z ∈ Sn with 0 < ∣z − x∣ ≤ 1

2 ∣y − x∣. We will in fact
show that

∣F (y, z) − F (y, x)∣ ≤ Cκ̃(∣z − x∣α∣y − x∣1+s+α + ∣z − x∣s+α∣y − x∣),
which is slightly stronger than what we need. To this aim we write

∣F (y, z) − F (y, x)∣ = ∣v2(y)∣∣(v1(y) − v1(z))v3(z)G(y, z) − (v1(y) − v1(x))v3(x)G(y, x)∣
≤ ∣v2(y)∣∣v3(z)∣∣G(y, z)∣∣v1(z) − v1(x)∣
+ ∣v2(y)∣∣v3(z)∣∣v1(y) − v1(x)∣∣G(y, z) −G(y, x)∣
+ ∣v2(y)∣∣v1(y) − v1(x)∣∣G(y, x)∣∣v3(z) − v3(x)∣.

We estimate the first term term on the RHS by (3.17) and by ∣z − x∣ ≤ ∣y − x∣ as
∣v2(y)∣∣v3(z)∣∣G(y, z)∣∣v1(z) − v1(x)∣ ≤ Cκ̃∣y − x∣s+α∣z − x∣ ≤ Cκ̃∣y − x∣∣z − x∣s+α.

We estimate the last similarly

∣v2(y)∣∣v1(y) − v1(x)∣∣G(y, x)∣∣v3(z) − v3(x)∣ ≤ Cκ̃∣y − x∣1+s+α∣z − x∣α.
Finally, we estimate the second term by (3.18) as

∣v2(y)∣∣v3(z)∣∣v1(y) − v1(x)∣∣G(y, z) −G(y, x)∣ ≤ κ̃(∣z − x∣α∣y − x∣1+s+α + ∣z − x∣s+α∣y − x∣).
We thus have the claim by Lemma 2.5. □

We conclude the section with a technical lemma, which is analogous to [19, Lemma 4.4].

Lemma 3.2. Assume that A(⋅) is symmetric, elliptic and ∥A∥Cα(Sn) ≤ C for 0 < α <min{s,1−
s}, and the kernel KA is defined in (2.9). Assume further v1 ∈ C1+s+α(Sn), v2 ∈ Cs+α(Sn)
and v3 ∈ Cα(Sn). Then the function

ψ(x) =
ˆ
Sn
(v1(y) − v1(x))v2(y)v3(x)KA(y, x)dHn

y

is Hölder continuous and

∥ψ∥Cα(Sn) ≤ C∥v1∥C1+s+α(Sn)∥v2∥Cs+α(Sn)∥v3∥Cα(Sn).

Proof. The claim follows from [19, Lemma 4.4] once we show that the function

ψ(x) =
ˆ
Sn
(y − x)KA(y, x) dHn

y

is uniformly α-Hölder continuous. Indeed, even if the condition (ii) in Lemma 2.4 is slightly
weaker than [19, Definition 4.1], the claim still follows from the proof of [19, Lemma 4.4]. Let
us first prove the Hölder continuity of ψ under the additional assumption that at every point
x ∈ Sn it holds

(3.19) ⟨A(x)x,ω⟩ = 0 for every ω orthogonal to x.

To this aim fix x and notice that, by the symmetry of the sphere and by (3.19) for all
vectors ω orthogonal to x, it holdsˆ

Sn
⟨y − x,ω⟩KA(y, x) dHn

y = 0.
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Therefore

ψ(x) =
ˆ
Sn
(y − x)KA(y, x) dHn

y = x
ˆ
Sn
⟨y − x,x⟩KA(y, x) dHn

y .

For all y ∈ Sn it holds ⟨y − x,x⟩ = −1
2 ∣y − x∣

2. Therefore we have

ψ(x) = −x
2

ˆ
Sn
∣y − x∣2KA(y, x) dHn

y .

Obviously the function F (y, x) = −x
2 ∣y − x∣

2 satisfies the assumptions of Lemma 2.5 and
therefore we deduce that ∥ψ∥Cα(Sn) ≤ C.

Let us then consider the general case. We write A(x) = A0(x) +A1(x), where

A0 = A − (Ax) ⊗ x − x⊗ (Ax) + 2⟨Ax,x⟩(x⊗ x)

and A1 = A−A0. Then A0(⋅) is symmetric, elliptic and satisfies the condition (3.19). Moreover,
recalling ⟨y − x,x⟩ = −1

2 ∣y − x∣
2 and arguing as in (3.8) and (3.9) we observe that g(y, x) =

⟨A1(x)(y − x), y − x⟩ satisfies the following two conditions: for x, y ∈ Sn it holds

(3.20) ∣g(y, x)∣ ≤ C ∣y − x∣3

and for all x, y, z ∈ Sn with ∣z − x∣ ≤ 1
2 ∣y − x∣ it holds

(3.21) ∣g(y, z) − gφ(y, x)∣ ≤ C(∣z − x∣∣y − x∣2 + ∣z − x∣α∣y − x∣3).

Since the argument is similar as before, we leave the details for the reader. At the end, since
we may write

ψ(x) =
ˆ
Sn
(y − x)KA(y, x) dHn

y =
ˆ
Sn
(y − x)KA0(y, x)dH

n
y

+
ˆ
Sn
(y − x)KA0(y, x)

ˆ 1

0

d

dµ

⎛
⎝

∥y − x∥2A0(x)

∥y − x∥2
A0(x)

+ µg(y, x)
⎞
⎠

n+1+s
2

dµdHn
y

the conclusion follows from Lemma 3.1. □

4. Schauder estimates for the fractional parabolic equation

In this section we extend Theorem 2.2 from Rn to the unit sphere Sn. We consider linear
operator of the form

(4.1) LA[u](x) ∶=
ˆ
Sn

u(y) − u(x)
∥y − x∥n+1+s

A(x,t)

a(x, t)b(y, t)dHn
y ,

where the norm ∥ ⋅ ∥A is defined in (2.10), A(⋅, t) is symmetric elliptic matrix field for every
t ∈ [0, T ) such that supt<T ∥A(⋅, t)∥Cα(Sn) ≤ C and the coefficients satisfy a(x, t), b(x, t) ≥ c > 0
for all x ∈ Sn and t ∈ [0, T ) and

sup
t<T
∥a(⋅, t)∥Cs(Sn) ≤ C and sup

t<T
∥b0(⋅, t)∥C1(Sn) ≤ C.

We also assume without mentioning that all functions are continuous with respect to time.
We prove the following Schauder estimate on the sphere.
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Theorem 4.1. Let T > 0 and α such that 0 < α <min{s,1−s}. Assume that A(⋅, t) is symmetric
and elliptic such that supt<T ∥A(⋅, t)∥Cα(Sn) ≤ C and let LA be the operator defined in (4.1).
Let f ∶ Sn × [0, T ) → R be such that supt<T ∥f(⋅, t)∥Cα(Sn) < ∞ and let u ∶ Sn × [0, T ) → R be
the solution of the problem

(4.2)

⎧⎪⎪⎨⎪⎪⎩

∂tu = LA[u] + f(x, t) (x, t) ∈ Sn × (0, T )
u(x,0) = 0 x ∈ Sn.

There exists a constant CT such that

sup
t<T
∥u(⋅, t)∥C1+s+α(Sn) ≤ CT sup

t<T
∥f(⋅, t)∥Cα(Sn).

Proof. By approximation we may assume that all the functions in the assumptions are smooth.
Moreover, we note that we may absorb the coefficient a(x, t) in (4.1) into the matrix field
A(x, t) and thus obtain another symmetric elliptic matrix field which we still denote by
A(x, t). We also adopt the notation (2.9) for the kernel KA, which means that

KA(y, x) =
1

∥y − x∥n+1+s
A(x)

.

First, it follows from the maximum principle that

(4.3) sup
t<T
∥u(⋅, t)∥C0(Sn) ≤ T sup

t<T
∥f(⋅, t)∥C0(Sn).

Indeed, fix a small ε > 0 and define wε(x, t) = (t + ε)−1u(x, t). Then w is smooth and
w(x,0) = 0. Assume that w attains its maximum on Sn×(0, T −ε] at (x0, t0) with t0 ∈ (0, T −ε].
Then by the maximum principle it holds

0 ≤ ∂tw(x0, t0) =
∂tu(x0, t0)
t0 + ε

− u(x0, t0)
(t0 + ε)2

and 0 ≥ LA[w](x0, t0) =
LA[u](x0, t0)

t0 + ε
.

The equation (4.2) implies

u(x0, t0)
t0 + ε

≤ f(x0, t0).

By letting ε→ 0 and repeating the argument for −u we obtain (4.3).
Let us fix x0 ∈ Sn and by rotating the coordinates we may assume that it is the north pole,

i.e., x0 = en+1. Let us first localize the equation around x0. To this aim fix a small δ > 0 and
choose a smooth cutoff function η ∶ R→ [0,1] such that η(r) = 1 for ∣r∣ < δ/2 and η(r) = 0 for
r ≥ δ. In the following we write x = (x′, xn+1) ∈ Rn+1 with x′ ∈ Rn. We denote

v(x, t) = η(4∣x′∣)u(x, t).

Then clearly ∥v(⋅, t)∥Cβ(Sn) ≤ C∥u(⋅, t)∥Cβ(Sn∩Bδ(x0))
for β ∈ [0,2]. In order to find an equation

for v we multiply the equation (4.2) by η(4∣x′∣) and obtain

∂tv(x, t) = η(4∣x′∣)LA[u](x, t) + η(4∣x′∣) f(x, t).

We organize the terms as

η(4∣x′∣)(u(y, t) − u(x, t)) = v(y, t) − v(x, t) − u(y, t)(η(4∣y′∣) − η(4∣x′∣))
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and write

η(4∣x′∣)LA[u](x, t) =
ˆ
Sn
η(∣y′∣)(v(y, t) − v(x, t))KA(y, x) b(y, t)dHn

y

+
ˆ
Sn
(1 − η(∣y′∣))(v(y, t) − v(x, t))KA(y, x) b(y, t)dHn

y

−
ˆ
Sn
u(y, t)(η(4∣y′∣) − η(4∣x′∣))KA(y, x) b(y, t)dHn

y .

The last term is Hölder continuous due to Lemma 3.2. Since v(x, t) = 0 for ∣x′∣ ≥ δ/4, then
the Kernel (1 − η(∣y′∣))KA(y, x) in the function

R1(x, t) =
ˆ
Sn
(1 − η(∣y′∣))(v(y, t) − v(x, t))KA(y, x) b(y, t)dHn

y

is non-singular and therefore ∥R1(⋅, t)∥Cα(Sn) ≤ Cδ∥u(⋅, t)∥Cα(Sn), where the constant depends
on δ > 0. Therefore we deduce that it holds

(4.4) ∂tv(x, t) =
ˆ
Sn
η(∣y′∣)(v(y, t) − v(x, t))KA(y, x) b(y, t)dHn

y + f1(x, t)

and f1 satisfies

(4.5) ∥f1(⋅, t)∥Cα(Sn) ≤ Cδ∥u(⋅, t)∥Cs+α(Sn) +Cδ∥f(⋅, t)∥Cα(Sn).

We further manipulate the leading order term in (4.4) by writingˆ
Sn
η(∣y′∣)(v(y, t) − v(x, t))KA(y, x) b(y, t)dHn

y

=
ˆ
Sn
η(∣y′∣)(v(y, t) − v(x, t))KA(y, x) b(en+1, t)

√
1 − ∣y′∣2 dHn

y +R2(x, t),
(4.6)

where

R2(x, t) ∶=
ˆ
Sn
η(∣y′∣)(v(y, t) − v(x, t))KA(y, x) (b(y, t) − b(en+1, t)

√
1 − ∣y′∣2)dHn

y

Let us define ψ(y, t) = η(∣y′∣)(b(y, t) − b(en+1, t)
√
1 − ∣y′∣2). Then at the north pole it holds

ψ(en+1, t) = 0. Therefore, since ψ is C1-regular we have

∥ψ(⋅, t)∥Cs+α(Sn) ≤ Cδ1−s−α.

Therefore again Lemma 3.2 yields

(4.7) ∥R2(⋅, t)∥Cα(Sn) ≤ Cδ1−s−α∥u∥C1+s+α(Sn∩Bδ(x0))
.

Note that since b(en+1, t) depends only on time, we may absorb it into the matrix field A(y, t)
on the RHS of (4.6) and denote the new matrix field still by A(y, t).

Let us then consider the RHS in (4.6). We write the unit sphere locally as a graph of the

function φ(x′) =
√
1 − ∣x′∣2. Then we may write y, x ∈ Sn with ∣y′∣, ∣x′∣ < δ as

y − x = ( y′ − x′
φ(y′) − φ(x′)) = (

y′ − x′
⟨∇φ(x′), y′ − x′⟩) + (

0
Tx′[φ](y′)

) ,
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where Tx′[φ](y′) = φ(y′)−φ(x′)− ⟨∇φ(x′), y′ −x′⟩. Let us define the (n+1×n) - matrix field
Jφ(x′) such that for ξ′ ∈ Rn it holds

Jφ(x′)ξ′ = (
ξ′

⟨∇φ(x′), ξ′⟩) .

Then we may write y − x = Jφ(x′)(y′ − x′) + Tx′[φ](y′)en+1. We may write

⟨A(x, t)(y − x), (y − x)⟩ = ⟨Ã(x, t)(y′ − x′), (y′ − x′)⟩ + g(y, x)

for

(4.8) Ã(x, t) = Jφ(x′)TA(x, t)Jφ(x′)

and

g(y, x) = 2Tx′[φ](y′) ⟨A(x, t)Jφ(x′)(y′ − x′), en+1⟩ + (Tx′[φ](y′))2⟨A(x, t)en+1, en+1⟩.

Using ∣Tx′[φ](y′)∣ ≤ C ∣y − x∣2 and arguing as in (3.8) and (3.9), we deduce that g satisfies the
conditions (3.20) and (3.21). We also note immediately that the new (n × n) - matrix field

Ã(⋅, t) defined in (4.8) is symmetric and elliptic in Rn, and also in this case, with a little abuse

of notation, we write ∥ξ∥2
Ã(x,t)

= ⟨Ã(x, t)ξ, ξ⟩ for ξ ∈ Rn. We denote

Gµ(y, x) =
d

dµ

⎛
⎜
⎝

∥y′ − x′∥2
Ã(x,t)

∥y′ − x′∥2
Ã(x,t)

− µg(y, x)

⎞
⎟
⎠

n+1+s
2

and write the RHS term in (4.6) asˆ
Sn
η(∣y′∣)(v(y, t) − v(x, t))KA(y, x)

√
1 − ∣y′∣2 dHn

y

=
ˆ
Sn
η(∣y′∣)v(y, t) − v(x, t)

∥y′ − x′∥n+1+s
Ã(x,t)

√
1 − ∣y′∣2 dHn

y +R3(x, t),
(4.9)

where

R3(x, t) =
ˆ
Sn

ˆ 1

0
η(∣y′∣)Gµ(y, x)

v(y, t) − v(x, t)
∥y′ − x′∥n+1+s

Ã(x,t)

√
1 − ∣y′∣2 dµdHn

y .

We may use Lemma 3.1 to deduce

(4.10) ∥R3(⋅, t)∥Cα(Sn) ≤ C∥u∥C1(Sn).

Finally we map the RHS term in (4.9) to Rn, by slight abuse of notation we write v(x′, t) =
v((x′, φ(x′)), t), Ã(x′, t) = Ã((x′, φ(x′)), t), and obtainˆ

Sn
η(∣y′∣)v(y, t) − v(x, t)

∥y′ − x′∥n+1+s
Ã(x,t)

√
1 − ∣y′∣2 dHn

y =
ˆ
Rn

η(∣y′∣)v(y
′, t) − v(x′, t)
∥y′ − x′∥n+1+s

Ã(x′,t)

dy′

=
ˆ
Rn

v(y′, t) − v(x′, t)
∥y′ − x′∥n+1+s

Ã(x′,t)

dy′ +R4(x′, t),

where

R4(x′, t) = −
ˆ
Rn

(1 − η(∣y′∣))v(y
′, t) − v(x′, t)
∥y′ − x′∥n+1+s

Ã(x′,t)

dy′.
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Since v has compact support in Bδ/4 and η = 1 in Bδ/2, the integral in the definition of R4 is
non-singular and we deduce that

∥R4(⋅, t)∥Cα(Rn) ≤ Cδ∥v(⋅, t)∥Cα(Rn) ≤ Cδ∥u(⋅, t)∥Cα(Sn).

We then use Theorem 2.2 and (4.4), (4.5), (4.6), (4.7), (4.9), (4.10) and the above to conclude
that v is a solution of the equation

∂tv = LÃ(v) + f2
and satisfies

sup
t<T
∥v(⋅, t)∥C1+s+α(Rn) ≤ C sup

t<T
∥f2(⋅, t)∥Cα(Rn)

≤ sup
t<T
(Cδ∥u(⋅, t)∥C1(Sn) +Cδ1−s−α∥u(⋅, t)∥C1+s+α(Sn∩Bδ(x0))

+Cδ∥f(⋅, t)∥Cα(Sn)).

We first observe that

sup
t<T
∥u(⋅, t)∥C1+s+α(Sn∩Bδ/8(x0))

≤ C sup
t<T
∥v(⋅, t)∥C1+s+α(Rn).

We repeat the argument in balls Bδ(xi) which cover the sphere, and use a standard covering
argument to conclude that

sup
t<T
∥u(⋅, t)∥C1+s+α(Sn) ≤ sup

t<T
(Cδ∥u(⋅, t)∥C1(Sn) +Cδ1−s−α∥u(⋅, t)∥C1+s+α(Sn) +Cδ∥f(⋅, t)∥Cα(Sn)).

Choosing δ > 0 so small that Cδ1−s−α ≤ 1
4 implies

sup
t<T
∥u(⋅, t)∥C1+s+α(Sn) ≤ sup

t<T
(Cδ∥u(⋅, t)∥C1(Sn) + 1

4∥u(⋅, t)∥C1+s+α(Sn) +Cδ∥f(⋅, t)∥Cα(Sn)).

We use the interpolation inequality (2.2) and Young’s inequality

∥u(⋅, t)∥C1(Sn) ≤ C∥u(⋅, t)∥θC1+s+α(Sn)∥u(⋅, t)∥
1−θ
C0(Sn) ≤ ε∥u(⋅, t)∥C1+s+α(Sn) +Cε∥u(⋅, t)∥C0(Sn).

This yields

sup
t<T
∥u(⋅, t)∥C1+s+α(Sn) ≤ sup

t<T
((εCδ + 1

4)∥u(⋅, t)∥C1+s+α(Sn)+Cε∥u(⋅, t)∥C0(Sn)+Cδ∥f(⋅, t)∥Cα(Sn)).

We then choose ε > 0 so small that εCδ ≤ 1
4 and have

sup
t<T
∥u(⋅, t)∥C1+s+α(Sn) ≤ Cδ,ε sup

t<T
(∥u(⋅, t)∥C0(Sn) + ∥f(⋅, t)∥Cα(Sn)).

The claim then follows from (4.3). □

5. C2+α-estimates for the flow

Proof of the Main Theorem. By the result [19] the equation (1.1) has C∞-solution for a time
interval (0, T0) and we denote it by (Et)t∈(0,T0). We assume that T0 is the maximal time of
existence and our aim is to show that T0 = ∞, i.e., the flow does not develop singularities. We
argue by contradiction and assume T0 < ∞.

By the result [8] the sets Et are convex and by [10] they satisfy

(5.1) sup
t<T0

∥Hs
Et
∥L∞(∂Et) ≤ C

where the constant is independent of T0. Moreover again by [10] there are points xt ∈ Rn+1

such that

(5.2) Br(xt) ⊂ Et ⊂ BR(xt)
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for 0 < r < R, which are independent of T0. By translation we may assume that xT0 = 0. By
(5.1) it holds that the normal velocity of the flow is bounded

sup
t<T0

∥Vt∥L∞(∂Et) ≤ C.

This implies that there is t0 ∈ (0, T0) such that Br/2 ⊂ Et ⊂ B2R for all t ∈ [t0, T0]. By
restarting the flow at t0 and by reparametrizing the time, we may assume that t0 = 0 and
denote the maximal time of existence by T .

From these results we deduce that we may parametrize the sets Et via the height function
over the unit sphere, i.e., there are h(⋅, t) ∶ Sn → R such that h(x, t) ≥ c0 > 0 and

∂Et = {h(x, t)x ∶ x ∈ Sn} for all t ∈ [0, T ).
By (5.1) and Proposition 2.3 it holds

(5.3) sup
t<T
∥h(⋅, t)∥C1+s(Sn) ≤ C.

As we mentioned in the introduction, our goal is to improve the estimate (5.3) to

(5.4) sup
t<T
∥h(⋅, t)∥C2+s+α(Sn) ≤ C,

where α > 0 is such that α <min{ s4 ,1−s}. The bound α <
s
4 is technical and the reason will be

clear later. The authors in [6] (see also [10]) already point out that the estimate (5.4) implies
that the maximal time of existence is infinity. Let us briefly recall why it is so. If we have
(5.4) and if we assume T < ∞, then by continuity, the solution of the equation (1.1) exists up
to the endpoint [0, T ]. Since the set ET is C2-regular, by [19] we may restart the flow and
obtain by the semigroup property that the solution exists for the time interval [0, T + δ] for
some δ > 0. This contradicts the fact that T is the maximal time of existence. Hence, once
we have (5.4) we obtain that the flow exists globally in time. The fact that the flow (Et)t≥0
converges to some ball B1(x0) exponentially fast follows from [6, Corollary 3.5]. Hence, we
need to show (5.4).

By (3.12) we may write the equation (3.1) using the height functions as

∂t∇ih = LA[∇ih] +R0(x, t) +R1(x, t) + ∂thB(x,h,∇τh) ∶ ∇2
τh

with initial condition h(⋅,0) = h0, where h0 ∈ C∞(Sn). Here R0 is defined in (3.15) and R1 in
(3.16). We define u(x, t) ∶= ∇ih(x, t) − ∇ih0(x) and deduce that it is a solution of

∂tu = LA[u] + fi(x, t) +LA[∇ih0]
with u(x,0) = 0 for

fi(x, t) = R0(x, t) +R1(x, t) + ∂thB(x,h,∇τh) ∶ ∇2
τh.

Theorem 4.1 implies

(5.5) sup
t<T
∥u(⋅, t)∥C1+s+α(Sn) ≤ C(sup

t<T
∥fi(⋅, t)∥Cα(Sn) + ∥LA[∇ih0]∥Cα(Sn)).

We use this for every direction ei and obtain

sup
t≤T0

∥h(⋅, t)∥C2+s+α(Sn) ≤ C sup
t≤T

max
i=1,...,n+1

∥fi(⋅, t)∥Cα +C(∥h0∥C2+s+α + ∥LA[∇ih0]∥Cα).

We are then left to estimate the RHS of (5.5), i.e., for every i = 1, . . . , n+ 1 we need to bound

(5.6) ∥LA[∇ih0]∥Cα(Sn) + ∥R0(⋅, t)∥Cα(Sn) + ∥R1(⋅, t)∥Cα(Sn) + ∥∂thB(x,h,∇τh) ∶ ∇2
τh∥Cα(Sn).
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The first term is easy to bound, since h0 ∈ C∞. Indeed, by Lemma 3.2 it holds ∥LA[∇ih0]∥Cα(Sn) ≤
C∥h0∥C2+s+α ≤ C.

For the second term on the RHS of (5.6) we recall that the term R0(⋅, t) is given by (3.15).
We denote

(5.7) Gµ(x, y) =
d

dµ

⎛
⎝

∥y − x∥2A(x,t)
∥y − x∥2

A(x,t)
+ µgh(y, x)

⎞
⎠

n+1+s
2

and recall that by (3.8) and (3.9) the function gh satisfies the conditions of Lemma 3.1 with
κ = C∥h∥C1+s+α . Since we may write

R0(⋅, t) = a0(x, t)
ˆ
Sn

ˆ 1

0

∇ih(y, t) − ∇ih(x, t)
∥y − x∥n+1+s

A(x,t)

Gµ(x, y)b0(y, t)dµdHn
y

we may use Lemma 3.1 with v1 = ∇ih(⋅, t), v2 = b0(⋅, t) and v3 = a0(⋅, t) and recall that the
coefficients a0 and b0 satisfy the conditions (3.14) to deduce

(5.8) sup
t≤T
∥R0(⋅, t)∥Cα ≤ sup

t≤T
C∥h(⋅, t)∥C1+s+α∥h(⋅, t)∥C2 .

To treat the term ∥R1(⋅, t)∥Cα(Sn) in (5.6) we recall that it is of the form (3.16). We fix t
and write Fk(x) = F (y, h(x, t)), ak(x) = ak(x,h,∇τh) and bk(y) = bk(y, h,∇τh) for short, and
note that then

(5.9) ∥Fk∥Ck+β ≤ C∥h∥Ck+β , ∥ak∥Ck+β ≤ C∥h∥Ck+1+β and ∥bk∥Ck+β ≤ C∥h∥Ck+1+β

for all k = 0,1,2, . . . and β ∈ [0,1]. We use the argument from (3.11) and write for A(x, t) =
h(x, t)2I +∇τh(x, t) ⊗∇τh(x, t)ˆ
Sn
ak(x)bk(y)

Fk(y) − Fk(x)
∣h(y, t)y − h(x, t)x∣n+1+s

dHn
y

=

=∶ρ1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µˆ
Sn
ak(x)bk(y)

Fk(y) − Fk(x)
∥y − x∥n+1+s

A(x,t)

dHn
y

+
ˆ
Sn
ak(x)bk(y)

Fk(y) − Fk(x)
∥y − x∥n+1+s

A(x,t)

ˆ 1

0

d

dµ

⎛
⎝

∥y − x∥2A(x,t)
∥y − x∥2

A(x,t)
+ µgh(y, x)

⎞
⎠

n+1+s
2

dµdHn
y = ρ1(x) + ρ2(x),

where gh is given by (3.7). To estimate the Hölder norm of the first term ρ1 on the RHS
above, we use Lemma 3.2, (5.3),(5.9) and deduce that we may bound its Cα-norm by

∥ρ1∥Cα ≤ C∥Fk∥C1+s+α∥bk∥Cs+α∥ak∥Cα ≤ C∥h∥C1+s+α∥h∥C1+s+α∥h∥C1+α ≤ C∥h∥2C1+s+α .

To estimate the Hölder norm of the second term ρ2, we argue exactly as in (5.8), define Gµ as
in (5.7) and recall that it satisfies the conditions of Lemma 3.1 with κ = C∥h∥C1+s+α . We may
then estimate ∥ρ2∥Cα by Lemma 3.1 with v1 = Fk, v2 = b0 and v3 = a0 and by (5.9) to deduce

∥ρ2∥Cα ≤ C∥h∥C1+s+α∥Fk∥C1∥b0∥C0∥a0∥Cα ≤ C∥h∥C1+s+α∥h∥2C1∥h∥C1+α ≤ C∥h∥C1+s+α .

In conclusion we have

(5.10) sup
t≤T
∥R1(⋅, t)∥Cα ≤ sup

t≤T
C∥h(⋅, t)∥2C1+s+α ≤ sup

t≤T
C∥h(⋅, t)∥C1+s+α∥h(⋅, t)∥C2 .
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We are left with the last term in (5.6). We first use (5.3) and obtain

(5.11) ∥∂thB(x,h,∇τh) ∶ ∇2
τh∥Cα ≤ C∥∂th∇2

τh∥Cα ≤ C∥∂th∥Cα∥h∥C2+α .

We claim that when α ≤ 1
2 it holds

(5.12) sup
t≤T
∥∂th∥Cα ≤ sup

t≤T
C(1 + ∥h∥2αC2+α).

Note that the assumption α <min{ s4 ,1 − s} implies α < 1
2 .

To this aim we recall that the normal velocity of the flow is bounded, i.e.,

sup
t≤T
∥Vt∥L∞(∂Et) ≤ C.

We then use the parametrization of the normal velocity (3.2), the a priori estimates h ≥ c0
and (5.3) to deduce that

sup
t≤T
∥∂th∥C0 ≤ C.

We use the interpolation inequality from Proposition 2.1 to estimate

(5.13) ∥∂th∥Cα ≤ C∥∂th∥αC1∥∂th∥1−αC0 ≤ C∥∂th∥αC1 .

Recall that ∇ih is a solution of the equation

∂t∇ih = LA[∇ih] + fi(x, t).

Lemma 3.2 yields ∥LA[∇ih]∥Cα ≤ C∥h∥C2+s+α and thus by Theorem 4.1 we have

sup
t≤T
∥∂th∥C1 ≤ sup

t≤T
∥∂th∥C1+α ≤ sup

t≤T
max

i=1,...,n+1
C(1 + ∥fi(⋅, t)∥Cα).

We use this, (5.8), (5.10), (5.11), (5.13) and Young’s inequality to estimate

sup
t≤T
∥∂th∥C1 ≤ C sup

t≤T
(1 + ∥h∥C1+s+α∥h∥C2 + ∥∂th∥Cα∥h∥C2+α)

≤ sup
t≤T
(C +C∥h∥2C2 +Cε∥∂th∥

1
α
Cα +Cε∥h∥

1
1−α
C2+α)

≤ sup
t≤T
(C +C∥h∥2C2 +Cε∥∂th∥C1 +Cε∥h∥

1
1−α
C2+α).

By choosing ε so small that Cε ≤ 1
2 we have

sup
t≤T
∥∂th∥C1 ≤ C sup

t≤T
(1 + ∥h∥2C2 + ∥h∥

1
1−α
C2+α).

When α ≤ 1
2 it holds 1

1−α ≤ 2. Therefore we obtain (5.12) from (5.13) and from the above.
Now it follows from (5.11) and (5.12) that

sup
t≤T
∥∂thB(x,h,∇τh) ∶ ∇2

τh∥Cα ≤ sup
t≤T

C(1 + ∥h∥1+2αC2+α).

Therefore we obtain by (5.5), (5.8), (5.10) and from the above that

sup
t≤T0

∥h(⋅, t)∥C2+s+α ≤ sup
t≤T

C(1 + ∥h(⋅, t)∥C1+s+α∥h(⋅, t)∥C2 + ∥h(⋅, t)∥1+2αC2+α).

We use the interpolation inequality from Proposition 2.1 to estimate first

∥h(⋅, t)∥C1+s+α ≤ C∥h(⋅, t)∥
α

1+α
C2+s+α∥h(⋅, t)∥

1
1+α
C1+s
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and then

∥h(⋅, t)∥C2 ≤ ∥h(⋅, t)∥C2+α ≤ C∥h(⋅, t)∥
1−s+α
1+α

C2+s+α∥h(⋅, t)∥
s

1+α
C1+s .

Recall that (5.5) implies supt<T ∥h(⋅, t)∥C1+s ≤ C. Therefore we obtain by combining the above
inequalities

(5.14) sup
t<T
∥h(⋅, t)∥C2+s+α ≤ sup

t<T
C(1 + ∥h(⋅, t)∥

1−s+2α
1+α

C2+s+α + ∥h(⋅, t)∥
1−s+α
1+α (1+2α)

C2+s+α ).

Recall that we choose α < s
4 . This implies

1 − s + 2α
1 + α

< 1

1 + α
< 1 and

1 − s + α
1 + α

(1 + 2α) < 1

1 + α
< 1.

Thefore we obtain from (5.14) that

sup
t<T
∥h(⋅, t)∥C2+s+α ≤ C(1 + sup

t<T
∥h(⋅, t)∥

1
1+α
C2+s+α)

which implies

sup
t<T
∥h(⋅, t)∥C2+s+α ≤ C

and the claim (5.4) follows. □

Appendix A.

In the appendix we give a self-contained proof of Theorem 2.2. Recall that we consider
linear operator

LA[u](x) =
ˆ
Rn

u(y + x) − u(x)
⟨A(x, t)y, y⟩

n+1+s
2

dy =
ˆ
Rn

u(y) − u(x)
⟨A(x, t)(y − x), (y − x)⟩

n+1+s
2

dy.

In the following, we denote by F[u](ξ) the Fourier transform of u evaluated at a point ξ

F[u](ξ) =
ˆ
Rn

u(x)e−2πi⟨ξ,x⟩ dx

and denote by F−1 the inverse Fourier transform, i.e.,

F−1[v](x) =
ˆ
Rn

v(ξ)e2πi⟨ξ,x⟩ dξ.

The proof of Theorem 2.2 follows from a small perturbation argument. We begin with an
easy lemma.

Lemma A.1. Let A(t) be elliptic and symmetric matrix which is constant w.r.t x. Then

(A.1) F(LA[u])(ξ) = −a(ξ, t)∣ξ∣1+sF[u](ξ)

where a(ξ, t) is 0-homogeneous function w.r.t to ξ given by

a(ξ, t) =
ˆ
Sn−1

ˆ ∞
0

1 − cos(2πr⟨ ξ
∣ξ∣ , ω⟩)

r2+s⟨A(t)ω,ω⟩
n+1+s

2

dr dHn−1
ω .

Moreover, it holds

(A.2)
1

C
≤ a(ξ, t) ≤ C and ∣∂βa(ξ, t)∣ ≤ C∣β∣

1

∣ξ∣∣β∣
for ξ /= 0 and t ∈ (0, T ).
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Proof. Since A(t) is constant with respect to the space and we are applying Fourier transform
with respect to space, we drop the time dependence. Setting uy(x) ∶= u(y + x), we have

F[uy](ξ) = e2πi⟨ξ,y⟩F[u](ξ). By linearity of the Fourier transform, we get

F[LAu](ξ) = F
⎡⎢⎢⎢⎢⎣

ˆ
Rn

u(y + x) − u(x)
⟨Ay, y⟩

n+1+s
2

dy

⎤⎥⎥⎥⎥⎦
(ξ) =

ˆ
Rn

F[uy](ξ) − F[u](ξ)
⟨Ay, y⟩

n+1+s
2

dy

= −F[u](ξ)
ˆ
Rn

1 − cos(2π⟨ξ, y⟩)
⟨Ay, y⟩

n+1+s
2

dy

= −∣ξ∣1+sF[u](ξ)
ˆ
Sn−1

ˆ ∞
0

1 − cos(2πr⟨ ξ
∣ξ∣ , ω⟩)

r2+s⟨Aω,ω⟩
n+1+s

2

dr dHn−1
ω .

From this formula and the fact that a(ξ) is 0-homogeneous it is immediate to obtain the
bounds (A.2) □

In order to prove Theorem 2.2, we first consider the case of coefficients which are constant
in space. To that aim we recall that we may characterize the Hölder continuity by its Fourier
transform using the Hardy-Littlewood decomposition. Let η ∈ C∞0 (Rn)be such that 0 ≤ η ≤ 1,
suppη ⊂ B̄2, and η(ξ) = 1 for ξ ∈ B1. Define then δ(ξ) = η(ξ) − η(2ξ). Then the functions
δ(2−jξ) form a partition of unity, i.e.

1 =
∞

∑
j=−∞

δ(2−jξ), for ξ ≠ 0.

Next we define Ψ ∶ Rn → R via its Fourier transform

F[Ψ](ξ) = δ(ξ) = η(ξ) − η(2ξ).
We write Ψt(x) = t−nΨ(x/t). Then we have by scaling F[Ψ2−j ](ξ) = δ(2−jξ). Finally we
define the operator ∆j by convolution

∆j(f) ∶= f ∗Ψ2−j .

Note that since F[u ∗ v] = F[u] ⋅ F[v] we may write

∆j(f) = F−1[F[f] ⋅ δ(2−jξ)].
We recall that when γ > 0 is not an integer it holds (see e.g. [27])

(A.3)
1

C
∥f∥Cγ(Rn) ≤ sup

j≥1
2jγ∥∆j(f)∥L∞ ≤ C∥f∥Cγ(Rn).

We assume that A(t) is an elliptic and symmetric matrix field which is continuous w.r.t to
time.

Theorem A.2. Let u ∈ C1+s+α(Rn) be a solution of

(A.4)

⎧⎪⎪⎨⎪⎪⎩

∂tu = LA(t)[u] + f(x, t),
u(x,0) = 0

where the matrix field is symmetric, elliptic, continuous w.r.t. time and constant in space.
For α <min{s,1 − s} it holds

sup
t<T
∥u(⋅, t)∥C1+s+α ≤ CT sup

t<T
∥f(⋅, t)∥Cα ,
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where the constant C depends only on α, s, n, T and on the ellipticity constants of A(⋅).

Proof. Applying Fourier transform to the equation (2.5) and using Lemma A.1 we obtain

∂tF[u](ξ, t) = −a(ξ, t)∣ξ∣1+sF[u](ξ, t) + F[f](ξ, t).

Multiplying the above by e∣ξ∣
1+s ´ t

0 a(ξ,τ)dτ we have

∂t(F[u](ξ, t)eg(ξ,t)∣ξ∣
1+s
) = F[f](ξ, t)e∣ξ∣

1+sg(ξ,t)

where we have set g(ξ, t) =
´ t
0 a(ξ, τ)dτ . Integrate over (0, t), recall that u(x,0) = 0, and get

F[u](ξ, t)eg(t,ξ)∣ξ∣
1+s
=
ˆ t

0
F[f](ξ, τ)eg(τ,ξ)∣ξ∣

1+s
dτ.

Thus we may write the solution as

F[u](ξ, t) =
ˆ t

0
F[f](ξ, τ)e−(g(ξ,t)−g(ξ,τ))∣ξ∣

1+s
dτ.

We need to estimate ∥∆j(u(⋅, t))∥L∞ . Since δ is a cutoff function it is enough to estimate

∥F−1(F[u](ξ, t) ⋅ δ2(2−jξ))∥L∞ ≤
ˆ t

0
∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣

1+s
F[f](ξ, τ)δ2(2−jξ))∥L∞ dτ.

Since the product becomes a convolution we have

∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣
1+s
F[f](ξ, τ)δ2(2−jξ))∥L∞

= ∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣
1+s
δ(2−jξ)) ∗ F−1(F[f](ξ, τ)δ(2−jξ))∥L∞

≤ ∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣
1+s
δ(2−jξ))∥L1 ∥F−1(F[f](ξ, τ)δ(2−jξ))∥L∞ .

Since f(⋅, t) ∈ Cα(Rn) for every τ < t we have by (A.3)

∥F−1(F[f](ξ, τ)δ(2−jξ))∥L∞ ≤ C2−jα sup
τ<t
∥f(⋅, t)∥Cα(Rn).

We need therefore to show

(A.5)

ˆ t

0
∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣

1+s
δ(2−jξ))∥L1 dτ ≤ C2−j(1+s).

Obviously it is enough to prove (A.5) for j ≥ 2. Recalling the definition of g(ξ, t) and using
(A.2) we have for τ < t

g(ξ, t) − g(ξ, τ) ≥ c0(t − τ) and ∣∂β(g(ξ, t) − g(ξ, τ))∣ ≤ C∣β∣
t − τ
∣ξ∣∣β∣

.

Using these one may prove that, if γ = (γ1, . . . , γn) is a multi index of length n, then we have

∣∂γξ e
−(g(ξ,t)−g(ξ,τ))∣ξ∣1+s ∣ ≤ C ∑

k≤n

(1 + (t − τ)∣ξ∣1+s)k∣ξ∣−ne−(g(ξ,t)−g(ξ,τ))∣ξ∣
1+s

≤ C(1 + (t − τ)∣ξ∣1+s)n∣ξ∣−ne−c0(t−τ)∣ξ∣
1+s
,

where the constant C depends on the index n. Therefore we have by the above and by
δ(2−jξ) = 0 for ξ ∉ B2j+1 ∖B2j−1 that

∣∂γξ (e
−(g(ξ,t)−g(ξ,τ))∣ξ∣1+sδ(2−jξ))∣ ≤ C(1 + (t − τ)∣ξ∣1+s)n∣ξ∣−ne−c0(t−τ)∣ξ∣

1+s
δ̃(2−jξ),
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where δ̃ is a smooth function such that δ̃(ξ) = 0 for ξ ∉ B2j+1 ∖B2j−1 . Using Cauchy-Schwarz
inequality, Plancherel’s theorem and recalling that δ(2−jξ) = 0 for ξ ∉ B2j+1 ∖B2j−1 have that

∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣
1+s
δ(2−jξ))∥L1

≤ (
ˆ
Rn

1

(1 + ∣2jx∣n)2
dx)

1
2
(
ˆ
Rn

(1 + ∣2jx∣n)2∣F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣
1+s
δ(2−jξ))∣2 dx)

1
2

≤ C2−
jn
2
⎛
⎝ ∑∣γ∣≤n

ˆ
Rn

∣2jn∂γξ (e
−(g(ξ,t)−g(ξ,τ))∣ξ∣1+sδ(2−jξ))∣2dξ

⎞
⎠

1
2

≤ C2−
jn
2
⎛
⎝

ˆ
B

2j+1∖B2j−1
∣2jn(1 + (t − τ)∣ξ∣1+s)n∣ξ∣−ne−c0(t−τ)∣ξ∣

1+s
∣2dx
⎞
⎠

1
2

≤ C(1 + (t − τ)2(j+1)(1+s))ne−c0(t−τ)2
(j−1)(1+s)

,

where in the last inequality we used that ξ ∈ B2j+1 ∖B2j−1 and the assumption j ≥ 2. Finally
we haveˆ t

0
∥F−1(e−(g(ξ,t)−g(ξ,τ))∣ξ∣

1+s
δ(2−jξ))∥L1 dτ ≤ C

ˆ t

0
(1 + (t − τ)2(j+1)(1+s))ne−c0(t−τ)2

(j−1)(1+s)
dτ

≤ C2−(j−1)(1+s)
ˆ ∞
0
(1 + 22(1+s)µ)ne−c0µ dµ ≤ C2−j(1+s),

and we obtain (A.5). □

We are now ready prove Theorem 2.2. The proof follows from small perturbation argument,
where we localize the equation and freeze the coefficients. The argument is similar to the
proof of Theorem 4.1, with the difference that the Euclidean space is not compact. We may
overcome this by using Remark 2.6 instead of Lemma 2.5.

Proof of Theorem 2.2. We begin by noticing that applying the maximum principle, as in
the proof of Theorem 4.1, we have

(A.6) sup
t<T
∥u(⋅, t)∥C0(Rn) ≤ C(1 + T ) sup

t<T
∥f(⋅, t)∥C0(Rn).

For the Hölder continuity we localize the equation. First, fix δ ∈ (0,1) and choose t0 ∈ (0, T )
and x0 ∈ Rn such that

(A.7) sup
t<T

sup
y≠x∈Rn

∣y−x∣<δ/2

∣∇u(y, t) − ∇u(x, t)∣
∣y − x∣s+α

≤ 2 sup
y∈Bδ/2(x0)

∣∇u(y, t0) − ∇u(x0, t0)∣
∣y − x0∣s+α

Let η ∶ R→ [0,1] be a smooth cutoff function such that η(r) = 1 for ∣r∣ ≤ 1
2 , η(r) = 0 for ∣r∣ ≥ 1,

denote

ηx0(x) = η (
∣x − x0∣
δ
)

and let v = u(x, t)ηx0(x). Notice that

LA[v] = ηx0LA[u] +
ˆ
Rn

u(y, t)ηx0(y) − ηx0(x)
∥y − x∥n+1+s

A(x,t)

dy.
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If u is a solution of the equation ∂tu = LA[u] + f(x, t), then v = uηx0 solves

∂tv = LAx0
[v] + f̃(x, t),

where Ax0 = A(x0, t) and

f̃ = ηx0f +

=I1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(LA −LAx0

)[v]−
ˆ
Rn

u(y, t)ηx0(y) − ηx0(x)
∥y − x∥n+1+s

A(x,t)

dy = ηx0f + I1 − I2.

Theorem A.2 implies

sup
(0,T )

∥v(⋅, t)∥C1+s+α(Rn) ≤ C sup
(0,T )

∥f̃(⋅, t)∥Cα(Rn).

We claim that it holds
(A.8)

sup
(0,T )
(∥I1∥Cα(Rn) + ∥I2∥Cα(Rn)) ≤ Cδα sup

(0,T )
∥v(⋅, t)∥C1+s+α(Rn) +Cδ sup

(0,T )
∥u(⋅, t)∥C1+s+α/2(Rn).

Since in the argument to prove (A.8) the time does not play any role, we drop it in order
to simplify the notation. For µ ∈ [0,1] we denote Aµ(x) = (1 − µ)A(x0) + µA(x) and write I1
as

(LA −LAx0
)[v](x) =

ˆ
Rn

(v(y) − v(x))
ˆ 1

0

d

dµ
( 1

⟨Aµ(x)(y − x), (y − x)⟩
)

n+1+s
2

dµdy

= −n+1+s
2

ˆ
Rn

ˆ 1

0

(v(y) − v(x))
⟨Aµ(x)(y − x), (y − x)⟩

n+1+s
2

(⟨(A(x) −A(x0))(y − x), (y − x)⟩
⟨Aµ(x)(y − x), (y − x)⟩

) dµdy

= −n+1+s
2

ˆ
Rn

ˆ 1

0

(v(y) − v(x) − η(∣y − x∣)⟨∇v(x), y − x⟩)
⟨Aµ(x)(y − x), (y − x)⟩

n+1+s
2

(⟨(A(x) −A(x0))(y − x), (y − x)⟩
⟨Aµ(x)(y − x), (y − x)⟩

) dµdy,

where the last equality follows from symmetry. Let us define F ∶ Rn ×Rn → R as

F (y, x) = (v(y) − v(x) − η(∣y − x∣)⟨∇v(x), y − x⟩) (⟨(A(x) −A(x0))(y − x), (y − x)⟩
⟨Aµ(x)(y − x), (y − x)⟩

) ,

for y ≠ x and F (x,x) = 0. Then one may check that F satisfies the conditions in Remark 2.6
with a constant

κ0 = Cδα∥v∥C1+s+α +Cδ∥v∥C1+s+α/2 .

We leave the details for the reader as it follows from (3.10) and using an argument similar to
the one in the proof of Lemma 3.1 . We may thus use Remark 2.6 and obtain

∥I1(⋅, t)∥Cα(Rn) ≤ Cδα∥v(⋅, t)∥C1+s+α(Rn) +Cδ∥v(⋅, t)∥C1+s+α/2(Rn)

≤ Cδα∥v(⋅, t)∥C1+s+α(Rn) +Cδ∥u(⋅, t)∥C1+s+α/2(Rn).

The argument to bound the term I2 is similar. We write it as

I2 =
ˆ
Rn

u(y)(ηx0(y) − ηx0(x))
∥y − x∥n+1+s

A(x)

dy =
ˆ
Rn

(u(y) − u(x))(ηx0(y) − ηx0(x))
∥y − x∥n+1+s

A(x)

dy

+ u(x)
ˆ
Rn

ηx0(y) − ηx0(x) − η(∣y − x∣)⟨∇ηx0(x), y − x⟩
∥y − x∥n+1+s

A(x)

dy.
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We apply Remark 2.6, by first choosing

F1(y, x) = (u(y) − u(x))(ηx0(y) − ηx0(x))
and then

F2(y, x) = ηx0(y) − ηx0(x) − η(∣y − x∣)⟨∇ηx0(x), y − x⟩
to infer

∥I2(⋅, t)∥Cα(Rn) ≤ Cδ∥u(⋅, t)∥C1(Rn).

Hence we have (A.8).
Let us finally show how the claim follows from (A.8). First, by choosing δ small we have

sup
t<T
∥v(⋅, t)∥C1+s+α(Rn) ≤ Cδ sup

t<T
(∥u(⋅, t)∥C1+s+α/2(Rn) + ∥f(⋅, t)∥Cα(Rn)).

By using ∥u(⋅, t)∥C1+s+α(Bδ/2(x0))
≤ ∥v(⋅, t)∥C1+s+α(Rn) and by the choice of x0 and t0 in (A.7)

we deduce

sup
t<T
∥u(⋅, t)∥C1+s+α(Rn) ≤ Cδ sup

t<T
(∥u(⋅, t)∥C1+s+α/2(Rn) + ∥f(⋅, t)∥Cα(Rn)).

By interpolation (2.2) we have

∥u(⋅, t)∥C1+s+α/2(Rn) ≤ C∥u(⋅, t)∥
θ
C1+s+α(Rn)∥u(⋅, t)∥

1−θ
C0(Rn)

≤ ε∥u(⋅, t)∥C1+s+α(Rn) +Cε∥u(⋅, t)∥C0(Rn).

By choosing ε small we then have

sup
t<T
∥u(⋅, t)∥C1+s+α(Rn) ≤ C sup

t<T
(∥f(⋅, t)∥Cα(Rn) + ∥u(⋅, t)∥C0(Rn)).

The claim then follows from (A.6). □
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[23] R. Mikulevicius & H. Pragarauskas, On Hölder solutions of the integro-differential Zakai equation.

Stoch. Process. Appl. 119 (2009), 3319–3355.
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