NAPOLEONIC CONSTRUCTIONS IN THE HYPERBOLIC PLANE

SERENA DIPIERRO, LYLE NOAKES, AND ENRICO VALDINOCI

ABSTRACT. In the Euclidean setting, Napoleon’s Theorem states that if one constructs
an equilateral triangle on either the outside or the inside of each side of a given triangle
and then connects the barycenters of those three new triangles, the resulting triangle
happens to be equilateral.

The case of spherical triangles has been recently shown to be different: on the sphere,
besides equilateral triangles, a necessary and sufficient condition for a given triangle to
enjoy the above Napoleonic property is that its congruence class should lie on a suitable
surface (namely, an ellipsoid in suitable coordinates).

In this article we show that the hyperbolic case is significantly different from both the
Euclidean and the spherical setting. Specifically, we establish here that the hyperbolic
plane does not admit any Napoleonic triangle, except the equilateral ones. Furthermore,
we prove that iterated Napoleonization of any triangle causes it to become smaller and
smaller, more and more equilatera,]l and converge to a single point in the limit.

1. INTRODUCTION

The Napoleonic construction deals with triangles on a surface and proceeds according to
the following steps:

e A triangle PyP, P in a two-dimensional surface is given.

e Three equilateral triangles are constructed on the sides of PyP;P»: namely, one
takes points Q)g, ()1 and (2 on the surface such that the triangles PyP1Q2, P PoQq
and PyP,@Q; are equilateral (two different constructions arise, according to the
direction chosen for the points Qp, @1 and Q2).

e The centroids (i.e. barycenters) Ry, R; and Ry of the equilateral triangles P; PoQ,
Py P71 and PyP; ()7 are considered and the triangle Ry R R» is called the Napoleoniza-
tion of P()P1P2.

e If the Napoleonization RgRiRs is an equilateral triangle, then the initial trian-
gle PyPy P» is called Napoleonic.

The classical case of this construction occurs when the ambient surface is the Fuclidean
plane. In this situation, all triangles are Napoleonic: this is a famous result going under
the name of Napoleon’s Theorem: see e.g. [Griil2] and the references therein for the fas-
cinating history of this result (see also Figures 1.1 and 1.2 for a sketch of the Napoleonic
constructions in the Euclidean plane).

In the Euclidean case, Napoleon’s Theorem attracted the attention of several first-rate
mathematicians, including Fields Medallist Jesse Douglas; in fact, the question of extending
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FiGUrE 1.1. External Napoleonization of the Euclidean triangle with ver-
tices in (0,0), (1,2) and (3,4).

Napoleon’s Theorem from planar triangles to polygons is known as the Petr-Douglas-
Neumann problem, see [Pet08, Doud0, Neu41]. Napoleon’s Theorem also finds practical
applications in some optimization questions, such as the Fermat-Steiner-Torricelli problem,
see [Nah21].

Among the many modern extensions of Napoleon’s Theorem, a natural field of investiga-
tion is the discovery and classification of Napoleonic triangles in ambient surfaces different
from the Euclidean plane. This happens to be a rather difficult problem about which little
is known.

So far, the only ambient manifold for which all Napoleonic triangles have been classified
is the round sphere. Specifically, in [DNV24] it is established that if a spherical triangle is
Napoleonic then either it is equilateral or its congruency class lies in an explicit surfaces,
which, in an appropriate coordinate system, can be written as a two-dimensional rotational
ellipsoid (and, conversely, all congruency classes in this ellipsoid correspond to Napoleonic

-1 [ 1 2 3 4 2 1 0 1 2 3 4 2 1 0 1 2 3 4

FIGURE 1.2. Internal Napoleonization of the Euclidean triangle with ver-
tices in (0,0), (1,2) and (3,4).
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triangles). What is more, all non-equilateral Napoleonic triangles on the sphere produce
congruent Napoleonizations.

The case of Napoleonic constructions in the hyperbolic plane appears then as a natural
question. So far, to the best of our knowledge, the only available results in this setting
go back to [McKO01] and deal with an infinite sequence of recursively defined hyperbolic
triangles (as explicitly mentioned in [FisO1] this construction is inspired by Napoleon’s
Theorem, but structurally quite different from it). In particular, no specific investigation
of Napoleonic constructions in the hyperbolic plane has been carried out till now.

The goal of this paper is to fill this gap. For concreteness, as a model for the hyperbolic
plane we consider here the upper sheet of the unit hyperboloid in the Minkowski space
(see Section 2 for details). Our first result states that the only Napoleonic triangles are
the trivial ones (i.e., the ones for which the initial triangle was equilateral):

Theorem 1.1. If the Napoleonization of a hyperbolic triangle is equilateral, then the initial
triangle is equilateral too.

We stress that the hyperbolic case dealt with in Theorem 1.1 is surprisingly differ-
ent both from the Euclidean case (in which all Napoleonizations are equilateral) and the
spherical case (in which an ellipsoid of parameters produces non-trivial cases of equilateral
Napoleonizations). We believe that the structural differences of Napoleon-like results de-
pending on the geometry of the ambient surface is indeed a noteworthy phenomenon and
a brand-new line of investigation which deserves a deeper understanding.

Another question of interest in this setting is what happens after repeated Napoleoniza-
tions, i.e. by taking a hyperbolic triangle to start with, and applying the Napoleonic
construction over and over. For that target, given a hyperbolic triangle PyP;Ps, we de-

note its Napoleonization by P0(1)131(1)]32(1)7 and recursively we set Po(k)Pl(k)Pz(k) to be the

Napoleonization of Po(k_l)Pl(k_l)Pz(k_l). In this framework, our result goes as follows:

Theorem 1.2. As k increases, the triangles Pék)Pl(k)Pz(k) become smaller, more nearly
equilateral and, as k — 400, more nearly a single point.

We point out that Theorem 1.2 is in sharp contrast with the Euclidean case (flat triangles
remain equilateral and do not contract under repeated Napoleonizations, actually they
just rotate by 60°, up to relabeling vertices). The comparison with the Euclidean case also
highlights an unavoidable difficulty intrinsically linked to the proof of Theorem 1.2: indeed,
if repeated Napoleonizations tend to approach a point, the setting becomes “more and
more Euclidean” during the iteration, thus making the convergence to a point problematic
precisely when we approach the limit.

The rest of the paper is organized as follows. In Section 2 we gather some prelimi-
nary observations on the hyperboloid model and the hyperbolic triangles. In Section 3
we introduce a bespoke set of hyperbolic coordinates, which are different from the stan-
dard hyperbolic distance arccosh (—(-,-)) and come in handy to simplify several otherwise
cumbersome calculations. Sections 4 and 5 contain the proofs of Theorems 1.1 and 1.2,
respectively.
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2. PRELIMINARIES ON THE HYPERBOLOID MODEL AND THE HYPERBOLIC TRIANGLES
We recall that the Minkowski inner product ( , ) on R3 is given by
T T
((v1,v2,v3) ", (W1, we, w3) ™) 1= —v1wW] + Vows + V3W3.

Equivalently
(v,w) = (Jv) - w=v- (Jw),

where - denotes the Euclidean inner product and J is the 3 x 3 diagonal matrix

-1 0 0
0 10
0 01

The (upper unit) hyperboloid is
H:={PeR® st. (P,P)=-1 and (P,Ey) > 1}

where Ej is the timelike vector (—1,0,0)T. Moreover, we denote by Fy := (0,1,0)T
and F3 := (0,0,1)T.
As customary! we observe that if P, Q € H, then,
The hyperbolic cross-product x of vectors in Minkowski space R? is given by
vxw = J(v X w)

where X is the Euclidean cross-product.
Since J is orthogonal with determinant —1, we deduce from the formula

(Jv) x (Jw) = det(J)(J HT (v x w) = —J(v x w)
that, for any v, w, v/, w’ € R3,

(vxw, v xw'y = J(v x w) - (v xw') = —((Jv) x (Jw)) - (v x w').

I¥or an elementary proof of (2.1), one can write P = (p, P) and Q = (¢, Q), with p, ¢ € [1, +00) and P,
Q € R?, and use the standard Cauchy-Schwarz inequality. Indeed, we note that, for all a, b € R,

2pqab < p’a® + ¢°b%.
Also, choosing a := 1/Q - Q and b := V/ P - P, we see that 1 = —(P, P) = p? —b?, and similarly 1 = ¢® — a2,
yielding that p > b and ¢ > a and that
1= (0% — 1%)(% — a®) = P2 + a®b? — p*a® — ¢ < p°q” + a*b® — 2pqab = (pq — ab)>.

Consequently, pg > ab and pq — ab > 1. Thus, since

—(P,Q)=pqg—P-Q>pqg—+/(P-P)(QQ)=pq— ab,

the classical inequality in (2.1) plainly follows (and actually, tracing the equality cases in the above inequal-
ity, one also gets that equality in (2.1) holds if and only if P = Q).
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Therefore, using the Binet-Cauchy Identity,
gy TR = (0 () )+ () () )
= —(, v )(w,w') + (v, w’)(w,v").

The hyperbolic scalar triple product (u,vxw) of u, v, w € R? is also the Euclidean scalar
triple product u - (v X w), so it has the same symmetries.

Given two points on the hyperboloid, a third point can be written as a combination of
these two points and their cross-product. More explicitly, we have that:

Lemma 2.1. Let Py # P, € H. Then, any QQ € H can be written in the form

(2.3) Q=aoPy+ a1 P+ bP0>~<P1,
with

_{Q, Po) + (Po, P1)(Q, P1) (Q, Pr) + (P, P1)(Q, Py)
(2.4) —ap = = (B P12 and —a; = = (B )2 .
Also,
(2.5) —1=(Q,Q) = —af — ai + 2apa1 (Po, Pr) — b*(1 — (Py, P1)?).

Proof. We point out that, in light of (2.1) and the fact that Py # P,
1 —(Py, P1)* #0,

and therefore the coefficients in (2.4) are well defined.

Now, using the facts that (Py, Py) = —1 = (P, P) and that (Py, PopxP)) = 0 =
(P, Pyx P) and (2.2), we see that
(Q.Q) = (aoPy+ arP1 +bPyxP1,a0Py+ a1 P, + bPyx Py)

= —ad — a} + 2apa1(Py, P1) 4+ b*(Pyx Py, Pyx P;)
= —a} — a? + 2apa1(Py, P1) + b*((Py, P1)* — 1),

which gives the claim in (2.5).
Thus, noticing that

—aop + a1 (P, 1) = (Q, Py)
and  ao(Po, P1) —a1 =(Q, P1),
we obtain (2.4), as desired. O

The case of isosceles and equilateral triangles on the hyperboloid are particular cases of
Lemma 2.1 and go as follows:

Corollary 2.2. Let PyP1Q be isosceles with Py # Py and (Py, Q) = (P1,Q).
Then, @ can be written as in (2.3), with

(2.6) —ap = —a1 = —a = %.

Proof. When (P, Q) = (Py,Q), we have that (2.4) reduces to (2.6). O
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Corollary 2.3. Let PyP1Q2 be equilateral with Py # Py # Q.
Then,

QQZ —<P0,P1>(P0+P1)+€2 1—2<P0,P1>P0>~<P1
1- <P07P1>

with €y € {—1,1}.
Proof. We recall that, being Py P1Q2 equilateral, we have that
(Po, P1) = (P, Q2) = (P1,Q2).
Therefore, by (2.5) and (2.6), used here with @ := @2, we see that
b2 (1 — (Py, P1)?) =1 —2a*(1 — (Py, P1))

_1 g (PP (1=2(Ro P))(L+ (R, P1))

1— (P, P) 1—(Py, P1)
As a consequence,
1—2(R, 1)
b=e¢9
1—(Py, P)
and the desired result follows from (2.3). O

We now reconsider Corollary 2.3 with the aim of identifying the centroid of an equilateral
triangle on the unit hyperboloid (where, by definition, the centroid of a triangle is the sum
of the coordinates of its vertices projected over the hyperboloid):

Lemma 2.4. Let PyP1Q2 be equilateral with Py # P1 # Q2. Let Ry € H be its centroid.

Then,
R V1 —2(Po, P1)(Po+ P1) + e2Pyx Py
2 pr—
V3(1 — (Py, P1))

with eo € {—1,1}.

Proof. The centroid Ry of the equilateral hyperbolic triangle PyP,Qs is Ro / —<]A%2,R2>,
where

Ry := (1 —2(Py, P))(Py+ P1) + e2y/1 — 2(Py, P,) Pyx P,
and, thanks to the equality in (2.2),
—(Ry, Ry)
= 2(1—2(Py, P1))? — 2(1 — 2(Py, P.))*(Py, P1) + (1 — 2(Py, P))(1 — (Py, P1)?)
= (1—2(Py, P1))(2(1 — 2(Py, P1)) — 2(1 — 2(Py, P1))(Po, P1) + 1 — (Py, P1)?)
= 3(1—2(Ry, P1))(1 = (Py, P1))*.

The desired result now plainly follows. d
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3. A BESPOKE SET OF HYPERBOLIC COORDINATES

From now on we consider three distinct points Py, P, P, € H and define

(3.1) = =1+ (P, P1) + (P1, P2) + (P2, Ry)
and
(32) X = <P0>~<P1,P2>.

We stress that « is symmetric with respect to permutations of Py, P; and P», and that x
is symmetric with respect to cyclic permutations.

Since Theorems 1.1 and 1.2 are invariant under permutations of Py, P; and P, we can
list the vertices Py, P; and P» so that

(3.3) x = 0.

This reordering of vertices will be implicitly assumed in what follows.
From now on, we will also consider Qy, Q2 € H such that PyP;Q2 and PPy are
equilateral. Let also Ry be the centroid of P; P>y and Ry be the centroid of PyP;Q.
With this notation, we can take a step further from Lemma 2.4 and obtain that:

Lemma 3.1. We have that
3(1 — (Po, P1))(1 — (P1, P2))(Ra, Ro)

= Oé\/l — 2<P0, P1>\/1 — 2<P1, P2> + X(eo 1-— 2<P0, P1> + €91 — 2<P1, Pg))
—e2e0((FPo, P1){(Pr1, ) + (Fo, P)),
with €g, € € {—1, 1}.

Proof. By swapping indexes in Lemma 2.4, we see that the equilateral hyperbolic trian-
gle P PoQ)p has centroid

Ry = V1—=2(Py, P)(P1 + P) + e Py >~<P2'
V3(1—(P1, P2))
Therefore, exploiting (2.2) and the cyclic symmetry of the hyperbolic scalar triple product,
3(1 = (P, P1))(1 = (P1, P))(R2, Ro)
= (\/1—=2(Py, P)(Py+ P1) + eaPyx P, \/1 — 2(Py, P) (P, + P5) + g Py X )
= /1 —2(Py, P\)\/1 —2(Py, P)(Py + Py, P, + P»)
+e0y/1 — 2(Py, P){(Py + Py, PLXPy) + €21/1 — 2(Py, P} (PyX PL, P, + Py)
+egeq(Pox Py, Py x P)
= \/1=2(Py, P1)\/1 = 2(P1, Po)(=1 + (Po, Pr) + (P1, P2) + (P», P))
+(eg/1 —2(Py, P1) + ea\/1 — 2(Py, P2))(Pyx Py, P»)
—eaeg((Po, P1)(P1, P2) + (Po, P»)).
From this the desired result follows. O
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We now introduce a new set of “hyperbolic units of measurements”, technically and
conceptually different from the standard hyperbolic distance arccosh (—(-,-)), which come
in handy to simplify several otherwise cumbersome calculations. Namely, we define

do = 1-— 2<P1, P2>,
(3.4) di = /1 — 2(Ps, Py)
and dg = 1- 2<P0, P1>

We point out that (dy,d;,ds) defines the congruency class of the hyperbolic triangle, and
that these hyperbolic coordinates are well defined, thanks to (2.1).
The main features of these hyperbolic coordinates are the following:

Lemma 3.2. For all i € Z/3Z, we have that

(3.5) di > V3
and
(3'6) d12 (dl+1 )(dz+2 )

Proof. The claim in (3.5) follows directly from (2.1).
Also, by the triangle inequality in H (see e.g. page 70 in [Ive92]), for ¢ € Z/3Z,

d —1 a2, -1 .. =1
arccosh < 5 > < arccosh <l+12> + arccosh <H22> )

We recall that

cosh (arccoshx + arccoshy) = 2y + /(22 — 1)(y2 — 1).
Therefore, using this formula with z := dZL and y := dl” ! , we find that
2d12 -2 < (dz—‘rl z+2 \/ i+1 - 3)(d;l+2 - 2d12+2 - 3)
< 2(d - )(di+2 - 1)7
from which one obtains (3.6). O

Now we calculate o and x:

Proposition 3.3. We have that

(3.7) 20 =1—d%—d? — d3
and
(3.8) 2y = \/3(83 + 3 + dB) — (Bd? + B} + A3+ d + d + d) + 3.

Proof. The claim in (3.7) follows from (3.1) and (3.4).
To calculate x note first that, by Lemma 2.1,
(Po, Po) + (Po, P1)(P1, Py) ,  (P1, Py) + (B, P1) (P, Ph)
1— (Py, P1)? 0 1— (Py, P1)?

Py =— P1+bP0>~<P1.
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Hence, using also (2.2),
X = (PyxP1, Py) = b(Pyx Py, Pyx Py) = —b(1 — (P, P1)?).
Moreover, by (2.5),

b*(1— (Py, 1))
= (1- <P0,P1>2)2(1 — a% - a% + 2apa1{Py, P1))
= (1= (P, P1)%)? = (P2, Po) + (Po, PL)(P1, P2))* = ((P1, Pa) + (Po, P1)( Py, Py))?
+2((P2, o) + (Po, P )(Pr, Po)) ((Pr, ) + (Po, P1){(P2, Fo))(Fo, P1)
= (1= (P, P1)*)* +2(Py, P)*(Py, Po)(P1, P2) — 2(Py, P1)( Py, Pa)(P1, Py)
+(Py, P1)*(Po, Po)* + (Py, P)* (P, P2)? — (Py, P2)? — (P1, Py)°
= (1—(Po, P))*)(1 — (P, P1)? — (P1, P2)* — (P2, Po)* — 2(Py, P1){(P1, P2)(Ps, Iy)).

Thus, we find that

X = —b(1—(Py,P)?
= +/1— (P, P)2 — (P, P,)? — (P, Ry))?2 — 2(Py, P){(Py, P5)(Ps, Py)

and then (3.8) follows from (3.3). O
Now we define

(3.9) v :=3(d3 +1)(d} + 1)(d3 + 1)

and we have the following two estimates:

Lemma 3.4. It holds that

1
(3.10) (2x)* < 3 Z di (7, — 3)(dFys — 3)
=0
(3.11) and —24ax < 7.

Proof. By (3.8) and the standard Cauchy-Schwarz inequality applied to the 3-dimensional
vectors (d2,d3,d3) and (d3,d3,d3), we see that

(2x)? = 3(d2+ d% +d%) — (d3d3 + d3d3 + d3d2 + df + d} + d3) + did3d3
< 3(dE+ d2 +d3) — 2(d2d? + d3d3 + d3d3) + d3dida

2
1
= 3 Z dzz(dzzﬂ - 3)(d12+2 - 3).
i=0

This proves (3.10).
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To prove (3.11), we recall (3.7) and (3.8) and we write
—24ax = 6(—2a)(2x)
3((20)% + (20)%)
3((d2 4 d? +d3 —1)* +3(d3 + d3 + d3)
—(d3d} + did3 + d3d3 + d + di + d3) + didid3)
= 3(Bdid5 + did3 + did3 + d3d3 + d3 + dF +di + 1).
From this and (3.9), we obtain (3.11), as desired. O

N

4. NAPOLEONIC TRIANGLES AND PROOF OF THEOREM 1.1

From now on, we suppose that Py, P, and P, are not cogeodesic, namely x # 0. Hence,
by (3.3),

x > 0.

Set also® g = €1 = €3 = € := +1.
Lemma 4.1. We have that, fori € 7Z/3Z,
V(Ris+1, Riya)

U0 (@ ) (Uit + exldn +disn)) — (&1~ Dy — 1) + 2~ 1)
and

Y((Rit2, Ri) — (Ri, Riy1))
(4.2)

= 4(di+2 — di+1) (Oé(do +dy + dy — d0d1d2) + EX(l —dody — didy — d2d0)>
Proof. Using Lemma 2.4 we write that

3(1 = (Piy2, Pi))(1 = (P, Pi1))(Rit1, Rito)
= (V1= 2Pz, P} (Posa + P) + €Pia % Poy /1= 2P, P} (P + Pigt) + P Pig1 )

Therefore, recalling also the definitions in (3.1), (3.2) and (3.4) and exploiting (2.2),
3(1 = (Piya, Pi))(1 = (P, Piy1))(Rit1, Rit2)
= dit1di2((Po, P1) + (P1, Pa) + (Po, P2) — 1) + exdit1 + exdit2
(4.3) — (P, Piy2)(Pi, Pis1) — (Pig1, Pig2)
(dFy — D(dZ — 1) L4l
4 2

= adit1diyo + ex(diq1 + diga) —

2Because of these choices, if (P, Po) = (Po, P1) then (R2, Ro) = (Ro, R1). Similarly, if (P, P1) = (P, P2)
then <R0,R1> = <]'?41,]'22>7 and if <P1,P2> = <P2,Po> then <R1,R2> = <R2,Ro>.
Our attention is not limited to the case where PyP; P> is isosceles.
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Also,

(1~ (Poy2, PY)(1 — (P Puya) = <1_;@4><1_1-;ﬁu>

4(1 + derl)( + d?‘l’?)‘

Plugging this information into (4.3), we conclude that
1

Rii1, Riyo
ir, Rigo) = B(1+d2,,)(1+d2,,)

X (4(04dz'+1dz‘+2 +ex(digr +diga)) = (diy = 1)(dFyp — 1) + 2(df - 1)>~

Thus, the claim in (4.1) follows from this and the definition of v in (3.9).
Now, to prove (4.2), we set

= (d7,1 + 1) (adipad; + ex(diva + d;)) — (dy + 1) (adidir1 + ex(d; + dit1))
and we see that T; expands as
ad; (diga(diy +1) = dig1 (45 + 1))
tex((dyy + 1) (diga + di) — (d7y o + 1)(di + dit1))
= (dirs — dis1)(adi(1 — digrdirs) + ex(1 — dody — didy — dadp)).
Using this and (4.1), we find that
Y((Riya, Ri) — (R, Rit1)) — AT;
= (s + 1) (4(adidips + ex(di + dis2)) = (& = V(P = 1) + 2(d2, — 1))
—(dfp + 1) (4(adi+1dz‘ +ex(dirr +dy)) = (dfpy — 1)(df — 1)+ 2(d7,5 — 1))
—4(d§+1 + 1) (adirod; + ex(diva + d;)) + 4(d7 5 + 1) (adiditr + ex(di + diy1))
— (1 + D)( 3y = 1) = (dFyp + 1)(dF g — 1)) (dF = 1) +2(dy; — diy)
= _2(d1+2 dz+1)(d2 -1+ 2(d2+1 d?+2)
= —2(d}yp — diy)(dg + di +d5 — 1)
= da(dfyy — dFyy).
From these considerations, we obtain (4.2). O

Corollary 4.2. Suppose that PyPy P> is not equilateral.
Then, RyR1 R is equilateral if and only if

(4.4) a(do +di + do — dodldg) + 6X(1 —dod1 — di1dy — dgdo) =0.

Proof. By Lemma 4.1, we have that if (4.4) is satisfied then RyRjRs is equilateral.
Conversely, if RgR1Rs is equilateral, then (R; 9, R;) = (R;, Riy1) for i € Z/3Z. In light
of Lemma 4.1, this is true if and only if either d;11 = d;12 or (4.4) holds true. Notice that
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it cannot be that d;11 = d;12 for all i € Z/37Z, since PyP; P, is not equilateral. Therefore,
in this case, we see that (4.4) must be satisfied. O

With this preliminary work, we can now complete the proof of the non-existence of
non-trivial Napoleonic triangles in the hyperbolic plane.

Proof of Theorem 1.1. Suppose that PyP; P> is Napoleonic, i.e. RgR1Ry is equilateral.
If PyP) P is not equilateral then (4.4) implies that
(4.5) a?(do + dy + day — dodrd)* — X*(1 — dody — dida — dadp)* = 0,
with a and x? given by (3.7) and (3.8) as symmetric polynomials in doy, d; and da. After
these substitutions, one sees that the left-hand side of (4.5) is
i(u — 2~ d?— d2)2(do + dy + dz — dodyda)?
f@%+ﬁ+£y4%ﬁ+ﬁ£+£%+%+ﬁ+£w¢%%@u—%m—m@f@%ﬂ,

that in turn equals to

o (o — d)? + (dh = d)? + (da — do)? ) (df + d + a3 + dody + drdz + dady — 2)),
which is strictly positive.
Accordingly, we have that PyP; P, must be equilateral. In conclusion, all Napoleonic

triangles in H are equilateral, as claimed. O

5. NAPOLEONIC PROGRESSIONS AND PROOF OF THEOREM 1.2

From now on, we deal with repeated Napoleonization. For this purpose, we use the
notation introduced in Section 3 and, after a cyclic relabelling, we can suppose that

(51) do == maX{do,dl,dQ}.
For i € Z/3Z, we let
(5.2) ¢; = /1= 2(Ris1, Rita).

We remark that e; are well defined, in light of (2.1) and the fact that R;11, R;+o € H.
We also define

4
TW:;qu%m@—%—m—@yqq@m+m@+@%—n)
and
|74l
5.3 Ty = .
(5:3) " dig + digo
We point out that, with this notation, equation (4.2) reads as
(54) 6124,2 - 6124,1 - Td(di—l—Q - di-i—l)'
Moreover, we observe that for ¢ = —1, we have that ry > 0. Therefore, in this case, ey, €1

and ey are in the same order as dy, di and ds.
The main calculation needed to understand repeated Napoleonization is as follows:
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Proposition 5.1. We have that
(5.5) ri < pi= 2 + 2 + —= ! ~ 0.93319.
t 327 33
Proof. Applying the Cauchy-Schwarz inequality to the vectors (dy, di,d2) and (dy, da, dp),
we see that
dody + dydy + dody < d2 + d? + d3.

This observation and (3.11) give that

4
’Td| < 5( — 20é(d0d1d2 — d() —d — dg) + 2X(d0d1 + dids + de() — 1))

4
< (-~ 20(dodidy — do — dy — dy) + 2(df + f + 3 1))
(5.6)
4
< f( — 2a(dodvds — do — dy — d) — 4ax>
5
4 2
<—( - —do—dy — .
< 7( 2a(d0d1d2 do dq dg)) + 3
Furthermore,
4 4 (d} + &2 + d3 — 1) (dodydo — do — dy — dy)
—( = 2a(dodrdy — doy —dy — dy)) = =
7( a(dodrdz = do — 2)) 3 (2 +1)(d2 + 1)(d2 + 1)
o4 d2+d3+d3—1
! dod, dy
4 (d? —1)(d3—1)+d? +d3
S 3 dodydy
A (did3+1
~ 3\ dodidy

where the last inequality uses (3.6).
Accordingly, using (3.5), we conclude that

4 4 (dids 1
— — d — —di —d <—-|—+—.
( 2()&(d0 1d2 do 1 2)) S 3 < do 3\/3)

We now observe that
2d1dy = didy + didsy < dg (d1 + dg) ,
thanks to (5.1), and therefore
4

4 2
;( — 20&(d0d1d2 —dop —di — dg)) < § (d1 + dz) + ﬁ

Plugging this information into (5.6) we thereby find that

2 4 2
“(dy +do) ¥ —=+ =
3< 1+ 2)+9\/§+3

rq] <
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Consequently, recalling (5.3) and using (3.5) and (5.1), we have that, for any i € Z/3Z,
4 2) 2 2 1

< ! <2 (d1 + d2) + +5 ) <5+t
rl X 5  , 4 o = o X 5 ar )
dig1+dia \3 T 937 3) 53 271" 33

which gives (5.5), as desired. O

For our purposes, Proposition 5.1 is important, since it shows that repeated Napoleoniza-
tion, with € = £1, gives a sequence {Pék)Pl(k)PQ(k) : k > 0} of hyperbolic triangles, with
geometrically decreasing differences of lengths of sides. This allows us to complete the
proof of Theorem 1.2: in this respect, we distinguish the contractive iterations when € = 1
and when ¢ = —1.

Proof of Theorem 1.2 when e = 1. For € = 1, we deduce from (3.9), (4.1) and (5.2) that

612 —-3=1- 2<Ri+1,Ri+2> -3
= —2(1 + (Rit1, Riy2))

2
= <’Y +4(dF + 1) (adir1diys + X(dig1 + dit2))

— (@ + 1)@y = 1)y — 1) + 2~ 1)(d +1))

(5.7) )
T (@, D) (d ) <3(d12+1 +1)(d}ys + 1) +dadip1divs
i+ i+
+aAx(digr + diva) — (dFq — 1)(dF s — 1) +2(dF - 1))
2
- 2 2 Ui)
S(di—‘rl + ]‘)(dH_Q + 1)
where

Ui = —4dx(dit1 + dit2) — dadipadigs + (dFyy — 1)(df s — 1)
—2(d} —1) = 3(d}y + 1)(d7 1y + 1)
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We also observe that, recalling (3.7),
Ui < —4dadipidis + (dfy = 1)(dFy — 1) = 2(d7 = 1) = 3(d7yy + 1)(d7 5 + 1)
= —da(dip1dipr — 1) = 24 2d5 + 2d} + 2d5 + (df; — 1)(d7 5 — 1)

—2(df — 1) = 3(di; +1)(d7 5 +1)
= —da(dipdips — 1) — 2(dy + 1)(df 5 + 1)

= = 2((1 = d ~ d} — B)(dirdiva 1)+ (@) +1)(@p + 1))

= 2( —dij1dipe + A diprdizo + &by dio + dirdl g — d7
—2d}, ) — 2d},, dz+1d1+2>

= 2((di+1di+2 = 1)(d7 = 3) + (dfyy + diio — 3 — digi1diso)

+ (21 — diy1diva + dyo) (dis1dio — 3)).

(5.8)

Now we set g = max{d? —3:j € Z/3Z} and we claim that

(dis1dira — 1)(df = 3) + (df4y + d7 s — 3 — diy1diga)

(5.9)
+ (&2, — digrdiva + dF o) (digrdivo — 3) < (d2yy + dis + Vg

Indeed, if pg = 0 then, in light of (3.5), we have that d; = v/3 for all i € Z/37Z and so also
the left-hand side of (5.9) equals zero. Therefore, in this case we are done. Hence, from
now on we suppose that pg # 0.

In this case, we point out that

A7)+ d7 g — 3 —digadigo

dit1divo — 1+ +diy —digidiga + dFyy

Hd
2 +d? ., —3—dip1dipo —
= 2 (Asialas +dz+1 +d12+2
Hd
d? 5 — dirodiiq
< i+2 1420+ +dz+1+d12+2
ftd
d? 3
< A2y A7y +di

Hd
< 14dig +d7p,

where (3.5) has also been used. This implies (5.9), as desired.
Using the information in (5.9) into (5.8), we obtain that

Ui < 2(d}y1 + di g + Dpta.



16 SERENA DIPIERRO, LYLE NOAKES, AND ENRICO VALDINOCI

Hence, by (5.7),

(5.10) e? -3 < 1 ( B+ diyy 11 > Ihd-
‘ 3N\ &y + A2y +dFy+ 1

Now we point out that

G tdip+l 1 1 1 1.1 1 7
dz2+1d12+2 d12+2 d?—i—l dz?-&-ldz?-&-Q 3 3 9 9

thanks to (3.5), which gives that

iy +dfyy+1 7

< .
A7 A7y + i +df g +1 16

From this and (5.10) we deduce that

Consequently, setting j. := max{e? — 3 :i € Z/3Z}, we find that

7

. < — g
(5.11) He S 5Hd

Thus, for e = 1 the hyperbolic triangles Po(k) Pl(k)PQ(k) satisfy

k
0 < max {(dM)2 —3:iez/32} < (172) m

In particular, for i = 0,1, 2,

lim dl(k) =3,

k—4o00

establishing the desired result.

0

Proof of Theorem 1.2 when ¢ = —1. For ¢ = —1, we have that r4 > 0. Accordingly, with-
out loss of generality, we may suppose that e;; < e;, < e, where d;; < di, < djy,

with ig =0 and {il,iQ} = {1,2}
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By (3.9), (4.1) and (5.2), we have that
e2—3=1-2(R;,Ry) — 3
= —2(1 4 (Ry, Ry))

2
= (7 +4(d} + 1) (adids — x(dy + do))

— (d+ 1)} = 1)(d3 = 1) +2(d} + 1)(df — 1))

(5.12)
= - 3(d2 + 1§(d§ ) (3(d% +1)(d3 + 1) + 4(adidy — x(d1 + da))
— (df = 1)(d} — 1) +2(dj — 1))
_ 2 U
C3@E D@+
with

Up := 4x(dy + dg) — 4adydg + (d3 — 1)(d5 — 1) — 2(d3 — 1) — 3(d3 + 1)(d3 + 1).
We remark that, using (3.7),
Up = 4x(dy + d2) + 41 — dids) — 2 + 2d3 + 2d? + 2d3
4 (d3 —1)(d5 —1) —2(d%2 — 1) = 3(d? +1)(d3 + 1)
= dx(dy + do) + 41 — dydy) — 2(d2 4+ 1)(d3 + 1)
= 4x(dy +do) +2(1 —d2 — d3 — d3)(1 — dydo) — 2(d? +1)(d3 + 1)
= 2(2x(dh + do) — &} — 2} — 243 — dydy + (@} + &} + d)ddy — d3d)
= 2(2x(dh + da) + (didy — )(dF = 3) + (d + & — 3 — drdy)

(5.13) ) ;
4 (d? — didy + d2)(drds — 3))

2<d1+d2\l Zd2 71— 3)(dF, — 3)

+ (dydy — 1)(d3 — 3) + (d3 + d3 — 3 — d1ds)

+ (d} — dydy + d3)(dyda — 3)) ;

where (3.10) is used for the inequality.
Also, we claim that

(didy —1)(d2 — 3) + (d? + d3 — 3 — dydy) + (d? — didy + d2)(dyda — 3)

(514 < (& + )33
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Indeed, if dy = +/3, then (3.5) and (5.1) give that also d; = d2 = +/3, and so the left-hand
side of (5.14) vanishes as well, thus establishing the desidered inequality.
If instead do > v/3, we recall (5.1) and we see that

2, 2 o
d1d2—1—|—d1+d2 3 —dids

+ d? — dydy + d3

-3
in{d?,d3} + d?,d3} — didy — d?
_ min{d, d3} mz;<{132} 142 0 4 2 4 g2
-
a2 21
< m1n{d1,2d2} dydy i+ d
_ min{dy, da} (min{dy, dz} — max{dy, da}) PCEp
-3 1 2
< di+d3,

which implies the desired inequality in (5.14) in this case as well.
From (5.13) and (5.14), and recalling also (5.1), we thereby conclude that

2
1
Up <2 | (dy + dy) §Zd§+d§+d§ (d2 —3)
=0

< 2| 2dy

2
1
3 > d3+2d5 | (df - 3) < 8dj(dg — 3).
=0

This and (5.12) entail that

16d2(d3 — 3)
5.15 2_3< 020 .
(5.15) 0 3(d? +1)(d3 + 1)

Now, writing
k k k K
D® = (@®)2 .= 1 - 2(P®), PY)),
we have that
3 <D, DI < DIV

With this notation, we deduce from (5.4) and (5.5) that

(5.16) DI — DY <o ~ DY) for j=1,2,

where p € (0,1) is independent of k, and also independent of PéO)Pl(O) PQ(O) = PyP Ps.
Moreover (5.15) becomes
(k) (k) _
(5.17) Dy g ep D0 25
3Dy +1)(Dy’” +1)
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By (5.16), we can choose kg so large that
0 = p* max {D{” - D{”, D" - D"} < 1.
In this way, we see that, for all k > ko,
D(()k) _ D§k) < prHl (D(()O) _ D](O)) < pho (D(()O) _ D(_O)) < 8.

Hence, by this and (5.17), for k > ko,

16D (D) — 3)
3(DSF 41— 5p)?2

16 1—4g 4 — g 25
=34+ (1-—0 J[1-——2%0 )2
3< ng)+1—50>< Dg’“>+1—50> 3

namely Sy := 25/3 is an upper bound for the sequence {D(()k) ck > kot
We will now iterate this argument as follows. For p € N, suppose that we have d, > 0

D+ <34

and an upper bound [, for the sequence {D(()k) : k> kp} for some k, € N. Notice that, in
light of (5.17), the upper bound £, > 3. Suppose also that 6, > 0 if 5, > 3, and 6, = 0
otherwise.

If B, =3, set dp41 := 0, Bpy1 :=3 and kpy1 =k, + 1.

If instead B, > 3, by (5.16), we can choose k,4+1 > k, so large that

bpi1 = p'+ max { DY — DI, D" — DI’} < min {1, %”,ﬁp T 14y ip} ,

and we stress that the right hand side is positive because 3, > 3.
Also, by (5.17), for k > kp+1 > k,, we have that D(()k) < fp, and therefore

Dék+1)<3+16<1— L= Opi1 )(1— 4= pi )
3 D 415,14 D +1 - 6,4

16 1—6pe1 )( 4—6p41 )
<34+ —=(1-— 2 ) (10— )= ,
3 < Bp+1—0dp11 Bp+1—=0p1a o

namely (3,11 is an upper bound for the sequence {D(()k) tk > kpi}
Also,
16 Bp(Bp—3)

A I A e )

_ (529 —3) . 165, — 3<5p +1- 6p+1)2_

3 (Bp +1 = dps1)?

We point out that, from the definition of &, 1, we have that 168, — 3(8, + 1 — d,41)? < 0,
and thus 8,11 < B,. We conclude that the sequence of upper bounds 3, is nonincreasing

(5.18)
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and bounded below by 3, and accordingly the following limit exists:

Boo = pggloo Bp
with s = 3.
Moreover, evidently,
lim ¢, = 0.
p—+oo

As a result, taking limits in (5.18),

~ (Boo=3) 168 =3B +1)* (B —3)°’(3B — 1)
0= . - _
3 (Boo +1)2 3B +1)2
This entails that S, = 3.
Hence, for j = 1,2, we have that

3< lim D™ < lim D =3,

k—+o00 k—+o00
namely
kgr-II—loo dl(k) B \/§,
yielding the desired result. U
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