SYMMETRY FOR A QUASILINEAR ELLIPTIC EQUATION IN HYPERBOLIC
SPACE

RAMYA DUTTAT AND KUNNATH SANDEEP'!

ABSTRACT. In this article we establish the sharp decay estimates and Hyperbolic symmetry of
solutions to the quasilinear elliptic equation

- A];Hnu — MuP?u = |u|? *y in H"
u>0, u€ D"P(H")

n—1

p
in the n-dimensional real Hyperbolic space H" where, A € [0, Amax) With Apax = < > the best

np

constant of the Poincaré inequality in H® and p < ¢ < p*, p* = - )
-p

1. INTRODUCTION

Understanding the sharp constants and extremals of Sobolev Inequalities is an important problem
due to its applicability in the study of many partial differential equations. One of the important
example in this direction is the well known Yamabe problem from differential geometry where the
knowledge of extremals of the Euclidean Sobolev inequality or more generally the classification of
positive solutions of the corresponding Euler-Lagrange equation is used in a very crucial way. In
the case of Euclidean space extremals of Sobolev inequalities have been classified by now and one
of the main development in the process has been establishing the radial symmetry of solutions.

In this article we study the Hyperbolic symmetry of solutions of the following quasilinear PDE

in the n dimensional real Hyperbolic space (H", g) of constant sectional curvature —1:

_A]HI" - )\ p—2 — q—2,, : H"»

b U ]ul\ u = |u|!""u in (1.1)
u>0, ueDPH").

The equation (1.1) is the Euler-Lagrange equation satisfied by the extremals of the Poincaré-Sobolev
inequality in (H", g) given by

p/q
9l =l vy = 50, ([ v} vae e (12)
Hn Hn
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2 VeulP dV, -1
where, A € [0, Apax) and Apax :=  inf Jur | gp|g - (n
weCHHEN [y, |ulg dVy P

in the Poincaré inequality in Hyperbolic space, Agﬂnu = div,(|V,ul’">V,u) is the corresponding

p
) denotes the best constant

*

n
p-Laplace operator, 1 <p<n,p<q<p",p' = P denotes the critical Sobolev exponent
n—p

1/p
and D'?(H") is the completion of C}(H") with the norm (/ |V gulh dVg) . Note that when
HTL

n = 2 we are only considering p < 2 and ¢ € (2,p*] where, p* = 2_]9 A solution of (1.1) is a
—P
u € DYP(H™) satisfying

/ [1V5ul29(V u, V) — Alup~2ug] dv, = / [ul?%ug dV,, ¥ ¢ € D'P(H").
n Hn

By writing this equation in either the Poincaré ball model or in the upper half-space model, it can
be easily seen from the standard regularity theory (see [35], [18]) that the solutions of (1.1) are
indeed C** for some a € (0,1).

Our main result in this article is the sharp asymptotics and Hyperbolic symmetry of solutions
of (1.1).

Theorem 1.1. Let, u be a solution of (1.1), then there is a point O € H" and a positive strictly
monotone decreasing function ® : [0,00) — Ry such that u(z) = ®(distg-(O,x)). The function
®(t) is C' at t = 0 with ®'(0) = 0 and smooth for all t > 0. It satisfies the pointwise bounds
ce” ™ < P(t) < Ce ™M for allt > 0, ce” ™ < —d'(t) < Ce™™ for all t > 1, where, ¢,C > 0

d'(t
are some positive constants (which depend on ®) and tlim (<t)> = —a,, where, ay is the unique
—00
-1 n—-1
positive oot of |a|P"2a(n — 1 — (p — 1)a) = \ such that ay € (n , o 1} :
p p—

In the case of Euclidean Sobolev inequality, the corresponding Euler-Lagrange equation

—Apu = |ulf" " in R",u > 0,u € D'P(R") (1.3)
has been studied in detail. When p = 2, the symmetry of solutions has been established in the
seminal work of Gidas-Ni-Nirenberg [20] using the moving plane method. However when p # 2 there

are many obstructions for proving the symmetry of solutions for the p-Laplace equations using the
moving plane method mainly due to the lack of strong comparison principle, lack of tools to get the
moving plane argument started from infinity (in the case of problems in unbounded domain) etc.
Note that the p-Laplace operator is elliptic on points where Vu # 0 and in the complement it is
either degenerate or singular depending on p > 2 or p < 2 respectively. The first significant progress
in applying the moving plane method for the p-Laplace case was made by Damascelli in [10] where
he proved the radial symmetry for positive solutions of equations of the form —A,u = f(u) with
Dirichlet boundary condition in bounded domains in the Euclidean space. The results in the entire
space R" was established in [12] for solutions of the same PDE with proper decay/integrability,
where f was non increasing in some interval (0, s9). See also [32] for related developments.

In the case of Sobolev extremals, the nonlinear term is strictly increasing and hence the results of
[12] can not be applied to obtain radial symmetry of Sobolev extremals. It was shown in [13] that
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when 1 < p < 2 the symmetry of (1.3) follows if the solutions have a decay namely u(x) < Clz|™,
IVu| < Clz|~™* for |z| large (additionally u(x) > c|lz|™™ for |z| large when p* < 2) where,

n —
m> 2P The symmetry result was proved in [11] without any additional decay assumption

p
2n

when 5 <p<2(ie,p<2andp*>2).

Tools for handling the issue of strong comparison in the general case p > 2 was developed by
Damascelli and Sciunzi in [11], [15]. Again these informations are not enough to obtain symmetry
results for (1.3) in the full range of 1 < p < n. The first break through in this direction was
obtained by Vétois [37] where he proved that the solutions of (1.3) satisfy the sharp decay estimate
w(z) ~ |z| 71 and |Vu| < C’].:EF% for |z| large. With this and the results of [13] the symmetry
results follows when 1 < p < 2. The symmetry result for the case p > 2 was completed by Sci-
unzi [30] by establishing a precise pointwise gradient bound |Vu(z)| ~ |:v|_z%11 for |z| large. More
recently the classification result for (1.3) has also been established by a technique independent of
the moving plane method in conical domains as well as the full Euclidean space R" in [9]. We also
refer to [3], [27] and [38] for the classification result of (1.3) where the finite energy assumption
u € D'P(R™) has been relaxed in certain range of p and n.

Coming to the equation (1.1), when p = 2 the symmetry of solution has been studied in [1] for

1
A< Zn(n — 2) and subsequently extended to the full range of A in [24] using the method of moving

plane. Consequently in [24] the solutions have been studied thoroughly by analysing the corre-
sponding ordinary differential equation. In this situation the moving plane method can be applied
as we are in the elliptic regime and we have appropriate Sobolev inequalities. Thus the Euclidean
method can be adopted to this geometric situation by reflecting over foliations of the Hyperbolic
space.

Our main focus in this article is the case p # 2. Like in the Euclidean case here also the is-
sues are lack of strong comparison principles and also moving the plane from infinity. The issue of
strong comparison principle in bounded subsets of H" can be established by suitably adapting the
ideas of [14], [15] to the Hyperbolic space, the main challenge in this case is to establish the precise
asymptotic estimates at infinity.

The most important contribution of this article is to establish sharp asymptotic estimates to the
positive solutions of (1.1) and its gradient, so that the moving plane method can be made to work in
this case by suitably adapting the Euclidean tools. In the Euclidean case the precise L>-estimates
were obtained by crucially rescaling the equations. However in our case we do not have any substi-
tute for scaling. In Theorem-3.6 we will establish the L>-estimates by finding appropriate sub and
super solutions combined with weak comparison tools using the Picone identity. The estimates we
obtained in Theorem-3.6 are new even in the case of p = 2, which in fact improves the estimates
obtained in [24] except in cases where explicit solutions are known. To prove the estimates on the
gradient, the upper bound follows from the L>-estimate and a use of Harnack inequality, however
the lower bound on the gradient at infinity is the difficult estimate to prove. In the Euclidean case
(1.3) this is achieved in [30] by a blow up analysis via rescaling which leads to the limiting equation

—Apu =0in R"\ {0} and u(x) ~ |z~ »~1 whose solutions have been classified in [23] to be constant



4 RAMYA DUTTA' AND KUNNATH SANDEEP'!

multiples of the fundamental solution u(z) = c|z| >t (see also [30] for an alternative proof under
weaker assumptions). Also see [20] for a similar limiting equation with a Hardy potential with
singularity at origin in R". The main difference of our work when comparing with the Euclidean
references mentioned above is in the nature of the blow up and the limiting problem. In our case
the limiting problem is in fact an eigenvalue problem with a pole at ‘infinity’. We need to establish
a classification result for positive eigenfunctions of the following eigenvalue problem

— A u = P! (1.4)

which are comparable to certain eigenfunctions with desired behavior at infinity. Here by an
eigenfunction we means a C* function which satisfy the relation

/ |vgu|§—2g(vgu,vg¢)dvg: / Mg dV,
HT’L

n

for all ¢ € CL(H").

Fix a point O € H" and (r,#) € (0,00) x S"! be the geodesic normal coordinates centred at
O. For ¢ € S" ! define a function E by

E¢(x) = (coshr — (€ - 0) sinh 7)™ (1.5)

where, (r,6) is the geodesic normal coordinate of z and «ay is as in Theorem-1.1. Note that E
extends as a C'! function to H". With this definition we can state the classification result as follows.

Theorem 1.2. For any £ € S"', E¢ be as in (1.5). If E satisfies (1.4) and has the bounds
E¢(z) < E(z) < CE¢(x) for some C > 1 and all x € H" then E = cE¢ for some c € [1,C].

We prove Theorem-1.2 in Section-3, Theorem-3.8 formulated in the equivalent Poincaré ball model
B"™ of the Hyperbolic space.

The problem of classification of positive eigenfunctions in general may have independent interest
from a potential theoretic perspective, particularly in the study of Martin boundary. We recall some
relevant definitions. Let, £ be a homogeneous elliptic operator, meaning if u solves Lu = 0 then
so does cu for any constant c. Suppose, u € C'(H") be a positive solution to the equation Lu = 0
such that u has vanishing ‘trace’ on JH" \ {¢} i.e., it vanishes in some generalized trace sense
on the the ideal boundary (or sphere at infinity) except at & (see the definition of ideal boundary
or the sphere at infinity in Section-2). We call such a solution u to be a minimal function rela-
tive to the point & € d,,H" (identified with S"~') if and only if any other solution % of L& = 0
satisfying 0 < u < Cu for some positive constant C, must be a positive constant multiple of w,
i.e., & = cu for some ¢ > 0. We say that the £-Martin boundary can be identified with 0, H" if
each point £ € 0, H" has a unique (up to constant multiple) positive minimal function relative to it.

In the linear case when p = 2, the conclusion of Theorem-1.2 can be obtained by only assuming the
upper bound (see Remark-3.10). The minimality of the eigenfunctions E relative to £ € S™! can
be seen as a direct consequence of a representation theorem based on its boundary behavior due to

Helgason [21] and Minemura [25]. The representation of eigenfunctions on non-compact symmetric
space through a hyperfunction on its minimal boundary, known as the Helgason conjecture, was
established in full generality in [22]. It would be interesting to know if the eigenfunctions E are

minimal relative to & € S"! for a general 1 < p < n, i.e., if the assumption of the lower bound in
Theorem-1.2 can be relaxed.
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The structure of the article is as follows. In Section-2 we go over some of the basic notations
and definitions relating to the Hyperbolic space. In Section-3 we prove the boundedness, sharp
decay estimates for the solutions of (1.1) and its gradient, as well as the classification of eigenfunc-
tions Theorem-1.2 (Theorem-3.8). Section-4 is dedicated to the proof of Hyperbolic symmetry of
(1.1) and in Section-5 we discuss the Sobolev regularity of u and the strong comparison theorem in
Hyperbolic space. Finally in Section-6 we discuss some existence and non-existence results related
to (1.1).

2. PRELIMINARIES

In this section we will recall some of the basic notations and results which we will be using in
this article.
Notations : We will denote the n dimensional real Hyperbolic space by (H", g). Fix a point O € H"
then in the normal coordinates based at O we will identify the unit sphere in the tangent space
of H" at O by S"'. Also note that for H" we have the notion of the geometric boundary called
the ‘sphere at infinity’ or the ‘ideal boundary’ denoted O, H" which is abstractly defined as the
equivalence classes of geodesic rays under the equivalence relation where two geodesic rays 71, 7o
are equivalent if disty(71(t), 12(¢)) remains bounded for ¢ > 0. Once we fix the point O € H", we can
identify this sphere at infinity (or the ideal boundary) with S*~*. We refer the book [29], Chapter-2
for details.
In geodesic normal coordinates the Hyperbolic metric takes the form g = dt® + (sinh ¢)®ggn—1 where,
t(z) = dist, (O, x) and gsn-1 is the standard metric on S"~'. Consequently the Hyperbolic measure
will be given by dV, = (sinh¢)"'dV,  _ dt.
When we need to make precise calculations we will be working with either the Poincaré ball model
or the upper half-space model. In both the models we will be using g for the metric which will
vary depending on the model we are using. We will denote the gradient, divergence and modulus
with respect to the metric by V,, div, and | - |, respectively. While working in the Poincaré ball or
upper half-space models the corresponding quantities with respect to the Euclidean metric will be
denoted by V,div and | - | respectively. Since the gradient and divergence are intrinsic quantities
(see [7], Chapter-4), we see that our equation (1.1) is invariant under isometries of the Hyperbolic
space, i.e., if u solves (1.1) and T is an isometry of H" then u o T" also solves (1.1).

We will denote the Poincaré ball model by (B",g) where, B" is the Euclidean unit ball in R"

9 2
endowed with the metric (1—||2) gr and gg denotes the Euclidean metric. By an abuse of
— |z

notation, we will denote the upper half-space model by (H", g) where, H" = {x € R" : x, > 0}
and the metric g is given by ¢ = x,%gp. Note that the isometry group in these two models are
respectively the Mobius groups of the ball and upper half-space which we will denote by M (B")
and M(H"). For more details about the two models and their isometry groups we refer to [34] and
[28]. Throughout the article unless otherwise stated Br(xq) will denote the metric ball centered at
xo with radius R, meaning Br(zo) == {z € H" : dist,(z, z0) < R}.

We will end this section by recalling the expressions for the gradient, divergence and the p-Laplacian
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in these coordinates. In the Poincaré ball model (B", g) they are given by

V,ulz) = (1_T|:E|2)2Vu(az) (2.1)

Tt = (A7) 19ute) 22)

The p-Laplacian is given by

B» . p—2 1— |$|2 " 2 " p—2
A, u(z) = divy([Vgulh *Vu) = 5 div e \VulP™*Vu | . (2.4)

In the upper half-space model (H", g) they are given by
V,u(z) = 22Vu(x)
Vgulg(z) = 20| Vu(z)]
divy X = a2 div (z,"X) . (2.7)
The p-Laplacian is given by

AN u(z) = divy(|Vault*Vu) = 2 div (287" Vul[""*Vu) . (2.8)

3. DECAY ESTIMATE FOR SOLUTIONS AND ITS GRADIENT

We begin by showing that the solutions to equation (1.1) have higher integrability and are
bounded by proceeding along the arguments in [37], [33].
Let us consider the auxiliary function

fla):=lafPa(n -1~ (p—1)a) (3.1)
-1
then, f(0) = f (n 1) =0and f'(a) = (p—1)|af’*(n—1—pa). Thus f has a unique maximum
p E—
n—1 : : o o n—1
at a, = and is concave and increasing in [0, a,.) and decreasing in (ac, —J Thus the

equation f(a) = A has two roots ay, 5 satisfying

n—1
p—1

—1
0<fr< " <ay < (3.2)
p

—1\?
for any \ € {0, (np ) )
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3.1. Boundedness of solution.
In what follows we will use the notation €2,, = {z € B": |u| > m}, its characteristic function
Xm = Xq,, and the characteristic function of complement will be denoted by X7, := xB\q,.-

-1
Lemma 3.1. Let u be a solution to (1.1) when q = p*. Then u € LF(B™) for p < k < p* (n 3 )
PO
where, By is as in (3.2). Hence, u has higher integrability than p*.

Proof. Note that since u € D"P(B") by the Poincaré-Sobolev inequality in B™ we know that
u € LF(B") for p < k < p*. Let us denote by u,, := min(Ju|,m) for m > 0. Testing equation
(1.1) with ¢ = uP?~Py € D'P(B") where § > 1, we have

VulP2g(V  u, V) dV, — ulP2up dV, = u|T 2up dV,. 3.3
gty gt Vyg 9 9 9
B B Bn
Then on the LHS of (3.3) we have
/ |VgU|7g’_2g(Vgu, vgw) dVy = / |Vg“|2;2 (X%(pﬁ —p+ 1)’u|pﬁ_p + Xmmpﬂ_p) v,
B B

o pB—p+1)
>

_ W—ﬁ—fH) / 1V, ()| v, (3.4)
B

where, we used the Bernoulli’s inequality 8” = (1 + (8 —1))? > 14+ p(5 —1). Again using Poincaré
inequality in B" we have

1908 (G877 )

— 1
(WBT‘—Q) \%@?@&Ms/mmﬁww (3.5)
max Bn Bn
Therefore, on the RHS of (3.5) for any m > mg we have
/ lu|TuPP P AV, < mbP~ p/ |ul?dV, + / |[u| TuPPP dV,. (3.6)
n Q5,0 Qg

Using Holder’s inequality followed by Sobolev Inequality on the second term on RHS of (3.6) we

get
/|WWWMSO"MMQ ( ﬁ%|m>
Qg Qg
-5
gs(/ |u|qug> / Vg (upy )| dV,
Qmo

1 (pB—p+1 A P
< = - :
< 2( % Amax) s IV, (u } dv, (3.7)

by choosing my sufficiently large depending on . Therefore, combining (3.5), (3.6) and (3.7) we
get

D
q

— 1 A
<p5/£+_ -5 ) Blvg@&*wﬁcwzszwﬁ%p/° [ul? v, (3.8)

c
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followed by an application of Sobolev inequality and letting m — oo we get
p

] A a
(Pt 2 ([ wpeav,) " < ongr [ ay, (39)
max Bn Q%TO
Now, note that making the change of variable g = we have
pa
p—p+l_or(n-1-(p-1a) A
ﬁp B )\max )\max
—1 n-1
provided a € (B, ) as in (3.2) ie., if § € (n ,n 3 ) This concludes the proof of higher
pax  pPx

integrability. 0
Theorem 3.2. Let u be a solution of (1.1) then u € L*(B"). Furthermore, u(z) — 0 and
|Vyulg(x) = 0 as distgn (0, 2) — oo.

Proof. The proof in the sub-critical case ¢ < p* follows in a similar way to the critical case. Note
that in the critical case ¢ = p* we may rewrite equation (1.1) as

—Afnu = (A + [ufP7P)|ulP (3.10)
where, A\ + |u[P" " € L{ _(B") for some k > L by the higher integrability proved in Lemma-3.1.
Therefore, by usual Moser’s iteration (see [31], [30]) we have the estimate

;}1(13) lu| < Cllull 1o (By0)) (3.11)

where, the constant C' only depends on ||\ + |u 1 B0 (Bm)

P e <A+ [P ) for 1 < fy <
n—1
P
for any « € B" consider 7, € M(B") such that 7,,(0) = z. Then using (3.11) on v := (uo7,) we have

sup [v] < O]l 1o (B, (0 or equivalently sup [u] < Cllul| (g, () for any z € B". Combining this
Bl(O) Bl(x)

. Since, the equation (3.10) is invariant under isometries of the Hyperbolic space M (B") then

with standard C' estimates (see [18], [35]) we have sup [Vyul, < C" sup |u] < C”|ull 1o (5,
31/2(1) By (x)
for all # € B™ and the later goes to 0 as distgn (0, 2) — oo since u € L¥" (B"). O

3.2. Super-solution and sub-solutions to the equation.
In the following lemma we identify the candidates for sub(super)-solutions to our equation which
will be used to establish the decay estimates.

Lemma 3.3. The function v(x) := [cosh (dlSt]Bn—(O’x))] o form > 2 is a super-solution to the
equation "

—AEHU — WP > ey e disten (02)p—1 (3.12)
in distga (0, ) > Ry for some Ry > 0 and some positive constant cy > 0.

distp- (0 e
Also, v(x) := [Sinh (ISB—(’];))] is a sub-solution to the equation

2
B~ —1
—Ay v = " <0 (3.13)
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for distg (0, ) > Ry for some Ry > 0.

1+ |z
1 — |z
tanh(t,/2). Therefore we may express the Riemannian metric g in geodesic polar coordinates at
the origin as

Proof. Recall that in B" we have t, := distg.(0,z) = log ( ) or equivalently r, = |z| =

4dx? ( 2

2
I= T apr \1= TQ) (dr® 4+ 1r?ggn-1) = dt* + (sinh t)*ggn-1. (3.14)

Then the A;B;n of a radial function v(z), which we continue to denote as v(t) with ¢t = distg. (0, ),
is given by

AP"y(z) = W (sinb £ o (£)P20/ (1))
= [ ()P [(p — 1" () + (n — 1) coth(t)v'(¢)] . (3.15)

¢ —may
We consider the function v(t) := [cosh (—)} where, m > 2. Then by a direct computation
m

of the derivatives we have

V(t) = —ay {cosh (%)} o tanh (%) = —a tanh <%) v(t)

V'(t) = —% [cosh (%)} 721}(25) + o2 tanh? <%> v(t).

Substituting in the expression (3.15) we get

-2
—Afnv = of? tanh? <%> [(p - 1)% [sinh (%)} —(p—1)3

+(n — 1)a, coth t coth (%)} VP (). (3.16)

and

Now we have the asymptotic expansions of the following functions and writing e /™ = s for brevity

m

—2
[sinh <i)} = 4e 2™ (14 2e72/™ + O(e™/™)) = 45* + O(s")

t
coth (—) = 1427 2/™ 4 O(e /™) =14 25> + O(s%)
m

cotht =142 % + O(e ™) =1 + 25 + O(s*™)

tanh? (%) =(1- 2e /M 4 O(e’4t/m))p =1 —2pe 2/m £ O(e™™) =1 — 2ps® + O(s%).
(3.17)
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Substituting the asymptotic expressions in (3.16) we get
—AY v = o} 2(1 = 2ps® + O(s")) [(n — Dan(1 + 25% + O(s")) (1 + 25™™ + O(s*™))
~(p—1)ad +4(p — 1) (s" + O(s)| v (1) (3.18)

= (1-2ps> +O0(s*) |2 ' (n—1—(p— D) +2a ' (n — 1)s

-~

=:f(ar)=A
—1—4(1];‘_ (p—1)s*+ 0(84):| VP (1) (3.19)
= [)\ +2( M (n—1)—p\)s®+ 40;3_ (p—1)s* + 0(34)1 P () (3.20)
= AP (E) + 2exe 2™ (14 O(e™/™)) vP 7L (¢) (3.21)

205"
where, f(«) is as in (3.1), the constant ¢, := (ai_l(n —1)—p)) + 7’2 (p — 1) is positive since,

-1 —1\" distpn (0 e

n and A\ < (n ) . Therefore the function v(z) := [cosh <ISB—(’x))] for
p P m

m > 2 is a super-solution to the equation (3.12) whenever ¢ = distg-(0,2) > R, is chosen large

enough.

o)y >

d' . 0 —2a)
M)} is a sub-solution to (3.13)

By a similar calculation we also have v(zx) := {sinh ( 5

in distg» (0, z) > R,.

3.3. Proof of sharp decay.

We first prove a weaker decay estimate for solutions to (1.1) which we will subsequently reuse to
prove the sharp decay estimate. Before proceeding with the proof of decay estimates we recall the
following Picone-inequality:

Lemma 3.4. (Picone Inequality) Let p € (1,n) and u,v € WP (B") be two positive functions then

loc

- vP B uP
B(u,v) :=|Vgult?g (Vgu,Vg <u — Eu)) +|Vult?g <ng, V, (v — Ev))
> C,min {u?, 1"} (|V,logul, + |V, logv|,)’ |V, (logu — log v)|2. (3.22)

Proof. Directly follows from the p-homogeneity and multiplying by the conformal factor in the
Euclidean inequality from Lemma-3.1 in [39] when 1 < p < 2 and Lemma-3.1 of [26] whenp > 2. [

Lemma 3.5. Let, u be a solution to (1.1). Then for each € > 0 such that A + & < A\ there is a
constant Cx,. > 0 such that

distgn T20ate
u(z) < Chrie [cosh <ISBT(O’@)] , Vo eB". (3.23)
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distg. (0, ) ) } ~2ee .

Proof. Recall from Lemma-3.3, the function vy .(z) = Chie {cosh( 5

D'?(B") is a super-solution to the equation

n -1 —1
—A vpge — MAL > el (3.24)

Using Lemma-3.2 we may choose Ry, > 0 large enough such that u? ?(z) < ¢ in B" \ Bg,,_. Then
u is a subsolution to the equation

—A;]fnu — Pt < eur (3.25)

Finally we may fix C\;. > 0 large enough such that v < vyi. in Bg, .. Let n € C°(B") be a
non-negative test function such that n =1 in Bg and n = 0 in B" \ Bgy; where, R > R),.. Then
testing (3.25) with ¢; = nu'P(u? — 1§, )+ and (3.24) with @, = nv, (u” — v}, ), which are
admissible test functions supported in Brq \ Bg,,. and subtracting we get

/ 0B (u,vrs2) dV,
Br{u>vxric}

< / n(u™? —e)(w’ — vy, )+ dVy + / [V gnlg (|V9U|§_1U + [V, log v/\+6|1;—1up) dVy
B”I"I{UZU)\+S} BR+1\BR

< / IVynlg (IVgult ™ u+ Vg log vaseltuP) dV, (3.26)
Br+1\Br

where, # (u,vric) is as in (3.22). On the RHS of (3.26) we use the estimates |V n|, < ¢ (for all
R >0),

- —1
/B B IVulb ™ udVy < (IVgulllois, s lullrBa s = 0

as R — oo and |V logvyic|, < Axye in B". Using the Picone inequality (3.22) on the LHS of (3.26)
and letting R — oo on the RHS of (3.26) we get

C’p/ vy, (|Vgloguly, 4+ |V, log Unielg)’ 2 |V (logu — log v,\+a)\§ dV, <0. (3.27)
BH\BR/\+EH{UZU)\+E}

Since, Vyuare # 0 in B" \ {0}, from (3.27) we must have logu — logvy;. = Cp in B" \ Bg,, N
{u > vaye}. Since, u < wyye on OBg,, . we conclude Cy = 0 i.e., u = Vx4 in B"\ B, N{u > vy;c}.
Thus u < vy4. in B" \ Bg,,. as well. d

Now we proceed with the proof of sharp decay estimate and gradient estimate for a solution of
(1.1).

Theorem 3.6. Let, u be a solution of (1.1). Then there are constants C1,Cy > 0 and m > 2
(chosen large enough depending on the exponent q) such that

. —2a) . —maoy
Ch {sinh <W>] <wu(zr) < Cy [cosh (dlStBn—Mﬂ ,VexeB"\ B (3.28)

2 m

for some R > 0.
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Proof. We prove the upper bound. The proof of lower bound is much simpler and follows similarly.

distgn O,J: s
M)] is a super-solution to the

Recall from Lemma-3.3 that v(z) = Ch {cosh(
m

equation
—Agnv — Pt > c,\e_%diStB"(o’x)vp_l in B" \ Bpg, (3.29)

for Cy > 0 and m > 2.

Let n € C°(B") be a non-negative test function such that n = 1 in Bg and n = 0 in B" \ Bgs
where, R > R > R, (R to be determined later).

Then testing equation (1.1) with o1 := nu'P(u?” — v*), and equation (3.29) with @y 1= nv' P(u? —
vP); and subtracting we have

/ nA(u,v)dV,
BrN{u>v}

< / n (uq—p . c/\e_% dist]Bn(O,z)> (up . ,Up)+ d‘/;)
BrN{u>v}
+/ IVnlg (IVgult™ u+[Vylogv[p~'uP) dV, := 1) + I, (3.30)
Bry1\Br

where, #(u,v) is as in (3.22). B
Now, using the estimate from Lemma-3.5 we may choose R > 0 large enough such that

- q—p _—(q—p)ae dist 0,z — 2 dist 0,z
uI™P(z) < CA-i—ee (g—p)ax+ B ( )S cnem pn (0,2)

for x € B" \ By (the later is ensured by choosing m > #) and choose Cy > 0 large enough
q —P)0)e
such that v < v in Bg. Thus, I; < 0 and estimating as in the proof of Lemma-3.5 we have I, — 0

as R — oo. Thus from the Picone inequality (3.22) we get

c, v ([Vyloguly + |Vylog |y’ |V,(log u — logv)|2dV, < 0. (3.31)
B\ By N {u>v}
Since, Vv # 0 in B" \ {0} we get the desired upper bound (3.28) as before. O
Theorem 3.7. Let, u be a positive solution of (1.1). Then 3 A > 0 such that the gradient estimate
A () < |Vaul,(z) < Au(z) (3.32)
[Vstly

holds in x € B" \ Bg, for some Ry large. In fact we have lim (x) = a, where, ay is

distgn (0,2)—o00 U
as in (3.2).
Proof. Using the sharp decay estimates Theorem-3.6 on a positive solution of (1.1) we have
ce~ distgn (0,x) < U(LU) < Cle™ distgn (0,z)

in B" for some positive constants ¢, C' > 0.
Let, 9 € B" \ Bg,+1 and define vy(z) = (u o 79) where, 79 € M(B") is a Hyperbolic reflection such
that 7(0) = z¢ and 79(x¢) = 0. Then from equation (1.1) we get

—AY vy = (A + v PVl = houh (3.33)
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where, hg = A + O(e” @ P)oFo) in B Then using C estimate (see [18], [35]) and Harnack
inequality (see [30]) for this equation we have
sup |Vgvgly < Cysup vy < Covp(0). (3.34)
B2 By

Reverting back to u we get the estimate
Vgulg(20) < Au(zo) (3.35)

where the constant A is independent of zy € B" \ Bg,y41.

Now to see the gradient estimate from below, suppose to the contrary there is a sequence of points
{xk}ren C B™ such that |Vyul, (@) < epu(zg) and Ry, := distpa(0,21) — oo where, ¢, — 07 as

k — oo. Define vy, := (o) where, 7, € M(B") is a Hyperbolic reflection such that 7,(0) =
U\ T},
and 7x(z) = 0. Then v,(0) =1, |V,uk]4(0) < € and vy, satisfies the equation

—AF vy = byl (3.36)

where, hy :== A+ (u o 7;)*? — X uniformly in Bg as k — oo for each R > 0. Furthermore, using
the sharp decay estimate of u we have v, satisfies the pointwise bounds

C1Ex(z) < vp(z) < CyEx(x) (3.37)
for x € Br and the positive constants C,Cy > 0 (independent of R) where,

E(z) == (Sinh (% distBn(o,a;k))ym (sinh (% distgn (x,xk)))% _ (W) o

(3.38)
uniformly for all £ > Kp sufficiently large. Here we used the fact that

) ) 1 —2ary
(uo 1) (z) o emordistan (0mk(@)) — g—andistn (m(0).2) <sinh (5 distpn (21, l’))) (3.39)

for x € Bgr with uniform constants (independent of R) for all k& > Ky sufficiently large and the
identity (see [31], equation (2.2.4))

sinh? (1 distBn(:c,y)) - |x2_ P — Va,y B, (3.40)
2 (L= |z[*)(1 = [y[*)

Then using C'7 estimate on (3.36) in Br we get [Uk]cl,a(BR) < Cgsupuv, where, the constant
B

R
Cg only depends on By for all k£ > Ky sufficiently large. Passing through a subsequence if neces-
sary (which we still denote as {v }ren) We get v, — Vg in C'(Bg) and z — € € 0, B"(=S")
as k — oo. Then vp  satisfies the equation
—A Voo = Mb L. (3.41)

Letting R — oo and using a diagonalization argument we have a subsequence vy — v, locally
uniformly in C*(B") such that v, satisfies the equation

—AY oo = M (3.42)
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in B" and from (3.37) the pointwise bounds

C1E¢(z) < veo(x) < CoEe(x) (3.43)
1 — 2\ A
where, F(z) = (‘x ‘2’2) with v (0) = lim 0,(0) = 1 and [Vel, (0) = lim [V],(0) = 0.
— — 00 —00

But from the classification of eigenfunctions from Theorem-3.8 we know v., = FE¢, which con-
tradicts |V E¢|,(0) = ay > 0. This completes the proof of the gradient estimate from below. By
the same argument let {z}ren be any sequence of points such that distg.(0,2;) — oo, then we

\%
can extract a subsequence {z;} such that M(m;ﬁ) — |VyEe|,(0) = ay for some ¢ € S"1.
|Vgulg

u

Therefore, the limit of (x) as distg (0, ) — oo exists and equals . O

Keeping in continuation with the previous notation we state Theorem-1.2 in the Poincaré ball model
B". The proof is mostly carried out in the equivalent upper half-space model of the Hyperbolic
space, but we expand upon the parallel picture in the ball model in Remark-3.9.

Theorem 3.8. Let, A € [0, A\pa) and v be a C solution of the equation

—A) v = X! (3.44)
in B™ such that there exists positive constant C' > 0 and a point £ € S"™' such that
E: <v<CE; (3.45)
1—|z]2\™ . o .
where, E¢(x) = | E . Then 3¢y € [1,C] such that v = coE¢ in B". This in particular
x —
\Y% V,E.
implies [Vgtly = Vo Lely = a, in B".
v Eg

Proof. Tt is more convenient to prove the result in the upper half-space model of the Hyperbolic

space. Using an orthogonal transformation in B" about origin without loss of generality we may
assume £ = —e,,. Recall that the extended Mobius map @ : R” U {oco} — B" defined by

2 2%, 1—|z)?

(I)(x) = oL ) ot ) |x|

|z + e, |? |z + e, |? |z + en]?

defines an isometry between the Poincaré ball model B" and the upper half-space model H" of the

Hyperbolic space. In fact ® is the inversion map w.r.t. the sphere centered at —e,, and radius V2

2 n . )
M and it satisfies ® o & = Id.
|z + en|?

Let, u := v o ®. Then the problem can be equivalently posed in upper half-space model as
—Aglnu = P! (3.47)

) and ®(o0) 1= —e, (3.46)

given by ®(z) = —e, +

and satisfies the bounds

o <wu(z) < Caor. (3.48)
We claim that u(x) = cozp* for some ¢ € [1,C], from which our claim about the eigenfunction in
B"™ model will follow. We start by showing that v has one dimensional symmetry in the e,-direction.

This then reduces the problem to showing uniqueness (up to constant multiples) of solutions to an
ordinary differential equation.
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Step-I: Note that due to the Hyperbolic isometry invariance and homogeneity of the equation
(3.44) by applying the standard C'° estimate and the Harnack inequality we have the global
gradient estimate
[Vguly(z) < Au(x)
for all x € H".
For =y = (2(,0) € OR", and R > 0, let us denote the Hyperbolic half-spaces

Hp(mo) :== {z € R} : |z — 20| < R, z, > 0}
and its boundary the orthogonal sphere (orthogonal to the boundary R} )
Sr(wo) == {z €R} : |z — xo| = R, , > 0}.
We start by noting that [|Veull7, s, ) = / \VulPz, ™ de < (AC)”/ b dr < 400
Hp(zo

g
Hpg(wo)
n—1

since, o >

p
Let 7 € M(H") denote the reflection across the orthogonal sphere Sg(zo) i.e.,

R%*(z — o)
T(x) =20 + = — 20
Then wu, := (u o 7) satisfies the equation
—A) = Ml (3.49)
along with the bound
R%z, \™ R%z, \™
— <u,(r) <C| — . 3.50
(ep) == (5 0p) 320

Comparing (3.48) and (3.50) we have u(x) < u,(z) in the set Hp (zo) where, R’ := RC™# < R.
Using the fact that 7 € M(H") is an isometry we also have

IV gur |l e trnonip o = IVl o ooy < IVottll oo @) < +o0
1
where, R" := R*/R' = RC%x > R.
We note that the functions ¢; = u' P(u” — ul) 1 Xaa(wo) and @2 = ul P(uP — uP) s Xrp(wo) aTE

supported in Hg(zg) \ Hg/(xg), since u = u, on 0Hg(zo) and v < u, in Hg/(xp). Furthermore,
using the bounds on u we have

2 o

|z — x0]?

in Hg(zo) \ Hr(zo) = {z € R} : R <|v — x| < R}. By Harnack’s inequality we also have
Vouly Su S zpr and |Vyur|, S u, S ap* in this set. Then we note that

Vyoaly = |(up - U};)ﬁ-vg(ui_p) + ui_pvg(up - uﬁ)-i—‘g
< (v —ud)s ‘Vg(ui_p)‘g +u |V (uP — u];)-i-‘g

< (p = DurP(u? — ub) 1 |[Vgur|y + pu; PuP =V guly + pu; Pul ™V gus |

u \? u p—1 .
< ((p -1) (u_> +p> ’vguf‘g +p ( ) |Vgu|g Surtu St

T Ur
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in Hp(z0)\ Hp: (). Similarly, we have |V, 01|, < 22 in Hg(z0)\ Hr:(z0). Therefore, ¢; € D" (H")
for 7 = 1,2 are both admissible test functions.

We test equations (3.47) with ¢1 = u'P(u” — u?) 4 Xmpwe) and (3.49) with ¢g = ul P(u? —
UP) 4 X Hp(20), Subtracting and combining with Lemma-3.4 we get

C, u? |V, logul, 4 |Vylogurl,)" > |V,(logu — log u,)|, dV, < 0. (3.51)

Hp(zo)N{u>ur}

Then, (logu —logu,) is a constant in Hg(z¢) N {u > u,}. Since, u = u, on OHg(xo) N {z, > 0} we
conclude u = u, in Hr(xo) N {u > u,}. Therefore, we have u, > u in Hg(xo).

This in particular implies the outward normal derivative of u on the orthogonal sphere Sg(z¢) is
(x — )
r — Tg
vary the orthogonal spheres Sg(zo) passing through z instead where, zo € OR} and R > 0. Then
let us denote z = (2/,z,) € R"! x R, and for each ¢ € S"? consider the inequality on the
orthogonal sphere S,z 2y1/2((2" — 1€, 0)) with centre at (2" — ¢¢,0) € IR’} and passing through z,
(€, z0)
(22 + 12)1/2
Vu = (0',u,,) or the horizontal component of gradient of u is zero. Hence, u(z) := w(z,) is a

function of a single variable and looking at ¢ = 0 we get u,, > 0.

non-negative i.e., - Vu(xz) > 0 for each # € Sg(zp). Fixing the point x € H" we may

we get - Vu(z) > 0. Letting t — +o0o we get (£,0) - Vu(z) > 0 for all £ € S"? ie.,

Step-1II: As a result the equation (3.47) reduces to the following ordinary differential equation
—t" (P (W )P = APt (3.52)

on R, where, w’ > 0 and satisfies the global bounds

t <w(t) < Ct™. (3.53)

Note that when A = 0 we can directly integrate both sides of the ODE and conclude w(t) = cgtz%i
n—1 . _ _ n—1 n—1

as ag = T Therefore, it remains to prove the result for A > 0 i.e., when <ay < T

From the estimate |V,ul, < Au we get tw'(t) < Aw(t) < C't*. We have t# "(w/)P7! <

ot e=Dien-l) — comlp=Dea=(n=1) 5 0 a5 t — oo for A > 0. Integrating equation (3.52)

from t to co we get
(! (1)) = — /Oo(s”_"(w')p_l)'ds = /\/OO w’ s ds
t t
>\ /OO gP=Dax—n J¢
_ a?j\tlt(pl)ax(nl) (3.54)

ie., w'(t) > axt®~!. Therefore using the bounds of w we conclude that

Lt (t) (1) tw'(t)
0= = wl) = i

= < o0. (3.55)

We note from (5.8) that the linearized equation corresponding to (3.47) is satisfied by (z.Vu) (since,



SYMMETRY FOR A QUASILINEAR ELLIPTIC EQUATION IN HYPERBOLIC SPACE 17
u(z) = w(z,) has no critical points in H") and is given by

/H a7 (VU (Y (@), Vo) + (p — 2 Tl (V(r.Vu), V) (Va, V) da

=(p— 1))\/ P 2(2.Vu)pr, " dr, V¢ € C(H"). (3.56)
Since, u(z) = w(x,) the above PDE reduces to the ordinary differential equation
—t" (P (W' P2 (tw')) = AwP 2 (tw). (3.57)
Let, w; := tw' — aw and Wy := fw — tw', then from (3.55) these are non-negative functions.
Combining (3.52) and (3.57) we see that w; for j = 1,2 satisfies
=" (" ()P (y)) = AP (). (3.58)

From the strong minimum-principle (see Lemma-5.7) we conclude either @; = 0 in Ry or has strict
inequality @w; > 0 in R;. In the first case clearly we must have w(t) = cot® keeping in mind
(3.53). In the second case neither the infimum or supremum in (3.55) are attained in interior of
R, . Therefore, without loss of generality let us assume

/ /
o= infM = liminfw.
>0 w(t) t—0+  w(t)
Ryw'(R
Let {Ryp}ren be a sequence in Ry with R, — 07 such that % — «. Then consider
w\ iy
the sequence of functions wy(t) := R, “*w(Ryt) which satisfy the equation (3.52) and the global
tw, (t tw'(t
bounds (3.53). Note that inwa() = infw—() = « for all £ € N. Applying the standard
>0 wy(t) >0 w(t)
C“-estimates [18], [35] we may extract a subsequence (which we still index with k) wj, — ws in
C*(R.) locally uniformly such that w,, satisfies the equation (3.52), the global bounds (3.53) and

/

/ 1 1 t ! t
lim & (1) = Wao (1) = a. Also from the C*(R.) local uniform convergence we have inf Woo (1) >«
k—oo W(1)  weo(1) >0 Weo(t)

Therefore, o (t) := twl (t) — cws(t) is a non-negative solution of (3.58) such that w.(1) = 0.
From the strong minimum-principle (see Lemma-5.7) we conclude Wy, = 0 in R, i.e., we(t) = ct®
in Ry for some ¢ > 0 (recall & > 0 from (3.55) so that w, has no critical points in R;). But
comparing with the global bounds (3.53) of w,, we must have o = «,. By a similar consideration
for the supremum fJ in (3.55) we also have § = «a,. Therefore, « = f = «,, which now implies
w(t) = cot™ for some ¢y > 0. This completes the proof of classification of solutions to the ordinary
differential equation. O

Remark 3.9. [t is also interesting to see the proof of symmetry in Theorem-3.8 directly in the ball
model B". Let H denote an open half-space in B", i.e. the boundary of H is an orthogonal sphere
Y := OH that splits B" into two isometric components H and B"\ H. Let us denote the Hyperbolic
reflection w.r.t. ¥ as 0 € M(B"), then B"\ H = o(H). We define the ideal-boundary of ¥ as
05X 1= OsoH \ O H , that is the part of the ideal boundary 0-.B" formed by geodesic rays restricted
to 2.

Now, given £ € 0,.B" as in statement of Theorem-3.8, if we denote u, = (u o o), then the weak-

comparison arqgument in the first half of the proof shows that u, > w in H, for any half-space H
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such that € € O,H. Let, 1 be an orthogonal sphere with & € 0,31, that splits B™ into the two
half-spaces H, and Hy = B™\ H,. We denote the reflection w.r.t. ¥, as oy € M(B"). Note that
Uy > u in all half-spaces H C Hy such that &€ € O H. So by continuity of u we have uy, > u in
Hy. Similarly, we also have u,, > w in Hy. Combining this information we get u = u,, in B"
for all 31 such that £ € 0,.21. Now the set of reflections in orthogonal spheres X1 with £ € 0521
generate the parabolic subgroup of isometries in M(B") that fit £ € 0,B" (for more details we refer
to Section-4.7: Classification of Transformations in [28]). Hence the level sets of u are horospheres
with geometric center £ € 0,,B", i.e. u has horospherical symmetry.

Under an isometric map that sends B" to the upper half-space model H" of the Hyperbolic space
such that & € 0,,B" is mapped to +00 € O, ,H", we note that horospheres with geometric center
£ are mapped to Euclidean hyperplanes {x,, = c} in R (= H"). This is indeed why we saw the
1-dimensional symmetry of uw in the proof of Theorem-3.8 in the upper half-space model of the
Hyperbolic space.

Remark 3.10. For A € [0, \pas), each & € 0,B"(= S™ ') has at least two distinct classes (upto
constant multiple) of corresponding positive eigenfunctions solving (3.44), given by

1_’x|2>0u (1_|x|2)5>\
E(x,¢&) = (— and F(z,§) = | ———= 3.59
() P (z,€) P (3.59)
where, ax and By are as in (3.2). The important distinction between them is that ||V g E (., E)|| 1oy <

+00 for every Hyperbolic closed half-space H of B" such that £ € 0 H i.e., E(.,€) has finite energy
in each closed half-space H which does not contain the ‘singularity’ & on its ideal boundary. On the
other hand ||V F'(., )| oy = +00 for all H. The finiteness of energy of E(.,§) in each half-space

H away from the ‘singularity’ at & plays a crucial role in the moving plane argument in proof of
Theorem-3.8.

We only state an extract of the representation theorem in the linear case p = 2 due to Helga-
son [21] and Minemura [25] relevant to our particular case. We denote the normalized measure
on S" with do, the space of all analytic functions on S"~' by C*(S™') and its dual the space of
analytic functionals (hyperfunctions) by C~*(S™™1). Let us denote by Ly := —AF" — X

Theorem 3.11. The Poisson-Helgason transform Py : C~“(S""') — C“(B") defined by
PD)a) = [ BT do(o). for T e Co(s") (3.60)
S§n—1

is an isomorphism between C~*(S"™) and Ker (Ly), with inverse By given by a generalized boundary
value. For v € Ker (L)) the hyperfunction By(v) is given by

(Ba(0). ) = e Tim (1= 270D [ wlr)(€)do(e), forpe 8™ (360
iT
where, ¢, ) = FE;)\—_(QT:\;l).

For the sake of completeness we include a short proof of the minimality of E(.,€) relative to € € S™!
in the linear case p = 2. Let us consider the following weighted analogue of a Hardy Space

H,(B") := {f € Li(B") : sup (1— %)) /S fEOlda(8) < +oo} - (3.62)

rel0,1)
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We note that if v € Hy(B™) N Ker (L)), then the set of Borel measures

dpar(€) = eap(1 =) V0(rg) do(€) € M(S™™)
forr €10,1) has uniformly bounded total variation norm. Extracting a w*-convergent subsequence
L, "4 as r; — 17 we note that in (3.61) we have
Bs)) = [ pdu e s, (3.63)
Thus (3.63) extends by density to all ¢ € C(S™™") and hence By(v) = p € M(S"™1) is given by a
Borel measure. This establishes an isomorphism of H) (B™)NKer (L£y) and M (S™™Y). In particular we
note that positive functions in H}(B™)NKer (Ly) corresponds to non-negative measures in M(S™™).

However we note that if v € Ker (L)) is a positive eigenfunction then by the mean-value equality in
Hyperbolic space (see [31], Theorem-5.5.5) we have

[ o€ do(©) = gu, (rnpoto) (3.69)

where, v € [0,1),n € S" and g., € Ker (L)) is the unique bounded radial eigenfunction with
9o, (0) =1 given by

Gy (T) 1= /S 71E(3:,77') do(n) (3.65)
with asymptotic boundary behavior (see [31], Theorem-5.5.7 and Corollary-5.5.8) given by
Goy (1) = (1 — r?2)" 1o, (3.66)

This in particular implies that ||v|ly gny = sup (1 — 7"2)0‘*("1)/ v(r€) do(§) < C'v(0), ie.,
rel0,1) Sn—1

positive eigenfunctions are in H}(B™) and hence have non-negative measure for a generalized

boundary value. As a consequence if v € Ker (L,) is a positive eigenfunction satisfying the estimate

from above
0<wv(z) <CE(x,§) (3.67)

for some € € S"7!, then

(Ba0)e) = o Jim (1= )0 [ urmptn) dotn) =0
7 Sn—

for all p € C(S™ ') with supp(p) N {¢} = 0. Thus By(v) is a non-negative measure supported

at & € S"' and hence must be a dirac mass, By(v) = cod¢ for some c¢g > 0. Therefore,

v = P)\(Coég) = COE(.,g).
4. PROOF OF SYMMETRY

We will use the Alexandrov Moving Plane method to prove symmetry of positive energy solutions
to (1.1) in the Poincaré ball model (B",g) of the Hyperbolic space. Recall that the Hyperbolic
reflections are isometries of the Hyperbolic space B" given by spherical inversions (or reflections)
with respect to generalized Euclidean spheres that are orthogonal to S"'. In particular these are
either orthogonal Euclidean spheres S(a,r) := {z : |z — a] = r} where |a| > 1 and 7* = |a]* — 1 or
are Euclidean hyperplanes passing through the origin of B".

Given a direction & € S"™! we perform the moving plane method in direction & by reflecting along
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the family of orthogonal spheres parametrized by S <u_1f, V72— 1> for p e (—1,1) \ {0}. The
limiting case p© = 0 corresponds to reflecting along the Euclidean hyperplane passing through
0 € B" and orthogonal to £&. When p # 0 we denote the reflection across S (u’lf, V72— 1) by
Oue € M(B"),

_ - (- plf)
Ouge(T) = p e+ (I |z _)u(aif’Qlu (4.1)
and when p = 0 we denote
00(x) = & — 2(x, §)¢. (4.2)

Thus S (u‘lf A 72— 1) separates B" into two isometric connected components (half-spaces).
We denote by ¥,,(€) the half-space in B" containing ¢ in its boundary shared with 9,,B" (= S"™).

We also denote the part of the sphere S (u‘lf, V=2 = 1) inB"asT),(§) =S (u‘lf, V=2 = 1>ﬁ

B". In this notation we have o,¢ (X,(£)) =B" \ 2,(§) = X_,.(=¢&).

Before proceeding with the proof of symmetry we need the following simple lemma comparing
the image and object distances of a reflection from an observer in Hyperbolic space. The proof is
similar to that of the same fact in the Euclidean space.

Lemma 4.1. Let T be a generalized orthogonal sphere in B" which splits the space into two
isometric components (half-spaces) ¥ and B" \ ¥. Let E (observer) be a fized point in X. Let
P (object) be a point in ¥ and we denote its reflection in T as op(P) = P’ (image). Then
distgn (P, E) < distga (P', E) with equality if and only if E lies on T.

Proof. The proof can be seen as a corollary of the Pythagoras’ theorem (or more generally the law
of cosines in Hyperbolic space, see Theorem-3.5.3 in [28]). Let ¢ denote the Hyperbolic line passing
through P and P’ which intersects T" at O. Then clearly distg. (P, O) = distg«(P’, O) i.e., O is the
mid-point of P and P’ on the line ¢. It is easier to visualize it after applying a Hyperbolic isometry
to bring O to the origin of B". Then in this new frame, 7" is a Euclidean hyperplane passing through
O splitting B" into two half-spaces ¥ and B™ \ ¥. ¢ is an Euclidean line passing through O and
orthogonal to T'. Let F' be the orthogonal projection of E on the line ¢ (i.e., F' is intersection of ¢
with the unique Hyperbolic line ¢; through E which is orthogonal to ). Then applying Hyperbolic
Pythagoras’ theorem to the triangles APFE and AP'FE respectively we get

cosh(distgn (P, E)) = cosh(distgn (P, F)) cosh(distg~ (F, F))

cosh(distgn (P’, E)) = cosh(distgn (P’, F')) cosh(distg. (F, F))
respectively. Therefore the inequality distg.(P, E) < distga(P', E) will follow if we see that
distgn (P, I') < distg« (P, F'). Note that the orthogonal projection I of the point E on the line ¢
must lie on the same half-space ¥ as E (the unique Hyperbolic line ¢, passing through E' € ¥ which is
orthogonal to £ must be entirely contained in X). Since, distg~ (P', ') = distg (P’, O) +distg~ (O, FY)
(as O = T N/ lies in between the points P’ € B" \ ¥ and F € X on the line ¢) and
distgn (P, O) = distg. (P, O), using triangle inequality we get

diStBn(Pl, F) = diStBn(P, O) -+ diStBn (O, F) Z diStBn(P, F)
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and consequently distg. (P, F) < distg« (P, E'). Equality holds if and only if F' = O i.e., E lies on
T. This completes the proof of the claim. 0

We now proceed with the proof of Theorem-1.1.

Proof of Theorem-1.1: Without loss of generality we fix the direction { = e; and denote X, (e;)
simply as ¥, and 7),(e1) as T,. For x € B" denote z,, := 0,,,,(x) and u,(x) :=uoo,., (x) = u(x,),
where u € D"P(B") is a positive solution to (1.1) i.e.,

B" 1 _ g1
Ay u = P =t (4.3)
Since 0,,., € M(B") we have u,, is also a positive solution of (1.1) i.e.,
—AY w, — Aub~t = ud! (4.4)

and u, € D"*(B").

Step-1: To start the Moving plane method we will show that u < w, in 3, for all p sufficiently
close to 1.

Let ¢ € C(B") be a non-negative test function such that 0 < ¢ < 1 with ¢ = 1 in B and
supp(¢) C Br+1, |Vgp|, < ¢ for all R sufficiently large.

Consider the test functions 1 := @*u' " (u? — up )y Xs, and ¥y 1= gp%i‘p(up —ub); xx,. Note that
the functions are admissible as test functions since u = w, on 7T),, therefore testing (4.3) with ¢,

and (4.4) with 1y respectively and subtracting we have

/ { , |VgU|§_2g (Vgu, Vgihr) — |Vguu|§_29 (Vguu, Vgibe) dV,
Ypn{u>uy,

= / ©*(ud™P — uZ’p)(up — uﬁ) avj. (4.5)
Sun{u>uy}
In the set ¥, N {u > u,} using the sharp decay estimate on u we also have the inequality
1< i < Cle—aA(diSt]Bn(O,I)—diStBn(O,xu)) < Cl (46)
= s <

where the final inequality is a consequence of Lemma-4.1, i.e., distg«(0,2,) < distg.(0,2) for all
x € ¥, and p > 0 and hence is true in particular for all i close to 1 (here we have applied Lemma-
4.1 with E =0, P =2z, and P’ = x).

Note that in ¥, N {u > u,} using Lagrange’s Mean Value theorem we have

W =g - ) < e (S (T

U — Uy U—uy

<qp uq_2(u - uu>2'

b—a

b—
Furthermore using the inequality Ta <logb—loga < for b > a > 0 we may write

(u —u,)? < u*(logu — logu,)?.
Combining these two inequalities we have

(u?™? — uf™P) (uP — ub) < qpu(logu — logu,,)?
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which we use on RHS of (4.5) to write

/ o TS (T ) = ¥yl (T Vo) Y,
Ypn{u>uy,

< qp/ ©*u?(logu — logu,)* dV. (4.7)
Sun{u>u,}

On the other hand from the LHS of (4.7) we have

ub uP
O [Voult g [ Vou, Vy (v — —Lu) ) + |VouuP g | Vou, Vg [ v, — —u dv,
9 gt Vg gUn gUus Vg | Up p Un 9
Sun{u>uy} I up I Up

<9 / IV gl V gipl P (1 — ) dV
o {u>u,}

J/

-~

=0

Lo / IVt [PV gl P — )
Su{uzu,}

[

-~

=I>
+ qp/ ©*ul(logu — logu,)* dV, (4.8)
Zpn{u>uy}

In order to estimate I; and I, we may use the global gradient estimate from above in Theorem-3.7 for
u to write |V u| < Au, |V,u,| < Au, and the fact that |V,¢|, < ¢ with supp(|V4¢ls) C Bri1 \ Br
to write

I + I < 4cAP! / uP dV, < Ce~Per=(n=DIR _, o+ (4.9)
Br+1\Br

as R — oo since, pay > n — 1. Then using the inequality from Lemma-3.4 to LHS of (4.8) we have
Cp/ ©® min {up, uﬁ} (|V4logul, + |V, log u,ub|g)p_2 |V, (logu — log uu)|§ av,
Sp{u>uy}

<L+ 1+ qp/ ©*u?(logu — logu,)* dVj,. (4.10)

Spn{uzu,}

Now in case p > 2 we may use the gradient estimate from below on u along with the global gradient
estimate from above for both v and u, from Theorem-3.7 to write

(2A)P72 > (IVglogul, + |V, log uu|g)pf2 > |V, logu|§_2 > A%7P (4.11)

in case distgn(0,X,) > Ry which is true for all p sufficiently close to 1. Else if p < 2 then we have

AP > \ logu|’g)_2 > (|Vgloguly + [V log uu|g>p_2 > (24772, (4.12)

Combining these along with inequality (4.6), i.e., % <, =min{u,u,} <win 3, N {u>w,}, on
the LHS of (4.10) we have

C;,,A/ *uP|Vy(logu —logu,)2dVy < I + I + qp/ ©*ul(logu — logu,)?dV,.
Su{uzuy} Epn{uzuy}
(4.13)
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Therefore using Cauchy-Schwartz inequality we have

[ w9 eogu—logu)Eav,
Epn{uzuy}

<2L +20+ QQP/ ulp*(logu — log u,)? dV,
o {u>u,}
+2C, / Vgplgu? (log u —log u,)* dV,. (4.14)
N Zpn{u>uu} P
I

Recall also from (4.6) we have the inequality 0 < log u—logu, < LM (C"-1)inX,N{u > u,}.
Up

So we may estimate I3 similar to Iy, I, as before
I3 < 2C) 4(C" — 1)202/ uP dV, — 0" (4.15)
Br+1\Br

as R — oo. Therefore using the sharp decay estimate of u in (4.14) we have
[ om0y, ollogu - ogu )2 dV,
Spn{uzuy}

< C//ef(qu) distgn (0,X,) / e Pax distgn (0,z) (,02<10g u— lOg u,u)2 d‘/g
Spn{uzuy}

+ 21 + 21, + I, (4.16)

1 —2(n—1)
Recall from Lemma-3.3 we have w(z) := {sinh (5 distgn (0, x)>] is a subsolution to —Ajw <

V,w .
0 in B™ \ B,, for some roy = ro(n) > 0. Furthermore [Vquly > ¢, in B"\ B,, for some ¢, > 0. Since
w

o= poz,\l > 1 we may apply the Hardy type inequality from [16], Theorem-3.1 to write
n JR—
|1 B Oé’ ? @ |v w ; @ 00 (RN
(T w %'02 dv, < w®|Vgol2dVy, Vo € CE(B"\ B,,). (4.17)
B\ By, B\ By,

This combined with the observation
lU(Qf) R ro 6—(77,—1) distgn (0,z) in B" \ Bro

gives the inequality

Cray / emPor st (002 gy, < / e PN W OD|G 2 dV,, Vo e CX(B"\ By).  (4.18)
We remark that the above inequality (4.18) remains valid for all functions supported away from
B,, and with right decay property at infinity.

Then using inequality (4.18) on RHS of (4.16) with v := p(logu — logu,)+ we get

(1 _ O//le—(q—p)oo\ distBn(O,Eu)) / e~Pax diStBn(D’I)‘Vg(QO(IOgU . IOg uu))@ d‘/;;

Sun{u>u,}

< 2L + 20, + I, (4.19)
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Finally letting R — oo from (4.9) and (4.15) we get 21, + 21, + I3 — 07, i.e.,

(1 _ O//le—(q—p)aA distBn(O,Zu)) / e P diStBn(O’m)|vg<10gu _ log u“)|§ dVg <0. (420)
Zpn{uzuy}

Therefore V,(logu—logu,) = 0in X, N{u > u,} ie., v =u, in ¥, N{u > u,} for all 4 sufficiently

close to 1. This completes the proof of the claim v < u, in 3, for all u close to 1.

Step-II: Let us denote
M, ={pe(-1,1):u<u;in¥; Vu<p<l}.

By the previous step M, # () and let g := inf M,,. To keep consistent with the previous step, wlog
we may assume o > 0, this may be achieved by making a change in coordinate frame by a Hyper-
bolic translation 7_4, € M(B") (which fixes the points —e; and e;) for ¢ > 0 chosen sufficiently
large if necessary and working with v := (u o 7_4, ) instead so that gy = inf M, > 0.

We claim that v = u,, in X,,. Suppose to the contrary u # w,, in X,,, we will reach a con-
tradiction on infimality of o by showing that there is a € > 0 such that v < u,,_. in 3,,_¢ for all
0<e<eE

The following argument is made exactly as in [26]. Note that we have u < u,, in X,, by con-
tinuity. Then by strong comparison principle Lemma-5.8, we have either v = u,,, or u < u,, in each
connected component of ¥, \ C,, where, C, is the critical point set of u. Note that by the gradient
estimate of u from below we know C, is a compact set and furthermore from Lemma-5.4 we have
|Cu] =0 (C, is a set of Lebesgue measure zero).

If ¥,, \ C, is connected then by our assumption v # w,, in X,, by using strong comparison in
Y \ Cy we have u < uy,, in X, \ C,.

Else if ¥, \ C, has at least two connected components then compactness of C, implies there is
exactly one unbounded component which we denote by €2;. Suppose, u = u,, in €; then it is easy
to see that (X, \ Q1) Uo,,(2,, \ 1) contains a bounded connected component of B" \ C, which
we denote by w. Note that dw C C,. Recall from the regularity of v from Remark-5.2 we have
|VulP~2Vu € VV&E (B™) so that this vector field is continuous and equals 0 on dw. Since the equality
—AY w = f(u) with f(u) = A*~" +u?"" holds pointwise a.e. in w we may integrate the expression

In w to write
/ di 2 V" ivapev ) d —/f( (—2) a
g 1V 1_ ’x‘2 u u T = g u 1_’$‘2 Z.

Applying divergence theorem we have

2 np 2 "
[ = p—2 ~ n—1 _ e
0 /8w (1 — |x|2) \VulP~=(Vu,n) dH /wf(u) (1 — ’x‘2> dxr >0

which leads to a contradiction as f(u) > 0in B". Else if u = v, in a bounded connected component
Qs of ¥, \ C, then again 2y U 0,,(22) must contain a bounded connected component of B" \ C,
which is absurd as seen earlier. Thus by appealing to strong comparison we must have u < u,, in
each component of ¥, \ C, as well.

Let us consider R > 0 to be chosen sufficiently large later such that C, CC Bg. Furthermore
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using the fact that |C,| = 0 (see Lemma-5.4), we let N := N(C,) be a open neighborhood of C,
such that |[N| < k has small measure. Then for €, ¢€,d,x > 0 let us define the sets

250 e = ZMO*G \ B§7
S5(R) = ((Spoe \ Spots) N B) UV N Do),
Ks(R) :== 3,45 N BgN (B"\ N) (4.21)
so that we have
Suo—e = LR US5(R) U K3(R). (4.22)

We choose € small enough such that 0 € £, (i.e., £,,_, still remains to the right of the origin in
B") and ¢ small enough such that Ky is non-empty. Since, K5(R+1) := X, 15N Bz, N (B"\ N)
is compact, by uniform continuity of u and wu, we have u < u,,_. in Ks(R + 1) for each ¢ < € for
some € > (.

Then as in the last step for R > R, let ¢ € C>°(B") be a non-negative test function such that
0 < ¢ <1with ¢ =1 in Bg and supp(p) C Bry1, |Vyply < c. We consider the test functions
Yy = P (v — uﬁO,e)Jr X5, and g = (,DQULOPG (w? —ul, E) X3, . as before. Testing the
PDE for u with %; and the PDE for u,,_. with 15, subtracting them and following the steps from
Step-1 we get

Cyp / 902up (IVglogul, + |V, log uuo—e|g)p72 |Vy(logu — log uuo—6)|§ dVy
Tpg—eM{u>upug—e}

< Ce” (pax—(n—=1))R

+qp / 902uq(logu — log uuo_€)2 avj
,Ijo eﬁ{uzuuo—e}
+ qp / p*ul(log u —log uy,—c)* dV,
Se (R)ﬂ{u>uu0 e}
< Ce™ (pax—(n—1))R
+ 2qp / @*un®(log u — log uy,—c)? dV,
Euo 6ﬁ{u>uu0 et
T 2p / (1 — )2(log u — log,, )2 dV,
Se(R+1)N{u>upg—c}
== OG (por—(n—1)R + J1 + <]2 (423)

where, n € C*(B") is such that 0 <7 <1 withn=1in B" \ Bz,, and n =0 in By.
Let,

Joi=C, / u (Vg log uly + Vg 108 -]y 2 |V (log u — log e dVy,  (4.24)
o eﬂ{u>u#0 e}

we claim that Jy < 0. Suppose to the contrary Jy > 0. B
Note that we have the gradient estimates (4.11) and (4.12) in Efofe. Using the decay estimate of
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u and the inequality (4.18) followed by the gradient estimates of u we may estimate .J; as

J1 < Ce_(q_p)aAR/ u” (Vg4 loguly + [V, log uu0_€|g)p72 |Vg(n(logu — log Uuo—e))@ dVy
Eﬁo eﬂ{uzuuo—e}
< 2Ce (@ p JarR / u? (|V4logul, + |V, log u#0,6|g)p_2 |V, (logu — log uuo,e)\ﬁdvg
Efofem{uzuHO*E}
+ 20 e~ (PR / uP dV,. (4.25)
R+1\B

In the second line we have used the Cauchy-Schwartz inequality followed by the fact that |V n|, < c
and is supported in By, \ Bg and (logu — log u,,—c)+ is bounded from above in X, ..

Again in order to estimate J, we split it into two cases. In case p > 2 we may use the admissibility
of |Vgu|§_2 as a weight for a 2-Poincaré inequality as stated in Remark-5.6 to write

Jy < Cu/ (1 —n)*(logu — log u,,—)* dV,
S(RA1)N{u>upg—c}

<CASE+D) | 9,ul2-219,((1 = ) (log  — log ) 2 dV,

SsRADN{u>upg—c}

< 20,A(S5(R + 1)) / Vguly?|Vy(log u — log )|y dV

Se(RADN{u>uy—e}
L 8CAS(R + 1)) / V02|V, (log u — log )2 dV,
S§(R+1D)N{u>upg—c}
=T+ Jl. (4.26)

where, C, = 2qp (Sup uq> and A(S5(R+1)) is the constant for the weighted 2-Poincaré inequality.
55
Since p > 2 we have

Jh < 20! A(S5(R+ 1)) / uP |V, log u|§_2|Vg(logu —log uuo_€)|§ dv,
Se(RAN{u>upg—c}
< 2C'A(SE(R+1)) / uP (|V4logul, + |V log um),€|g)p_2 |V,(logu — log uuo,e)]f] dv,
Se(R+A1)N{u>upg—ct
(4.27)

supge u?
where, C! = 2qp ( % 5 )

infge u

Also, using the sharp decay, global gradient estimate from above of u along with the fact that
|Vgnly < c and is supported in By, \ By, followed by the fact that (logu —logw,,—c)+ is bounded
from above in the set, we have

Ty < C"CuA(S5(R 4 1))e” P20l (S5(R + 1) N By, \ Bg). (4.28)

Note that the constant C! does not increase if we let €,6 — 07, thus remains uniforgly bounded
for all ¢ <€and § < ¢. Furthermore from (5.33) we have the Poincaré constant A(S5(R+1)) — 07
as |Sg(R+1)] — 0*.
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In case p < 2 similar to the last case we may start by using the usual unweighted Poincaré inequality
instead and the global gradient bound

(lvg 10g“|g + |vg log uuo—e|g)2_p < (QA)Q_p

to write
Jy < 2C,A(S5(R+ 1)) / |V, (logu — log uuo_€)|§ dv,
Ss{uzupg—c}
+8C""CuA(S5(R + 1)) Voly(S5(R + 1) N By, \ Bg)
< 2C!A(S5(R+1)) / uP (|V4logul, + |V, log uuo,e\g)p_Q |V,(logu — log uuo,e)@ dv,
Ssn{u>upg—e}
+8C""C,A(S§(R + 1)) Vol,(S5(R + 1) N B, \ By). (4.29)
) supge u?
where, the constant C! = (24)* Pgp (m) does not increase as we let €, — 0+ and hence
S5

remains uniformly bounded as in the previous case.
Thus letting R — oo in (4.23) and combining with the fact that with R chosen large enough
we have J; < Jp/4 and in the estimates for J, we can choose € < € § and x small enough s.t.,
20 A(S§(R+1)) < 1/4, J) < Jo/4 we get
Jo/4 = %/ uP (Vg logul, + |V loguu, |,)" > |V, (logu — 10g tyy—c )| dVy < 0
4 Bpg—eM{u>upug—c}
(4.30)

which leads to a contradiction. Thus we must have Jy < 0 to begin with.
This in turn implies as in Step-I, u < uy,— in X for each ¢ < €. But this contradicts the
minimality of 1, completing the proof.

Ho—€

Step-I1I: Finally applying another Hyperbolic translation 7., € M(B") for some ¢t € R we may

choose a coordinate frame s.t., pip = 0. Thus we have u = (u o 0¢,,) in Xg(e1). Similarly repeating

this in ej-directions for j = 2,--- ,n we also have u = (uooq,) in ¥g(e;). Owing to the fact that u

is non-decreasing in direction of the moving plane we must have u(0) = supu = M (say). Since, u is
IBTL

symmetric about the n orthogonal planes passing through 0 € B", it must also have point symmetry
about 0, meaning u(x) = u(—z) by successively reflecting along these n planes. We claim that for
any direction € € S*!, the moving plane in the direction of € must stop only after it reaches the
origin 0 € B". Otherwise, if we have u = (v o 0,z) in ¥, () for some p # 0, i.e., T,(€) stops at an
optimal position before reaching 0, by reflecting 0 about 7,,(€) we must have v = M along the line
segment joining 0 and its reflection Oy = 7,,2(0). Again due to the point symmetry about 0 we must
have u(—0;) = M. By reflecting —O; about T),(€) we have u = M on the line segment joining —O;
and its reflection Oy = 0,z(—0;). If we denote distg» (0, 01) = 2¢, since reflections are isometries,
successively iterating this process with Oy 1= 0,:(—0j_1) we get distg-(0,0y) = 2kf. Therefore,
u = M along the entire line passing through 0 in direction e, which contradicts the decay of w.
Therefore, u = (u 0 0pz) for any € € S"', which implies u is a radially symmetric function in B"
with respect to the origin 0. To see that w is strictly decreasing in radial direction (i.e., C, = {0}),
we may either look at the ordinary differential equation satisfied by w or argue as in beginning of
Step-1I to conclude that B" \ C, cannot have a bounded connected component since, level sets of
u are spheres. This completes the proof of Hyperbolic symmetry of u. Finally we note that if we
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denote u(x) = ®(distg~(0,2)) then ®'(¢t) < 0 for all ¢ > 0 and by standard regularity argument ®(t)
is smooth for ¢ > 0. d

5. STRONG COMPARISON FOR HYPERBOLIC p-LAPLACE EQUATION

In this section we establish the Sobolev regularity of |Vgu|§_2vgu and local integrability of
|Vgu|g_(p_1)r for r < 1, of positive solutions u € D*P(H") N CL*(H") of the equation

loc
—Agﬂnu = f(u) (5.1)

where, f is a positive locally Lipschitz function such that f(¢) > 0 for ¢ > 0 and the set of critical
points of u is compact. These estimates play a crucial role in proving a strong comparison theorem
when p > 2. We will proceed in similar lines of [11], [I5]. We remark that these results have
also been proved in a more general homogeneous compact Riemannian manifolds with boundary
in case p > 2 in [2]. In the prior sections we saw that when f(t) = MP~! + 7! for p < ¢ < p*

n—1\"
and 0 < A < A\pax = , the positive finite energy solutions have non-vanishing gradient
p

in complement of a large ball. For the sake of simplicity of calculations we will be using the upper
half-space model (H", g) of the Hyperbolic space.

We begin by recalling that the equation (5.1) is invariant under the action of the Mobius transfor-
mations M(H") (isometries of H"). Let, 7 € M(H") then u, := (uo7) € D**(H") also solves

CARy, = f(u,). (5.2)

We will linearize the equation (5.1) along the flows of the Hyperbolic translations. Note that for
t >0, n € M(H") given by 7(x) := tx is a translation in the upper half-space model of the
Hyperbolic space that fixes 0 and oo. Note that by classical regularity theory u € C*° in H" \ C,
where, C, := {x € H" : V,u(zx) = 0} is the critical point set. Let ¢ € C°(H") be such that
supp(y) C H" \ C,. Testing equation (5.2) with ¢ and differentiating at ¢ = 1 we have

d d
dt / [Vy(uom) [} g(Vg(uo ), Vyp) dVy = — fluom)pdVy. (5.3)
Note that we have successively for each j =1,--- ,n
d
—| (uwom) = (x,Vu) :=V,(u). (5.4)
dt|,_,
a(u @) Tt)
= = tu, (1 5.5
G = s (1) (55)
d O(u o) Vi (u)
i =Y — . Vu,.) = 5.6
dt =1 827]' “ ! + <x Vu ]) 833]' ( )
d
— IV(uomn)|? =2(Vu, VV,(u)). (5.7)
dt |,y
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Therefore, (5.3) becomes

/Hn 2" (Va2 (VVa(u), V) + (p = 2)|[ VP~ (VV,, (), Vu) (Vu, V) da
= . (W) Vo (u)px, " dx, ¥V p € C(H™\ C,). (5.8)

Keeping consistent with the notations in [11], we define the linearized PDE corresponding to (5.1)
to be, L, (v, p) =0 for p € C2°(H") where

Lu(v, @) = /Hn |vgu’5_29(vgvv Vep) + (p— 2)|VQU|§_4g(VgU, Vau)g(Vgu, Vo) dV,

-/ [ (uw)vp dVy,. (5.9)

Similarly considering horizontal translations as well in upper half-space (Euclidean translations
x — x + te; in ej-direction for j = 1,--- ,n — 1, which are also isometries in the upper half-space
model of the Hyperbolic space) we have

Lu(Vj(u),) =0 (5.10)
Vo e CX(H"\C,) where,
Vi(u) ==y, for j=1,--- ,n—1
Vo(u) = (z, Vu). (5.11)

By density argument the above equation remains valid ¢ € Wif(H") with compact support in

H" \ C,. We note that the vector field V' (u) := (Vi(u),--- , Vi (u)) is given by

V(u) = A(z)Vu (5.12)
where, Vu = (ug,, -+ ,ug,)’, A(x) := [er, -+ ,en_1,7]" (Where, €1, e, -, e, are the column
vectors of [e1, -, e,_1,2]) is an invertible matrix with its inverse A(x) ™" = [e1,- -, e,_1, 7| where

o 1Y
T = (_ﬂy... ,_x 1,—> . We also have [|A(z) 7|31 Vul < |[V(u)| < ||A(2)]|2|Vu| where,
3 |z — 22 +1
[A@)[13 = n =1+ [of and [[A(2) 3 = n =14+ ——*—.
Keeping the linearized equation (5.10) in mind we proceed to state the regularity results for
V(u). The proofs are verbatim adaptations from [141] and [15], some of which we present here
and summarize the rest for the sake of completeness. See Theorem-2.2 in [14] for the corresponding

Euclidean analogue of the following lemma.

Lemma 5.1. Let, 1 < p < oo and u € D'P(H") N CLI(H") be a solution of (5.1) such that the
critical point set C, := {x € H" : V u = 0} is compact and contained in a bounded domain @ C H".
Let us denote by Zy, = {x € H" : Vi(u)(x) = 0} for each k = 1,2,--- ,n. Then for each compact

set E such that C, CC E CC Q we have

/ ‘Vgu‘5_2 [V Vi(u) 52;
ez, |Ve(w)|? distan (z,y)

sup
e

dVy(y) < C, fork=1,2,---,n (5.13)
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for some positive constant C = C(u, 8,7, E) (depending on w) where, 5, are non-negative real
numbers such that 0 < <1 and 0 <y <n —2 whenn >3 (v =0 when n = 2). This in turn
implies

YV ulP=278 |V2y|?
sup/ | g'|g Vil dV,(y) < C. (5.14)
we Jpe,  distye(z,y)7

Proof. Wlog we may assume x € F. Indeed, suppose we prove

Yl 9, Viu)
dV = K , ,E < O

sup
zel

1
Then splitting between the two cases x € Ej := {x €  : distgn(z, F) < §} with § < 3 distgn (E, 09Q)
and z € Q\ Es we have

1
n Vel e gy Vo) < KB Bo) + 5 K (5,0, ),

sup
€N

/ [Vguly™ [VgVi(u)3
E

0 when |s| <e¢

and linear continuous when € < |s| < 2¢. Then G. is a Lipschitz
s when |s| > 2¢

Let G.(s) = {
Ge(s)

function with |GL| < 2. Furthermore we have (G;(s) —p
s

) >0forall seRand g < 1.

Case-1: Let x € ENC, and let ¢ € C°(Q2) be a non-negative test function such that ¢ = 1

in a neighborhood containing Es := {y € Q : distg-(y, E) < §} of E and supp(¢) C Q with § <
G-(Vie(w)(y)  ¢(y)

1
— distyn (E, 092). Consider the test function . ,(y) := - , for the linearized
g (vt (5,0 Vel = TP distn ()

equation (5.10). Then we have

701N R———

/Q\zk Vsl 19Vl (G?(V’“(“” Py ) WP diste (2. )7

pi 2 ( Ge(Vi(w)) ¢(y)
w02 [ty (T V) (610000 ~ s ) )
A G.(Vi(w)
o T TV, 948) s 44
+(p-2) /Q Vg (V4T V) gVt ) (uﬁ; g‘f’;t(;)zx = ()
p—2 U iS o - GE(Vk(u))¢
+/Q\Zk|vgu|g 9 (VyVi(u), V, distun (z,7) )—IVk(U)IB dVy(y)
+ (p—2) /Q\Z |Vgu|7g’_4g (VgVi(u), Vyu) g(Vau,V, distHn(x,y)”)W dV,(y)

- / PV ea () AV (). (5.15)
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Note that the RHS of (5.15) is bounded by

||f/<u>|vk(u)|1ﬂ‘|L°°(Q)/Q o

LA S— < .
o (o Wol) < € (5.16)

since, vy < n — 2.

Now, in the third and fourth integral on LHS of (5.15) we have distgn(x,y)™" < 67 in Q\ Ej.
Also, |Vul[b=?|V Vi (u)]y < Cy since, Vyu # 0in Q\ Es and u € C**(Q\ Ej) by standard elliptic
regularity theory. Therefore, the two integrals are bounded by

IV u|P~2 |V Vi ()| V| |G (Vie(10))] o
v 1)/9\];5 g distHi(x,y)vg ’ Vi(w)]? dVy(y) < Co77. (5.17)

The fifth and sixth integrals on LHS of (5.15) is bounded by

[V gulP2 |V Vi(u)]g |Ge(Vi(w))| ¢
P 1) /Q\Zk distge (z, y) 1t Vio(u)|? dVy(y). (5.18)

Now, using Young’s inequality for any o > 0 we may write
Vil _ V@B 1 Vi)
distgn (2, y)7 Tt = |Vi(u)| distga (2, )Y 4o distyn (2, y)7+2
Therefore, using (5.19) in (5.18) and the fact that |G.(Vi(u))| < |Vi(u)] < C|V, ul in © we have

[VulP 2|V Vi(u)lg |Ge(Vi(w)) |6
= 1)/Q\zk éiStHn(%gy)”“ g [Vie(u)[?

(5.19)

dVy(y)

. VoulP 2V Vi(u) 3 |G- (Vi(w)] ¢
< min 1,p—10/ : g dv,
p=o ) Aty Wil VP "W
(p—1)? / [Vgu"~P¢
2
dmin{l,p — 1}o Jo z, distyn(z,y)7+? Vo(y) (5.20)

where, the last integral on RHS of (5.20) is bounded as vy < n — 2.
Considering the two cases p > 2 and 1 < p < 2, using Cauchy-Schwartz inequality we have

min{1,p — 1}|V9Vk(u) 3 < |V9Vk(u)|3 +(p — 2>|vgu|g_29 (Vyu, ngk(u))2 .
So the sum of first two integrals on LHS of (5.15) is bounded from below by

Gs(Vk(U))) o(y)
Vi (w) |Vie(w)|? distyn (2, y)7

dVy(y).
(5.21)

min{Lp— 1} [ [V,ul 2V, Vi) (G;wk(u)) 8
O\ Z

Choosing o small s.t., 1 — — o > 0 and absorbing the first integral on the RHS on (5.20) in (5.21)
and combining with the bounds established above in (5.15),

R Y X /A1) o)
[, 19 19V (GLtviw) = 8-+ ) SN e B i) < o

(5.22)
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Ge(Vi(u))

N GL(V, — _—

ow, (L3 0) = (540 S

lemma in (5.22),

P A Y A A O

\z |Vi(w)]? distyn (2, ) ~ Jovze  [Ve(u)|? distyn (7, y)7
where, Cy does not depend on x € ENC,. Also, since V, Vi (u) =0 a.e. in Z; \ C, it follows that

/ ]Vgu|§_2]Vng(u) 3
p\ea [Vi(w)|? distgn (z,y)7

) —1—(B+40)in Q\ Z; as € — 0, so by applying Fatou’s

dVy(y) < Co (5.23)

4Vy(y) < Co. (5.24)

Thus the conclusion of (5.14) now easily follows from (5.12).

Case-2: Let, x € E\ C,. Then choose gy > 0 s.t., By, (x)NC, = 0. For ¢ < gy choose non-negative
C
test function ¢., € C°(Q) s.t., ¢ = 0in B.(z) and ¢, = 1 in E5 \ Boc(x), |Vydenly < - in
By (x) \ B:(z) and |V ¢ 2]y < Cin Q\ Ba.(2).
[Vi(u)(y)]? distgn (z,y)

Then using the test function 9. , = in (5.10) and proceeding as before

we have
. , GO 6)
[ 19t 90 (010 - 6+ ) SR e P v
o . GV )]V (0
<C+C /B o V5 IV Vel st (g o) (5.25)

Then using the fact that u € C**(By,(z)) so that sup \Vgu]??\vgvk(u)\Q\Vk(u)\l’ﬂ =a(zx) is a

Bgeo T
bounded quantity independent of ¢ > 0, and noting that Vj(Ba.(x)) ~ " we get

n

- Ge(Ve ()| Ve ()] €

Vult2|V,V; | s L dV,(y) < ' — 0" 5.26
/Bgs(a:)\Be(a:) | gu|g | g k<u>|g |Vvk(u)|/3 diStHn(I, y)7 g(y) = CL(x) JRas| ( )
as € — 0. Thus using Fatou’s lemma as before in (5.25) we have (5.13) in this case as well. O

Remark 5.2. Note that if u be as in Lemma-5.1, by Stampacchia’s lemma |V gul? >V gu € WL2(Q).
Indeed if we set G. as in Lemma-5.1 then

0

8xj
a.e. in Q. Also, applying previous lemma with § =~ =0 we get
||Ge (‘vulp_2umi)

where, E CC Q and C depends only on E. Then by compact embedding W*(E) C L*(E) we may
extract a sequence £, — 0 s.t., Ge,, (|[Vu|’uy,) = v in L*(E) and pointwise a.e. in E for some
v € WH(E). However, G.,, (|Vul["?uy,) = |VulPu,, a.e. in E, thus |VulP *u,, = v e W(E).

G. (|Vuluy,) = GL (IVulPug,) [|[Vul ., + (p — 2)|VulP~(Vu, Vug, Jug, ]

|W1v2(E) < C, Ve small

Remark 5.3. As a consequence we have Vj(u) is a weak solution to the linearized equation (5.10),
for 5 =1,--- n. The Sobolev reqularity of \Vgu|§*2vgu can be used to justify the differentiation
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under integral sign, in particular where supp(p) intersects the critical point set C,. Therefore we
have

L,(Vi(u),9) =0 (5.27)
Voe CPMH") andj=1,--- ,n.

With the aid of Lemma-5.1 one may then proceed exactly as in the proof of Theorem-2.3 in [14] for
the FEuclidean case, to prove the following lemma concerning the integrability of negative exponents
of |V ul, along with a potential.

Lemma 5.4. Let v be as in Lemma-5.1. Then
sug/ \Vgu|;(p’1)T distyn (2, y) 7 dV,(y) < C (5.28)
x€ Q

where, r,7y are non-negative real numbers such that 0 <r <1, 0 <~y <n—2 whenn >3 (y=0
when n = 2). In particular this implies |C,| = 0.

The following inequalities are a direct consequence of corresponding Euclidean inequalities of
Theorem-3.1 in [1] and the conformal relation of the Hyperbolic volume element with the Euclidean
volume element which we state here for the sake of clarity.

Lemma 5.5. Let,  be a bounded domain in H" and let Q C Q be a subdomain. Suppose p € L*(€)
to be a positive weight function satisfying

/Qp_t(y) disty (2, ) ™7 dV,(y) < C(Q), Vz € Q (5.29)

1
for some positive number t > 0 and 0 < v < n — 2. Let, m be an exponent satisfying m > 1 + n
n p—
and m > T’y

1 1 1 1 1
(1) If m satisfiesm <n |1+ — ~ 7 and define the exponent mf as — = — — —+— (1 — —>
t t mt m n omt

then the following weighted Sobolev inequality is valid
[0ll oy < ClIVgollimns ¥o € Wa™ (S, p) (5.30)

where, the constant C' = C(n, m,t,~, p, ).
1
(2) If m satisfies m =n (1 + Z) - %/ then we have

oll o) < Coll Vovllm. Yo € Wo™ (€, p) (5.31)
for all g > 1.
1
(3) If m satisfies m > n (1 + ;) - % then we have

||U||Loo(Q) < CvaUHLm(Q,p), Yo e Wol’m(Q,p) (532)
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Finally, we also have the following weighted Poincaré inequality

lollzm@) < CAQ)IVgollmi,), Vo € Wy™ (9, p) (5.33)

where, A(Q) = \Q\%_j.
The above inequalities are also valid for functions v with zero mean, so that we have corresponding
Poincaré-Sobolev and Poincaré- Wirtinger inequalities as well.

Remark 5.6. The case p > 2 and m = 2 is a particularly relevant one. In this case we are in

dimension n > p > 2. When u s as in Lemma-5.1 considering p = |Vgu|§_2, from Lemma-5.4 we
-1 -1 1

have p satisfies the condition (5.29) for all t = b= P =1+ and 0 < v <n—2.
p—2 p—2 p—2

Then for the exponent 2* we have

1 1 1+n—7>1 1+1 p—2\ 1
202 mn 2t ~ 2 n n\p—-1)" 3

1 -2 n
where we used the fact that n —~v > 2 and n > p—l Furthermore choosing t > ensures
p —
1 1 . on—=7 p—1 . o
3 > ok This would require 5 <t < m, which is always possible if we choose v close to

n—2 (recall that v < n—2). Therefore for such choice of t and v we have 2 < 2% < 2. This implies
the weighted 2-Sobolev Inequality (5.30) with exponent 28 > 2 and weighted 2-Poincaré inequality
(5.33) (and weighted 2-Poincaré-Wirtinger inequality) with weight p = |Vgul?™* are valid as well.

With the aid of the Sobolev and Poincaré inequalities one can employ a Moser’s iteration argument
exactly as in [15] to get Harnack inequalities for bounded and non-negative sub(super)-solutions of
the linearized equation (5.9). In case u does not have any critical points then the Moser’s iteration
can be continued with the standard unweighted Sobolev and Poincaré inequalities.

Lemma 5.7. Let 2 < p < n and v € W"*(Q, p) N L=(Q) be a non-negative weak supersolution to

the linearized equation (5.10) where, p = |Vgulb™* with u being as in Lemma-5.1. Then for each
of

Bos(xz) C Q and any s < x = 5 there is a constant C > 0 (depending on x,s,n,p,u, f) such that

||U| L3 (Bas(x)) S C inf wv. (534)
Bs(x)

On the other hand if v € W'2(, p) N L>®(Q) be a non-negative weak subsolution to the linearized
ot
equation (5.10), then for each Bas(x) C 2 and any s < x = 5 there is a constant C' > 0 (depending

on x,s,m,p,u, f) such that

sup v < C|v|
Bs(x)

L#(Bas(x))- (5.35)

2 2 2* 1 -1
If, nt < p < 2 then the same conclusions hold for s < x' = — |1 — = | where, ¢ < L
n+2 2 q 2—p

denotes the integrability of p i.e., p € L(Q).
Thus if v € WH(Q, p) N L™¥(Q) be a non-negative weak solution to the linearized equation (5.10),
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then for each Bas(x) C Q we have

sup v < C inf v. (5.36)
Bs(z) Bs(z)

As a result we have the strong minimum-principle for non-negative solutions, i.e., either v > 0 in )

orv=01inQ. WhenC, = () meaning when u does not have any critical points then the requirement
2n + 2

p > can be replaced by any p € (1,n) and both the Harnack and consequently the strong

mintmum-principle remains valid.

In the following lemma we state the strong comparison theorem which has been used in the proof of
symmetry. The proof of the theorem again follows Moser’s iteration scheme which can be continued
with the standard unweighted Sobolev and Poincaré inequalities as long as we stay away from the
critical point sets of the solutions in concern.

Lemma 5.8. Let u,v € C7(Q) be solutions of the equation (5.1). Suppose, u < v in Q and
Q' cQ\(C,NC,) to be any connected component. Then for each Bys(x) C Q' we have the Harnack
imequality
sup (v —u) < C inf (v — u). (5.37)
Bs(z) Bs(z)
for some constant C' > 0 (depending on x,s,n,p,u,v, f,5). As a consequence, we have the strong-

comparison theorem between u and v in each component Q' of Q\ (C, NC,) i.e., either u=v in
oru<wv in Y.

6. EXISTENCE AND NONEXISTENCE

In this section we will briefly look in to the question of existence and non existence of solution for
the problem (1.1). In view of the symmetry result Theorem-1.1 it is enough to work in the subspace
of DMP(H") consisting of radial functions.

Fix a point O € H" and let D*,(H") be the closure of C!(H") functions which are radial with
respect to O. Let u(x) = v(dist, (O, z)) be a radial C} function, then for ¢ > 0

p—

(8] = ‘—/toov'(s) ds| < (/too v/ (s) [P (sinh 5)"~ ds)’l’ (/too (sinh 5) 5= ds) ’

Hence for R > 0 there exists a dimensional constant Cr > 0 such that

[u(@)] < Crl|Vgullpr@mpaoy €7 O, @ € H'\ Bp(0) (6.1)
holds for all u € D} (H"). As an immediate corollary we get
Lemma 6.1. The embedding D:&Z(H") — LY(H") is compact for any p < q < p*.

Proof follows using standard arguments (see [5], Theorem-3.1).
Using the above Compactness lemma we have the existence in the subcritical range p < ¢ < p*.

Theorem 6.2. Let p < q < p*, then the problem (1.1) admits a solution.
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Proof. By standard arguments it is enough to show that S), is achieved in (1.2) by a function
u € D"P(H"). Note that by symmetrization arguments [, Chapter 7]

Jun IVguly = AP aVy o fu Vguly — Muldy,

Sna = u Dl’z} H"),uz£0 pla Ly (pn p/a
€DLP(H™),u (an |2 dVg) u€DL P, (HM) uz£0 (an e dVg)

)

Let, u, € Diﬁl(H") be a minimizing sequence for the above infimum. With out loss of generality we

may assume u,, > 0 and using the Ekeland variational principle, u,, is a Palais-Smale sequence and

q -1\’
/H IV gun [ —Aub, dV, :/ ul dVj,. Thus,/]HI Vgl —Aub dVy — (Sx4)e7. Since A < (nT) :

. . . . . 1’p n . .
this implies w, is bounded in D,” (H"). Passing to a subsequence if necessary we may assume

u, converges weakly to some u € Diﬁl(H”). Passing to a further subsequence we may assume

U, — w in LY(H") (using the previous Lemma-6.1), pointwise a.e., u?~" — v*~' in L7-1 (H") and
|Vgun]§_gvgun —~ V for some vector field V € L#1. Since u, is a Palais-Smale sequence we have
for for all ¢ € C}(H"),

/ [V gun 22 9(V gun, Vyo) — Mt ¢ dV, = / ul™'¢dV, + o(1), as n — 0.

n

Passing to the limit as n — oo we see that

n

It follows from [0] that V = |[V,ul?*V,u and hence u solves —AN u — M~ = v~ in H" and
in particular / |Vgulh — AP dVy = / u?dVy,. Moreover / lu|?dV, = lim |u,|TdV, =
p H~ Hn H» n—o0 H»

(Saq)e? . Thus u is a non-negative extremal. O

Next we consider the critical case ¢ = p*. The crucial step is to obtain higher integrability, see for
example [17] for similar issues in the Euclidean context.

Theorem 6.3. Let S, be the best constant in the Euclidean Sobolev inequality defined by S, =

inf{/ |Vu|Pdx :/ lulP"de = 1,u € Dl’p(]R")}. Then the problem (1.1) admits a nontrivial
R R

solution if Sy < .Sp.

Proof. We have the following Sobolev inequality (see [3], Theorem-2.28)

[ vt zs,( [ 1o
H™ H"

Hence we have Sy« < S,. Choose g, € (p,p") such that ¢, — p* as n — oo. It follows from the

previous theorem and our symmetry result that there exists a u,, € D17 (H") satisfying

/n ulr dV, =1, /n [|Vgun|§ — )\uﬂ dVy = Sixq,

n — —_ .
and —AEI Uy — Aub V=8 udtin H™.

" p/p R
dvV,) ,YueDWPH"). (6.2)

dn 'n
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It is easy to see that limsupSy,, < S\,+, thus taking a subsequence if necessary we will as-
n—o0

sume that lim S, = Ay < S),+. This in particular implies that u, is bounded in DL (HM).

rad
Therefore agﬁin the proof of previous theorem we will be able to extract a subsequence, which we
still denote by u,, and a u € D-?,(H") such that u, — u pointwise a.e., u, — u in D7 (H") and
u solves —Agnu — M™% = Agu? ! in H". It remains to show that u # 0 and hence a constant
multiple of u solves (1.1).

Using the pointwise bound (6.1) and dominated convergence theorem we can easily see that

/‘ ulr dV, — uP" dV,
H"\Bg(O) H™\Bg(O)

as n — oo for any R > 0. Thus, / ulm dV, — u?” dV, as n — oo if we have for some ¢ > p*
n HTL

and a R > 0 such that ul dV, < C,Vn. We will show that this is indeed true if we assume
Br(0)
S,\,p* < Sp.

Let us assume Sy, < S, . Choose A € (A, S,). Fix R > 0 and a radial function ¢ € C}(Bg(0))
such that ¢ = 1 in Bg/»(0O). Let k > 1 to be chosen later. Testing the PDE for u, with ¢*ul, we
get

/ Uvgungﬂg(vgumVg((bpufz)) - )‘ugiprkébp] dVy = S)HQn/ ulr g dVy.

n

Since u,, is bounded in D'?(H"), the second term on the LHS is uniformly bounded if p—1+k < p*.
Expanding the first term on LHS, we get

b [ Il V4 [V 07 V) (07 )
Hn Hn

Since the integrand of the second term is supported in the annulus with radius R/2 and R, the
radial bound (6.1) implies that u, is uniformly bounded in this annulus. Thus the second term is

bounded by C' / \Vgunlg_l dV, which is uniformly bounded. Now using Young’s inequality we
see that
p

Bgr(0)
= o7 ()
 E——— Vg | oun ® v,

(k +p - 1)17 H"™ g

< k/ |Vgun|§¢pu§z_l dVy + C/ (|V9¢|§Ug+k_1 + |Vgun|§_1uﬁ|vg¢|g> dVy.
Hn

n

The last integral is uniformly bounded as argued before if &k — 1 + p < p*, thus substituting back
these informations we get the existence of a constant C' > 0 such that

kpp k—‘—;)—l
(k+p—1) /H” Ve (mn )

p

n

d%§C+A/zﬁ1MMMQ

g
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Now using (6.2) the last term can be estimated as follows,

p—1+k p
A g ay, = A (u P ¢>> (ur) dV,
Hn Hn
p=ltk O\ dn n ot
<A ([ (o) )" (L)
P —an p—1+k p* PL*
< WO m)I A [ (w7 0)
p* —an k+p—1 p
< WsOR) ¢ [, (on )]
k+p—1 p
<t [ 19, (o) v,
" g
* . kpp «
as g, — p* for all n large and some « € (0,1). Choosing k close to 1 such that m >1— 5

p
dV, < C for all n large and hence the higher integrability follows by

k+p—1
we get / V, (gbun v )
" g

Sobolev inequality (6.2). This completes the proof. O

When p = 2 the precise existence and nonexistence result was proved in [21]. When p # 2 we
have the following existence theorem in the critical case.

Theorem 6.4. Let 1 < p < n such that n > p*>. Whenp <2, n>3p—2, A >0 and ¢ = p* then
the problem (1.1) has a non zero solution.

Using standard test functions we can see that in this case Sy, < .S, see the proof of Theorem-1.5
in [19] for details.

We end the section with a Pohozhaev non-existence result for (1.1) when ¢ = p* and A = 0.
Theorem 6.5. Let A =0 and q = p* then the problem (1.1) does not have any non zero solution.

Proof. Assume the problem has a nontrivial solution. Then by our symmetry result Theorem-1.1
the initial value problem

((sinh )" o/ P~2u’)" + (sinh )" 1 = 0 (6.3)
u(0) = o, u'(0) = 0,u(t) > 0,u'(t) < 0,Vt >0 '

has a solution for some « > 0 satisfying the asymptotic estimates stated in Theorem-1.1 namely
n—1

u(t) ~u'(t) ~ e »-1" for t large.

Multiplying the equation (6.3) with (sinh¢)u’(¢) and integrating from 0 to some R > 0, we get

R
0:/ [((sinh15)”_1|u’|”‘2u’)’Jruf”‘—l(sinht)"—1 (sinh )u/ (t) dt
0

R
= —/O ((sinh¢)"'|o/'[P~%u) ((sinh t)u/(t))' dt

1 R N n . |1 p
+E/0 (u ) (sinht)™ dt + (sinh R)"|u'(R)|". (6.4)
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Again integrating by parts and rearranging the terms, we get

p—n R 'p P\ [ el _|lp=1, » 1 o ) n
5 (Jo/|P — ") (sinh ¢)" " cosht dt = o u'(R)|P + Eu (R)| (sinh R) (6.5)
0

Similarly multiplying the equation (6.3) by (cosht)u(t) and simplifying as before we get

i} R
PT— ' ()[P) (sinh )" cosht dt = /0 |/ (t)[P~2 (t)u(t)(sinh t)"™ dt

[ uto

+ ' (R) [P~ u(R)(sinh R)" ! cosh R. (6.6)

Substituting (6.6) in (6.5) and simplifying using the asymptotic estimates of v and v’ we get,

n ; D /OR [/ (£)|P~?u(t)u'(t) (sinh t)" dt = O (e(n—%p)R> Lo (e(”_%P*)R> N

as R — oo. Thus we get / [/ () [P~ u(t)(sinh )™ dt = 0, which is a contradiction. O
0
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