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Abstract

It has been noticed a while ago that several fundamental transformation groups
of symplectic and contact geometry carry natural causal structures, i.e., fields of
tangent convex cones. Our starting point is that quite often the latter come to-
gether with Lorentz–Finsler metrics, a notion originated in relativity theory, which
enable one to do geometric measurements with timelike curves. This includes finite-
dimensional linear symplectic groups, where these metrics can be seen as Finsler
generalizations of the classical anti-de Sitter spacetime, infinite-dimensional groups
of contact transformations, with the simplest example being the group of circle dif-
feomorphisms, and symplectomorphism groups of convex domains. In the first two
cases, the Lorentz–Finsler metrics we introduce are bi-invariant. A Lorentz–Finsler
perspective on these transformation groups turns out to be unexpectedly rich: some
basic questions about distance, geodesics and their conjugate points, and existence
of time functions, are naturally related to the contact systolic problem, group quasi-
morphisms, the Monge–Ampère equation, and a subtle interplay between symplectic
rigidity and flexibility. We discuss these interrelations, providing necessary prelimi-
naries, albeit mostly focusing on new results which have not been published before.
Along the way, we formulate a number of open questions.

Mathematics Subject Classification: 53DXX (Primary); 53C50, 22E65 (Secondary)

Contents

Introduction and main results 3
A Lorentz–Finsler structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B A bi-invariant Lorentz–Finsler structure on the linear symplectic group . . 6
C The anti-de Sitter case n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 8
D A bi-invariant Lorentz–Finsler metric on the contactomorphism group . . . 9

∗Ruhr-Universität Bochum, Fakultät für Mathematik, alberto.abbondandolo@rub.de
†Vrije Universiteit Amsterdam, Department of Mathematics, g.benedetti@vu.nl
‡Tel Aviv University, School of Mathematical Sciences, polterov@tauex.tau.ac.il

1



E The contactomorphism groups of (S2n−1, ξst) and (RP2n−1, ξst) . . . . . . . 12
F Timelike geodesics on Sp(2n) . . . . . . . . . . . . . . . . . . . . . . . . . 13
G Timelike geodesics on Cont(M, ξ) . . . . . . . . . . . . . . . . . . . . . . . 15
H A systolic question for non-autonomous Reeb flows . . . . . . . . . . . . . 17
I A time function and a partial order on the universal cover of Sp(2n) . . . . 18
J The Lorentz distance on the universal cover of Sp(2n) . . . . . . . . . . . . 20
K The Lorentz distance on the universal cover of Cont0(RP2n−1, ξst) . . . . . 24
L Length bounds in Diff1(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
M Length bounds on the universal cover of Cont0(RP2n−1, ξst) . . . . . . . . . 28
N Positive paths in the group of symplectomorphisms of convex domains . . . 31
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1 Proof of Proposition B.1 38

2 Proof of Proposition D.1 40

3 Proof of Proposition D.2 and uniqueness 43

4 Proof of Proposition E.1 44

5 The Morse co-index theorem for timelike geodesics on Sp(2n) 47

6 Jacobi fields along timelike geodesics in Sp(2n) and proof of Theorem F.1 49

7 The second variation of the Lorentz–Finsler length on Cont(M, ξ) 52

8 Proof of Theorem H.1 58

9 Krein theory, Maslov quasi-morphism and proof of Theorem I.1 59

10 Causality, Lorentz distance and proof of Theorem J.1 on S̃p(2) 64

11 Proof of Theorem J.1 68

12 Proof of Theorem K.2 72

13 Proof of Theorem L.1 77

14 Proof of Theorem M.3 80

15 Proofs of the results of Section N 82

i Bi-invariant Lorentz–Finsler metrics on Lie groups 87

ii Some facts about the Lie algebra of the symplectic group 94

2



iii Contact Hamiltonians 97

References 98

Introduction and main results

Endow the vector space R2n with linear coordinates x1, y1, . . . , xn, yn and with the standard
symplectic form

ω0 :=
n∑
j=1

dxj ∧ dyj.

The group of linear automorphisms of R2n that preserve ω0 is the symplectic group Sp(2n).
It is well known that Sp(2n) admits no bi-invariant distance function inducing the Lie group
topology. Here is the simple argument for n = 1: the symplectic automorphisms

Wλ :=

(
1 λ
0 1

)
, λ > 0,

are all pairwise symplectically conjugate and hence any bi-invariant distance function on
Sp(2) assigns the same positive distance from the identity to each of them. But then the
distance function cannot be continuous with respect to the Lie group topology, as Wλ

converges to the identity for λ → 0. The same argument applies in higher dimension
and shows, in particular, that Sp(2n) does not admit bi-invariant Riemannian or Finsler
metrics.

Similarly, the contactomorphism group Cont(M, ξ) of a closed contact manifold (M, ξ)
does not admit any bi-invariant distance function which is continuous with reasonable
Lie group topologies. More precisely, any bi-invariant distance function on Cont(M, ξ) is
discrete, meaning that the distance of any pair of distinct elements has a positive lower
bound, see [32, Theorem 3.1].

In this article, we show that Sp(2n) and Cont(M, ξ) admit natural bi-invariant Lorentz–
Finsler structures and initiate a systematic study of their properties. The former provides
yet another multi-dimensional generalization of the classical 3-dimensional anti-de-Sitter
space and yields a new viewpoint at the study of positive definite linear Hamiltonian sys-
tems. The latter (which is related to the former) provides a natural geometric language for
studying a non-autonomous version of the contact systolic problem. While our motivation
comes from symplectic and contact geometry and dynamics, we develop the subject along
the lines which are customary in Lorentzian geometry, and which are influenced by its
physical interpretation. As we believe that keeping in mind this interpretation may facil-
itate the understanding of the (otherwise, purely mathematical) material of the present
article, we start with its very brief overview.

Lorentzian (or, more generally, Lorentz–Finsler) metrics are sign-indefinite cousins of
Riemannian (resp. Finsler) metrics. They originated in the relativity theory as a natural
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geometric structure on a space-time invariant under Lorentz transformations, modeling
the change of an inertial coordinate system. The necessity to deal with anisotropies of
the space-time [47] motivated a passage from sign-indefinite Lorentzian quadratic forms to
more general Lorentz–Finsler functionals having similar convexity/concavity features.

In the Lorentzian world, the space-time M which is modeled by a smooth manifold,
gets equipped with a field of cones consisting of vectors of the real (as opposed to the
imaginary) length. Physically admissible causal (resp. timelike) curves are characterized
by the fact that their tangent vectors point into these cones (resp. into their interior).
When there are no closed causal curves, the existence of a causal curve starting at x and
ending at y introduces a partial order on M , defining the so called causal structure. The
natural parameter along causal curves is neither length nor time, but a so called proper
time, which is modeled by the Lorentzian length. Local extremizers of the Lorentzian
length, i.e., timelike geodesics, are of particular interest: they model the motion of a free
particle in the spacetime.

The behavior of proper time is far from being intuitive. According to the famous “twin
paradox”, moving close to the light cone consisting of vectors of the zero Lorentzian length
enables a spacetime traveller who takes off at a point x to arrive at the destination y within
an arbitrary small proper time. His twin sibling, simultaneously starting at x, may pursue
a different objective - to reach y within the maximal possible proper time. This quantity
is sometimes infinite and sometimes finite, depending on the geometry and topology of the
spacetime, and maybe also on the specific choice of the points x and y. The supremum of
the Lorentzian length of all timelike curves from x to y is the so-called Lorentzian distance
dist(x, y), a global geometric invariant.

The main results of the present article together with some open questions1 are presented
in Sections A - N of the Introduction. After recalling the definition of a Lorentz–Finsler
structure (Section A), we introduce a Lorentz–Finsler structure in parallel on the finite
dimensional Lie group Sp(2n) (Sections B and C) and on the infinite dimensional one
Cont(M, ξ) (Section D), as the two structures are closely related (Section E). We then
study the local properties of the induced length functionals (i.e., proper time) and of its
geodesics (Sections F and G), which in the infinite dimensional case is related to a contact
systolic question (Section H). The Lorentzian viewpoint enables us to establish “systolic
freedom” for time-dependent contact forms which manifests an interplay between dynamics
and geometry. Loosely speaking, the proper time of our Lorentz–Finsler structures can be
described dynamically, as a certain “magnitude of twisting” of the flow corresponding to
a path on the group, and geometrically, via the contact volume.

Furthermore, we discuss to which extent these structures can be used in order to pro-
duce global bi-invariant measurements on these groups. For Sp(2n), the Lorentz–Finsler
distance dist(x, y) between causally related points x and y can take both finite and in-
finite values, depending on the location of x−1y (Sections I and J). In contrast to this,
for contactomorphisms of the projective space, dist(x, y) is always infinite whenever there

1During the time between this article’s first online appearance and its publication, two of these questions
were answered. We provide references to these answers in two footnotes.
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is a timelike curve from x to y (Section K). This can be seen as a manifestation of the
flexibility of contactomorphisms. However, flexibility is expensive: long paths connecting x
and y necessarily possess a “high complexity”, properly understood. For the simplest con-
tact manifold S1 = RP1, our approach to this phenomenon involves a delicate L1-version
of Bernstein’s classical inequality for positive trigonometric polynomials due to Nazarov
(Section L). In higher dimensions, we use an ingredient from “hard” contact topology,
namely Givental’s non-linear Maslov index, in combination with the analysis on Sp(2n)
which turns out to be crucial (Section M).

Finally, in Section N we discuss Lorentz–Finsler phenomena on the group of symplec-
tomorphisms of a uniformly convex domain, which turn out to be related to the Monge–
Ampère equation and to a variational problem which is linked to the maximization of the
affine area functional.

A Lorentz–Finsler structures

Let M be a (possibly infinite dimensional) manifold. In this article, we shall use the
following notion of Lorentz–Finsler structure on M :

Definition A.1. A Lorentz–Finsler structure (K,F ) on M is given by the following data:

(i) An open subset K ⊂ TM such that for every p ∈ M the intersection K ∩ TpM is
a non-empty convex cone in the vector space TpM , and K ∩ −K coincides with the
zero-section of TM . The set K is called cone distribution on M .

(ii) A smooth function F : K → (0,+∞) which is fiberwise positively 1-homogeneous,
fiberwise strongly concave in all directions other than the radial one, meaning that

d2F (v) · (w,w) < 0 ∀v ∈ K ∩ TpM, ∀w ∈ TpM \ Rv, ∀p ∈M,

and extends continuously to K by setting F |∂K = 0. The function F is called Lorentz–
Finsler metric on (M,K).

If M is infinite dimensional, the smoothness of F can be understood in several ways,
depending on the class of infinite dimensional objects one is working with. In this article,
we will work with a Fréchet manifold which is modeled on the space of smooth real functions
on a closed manifold, and smoothness is to be understood in the diffeological sense: the
restriction of F to any finite dimensional submanifold of the open set K is smooth. Thanks
to the positive homogeneity, the strong concavity condition stated in (ii) is equivalent to
the fact that the fiberwise second differential of F 2 is non-degenerate and has Lorentz
signature (−,+, . . . ,+).

The above definition generalizes the classical notion of a time-oriented Lorentz structure,
in which the manifold M is endowed with a non-degenerate symmetric bilinear form g :
TM × TM → R of signature (−,+, . . . ,+) and there is a continuous vector field X on M
such that g(X,X) < 0: indeed, in this case one chooses as K the connected component of
the set {v ∈ TM | g(v, v) < 0} containing the image of X and sets F (v) :=

√
−g(v, v).
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The assumption on the signature of g implies that K is convex and F is fiberwise strongly
concave, as required in Definition A.1.

Apart from regularity and strong convexity issues on the boundary of K, the above
definition of a Lorentz–Finsler structure agrees with Asanov’s definition from [11] and its
later refinements, see [62], [48] and [45]. In particular, it agrees with the idea that a
Lorentz–Finsler metric needs to be defined only on the convex cone of causal vectors.

Vectors in K are called timelike, non-vanishing vectors in ∂K are called lightlike, and
vectors which are either timelike or lightlike are called causal. A C1 curve in M is called
timelike (resp. lightlike, resp. causal) if its derivative is everywhere timelike (resp. lightlike,
resp. causal). The Lorentz–Finsler length of a C1 causal curve γ : [a, b] → M is the
non-negative number

lengthF (γ) :=

ˆ b

a

F (γ′(t)) dt.

This functional is invariant under orientation preserving reparametrizations and additive
under concatenation of curves. Moreover, it is positive and has directional derivatives of
every order at each timelike curve.

B A bi-invariant Lorentz–Finsler structure on the linear sym-
plectic group

The Lie algebra of the linear symplectic group Sp(2n) is

sp(2n) := {X ∈ Hom(R2n,R2n) | the bilinear form (u, v) 7→ ω0(u,Xv) is symmetric},

and we consider the subset

sp+(2n) := {X ∈ sp(2n) | (u, v) 7→ ω0(u,Xv) is positive definite},

which is an open convex cone. All the elements of sp+(2n) have positive determinant, and
the function

G : sp+(2n)→ R, G(X) = (detX)
1
2n ,

is positive, positively 1-homogeneous, smooth, strongly concave in every direction other
than the radial one and extends continuously (but not smoothly) to the closure of sp+(2n)
by setting it to be zero on the boundary.

An endomorphism X ∈ Hom(R2n,R2n) belongs to sp+(2n) if and only if

X =
n⊕
j=1

θjJj, (B.1)

where the direct sum refers to a symplectic splitting of R2n into n pairwise ω0-orthogonal
symplectic planes Vj ⊂ R2n, each θj is a positive number and each Jj is an ω0-compatible
complex structure on (Vj, ω0|Vj) (recall that a complex structure J on a symplectic vector
space (V, ω) is said to be ω-compatible if the bilinear form (u, v) 7→ ω(u, Jv) is symmetric
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and positive definite on V ). See Proposition ii.1 in Appendix ii for a proof of this charac-
terization of the elements of sp+(2n). If X has the form (B.1), then G(X) is the geometric
mean of the positive numbers θ1, . . . , θn:

G(X) = n
√
θ1 · · · θn. (B.2)

The cone sp+(2n) and the function G are easily seen to be invariant under the adjoint
action of Sp(2n) on sp(2n). Therefore, sp+(2n) extends by translation to a bi-invariant
cone distribution

{sp+(2n)W | W ∈ Sp(2n)} = {W sp+(2n) | W ∈ Sp(2n)} ⊂ TSp(2n) (B.3)

in the tangent bundle of Sp(2n), and G extends to a bi-invariant function on this set.

Proposition B.1. The pair (sp+(2n), G) defines a bi-invariant Lorentz–Finsler structure
on Sp(2n).

The easy proof is contained in Section 1 below. We shall denote this bi-invariant
Lorentz–Finsler structure on Sp(2n) simply by (sp+(2n), G), without introducing a special
name for the cone distribution (B.3).

Studying causality on Sp(2n) with the above bi-invariant cone distribution means un-
derstanding the behavior of timelike and causal curves on (Sp(2n), sp+(2n)). Although
not under this terminology, the study of causality on Sp(2n) is a classical subject. Indeed,
since the elements of sp+(2n) have the form J0S, where J0 is the standard ω0-compatible
complex structure on R2n satisfying

ω0(u, v) = J0u · v ∀u, v ∈ R2n,

and S belongs to the cone Sym+(2n) of positive definite symmetric endomorphisms of R2n,
a continuously differentiable curve W : [a, b] → Sp(2n) is timelike if and only if it solves
the non-autonomous positive definite linear Hamiltonian system

W ′(t) = J0S(t)W (t),

for some continuous path S : [a, b]→ Sym+(2n). For this reason, timelike curves in Sp(2n)
are also called positive paths of linear symplectomorphisms. Similarly, causal curves are
solutions of a non-autonomous linear Hamiltonian system as above with S(t) non-zero and
positive semi-definite for every t.

Positive definite linear Hamiltonian system have been widely studied due to their special
role in Krein’s stability theory of linear Hamiltonian systems, see e.g., [51, 52, 53, 35, 54].
Comprehensive expositions of Krein’s stability theory and of the theory of positive definite
linear Hamiltonian systems can be found in [91, Chapter III] and [27, Chapter I]. More
results about positive paths in Sp(2n) can be found in [57]. More generally, the study of
invariant convex cones in Lie algebras, such as sp+(2n), is a classical topic in Lie theory
going back to Konstant and Vinberg, see e.g. [50, 89, 73, 69, 70, 71, 67, 68].

The novelty here is the study of the Lorentz–Finsler metric G which, albeit very natural,
does not seem to have been received much attention, except for the special case n = 1,
which corresponds to a classical spacetime in general relativity.
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C The anti-de Sitter case n = 1

In the special case n = 1, Sp(2n) = Sp(2) coincides with SL(2,R) and the Lorentz–Finsler
metric G comes from a genuine Lorentz metric, corresponding to the three-dimensional
anti-de Sitter spacetime AdS3. We recall that this time-orientable Lorentz manifold can
be defined as the restriction g of a symmetric bilinear form b of signature (2, 2) on a
4-dimensional real vector space V to the hypersurface

AdS3 := {v ∈ V | b(v, v) = −1}.

By choosing V = Hom(R2,R2) and b to be the symmetric bilinear form on V whose
associated quadratic form is − det, we see that

AdS3 = SL(2,R) = Sp(2),

and for every W in this manifold, sp+(2)W is precisely one component of the cone of
timelike vectors at W , hence we can choose it to be the cone of future pointing timelike
vectors. Finally,

G(Y ) = |g(Y, Y )|
1
2 ∀Y ∈ TAdS3,

is precisely the Lorentz norm induced by the Lorentz metric g.
When n > 1, the determinant is not a quadratic form anymore and the Lorentz–Finsler

metric G is not induced by a Lorentz metric.

Remark C.1. The cones sp+(2n) and−sp+(2n) are the unique invariant open convex cones
that are proper subsets of sp(2n), see [73]. In the case n = 1, the Lorentz metric G is, up
to the multiplication by a positive number, the unique bi-invariant Lorentz–Finsler metric
on (Sp(2), sp+(2)). For n ≥ 2, there are other bi-invariant Lorentz–Finsler metrics on
(Sp(2n), sp+(2n)). For instance, one can check that the function H : sp+(2n) → (0,+∞)
given by the quadratic harmonic mean of the numbers θj appearing in (B.1), i.e.,

H(X) =
√

2n
(
−tr (X−2)

)− 1
2 =

(
n∑
j=1

1

θ2
j

)− 1
2

,

defines a bi-invariant Lorentz–Finsler metric on (Sp(2n), sp+(2n)) which for n > 1 is not
a multiple of G. More generally, any positively 1-homogeneous function f : (0,+∞)n →
(0,+∞) which is invariant under permutations of the coordinates induces via the formula

F (X) = f(θ1, . . . , θn) for X =
n⊕
j=1

θjJj

a 1-homogeneous function on sp+(2n) which is invariant under the adjoint action of Sp(2n).
If the function f is smooth, then so is F , thanks to Glaeser’s differentiable version of
Newton’s theorem on the representation of symmetric functions, see [37]. Moreover, if f
extends continuously to the closure of its domain by setting it to be zero on the boundary,
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the same is true for F . It is unclear to us whether the strong concavity of f in all directions
other than the radial one imply the corresponding property for F . Therefore, we raise the
following question.

Question C.2. Which functions f : (0,+∞)n → (0,+∞) as above define a bi-invariant
Lorentz–Finsler metric on (Sp(2n), sp+(2n))?

See [26] and [59] for related results on the convexity of functions which are defined in
terms of the eigenvalues.

D A bi-invariant Lorentz–Finsler metric on the contactomor-
phism group

Let ξ be a co-oriented contact structure on the closed (2n − 1)-dimensional manifold M ,
where n ≥ 1. We recall that this means that ξ is the kernel of a contact form on M , i.e.,
a smooth 1-form α such that α ∧ dαn−1 is a volume form on M , and α is positive on each
tangent vector that is positively transverse to ξ. A 1-form α as above is called a defining
contact form for ξ. The volume of M with respect to the contact form α is denoted by

vol(M,α) :=

ˆ
M

α ∧ dαn−1,

and the Reeb vector field of α is the vector field Rα which is defined by the identities

ıRαdα = 0, ıRαα = 1.

The group of smooth diffeomorphisms of M that preserve the co-oriented contact structure
ξ is called contactomorphism group of (M, ξ) and denoted by Cont(M, ξ). The connected
component containing the identity is denoted by Cont0(M, ξ).

The Lie algebra of the infinite dimensional Lie group Cont(M, ξ) is the space cont(M, ξ)
of contact vector fields on (M, ξ), i.e., smooth vector fields on M whose flow preserves ξ.
Having fixed a defining contact form α for ξ, the space cont(M, ξ) can be identified with
the space of real functions C∞(M) by the map

cont(M, ξ)→ C∞(M), X 7→ ıXα,

where the function ıXα is called contact Hamiltonian of the contact vector field X with
respect to the contact form α. See Appendix iii for some basic facts about this identifica-
tion.

Denote by cont+(M, ξ) the subset of cont(M, ξ) consisting of those contact vector fields
X that are positively transverse to ξ. If α is a defining contact form for ξ, cont+(M, ξ)
is the space of contact vector fields X such that ıXα > 0, and in the above identification
with C∞(M) it corresponds to the set of positive Hamiltonians. It is easy to check that
cont+(M, ξ) is precisely the set of Reeb vector fields associated to all contact forms defining
the co-oriented contact structure ξ (see Appendix iii).
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Note that cont+(M, ξ) is an open convex cone in cont(M, ξ) and

cont+(M, ξ) ∩ −cont+(M, ξ) = {0}.

Here, cont(M, ξ) is equipped with an arbitrary metrizable vector space topology which,
after the identification with C∞(M), is not coarser than the C0-topology of functions. For
instance, we may use the Ck-topology on cont(M, ξ) for any 0 ≤ k ≤ ∞.

We define a real function V : cont+(M, ξ)→ R by

V (X) := vol(M,α)−
1
n , (D.1)

where α is the unique contact form defining ξ such that X = Rα.
The adjoint action of Cont(M, ξ) on cont(M, ξ) is given by the push-forward:

AdφX = φ∗X, ∀φ ∈ Cont(M, ξ), X ∈ cont(M, ξ).

The cone cont+(M, ξ) is invariant under the adjoint action. Therefore, cont+(M, ξ) extends
to a bi-invariant cone distribution in the tangent bundle of Cont(M, ξ). Moreover, V is
invariant under the adjoint action and hence extends to a bi-invariant function on the
bi-invariant cone distribution generated by cont+(M, ξ).

Proposition D.1. The pair (cont+(M, ξ), V ) defines a bi-invariant Lorentz–Finsler struc-
ture on Cont(M, ξ).

See Section 2 for the proof. As in the case of the linear symplectic group, we denote
this bi-invariant Lorentz–Finsler structure simply by (cont+(M, ξ), V ).

It is instructive to look at the one-dimensional manifold T := R/Z, which is a contact
manifold with the trivial contact structure ξ0 := {0} that is co-oriented by the standard
orientation of T. In this case, Cont(T, ξ0) = Cont0(T, ξ0) coincides with Diff0(T), the group
of orientation preserving diffeomorphisms of T, cont(T, ξ0) is the space of all tangent vector
fields on T, and cont+(T, ξ0) is the cone of vector fields of the form

X(x) = H(x)
∂

∂x
,

where H is a positive function on T. Any lift φ : R → R of a diffeomorphism in Diff0(T)
has a well-defined translation number

ρ(φ) := lim
n→∞

φn(x)− x
n

∀x ∈ R,

and the quantity V (X) has the following interpretation, which we prove in Section 3.

Proposition D.2. Let X be an element of cont+(T, ξ0) and let φt : R → R be the lift of
its flow such that φ0 = id. Then

V (X) = ρ(φ1).
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Remark D.3. In the simple case of the one-dimensional contact manifold (T, ξ0), V is
the only bi-invariant Lorentz–Finsler metric on (Cont(T, ξ0), cont+(T, ξ0)) up to the mul-
tiplication by a positive number. Actually, more is true: Any positive function W :
cont+(T, ξ0)→ R which is positively 1-homogeneous and invariant under the adjoint action
of Cont0(T, ξ0) has the form W = cV for some positive number c. This uniqueness state-
ment does not need concavity or continuity assumptions on W and is a simple consequence
of the fact that Cont0(T, ξ0) acts transitively on rays in cont+(T, ξ0) (see Proposition 3.1
below). The situation is therefore similar to the case of (Sp(2), sp+(2)), see Remark C.1
above. If dimM > 1, Cont(M, ξ) does not act transitively on rays in cont+(M, ξ) and there
is an infinite dimensional family of positive functions W : cont+(M, ξ)→ R which are pos-
itively 1-homogeneous and invariant under the adjoint action of Cont(M, ξ). It would be
interesting to understand how much this family gets reduced by imposing concavity and
continuity conditions on W .

Question D.4. In the case dimM > 1, are there other bi-invariant Lorentz–Finsler met-
rics on (Cont(M, ξ), cont+(M, ξ))? Can one classify them?

Any smooth path φt in Cont(M, ξ) induces a smooth path of contact vector fields Xt,
which is uniquely defined by the equation

d

dt
φt = Xt(φ

t). (D.2)

The path of contactomorphisms φt is said to be positive if Xt belongs to cont+(M, ξ) for
every t, or equivalently if ıXtα > 0, where α is a defining contact form for ξ. Positive paths
of contactomorphisms are hence the timelike curves of (Cont(M, ξ), cont+(M, ξ)). Causal
curves are instead non-negative paths of contactomorphisms that are non-constant, where
non-negative means that ıXtα ≥ 0 for every t (with this terminology, a constant path is
non-negative but in accordance with the use in general relativity we do not consider it to
be a causal path).

The study of positive paths of contactomorphisms was initiated in [29, 17] and has devel-
oped into an important topic in contact geometry, see e.g., [28, 21, 22, 6, 23, 7, 24]. Its rela-
tionship with Lorentzian geometry, which is not limited to the fact that cont+(M, ξ) defines
a causal structure on Cont(M, ξ), is explicitly noticed and discussed in the above mentioned
papers of Chernov and Nemirovski. What is new here is the bi-invariant Lorentz–Finsler
metric V on such a cone distribution.

Remark D.5. As recalled above, any bi-invariant distance on Cont(M, ξ) is discrete, see
[32, Theorem 3.1]. This does not exclude the existence of bi-invariant Finsler metrics
on Cont(M, ξ), that is, positively 1-homogeneous positive functions on cont(M, ξ) which
are strongly convex in any direction other than the radial one and invariant under the
adjoint action of Cont(M, ξ). Indeed, the bi-invariant pseudo-distance which is induced
by a bi-invariant Finsler metric on Cont(M, ξ) could be identically zero. For instance, on
the group of Hamiltonian diffeomorphisms of a closed symplectic manifold the Lp-norm on
the space of normalized Hamiltonians induces a bi-invariant Finsler metric, whose induced
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pseudo-distance vanishes identically if p < +∞. Bi-invariant Finsler metrics on the group
of Hamiltonian diffeomorphisms have been studied in [72, 20, 58]. This raises the following
question.

Question D.6. Can there be bi-invariant Finsler metrics on Cont(M, ξ) for some contact
manifold (M, ξ)?

The answer to this question is negative if we require the Finsler metric to be C0-
continuous, after identifying the Lie algebra cont(M, ξ) with the space of contact Hamilto-
nians C∞(M). Actually, any C0-continuous function on C∞(M) which vanishes at zero and
is invariant under the adjoint action of Cont(M, ξ) must vanish on contact Hamiltonians
which are supported in Darboux charts, see Remark 2.2 below, preventing this function to
be a Finsler metric. Since any function can be written as a convex combination of functions
with support in Darboux charts, this shows that concavity, rather than convexity, is the
right condition to require when looking for interesting invariant non-negative functions on
the closure of cont+(M, ξ). We suspect that the answer to Question D.6 remains negative
also for C∞-continuous Finsler metrics and we can confirm this for the standard contact
structure of spheres and real projective spaces, see Remark E.2 further down in this Intro-
duction. The techniques developed in [72, 20, 58] might be helpful in settling the above
question.

E The contactomorphism groups of (S2n−1, ξst) and (RP2n−1, ξst)

The Liouville 1-form

λ0 :=
1

2

n∑
j=1

(
xj dyj − yj dxj

)
of R2n restricts to a contact form on the unit sphere S2n−1, and the corresponding contact
structure ξst is the standard contact structure of S2n−1. Being invariant under the antipodal
map z 7→ −z, λ0|S2n−1 descends to a contact form on the real projective space RP2n−1, and
the corresponding contact structure is also denoted by ξst.

Any linear automorphism of R2n acts on rays from the origin and on lines through the
origin and hence induces a diffeomorphism of S2n−1 and a diffeomorphism of RP2n−1. In the
case of a symplectic automorphism, the resulting diffeomorphism are contactomorphisms
and we obtain the injective homomorphisms

i : Sp(2n)→ Cont0(S2n−1, ξst), j : PSp(2n)→ Cont0(RP2n−1, ξst),

where PSp(2n) denotes the quotient of Sp(2n) by the normal subgroup {id,−id}. Note
that the Lorentz–Finsler structure (sp+(2n), G) descends to a Lorentz–Finsler structure on
PSp(2n), which we shall denote by the same notation.

In the case n = 1, (S1, ξst) and (RP1, ξst) are clearly contactomorphic to each other
and to (T, ξ0). In this case, we actually have for every natural number k an injective
homomorphism

jk : PSpk(2)→ Cont(T, ξ0) = Diff0(T)
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whose image is a subgroup of diffeomorphisms of T commuting with the translation by 1
k
.

Here,
pk : PSpk(2)→ PSp(2)

is the connected k-th fold cover and jk(w) is defined by lifting the diffeomorphism

j(pk(w)) : RP1 ∼= T→ RP1 ∼= T

to the k-th fold cover qk : T→ T. The diffeomorphism j(pk(w)) has k distinct possible lifts,
and the element w ∈ PSpk(2,R) dictates which one we are choosing. See [36, pp. 341-342].
The Lorentz structure of Sp(2) ∼= AdS3 induces bi-invariant Lorentz–Finsler structures on
all the groups PSpk(2), and we denote them still by (sp+(2), G).

The following result shows that the Lorentz–Finsler structures (cont+(S2n−1, ξst), V )
and (cont+(RP2n−1, ξst), V ) on the contactomorphism groups of the sphere and the real
projective space are, up to rescaling factors, infinite dimensional extensions of the Lorentz–
Finsler structure (sp+(2n), G) on Sp(2n) and PSp(2n).

Proposition E.1. The homomorphisms i, j and jk satisfy

di(id)−1
(
cont+(S2n−1, ξst)

)
= sp+(2n), dj(id)−1

(
cont+(RP2n−1, ξst)

)
= sp+(2n),

djk(id)−1
(
cont+(T, ξ0)

)
= sp+(2),

and

V ◦ di(id) =
1

2π
G, V ◦ dj(id) =

2
1
n

2π
G, V ◦ djk(id) =

1

kπ
G.

This proposition, whose proof is discussed in Section 4, allows us to deduce results
about the Lorentz–Finsler structures on the contactomorphism groups of spheres and real
projective spaces from finite-dimensional results about the Lorentz–Finsler structure on
the linear symplectic group.

Remark E.2. The existence of the homomorphisms i and j allows us to give a nega-
tive answer to Question D.6 above for the standard contact structures of spheres and real
projective spaces: on Cont(S2n−1, ξst) and Cont(RP2n−1, ξst) there are no bi-invariant C∞-
continuous Finsler metrics. Indeed, the pull-back by i of such a metric on Cont(S2n−1, ξst)
would be a bi-invariant continuous Finsler metric on Sp(2n). By the finite dimensionality
of Sp(2n), this metric would induce a bi-invariant distance function which is continuous
with respect to the Lie group topology, and we have already noticed that such a dis-
tance cannot exist on Sp(2n). The same argument with the homomorphism j works for
Cont(RP2n−1, ξst).

F Timelike geodesics on Sp(2n)

Timelike geodesics on a manifold M endowed with a Lorentz–Finsler structure (K,F ) can
be defined as smooth timelike curves γ that are extremal points of the functional lengthF ,
meaning that the first variation of lengthF along any variation of γ fixing the end-points
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vanishes. Moreover, we require timelike geodesics to be parametrized in such a way that
F (γ′) is constant.

In the case of the Lorentz–Finsler structure (sp+(2n), G) on Sp(2n), timelike geodesics
are precisely the solutions of autonomous positive definite linear Hamiltonian systems, i.e.,
the curves of the form

W (t) = etXW0,

where X ∈ sp+(2n) and W0 ∈ Sp(2n). In Appendix i, we discuss this fact in general
for Lie groups that are endowed with a bi-invariant Lorentz–Finsler structure. Note that
timelike geodesics depend on the bi-invariant cone distribution but not on the bi-invariant
Lorentz–Finsler metric on it.

From the representation (B.1) for the elements of sp+(2n), we deduce that timelike
geodesics are, up to a right or left translation, direct sums of n one-parameter groups of
ω0-positive planar rotations:

W (t) =

(
n⊕
j=1

eθjtJj

)
W0.

A timelike geodesic W as above is periodic if and only if the numbers θ−1
j are all integer

multiples of the same real number, and in general is quasi-periodic, meaning that it is the
composition of a curve of the form t 7→ ωt to the n-torus Tn, ω ∈ Rn, with a smooth map
from Tn to Sp(2n). For n = 1, we recover the well known fact that all timelike geodesics
in the anti de-Sitter space are periodic and have the same length 2π. For n > 1, we obtain
also quasi-periodic tori of non-closed timelike geodesics.

We shall compute the second variation of the Lorentz–Finsler length functional lengthG
at a timelike geodesic segment W : [0, T ] → Sp(2n). Due to the invariance under
reparametrizations, this second variation has an infinite dimensional kernel, but mod-
ding out the reparametrizations we obtain a symmetric bilinear form which has a finite
dimensional kernel and a finite Morse co-index, i.e., dimension of a maximal subspace on
which the second variation is positive definite.

As usual, T is said to be a conjugate instant if this kernel is non-trivial, and in this
case the dimension of this kernel is the multiplicity of the conjugate instant T . General
facts about bi-invariant structures on Lie groups imply that the elements of this kernel are
given by Jacobi fields, i.e. the paths Y : [0, 1]→ sp(2n) such that

Y ′′ = [X, Y ′],

where X ∈ sp+(2n) is the generator of the timelike geodesic, which vanish for t = 0 and
t = T . Note that the equation for Jacobi fields, as the equation for geodesics of which this is
the linearization, does not depend on the Lorentz–Finsler metric G. This is a consequence
of the fact that we are working with a bi-invariant structure on a Lie group. See Appendix
i for more about this.

Moreover, the Lorentzian Morse index theorem holds: the Morse co-index of every
timelike geodesic segment W : [0, T ] → Sp(2n) equals the sum of the multiplicities of
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the conjugate instants in the open interval (0, T ). In particular, timelike geodesics are
locally length maximizing. These facts, which are well known for timelike geodesics on a
Lorentzian manifold (see e.g., [14]), still hold in the Lorentz–Finsler setting thanks to the
strong concavity of the Lorentz–Finsler metric.

Instead of proving this in general, we content ourselves of checking these facts for bi-
invariant Lorentz–Finsler metrics on Lie groups in Appendix i and to specialize them to
Sp(2n) in Section 5.

In the special case of the periodic timelike geodesic t 7→ etJ on (Sp(2n), sp+(2n)), where
J is any ω0-compatible complex structure on R2n, we obtain the following result.

Theorem F.1. Let J be an ω0-compatible complex structure on R2n. The timelike geodesic
W : R → Sp(2n), W (t) = etJ , has a conjugate instant at T > 0 if and only if T ∈ πN
and each such conjugate instant T has multiplicity n2 + n. The timelike geodesic segment
W |[0,T ] has finite Morse co-index, which equals the sum of conjugate instants in the interval
(0, T ), counted with multiplicity, i.e.,

co-indW |[0,T ] =

(⌈T
π

⌉
− 1

)
(n2 + n).

See Section 6 and Theorem 6.1 below for a complete analysis of the conjugate instants
and the Morse co-index of an arbitrary timelike geodesic on (Sp(2n), sp+(2n)).

In the special case of Sp(2) = AdS3, all the timelike geodesics are periodic and, after
translation and affine reparametrization, are of the form considered in the theorem above,
which hence recovers the familiar fact that every timelike geodesic on AdS3 has conjugate
instants of multiplicity two at each semi-integer multiple of its period. In particular,
simple closed timelike geodesics have co-index two and hence are not local maximizers of
the Lorentzian length.

G Timelike geodesics on Cont(M, ξ)

Timelike geodesics on (Cont(M, ξ), cont+(M, ξ), V ) can be defined as timelike curves (i.e.
positive paths) which have constant speed and are extremal points of the functional lengthV
with respect to variations fixing the end-points. By the bi-invariance and strong concavity
of V , we again obtain that a positive path φt of contactomorphisms of (M, ξ) is a geodesic
if and only if it is autonomous, i.e. satisfies

d

dt
φt = X(φt)

for some time-independent contact vector field X ∈ cont+(M, ξ).
Since the Reeb vector fields induced by all contact forms defining ξ are precisely the

elements of cont+(M, ξ), the timelike geodesics in (Cont(M, ξ), cont+(M, ξ), V ) are, up to
left or right translation by elements of Cont(M, ξ), precisely the Reeb flows induced by
contact forms defining ξ.
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If α is such a contact form and φtα is the flow of the corresponding Reeb vector field
Rα, then (D.1) implies that the Lorentz–Finsler length of the geodesic segment {φtα}t∈[0,T ]

is the quantity
lengthV

(
{φtα}t∈[0,T ]

)
= T vol(M,α)−

1
n . (G.1)

In Section 7, we compute the second variation of the functional lengthV at a geodesic
segment. Unlike in the finite dimensional case of Sp(2n), this quadratic form has always
not only infinite Morse index but also infinite Morse co-index. Indeed, we shall prove the
following result.

Proposition G.1. Let φt be the Reeb flow of a contact form α defining ξ. Then for every
T > 0 the symmetric bilinear form

d2lengthV ({φt}t∈[0,T ])

is positive definite (resp. negative definite) on some infinite dimensional subspace W+ (resp.
W−) of variations of {φt}t∈[0,T ] which vanish for t = 0 and t = T . In particular, geodesics
in Cont(M, ξ) are never locally length maximizing nor length minimizing.

Conjugate instants along the Reeb flow φt of a contact form α defining ξ can be de-
fined as usual as the positive numbers t∗ such that, after modding out the invariance by
reparametrizations, the second variation of lengthV at {φt}t∈[0,t∗] has a non-trivial kernel.
The elements of this kernel are the Jacobi vector fields vanishing at t = 0 and t = t∗. The
equation for these time-dependent contact vector fields Y reads exactly as in the finite
dimensional case, i.e.

∂ttY = [Rα, ∂tY ],

provided that we define the Lie bracket of two vector fields X, Y by the non-standard sign
convention

[X, Y ] = −LXY.

Although not standard, this sign convention is quite natural if one wishes to be consistent
with the conventions from Lie group theory and is used by some authors, see [10] and [61,
Remark 3.1.6]. We shall adopt it also here.

The existence of conjugate instants along the geodesic which is determined by the
Reeb vector field Rα depends on the dynamics of Rα. This is illustrated by the explicit
computation of all conjugate instants in the following two examples, see Section 7.

Example G.2. Consider the group Cont0(T, ξ0) = Diff0(T) of all orientation-preserving
diffeomorphisms of T = R/Z. Let X be any positive vector field, i.e.

X(x) = H(x)
∂

∂x
,

where H is a positive smooth function on T, and let φt be its flow. Then t∗ > 0 is a
conjugate instant along φt if and only if t∗ is a positive rational number times 1

V (X)
. Each

conjugate instant has infinite multiplicity.
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In particular, in the above case conjugate points accumulate at zero. This fact could
be used to give an alternative proof of the fact that the second variation of lengthV at any
geodesic segment in Cont0(T, ξ0) has infinite Morse co-index. The latter fact, which as
we have seen in the proposition above holds in general, does not require conjugate points
accumulating at zero. Indeed, a timelike geodesic in Cont(M, ξ) may have no conjugate
points at all, as shown by the next example.

Example G.3. Consider the group Cont(T3, ξ) where

ξ = kerα and α(x, y, z) = cos(2πz) dx+ sin(2πz) dy.

The flow of the Reeb vector field of the contact form α is given by

φt(x, y, z) =
(
x+ t cos(2πz), y + t sin(2πz), z).

If we identify T3 with the unit cotangent bundle of T2, the above flow is precisely the
geodesic flow induced by the flat Euclidean metric on T2 = R2/Z2. The geodesic φt in
Cont(T3, ξ) has no conjugate instants.

A study of conjugate instants and of the second variation of the L2-energy functional in
the context of the group of Hamiltonian diffeomorphisms of a closed symplectic manifold
can be found in Vishnevsky’s thesis [90].

H A systolic question for non-autonomous Reeb flows

The systolic ratio of a contact form α on a closed (2n − 1)-dimensional manifold M is
defined as

ρsys(M,α) :=
Tmin(α)n

vol(M,α)
,

where Tmin(α) denotes the minimum over all the periods of closed orbits of the Reeb vector
field Rα. A contact form α is called Zoll if all the orbits of the corresponding Reeb flow are
periodic and have the same minimal period. In [2, 3] it is proven that Zoll contact forms
are local maximizers of the systolic ratio in the C2-topology of contact forms: Any Zoll
contact form α0 on the closed manifold M has a C2-neighborhood U such that

ρsys(M,α) ≤ ρsys(M,α0) ∀α ∈ U , (H.1)

with the equality holding if and only if α is Zoll. See [9], [4] and [15] for previous results
on the local systolic optimality of Zoll contact forms and for the relationship with metric
systolic geometry. Note that this is a local phenomenon: The systolic ratio is always
unbounded from above on the space of contact forms defining a given contact structure,
as proven by Sağlam in [77] generalizing previous results from [4] and [5].

Here, we would like to discuss whether the local systolic optimality of Zoll Reeb flows
extends to non-autonomous Reeb flows. In order to formulate this precisely, recall that
a discriminant point of a contactomorphism φ ∈ Cont(M, ξ) is a fixed point x0 of φ such
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that the endomorphism dφ(x0) : Tx0M → Tx0M has determinant one. Equivalently, x0 is
a fixed point such that

(φ∗α)(x0) = α(x0)

for some, and hence any, contact form α defining ξ. Since the Reeb flow φtα of the contact
form α preserves α, any point on a T -periodic orbit of this flow is a discriminant point
for φTα . Thanks to the identity (G.1), the inequality (H.1) can then be restated in terms
of the Lorentz–Finsler metric V in the following way: Let X0 = Rα0 ∈ cont+(M, ξ) be a
Zoll Reeb vector field with orbits of minimal period T0. Then there exists ε > 0 such that
for every X ∈ cont+(M, ξ) with ‖X − X0‖C2 < ε the following holds: If the autonomous
positive path of contactomorphisms φt given by the flow of X satisfies

lengthV
(
{φt}t∈[0,T0]

)
≥ lengthV

(
{φtα0
}t∈[0,T0]

)
,

then there exists t∗ ∈ (0, T0] such that φt
∗

has discriminant points. Our question here is
whether this statement remains true for non-autonomous positive paths of contactomor-
phisms.

More precisely: Let α0 be a Zoll contact form defining the contact structure ξ on M ,
with Reeb flow φtα0

and minimal period T0. Let {φt}t∈[0,T0] be a positive path in Cont(M, ξ)
such that φ0 = id. Is it true that if {φt}t∈[0,T0] is suitably close to {φtα0

}t∈[0,T0] and

lengthV
(
{φt}t∈[0,T0]

)
≥ lengthV

(
{φtα0
}t∈[0,T0]

)
,

then there exists t∗ ∈ (0, T0] such that φt
∗

has at least one discriminant point? Or even
just a fixed point?

The fact that geodesic arcs in Cont(M, ξ) are never length maximizing implies that the
answer to this question is negative. Indeed, in Section 8 we shall deduce from Proposition
G.1 the following result.

Theorem H.1. Let α0 be a Zoll contact form defining the contact structure ξ on M , with
Reeb flow φtα0

and minimal period T0. Then there exists a smooth 1-parameter family
{φs}s∈(−ε,ε) of positive paths

φs : [0, T0]→ Cont(M, ξ)

such that φ0(t) = φtα0
for every t ∈ [0, T0], φs(0) = id and

lengthV
(
φs
)

= lengthV
(
{φtα0
}t∈[0,T0]

)
for every s ∈ (−ε, ε), but φs(t) has no fixed points for every s 6= 0 and every t ∈ (0, T0].

I A time function and a partial order on the universal cover of
Sp(2n)

The space (Sp(2n), sp+(2n)) is totally vicious, meaning that it admits closed timelike curves
through every point, such as for instance the curve t 7→ etJ0 , t ∈ [0, 2π], and its translations.
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Totally viciousness can be avoided if we pass to the universal cover S̃p(2n) of Sp(2n), which
as usual we think of as the space of homotopy classes [w] of paths w : [0, 1] → Sp(2n)

starting at the identity; S̃p(2n) is a Lie group with the same Lie algebra sp(2n), and the
covering map

π : S̃p(2n)→ Sp(2n), [w] 7→ w(1),

is a homomorphism. The bi-invariant Lorentz–Finsler structure (sp+(2n), G) on Sp(2n)

lifts to a bi-invariant Lorentz–Finsler structure on the Lie group S̃p(2n), for which we keep

the same notation. On (S̃p(2n), sp+(2n)), there are no closed causal curves as follows from
the following stronger result:

Theorem I.1. There exists a time function on (S̃p(2n), sp+(2n)), namely a continuous

function f : S̃p(2n) → R that is strictly increasing on every causal curve. Moreover, this
time function f can be chosen to be an unbounded quasi-morphism.

We recall that a real function f on a group G is said to be a quasi-morphism if there
is a global bound

|f(vw)− f(v)− f(w)| ≤ C ∀v, w ∈ G
measuring the failure of f from being a homomorphism. The interesting quasi-morphisms
are the unbounded ones (every bounded function is trivially a quasi-morphism).

This time function is constructed in Section 9 starting from a well known function on
S̃p(2n), namely the homogeneous Maslov quasi-morphism

µ : S̃p(2n)→ R.

This function, which was first defined in [35], is the unique homogeneous real quasi-

morphism on S̃p(2n) whose restriction to π−1(U(n)) agrees with the lift of the complex
determinant. Here, homogeneity means µ(W k) = kµ(W ) for every integer k. Moreover,
we are normalizing µ so that µ(τ(id)) = 1, where τ is the positive generator of the group
of deck transformations of the universal cover of Sp(2n), or equivalently µ(w) = n if w is
the homotopy class of the loop {e2πtJ0}t∈[0,1].

Furthermore, µ is conjugacy invariant, continuous, and non-decreasing on every causal
curve. However, there are causal curves, and even timelike ones, on which µ is constant,
see Lemma 10.3 below, so µ is not a time function. Nevertheless, the fact that µ is strictly
increasing on causal curves which are contained in a suitable open subset of S̃p(2n) allows
us to modify it and obtain a time function f as in Theorem I.1. Actually, f can be chosen
to be arbitrarily close to µ with respect to the supremum norm. See Section 9 below.

It is worth noticing that this time function cannot be conjugacy invariant: Indeed, no
continuous function on S̃p(2n) which strictly increases on timelike curves can be conjugacy
invariant, see Proposition 9.3 below.

The existence of a time function implies that there are no closed causal curves on
(S̃p(2n), sp+(2n)). The latter fact is equivalent to the fact that the relation

J := {(w0, w1) ∈ S̃p(2n)2 | either there is a causal curve from w0 to w1 or w0 = w1}
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is a partial order on S̃p(2n). We shall use the notation w0 ≤ w1 as shorthand for (w0, w1) ∈
J , and w0 ≥ w1 as synonymous of w1 ≤ w0. In general relativity, cone structures satisfying
the latter condition are called causal, while the existence of a time function is equivalent to
a stronger condition called stable causality. See [63, Section 2.7] for a discussion of stable
causality in the general framework of cone structures. Thanks to the bi-invariance of the
cone distribution, this partial order gives S̃p(2n) the structure of a partially ordered group
in the sense of [33].

J The Lorentz distance on the universal cover of Sp(2n)

Let (K,F ) be a Lorentz–Finsler structure on the manifold M . We assume that the cone
distribution K is causal and denote by ≤ the corresponding partial order relation on M .
The Lorentz–Finsler metric F induces the Lorentz distance

distF : M ×M → [0,+∞], distF (p, q) :=

{
sup lengthF (γ) if p ≤ q,
0 otherwise,

where the supremum is taken over all causal curves γ : [0, 1]→M such that γ(0) = p and
γ(1) = q. Note that this function may be trivial, meaning that it takes only the values 0
and +∞. In general relativity, Lorentz distances are also called time separation functions.
The Lorentz distance distF is lower semicontinuous and satisfies the reverse triangular
inequality

distF (p0, p2) ≥ distF (p0, p1) + distF (p1, p2), if p0 ≤ p1 ≤ p2.

See e.g., [64, Section 2.9].
In this section, we discuss some properties of the Lorentz distance distG on the universal

cover of Sp(2n), which as we have seen is causal. The bi-invariance of G implies that distG
is also bi-invariant, and hence it suffices to study distG(id, w) for w ∈ S̃p(2n) with w ≥ id.

In order to state our result, we need to recall some notions from Krein theory (see e.g.,
[91] or [27]). By extending the skew-symmetric bilinear form ω0 to a skew-Hermitian form
on C2n × C2n and by multiplying it by −i, we obtain the Hermitian form

κ : C2n × C2n → C, κ := −iω0,

which has signature (n, n) and is known as Krein form. The eigenvalues of W ∈ Sp(2n)
that are either real or lie on the unit circle

U := {z ∈ C | |z| = 1}

occur in pairs λ, λ−1, while all other eigenvalues occur in quadruples λ, λ, λ−1, λ
−1

. The re-
striction of κ to the generalized eigenspace of an eigenvalue λ on U is always non-degenerate,
and λ is said to be Krein-positive (resp. Krein-negative) if this restriction is positive (resp.
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negative) definite. The eigenvalue λ ∈ U is Krein-positive if and only if λ−1 = λ is Krein-
negative. The positively elliptic regions is the set

Sp+
ell(2n) := {W ∈ Sp(2n) | all the eigenvalues of W are in U \ {±1} and the ones

with positive imaginary part are Krein-positive}.

Equivalently, Sp+
ell(2n) can be described as the set of linear symplectomorphisms of R2n

which split into n rotations of angles in the interval (0, π): more precisely, W is in Sp+
ell(2n)

if and only if W = eX where X ∈ sp+(2n) is as in (B.1) with θj ∈ (0, π) for every j (see
Proposition ii.2 in Appendix ii).

One of the fundamental results of Krein theory is that Krein-definite eigenvalues on
U are stable, meaning that they cannot leave U after a perturbation. This implies that
Sp+

ell(2n) is open in Sp(2n).
In the case n = 1, elements W of Sp(2) have the polar decomposition W = UP , where

U ∈ SO(2) ∼= S1 and P is symmetric, positive definite and symplectic. Since any such P
is the exponential of a unique element in sp(2) ∩ Sym(2) ∼= R2, Sp(2) is homeomorphic to
R2 × S1, or equivalently to D× S1, where D is the open disk in R2.

Figure 1: On the left: The union of the sets Σ1 and Σ−1 decomposes Sp(2) into four open

domains, one of which is Sp+
ell(2). On the right: The lift of these sets to S̃p(2) ∼= R2 × R.

In the picture on the left in Figure 1, we visualize Sp(2) ∼= D × S1 as an open region
in R3 bounded by a torus-like surface. The circle sitting at the core of this region (not
represented in the picture) corresponds to the subgroup SO(2) = U(1). The yellow double
cone emanating from the identity represents the discriminant Σ1, i.e., the set of W ’s in
Sp(2) having the eigenvalue 1. The blue double cone emanating from minus the identity
is the set Σ−1 of elements in Sp(2) having the eigenvalue −1 (these two surfaces seem
to intersect in the picture, but their intersection is on the boundary of the region, which
is not part of Sp(2)). The open region bounded by the “croissant” on the upper right
part is precisely the positively elliptic region Sp+

ell(2), the region symmetric to it is the set

21



consisting of W ’s having both eigenvalues in U \ {±1} with the Krein-positive one having
negative imaginary part. The two outer regions correspond to W ’s with either positive
(region adherent to the identity) or negative (region adherent to minus the identity) real
eigenvalues. In the companion picture on the right, we are visualizing a portion of the
universal cover S̃p(2) as R2 ×R. The lift of SO(2) is now the vertical axis, and the yellow
and blue surfaces represent the lifts of the sets Σ1 and Σ−1. See [1, Section 1.2.1 and 1.2.2]
for the explicit parametrizations leading to these pictures.

A fundamental feature of timelike curves, or equivalently solutions of non-autonomous
positive definite linear Hamiltonian systems, is that Krein-positive eigenvalues on U move
counterclockwise, while Krein-negative ones move clockwise, see [27, Proposition I.3.2 and
Corollary I.3.3]. Therefore, any timelike curve starting at the identity immediately enters
Sp+

ell(2n) and can leave it only if the eigenvalue −1 appears. In the case n = 1, referring
again to the picture on the left in Figure 1, we have that timelike curves starting at the
identity immediately enter the upper-right “croissant” and can leave it only through the
blue surface. See also Section 10 below for another picture representing S̃p(2) and explicit

coordinates on S̃p(2) which simplify the study of causality on this space.

We denote by S̃p
+

ell(2n) the open subset of the universal cover of Sp(2n) consisting of
homotopy classes of paths w : [0, 1]→ Sp(2n) such that w(0) = id and w((0, 1]) ⊂ Sp+

ell(2n).

Equivalently, S̃p
+

ell(2n) is the connected component of π−1(Sp+
ell(2n)) whose closure contains

the identity. See again the right picture in Figure 1.
The next result shows that the Lorentz distance distG on S̃p(2n) is non-trivial but is

not everywhere finite either.

Theorem J.1. Let w be an element of S̃p(2n). Then we have:

(i) If w is in the closure of S̃p
+

ell(2n), then π(w) has spectrum {e±iθ1 , . . . , e±iθn} with
θj ∈ [0, π] for every j = 1, . . . , n and

distG(id, w) ≤ 2π

n
µ(w) =

1

n

n∑
j=1

θj. (J.1)

(ii) If there is a timelike curve from the identity to w and w is not in the closure of

S̃p
+

ell(2n), then distG(id, w) = +∞.

The function µ appearing in (i) is the homogeneous Maslov quasi-morphism discussed
in Section H above. This linear algebra result plays an important role in the length bounds
of contactomorphism or symplectomorphism groups which we discuss below in Sections M
and N.

Remark J.2. Note that the length of the unique timelike geodesic from id to w ∈ S̃p
+

ell(2n)
is the geometric mean of the numbers θj appearing in (i) above. This implies that in the
special case in which θ1 = · · · = θn ∈ (0, π), the inequality in (J.1) is actually an equality
and the Lorentz distance distG(id, w) is achieved by the unique geodesic from id to w. The
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latter fact is true for any w in S̃p
+

ell(2n) as shown by Hedicke in [41], thus improving on
the estimate (J.1). This is related to Question J.5 below.

Remark J.3. (Long timelike curves not hitting the discriminant) Given λ ∈ C, set

Σλ := {W ∈ Sp(2n) | λ is an eigenvalue of W}.

Statement (i) in the above theorem implies that any timelike curveW : [0, 1]→ Sp(2n) with
W (0) = id and lengthG(W ) ≥ π must hit the set Σ−1. On the other hand, statement (ii)
implies that there are timelike curves W : [0, 1]→ Sp(2n) with W (0) = id and arbitrarily
large lengthG(W ) which never hit the discriminant Σ1 after t = 0. Note that this is a non-
autonomous phenomenon: if W (t) = etX with X ∈ sp+(2n) satisfies lengthG(W |[0,1]) ≥ 2π,
then there exists t∗ ∈ (0, 1] such that W (t∗) ∈ Σ1. Indeed, since G(X) = lengthG(W |[0,1]) ≥
2π, identity (B.2) implies that at least one of the numbers θj in (B.1) is at least 2π, and
we deduce that W (t∗) = et

∗X has the eigenvalue 1 for t∗ = 2π
θj
∈ (0, 1].

Remark J.4. If we restrict the Lorentz–Finsler structure (sp+(2n), G) of Sp(2n) to the
open subset Sp+

ell(2n), we also obtain a stably causal space. The Lorentz distance on this
space is everywhere finite and defines the structure of a Lorentzian length space in the sense
of [55]. The above theorem implies that this space has diameter π. In the case n = 1, this
space is globally hyperbolic, meaning that for every pair of points w0, w1 in it the set of all
w ∈ Sp+

ell(2) with w0 ≤ w ≤ w1 is compact, see Section 10 below. Global hyperbolicity is
an important notion in general relativity. It has other equivalent characterizations, such
as for instance the existence of a Cauchy hypersurface, i.e., a hypersurface which is met
exactly once by every inextensible causal curve, and some striking consequences, such as
the existence of a timelike geodesic between any two points which can be connected by a
timelike curve and the well-posedness of the Cauchy problem for the wave equation. See
[65, Section 3.11]) and references therein. Therefore, we state the following:

Question J.5. Is Sp+
ell(2n) globally hyperbolic also for n > 1?2

Theorem J.1 is proven in Section 11 below. In the preceding Section 10, we look more
closely at the case n = 1, i.e., at the case of the universal cover of the three-dimensional
anti-de Sitter space AdS3. In this case, the Lorentz distance is completely described by
Proposition 10.1, which implies Theorem J.1 for n = 1. Moreover, the fact that elements

w ≥ id which are not in the closure of S̃p
+

ell(2) have infinite distance from the identity is
not specific of the Lorentz distance induced by G and holds for any Lorentz distance which
is conjugacy invariant, see Proposition 10.2 below.

2This question was recently answered affirmatively by Hedicke in [41], where Sp+
ell(2n) is proven to be a

maximal globally hyperbolic domain in Sp(2n). This result was generalized to arbitrary simple hermitian
Lie groups by Hedicke and Neeb in [43].
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K The Lorentz distance on the universal cover of Cont0(RP2n−1, ξst)

A general fact about causality in (Cont(M, ξ), cont+(M, ξ)) is that the existence of a non-
constant non-negative loop, i.e., a closed causal curve, implies the existence of a positive
loop, i.e., a closed timelike curve, see [29, Proposition 2.1.B]. Besides this, causality depends
on the contact manifold (M, ξ) under consideration. There are contact manifolds (M, ξ)
such that Cont0(M, ξ) admits no positive loop whatsoever: This is the case of the cotangent
sphere bundle ST ∗Q of any closed manifold Q having infinite fundamental group, see [22,
Section 9]. At the opposite end of the spectrum, there are contact manifolds (M, ξ) such
that Cont0(M, ξ) admits even contractible positive loops, such as (S2n−1, ξst) for n ≥ 2,
see [28].

In the middle, there are contact manifolds such that Cont0(M, ξ) admits positive loops
but no contractible ones. This is the case of Cont0(RP2n−1, ξst) for every n ≥ 1. Indeed,
the standard Reeb flow on (RP2n−1, ξst) defines a non-contractible positive loop, but there
are no contractible positive loops in Cont0(RP2n−1, ξst). As shown in [29], this follows from
the existence of Givental’s asymptotic nonlinear Maslov index

ν : C̃ont0(RP2n−1, ξst)→ R

on the universal cover of Cont0(RP2n−1, ξst). This is a conjugacy invariant homogeneous
quasi-morphism and is continuous with respect to the topology which is induced by the

C0-topology on the space of Hamiltonians. Moreover, if we endow C̃ont0(RP2n−1, ξst) with
the bi-invariant cone distribution that is induced by cont+(RP2n−1, ξst), we obtain that ν is
non-decreasing along each non-negative path and it is strictly positive on each element of

C̃ont0(RP2n−1, ξst) which is the end-point of a positive path starting at the identity. The
asymptotic nonlinear Maslov index ν extends the homogeneous Maslov quasi-morphism

µ : S̃p(2n)→ R, meaning that µ = ν ◦ ̃, where j̃ : S̃p(2n)→ C̃ont0(RP2n−1, ξst) is the lift
of the homomorphism j from Section E above.

The situation of the contactomorphism group of the real projective space is then anal-
ogous to what we have encountered with the linear symplectic group and we get a genuine

partial order ≤ on C̃ont0(RP2n−1, ξst), where φ0 ≤ φ1 means that there exists a non-

negative path from φ0 to φ1. In the language of general relativity, C̃ont0(RP2n−1, ξst) is
then a causal space. A natural question is whether the stronger property of Theorem I.1

holds also for C̃ont0(RP2n−1, ξst):

Question K.1. Does C̃ont0(RP2n−1, ξst) admit a time function, i.e., a real function that
strictly increases along every non-negative path, which is continuous with respect to some
reasonable topology?3

Being non-decreasing on non-negative paths, the nonlinear asymptotic Maslov index ν

seems to be a good starting point to build a time function on C̃ont0(RP2n−1, ξst). However,

3This question was recently answered affirmatively by Allais and Arlove: by [8, Theorem 1.8], all
orderable contactomorphism groups and orderable universal covers of contactomorphism groups of closed
manifolds admit a time function that is continuous in the C1 topology.
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ν needs to be corrected, since it can be constant on some positive paths. In the proof of
Theorem I.1, we can correct µ building on the fact that this function is strictly increasing
along every non-negative path which is contained in a certain non-empty open subset of
S̃p(2n), but it is not clear to us whether ν shares this property.

In the case n = 1, the answer to the above question is positive. Indeed, since

Cont(RP1, ξst) ∼= Cont(T, ξ0) = Diff0(T),

the universal cover C̃ont0(RP1, ξst) can be identified with the group Diff1(R) of diffeomor-
phisms φ : R→ R such that

φ(x+ 1) = 1 + φ(x) ∀x ∈ R,

or, equivalently, diffeomorphisms φ : R → R of the form φ = id + φ0 with φ0 : R → R 1-

periodic. The order ≤ on C̃ont0(RP1, ξst) corresponds to the standard order on real valued
functions, and the function

f : Diff1(R)→ R, f(φ) :=

ˆ 1

0

(φ(x)− x) dx,

is readily seen to be a time function.

We now lift the Lorentz–Finsler metric V to C̃ont0(RP2n−1, ξst), and denote it by
the same symbol. This Lorentz–Finsler metric induces the Lorentz distance distV on

C̃ont0(RP2n−1, ξst). Unlike the Lorentz distance distG on S̃p(2n), the Lorentz distance

distV is trivial on C̃ont0(RP2n−1, ξst). Actually, the following stronger result holds.

Theorem K.2. Let d : C̃ont0(RP2n−1, ξst) × C̃ont0(RP2n−1, ξst) → [0,+∞] be a function
such that:

(i) d(φ0, φ1) > 0 if and only if there is a non-negative and somewhere positive path from
φ0 to φ1;

(ii) d(φ0, φ2) ≥ d(φ0, φ1) + d(φ1, φ2) if φ0 ≤ φ1 ≤ φ2;

(iii) d is bi-invariant.

Then d(φ0, φ1) has the value +∞ if there is a non-negative and somewhere positive path
from φ0 to φ1, and 0 otherwise.

The result will come to no surprise to experts in contact geometry. Indeed, find-
ing meaningful bi-invariant “global measurements” on contactomorphism groups is a no-
toriously difficult problem. As recalled at the beginning of this introduction, any bi-
invariant distance function on the contactomorphism group Cont(M, ξ) is discrete. There-
fore, Cont(M, ξ) does not admit a bi-invariant distance function coming from a Finsler
metric, unlike the symplectomorphism group, whose Hofer metric is bi-invariant and is
induced by a genuine Finsler metric (see [44] and [74]). As first shown by Sandon in [79],
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non-trivial discrete bi-invariant distance functions do exist on some contactomorphism
groups, see also [92, 25, 80, 32]. If one drops the requirement of being bi-invariant, there
do exist interesting Lorentz distances on orderable contactomorphisms groups, as recently
shown by Hedicke in [42].

Our proof of Theorem K.2 is based on statement (ii) in Theorem J.1 and will be
carried out in Section 12. It is reasonable to believe that an analogous result holds for
every orderable contactomorphisms group. Since we do not have a proof of this fact, we
formulate the following:

Question K.3. Does Theorem K.2 extend to all orderable contactomorphisms groups?

Actually, we do not even know whether the Lorentz distance which is induced by the
Lorentz–Finsler metric V is trivial on every orderable contactomorphisms group.

L Length bounds in Diff1(R)

Consider again the 1-dimensional contact manifold (T = R/Z, ξ0 = {0}). As discussed
above, the universal cover of Cont(T, ξ0) = Diff0(T) can be identified with the group
Diff1(R) of diffeomorphisms φ : R→ R such that φ(x+ 1) = 1 +φ(x) for every x ∈ R, and
the order ≤ on Diff1(R) is just the standard order on real valued functions.

Let φ ∈ Diff1(R) be such that φ(x) > x for every x ∈ R. Theorem K.2 in the case
n = 1 tells us that there are arbitrarily long positive paths {φt}t∈[0,1] from id to φ. See
also Example 13.2 for an explicit construction of arbitrarily long positive paths starting at
the identity and staying below a fixed translation. Denote by H the Hamiltonian which is
associated to such a path: H is a smooth positive function on [0, 1]× R, 1-periodic in the
second variable, and φt solves the ODE

d

dt
φt = H(t, φt), φ0 = id.

A natural question is how “complex” H must be, so that the path {φt}t∈[0,1] connecting id
to φ is long with respect to the Lorentz–Finsler metric V .

A first observation is that H must be non-autonomous. Indeed, if H > 0 is autonomous
and its flow φt satisfies φ1(x) ≤ φ(x) for every x ∈ R, then by Proposition D.2 we have

lengthV ({φt}t∈[0,1]) = ρ(φ1) ≤ ρ(φ),

where

ρ : Diff1(R)→ R, ρ(φ) = lim
n→∞

φn(x)− x
n

denotes the translation number quasi-morphism.
In our next result, we consider the number of harmonics of the 1-periodic functions

x 7→ H(t, x) as a measure of the complexity of H. Denoting by Pk the space of smooth
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functions on [0, 1] × R which are trigonometric polynomials of degree at most k in the
second variable, i.e., functions of the form

p(t, x) =
k∑
j=0

(
aj(t) cos(2πjx) + bj(t) sin(2πjx)

)
,

for suitable smooth functions aj, bj, we have the following result.

Theorem L.1. For every k ∈ N and φ ∈ Diff1(R) the following facts hold:

(i) If

φ(x) ≤ x+
s

4k
∀x ∈ R

for some s ∈ (0, 1), then for every positive path {φt}t∈[0,1] from id to φ which is
generated by a time-dependent Hamiltonian in Pk we have

lengthV ({φt}t∈[0,1]) ≤
1

1− s

ˆ 1

0

(
φ(x)− x

)
dx.

(ii) If

φ(x) > x+
1

k
∀x ∈ R,

then there exist ψ ∈ Diff1(R) with id < ψ < φ and positive paths from id to ψ
which are generated by time-dependent Hamiltonians in Pk and have arbitrarily large
lengthV .

Remark L.2. Note the “quantum” nature of this result: If φ < id + 1
4k

then positive
paths from id to φ generated by Hamiltonians in Pk have uniformly bounded length,
while if φ > id + 1

k
is the end point of a positive path starting from id and generated by

Hamiltonians in Pk, then the length of such a path can be arbitrarily large. An interesting
and presumably non-trivial question is how to close the gap between the thresholds 1

4k
and

1
k
.

The proof of (i) uses a sharp Bernstein type inequality for non-negative periodic func-
tions which is due to Nazarov, see Theorem 13.1 below. The proof of (ii) uses the em-
beddings jk of the classical Lorentzian spacetime PSp(2) into Diff0(T), see Proposition
E.1.

In the context of the L2-metric on the group of Hamiltonian diffeomorphisms of a com-
pact symplectic manifold, a related phenomenon has been studied in the already mentioned
[90].
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M Length bounds on the universal cover of Cont0(RP2n−1, ξst)

We do not know whether the quantum phenomenon which is described by Theorem L.1
and Remark L.2 above holds also on contact manifolds of dimension larger than one. In
particular, we would like to state the following:

Question M.1. Does Statement (i) of Theorem L.1 generalize to C̃ont0(RP2n−1, ξst)?

Here, it would be natural to replace the space Pk with the space of spherical harmonics
of degree at most k and the upper bound on φ with the condition that φ should satisfy

φ ≤ eck for some ck > 0, where et is the element of C̃ont0(RP2n−1, ξst) which is defined by
the restriction to the interval [0, t] of the standard periodic Reeb flow.

Another question which arises naturally (see also Remark M.5 below) and we do not
know how to answer concerns the lift

̃ : S̃p(2n)→ C̃ont0(RP2n−1, ξst)

of the homomorphism
j : PSp(2n)→ Cont0(RP2n−1, ξst)

from Section E above. The fact that the pull-back by j of the cone cont+(RP2n−1, ξst) is the

cone sp+(2n) implies that if w0 ≤ w1 in S̃p(2n), then ̃(w0) ≤ ̃(w1) in C̃ont0(RP2n−1, ξst).
We do not know whether the converse is also true:

Question M.2. Assume that w0, w1 ∈ S̃p(2n) satisfy ̃(w0) ≤ ̃(w1) in C̃ont0(RP2n−1, ξst).

Is it true that w0 ≤ w1 in S̃p(2n)?

In order to study this question, it is natural to consider the set of all w in S̃p(2n) such

that ̃(w) ≥ id in C̃ont0(RP2n−1, ξst), and the question is whether this set coincides with

the set of w in S̃p(2n) such that w ≥ id. Since both these sets are conjugacy invariant

semigroups in S̃p(2n) and the second one is contained in the first one, Question M.2 has
a positive answer if one can show that the conjugacy invariant semigroup which is defined
by the partial order ≤ on S̃p(2n) is a maximal proper conjugacy invariant semigroup. This
fact is true for n = 1, see [84, Section 3.3], leading to the positive answer to Question M.2
in this case. See also Proposition 14.3 below for a simpler argument.

To state the length bound that we can prove for positive paths in C̃ont0(RP2n−1, ξst),
we need to introduce some notation. On (RP2n−1, ξst), we fix the standard contact form α0,
whose Reeb flow is Zoll with period π

2
, and we use α0 to identify the space of Hamiltonians

C∞(RP2n−1) with the space of contact vector fields cont(RP2n−1, ξst). Note that there is a
one-to-one correspondence between functions H ∈ C∞(RP2n−1) and 2-homogeneous even
functions on R2n, which is obtained by identifying RP2n−1 with the quotient of S2n−1 by the
antipodal Z2-action and by extending even functions on S2n−1 to R2n by 2-homogeneity.

By a positive quadratic function on RP2n−1 we mean a function which corresponds to a
positive definite quadratic form on R2n under this identification. Given a real number c ≥ 1,
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we define Hc to be the space of time-dependent Hamiltonians H ∈ C∞([0, 1] × RP2n−1)
such that

Q ≤ H ≤ cQ

for some Q ∈ C∞([0, 1] × RP2n−1) such that Q(t, ·) is a positive quadratic function for
every t ∈ [0, 1]. Note that Hc is a convex cone and that the union of all Hc for c ≥ 1 is the
convex cone of all positive time-dependent Hamiltonians.

Note also that any H ∈ C∞([0, 1] × RP2n−1) which is convex, meaning that its 2-
homogeneous extension to [0, 1] × R2n is convex in the second variable and positive on
[0, 1]× (R2n \ {0}), belongs to H2n. This follows from John’s theorem, stating that if E is
the ellipsoid of maximal volume which is contained in a centrally symmetric convex body
C ⊂ RN , then E ⊂ C ⊂ NE. We can now state our next result.

Theorem M.3. Let φ ∈ C̃ont0(RP2n−1, ξst) be such that

ν(φ) ≤ 1

2
, (M.1)

with strict inequality in the case n = 1. Then every positive path {φt}t∈[0,1] from id to φ
which is generated by a Hamiltonian in Hc satisfies

lengthV
(
{φt}t∈[0,1]

)
≤ 2

1
n

n
c ν(φ).

This theorem is deduced in Section 14 from Theorem J.1 (i) above. The length bound
of Theorem M.3 is of a different nature than the one of Theorem L.1: In Theorem L.1, the
paths of Hamiltonians are constrained to finite dimensional spaces but can take values in
the whole cone of positive functions within these spaces, whereas in Theorem M.3 there is
no finite-dimensional constraint but the cone of positive functions is reduced by a pinching
condition. In both results, the time dependence of the Hamiltonians can be arbitrary.

Remark M.4. The upper bound 1
2

in assumption (M.1) of Theorem M.3 is optimal: For

every s > 1
2

(and for n = 1 also for s = 1
2
), there exists φ ∈ C̃ont0(RP2n−1, ξst) with ν(φ) = s

such that there are positive paths from id to φ which are generated by Hamiltonians in H1

and have arbitrarily large length. See Remark 14.1 below.

Remark M.5. If the answer to Question M.2 is positive, then the same conclusion of
Theorem M.3 holds also replacing (M.1) by the assumption φ ≤ e, where e denotes the

element of C̃ont0(RP2n−1, ξst) generated by the constant Hamiltonian H = 1, i.e., the

homotopy class of the loop {φ
π
2
t

α0}t∈[0,1], where φα0 denotes the Reeb flow of α0 (note that
ν(e) = n

2
). See Remark 14.2 below.

Since Question M.2 has a positive answer for n = 1, in this case the length bound of

Theorem M.3 holds for every φ ≤ e. In the identification C̃ont0(RP1, ξst) = Diff1(R), we
have H1 = P1, e(x) = x + 1 and the asymptotic nonlinear Maslov index ν coincides with
1
2
ρ, where ρ(φ) denotes the translation number of φ. In this setting, the length bound of
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Theorem M.3 holds for every φ ∈ Diff1(R) satisfying φ(x) ≤ x+ 1 for every x ∈ R, which
is a weaker condition than the assumption ρ(φ) < 1 from Theorem M.3. Note also that
the optimality of the bound (M.1) mentioned in the above remark now says that there are
diffeomorphisms φ ∈ Diff1(R) with ρ(φ) = 1 which are the end-points of positive paths
with arbitrarily large length which are generated by Hamiltonians in P1.

We conclude this section by discussing length bounds for autonomous positive paths in

the group C̃ont0(RP2n−1, ξst), i.e., solutions of

d

dt
φ(t) = X(φ(t)), φ(0) = id,

with X ∈ cont+(M, ξ) independent of time. In the case n = 1, Proposition D.2 and the
identity ρ = 2ν imply

lengthV (φ|[0,1]) = 2 ν(φ(1)) (M.2)

for every autonomous positive path φ in C̃ont0(RP1, ξst). In higher dimension, we certainly
do not have this identity, but one may wonder whether the Lorentz–Finsler length of φ|[0,1]

for φ an autonomous positive path in C̃ont0(RP2n−1, ξst) can be bounded from above in
terms of ν(φ(1)). Note in fact that the Lorentz–Finsler length of the autonomous path

w(t) = etX ∈ S̃p(2n)

with X as in (B.1) has the bound

lengthG(w|[0,1]) =

(
n∏
j=1

θj

) 1
n

≤ 1

n

n∑
j=1

θj =
2π

n
µ(w(1)),

thanks to the inequality between the geometric and arithmetic mean. However, in the

infinite dimensional group C̃ont0(RP2n−1, ξst) with n > 1 the length of autonomous positive
paths φ does not have an upper bound in terms of ν(φ(1)), as we now explain.

Indeed, let us consider the prequantization S1-bundle p : RP2n−1 → CPn−1 and the
moment map m : CPn−1 → Rn which is associated to the standard Hamiltonian Tn-action
on CPn−1 endowed with the Fubini–Study symplectic form. The image of m is a simplex
∆. Let H ∈ C∞(RP2n−1) be a function which lifts a function h : ∆ → R under the map

m ◦ p, and let φ : R → C̃ont0(RP2n−1, ξst) be the path which is generated by H, seen as
a contact Hamiltonian with respect to the standard contact form α0 of RP2n−1. It can be
proven that in this case

ν(φ(1)) =
n

2
h(b),

where b denotes the barycenter of ∆. See [30, Theorem 1.11] and [83]. By choosing a
positive function h with h(b) small and h equal to a large constant outside of a small
neighborhood of b, we can make

lengthV (φ|[0,1]) =

(ˆ
RP2n−1

H−n α0 ∧ dαn−1
0

)− 1
n
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arbitrarily large and keep ν(φ(1)) arbitrarily small, as claimed above.

As we have already noted in Section I, if we fix an element ψ in C̃ont0(RP1, ξst),
then the Lorentz–Finsler length of an arbitrary autonomous positive path φ : [0, 1] →
C̃ont0(RP1, ξst) such that φ(1) ≤ ψ is uniformly bounded from above. The above example
does not exclude that this holds true also in higher dimension. Therefore, we state the
following question.

Question M.6. Let ψ ∈ C̃ont0(RP2n−1, ξst). Is the Lorentz–Finsler length of autonomous

positive paths φ : [0, 1] → C̃ont0(RP2n−1, ξst) such that φ(1) ≤ ψ uniformly bounded from
above?

N Positive paths in the group of symplectomorphisms of convex
domains

Consider a bounded uniformly convex open set Ω with smooth boundary in the standard
symplectic vector space (R2n, ω0). In other words, Ω is a non-empty open sublevel of a
coercive smooth function on R2n whose second differential is everywhere positive definite.
Denote by Symp0(Ω) the identity component of the group of symplectomorphisms of the
closure of Ω. Let us emphasize that each element of Symp0(Ω) keeps the boundary ∂Ω
invariant, but in general induces a non-trivial diffeomorphism of ∂Ω. Any φ ∈ Symp0(Ω)
is the time-one map of a Hamiltonian vector field, i.e. φ = φ1

H where φtH is the solution of
the Cauchy problem

d

dt
φtH = XHt(φ

t
H), φ0

H = id, (N.1)

where the Hamiltonian H ∈ C∞([0, 1] × Ω) is such that Ht = H(t, ·) is constant on each
leaf of the characteristic foliation of ∂Ω. Here, XK denotes the Hamiltonian vector field of
the function K ∈ C∞(Ω), which is defined by the identity

ω0(XK , ·) = −dK,

and the characteristic foliation of the hypersurface ∂Ω is the one-dimensional foliation
which is tangent to the kernel of the restriction of ω0 to the tangent spaces of ∂Ω. Both
(N.1) and the boundary condition are not affected by adding a function of t to the Hamil-
tonian, and we obtain that the Lie algebra of Symp0(Ω) can be identified with the vector
space

H(Ω) := {H ∈ C∞(Ω) | H is constant on each leaf of the characteristic foliation of ∂Ω}/R,

where the quotient is with respect to the action of R which is given by adding constant
functions. With a small abuse of notation, we shall see equivalence classes in H(Ω) as
functions on Ω.

It will be useful to use the standard Euclidean structure of R2n and the standard
complex structure J0 and rewrite (N.1) as

d

dt
φtH = J0∇Ht(φ

t
H), φ0

H = id, (N.2)
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but all the notions we are introducing in this section depend only on the affine symplectic
structure of R2n.

In this section, we discuss a structure on Symp0(Ω) which is induced from the Lorentz–
Finsler metric G on Sp(2n) in the following way. By linearizing (N.2) and using the
identification TΩ = Ω × R2n, we obtain for every z ∈ Ω a path t 7→ dφtH(z) in Sp(2n)
which satisfies

d

dt
dφtH(z) = J0∇2Ht(φ

t
H(z)) dφtH(z), dφ0

H(z) = id.

This path is timelike in (Sp(2n), sp+(2n)) for every z ∈ Ω if and only if Ht is uniformly
convex on Ω for every t ∈ [0, 1], meaning that ∇2Ht(z) is positive definite for every z ∈ Ω.
This suggests to consider the following open convex cone in H(Ω)

H+(Ω) := {H ∈ H(Ω) | H uniformly convex on Ω},

which is non-empty thanks to the uniform convexity of Ω, and the smooth function G :
H+(Ω)→ (0,+∞) which is given by

G(H) :=
1

vol(Ω)

ˆ
Ω

G(J0∇2H(z)) dz =
1

vol(Ω)

ˆ
Ω

(
det∇2H(z)

) 1
2n dz,

where vol(Ω) denotes the Euclidean volume of Ω and dz refers to integration with respect
to the Euclidean volume form 1

n!
ωn0 of R2n.

The function G is smooth on H+(Ω) and extends continuously to the closure of H+(Ω);
notice that this extension is not identically zero on the boundary. Moreover, G satisfies
the strong concavity condition

d2G(H) · (K,K) < 0 ∀H ∈ H+(Ω), ∀K ∈ H(Ω) \ RH,

as shown in Proposition 15.1 below.
The cone H+(Ω) and the function G extend to a cone distribution on Symp0(Ω) and

a function on it by using right-shifts on the Lie group. The resulting objects are not bi-
invariant, because H+(Ω) and G are not invariant under the adjoint action of Symp0(Ω)
on H(Ω). This is due to the fact that we have used the affine structure of R2n in order
to identify tangent spaces at different points when linearizing (N.1). These objects are
nevertheless equivariant with respect to the affine symplectic group of (R2n, ω0).

The resulting structure on Symp0(Ω), which we still denote by (H+(Ω),G), satisfies
all the requirements of a Lorentz–Finsler structure as in Definition A.1, except for the
condition that G should vanish on the boundary of the cones. Therefore, we call G a weak
Lorentz–Finsler metric on the cone distribution determined by H+(Ω). Weak Lorentz–
Finsler metrics of this sort are considered in [63].

The Lorentz–Finsler length of any positive (i.e. timelike) path in Symp0(Ω) is still
defined and denoted as usual by lengthG.
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As an example, take Ω to be the unit Euclidean ball in R2n and consider the subalgebra
u ⊂ H(Ω) consisting of the quadratic Hamiltonians of the form

H(z) =
1

2
Sz · z,

where S ∈ Sym(2n) commutes with J0. The set of endomorphisms of R2n ∼= Cn of the form
J0S with S as above is precisely the Lie algebra of U(n), so the Hamiltonian flow of H is
unitary. If H is in u ∩ H+(Ω), i.e. if S as above is positive definite, then φ = {etJ0S}t∈[0,1]

is an autonomous positive path in both Symp0(Ω) and Sp(2n) and we have

lengthG(φ) = G(H) = G(J0S) = (detS)
1
2n = lengthG(φ).

In general, it is easy to see that lengthG and lengthG are related by the identity

lengthG({t 7→ φt}) =
1

vol(Ω)

ˆ
Ω

lengthG({t 7→ dφt(z)}) dz, (N.3)

for every positive path φ : [0, 1]→ Symp0(Ω), see Proposition 15.2 below.

We denote by S̃ymp0(Ω) the universal cover of Symp0(Ω). The homogeneous Maslov

quasi-morphism µ : S̃p(2n)→ R extends to a real valued quasi-morphism on S̃ymp0(Ω) by
setting

M(φ̃) :=
1

vol(Ω)

ˆ
Ω

µ([dφ(z)]) dz.

Here, φ̃ ∈ S̃ymp0(Ω) is the homotopy class of a path {φt}t∈[0,1] in Symp0(Ω) with φ0 = id

and [dφ(z)] ∈ S̃p(2n) denotes the homotopy class of the path {dφt(z)}t∈[0,1] in Sp(2n). This
quasi-morphism, which appears in Ruelle’s work [76], was investigated by Barge and Ghys
in [13, Theorem 3.4]. Thanks to (N.3), Theorem J.1 (i) has the following consequence,
which is proven in Section 15.

Theorem N.1. Let φ̃ ∈ S̃ymp0(Ω) be the homotopy class of a positive path φ = {φt}t∈[0,1]

in Symp0(Ω) with φ0 = id and such that dφt(z) does not have the eigenvalue −1 for every
z ∈ Ω and t ∈ [0, 1]. Then any positive path ψ in Symp0(Ω) which is homotopic to φ with
fixed ends satisfies the same condition and

lengthG(ψ) ≤ 2π

n
M(φ̃).

The above results imply that the Lorentz distance distG on S̃ymp0(Ω) which is induced
by the lift of G is non-trivial, because

0 < distG(id, φ̃) ≤ 2π

n
M(φ̃) < +∞

for any φ̃ which satisfies the assumptions of the above theorem. Due to Theorem J.1 (ii),

one may suspect that there are elements φ̃ in S̃ymp0(Ω) such that distG(id, φ̃) = +∞.
However, we do not have a proof of this fact and hence we formulate this as a question.

33



Question N.2. Are there elements φ̃ in S̃ymp0(Ω) for which the lengthG of positive paths

representing the homotopy class φ̃ has no upper bound?

Next, we focus on the following optimal extension problem. A smooth path ψ =
{ψt}t∈[0,1] of diffeomorphisms

ψt : ∂Ω→ ∂Ω

is called extendable if there exists a positive path {φtK}t∈[0,1] in Symp0(Ω), where K ∈
C∞([0, 1]× Ω) and Kt ∈ H+(Ω) for every t ∈ [0, 1], such that

ψt := φtK |∂Ω.

Given such an extendable path ψ, we consider the variational problem

sup
{

lengthG(φ) | φ positive path in Symp0(Ω) such that φt|∂Ω = ψt ∀t ∈ [0, 1]
}
. (N.4)

Equivalently, the Hamiltonian H ∈ C∞([0, 1] × Ω) generating the path φ should be uni-
formly convex and satisfy

∇Ht(z) = ∇Kt(z) ∀(t, z) ∈ [0, 1]× ∂Ω. (N.5)

Our next result is the finiteness of (N.4). In fact, we are able to provide a constructive
upper bound. In order to describe it, notice that by the convexity of Ω and the uniform
convexity of Ht the maps

∇Ht : Ω→ R2n

are embeddings and their image depends only on their restriction to ∂Ω, so by (N.5) only
on the path of diffeomorphisms ψt : ∂Ω→ ∂Ω. The positive quantity

V(ψ) :=
1

vol(Ω)
1
2n

ˆ 1

0

vol(∇Ht(Ω))
1
2n dt =

1

vol(Ω)
1
2n

ˆ 1

0

vol(XHt(Ω))
1
2n dt

is then a function of the path ψ. The proof of the next result is discussed in Section 15.

Theorem N.3. For every extendable path of diffeomorphisms ψ of ∂Ω and every positive
path φ in Symp0(Ω) extending ψ, we have the upper bound

lengthG(φ) ≤ V(ψ).

The equality holds if and only φ is generated by a uniformly convex Hamiltonian H satis-
fying the Monge–Ampère equation

det∇2Ht(z) = c(t) ∀(t, z) ∈ [0, 1]× Ω

for some positive numbers c = c(t).
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Remark N.4. Let us illustrate the quantity V(ψ) appearing in Theorem N.3 in the fol-
lowing situation. Assume that Ω is centrally symmetric, so in particular it contains the
origin. Recall that the group R+ acts on R2n by dilations z 7→

√
cz. If the Hamiltonians

Ht in H(Ω) satisfy Ht(
√
cz) = cHt(z) near ∂Ω, then the restriction of the corresponding

Hamiltonian path {φtH}t∈[0,1] preserves the contact form αΩ on ∂Ω which is given by the
restriction of the Liouville form λ0 (see Section E). Let H be the unique R+-equivariant
function taking the value 1

2
on ∂Ω. Denote by ψ = {ψt}t∈[0,1] the path of diffeomorphisms

of ∂Ω which is given by the restriction of the Hamiltonian path induced by H. The function
H is smooth and uniformly convex on R2n \ {0}, but in general not twice differentiable at
the origin; however, H can be modified near the origin to make it everywhere smooth and
uniformly convex, so the path ψ is extendable. The set ∇H(Ω) is in this case the polar
body Ω◦ of Ω and hence

V(ψ) = vol(Ω)−
1
2n vol(Ω◦)

1
2n .

Note now that ψ is the Reeb flow of the contact form αΩ on the time interval [0, 1] and
hence a positive path in Cont(∂Ω, ξ), where ξ = kerαΩ. Therefore, its length with respect
to the Lorentz–Finsler metric V from Section D is

lengthV (ψ) = vol(∂Ω, αΩ ∧ dαn−1
Ω )−

1
n = vol(Ω, ωn0 )−

1
n =

(
n! vol(Ω)

)− 1
n ,

by Stokes theorem, and we obtain the identity

V(ψ) lengthV (ψ)−1 = (n!)
1
n

(
vol(Ω) vol(Ω0)

) 1
2n .

The quantity in brackets on the right-hand side of the above identity is the Mahler volume
of Ω, a linear invariant of centrally symmetric convex domains admitting the bounds

ν2n 42n

(2n)!
≤ vol(Ω) vol(Ω0) ≤ π2n

(n!)2
.

Here, the upper bound is sharp and is given by the Blaschke–Santaló inequality, stating that
the Mahler volume is maximized by ellipsoids (see [19] and [81]). The value of the optimal
positive number ν appearing in the above lower bound is not known, but is conjectured
to be ν = 1. Indeed, the Mahler conjecture, which for now has been proven only in
dimension at most three (see [60] and [46]), states that the cube is a minimizer of the
Mahler volume (the number 42n

(2n!)
is precisely the Mahler volume of the cube in dimension

2n). The best known bound for ν is due to Kuperberg, who in [56] showed that ν ≥ π
4
.

Therefore, V(ψ) provides the following dimension-independent lower and upper bounds for
the Lorentz–Finsler length of ψ:

1

π
V(ψ) ≤ lengthV (ψ) ≤ 1

4ν

(
2n

n

) 1
2n

V(ψ) ≤ 1

2ν
V(ψ) ≤ 2

π
V(ψ),

where we have used the inequality
(

2n
n

)
≤ 22n and Kuperberg’s bound for ν. Together with

Theorem N.3, the left inequality implies that if φ : [0, 1] → Symp(Ω) is any positive path
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extending the path ψ given by the restriction to the interval [0, 1] of the Reeb flow of αΩ

on ∂Ω, then
lengthG(φ) ≤ π lengthV (ψ).

It would be interesting to explore further connections between the Lorentz–Finsler lengths
on the group of symplectomorphisms of a convex domain and on the group of contacto-
morphisms of its boundary.

By the theory of the Dirichlet problem for the Monge–Ampère equation, it is easy to
produce examples of extendable paths of diffeomorphisms ψ of ∂Ω admitting an extension
φ such that lengthG(φ) = V(ψ). Indeed, let h : ∂Ω → R be an arbitrary smooth function
which is constant on each leaf of the characteristic foliation of ∂Ω. Then the Dirichlet
problem {

det∇2H = 1 on Ω,
H = h on ∂Ω,

has a unique uniformly convex solutionH ∈ C∞(Ω), see [39, Theorem 6.2.6 and Proposition
6.1.4]. Let ψ = {ψt}t∈[0,1] be the path of diffeomorphisms of ∂Ω which is given by the
boundary restriction of the positive path φ = {φtH}t∈[0,1]. By Theorem N.3, φ is the unique
maximizer of the optimal extension problem (N.4) and lengthG(φ) = V(ψ).

For a general extendable path ψ, we do not expect the existence of a positive path
{φtH}t∈[0,1] in Symp0(Ω) whose generating Hamiltonian H satisfies the above Monge–
Ampère equation. Indeed, the Monge–Ampère equation

det∇2H = const on Ω,

with the boundary condition (N.5) defines an overdetermined problem.
It is therefore natural to ask about existence and uniqueness of maximizers of the

optimal extension problem (N.4) for a general extendable path ψ. As proven in Section 15
below, uniqueness is guaranteed by the strong concavity of G.

Proposition N.5. Maximizers of the optimal extension problem (N.4) are unique.

Existence is a more difficult question. As a non-essential simplification, consider the
optimal extension problem for an autonomous path. Thus, we are given a function K ∈
H+(Ω) and we are looking for maximizers of the functional

F(H) :=

ˆ
Ω

(
det∇2H(z)

) 1
2n dz

over the set of all uniformly convex functions H ∈ C∞(Ω) satisfying (N.5). This problem
is invariant under the sum of constant functions, but we can mod this invariance out and
obtain an equivalent problem by replacing the boundary condition (N.5) by

H(z) = K(z), ∇H(z) = ∇K(z) ∀(t, z) ∈ [0, 1]× ∂Ω. (N.6)
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The analogous functional with exponent 1
2n+2

instead of 1
2n

(in dimension 2n) is called
affine area of the hypersurface which is given by the graph of H, and the corresponding
variational problem with boundary conditions (N.6) is the first boundary value problem for
affine maximal hypersurfaces, which is discussed in detail by Trudinger and Wang in [87]
and [88, Section 6.4].

As we explain in Section 15, some of the analysis of Trudinger and Wang goes through
also for the functional F and we obtain the existence of convex but not necessarily smooth
or uniformly convex maximizers of a suitable relaxation of the above problem to a space of
less regular functions. Unlike in the case of the affine area, it is not clear to us whether max-
imizers of the relaxed problem are unique. See Section 15 for more about this relaxation.
Therefore, we state the following questions.

Question N.6. Assume that Ω ⊂ R2n is a uniformly convex smooth bounded open set.
Does the functional F have maximizers in the set of all uniformly convex functions H ∈
C∞(Ω) satisfying (N.6)? Are the maximizers of the relaxed problem unique?

We conclude this section by indicating some other future directions. First, the con-
struction and possibly the results presented in this section should extend to more general
symplectic manifolds (M,ω) equipped with an affine structure and a flat affine symplectic
connection. The matrix ∇2H of a uniformly convex function H defines a so called Hessian
Riemannian metric on M , see [82]. When dimM = 2, the quantity G(H) has a simple
geometric interpretation as the ratio between the Riemannian and the symplectic areas of
M .

Second, let (W,ω) be a 2n-dimensional real symplectic vector space equipped with an
n-form σ. Let Λ be the subset of the oriented Lagrangian Grassmannian of W consisting
of those Lagrangian subspaces L ⊂ W for which σ|L is a positive volume form, see [86].
The tangent space TLΛ is canonically identified with the space of bilinear symmetric forms
on L. Denote by KL ⊂ TLΛ the cone of positive forms. Every g ∈ KL defines a scalar
product, and hence a positive volume form νg on L. For L ∈ Λ and g ∈ KL, we set

Zσ(g) :=

(
νg

(σ|L)

) 2
n

.

This is a Lorentz–Finsler metric on Λ. It would be interesting to study the existence of
time-functions, geodesics, and the Lorentzian distance on (Λ, K, Zσ). Furthermore, Zσ(g)
induces a weak Lorentz–Finsler metric on the cone of optical Hamiltonian diffeomorphisms
of a compact symplectic manifold with boundary equipped with a Lagrangian distribution,
see [18]. It would be interesting to explore the maximizers of the optimal extension problem
in this context.
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1 Proof of Proposition B.1

The subset

sp+(2n) = {X ∈ sp(2n) | (u, v) 7→ ω0(u,Xv) is positive definite} = {J0S | S ∈ Sym+(2n)}

of the Lie algebra sp(2n) of Sp(2n) is clearly an open convex cone, invariant under the
adjoint action of Sp(2n), i.e., under conjugacy by elements of Sp(2n), and satisfies

sp+(2n) ∩ −sp+(2n) = {0}.

Therefore, it generates a bi-invariant cone distribution in the tangent bundle of Sp(2n)
which satisfies the requirements of (i) in Definition A.1 from the Introduction.

The function
G(X) = G(J0S) = (detX)

1
2n = (detS)

1
2n

is smooth on sp+(2n), positively 1-homogeneous and extends continuously to the closure
of sp+(2n) by setting it to be zero on the boundary. Moreover, it is strongly concave in all
directions other than the radial one, meaning that

d2G(X) · (Y, Y ) < 0 ∀X ∈ sp+(2n), Y ∈ sp(2n) \ RX.

This follows immediately from the following well known concavity property of the N -th
root of the determinant on the cone Sym+(N) of positive symmetric endomorphisms of
RN , of which for sake of completeness we give a proof.

Lemma 1.1. Let f : Sym+(N) → R be the smooth function f(S) := (detS)
1
N . Then, for

all S ∈ Sym+(N) and all H,H1, H2 ∈ Sym+(N)

df(S) ·H =
1

N
(detS)

1
N tr (S−1H),

d2f(S) · (H1, H2) =
1

N2
(detS)

1
N

(
tr (S−1H1)tr (S−1H1)−N tr

(
(S−1H1)(S−1H2)

))
.
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It follows that

d2f(S) · (H,H) ≤ 0 ∀S ∈ Sym+(N), ∀H ∈ Sym(N),

where the equality holds if and only if H ∈ RS.

Proof. The first two equalities in the statement are readily obtained using the fact that
the differential of the determinant has the form

d(det)(A) ·H = detA · tr (A−1H) ∀A ∈ GL(N), ∀A ∈ Hom(RN ,RN).

Plugging H = H1 = H2 ∈ Sym(N) in the formula for the second differential of f at
S ∈ Sym+(N), we find

d2f(S) · (H,H) =
1

N2
(detS)

1
N

((
tr (S−1H)

)2 −N tr
(
(S−1H)2

))
.

Since the symmetric endomorphism S−1 is positive, it has a square root S−
1
2 ∈ Sym+(N)

and by the conjugacy invariance of the trace we can rewrite the last identity as

d2f(S) · (H,H) =
1

N2
(detS)

1
N

((
trA

)2 −N tr
(
A2
))
,

where A := S−
1
2HS−

1
2 belongs to Sym(N). Since A is diagonalizable over R, the Cauchy–

Schwarz inequality implies that the above quantity is not larger than zero, and equal zero
if and only if A = αI for some α ∈ R, i.e., if and only if H = αS.

Being invariant under the adjoint action of Sp(2n), G extends to a bi-invariant function
on the bi-invariant cone distribution in TSp(2n) which is induced by sp+(2n). Actually,
since every W ∈ Sp(2n) has determinant 1, this extension is still the 2n-th root of the
determinant:

G(Y ) = (detY )
1
2n ∀Y = XW ∈ sp+(2n)W ⊂ TWSp(2n), ∀W ∈ Sp(2n).

This extended function G satisfies the requirements of (ii) in Definition A.1. This concludes
the proof of Proposition B.1 from the Introduction.

Remark 1.2. The cone distribution {sp+(2n)W}W∈Sp(2n) fits into the definition of a Lip-
schitz cone structure from [31] and of the (more general) cone field from [16]. Note that
when n > 1, the boundary of sp+(2n) is not a smooth hypersurface, even after removing
the origin, as singularities occur at each X ∈ ∂sp+(2n) having zero as an eigenvalue with
multiplicity larger than one. For the same reason, this boundary is not strongly convex.
Due to these facts, this cone structure satisfies neither the smoothness requirement of a
weak cone structure nor the strong convexity requirement of a strong cone structure from
[48]. The function G satisfies the conditions of a Lorentz–Finsler metric on the cone struc-
ture {sp+(2n)W}W∈Sp(2n), as defined in [48], except for the fact that G2 should be smooth
up to the boundary of the cone minus the zero section. We refer to [62] and [48] for a
discussion on the various definitions of a Lorentz–Finsler structure and their relationships.
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2 Proof of Proposition D.1

Let ξ be a co-oriented contact structure on the closed (2n − 1)-dimensional manifold M ,
where n ≥ 1. In Section D of the Introduction, we have defined the cone cont+(M, ξ) in
the Lie algebra cont(M, ξ) of contact vector fields as the set of vector fields X that are
positively transverse to ξ, and the function

V : cont+(M, ξ)→ R

as
V (X) := vol(M,α)−

1
n ,

where α is the unique contact form defining ξ whose Reeb vector field Rα coincides with X.
The aim of this section is to show that cont+(M, ξ) and V define a bi-invariant Lorentz–
Finsler structure on Cont(M, ξ), hence proving Proposition D.1 from the Introduction.

The convexity of cont+(M, ξ) and its invariance under the adjoint action of Cont(M, ξ),
i.e., under the push-forward of contact vector fields by contactomorphisms, are clear,
and hence cont+(M, ξ) defines a bi-invariant cone distribution in the tangent bundle of
Cont(M, ξ). The intersection

cont+(M, ξ) ∩ −cont+(M, ξ)

consists of contact vector fields that are sections of the contact structure ξ, but the only
contact vector field with this property is the zero vector field, see Remark iii.1 in Ap-
pendix iii. This proves that the cone distribution generated by cont+(M, ξ) satisfies the
requirements of Definition A.1 (i) from the Introduction.

The invariance of V under the adjoint action of Cont(M, ξ) on cont+(M, ξ) is also clear:
If φ ∈ Cont(M, ξ) and X = Rα ∈ cont+(M, ξ), then

φ∗X = φ∗Rα = Rφ∗α

and hence
V (φ∗X) = vol(M,φ∗α)−

1
n = vol(M,α)−

1
n = V (X).

In order to study the concavity of V , it is useful to fix a contact form α defining ξ and use
the identification

cont(M, ξ)→ C∞(M), X 7→ ıXα, (2.1)

whose inverse is denoted by

C∞(M)→ cont(M, ξ), H 7→ XH . (2.2)

See Appendix iii for the properties of this identification that we use here. When H is
positive, the Reeb vector field of the contact form H−1α is precisely XH (see identity (iii.2)
in Appendix iii) and we obtain the formula

V (XH) = vol(M,H−1α)−
1
n =

(ˆ
M

H−nα ∧ dαn−1

)− 1
n

. (2.3)
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The function V is clearly positive and positively 1-homogeneous on cont+(M, ξ). More-
over, it is smooth, in the sense that it admits directional derivatives of every order, and a
short computation leads to the following formulas.

Lemma 2.1. Let H ∈ C∞(M) be positive and set

µ := H−n−2α ∧ dαn−1.

Then for every K ∈ C∞(M), we have

dV (XH) ·XK =
d

dt

∣∣∣
t=0
V (XH + tXK) = c0

ˆ
M

HKµ , (2.4)

where c0 = vol(M,H−1α)−
1
n
−1. Moreover, for every K1, K2 ∈ C∞(M) we have

d2V (XH) · (XK1 , XK2) =
d

dt

∣∣∣
t=0

dV (XH + tXK1) ·XK2

= c1

[(ˆ
M

HK1µ

)(ˆ
M

HK2µ

)
−
(ˆ

M

H2µ

)(ˆ
M

K1K2µ

)]
,

(2.5)

where c1 = (n+ 1)vol(M,H−1α)−
1
n
−2.

Using these formulas we can check that V is strongly concave in every direction other
than the radial one. Indeed, if X = XH with H ∈ C∞(M) positive and Y = XK ∈
cont(M, ξ) with K ∈ C∞(M), then we have

d2

dt2

∣∣∣
t=0
V (X + tY ) = d2V (X) · (Y, Y ) = c1

[(ˆ
M

HKµ

)2

−
(ˆ

M

H2µ

)(ˆ
M

K2

)]

By the Cauchy–Schwarz inequality, the above quantity is negative when K is not a multiple
of H, i.e., when Y is not a multiple of X and we conclude that

d2

dt2

∣∣∣
t=0
V (X + tY ) < 0 ∀X ∈ cont+(M, ξ), ∀Y ∈ cont(M, ξ) \ RX,

so V has the claimed strong concavity property.
There remains to check that V extends continuously to cont+(M, ξ) by setting it to be

zero on the boundary, where the closure refers to any vector space topology on cont(M, ξ)
which is finer than the C0-topology on C∞(M), after the identification (2.1). Indeed, the
vector field X belongs to the boundary of cont+(M, ξ) if and only if X = XH for some
non-negative contact Hamiltonian H that vanishes somewhere. If x0 is a point of M at
which H vanishes, then x0 is a minimum for H and we have

H(x) ≤ c dist(x, x0)2 ∀x ∈M,
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for a suitably large constant c, where dist is the distance function that is induced by an
auxiliary Riemannian metric on M . Then

H(x)−n ≥ c−ndist(x, x0)−2n ∀x ∈M,

and since 2n is larger than the dimension of M we haveˆ
M

H−n α ∧ dαn−1 = +∞.

If the sequence (XHj) ⊂ cont+(M, ξ) converges to X = XH then Hj converges to H
pointwise (and even uniformly), so Fatou’s lemma implies that

lim
j→∞

ˆ
M

H−nj α ∧ dαn−1 = +∞,

and hence V (XHj) converges to zero, as we wished to show. This concludes the proof of
Proposition D.1 from the Introduction.

Remark 2.2. Identify cont(M, ξ) with C∞(M) by means of a contact form α defining ξ.
As mentioned in the Introduction, any C0-continuous function F : C∞(M) → R which is
invariant under the adjoint action of Cont(M, ξ) and vanishes at zero must vanish on all
functions which are supported in a Darboux chart, i.e., in the image of a diffeomorphism
ϕ : Br →M which pulls α back to the standard 1-form

1

2

n−1∑
j=1

(xj dyj − yj dxj) + dz.

Here, Br denotes the ball of radius r centered at 0 in R2n−1, whose points are denoted
by (x, y, z) = (x1, y1, . . . , xn−1, yn−1, z). Indeed, let H ∈ C∞(M) be supported in ϕ(Br).
Choose s < r such that ϕ(Bs) contains the support of H and consider a group of contac-
tomorphisms {φt : M →M}t∈R which are supported in ϕ(Br) and satisfy

φt ◦ ϕ(x, y, z) = ϕ(etx, ety, e2tz),

for all (x, y, z) ∈ Bs such that (etx, ety, e2tz) ∈ Bs. Such a family of contactomorphisms
can be defined by integrating the contact vector field XK corresponding to a contact
Hamiltonian K ∈ C∞(M) which is supported in ϕ(Br) and satisfies

K ◦ ϕ(x1, y1, . . . , xn−1, yn−1, z) = 2z on Bs.

By identity (iii.3) from Appendix iii, we have φt∗(XH) = XHt , where Ht ∈ C∞(M) is
supported in ϕ(Br) and satisfies

Ht ◦ ϕ(x, y, z) = e2tH ◦ ϕ(e−tx, e−ty, e−2tz)

for all (x, y, z) ∈ Bs such that (e−tx, e−ty, e−2tz) ∈ Bs. The above identity and the fact
that H is supported in ϕ(Bs) imply that Ht converges to zero uniformly on M for t→ −∞.
By invariance, we have F (H) = F (Ht) for every t ∈ R and hence a limit for t→ −∞ and
the C0-continuity of F yield F (H) = F (0) = 0.
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3 Proof of Proposition D.2 and uniqueness

Recall that T denotes the 1-torus R/Z, whose trivial contact structure ξ0 := {0} is co-
oriented by the standard orientation of T. The 1-form dx, x being the standard coordinate
on R, is a defining contact form for ξ0. In this case,

Cont(T, ξ0) = Cont0(T, ξ0) = Diff0(T)

is the group of orientation preserving diffeomorphisms of T, which is connected. Let
X ∈ cont+(T, ξ0) and let H := ıXdx be the corresponding contact Hamiltonian, i.e.,

X = H
∂

∂x
.

We denote by φt : R→ R the canonical lift of the flow of X, that is, the solution of

d

dt
φt(x) = H(φt(x)), φ0(x) = x, ∀x ∈ R,

where we are seeing H as a 1-periodic function on R. By dividing by the term on the
right-hand side and integrating on [0, t] we obtain

ˆ t

0

1

H(φs(x))

d

ds
φs(x) ds = t,

which thanks to the change of variable y = φt(x) can be rewritten as

ˆ φt(x)

x

dy

H(y)
= t.

Taking the inverse of both sides we find

φt(x)− x
t

=

(
1

φt(x)− x

ˆ φt(x)

x

dy

H(y)

)−1

.

By the periodicity of H, the term in brackets on the right-hand side converges to
ˆ 1

0

dy

H(y)
,

for t→ +∞, and we conclude that

lim
t→+∞

φt(x)− x
t

=

(ˆ
T

dy

H(y)

)−1

∀x ∈ R.

The term on the left-hand side is the translation number ρ(φ1) of the diffeomorphism φ1,
while the term on the right-hand side is precisely V (X), thanks to (2.3). This proves
Proposition D.2 from the Introduction.

We now discuss the uniqueness property of the bi-invariant Lorentz–Finsler metric V
on (Cont(T, ξ0), cont+(T, ξ0)) that is mentioned in Remark D.3 in the Introduction.
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Proposition 3.1. Let W : cont+(T, ξ0) → R be a positive function that is positively 1-
homogeneous and invariant under the adjoint action of Cont(T, ξ0) = Diff0(T). Then there
exists c > 0 such that W = cV . In particular, V is, up to rescaling, the unique bi-invariant
Lorentz–Finsler metric on (Cont(T, ξ0), cont+(T, ξ0)).

Proof. Since both V and W are positive, positively 1-homogeneous and invariant under
the adjoint action of Diff0(T), it is enough to show that Diff0(T) acts transitively on rays
in cont+(T, ξ0). Let

X(x) = H(x)
∂

∂x

be any element of cont+(T, ξ0), where H is positive smooth function on T. Set

h :=

ˆ 1

0

H(y) dy.

Then the diffeomorphism φ ∈ Diff0(T) which is defined by

φ(x) :=
1

h

ˆ x

0

H(y) dy

satisfies

φ∗

(
h
∂

∂x

)
= X.

4 Proof of Proposition E.1

Recall that

λ0 =
1

2

n∑
j=1

(xj dyj − yj dxj), i.e., λ0(z)[v] =
1

2
ω0(z, v) ∀ z, v ∈ R2n,

denotes the standard radial primitive of the symplectic form ω0 on R2n. The restriction of
λ0 to the sphere

S2n−1 := {z ∈ R2n | |z| = 1}
is a contact form defining the standard (co-oriented) contact structure ξst. We denote this
restriction by α0. Being invariant under the antipodal symmetry z 7→ −z, the contact
form α0 induces a contact form, which we still denote by α0, on the real projective space
RP2n−1. The corresponding contact structure is the standard contact structure of RP2n−1

and is also denoted by ξst.
It is well known and easy to check that a diffeomorphism φ of R2n \ {0} preserves

λ0, i.e., φ∗λ0 = λ0, if and only if it is a positively 1-homogeneous symplectomorphism:
φ(rz) = rφ(z) for every z ∈ R2n \ {0} and r > 0 and φ∗ω0 = ω0. If φ is such a positively
1-homogeneous symplectomorphism, then the diffeomorphism

ψ : S2n−1 → S2n−1, ψ(z) :=
φ(z)

|φ(z)|
,
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is readily seen to satisfy

ψ∗α0 =
1

|φ|2
α0,

and hence is a contactomorphism of (S2n−1, ξst). Actually, all contactomorphisms of
(S2n−1, ξst) arise from this construction.

The elements of the symplectic group Sp(2n) are 1-homogeneous symplectomorphisms
of R2n and we obtain a map

i : Sp(2n)→ Cont(S2n−1, ξst), i(W ) : z 7→ Wz

|Wz|
,

which is readily seen to be an injective homomorphism. Let X be a tangent vector to
Sp(2n) at the identity, i.e., an element of the Lie algebra sp(2n). Note that

di(id) ·X =
d

dt

∣∣∣
t=0
i
(
etX
)

= PX,

where
(PX)(z) = Xz − (Xz · z)z ∀z ∈ S2n−1

denotes the tangent vector field on S2n−1 that is obtained by projecting the restriction of
X orthogonally onto the tangent spaces of the sphere. Since the radial direction is in the
kernel of λ0, for every z ∈ S2n−1 we find

H(z) :=
(
ıdi(id)·Xα0

)
(z) =

(
ıXzλ0

)
(z) =

1

2
ω0(z,Xz),

and hence di(id) ·X is in cont+(S2n−1, ξst) if and only if X is in sp+(2n). This proves the
identity

di(id)−1
(
cont+(S2n−1, ξst)

)
= sp+(2n).

If X is in sp+(2n), writing X = J0S with S ∈ Sym+(2n), we get

H(z) =
1

2
ω0(z,Xz) =

1

2
J0z · J0Sz =

1

2
Sz · z.

Thanks to the positivity of S, the set {H = 1} is an ellipsoid, and the radial projection

p : S2n−1 → {H = 1}

is easily seen to satisfy
p∗
(
λ0|{H=1}

)
= H−1α0,

thanks to the 2-homogeneity of H. Therefore, (2.3) gives us

V (di(id) ·X)−n = vol(S2n−1, H−1α0) = vol({H = 1}, λ0|{H=1}) = vol({H < 1}, ωn0 ),
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where in the last step we have used Stokes theorem. Since the ellipsoid {H < 1} is the

image of the unit ball B2n ⊂ R2n by the linear map
√

2S−
1
2 , we have

vol({H < 1}, ωn0 ) = det(
√

2S−
1
2

)
vol(B2n, ωn0 ) = (2π)n

(
detS

)− 1
2 ,

and hence

V (di(id) ·X) =
1

2π
(detS)

1
2n =

1

2π
G(X).

This establishes the part of Proposition E.1 concerning the homomorphism i into the
contactomorphism group of the sphere.

The argument for the injective homomorphism

j : PSp(2n)→ Cont(RP2n−1, ξst)

is analogous. In order to determine the scaling factor in that case, note that if

p : Sp(2n)→ PSp(2n), q : S2n−1 → RP2n−1

are the quotient projections, then we have for every W ∈ Sp(2n) the commutative diagram

S2n−1 i(W )−−−→ S2n−1

q

y yq
RP2n−1 j(p(W ))−−−−→ RP2n−1.

By identifying the Lie algebras of Sp(2n) and PSp(2n) by the differential of p at the identity,
we deduce that for every X ∈ sp(2n) the vector fields Z = dj(id) ·X and Y = di(id) ·X
are related by the identity Z = q∗Y . Since q is a double cover intertwining the standard
contact forms α0 of S2n−1 and RP2n−1, we find by (2.3)

V (Y ) =

(ˆ
S2n−1

(ıY α0)−nα0 ∧ dαn−1
0

)− 1
n

=

(
2

ˆ
RP2n−1

(ıZα0)−nα0 ∧ dαn−1
0

)− 1
n

= 2−
1
nV (Z),

and hence

V (dj(I) ·X) = 2
1
n V (d(id) ·X) =

2
1
n

2π
G(X).

This proves the part of Proposition E.1 concerning the homomorphism j. The part con-
cerning the homomorphism jk follows from the case of the homomorphism

j : PSp(2)→ Cont(RP1, ξst) = Diff0(T)

by the observation that small neighborhoods of the identity in PSp(2) and PSpk(2) can be
identified and the restriction of jk to such a neighborhood is the composition of j with the
following map from a neighborhood of the identity in Diff0(T) to Diff0(T):

φ 7→ ψ, where ψ(x) :=
1

k
φ̃(kx) mod 1,
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where φ̃ : R→ R denotes the unique lift of φ with φ̃(0) close to 0. Indeed, this yields the
implication

dj(id) ·X = H
∂

∂x
⇒ djk(id) ·X = Hk

∂

∂x
with Hk(x) =

1

k
H(kx),

and the identity

V (djk(id) ·X) =
1

πk
G(X)

follows. This concludes the proof of Proposition E.1 from the Introduction.

Remark 4.1. The above argument also shows that the image of the linear map

djk(id) : sp(2)→ cont(T, ξ0) = C∞(T)

is the space of functions of the form

x 7→ q
(
cos(πkx), sin(πkx)

)
,

where q : R2 → R is a quadratic form. This is the space of trigonometric polynomials of
the form

x 7→ a cos(2πkx) + b sin(2πkx) + c,

for a, b, c ∈ R. This observation will be useful later on.

5 The Morse co-index theorem for timelike geodesics

on Sp(2n)

In Appendix i, we compute the first and second variation of the length functional which is
associated to any bi-invariant Lorentz–Finsler metric on a Lie group. To this purpose, we
need the first and second variation of G which we computed in Lemma 1.1:

dG(X) · Y =
1

2n
(detX)

1
2n tr (X−1Y ), (5.1)

d2G(X) · (Y1, Y2) =
1

4n2
(detX)

1
2n

(
tr (X−1Y1) tr (X−1Y2)− 2n tr (X−1Y1X

−1Y2)
)
, (5.2)

for every X ∈ sp+(2n) and every Y, Y1, Y2 ∈ sp(2n). Therefore, Proposition i.3 and (5.1)
give us the following formula for the first variation of the length functional

lengthG(W ) =

ˆ 1

0

G(W ′(t)) dt

at a timelike curve W : [0, 1]→ Sp(2n) in the direction of a curve Y : [0, 1]→ sp(2n):

d lengthG(W ) · Y =
1

2n

ˆ 1

0

(detX)
1
2n tr (X−1Y ′) dt,
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where the curve X : [0, 1] → sp+(2n) is defined by W ′ = XW . By the same proposition,
timelike curves W such that d lengthG(W ) · Y vanishes for every curve Y : [0, 1]→ sp(2n)
with compact support in (0, 1) are precisely time reparametrizations of autonomous curves:
W (t) = eτ(t)XW0 for some X ∈ sp+(2n) and W0 ∈ Sp(2n).

Therefore, the timelike geodesics on the Lorentz–Finsler manifold (Sp(2n), sp+(2n), G),
i.e., timelike extremals of lengthG that are parametrized with constant speed, are precisely
the autonomous positive paths, i.e., the curves of the form

W (t) = etXW0,

where X ∈ sp+(2n) and W0 ∈ Sp(2n). Again, this is a general fact and holds true for
any bi-invariant Lorentz–Finsler metric on a Lie group (see Appendix i). In particular, a
different bi-invariant Lorentz–Finsler metric on (Sp(2n), sp+(2n)) would give us the same
geodesics, but would measure their length differently.

Remark 5.1. Lightlike geodesics on manifolds equipped with a Lorentz–Finsler structure
are defined in [48, Definition 2.9] as “cone geodesics”, a notion that uses only the bound-
ary of the causal cones. The well-posedness of the initial value problem for them uses
the smoothness and strong convexity of these boundary cones. As already mentioned, the
boundary of the cone sp+(2n) is neither smooth nor strongly convex, even after removing
the zero section. However, in our situation it seems natural to define lightlike geodesics just
as curves of the form W (t) = etXW0 where W0 ∈ Sp(2n) and X is a non-zero element of
the boundary of sp+(2n), i.e., a non-zero endomorphism of R2n such that the bilinear form
(u, v) 7→ ω0(u,Xv) is symmetric, positive semidefinite but not positive definite. Equiva-
lently, X = J0S with S ∈ Sym(2n)\{0} such that S ≥ 0 and kerS 6= 0. Lightlike geodesics
starting at the identity are confined to the discriminant, i.e., to the singular hypersurface
Σ1 ⊂ Sp(2n) consisting of symplectic automorphisms having the eigenvalue 1.

Proposition i.4 and (5.2) give us the following formula for the second variation of lengthG
at the timelike geodesic W : [0, 1] → Sp(2n), W (t) = etXW0, with X ∈ sp+(2n) and
W0 ∈ Sp(2n): for every pair of curves Y1, Y2 : [0, 1]→ sp(2n) vanishing at t = 0 and t = 1
we have

d2 lengthG(W ) · (Y1, Y2) = −(detX)
1
2n

2n

ˆ 1

0

(
tr (X−1Y ′1X

−1Y ′2)+

− 1

2n

(
tr (X−1Y ′1)

)(
tr (X−1Y ′2)

)
+ tr (Y1X

−1Y ′2)− tr (X−1Y1Y
′

2)
)

dt,

This symmetric bilinear form has infinite dimensional kernel, because the length functional
lengthG is invariant under reparametrizations. As explained in Appendix i, this invariance
can be killed by restricting the second variation to curves Y : [0, 1]→ sp(2n) taking values
in the kernel of dG(X)|sp(2n), i.e., in the hyperplane

spX(2n) := {Y ∈ sp(2n) | tr(X−1Y ) = 0}.
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Restricting the second variation to the Sobolev space H1
0 ((0, 1), spX(2n)) of absolutely

continuous curves in spX(2n) which vanish at the end-points of the interval [0, 1] and have
square integrable derivative, yields a continuous symmetric bilinear form which has a finite
dimensional kernel and a finite co-index.

The Morse co-index of the timelike geodesic segment W : [0, 1]→ Sp(2n) is the co-index
of d2 lengthG(W ), or equivalently of its restriction to H1

0 ((0, 1), spX(2n)):

co-ind(W ) :=co-ind(d2 length(W )) = max{dimV | V linear subspace of

H1
0 ((0, 1), sp(2n)), d2 lengthG(W ) is positive definite on V }.

The kernel of the restriction of d2 lengthG(W ) to H1
0 ((0, 1), spX(2n)) consists of the Jacobi

vector fields along W , i.e., the solutions Y : [0, 1]→ sp(2n) of the equation

Y ′′ = [X, Y ′],

such that Y (0) = Y (1) = 0. A number t∗ ∈ (0, 1] for which there exist non-trivial Jacobi
vector fields Y such that Y (0) = Y (t∗) = 0 is called conjugate instant and its multiplicity
m(t∗) is the dimension of the space of Jacobi vector fields with this property. The Morse
co-index theorem holds:

co-ind(W ) =
∑

t∗∈(0,1)

m(t∗). (5.3)

See Appendix i for the proof of these facts for general bi-invariant Lorentz–Finsler metrics
on Lie groups.

6 Jacobi fields along timelike geodesics in Sp(2n) and

proof of Theorem F.1

In this section, we wish to determine the Jacobi vector fields, the conjugate instants and
the co-index of timelike geodesic segments in Sp(2n). We start with the special case of the
2π-periodic geodesic

W : R→ Sp(2n), W (t) := etJ ,

where J is an ω0-compatible complex structure on R2n. The Jacobi vector fields along W
are the solutions Y : R→ sp(2n) of the equation

Y ′′ = [J, Y ′]. (6.1)

We recall that the solutions of the commutator equation

Z ′ = [X,Z]

are given by
Z(t) = etXZ0e

−tX ,
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where Z0 = Z(0). We deduce that the solutions of (6.1) vanishing at t = 0 are of the form

Y (t) =

ˆ t

0

esJY0e
−sJ ds (6.2)

with Y0 = Y ′(0) ∈ sp(2n). The vector space sp(2n) has the linear splitting

sp(2n) = spc(2n)⊕ spa(2n), X = Xc +Xa, Xc :=
1

2
(X − JXJ), Xa :=

1

2
(X + JXJ),

where the subspaces

spc(2n) := {X ∈ sp(2n) | XJ = JX}, spa(2n) := {X ∈ sp(2n) | XJ = −JX},

have dimension
dim spc(2n) = n2, dim spa(2n) = n2 + n.

Every X in spc(2n) commutes with esJ , whereas if X is in spa(2n) we have esJX = Xe−sJ ,
for every s ∈ R. Therefore, (6.2) can be rewritten as

Y (t) =

ˆ t

0

esJ(Y c
0 + Y a

0 )e−sJ ds =

ˆ t

0

Y c
0 ds+

ˆ t

0

e2sJY a
0 ds = tY c

0 −
J

2
(e2tJ − I)Y a

0 .

Since tY c
0 is in spc(2n) and J

2
(e2tJ − id)Y a

0 is in spa(2n), we deduce that Y (t) vanishes for
a given t 6= 0 if and only if Y c

0 = 0 and (e2tJ − id)Y a
0 = 0. This shows that the instant

t∗ > 0 is conjugate to t = 0 for the timelike geodesic W (t) = etJ if and only if t∗ ∈ Nπ,
and in this case its multiplicity is n2 +n. Together with the Morse co-index formula (5.3),
we deduce that for every T > 0 the geodesic segment W |[0,T ] has co-index

co-ind(W |[0,T ]) =

(⌈T
π

⌉
− 1

)
(n2 + n).

This proves Theorem F.1 from the Introduction.

We conclude this section by determining the conjugate instants of an arbitrary timelike
geodesic

W (t) := etXW0, X ∈ sp+(2n), W0 ∈ Sp(2n),

on Sp(2n). By the representation of Appendix ii, we have, collecting together the identical
eigenvalues,

R2n =
⊕
λ∈Λ

Vλ, X =
⊕
λ∈Λ

λJλ. (6.3)

Here, Λ is a finite set of positive numbers, the splitting of R2n is symplectic, and Jλ is a
ω0-compatible complex structure on the symplectic subspace Vλ, which has dimension 2nλ.

If Z ∈ sp(2n), the Jacobi field Y along W with Y (0) = 0 and Y ′(0) = Z has the form

Y (t) =

ˆ t

0

esXZe−sX ds.
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The multiplicity m(t) of the possible conjugacy instant t > 0 is the dimension of the kernel
of the linear mapping

sp(2n)→ sp(2n), Z 7→ Y (t) =

ˆ t

0

esXZe−sX ds.

In order to determine m(t), we decompose

sp(2n) =
⊕

(λ1,λ2)∈Λ2

λ1≤λ2

spλ1λ2 ,

where the elements of spλλ are the maps Aλ : Vλ → Vλ in sp(2n) and the elements of spλ1λ2
for λ1 < λ2 are the maps Aλ1λ2 ⊕ Aλ2λ1 : Vλ1 ⊕ Vλ2 → Vλ2 ⊕ Vλ1 in sp(2n). The map

spλ1λ2 → Hom(Vλ1 , Vλ2), Aλ1λ2 ⊕ Aλ2λ1 7→ Aλ1λ2

is an isomorphism. We can now decompose spλλ = spcλλ⊕spaλλ, where spcλλ are the elements
that commute with Jλ and spaλλ are the elements that anti-commute with Jλ. If 2nλ =
dimVλ, then dim spcλλ = n2

λ and dim spaλλ = n2
λ + nλ.

Similarly, for λ1 < λ2 we decompose spλ1λ2 = spcλ1λ2 ⊕ spaλ1λ2 . Here spcλ1λ2 is made of
the elements such that Aλ1λ2 (equivalently Aλ2λ1) intertwines Jλ1 and Jλ2 , i.e.,

Jλ2Aλ1λ2 = Aλ1λ2Jλ1 ,

whereas spaλ1λ2 is made of the elements such that Aλ1λ2 (equivalently Aλ2λ1) anti-intertwines
Jλ1 and Jλ2 , i.e.,

Jλ2Aλ1λ2 = −Aλ1λ2Jλ1 .
There holds dim spcλ1λ2 = dim spaλ1λ2 = 2nλ1nλ2 .

If we decompose Z ∈ sp(2n) as

Z =
⊕

(λ1,λ2)∈Λ2

(Zc
λ1λ2
⊕ Za

λ1λ2
),

then the corresponding path Y (t) can be written with respect to the splitting as

Y (t) =
⊕

(λ1,λ2)∈Λ2

ˆ t

0

esλ2Jλ2Zc
λ1λ2

e−sλ1Jλ1 ds+
⊕

(λ1,λ2)∈Λ2

ˆ t

0

esλ2Jλ2Za
λ1λ2

e−sλ1Jλ1 ds.

Let us compute the integrals in the first direct sum. We distinguish two cases. For
λ1 = λ = λ2 we get ˆ t

0

esλJλZc
λλe
−sλJλ ds =

ˆ t

0

Zc
λλ ds = tZc

λλ,

which vanishes only at t = 0 when Zc
λλ 6= 0. On the other hand, for λ1 6= λ2 we get

ˆ t

0

esλ2Jλ2Zc
λ1λ2

e−sλ1Jλ1 ds =

ˆ t

0

es(λ2−λ1)Jλ2Zc
λ1λ2

ds =
1

λ1 − λ2

Jλ2(e
t(λ2−λ1)Jλ2 − Id)Zc

λ1λ2
,
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which still intertwines Jλ1 and Jλ2 and vanishes exactly for t ∈ 2π
|λ2−λ1|Z when Zc

λ1λ2
6= 0.

Therefore, each pair λ1 < λ2 such that t is an integer multiple of 2π/(λ2 − λ1) gives a
contribution of 2nλ1nλ2 to the multiplicity of t.

For the integrals in the second direct sum, we get without distinguishing cases

ˆ t

0

esλ2Jλ2Za
λ1λ2

e−sλ1Jλ1 ds =

ˆ t

0

es(λ1+λ2)Jλ2Za
λ1λ2

ds = − 1

λ1 + λ2

Jλ2(e
t(λ1+λ2)Jλ2 − id)Za

λ1λ2
,

which still anti-intertwines Jλ1 and Jλ2 , and vanishes exactly for t ∈ 2π
λ1+λ2

Z when Za
λ1λ2
6= 0.

Therefore, for t = π/λ we have a contribution of nλ2 + nλ to the multiplicity of t, whereas
every pair λ1 < λ2 such that t is an integer multiple of 2π/(λ1 + λ2) gives a contribution
of 2nλ1nλ2 to the multiplicity of t.

These considerations imply the following result, which generalizes Theorem F.1 from
the Introduction.

Theorem 6.1. Let X ∈ sp+(2n) be of the form (6.3). Then the multiplicity of t∗ > 0 as
a conjugate instant to t = 0 for the timelike geodesic W (t) = etX is given by the formula

m(t∗) =
∑
λ∈Λ

(n2
λ + nλ)1π

λ
N(t∗) +

∑
(λ1,λ2)∈Λ2

λ1<λ2

2nλ1nλ21 2π
λ1+λ2

N∪ 2π
λ2−λ1

N(t∗).

In particular, setting λ1 := max Λ, the first conjugate instant is t1 = π
λ1

with multiplicity

n2
λ1

+ nλ1.

Remark 6.2. The value t1 is the first positive exit time of W (t) = etX , t ≥ 0 from the
positively elliptic region Sp+

ell(2n). Therefore, all timelike geodesics originating form id are
local maximizers of the Lorentz–Finsler length as long as they remain in Sp+

ell(2n).

7 The second variation of the Lorentz–Finsler length

on Cont(M, ξ)

As explained in Remark i.5, Propositions i.3 and i.4 from Appendix i hold also for the
length functional which is induced by a bi-invariant Lorentz–Finsler metric on a group of
diffeomorphisms. By applying Proposition i.3 to (Cont(M, ξ), cont+(M, ξ), V ), we obtain
that the extremal curves of lengthV are the autonomous positive paths of contactomor-
phisms, i.e. the Reeb flows which are induced by contact forms defining ξ.

Let α be a contact form defining ξ, denote by φt the flow of the corresponding Reeb
vector field Rα and set

µ := α ∧ dαn−1.

Let Y = {Yt}t∈[0,T ] be a time-dependent contact vector field vanishing for t = 0 and t = T
and let K = ıY α be the corresponding time-dependent contact Hamiltonian. Using the
identification (2.1)-(2.2) between cont(M, ξ) and C∞(M) which is induced by the contact
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form α, we then have Rα = X1 and Y = XK . As discussed in Appendix iii, the Lie bracket
[Rα, Y ] is the contact vector field corresponding to the contact Hamiltonian

{K, 1} = dK(Rα) , (7.1)

see (iii.4). Since φt preserves the volume form µ, we have
ˆ
M

{K, 1}µ = 0 . (7.2)

Denote by {θs,t}(s,t)∈R×[0,T ] the smooth family of contactomorphisms of (M, ξ) which is
defined by

∂

∂s
θs,t = Yt(θs,t), θ0,t = id, ∀(s, t) ∈ R× [0, T ].

Then the smooth family
ψs,t = θs,t ◦ φt

satisfies
ψ0,t = φt, ψs,0 = id, ψs,T = φT , ∀(s, t) ∈ R× [0, T ],

so for |s| small the path of contactomorphisms {ψs,t}t∈[0,T ] is positive and joins id with φT .
By Proposition i.4 we have

d2

ds2

∣∣∣
s=0

lengthV
(
{ψs,t}t∈[0,T ]) = d2lengthV

(
{φt}t∈[0,T ]

)
(Y, Y ) =

= c2

ˆ T

0

[
1

vol(M,α)

(ˆ
M

∂tK µ
)2

−
ˆ
M

(∂tK)2 µ−
ˆ
M

dK(Rα)∂tK µ

]
dt ,

(7.3)

where c2 := (n+ 1)vol(M,α)−
1
n
−1 and we used (7.1), (7.2), and the formula for d2V given

in (2.5).
By the Cauchy–Schwarz inequality, the first two terms in the square bracket define a

quadratic form which is negative semidefinite. However, the presence of the third integral
introduces an infinite dimensional subspace of contact vector fields on which the second
variation of lengthV is positive definite. In other words the second variation of the Lorentz–
Finsler length lengthV on the contactomorphism group has always infinite Morse index and
infinite Morse co-index, as we stated Proposition G.1 from the Introduction, which we now
prove.

Proof of Proposition G.1. Up to multiplying α by a positive number, we may rescale time
and assume that T = π. Let U be an open subset of M which is diffeomorphic to the cube
(0, ε)2n−1 and such that, using the coordinate system

(r, z) = (r, x1, y1, . . . , xn−1, yn−1),

which is induced by the identification U ∼= (0, ε)2n−1, we have

Rα|U =
∂

∂r
and µ|U = dr ∧ dz = dr ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn−1 ∧ dyn−1.
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Let us fix a function k supported in (0, ε)2n−2 and such that

ˆ
(0,ε)2n−2

k(z)dz = 0,

ˆ
(0,ε)2n−2

k(z)2dz = 1 .

We shall compute the second variation of lengthV along those time-dependent contact
vector fields Y that are induced by a contact Hamiltonian K with support in [0, π] × U
and of the form

K(t, r, z) = k(z)
(
a(r) sin t+ b(r) sin(2t)

)
,

where the functions a, b are supported in (0, ε) and have vanishing integral. Note that
K(0, ·) = K(π, ·) = 0, and hence Y is an admissible variation. By plugging a function K
of this form into (7.3) we obtain the following expression

d2lengthV
(
{φt}t∈[0,π]

)
(Y, Y ) = −c2

ˆ π

0

[ˆ
(0,ε)2n−1

k(z)2
(
a(r) cos t+ 2b(r) cos(2t)

)2
dr ∧ dz+

+

ˆ
(0,ε)2n−1

k(z)2
(
a′(r) sin t+ b′(r) sin(2t)

)
(a(r) cos t+ 2b(r) cos(2t)

)
dr ∧ dz

]
dt,

where we have used the fact that ∂tK has vanishing integral, since k, a, b have vanishing
integral. By switching the integrals and using the identities
ˆ π

0

cos2 t dt =

ˆ π

0

cos2(2t) dt =
π

2
,

ˆ π

0

sin t cos(2t) dt = −2

3
,

ˆ π

0

sin(2t) cos t dt =
4

3
,

ˆ π

0

cos t cos(2t) dt =

ˆ π

0

sin t cos t dt =

ˆ π

0

sin(2t) cos(2t) dt = 0,

the above expression simplifies to

d2lengthV
(
{φt}t∈[0,π]

)
(Y, Y ) = −c2

ˆ ε

0

(π
2
a(r)2 + 2πb(r)2 − 4

3
a′(r)b(r) +

4

3
a(r)b′(r)

)
dr .

Finally, an integration by parts gives

d2lengthV
(
{φt}t∈[0,π]

)
(Y, Y ) = −c2

ˆ ε

0

(π
2
a(r)2 + 2πb(r)2 − 8

3
a′(r)b(r)

)
dr .

By choosing b = 0, we find that the second variation is negative definite on the infi-
nite dimensional space W− of time-dependent contact vector fields which are induced by
Hamiltonians which are supported in [0, π]× U and there have the form

K(t, r, z) = k(z)a(r) sin t,

where a is any smooth function with compact support in (0, ε) and vanishing integral.
By choosing

b(r) =
2

3π
a′(r),
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which has vanishing integral because a is compactly supported, we obtain

d2lengthV
(
{φt}t∈[0,π]

)
(Y, Y ) =

8

9π
c2

ˆ ε

0

(
a′(r)2 − 9

16
π2a(r)2

)
dr.

This is a quadratic form of finite Morse index on the space of compactly supported smooth
functions on (0, ε) with vanishing integral, and hence we can find an infinite dimensional
vector space A of functions a as above on which this quadratic form is positive definite.
The second variation of lengthV is then positive definite on the infinite dimensional space
W+ of time-dependent contact vector fields which are induced by Hamiltonians which are
supported in [0, π]× U and there have the form

K(t, r, z) = k(z)

(
a(r) sin t+

2

3π
a′(r) sin(2t)

)
,

where a belongs to A.

Now we study the conjugate instants for the geodesic φt in Cont(M, ξ), where as before
φt is the Reeb flow of some contact form α defining φ. As explained in Appendix i, the
equation for Jacobi vector fields Y along φt is

∂ttY = [Rα, ∂tY ].

Denoting as before by K = α(Y ) the contact Hamiltonian associated to Y , and using the
bracket induced on C∞(M) the above equations reads

∂ttK = {1, ∂tK}

and, plugging in the formula (iii.4) for the bracket, we arrive at

∂ttK +
(
d ∂tK

)
(Rα) = 0. (7.4)

Recalling that the general solution of the first order linear PDE

∂tF + dF (Rα) = 0

is given by
F (t, x) = f(φ−t(x)),

where f is any function on M , we obtain that the general solution K of (7.4) vanishing for
t = 0 is of the form

K(t, x) =

ˆ t

0

f(φ−s(x)) ds,

for some arbitrary function f . Therefore, the positive number t∗ is a conjugate instant for
the geodesic φt if and only if there exists a non-vanishing smooth function f on M such
that ˆ t∗

0

f(φ−s(x)) ds = 0 ∀x ∈M.
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By the change of variable t = t∗− s and the fact that φt is a flow, this is equivalent to the
condition ˆ t∗

0

f(φt(φ−t
∗
(x))) dt = 0 ∀x ∈M,

and hence to the condition ˆ t∗

0

f(φt(x)) dt = 0 ∀x ∈M. (7.5)

We now determine all solutions of the above equation in the two simple cases that appear
in the Introduction as Examples G.2 and G.3.

Example 7.1. Let c > 0 and consider the geodesic φt in Cont0(T, ξ0) = Diff0(T) which is
generated by the vector field

X(x) = c
∂

∂x
, (7.6)

where c > 0. Then V (X) = c and φt(x) = x+ ct, so equation (7.5) reads

ˆ t∗

0

f(x+ ct) dt = 0 ∀x ∈ T.

By the change of variable x+ ct = s, the above condition is seen to be equivalent to

ˆ x+ct∗

x

f(s) ds = 0 ∀x ∈ T. (7.7)

If

t∗ =
p

q
· 1

c
=
p

q
· 1

V (X)
(7.8)

for some pair of natural numbers p, q, then any smooth function on R which is 1
q
-periodic

and has vanishing integral on its period interval satisfies (7.7). This shows that all the
positive numbers t∗ of the form (7.8) are conjugate instants and have infinite multiplicity.
In order to show that these are the only conjugate instants, we need to show that (7.7)
has no non-trivial smooth solution f if ct∗ is an irrational number. By writing f in Fourier
series as

f(x) =
∑
k∈Z

f̂k e
2πikx,

we rewrite (7.7) as

ct∗f̂0 +
∑

k∈Z\{0}

f̂k
2πik

(
e2πikct∗ − 1

)
e2πikx = 0 ∀x ∈ T.

Since a 1-periodic function is identically zero if and only if all its Fourier coefficients vanish,
the above condition is equivalent to

f̂0 = 0 and f̂k
(
e2πikct∗ − 1

)
= 0 ∀k ∈ Z \ {0}.
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The fact that ct∗ is irrational implies that all the Fourier coefficients of f vanish, and hence
(7.7) has only the trivial solution.

An arbitrary vector field

X(x) = H(x)
∂

∂x
, x ∈ T,

withH > 0 is conjugate to the vector field (7.6) with c = V (X) (see the proof of Proposition
3.1). Therefore, what we proved for conjugate instants in the special case (7.6) holds in
general, as stated in Example G.2 from the Introduction.

Remark 7.2. The above example extends immediately to all geodesics in Cont(M, ξ) that
are given by a Zoll contact form α: If T > 0 is the minimal period of all the orbits of the
flow φt of Rα, then the positive number t∗ is a conjugate instant for the geodesic φt if and
only if it is of the form T times a rational number. All conjugate instants have infinite
multiplicity.

Example 7.3. We now consider the setting of Example G.3 of the Introduction: ξ is the
contact structure which is induced by the contact form

α(x, y, z) = cos(2πz) dx+ sin(2πz) dy

on T3 = R3/Z3, and φt is the flow of Rα, which is readily seen to have the form

φt(x, y, z) =
(
x+ t cos(2πz), y + t sin(2πz), z).

Then the positive number t∗ is a conjugate instant for the geodesic φt if and only if there
is a non identically vanishing smooth function f on T3 such that

ˆ t∗

0

f(x+ t cos(2πz), y + t sin(2πz), z) dt = 0 ∀(x, y, z) ∈ T3.

Using the Fourier representation

f(x, y, z) =
∑

(h,k)∈Z2

f̂h,k(z)e2πi(hx+ky),

for suitable smooth functions f̂h,k : T→ C, the above condition can be rewritten as

∑
(h,k)∈Z2

f̂h,k(z)e2πi(hx+ky)

ˆ t∗

0

e2πit(h cos(2πz)+k sin(2πz)) dt = 0 ∀(x, y, z) ∈ T3. (7.9)

Consider the analytic function ϕ : R→ C

ϕ(s) =
e2πis − 1

2πis
=
∞∑
n=0

(2πis)n

(n+ 1)!
.
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Then ˆ t∗

0

e2πit(h cos(2πz)+k sin(2πz)) dt = t∗ϕ
(
t∗(h cos(2πz) + k sin(2πz))

)
,

and hence (7.9) is equivalent to

f̂h,k(z)ϕ
(
t∗(h cos(2πz) + k sin(2πz))

)
= 0 ∀(h, k) ∈ Z2, ∀z ∈ T.

For every (h, k) ∈ Z2, the analytic function z 7→ ϕ
(
t∗(h cos(2πz) + k sin(2πz))

)
is not

identically zero and hence has at most finitely many zeroes in T. Therefore, the above
condition implies that each function f̂h,k is identically zero and hence f = 0. This shows
that the geodesic φt has no conjugate instants.

8 Proof of Theorem H.1

In this section, we show how Theorem H.1 can be deduced from the fact that the Morse
co-index of every timelike geodesic in Cont(M, ξ) is positive (and actually infinite), thanks
to Proposition G.1 from the Introduction.

Let φtα0
be the Reeb flow of the Zoll contact form α0 on (M, ξ) and denote by T0

the minimal period of its orbits. Then the positive path {φtα0
}t∈[0,T0] is a geodesic arc

in Cont(M, ξ) and by Proposition G.1 we can find a time-dependent contact vector field
Y = {Yt}t∈[0,T ] vanishing for t = 0 and t = T and such that

d2lengthV ({φtα0
}t∈[0,T0]) · (Y, Y ) > 0.

By (7.3), the second differential of the length functional is continuous on the space of
contact vector fields corresponding to contact Hamiltonians in the Hilbert space

H1
0 ((0, T ), L2(M,µ)).

Since smooth functions which are compactly supported in (0, T ) × M are dense in this
space, we can assume that the above time-dependent vector field Y vanishes for t in a
neighborhood of 0 and T .

As in the previous section, we denote by {θs,t}(s,t)∈R×[0,T0] the smooth family of contac-
tomorphisms of (M, ξ) which is defined by

∂

∂s
θs,t = Yt(θs,t), θ0,t = id, ∀(s, t) ∈ R× [0, T0].

Then the smooth family
ψs,t = θs,t ◦ φtα0

satisfies

ψ0,t = φtα0
, ψs,0 = id, ψs,T0 = φT0α0

= id, ∀(s, t) ∈ R× [0, T0],
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so there exists ε > 0 such that if |s| < ε then the path of contactomorphisms {ψs,t}t∈[0,T0]

is positive and joins the identity with itself.
It t is close enough to 0 or T0, then Yt vanishes and hence ψs,t = φtα0

. From the fact that
φtα0

is far away from the identity for t ∈ (0, T0) far away from 0 and T0 and from the fact
that ψ0,t = φtα0

we deduce that, up to reducing ε, we may assume that the diffeomorphisms
ψs,t do not have any fixed point when (s, t) ∈ (−ε, ε)× (0, T0).

The smooth function

f : (−ε, ε)× [0, T0]→ R, f(s, r) := lengthV ({ψs,t}t∈[0,r]),

satisfies

f(0, r) = lengthV ({φtα0
}t∈[0,r]),

∂f

∂s
(0, r) = 0, ∀r ∈ [0, T0],

∂2f

∂s2
(0, T0) = d2lengthV ({φtα0

}t∈[0,T0] · (Y, Y ) > 0.

Therefore, the function s 7→ f(s, T0) has a non-degenerate local minimum at s = 0. To-
gether with the fact that ∂f

∂r
(0, T0) is positive, from the implicit function theorem we deduce

that, up to a further reduction of ε, there is a smooth function

τ : (−ε, ε)→ (0, T0]

such that τ(0) = T0, τ(s) < T0 for every s ∈ (−ε, ε) \ {0} and

f(s, τ(s)) = f(0, T0) = lengthV ({φtα0
}t∈[0,T0).

We now consider the smooth family {φs}s∈(−ε,ε) of positive paths

φs : [0, T0]→ Cont(M, ξ)

which is given by
φs(t) := ψ

s,
τ(s)
T0

t
, ∀(s, t) ∈ (−ε, ε)× [0, T0].

This family has the required properties: φ0 = φα0 , φs(0) = id,

lengthV (φs) = lengthV ({φtα0
}t∈[0,T0),

for every s ∈ (−ε, ε), and φs(t) has no fixed points if s 6= 0 and t ∈ (0, T0]. This concludes
the proof of Theorem H.1.

9 Krein theory, Maslov quasi-morphism and proof of

Theorem I.1

In this section, we recall some basic facts about Krein theory and about the homogeneous
Maslov quasi-morphism which we will need in the following sections. See [27, 75, 1] and
reference therein for more comprehensive introductions to these topics.
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Every endomorphism A of R2n can be seen as linearly acting on C2n in the usual way:

A(u+ iv) := Au+ iAv ∀u, v ∈ R2n.

An endomorphism A of C2n arises in this way if and only if it is real, i.e., A(R2n) ⊂ R2n.
Similarly, the symplectic form ω0 extends by sesquilinearity uniquely to a skew-Hermitian
form on C2n by setting

ω0(u+ iv, u′ + iv′) := ω0(u, u′) + ω0(v, v′) + i(ω0(v, u′)− ω0(u, v′)), ∀u, v, u′, v′ ∈ R2n.

The Krein-form κ : C2n × C2n → C is defined as

κ(w,w′) := ω0(−iw, w′) = 〈−iJ0w,w
′〉 ∀w,w′ ∈ C2n,

where 〈·, ·〉 is the standard Hermitian product on C2n. The form κ is easily seen to be
Hermitian with signature (n, n). An automorphism of C2n corresponds to an element of
Sp(2n) if and only if it is real and κ-unitary. Similarly, an endomorphism of C2n corresponds
to an element of the Lie algebra sp(2n) if and only if it is real and κ-skew-Hermitian.

If λ ∈ U := {z ∈ C | |z| = 1} is an eigenvalue of W ∈ Sp(2n), then κ is non-degenerate
on the corresponding algebraic eigenspace

E(λ) := {w ∈ C2n | w ∈ Ker (λI −W )k for some k ≥ 1},

and the signature of κ on E(λ) is called Krein-signature of λ. The eigenvalue λ ∈ U is
said to be Krein-positive (resp. Krein-negative, resp. Krein-definite) if κ is positive definite
(resp. negative definite, resp. definite) on E(λ). If λ ∈ U has Krein-signature (p, q), then
the conjugate eigenvalue λ has Krein-signature (q, p) (see [27, Lemma I.2.9]). In particular,
the eigenvalues 1 and -1 have signature (p, p) and cannot be Krein-definite.

The following well known lemma explains the role of the Krein-signature in the behavior
of eigenvalues of paths in Sp(2n).

Lemma 9.1. Let W : (a, b)→ Sp(2n) be a differentiable curve such that

Wu = eiθu, (9.1)

for some differentiable function θ : (a, b)→ R and some differentiable curve of eigenvectors
u : (a, b)→ C2n. Then

κ(u, u) θ′ = ω0(u,W ′W−1u). (9.2)

Proof. By differentiating (9.1) we find

W ′u+Wu′ = iθ′eiθu+ eiθu′,

and by taking the κ-product with Wu we obtain

κ(W ′u,Wu) + κ(Wu′,Wu) = iθ′eiθκ(u,Wu) + eiθκ(u′,Wu).

Using the fact that W is κ-unitary and that u is an eigenvector of W with eigenvalue eiθ,
we can rewrite the above expression as

e−iθκ(W ′u, u) + κ(u′, u) = iθ′κ(u, u) + κ(u′, u),

and (9.2) follows since e−iθκ(W ′u, u) = κ(W ′e−iθu, u) = κ(W ′W−1u, u).
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Note that the right-hand side of (9.2) is positive (resp. non-negative) when the curve
W is timelike (resp. causal). Recalling that simple eigenvalues and the corresponding
eigenvectors of differentiable paths are differentiable, the above lemma implies that if W is
a timelike (resp. causal) curve, then the argument of any Krein-positive simple eigenvalue
of W (t) on U is a strictly increasing (resp. non-decreasing) function of t. The same is true
for Krein-definite eigenvalues of higher multiplicity, see [27, Proposition I.3.2 and Corollary
I.3].

We now consider the function

υ : Sp(2n)→ U, υ(W ) := (−1)m
∏

λ∈σ(W )∩U\{±1}

λp(λ),

where 2m denotes the total algebraic multiplicity of real negative eigenvalues of W and
(p(λ), q(λ)) is the Krein-signature of the eigenvalue λ ∈ U. This function, which was intro-
duced by Gel’fand and Lidskǐi in [35], is continuous, invariant under symplectic conjugacy,
homogeneous, i.e., υ(W k) = υ(W )k for every k ∈ Z, and coincides with the complex de-
terminant on the subgroup O(2n) ∩ Sp(2n) ∼= U(n). Moreover, it induces an isomorphism
of fundamental groups

υ∗ : π1(Sp(2n))→ π1(U) = Z.

See also [78] and [1, Section 1.3.4] for the proof of these properties. We now consider the
universal cover

π : S̃p(2n)→ Sp(2n)

and define the homogeneous Maslov quasi-morphism

µ : S̃p(2n)→ R

as lift of υ, and more precisely as the unique continuous function satisfying

υ(π(w)) = e2πiµ(w) ∀w ∈ S̃p(2n), µ(id) = 0.

As recalled in Section I of the Introduction, this function is the unique homogeneous
real quasi-morphism on S̃p(2n) whose restriction to π−1(U(n)) agrees with the lift of the
complex determinant. See [85] for more on this and for the proof of uniqueness. Alternative
definitions of µ not requiring Krein theory are possible, but one advantage of the above
definition is that it immediately yields the following result.

Proposition 9.2. The homogeneous Maslov quasi-morphism µ is non-decreasing along
every causal curve in S̃p(2n).

Indeed, by the form of υ the function µ can change only when some eigenvalue on
the unit circle U moves. Since, as explained above, for a causal curve all Krein-positive
eigenvalues on U cannot move clockwise, the function µ is non-decreasing.

Now we prove Theorem I.1 from the Introduction: S̃p(2n) admits a time function, i.e.,
a continuous real function which increases strictly along each causal curve.
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The homogeneous Maslov quasi-morphism is surely not a time function because it is
locally constant on the open set consisting of elements w ∈ S̃p(2n) whose projection π(w)
has no eigenvalues on U. However, it is strictly increasing along causal curves which are
contained in the set π−1(Γ), where Γ denotes the open subset of Sp(2n) consisting of
matrices having 2n distinct eigenvalues on U. Indeed, if w : (a, b) → π−1(Γ) is a causal
curve and W := π ◦ w, then we can find a basis u1(t), . . . , un(t), u1(t), . . . , un(t) of C2n

which is κ-unitary, i.e.,

κ(uj, uj) = 1 = −κ(uj, uj) ∀j, κ(uj, uh) = κ(uj, uh) = 0 ∀j 6= h, κ(uj, uh) = 0 ∀j, h,

and satisfies

W (t)uj(t) = eiθj(t)uj(t), W (t)uj(t) = e−iθj(t)uj(t), ∀t ∈ (a, b),

where the real functions θj satisfy

µ(w(t)) =
1

2π

n∑
j=0

θj(t) ∀t ∈ (a, b). (9.3)

Here, the curves uj and the real functions θj are differentiable. By Lemma 9.1, we have

θ′j = ω0(uj,W
′W−1uj) on (a, b).

The fact thatW is a causal curve tells us that the Hermitian form u 7→ ω0(u,W ′(t)W−1(t)u)
is positive semi-definite but not zero for every t ∈ (a, b). Therefore, for every t ∈ (a, b) the
numbers θ′j(t) are non-negative and at least one of them is positive. We conclude that the
derivative of the sum of the θj’s is strictly positive on (a, b) and by (9.3) the function µ ◦w
is strictly increasing on (a, b), as we claimed.

Since Γ is open, the family

{π−1(Γ)w | w ∈ S̃p(2n)}

is an open cover of S̃p(2n), so by the Lindelöf property of S̃p(2n) we can find a countable

subset {wj | j ∈ N} of S̃p(2n) such that

S̃p(2n) =
⋃
j∈N

π−1(Γ)wj. (9.4)

For ε > 0, we consider the function

f : S̃p(2n)→ R, f(w) := µ(w) + ε

∞∑
j=1

2−j arctanµ(ww−1
j ).

This function is continuous because the above series converges uniformly. Thanks to the
bi-invariance of the cone distribution defined by sp+(2n), each summand is non-decreasing
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along each causal curve t 7→ w(t) and by (9.4) and what we have seen above about the
behavior of µ on π−1(Γ), for every t0 at least one of the summands is strictly increasing

for t close to t0. This proves that f is strictly increasing on each causal curve in S̃p(2n)
and hence is a time function. Since

‖f − µ‖∞ <
π

2
ε,

f is at bounded distance from µ and hence is also a quasi-morphism. Moreover, the distance
between f and µ can be chosen to be arbitrarily small, as stated in the Introduction. This
concludes the proof of Theorem I.1.

The homogenous Maslov quasi-morphism is invariant under conjugacy in S̃p(2n), but
the time function we have constructed above loses this invariance property. Actually,
no time function on S̃p(2n) can be conjugacy invariant. Indeed, the following stronger
statement holds:

Proposition 9.3. There are no continuous real functions on S̃p(2n) which are strictly
increasing along timelike curves and invariant under conjugacy.

Proof. It is enough to consider the case n = 1. Assume that g̃ : S̃p(2)→ R is continuous,
strictly increasing on timelike curves, and conjugacy invariant. Let Ω be the open subset
of Sp(2) consisting of automorphisms without negative real eigenvalues. Since Ω is simply
connected, the function g̃ descends to a continuous function g : Ω→ R which is still strictly
increasing on timelike curves and conjugacy invariant. The discriminant Σ1, i.e., the subset
of Sp(2) consisting of all automorphisms having the eigenvalue 1, is contained in Ω and
is a two-dimensional double cone with vertex at the identity, see the left-hand picture in
Figure 1 in the Introduction. Elements of each of the two components of Σ1 \ {id} are
pairwise conjugate and since the identity is in the closure of both components, the function
g must be constant on the whole Σ1. But there are timelike curves in Ω that go from one
component of Σ1 \ {id} to the other one. An example is given by the timelike geodesic

W (t) = etJ0A with A :=

(
1 1
0 1

)
.

This curve passes through A ∈ Σ1 at t = 0, takes values in the space of positively hyperbolic
automorphisms for t ∈ (0, t∗) with t∗ = arctan 4

3
, and

W (t∗) =

(
3
5
−1

5
4
5

7
5

)
belongs again to Σ1. The function g ◦W is strictly increasing and this contradicts the fact
that it takes identical values at t = 0 and t = t∗.
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10 Causality, Lorentz distance and proof of Theorem

J.1 on S̃p(2)

In this section, we study some properties of causal curves in the universal cover of Sp(2) =
SL(2,R). As discussed in Section C of the Introduction, this space can be identified with
the universal cover of the three-dimensional anti-de Sitter space AdS3, which is well studied.
Therefore, we will be rather sketchy on the facts which are well known, see e.g., [40, p.
131-134], and add more details about statements which we could not find in the literature.

First, one can check that the symplectic group Sp(2) can be parametrized by the fol-
lowing diffeomorphism

S2
+ × (R/2πZ)→ Sp(2), (ϕ, θ, t) 7→ 1

cosϕ

(
cos t − sin t
sin t cos t

)
+ tanϕ

(
cos θ sin θ
sin θ − cos θ

)
. (10.1)

Here, S2
+ denotes the open upper half-sphere in R3 with spherical coordinates (ϕ, θ) given

by the latitude ϕ ∈ [0, π
2
), where ϕ = 0 corresponds to the north pole, and the longitude θ ∈

R/2πZ. Moreover, the pull-back of the Lorentzian metric of Sp(2) by this diffeomorphism
is the Lorentzian metric

1

cos2 ϕ
(ds2 − dt2), (10.2)

where ds2 refers to the round metric on S2
+. Therefore, S̃p(2) is diffeomorphic to S2

+ × R
and, as Lorentz manifold, S̃p(2) is conformally equivalent to a portion of the Einstein space
(S2 × R, ds2 − dt2), in which timelike and lightlike curves are easy to visualize.

Figure 2 schematically represents S̃p(2) after the above identification with S2
+×R. The

universal cover of the group of rotations U(1) ⊂ Sp(2) corresponds to ϕ = 0, i.e., to the

t-axis. The identity of S̃p(2) sits at t = 0, the first lift of minus the identity, i.e., the
element given by the homotopy class of the path {eπtJ0}t∈[0,1], sits at t = π, and the lift of
the identity in Sp(2) given by the homotopy class of the path {e2πtJ0}t∈[0,1] sits at t = 2π.

Lightlike curves (in red) have slope 1, while timelike curves (in green a timelike geodesic
segment and in blue another timelike curve) have slope larger than 1. The set of lightlike

curves emanating from the identity spans the cone Σ̃1 given by one component of the
inverse image of the set of elements of Sp(2) having the eigenvalue 1 under the covering

map π : S̃p(2) → Sp(2). The regions enclosed by the red diamonds correspond to lifts
of elliptic elements in Sp(2), while the region outside of them to the lifts of hyperbolic

elements. The positively elliptic region S̃p
+

ell(2) is the shaded region enclosed by the lower

diamond. It can be characterized as the set of points w ∈ S̃p(2) such that there is a
timelike curve from id to w and a timelike curve from w to the first lift of −id.

The submanifold S̃p
+

ell(2) is globally hyperbolic, meaning that for every pair of points
w0, w1 in it the set of causal curves from w0 to w1 spans a compact subset. Equivalently,

S̃p
+

ell(2) admits a Cauchy hypersurface, i.e., a hypersurface which is met exactly once by

any inextensible causal curve in S̃p
+

ell(2) (see [65, Section 3.11]). Here, a natural Cauchy
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+
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Figure 2: The identification of S̃p(2) with S2
+ × R.

hypersurface in S̃p
+

ell(2) is given by w such that π(w) has spectrum {i,−i}, that is, by the
set S2

+ × {π} in the above identification with a portion of the Einstein space.

The Lorentzian distance distG on S̃p(2) is completely described by the following result.

Proposition 10.1. Let w ∈ S̃p(2) be such that w ≥ id. Then:

(i) If w belongs to the closure of S̃p
+

ell(2) then

distG(id, w) = θ,

where θ ∈ [0, π] is such that e±iθ are the eigenvalues of π(w). If moreover w ∈ S̃p
+

ell(2),
then distG(id, w) is achieved by the unique timelike geodesic segment from id to w.

(ii) If w does not belong to the closure of S̃p
+

ell(2), then there are arbitrarily long timelike
curves from id to w and hence distG(id, w) = +∞.

Statement (i) is proven at the end of this section. As for (ii): if w ≥ id is not in the

closure of S̃p
+

ell(2), then an arbitrarily long timelike curve from id to w can be obtained by
first following a timelike curve which is very close to a lightlike curve and gets close to the
boundary of S2

+ × R, then move along a short segment in the t-direction, thus acquiring
large length because of the factor 1

cosϕ
in the expression (10.2) for the Lorentzian metric,

and then reach w by following a path which is close to a lightlike one. See the blue curve
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in Figure 2. Actually, the last statement in (ii) is not specific of the Lorentzian distance
induced by G and holds in the following more general form.

Proposition 10.2. Let d : S̃p(2)× S̃p(2)→ [0,+∞] be a function such that:

(i) d(w0, w1) > 0 if there is a timelike curve from w0 to w1;

(ii) d(w0, w2) ≥ d(w0, w1) + d(w1, w2) if w0 ≤ w1 ≤ w2;

(iii) d is conjugacy invariant.

If w ≥ id and w does not belong to the closure of S̃p
+

ell(2), then d(id, w) = +∞.

The proof of this proposition uses the following algebraic lemma.

Lemma 10.3. Let W0 ∈ Sp(2) be hyperbolic. Then there exists H ∈ sp(2) such that the
curve

W : R→ Sp(2), W (t) := e−tHW0e
tH

is timelike.

Proof. If W is as above, then

W ′W−1 = e−tH [W0, H]W−1
0 etH ,

so the curve W is timelike if and only if the element [W0, H]W−1
0 belongs to sp+(2).

Without loss of generality, we can assume that W0 has the form

W0 =

(
λ 0
0 λ−1

)
,

for some real number λ with 0 < |λ| < 1. By choosing

H =

(
0 1
1 0

)
,

we compute

[W0, H]W−1
0 =

(
0 λ2 − 1

λ−2 − 1 0

)
= J0S,

where the symmetric matrix

S =

(
λ−2 − 1 0

0 1− λ2

)
is positive definite because 0 < λ2 < 1.

66



Proof of Proposition 10.2. Since w ≥ id is not in the closure of S̃p
+

ell(2), we can find a

w0 ∈ S̃p(2) such that id ≤ w0 ≤ w and π(w0) is hyperbolic. See Figure 2. By (ii), it is
enough to prove that d(id, w0) = +∞. By Lemma 10.3, there exists w1 in the conjugacy
class of w0 such that there is a timelike curve from w0 to w1. By (iii) and (ii), we have

d(id, w0) = d(id, w1) ≥ d(id, w0) + d(w0, w1).

By (i), d(w0, w1) > 0 and the above inequality forces d(id, w0) = +∞.

We conclude this section by proving statement (i) of Proposition 10.1. It is enough to

consider the case of some w ∈ S̃p
+

ell(2) with

σ(π(w)) = {e±iθ}, θ ∈ (0, π),

and prove that any timelike curve from id to w has length at most θ. Indeed, the timelike
geodesic segment from id to w has length θ, being of the form {etθJ}t∈[0,1] for some ω0-
compatible complex structure J . Moreover, the bound on the length of causal curves which

are not timelike and the case of a w in the closure of S̃p
+

ell(2) follow by an easy perturbation
argument.

Therefore, it is enough to consider a timelike curve

W : [0, 1]→ Sp(2)

such that W (0) = id and W (t) ∈ Sp+
ell(2) for every t ∈ (0, 1]. Such a curve has the form

W (t) = A(t)−1eθ(t)J0A(t), ∀t ∈ (0, 1], (10.3)

where θ(t) ∈ [0, π) and A(t) ∈ Sp(2), and we must prove the bound

lengthG(W ) ≤ θ(1).

The differentiability of W , together with the fact that the elements of Sp+
ell(2) have two

distinct eigenvalues, implies that both θ and A depend differentiably on t in (0, 1], see [49,
Theorem II.5.4]. The function θ is continuous at t = 0 with θ(0) = 0, whereas A needs not
extend continuously at t = 0. For paths of the above form, we have the following simple
lemma, in which we use the fact that elements of sp(2) have vanishing trace.

Lemma 10.4. Let W : (0, 1] → Sp(2) be a path of the form (10.3) for some differentiable
functions θ : (0, 1]→ R and A : (0, 1]→ Sp(2). If we denote the coefficients of the path of
matrices A′A−1 ∈ sp(2) by

A′A−1 =

(
a b
c −a

)
,

we have the identity

detW ′ = θ′
2 −

(
4a2 + (b+ c)2

)
sin2 θ on (0, 1].
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Proof. The derivative of W is

W ′ = A−1
(
[eθJ0 , A′A−1] + θ′J0e

θJ0
)
A.

From the identities

[eθJ0 , A′A−1] = sin θ

(
−b− c 2a

2a b+ c

)
, J0e

θJ0 =

(
− sin θ − cos θ
cos θ − sin θ

)
,

we obtain

detW ′ = det
(
[eθJ0 , A′A−1] + θ′J0e

θJ0
)

= θ′
2 −

(
4a2 + (b+ c)2

)
sin2 θ.

By (10.3), the Krein-positive eigenvalue of W (t) is eiθ(t) and we can find a differentiable
curve u : (0, 1) → C2 of eigenvectors of W corresponding to this eigenvalue such that
κ(u, u) = 1. Since W is timelike, the quantity ω0(u,W ′W−1u) is positive and the formula
of Lemma 9.1 implies that θ′ > 0 on (0, 1). We can then use the identity from Lemma 10.4
and obtain the desired upper bound for lengthG(W ):

lengthG(W ) =

ˆ 1

0

(detW ′(t))
1
2 dt =

ˆ 1

0

(
θ′

2 −
(
4a2 + (b+ c)2

)
sin2 θ

) 1
2 dt

≤
ˆ 1

0

|θ′| dt =

ˆ 1

0

θ′ dt = θ(1).

(10.4)

This concludes the proof of statement (i) in Proposition 10.1.

11 Proof of Theorem J.1

Let W : [0, 1] → Sp(2n) be a causal curve such that W (t) is elliptic for every t ∈ [0, 1],
meaning that all the eigenvalues of W (t) belong to the unit circle U. By the continuous
dependence of the spectrum, see [49, Theorem II.5.1], the spectrum of W (t) is given by

σ(W (t)) = {e±iθ1(t), . . . , e±iθn(t)}

for some continuous functions θj : [0, 1]→ R, j = 1, . . . , n. Moreover, we can assume that
the Krein-positive eigenvalues of W (t) are the eigenvalues

eiθ1(t), . . . , eiθn(t).

Here, we are counting eigenvalues according to their algebraic multiplicity and are seeing
an eigenvalue on U of Krein signature (p, q) as p Krein-positive eigenvalues and q Krein-
negative ones. The fact that the curve W is causal implies that all the functions θj are
non-decreasing, see Lemma 9.1 above for the case of simple eigenvalues and [27, Corollary
I.3.5] for the general case.

The proof of statement (i) in Theorem J.1 from the Introduction is based on the fol-
lowing result.
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Proposition 11.1. Let W : [0, 1]→ Sp(2n) be a causal curve taking values in the closure
of Sp+

ell(2n) and denote by

σ(W (t)) = {e±iθ1(t), . . . , e±iθn(t)}

the spectrum of W (t), where θj : [0, 1]→ [0, π] are continuous functions. Then

lengthG(W ) ≤ 1

n

n∑
j=1

(
θj(1)− θj(0)

)
.

Proof. The boundary of Sp+
ell(2n) consists of endomorphisms having the eigenvalue 1 or -1,

so W (t) belongs to this boundary if and only if θj(t) has the value 0 or π for at least one
j. Since each function θj is non-decreasing and takes values in [0, π], W can take values
in the boundary of Sp+

ell(2n) only on two closed subintervals of the form [0, t0] and [t1, 1].
When one of these intervals has positive length, the restriction of W to it is lightlike and
hence this interval gives no contribution to lengthG(W ). Therefore,

lengthG(W ) = lengthG(W |[t0,t1]) = sup
ε>0

lengthG(W |[t0+ε,t1−ε]).

By this observation and by the monotonicity of the functions θj, it is enough to prove the
desired upper bound on lengthG(W ) in the case of a causal curve W : [0, 1] → Sp(2n)
which takes values in Sp+

ell(2n). Moreover, any such curve can be C1-approximated by a
curve which is timelike and analytic. Therefore, in the following we can assume that the
path W is timelike, analytic and takes values in the open set Sp+

ell(2n).
By the last condition, W (t) is diagonalizable for every t ∈ [0, 1], so we can find a basis

u1(t), . . . , un(t), u1(t), . . . , un(t) of C2n which is κ-unitary and satisfies

W (t)uj(t) = eiθj(t)uj(t), W (t)uj(t) = e−iθj(t)uj(t), ∀t ∈ [0, 1]. (11.1)

The functions θj are differentiable (see [49, Theorems II.5.4 and II.5.6]), but in general the
eigenvectors uj(t) need not depend continuously on t. Indeed, one may lose continuity of
the eigenvectors when different eigenvalues collide. However, by the analyticity of W the
set T of exceptional instants at which some eigenvalues change their multiplicity is finite,
and the functions uj are analytic on [0, 1] \ T (see [49, Section II.1.4]). Then Lemma 9.1
gives us the identity

θ′j = ω0(uj,W
′W−1uj) on [0, 1] \ T . (11.2)

The fact that W is timelike tells us that the endomorphism W ′(t)W−1(t) is in sp+(2n) for
every t ∈ [0, 1] and hence

ω0(uj,W
′W−1uj) > 0 on [0, 1].

Therefore, (11.2) implies that the functions θj are strictly increasing on [0, 1].
By Proposition ii.1, the spectrum of W ′(t)W−1(t) ∈ sp+(2n) has the form

{±iλ1(t), . . . ,±iλn(t)}
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for some continuous positive functions λj : [0, 1] → R, and we can find a κ-unitary basis
v1(t), . . . , vn(t), v1(t), . . . , vn(t) of C2n such that

W ′(t)W−1(t)vj(t) = iλj(t)vj(t), W ′(t)W−1(t)vj(t) = −iλj(t)vj(t) ∀t ∈ [0, 1].

We now express each vector uj ∈ C2n as a linear combination of the latter basis:

uj =
n∑
h=1

(αjhvh + βjhvh) ∀j,

for suitable complex numbers αjh, βjh. The fact that both bases u1, . . . , un, u1, . . . , un and
v1, . . . , vn, v1, . . . , vn are κ-unitary implies the identities

δjk = κ(uj, uk) =
n∑
h=1

(αjhαkh − βjhβkh) ∀j, k.

If A := (αjh) and B := (βjh) are the n × n complex matrices given by these coefficients,
the above identity can be rewritten more compactly as

AA∗ −BB∗ = I, (11.3)

where I denotes the n× n identity matrix. In particular, the self-adjoint matrix AA∗ − I
is positive semidefinite and, equivalently, the eigenvalues of AA∗ are not smaller than 1.
Since A∗A and AA∗ have the same spectrum, also A∗A − I is positive semidefinite. In
particular, the h-th diagonal element of the matrix A∗A is in absolute value not smaller
than 1:

(A∗A)hh =
n∑
j=1

(A∗)hj(A)jh =
n∑
j=1

αjhαjh =
n∑
j=1

|αjh|2 ≥ 1. (11.4)

We now rewrite (11.2) in terms of the κ-unitary basis v1(t), . . . , vn(t), v1(t), . . . , vn(t) and
get

θ′j = −iκ
(
W−1W ′

n∑
h=1

(αjhvh + βjhvh),
n∑
h=1

(αjhvh + βjhvh)
)

= −iκ
(
i

n∑
h=1

(λhαjhvh − λhβjhvh),
n∑
h=1

(αjhvh + βjhvh)
)

=
n∑
h=1

(|αjh|2 + |βjh|2)λh ≥
n∑
h=1

λh|αjh|2,

on [0, 1] \ T . By adding over j and using (11.4) we obtain

n∑
j=1

θ′j ≥
n∑
j=1

n∑
h=1

λh|αjh|2 =
n∑
h=1

λh

n∑
j=1

|αjh|2 ≥
n∑
h=1

λh on [0, 1] \ T .
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Integration over [0, 1] gives us the chain of inequalities

n∑
j=1

(
θj(1)− θj(0)

)
=

n∑
j=1

ˆ 1

0

θ′j(t) dt ≥
ˆ 1

0

n∑
h=1

λh(t) dt ≥ n

ˆ 1

0

(
n∏
h=1

λh(t)

) 1
n

dt

= n

ˆ 1

0

(
det(W ′(t)W−1(t))

) 1
2n dt = n lengthG(W ).

where at the end of the first line we have used the inequality between the arithmetic and
geometric means. This proves the bound

lengthG(W ) ≤ 1

n

n∑
j=1

(
θj(1)− θj(0)

)
and concludes the proof.

Statement (i) of Theorem J.1 from the Introduction is an immediate consequence of
the above proposition. Statement (ii) of that theorem follows immediately from the next
proposition.

Proposition 11.2. Let W : [0, 1]→ Sp(2n) be a timelike curve such that W (0) = id and
W (1) is not in the closure of Sp+

ell(2n). Then there are timelike curves from id to W (1)
which are homotopic with fixed ends to W and have arbitrarily large Lorentz–Finsler length
lengthG.

Proof. Denote by t∗ ∈ (0, 1) the first positive instant at which W reaches the boundary
of Sp+

ell(2n). Equivalently, the number t∗ is the first instant at which W hits the singular
hypersurface consisting of elements of Sp(2n) having the eigenvalue −1. Up to a C1-small
perturbation keeping W timelike and within the same homotopy class, we may assume that
the eigenvalue −1 of W (t∗) has algebraic multiplicity 2. Then W (t∗) splits as a symplectic
automorphism of a symplectic plane and a symplectic automorphism of a symplectic (2n−
2)-dimensional subspace, and the same is true for t close to t∗. More precisely, there exists
an interval [t−, t+] ⊂ [0, 1] containing t∗ in its interior such that

W (t) = Φ(t)−1
(
W0(t)⊕W1(t)

)
Φ(t) ∀t ∈ [t−, t+],

for some smooth curves W0 : [t−, t+] → Sp(2), W1 : [t−, t+] → Sp(2n − 2), Φ : [t−, t+] →
Sp(2n). Here, W1 takes values in Sp+

ell(2n − 2) and W0(t) is in Sp+
ell(2) for t < t∗, on the

boundary of this set for t = t∗, and outside of the closure of Sp+
ell(2) for t > t∗.

For all k ∈ N, the set Uk := {id} ∪ Sp+
ell(2k) is contractible as it is the homeomorphic

image under the exponential map of {0} ∪ sp+
ell(2k) (see Proposition ii.2 in Appendix ii).

Therefore we can find timelike curves

W̃0 : [0, t−]→ U2, W̃1 : [0, t−]→ U2n−2,
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such that W̃0(0) = id, W̃0(t−) = W0(t−), W̃1(0) = id, W̃1(t−) = W1(t−) and the image of
the timelike curve

t 7→ Φ(t−)−1
(
W̃0(t)⊕ W̃1(t)

)
Φ(t−), t ∈ [0, t−],

is contained in U2n. Since U2n is contractible, the above curve is homotopic with fixed ends
to the restriction W |[0,t−]. Homotoping also the conjugacy from Φ(t−) to Φ(t+), we see
that W |[0,t+] is homotopic with fixed ends to

Φ(t+)−1
(
(W̃0#W0|[t−,t+])⊕ (W̃1#W1|[t−,t+])

)
Φ(t+),

where # denotes concatenation of paths. Since W̃1#W1|[t−,t+] is contained in U2n−2 and

W1(t+) 6= id, this path is homotopic with fixed ends to a timelike curve Ŵ1 : [0, t+]→ U2n−2

for which we can assume that G(Ŵ ′
1) = (det Ŵ ′

1)
1

2n−2 is constant. If µ is the Maslov quasi-

morphism, then µ(W̃0#W0|[t−,t+]) ≥ 1
2

and W0(t+) is not in the closure of Sp+
ell(2). By

statement (ii) in Proposition 10.1, for every c > 0 there is a timelike curve Ŵ0 : [0, t+] →
Sp(2) which is homotopic with fixed ends to W̃0#W0|[t−,t+] and satisfies

lengthG(Ŵ0) ≥ c.

Without loss of generality we can assume that G(Ŵ ′
0) = (det Ŵ ′

0)
1
2 is constant and equals

c/t+. Then the timelike curve

Ŵ : [0, t+]→ Sp(2n), Ŵ := Φ(t+)−1(Ŵ0 ⊕ Ŵ1)Φ(t+)

is homotopic with fixed ends to W |[0,t+] and, by the bi-invariance of G, has length

lengthG(Ŵ ) = t+
(
det Ŵ ′

0 ⊕ Ŵ ′
1

) 1
2n = t+

( c
t+

) 1
n (

det Ŵ ′
1

)n−1
n

which can be made arbitrarily large for c arbitrarily large. Hence the concatenation
Ŵ#(W |[t+,1]) is a timelike curve homotopic with fixed ends to W and with arbitrarily
large Lorentz–Finsler length.

12 Proof of Theorem K.2

In order to prove Theorem K.2, it is convenient to work with the Hamiltonian formalism
instead of the contact one. By seeing RP2n−1 as the manifold of lines through the origin
in R2n, the contactomorphism group of RP2n−1 can be identified with the group Gn of all
1-homogeneous symplectomorphisms of R2n \ {0}, i.e., the group of diffeomorphisms of
R2n \ {0} which preserve the Liouville 1-form λ0 and are equivariant with respect to the
antipodal Z2-action z 7→ −z. These maps extend to homeomorphisms of R2n, but they are
not differentiable at the origin, unless they are linear. The Lie algebra cont(RP2n−1, ξst) is
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then identified with the space of 1-homogeneous Hamiltonian vector fields on R2n. These
are precisely the Hamiltonian vector fields that are induced by Hamiltonian functions in
the space of 2-homogeneous functions

Hn := {H : R2n → R | H smooth on R2n \ {0}, H(tz) = t2H(z) ∀t ∈ R, ∀z ∈ R2n}.

Hamiltonians in Hn are differentiable at 0 with differential which is Lipschitz-continuous
on R2n, but in general are not twice differentiable at 0. Given H ∈ Hn, we denote by XH

the induced Hamiltonian vector field on R2n, which in the symplectic setting is defined by

ω0(XH(z), v) = −dH(z) · v ∀z, v ∈ R2n.

This vector field is Lipschitz-continuous on R2n and smooth on R2n \ {0}. The path in
Gn which is generated by the Hamiltonian vector field of a (in general time-dependent)
Hamiltonian H is denoted by φtH .

The bijection between elements of Hn and contact Hamiltonians on (R2n−1, ξst) associ-
ated to the standard contact form α0 is given just by the restriction of the even function
H ∈ Hn to S2n−1. Therefore, a path in Cont(R2n−1, ξst) is positive if and only if the cor-
responding path in Gn is generated by a time-dependent Hamiltonian {Ht}t∈[0,1] such that
Ht > 0 on R2n \ {0} for every t ∈ [0, 1]. In this case, the corresponding path in Gn is also
called positive.

Lemma 12.1. Let ψ ∈ Gn and L ∈ Hn. Then the path t 7→ φ−tL ◦ ψ ◦ φtL in Gn is positive if
and only if

L− L ◦ ψ > 0

on R2n \ {0}.

Proof. Differentiating this path we obtain

d

dt
φ−tL ◦ ψ ◦ φ

t
L = −XL + (φ−tL ◦ ψ)∗XL = X−L+(φ−tL ◦ψ)∗L

,

where all vector fields are evaluated at φ−tL ◦ ψ ◦ φtL. Therefore, the path is generated by
the time-dependent Hamiltonian

Ht = −L+ L ◦ ψ−1 ◦ φtL = (−L+ L ◦ ψ−1) ◦ φtL,

where in the last identity we have used the fact that L is invariant under the flow φtL. This
t-dependent Hamiltonian is positive on R2n \ {0} if and only if L ◦ ψ−1 − L is, which is
equivalent to the condition we stated.

Remark 12.2. The above lemma can be restated in the setting of contact Hamiltonians
as follows: If φtL is the flow of the autonomous contact vector field on (M, ξ) defined by the
contact Hamiltonian L : M → R with respect to some contact form α defining ξ and ψ is
any contactomorphism of (M, ξ), then the path t 7→ φ−tL ◦ ψ ◦ φtL is positive in Cont(M, ξ)
if and only if

fψL− L ◦ ψ > 0

on M , where fψ is the conformal factor defined by ψ∗α = fψα.
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Our proof of Theorem K.2 is based on the following result.

Proposition 12.3. For every ε > 0 there exists a smoothly time-dependent Hamiltonian
{Ht}t∈[0,1] ⊂ Hn with

0 < Ht(z) ≤ ε|z|2 ∀t ∈ [0, 1], ∀z ∈ R2n \ {0},

and an autonomous Hamiltonian L ∈ Hn such that

L− L ◦ φ1
H > 0

on R2n \ {0}.

Before discussing the proof of this proposition, we show how it implies Theorem K.2.
The argument is analogous to the proof of Proposition 10.2.

Proof of Theorem K.2. Let φ0 and φ1 be elements of C̃ont0(RP2n−1, ξst). If there is no non-
negative and somewhere positive path from φ0 to φ1, then d(φ0, φ1) = 0 by assumption
(i). Therefore, we must prove that if there is a non-negative and somewhere positive path
{φt}t∈[0,1] from φ0 to φ1, then d(φ0, φ1) = +∞.

By the bi-invariance of d (assumption (iii)), we may assume that φ0 = id. Let 0 ≤ t0 <
t1 ≤ 1 be such that the path {φt}t∈[t0,t1] is positive. Then φt1 ◦φ−1

t0 is generated by a positive
Hamiltonian and we denote by ε > 0 its minimum. By Lemma 12.1 and Proposition 12.3,
there exists a smoothly time-dependent contact Hamiltonian {Ht}t∈[0,1] ⊂ C∞(RP2n−1)
such that

0 < H ≤ ε on [0, 1]× RP2n−1

and an autonomous contact Hamiltonian L ∈ C∞(RP2n−1) such that, denoting by φtH and

φtL the generated paths in C̃ont0(RP2n−1, ξst), we have that

t 7→ φ−tL ◦ φ
1
H ◦ φtL (12.1)

is a positive path. By the above bounds on H, we have

id ≤ φ1
H ≤ φt1 ◦ φ−1

t0
≤ φ1,

so by the reverse triangular inequality (ii) it is enough to show that d(id, φ1
H) = +∞. By

the properties (iii) and (ii) of d we have

d(id, φ1
H) = d(id, φ−1

L ◦ φ
1
H ◦ φ1

L) ≥ d(id, φ1
H) + d(φ1

H , φ
−1
L ◦ φ

1
H ◦ φ1

L).

The latter term d(φ1
H , φ

−1
L ◦ φ1

H ◦ φ1
L) is positive because of condition (i) and the positivity

of the path (12.1). Then the above inequality forces

d(id, φ1
H) = +∞,

concluding the proof.
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We conclude this section by proving Proposition 12.3. By identifying Diff0(T) =
Cont0(RP1, ξst) with G1, we have for every k ∈ N the Lie group homomorphism

jk : PSpk(2)→ G1.

We identify the Lie algebra sp(1) with the space of quadratic forms on R2 by mapping J0S,
S ∈ Sym(2), to the quadratic form

h(z) =
1

2
Sz · z, ∀z ∈ R2.

We write the quadratic form h in polar coordinates as

h(reiθ) =
r2

2
ĥ(2θ), ∀r ≥ 0, ∀θ ∈ R/2πZ,

where ĥ is a trigonometric polynomial of degree 1. By the results of Section 4, the linear
mapping

djk(id) : sp(2)→ H1

maps the quadratic form h to the 2-homogeneous function

hk ∈ H1, hk(re
iθ) :=

r2

2k
ĥ(2kθ), ∀r ≥ 0, ∀θ ∈ R/2πZ.

Fix some timelike curve w : [0, 1] → PSp(2) such that w(0) = id, w(1) is hyperbolic,
and let h be the smooth path of quadratic forms on R2 generating w. Given k ∈ N, we
denote by wk : [0, 1]→ PSpk(2) the lift of w such that wk(0) = id. Then the positive path
jk ◦ wk : [0, 1]→ G1 is generated by the positive time-dependent Hamiltonian hk : [0, 1]→
H1 which satisfies

hk(t, z) ≤
c

k
|z|2, where c := max

(t,z)∈[0,1]×S1
h(t, z). (12.2)

Since w(1) is hyperbolic, by Lemma 10.3 there exists S ∈ Sym(2) such that the curve

t 7→ e−tJ0Sw(1)etJ0S (12.3)

is timelike in PSp(2). The autonomous path t 7→ etJ0S is generated by the quadratic
Hamiltonian

`(z) :=
1

2
Sz · z, ∀z ∈ R2.

Then the image by jk of the lift to PSpk(2) of this path is the autonomous path in G1

which is generated by the Hamiltonian `k ∈ H1. The fact that the curve (12.3) is timelike
implies that the path

t 7→ jk
(
e−tJ0Swk(1)etJ0S

)
= φ−t`k ◦ φ

1
hk
◦ φt`k
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is positive in G1. By Lemma 12.1, this implies that

`k − `k ◦ φ1
hk
> 0 on R2 \ {0}. (12.4)

Consider the 2-homogeneous functions

Hk : [0, 1]× R2n → R, Hk(t, z1, . . . , zn) :=
n∑
j=1

hk(t, zj),

Lk : R2n → R, Lk(z1, . . . , zn) :=
n∑
j=1

`k(zj).

These functions are smooth on the open set where all zj do not vanish, but globally they are
just of class C1,1, which as usual denotes the class of continuously differentiable functions
whose differential is Lipschitz-continuous. The Hamiltonian vector field XHk is Lipschitz-
continuous and its non-autonomous flow is the following path of bi-Lipschitz-continuous
homeomorphisms

φtHk(z1, . . . , zn) =
(
φthk(z1), . . . , φthk(zn)

)
.

Therefore, (12.4) implies

Lk − Lk ◦ φ1
Hk

> 0 on R2n \ {0}. (12.5)

Moreover, from the positivity of hk and (12.2) we deduce

Hk > 0 on [0, 1]×
(
R2n \ {0}

)
, (12.6)

Hk(t, z) ≤
c

k
|z|2 ∀(t, z) ∈ [0, 1]× R2n. (12.7)

We now fix k ∈ N large enough, so that

c

k
≤ ε

2
, (12.8)

where ε is the positive number appearing in the statement of Proposition 12.3. The last
step is to approximate Hk and Lk by 2-homogeneous Hamiltonians which are smooth on
the whole R2n \ {0}. Here is the standard argument for such an approximation. By (12.5),
(12.6), (12.7) and (12.8) we have

η ≤ Hk(t, z) ≤
ε

2
∀(t, z) ∈ [0, 1]× S2n−1,

Lk(z)− Lk ◦ φ1
Hk

(z) ≥ η ∀z ∈ S2n−1,

for some η > 0. For every δ > 0 we can find a smoothly time-dependent function
{H(t, ·)}t∈[0,1] ⊂ Hn and L ∈ Hn such that

‖H(t, ·)−Hk(t, ·)‖C1,1(S2n−1) < δ, ‖L− Lk‖C0(S2n−1) < δ.
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The first bound implies that XH is C0,1-close to XHk on compact subsets of [0, 1] × R2n

and hence φ1
H is C0-close to φ1

Hk
on compact subsets of R2n. By choosing δ small enough,

we can then ensure the bounds

η

2
≤ H(t, z) ≤ ε ∀(t, z) ∈ [0, 1]× S2n−1,

and

L− L ◦ φ1
H = Lk − Lk ◦ φ1

Hk
+ L− Lk + Lk ◦ φ1

Hk
− Lk ◦ φ1

H + (Lk − L) ◦ φ1
H

≥ η − |L− Lk| − |Lk ◦ φ1
Hk
− Lk ◦ φ1

H | − |(Lk − L) ◦ φ1
H | ≥

η

2
,

on S2n−1, where we are using the fact that Lk is uniformly continuous on compact subsets
of R2n. The functions H and L satisfy the requests of Proposition 12.3, which is then
proven.

13 Proof of Theorem L.1

In this section, we prove Theorem L.1 from the Introduction and discuss a related example.
The proof of statement (i) in Theorem L.1 uses the following result of Nazarov [66].

Theorem 13.1. Let k ∈ N. If the trigonometric polynomial

p(x) =
k∑
j=0

(
aj cos(2πjx) + bj sin(2πjx)

)
, aj, bj ∈ R,

is non-negative, then ˆ 1

0

|p′(x)| dx ≤ 4k

ˆ 1

0

p(x) dx.

Note that without the non-negativity assumption, the L1-norm of the derivative of the
trigonometric polynomial p on [0, 1] would be bounded by 2πk times the L1-norm of p, by
the classical Bernstein inequality. Thanks to the assumption p ≥ 0, the constant 2π can
be replaced by 4, which is optimal, as the example of

p(x) = 1 + cos(2πkx)

shows.
In order to prove statement (i), we consider for a given number k ∈ N and positive

Hamiltonian H ∈ Pk the path {φt}t∈[0,1] in Diff1(R) which is defined by

d

dt
φt = H(t, φt), φ0 = id. (13.1)

Assuming that

φ1(x) ≤ x+
s

4k
(13.2)
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for some s < 1, we must prove the bound

lengthV
(
{φt}t∈[0,1]

)
≤ 1

1− s

ˆ 1

0

(
φ1(x)− x

)
dx.

By multiplying both sides of (13.1) by ∂xφ
t and integrating over [0, 1] after a change of

variable, we find
ˆ 1

0

H(t, x) dx =

ˆ 1

0

H(t, φt(x))∂xφ
t(x) dx =

ˆ 1

0

∂tφ
t(x)∂xφ

t(x) dx. (13.3)

Writing
φ(t, x) = φt(x) = x+ ψ(t, x), (13.4)

where the function ψ is 1-periodic in x, non-negative and monotonically increasing in t,
we manipulate the right-hand side of (13.3) as follows:
ˆ 1

0

∂tφ
t(x)∂xφ

t(x) dx =

ˆ 1

0

∂tφ(t, x) dx+

ˆ 1

0

∂tφ(t, x)∂xψ(t, x) dx

=

ˆ 1

0

∂tφ(t, x) dx+

ˆ 1

0

H(t, φ(t, x))∂xψ(t, x) dx

=

ˆ 1

0

∂tφ(t, x) dx−
ˆ 1

0

∂x
(
H(t, φ(t, x))

)
ψ(t, x) dx

=

ˆ 1

0

∂tφ(t, x) dx−
ˆ 1

0

∂xH(t, φt(x))∂xφ
t(x)ψ(t, x) dx

=

ˆ 1

0

∂tφ(t, x) dx−
ˆ 1

0

∂xH(t, x)ψ(t, (φt)−1(x)) dx.

(13.5)

We estimate the latter term using Theorem 13.1 and obtain∣∣∣ ˆ 1

0

∂xH(t, x)ψ(t, (φt)−1(x)) dx
∣∣∣ ≤ sup

x∈[0,1]

|ψ(t, x)|
ˆ 1

0

|∂xH(t, x)| dx

≤ 4k sup
x∈[0,1]

|ψ(1, x)|
ˆ 1

0

H(t, x) dx

= 4k sup
x∈[0,1]

(φ1(x)− x)

ˆ 1

0

H(t, x) dx

≤ s

ˆ 1

0

H(t, x) dx,

where we have used that ψ(t, x) is increasing in the variable t, that both φ1(x) − x and
H(t, x) are non-negative for all t and x, and that assumption (13.2) holds.

Plugging this estimate back in (13.5) and using (13.3) we deduce the bound
ˆ 1

0

H(t, x) dx ≤
ˆ 1

0

∂tφ(t, x) dx+ s

ˆ 1

0

H(t, x) dx.
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which is equivalent to

ˆ 1

0

H(t, x) dx ≤ 1

1− s

ˆ 1

0

∂tφ(t, x) dx

since s < 1. Combining this bound with the Jensen inequality applied to the convex
function r 7→ 1/r, r ∈ (0,+∞), we obtain(ˆ 1

0

dx

H(t, x)

)−1

≤
ˆ 1

0

H(t, x) dx ≤ 1

1− s

ˆ 1

0

∂tφ(t, x) dx.

Integrating this last inequality in t produces the desired upper bound

lengthV
(
{φt}t∈[0,1]

)
=

ˆ 1

0

(ˆ 1

0

dx

H(t, x)

)−1

dt ≤ 1

1− s

ˆ 1

0

(
φ1(x)− x

)
dx.

There remains to prove statement (ii). Given φ ∈ Diff1(R) such that

φ(x)− x > 1

k
∀x ∈ R,

we fix ε > 0 such that

φ(x) > ψ(x) := x+
1

k
+ ε ∀x ∈ R.

The diffeomorphism ψ belongs to the image of the lift

̃k : S̃p(2)→ Diff1(R)

of the homomorphism
jk : PSpk(2)→ Diff0(T).

More precisely, it is the image by ̃k of the element w ∈ S̃p(2) which is given by the
homotopy class of the path

{eπ(1+kε)tJ0}t∈[0,1] ⊂ Sp(2).

Since π(1 + kε) > π, w ≥ id does not belong to the closure of the positively elliptic region

S̃p
+

ell(2). By Proposition 10.1 (ii), there are timelike curves in S̃p(2) from the identity to
w having arbitrarily large lengthG. By Proposition E.1, the image of these curves by ̃k
are positive paths in Diff1(R) from id to ψ with arbitrarily large lengthV . By Remark 4.1,
these curves are generated by Hamiltonians which belong to Pk. This concludes the proof
of Theorem L.1.

Example 13.2. The above proof of statement (ii) shows how to use the Lorentz geometry
of Sp(2) in order to construct arbitrarily long positive paths in Diff1(R) starting at the
identity and ending at some given translation. Here is another more direct construction of
an arbitrarily long positive path starting at id and remaining smaller than the translation
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x 7→ x+ 1 + ε, for some fixed ε > 0. Choose a 1-periodic smooth function h : R→ R with
minimum ε and constant value c on a subset of [0, 1] of measure 1− δ. By choosing c large
and δ small with respect to ε, we can make the quantity

V
(
h ∂
∂x

)
=

(ˆ 1

0

dx

h(x)

)−1

as large as we wish. Let {φt}t∈[0,1] be the positive path in Diff1(R) which is generated by
the non-autonomous Hamiltonian Ht(x) := h(x − εt). Its length is the arbitrarily large
quantity

lengthV
(
{φt}t∈[0,1]

)
=

ˆ 1

0

V
(
Ht

∂
∂x

)
dt = V

(
h ∂
∂x

)
,

but we claim that φ1(x) ≤ x + 1 + ε for every x ∈ R. Indeed, if x : [0, 1] → R solves the
ODE x′ = Ht(x), then y(t) := x(t) − εt solves the ODE y′ = h(y) − ε. The fact that the
1-periodic function h − ε has zeroes implies that y(1) ≤ y(0) + 1 = x(0) + 1, and hence
x(1) = y(1) + ε ≤ x(0) + 1 + ε, as claimed. By replacing the function h with x 7→ h(kx),
we obtain arbitrarily long positive paths starting at id and remaining smaller than the
translation x 7→ x+ 1

k
+ ε.

14 Proof of Theorem M.3

In this section, we prove Theorem M.3 from the Introduction. Let φ ∈ C̃ont0(RP2n−1, ξst)
be such that

ν(φ) ≤ 1

2
, (14.1)

with the strict inequality in the case n = 1, and let {φt}t∈[0,1] be the path generated by a
Hamiltonian H ∈ Hc such that φ0 = id and φ1 = φ. Let

Q̃(t, z) =
1

2
S(t)z · z

be a smooth path of positive definite quadratic forms on R2n such that the corresponding
path Q of positive quadratic Hamiltonians on RP2n−1 satisfies

Q ≤ H ≤ cQ. (14.2)

Denote by w : [0, 1] → S̃p(2n) the timelike curve induced by the positive definite linear
Hamiltonian system

W ′(t) = J0S(t)W (t), W (0) = id.

The induced path ̃ ◦ w in C̃ont0(RP2n−1, ξst) is generated by the Hamiltonian Q, so the
first inequality in (14.2) implies

µ(w(1)) = ν(̃(w(1))) ≤ ν(φ) ≤ 1

2
, (14.3)
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with strict inequality in the case n = 1. This upper bound on µ(w(1)) implies that w(1)

belongs to the positively elliptic region S̃p
+

ell(2n). Indeed, the non-decreasing function

t 7→ µ(w(t)) has the value 0 at t = 0, and for t > 0 and as long as w(t) remains in S̃p
+

ell(2n)
has the value

µ(w(t)) =
1

2π

n∑
j=1

θj(t)

where θj(t) ∈ (0, π) and eiθj(t) are the Krein-positive eigenvalues of π(w(t)). The timelike

curve w can exit from S̃p
+

ell(2n) only at some t∗ > 0 for which some θj takes the value π
and, in the case n > 1, for such t∗ we would have µ(w(t∗)) > 1

2
, contradicting (14.3). In

the case n = 1, we would get w(t∗) = 1
2
, which contradicts the strict inequality in (14.3).

Therefore, w(1) belongs to S̃p
+

ell(2n) , as claimed.
By Theorem J.1 (i), the Lorentz–Finsler length of w has the upper bound

lengthG(w) ≤ 2π

n
µ(w(1)) ≤ 2π

n
ν(φ),

where we have used (14.3) again. Combining this with the identity

j∗V =
2

1
n

2π
G

of Proposition E.1, we obtain the bound

lengthV (̃(w)) =
2

1
n

2π
lengthG(w) ≤ 2

1
n

n
ν(φ).

Then the second inequality in (14.2), together with the 1-homogeneity of the Lorentz–
Finsler metric V , implies

lengthV
(
{φt}t∈[0,1]

)
≤ c lengthV (̃ ◦ w) ≤ c

2
1
n

n
ν(φ),

concluding the proof of Theorem M.3.

Remark 14.1. The bound 1
2

in assumption (14.1) is optimal. Indeed, let s > 1
2

in the case

n > 1 and s = 1
2

in the case n = 1. In this case, we can find an element w1 ∈ S̃p(2n) with
µ(w1) = s which is the end-point of a timelike curve starting at the identity and which

is not in the closure of S̃p
+

ell(2n): in the case n > 1, we consider a positive rotation of
an angle 2πs − ε > π in one symplectic plane and positive rotations of angle ε

n−1
in the

remaining n− 1 symplectic planes; in the case n = 1, we consider an element w1 such that
µ(w1) = 1

2
and π(w1) is hyperbolic (necessarily with negative eigenvalues). By Theorem

J.1 (ii), there are arbitrarily long timelike curves w from id to w1. Setting φ = ̃(w1),
we deduce that there are arbitrarily long positive paths ̃ ◦ w which connect the identity

to φ in C̃ont(RP2n−1, ξst) and are generated by positive quadratic Hamiltonians, i.e., by
Hamiltonians in H1.
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Remark 14.2. Assume that the answer to Question M.2 is positive: if ̃(w0) ≤ ̃(w1) then
w0 ≤ w1. Then in the above proof we can replace assumption (14.1) by the assumption

φ ≤ e, where e ∈ C̃ont0(RP2n−1, ξst) is generated by the constant Hamiltonian H = 1, and

get the same conclusion. Indeed, let w be the timelike curve in S̃p(2n) as in the above
proof. The first inequality in (14.2) implies that

̃(w(1)) ≤ φ ≤ e = ̃(v),

where v is the element in S̃p(2n) corresponding to the homotopy class of the path {eπtJ0}t∈[0,1].
Then the fact that Question M.2 is assumed to have a positive answer implies that w(1) ≤ v.

Since we also have w(1) ≥ id, w(1) belongs to the closure of S̃p
+

ell(2n) and the proof proceeds
as before.

We conclude this section by giving a short proof of the fact that Question M.2 has a
positive answer for n = 1.

Proposition 14.3. Consider the lift ̃ : S̃p(2) → Diff1(R) of the homomorphism j :

PSp(2)→ Diff0(T). Then w0 ≤ w1 in S̃p(2) if and only if ̃(w0) ≤ ̃(w1) in Diff1(R).

Proof. The non-trivial implication we need to prove here is: ̃(w0) ≤ ̃(w1) ⇒ w0 ≤ w1.
By bi-invariance, we may assume w0 = id. Since ̃(w1) ≥ id, we have

µ(w1) =
1

2
ρ(̃(w1)) ≥ 1

2
ρ(id) = 0.

Assume by contradiction that w1 ≥ id does not hold. Then the non-negativity of µ(w1)

implies that µ(w1) is actually zero and w1 ∈ S̃p(2) is either hyperbolic or parabolic and,
up to conjugacy, given by the homotopy class of

either

{( eat 0
0 e−at

)}
t∈[0,1]

or

{( 1 at
0 1

)}
t∈[0,1]

,

for some a > 0. See Section 10, in particular Figure 2 and identity (10.1). The image ̃(w1)
of the above hyperbolic element is a diffeomorphism ϕ ∈ Diff1(R) with fixed points at 1

2
Z

and such that ϕ(x) < x for every x ∈ (0, 1
2
) + Z. The image ̃(w1) of the above parabolic

element is a diffeomorphism ϕ ∈ Diff1(R) with fixed points at Z and such that ϕ(x) < x
for every x ∈ R \ Z. In both cases, it is not true that ϕ = ̃(w1) ≥ id, which is the desired
contradiction.

15 Proofs of the results of Section N

The aim of this section is to prove the results stated in Section N of the Introduction. We
start by showing the strong concavity of the function G : H+(Ω)→ R.
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Proposition 15.1. For every H ∈ H+(Ω) and K ∈ H(Ω) we have

d2G(H) · (K,K) ≤ 0, (15.1)

with equality if and only if K belongs to the line RH.

Proof. The inequality (15.1) is an immediate consequence of Lemma 1.1. By the same
lemma, the equality holds in (15.1) if and only if

∇2K = u∇2H

for some function u : Ω→ R. From the fact that ∇2H is everywhere invertible, we deduce
that u is smooth. We rewrite the above identity using partial derivatives as

∂i∇K = u ∂i∇H ∀i = 1, . . . , 2n.

By differentiating once more we obtain

∂j∂i∇K = ∂ju ∂i∇H + u ∂j∂i∇H.

By subtracting from the above identity the analogous one which is obtained by exchanging
i and j we find, by the symmetry of third derivatives of H and K,

∂ju ∂i∇H − ∂iu ∂j∇H = 0.

For every i 6= j the vectors ∂i∇H and ∂j∇H are linearly independent, because the Hessian
matrix of H is invertible. Therefore, ∂iu = ∂ju = 0 for all i 6= j. We conclude that all
partial derivatives of u vanish, so u is a constant function and

∇2K = c∇2H

for some real number c. It follows that

K = cH + v (15.2)

for some affine function v. As a linear combination of functions representing elements of
the vector space H(Ω), v is constant on each leaf of the characteristic foliation of ∂Ω. Any
affine function with this property is necessarily constant. Indeed, if v is not constant then
its level sets are given by a family of parallel hyperplanes. Choose a hyperplane V in this
family such that V ∩Ω contains a point z ∈ ∂Ω and Ω is contained in one of the two open
half-spaces determined by V . It follows that V is tangent to ∂Ω at all points in Ω∩V and
hence the characteristic foliation of ∂Ω is linear on the compact set ∂Ω∩V (which possibly
reduces just to the singleton {z}). In particular, the connected component containing z
of the intersection of the leaf through z with V is a closed segment. This implies that the
leaf through z cannot be fully contained in V , which contradicts the fact that V is a level
set of the function v.

We conclude that v is a constant function and hence (15.2) implies that K agrees with
cH up to an additive constant. Therefore, K belongs to the line RH in the quotient space
H(Ω), as we wished to prove.
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In the next proposition we prove the identity (N.3) for the length of positive paths in
Symp0(Ω).

Proposition 15.2. Let φ = {φt}t∈[0,1] be a positive path in Symp0(Ω). Then

lengthG(φ) =
1

vol(Ω)

ˆ
Ω

lengthG({t 7→ dφt(z)}) dz. (15.3)

Proof. Let H ∈ C∞([0, 1]×Ω) be a uniformly convex Hamiltonian generating the path φ.
By differentiating

d

dt
φt(z) = J0∇Ht(φ

t(z)),

we obtain the linearized equation

d

dt
dφt(z) = J0∇2Ht(φ

t(z))dφt(z),

and hence for every z ∈ Ω we have

lengthG({t 7→ dφt(z)}) =

ˆ 1

0

G(J0∇2Ht(φ
t(z))) dt =

ˆ 1

0

(
det∇2Ht(φ

t(z))
) 1

2n dt.

By integrating the above identity over z ∈ Ω, switching the integrals and using the fact
that φt is a volume-preserving diffeomorphism of Ω, we find

ˆ
Ω

lengthG({t 7→ dφt(z)}) dz =

ˆ
Ω

ˆ 1

0

(
det∇2Ht(φ

t(z))
) 1

2n dt dz

=

ˆ 1

0

ˆ
Ω

(
det∇2Ht(φ

t(z))
) 1

2n dz dt =

ˆ 1

0

ˆ
Ω

(
det∇2Ht(z)

) 1
2n dz dt.

On the other hand, by the definition of G we have

lengthG(φ) =

ˆ 1

0

G(Ht) dt =

ˆ 1

0

1

vol(Ω)

ˆ
Ω

(
det∇2Ht(z)

) 1
2n dz dt,

and (15.3) follows.

We can now prove Theorems N.1 and N.3 and Proposition N.5 from the Introduction.

Proof of Theorem N.1. Let z ∈ Ω. The paths dφ(z) = {dφt(z)} and dψ(z) = {dψt(z)}
are positive in Sp(2n) and start at the identity. The assumption that dφt(z) never has
the eigenvalue −1 guarantees that dφt(z) belongs to the positive elliptic region Sp+

ell(2n)
for every t ∈ (0, 1] and the path dφ(z) has Conley–Zehnder index n (for the definition of
the Conley–Zehnder index and the properties which are needed here, see [75]). Being a
positive path, dψt(z) belongs to Sp+

ell(2n) for t > 0 and small enough. Being homotopic to
dφ(z), the path dψ(z) also has Conley–Zehnder index n. This implies that dψt(z) remains
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in Sp+
ell(2n) for every t ∈ (0, 1]. Indeed, the Conley–Zehnder index of any positive path

starting at the identity which exits from the positively elliptic region and enters again in it
is larger than n, as this path must meet the discriminant, i.e. the set of elements in Sp(2n)
having the eigenvalue 1, and each intersection of a positive path with the discriminant
contributes positively to the Conley–Zehnder index.

We conclude that dψt(z) belongs to Sp+
ell(2n) for every t ∈ (0, 1], and in particular does

not have the eigenvalue −1 for every t ∈ [0, 1]. By the former fact together with Theorem
J.1 (i) we obtain the bound

lengthG(dψ(z)) ≤ 2π

n
µ
(
[dψ(z)]

)
=

2π

n
µ
(
[dφ(z)]

)
.

Integration over z ∈ Ω and Proposition 15.2 yield the desired bound

lengthG(ψ) ≤ 2π

n vol(Ω)

ˆ
Ω

µ
(
[dφ(z)]

)
dz =

2π

n
M(φ̃).

Proof of Theorem N.3. Let φ be a positive path of symplectomorphisms extending the path
ψ and let H ∈ C∞([0, 1] × Ω) be a uniformly convex Hamiltonian generating φ. By the
Hölder inequality we obtain the upper bound

lengthG(φ) =
1

vol(Ω)

ˆ 1

0

ˆ
Ω

(
det∇2Ht(z)

) 1
2n dz dt

≤ vol(Ω)−
1
2n

ˆ 1

0

(ˆ
Ω

det∇2Ht(z) dz

) 1
2n

dt,

with equality if and only if

det∇2Ht(z) = c(t) ∀t ∈ [0, 1]. (15.4)

Since the map ∇Ht : Ω → R2n is a diffeomorphism onto its image, the change of variable
formula gives us the identity

ˆ
Ω

det∇2Ht(z) dz = vol
(
∇Ht(Ω)

)
,

and the bound

lengthG(φ) ≤ vol(Ω)−
1
2n

ˆ 1

0

vol
(
∇Ht(Ω)

) 1
2n dt = V(ψ)

follows, with equality if and only if (15.4) holds.

Proof of Proposition N.5. The uniqueness of maximizers of the optimal extension problem
(N.4) follows from the strong concavity of G. Indeed, let φ and φ′ be two positive paths
in Symp0(Ω) extending the same path of diffeomorphisms ψ and having maximal length.
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If H and H ′ are uniformly convex smooth Hamiltonians generating φ and φ′, then by
Proposition 15.1 we have for every t ∈ [0, 1]

G
(1

2
(Ht +H ′t)

)
≥ 1

2
G(Ht) +

1

2
G(H ′t) (15.5)

with equality if and only if H ′t is, up to an additive constant, a constant multiple of Ht.
The Hamiltonian 1

2
(Ht + H ′t) generates a positive path φ′′ which still extends the path ψ

and integrating the above inequality in t we obtain

lengthG(φ
′′) ≥ 1

2
lengthG(φ) +

1

2
lengthG(φ

′) = lengthG(φ).

The fact that φ is a maximizer implies that the above inequality is an equality, and we
deduce that the inequality in (15.5) is an equality for every t ∈ [0, 1]. Therefore,

H ′t(z) = a(t)Ht(z) + b(t) ∀(t, z) ∈ [0, 1]× Ω,

for suitable numbers a(t) > 0 and b(t). Since φ and φ′ extend the same path of diffeomor-
phisms of ∂Ω, we have ∇H ′t(z) = ∇Ht(z) for every (t, z) ∈ [0, 1] × ∂Ω, so in the above
identity we must have a(t) = 1. Then H ′ and H differ by a function of t and hence define
the same positive path: φ′ = φ.

We conclude this section by describing a relaxation of the problem of maximizing the
functional

F(H) =

ˆ
Ω

(
det∇2H(z)

) 1
2n dz (15.6)

over the set of all uniformly convex smooth functions H : Ω→ R such that

H = K and ∇H = ∇K on ∂Ω, (15.7)

for some fixed uniformly convex smooth functions K : Ω → R. This relaxation and the
arguments for dealing with it are analogous to the study of the first variational problem
for the affine area functional from [87] and [88].

Given a convex function H : Ω → R, we denote by ∂H(z0) the set of its subgradients
at z0 ∈ Ω, i.e.

∂H(z0) := {p ∈ R2n | H(z) ≥ H(z0) + p · (z − z0) ∀z ∈ Ω},

which in the case of a point of differentiability reduces to the singleton {∇H(z0)}. We
consider the set of functions

C(Ω, K) := {H : Ω→ R | H is convex, H|∂Ω = K|∂Ω, ∂H(Ω) ⊂ ∇K(Ω)},

which is readily seen to be compact with respect to the C0(Ω)-topology. By a theorem of
Aleksandrov, convex functions are almost everywhere twice differentiable and hence the
functional F extends to a functional F : C(Ω, K)→ [0,+∞]. Actually, the measure(

det∇2H(z)
) 1

2n dz
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can be shown to be the absolutely continuous part of the Monge–Ampère measure of H,
which associates to any Borel subset E ⊂ Ω the Lebesgue measure of ∂H(E), see [88,
Lemma 2.3]. The functional F is upper semicontinuous on C(Ω, K) with respect to the
C0(Ω)-topology. This is proven in [88, Lemma 6.4], building on the weak continuity of the
Monge–Ampère measure as a function of H (the proof of [88, Lemma 6.4] is for a different
exponent, but the modification for the exponent 1

2n
is straightforward). We conclude that

the functional F is finite and has maximizers in C(Ω, K).
It can also be proven that the Monge–Ampère measure of any maximizer is absolutely

continuous with respect to the Lebesgue measure, by a straightforward modification of
the proof of [88, Lemma 6.5]. Further regularity results for maximizers of the affine area
functional, under the assumption that these maximizers are uniformly convex, are proven
in [88, Theorem 6.6], but we do not know whether analogous results hold also for the
functional F .

Maximizers in C(Ω, K) of the affine area functional are unique, see [88, Theorem 6.5],
but we do not know whether uniqueness also holds for maximizers of F . This is due to
the fact that, unlike the integrand of the affine area functional, the integrand of F is not
uniformly concave, being linear in the radial direction. As a consequence, if we assume
that H,H ′ ∈ C(Ω, K) are maximizers of F , from Lemma 1.1 we deduce that

u(z)∇2H(z) + v(z)∇2H ′(z) = 0 for a.e. z ∈ Ω,

for suitable real functions u and v. If H is uniformly convex and both H and H ′ are three
times differentiable, then the argument of the proof of Proposition 15.1 shows that the
functions u and v must be constant, and by using the boundary conditions we conclude
that H = H ′. Without uniform convexity and higher differentiability assumptions, we do
not know whether uniqueness holds.

i Bi-invariant Lorentz–Finsler metrics on Lie groups

The study of bi-invariant Finsler metrics on Lie groups was initiated in the seventies by
Grove, Karcher and Ruh, see [38]. In this Appendix, we establish a few facts about bi-
invariant Lorentz–Finsler metrics.

Let G denote a Lie group and denote by g the Lie algebra of G, namely the tangent
space of G at the identity e. Given X ∈ g and w ∈ G, we shall use the notation

Xw := dRw(e) ·X ∈ TwG, (i.1)

where Rw : G → G denotes the right multiplication by w. We call X the right-invariant
vector field on G extending X. In other words X (w) = Xw for all w ∈ G. We define the
Lie bracket of two elements X, Y of g by

[X, Y ] = [X ,Y ](e), (i.2)
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where X and Y are the right-invariant extensions of X and Y . The bracket on the right-
hand side is the bracket of two vector fields on the manifold G, which is given by the
convention

[X ,Y ] = −LXY , (i.3)

where L denotes the Lie derivative of vector fields, see the discussion in Section G of the
Introduction.

Let (K,F ) be a Lorentz–Finsler structure on a Lie group G, in the sense of Definition
A.1 in the Introduction, and assume that (K,F ) is bi-invariant. In this Appendix, we
actually do not need K∩−K to coincide with the zero-section and F to extend continuously
to the closure of K by the zero extension on the boundary, because we are going to consider
only timelike curves.

The pair (K,F ) is uniquely determined by its restriction to g, namely by the open
convex cone κ := K∩g and by the smooth function f := F |κ. The cone κ and the function
f are invariant under the adjoint action. This implies that

df(X) · [X, Y ] = 0, ∀X ∈ κ, ∀Y ∈ g. (i.4)

Remark i.1. Let c > 0. By our assumptions on f , the restriction of the map df : κ→ g∗

to the subset {f = c} is injective. Indeed, if X and Y are distinct elements in {f = c},
then the segment joining them is contained in the convex set κ and, by the positive 1-
homogeneity of f and the condition f(X) = f(Y ), the vector Y − X is not collinear to
X + t(Y −X) for any t ∈ R. Therefore, the smooth function

g : [0, 1]→ R, g(t) = f(X + t(Y −X))

satisfies
g′′(t) = d2f(X + t(Y −X)) · (Y −X, Y −X) < 0,

and hence
df(X) · (Y −X) = g′(0) > g′(1) = df(Y ) · (Y −X).

In particular, df(X) 6= df(Y ), proving that the restriction of df to {f = c} is indeed
injective.

To any continuously differentiable curve w : [0, 1]→ G we can associate the continuous
curve X : [0, 1] → g that is defined by w′ = Xw, see (i.1). Then w is timelike if and only
if X takes values in κ. The Lorentz–Finsler length of the curve w has then the form

lengthF (w) :=

ˆ 1

0

F (w′(t)) dt =

ˆ 1

0

f(X(t)) dt.

In order to compute the first variation of the functional lengthF , we need the following
lemma, whose proof is adapted from [12, Proposition I.1.1].

Lemma i.2. Let ws : [0, 1] → G be a smooth one-parameter family of continuously differ-
entiable paths with s ∈ (−ε, ε). Define paths Xs, Ys in g by ∂tws = Xsws and ∂sws = Ysws.
Then,

∂sXs = ∂tYs + [Ys, Xs].
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Proof. Define G̃ := G× (−ε, ε)× [0, 1] and consider the standard projection

p : G̃→ (−ε, ε)× [0, 1], p(w, s, t) = (s, t).

The path ws yields naturally a section of p

w̃ : (−ε, ε)× [0, 1]→ G̃, w̃(s, t) = (ws(t), s, t),

which is an embedded surface in G̃ transverse to p. For every (s, t) ∈ (−ε, ε) × [0, 1], let
X(s,t) and Y(s,t) be the extensions of Xs(t) and Ys(t) as right-invariant vectors fields on G.

Thus, the lifted vector fields on G̃

X̃ := X + ∂t and Ỹ := Y + ∂s

are tangent to w̃. It follows that the Lie bracket of vector fields [X̃ , Ỹ ] is also tangent to
w̃ and hence transverse to p. On the other hand,

p∗[X̃ , Ỹ ] = [p∗X̃ , p∗Ỹ ] = [∂t, ∂s] = 0,

namely [X̃ , Ỹ ] is tangent to the fibers of p. We conclude that

[X̃ , Ỹ ] = 0 .

On the other hand, using the convention (i.3) we get

[X̃ , Ỹ ] = [X + ∂t,Y + ∂s] = [X ,Y ]− ∂tY + ∂sX .

Therefore, for all (s, t) ∈ (−ε, ε)× [0, 1] we have the following equality of vector fields on G

∂sX(s,t) = ∂tY(s,t) + [Y(s,t),X(s,t)] .

Evaluating this equality at the identity e ∈ G and using (i.2), we arrive at the desired
formula.

The differential of the functional lengthF at some timelike curve w : [0, 1] → G is
defined on the space of sections of the vector bundle w∗(TG). Using the group structure,
we identify these sections with curves in the Lie algebra g: a curve Y : [0, 1] → g defines
the section Y w. The differential of lengthF at w can hence be seen as a linear functional
on curves in g and we use the notation

d lengthF (w) · Y :=
d

ds

∣∣∣
s=0

lengthF (esYw),

where Y : [0, 1]→ g.
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Proposition i.3 (First variation). Let w : [0, 1] → G be a timelike curve with tangent
vector field w′ = Xw, where X : [0, 1]→ κ. Then the first variation of lengthF at w in the
direction Y : [0, 1]→ g has the form

d lengthF (w) · Y =

ˆ 1

0

df(X(t)) · Y ′(t) dt.

In particular, d lengthF (w) · Y = 0 for every smooth Y with compact support in (0, 1) if
and only if w is the reparametrization of an autonomous path, i.e.,

w(t) = eτ(t)Aw(0)

for some A ∈ κ and for some continuously differentiable function τ with τ ′ > 0 and
τ(0) = 0.

Proof. Set
ws(t) := esY (t)w(t).

Then
∂sws = Y ws.

We define the paths Xs by
∂tws = Xsws,

so that X0 = X. Using Lemma i.2 and the invariance of f by the adjoint action, see (i.4),
we compute

d

ds
lengthF (ws) =

d

ds

ˆ 1

0

f(Xs) dt =

ˆ 1

0

df(Xs) · ∂sXs dt

=

ˆ 1

0

(
df(Xs) · Y ′ + df(Xs) · [Y,Xs]

)
dt =

ˆ 1

0

df(Xs) · Y ′ dt.
(i.5)

By evaluating at s = 0 we find the desired formula.
Now suppose that the first variation of lengthF at w in the direction Y vanishes for

every smooth Y with compact support in (0, 1). By a time reparametrization, which leaves
the critical set of lengthF invariant, we assume that f(X(t)) = c > 0 does not depend on t.
The Du Bois-Reymond lemma tells us that df(X(t)) is constant in t. Thanks to Remark
i.1, we conclude that X(t) = X0 is constant. It follows that the path t 7→ e−tX0w(t) = w0

is constant and hence w(t) = etXw0 as was to be shown.

We deduce that timelike geodesics are precisely the curves of the form

w(t) = etXw0,

where X ∈ κ and w0 ∈ G. We can now compute the second variation of lengthF at a
timelike geodesic, again seen as symmetric bilinear form on the space of curves in g.
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Proposition i.4 (Second variation). Let w : [0, 1] → G, w(t) = etXw0, with X ∈ κ and
w0 ∈ G, be a timelike geodesic. Then the second variation of lengthF at w is the symmetric
bilinear form

d2 lengthF (w) · (Y1, Y2) =

ˆ 1

0

d2f(X) · (Y ′1 + [Y1, X], Y ′2) dt, (i.6)

for every pair of curves Y1, Y2 : [0, 1]→ g vanishing at t = 0, 1.

Proof. Consider a curve Y : [0, 1]→ g vanishing at t = 0, 1, and let ws, Xs and Ys be as in
the proof of Proposition i.3. Differentiating (i.5) with respect to s, we have by Lemma i.2

d2

ds2
lengthF (ws) =

ˆ 1

0

d2f(Xs) · (∂sXs, Y
′) dt =

ˆ 1

0

d2f(Xs) · (Y ′ + [Y,Xs], Y
′) dt.

Evaluating at s = 0, we get the formula

d2 lengthF (w) · (Y, Y ) =

ˆ 1

0

d2f(X) · (Y ′ + [Y,X], Y ′) dt.

This is precisely the quadratic form that is induced by the bilinear form (i.6). In order
to conclude, we must show that the bilinear form (i.6) is symmetric. Since the second
differential of f is symmetric, we just need to prove the symmetry of the bilinear form

(Y1, Y2) 7→
ˆ 1

0

d2f(X) · ([Y1, X], Y ′2) dt.

By differentiating (i.4) we find

d2f(X) · (Z, [Y,X]) + df(X) · [Y, Z] = 0, ∀X ∈ κ, ∀Y, Z ∈ g,

and henceˆ 1

0

d2f(X) · ([Y1, X], Y ′2) dt =

ˆ 1

0

df(X) · [Y ′2 , Y1] dt

=

ˆ 1

0

df(X) · [Y ′1 , Y2] dt =

ˆ 1

0

d2f(X) · ([Y2, X], Y ′1) dt,

where the middle equality follows from Lemma i.3 applied to the critical curve X, thanks
to the fact that [Y ′2 , Y1] and [Y ′1 , Y2] differ by the derivative of the curve [Y2, Y1], which
vanishes at 0 and 1.

Remark i.5. Propositions i.3 and i.4 hold also when G is an infinite dimensional group
of diffeomorphisms of a manifold M . In this case, g is a subspace of the space of smooth
vector fields on M and the Lie bracket on g is the Lie bracket of vector fields on M using the
sign convention (i.3). Indeed, if G is a group of diffeomorphisms, Lemma i.2 is proved by
Banyaga in [12, Proposition I.1.1] (using the sign convention opposite to (i.3)). Moreover,
the argument in Remark i.1, which is used in the proof of Proposition i.3, applies also when
g is infinite dimensional and g∗ is its algebraic dual space.
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Let w(t) = etXw0 be a timelike geodesic. Because of the invariance of lengthF by time
reparametrizations, d2 lengthF (w) has an infinite dimensional kernel: indeed, the fact that
RX is in the kernel of d2f(X) implies any curve of the form Y (t) = u(t)X, with u a real
function vanishing at t = 0, 1, is in the kernel of d2lengthF (w).

In order to get rid of this invariance by reparametrizations, let us consider the linear
splitting

g = gX ⊕ RX where gX := ker df(X),

and correspondingly

H1
0 ((0, 1), g) = H1

0 ((0, 1), gX)⊕H1
0 ((0, 1),RX),

where H1
0 ((0, 1), V ) denotes the Sobolev space of absolutely continuous curves in the vec-

tor space V vanishing at the end-points and having square integrable derivative. The
symmetric bilinear form d2 lengthF (w) is continuous on H1

0 ((0, 1), g) and has an infinite
dimensional kernel containing the second space of the above splitting. By restricting it to
the first space, we obtain the continuous symmetric bilinear form

HX : H1
0 ((0, 1), gX)×H1

0 ((0, 1), gX)→ R,

HX(Y1, Y2) := d2 lengthF (w) · (Y1, Y2) =

ˆ 1

0

d2f(X) · (Y ′1 + [Y1, X], Y ′2) dt.

Since d2f(X) is negative definite on gX , the space H1
0 ((0, 1), gX) admits the equivalent

inner product

(Y1, Y2)H1
0

:= −
ˆ 1

0

d2f(X) · (Y ′1 , Y ′2) dt

and we denote by HX the linear selfadjoint operator on H1
0 ((0, 1), gX) representing HX

with respect to this inner product.
Thanks to the compact embedding of H1

0 into H1/2, HX is a compact perturbation of
minus the identity. Hence, the spectrum of HX consists of −1 and of a sequence of real
eigenvalues of finite multiplicity converging to −1. Hence, only a finite number of eigen-
values are non-negative and each of these has finite multiplicity. Therefore, the symmetric
bilinear form HX has finite dimensional kernel and finite co-index. The eigenvectors cor-
responding to the eigenvalue zero are exactly the Jacobi field vanishing at the boundary
of the interval [0, 1].

In general, the eigenvalues are precisely the real numbers λ such that the symmetric
bilinear form

((HX − λI)Y1, Y2)H1
0

=

ˆ 1

0

d2f(X) ·
(
(1 + λ)Y ′1 + [Y1, X], Y ′2

)
dt

has a non-trivial kernel. By a standard regularity argument, integration by parts and (i.4),
we deduce that Yλ ∈ H1

0 ((0, 1), gX) lies in the kernel of HX−λI if and only if it is a smooth
solution of the equation

(1 + λ)Y ′′λ = [X, Y ′λ]. (i.7)
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The solutions of this equation satisfying Yλ(0) = 0 can be explicitly written as

Yλ(t) = (1 + λ)YZ( 1
1+λ

t), YZ(t) :=

ˆ t

0

Ad(eτX) · Z dτ, (i.8)

for some Z ∈ gX . Requiring that Yλ(1) = 0 however implies that the condition Z ∈ gX is
redundant since from (i.7) and the bi-invariance of f , see (i.4), the function t 7→ df(X) ·
Yλ(t) is affine and therefore it must vanish identically since it vanishes for t = 0, 1. Thus,
the eigenspace with eigenvector λ is isomorphic to the vector space

Vλ :=
{
Z ∈ g

∣∣ YZ( 1
1+λ

) = 0
}
.

The fields YZ correspond to the eigenvalue 0 and yields therefore the Jacobi fields along
W . As usual, we call t ∈ [0, 1] a conjugate instant along the timelike geodesic W if the
space

V0(t) := {Z ∈ g | YZ(t) = 0}

is non-zero and we call m(t) := dimV0(t) the multiplicity of the conjugate instant. For
λ > 0, Vλ = V0( 1

1+λ
) by definition, thus Vλ is non-trivial if and only if 1

1+λ
is a conjugate

instant and dimVλ = m(t). Since the function λ 7→ 1
1+λ

is a bijection between (0,∞) and
(0, 1), we get the co-index formula

co-indHX :=
∑
λ>0

dimVλ =
∑
t∈(0,1)

m(t). (i.9)

We summarize the above discussion into the following proposition.

Proposition i.6. Let w(t) = etXw0, X ∈ κ, w0 ∈ G be a timelike geodesic. Then
the symmetric bilinear form d2 lengthF (w) on H1

0 ((0, 1), g) has finite co-index and an in-
finite dimensional kernel containing H1

0 ((0, 1),RX). The kernel of its restriction HX to
H1

0 ((0, 1), gX) is finite dimensional and coincides with the space of Jacobi vector fields along
w, i.e., solutions Y : [0, 1]→ g of the equation

Y ′′ = [X, Y ′]

vanishing at t = 0 and t = 1. Moreover

co-ind d2lengthF (w) = co-indHX =
∑

t∗∈(0,1)

m(t∗),

where m(t∗) denotes the dimension of the space of Jacobi vector fields Y such that Y (0) =
Y (t∗) = 0.

The Morse co-index of the timelike geodesic segment w : [0, 1]→ G is defined to be the
co-index of the second differential of lengthF at w:

co-ind(w) := co-ind d2 lengthF (w) = co-indHX .
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ii Some facts about the Lie algebra of the symplectic

group

We recall that sp+(2n) is defined as the subset of the Lie algebra sp(2n) consisting of those
endomorphisms X for which the symmetric bilinear form (u, v) 7→ ω0(u,Xv) is positive
definite. In this appendix we prove a characterization of the elements of sp+(2n) which is
used extensively in this article. Here, κ = −iω0 denotes the Krein form on C2n, see Section
J in the Introduction, and a basis u1, . . . , un, v1, . . . , vn of C2n is said to be κ-unitary if

κ(uj, uj) = 1 = −κ(vj, vj) ∀j, κ(uj, uh) = κ(vj, vh) = 0 ∀j 6= h, κ(uj, vh) = 0 ∀j, h.

Moreover, such a basis is said to be real if vj = uj for every j.

Proposition ii.1. Let X be an endomorphism of R2n. Then the following facts are equiv-
alent:

(i) X belongs to sp+(2n);

(ii) there exists a κ-unitary real basis w1, . . . , wn, w1, . . . , wn of C2n such that

Xwj = iθjwj, Xwj = −iθjwj ∀j ∈ {1, . . . , n}. (ii.1)

for some positive numbers θj;

(iii) there is an X-invariant symplectic splitting of R2n into n symplectic planes, i.e.,

R2n =
n⊕
j=1

Vj, dimVj = 2, ω0(u, v) = 0 ∀u ∈ Vj, v ∈ Vh with j 6= h,

with respect to which X has the form

X =
n⊕
j=1

θjJj, (ii.2)

where each θj is a positive number and each Jj : Vj → Vj is an ω0-compatible complex
structure on the symplectic plane Vj.

Proof. (i) ⇒ (ii). Being an element of sp(2n), X is real and κ-skew-Hermitian. The latter
fact implies that −iX is κ-Hermitian. Moreover, the fact that X is in sp+(2n) implies that

κ(−iXw,w) = −ω0(Xw,w) = ω0(w,Xw) > 0 ∀w ∈ C2n \ {0}.

Therefore, the hypersurface

Σ := {w ∈ C2n | κ(−iXw,w) = 1}
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is compact. Let z1 ∈ Σ be a maximizer for the restriction of the real function z 7→ κ(z, z)
to Σ. Since this real function is somewhere positive on Σ, we have κ(z1, z1) > 0. By the
Lagrange multipliers theorem, we have

−iXz1 = θ1z1

for some θ1 ∈ R. By taking the κ-product with z1 we obtain

1 = κ(−iXz1, z1) = θ1κ(z1, z1),

so θ1 = 1/κ(z1, z1) is positive. Setting w1 :=
√
θ1z1 we have

Xw1 = iθ1w1, κ(w1, w1) = 1.

Since X is real, we also have
Xw1 = −iθ1w1.

From the identity
κ(w,w′) = −κ(w,w′) ∀w,w′ ∈ C2n,

we obtain
κ(w1, w1) = −1

and, together with the fact that κ is Hermitian,

κ(w1, w1) = κ(w1, w1) = −κ(w1, w1) = −κ(w1, w1),

which implies
κ(w1, w1) = 0.

By considering the κ-orthogonal complement to the 2-dimensional complex subspace gen-
erated by the vectors w1 and w1, on which κ has signature (n − 1, n − 1), we can iterate
the above argument and produce the desired real unitary basis of eigenvectors of Y .

(ii) ⇒ (iii). Denote by Vj ⊂ R2n the plane that is obtained from intersecting the 2-
dimensional conjugation invariant complex subspace spanned by wj and wj with R2n. The
fact that the real basis w1, . . . , wn, w1, . . . , wn is κ-unitary implies that the Vj’s form a
symplectic splitting of R2n. By (ii.1), this splitting is X-invariant and Jj := θ−1

j X|Vj is a

complex structure on Vj. For every u = αwj + αwj, v = βwj + βwj ∈ Vj we have

ω0(u, Jjv) = ω0(αwj + αwj, βiwj − βiwj) = κ(αwj + αwj, βwj − βwj) = 2 Re (αβ),

so the bilinear form u, v 7→ ω0(u, Jjv) is symmetric and positive definite on Vj. We conclude
that Jj is an ω0-compatible complex structure on Vj.

(iii) ⇒ (i). Writing any u, v ∈ R2n as

u =
n∑
j=1

uj, v =
n∑
j=1

vj,
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with uj, vj ∈ Vj for every j, we have

ω0(u,Xv) =
n∑
j=1

θj ω0(uj, Jjvj).

The fact that each θj is positive and each bilinear form (u, v) 7→ ω0(u, Jjv) is symmetric
and positive definite on Vj implies that the bilinear form (u, v) 7→ ω0(u,Xv) is symmetric
and positive definite on R2n. Therefore, X belongs to sp+(2n).

We conclude this section by stating the analogous characterization for the elements
of Sp+

ell(2n), the open subset of Sp(2n) consisting of elliptic automorphisms all of whose
eigenvalues are Krein-definite and such that the Krein-positive ones have positive imaginary
part.

Proposition ii.2. The set

sp+
ell(2n) := {X ∈ sp+(2n) | σ(X) ⊂ (−π, π)i}

is contractible and exp : sp(2n)→ Sp(2n) maps it diffeomorphically onto Sp+
ell(2n). For an

automorphism W of R2n, the following facts are equivalent:

(i) W belongs to Sp+
ell(2n);

(ii) there exists a κ-unitary real basis w1, . . . , wn, w1, . . . , wn of C2n such that

Wwj = eiθjwj, Wwj = e−iθjwj ∀j ∈ {1, . . . , n}.

for some numbers θj ∈ (0, π);

(iii) there is a W -invariant symplectic splitting of R2n into n symplectic planes, i.e.,

R2n =
n⊕
j=1

Vj, dimVj = 2, ω0(u, v) = 0 ∀u ∈ Vj, v ∈ Vh with j 6= h,

with respect to which W has the form

W =
n⊕
j=1

eθjJj ,

where each θj is in the interval (0, π) and each Jj : Vj → Vj is an ω0-compatible
complex structure on the symplectic plane Vj.

Proof. By Proposition ii.1, the space sp+
ell(2n) is precisely the set of all endomorphisms

X : R2n → R2n of the form

X =
n⊕
j=1

θjJj,
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where the direct sum refers to a symplectic splitting of R2n into planes V1, . . . , Vn, each θj
belongs to the interval (0, π), and each Jj : Vj → Vj is an ω0-compatible complex structure
on the symplectic plane Vj. By moving the numbers θj so that they all become equal to
π/2, this space is readily seen to be homotopically equivalent to the space of ω0-compatible
complex structures on R2n, which is well-known to be contractible, see e.g., [61, Lemma
2.5.5]. This shows that the space sp+

ell(2n) is contractible.
The exponential map is a local diffeomorphism on it thanks to Theorem 6.1. Let X and

X ′ be elements of sp+
ell(2n) such that eX = eX

′
. We wish to show that X = X ′. Thanks to

Proposition ii.1, by considering the spectral decomposition of X and X ′ we are reduced to
the case in which X = θJ and X = θJ ′, where θ ∈ (0, π) and J, J ′ are two ω0-compatible
complex structures on a symplectic vector subspace V of (R2n, ω0). The identities

eθJ = (cos θ)I + (sin θ)J, eθJ
′
= (cos θ)I + (sin θ)J ′,

and the fact that sin θ 6= 0 imply that J = J ′ and hence X = X ′. This proves that the
exponential map restricts to a diffeomorphism on the contractible open set sp+

ell(2n).
If X is in sp+

ell(2n), then eX belongs to the set Sp+
ell(2n) as defined in Section J of the

Introduction. Conversely, the fact that Krein-definite eigenvalues are semisimple (see [27,
Chapter I, Proposition 7]), implies that any W in Sp+

ell(2n) is semisimple. The equivalence
of (i), (ii) and (iii) can now be deduced from the normal form of semisimple symplectic
matrices, see e.g. [1, Section 1.3.2]. In particular, (iii) shows that any W in Sp+

ell(2n) is the
exponential of some X in sp+

ell(2n). This concludes the proof.

iii Contact Hamiltonians

In this appendix, we collect for the reader’s convenience some basic facts about the iden-
tification between contact vector fields and Hamiltonian functions.

Let ξ be a co-oriented contact structure on the closed manifold M and let α be a contact
form on M defining ξ. The map

cont(M, ξ)→ C∞(M), X 7→ ıXα, (iii.1)

is invertible. Indeed, its inverse is the map

C∞(M)→ cont(M, ξ), H 7→ XH ,

where XH is the unique vector field satisfying the identities

ıXHα = H, ıXHdα = −dH +
(
ıRαdH

)
α.

Here, Rα denotes the Reeb vector field of α. See [34, Theorem 2.3.1]. The function H is
the contact Hamiltonian defining the contact vector field XH .

Remark iii.1. The injectivity of the map (iii.1) implies that the only contact vector field
which is a section of the contact structure ξ is the zero vector field.
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If H ∈ C∞(M) is positive, then H−1α is a contact form defining ξ. Therefore, its Reeb
vector field is a contact vector field and from the identity

ıRH−1α
α = HıRH−1α

(H−1α) = H

and the injectivity of (iii.1) we deduce the identity

XH = RH−1α. (iii.2)

This identity implies that the elements of cont+(M, ξ) are precisely the Reeb vector fields
of contact forms defining ξ.

The adjoint action of Cont(M, ξ) on cont(M, ξ) is given by the push-forward

AdφX = φ∗X.

In terms of the contact Hamiltonians, this action reads

φ∗XH = XK where K := f−1φ∗H, (iii.3)

and the function f ∈ C∞(M) is defined by

φ∗α = fα.

Indeed, this follows from the chain of identities

fK = fıXKα = ıXK (fα) = ıφ∗XH (φ∗α) = φ∗
(
ıXHα

)
= φ∗H.

In this article, the Lie bracket of two vector fields is defined by the non-standard sign
convention

[X, Y ] = −LXY,

see the discussion in Section G from the Introduction. The Lie bracket of two contact
vector fields is a contact vector field, and the contact Poisson bracket {H,K} ∈ C∞(M)
of two functions H,K ∈ C∞(M) is defined by the identity

X{H,K} = [XH , XK ].

One can show that
{H,K} = dH(XK)− dK(Rα)H , (iii.4)

see [61, Remark 3.5.18].
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symplectique, Comment. Math. Helv. 53 (1978), 174–227.

[13] J. Barge and E. Ghys, Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), 235–265.

[14] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian geometry, Marcel
Dekker, inc., New York, 1996.

[15] G. Benedetti and J. Kang, A local contact systolic inequality in dimension three, J.
Eur. Math. Soc. (JEMS) 23 (2021), 721–764.

[16] P. Bernard and S. Suhr, Lyapounov functions of closed cone fields: from Conley theory
to time functions, Comm. Math. Phys. 359 (2018), 467–498.

99



[17] M. Bhupal, A partial order on the group of contactomorphisms of R2n+1, Turkish J.
Math. 25 (2001), 125–135.

[18] M. Bialy and L. Polterovich, Optical Hamiltonian functions, Geometry in partial dif-
ferential equations, World Sci. Publ., River Edge, NJ, 1994, pp. 32–50.
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[51] M. G. Krĕın, A generalization of certain investigations of A. M. Lyapunov on linear
differential equations with periodic coefficients, Doklady Akad. Naouk. SSSR (N.S.)
73 (1950), 445–448.
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