CONTINUITY OF ENTROPY FOR ALL o-DEFORMATIONS OF AN
INFINITE CLASS OF CONTINUED FRACTION TRANSFORMATIONS

KARIANE CALTA, COR KRAAIKAMP, AND THOMAS A. SCHMIDT

ABSTRACT. We extend the results of our 2020 paper in the Annali della Scuola Normale
Superiore di Pisa, Classe di Scienze. There, we associated to each of an infinite family
of triangle Fuchsian groups a one-parameter family of continued fraction maps and showed
that the matching (or, synchronization) intervals are of full measure. Here, we find planar
extensions of each of the maps, and prove the continuity of the entropy function associated
to each one-parameter family.

We also introduce a notion of “first pointwise expansive power” of an eventually expansive
interval map. We prove that for every map in one of our one-parameter families its first point-
wise expansive power map has its natural extension given by the first return of the geodesic
flow to a cross section in the unit tangent bundle of the hyperbolic orbifold uniformized by the
corresponding group. We conjecture that this holds for all of our maps. We give numerical
evidence for the conjecture.

1. INTRODUCTION

Shortly after the introduction at the end of the 1950s of the Kolmogorov—Sinai measure
theoretic entropy, hereafter simply entropy, Rohlin [30] introduced the notion of the natural
extension of a dynamical system. In briefest terms, the natural extension is the minimal invert-
ible dynamical system of which the original system is a factor under a surjective map. Rohlin
showed that the original system and its natural extension share entropy values.

At least since the 1977 [29], natural extensions have been exploited to determine various
properties of continued fractions and related interval maps. In particular, the continuity of the
entropy function on the parameter interval for Nakada’s a-continued fractions, of the 1981 [27],
was proven using natural extensions. Initiated in [27], this approach was pursued in [20], with a
further significant step provided in 2008 by [24], who conjectured that continuity holds on the
full parameter interval. The conjecture was proven in 2012 independently by [12] and [23].

A common technique in those 2012 proofs is the use of ‘matching’ (also known in the literature
as: synchronization, cycle property, etc.). On a matching parameter interval, for each map the
orbits of endpoints of the interval of definition meet one another in finitely many steps and do
so in a common fashion; planar models of the natural extensions vary continuously over the
interval. This causes the entropy to change continuously along these parameter intervals.

Katok-Ugarcovici [18] introduced the family of (a, b)-continued fraction maps and determined
the full subset of its two-dimensional parameter set for which matching occurs; see also [11], [19].
These continued fractions, as also the Nakada family, are associated to the modular group
PSL3(Z). To each of the triangle Fuchsian groups known as the Hecke groups, [14] associated a
one-parameter family of continued fraction maps and began the study of their entropy functions;
see also [21]. In [§], to each of another infinite family of triangle Fuchsian groups we associated
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a one-parameter family of continued fraction maps and determined the set of matching intervals
(there called “synchronization intervals”).

Series [31] showed that the regular continued fraction interval map is a factor of the first
return of the geodesic flow to a cross section in the unit tangent bundle of the hyperbolic
orbifold uniformized by the modular group. Luzzi and Marmi [24] conjectured that this is also
true for all of the Nakada a-continued fraction maps. Using the 2012 results on the entropy
function, this was proven in [4]. Related results for (a, b)-continued fractions maps, using coding
of geodesics, can be found in [19].

See § for more on our motivation for this project.

1.1. Main results. The bulk of this paper is devoted to determining explicit planar natural
extensions for the infinite family of continuous deformations of interval maps defined and studied
in [§]. We give detailed descriptions of candidate domains for the planar natural extensions for
maps parametrized along matching intervals; these candidates are bijectivity domains for the
planar two-dimensional map associated to the given interval map. This is fairly straightforward
for small values of «, see §[4] [B} but rather intricate for larger values, see § [T} With these
domains in hand, we can prove both that they do indeed form the planar natural extensions and
furthermore that their appropriate limits give natural extensions for the remaining maps. The
explicit natural extensions €2, , are key to proving the following dynamical properties of the
systems of the interval maps. (The basic terminology and notation of [§] are recalled in §§

and [7.1])

Theorem 1. Fizn > 3. Fora € (0,1), let pg be the normalization of p to a probability measure
on Qo = Q.a, and B, denote the Borel sigma algebra on Q. Then the system (Ta, Qa, B, la)
is the natural extension of (Tw, Lo, Bu,Va), where v, is the marginal measure of po, and B, the
Borel sigma algebra on 1. Furthermore, both systems are ergodic.

For the proof of the theorem, as well as the following step in its proof, we rely upon the
theoretical tools established in [9].

Proposition 2. Every T,, o with a € (0,1) is eventually expansive.

The detailed knowledge of the domains €2, allows us to prove the following.
Theorem 3. For each n > 3, the function o — () is continuous on (0,1).
Theorem 4. For each n > 3, the function a > h(T,)u(Qy) is constant on (0,1).

The previous two results immediately imply our main result.

Theorem 5. The function o — h(T,) is continuous on (0,1).

We introduce the notion of “first pointwise expansive power” of an eventually expansive
interval map, see Definition Numerical evidence leads us to the following conjecture. See,
say, [25] for related background.

Conjecture 6. For all n > 3 and for all a € (0,1) we conjecture that the first pointwise
expansive power of T, o has its natural extension given by the first return of the geodesic flow
to a cross section in the unit tangent bundle of the hyperbolic orbifold uniformized by G,,.

We prove the following, where the “set of Mobius transformations” of a piecewise Mobius
interval map T' denotes the set of Mobius transformations required to define 7.

Theorem 7. Suppose that the set of Mdbius transformations of a piecewise Mobius interval
map T and its first pointwise expansive power U generate the same Fuchsian group G. Suppose
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further that the unit tangent bundle of G\H has finite volume equal to the product h(T) p(£2).
Then there is a cross section in the unit tangent bundle of G\H to the geodesic flow, for which
the first return map of the geodesic flow gives the natural extension of the system of U.

From this last, the conjecture is equivalent to the following.

Conjecture 8. For alln > 3 and for all oo € (0,1) one has that h(Ty) 1(Qy) equals the volume
of the unit tangent bundle of the hyperbolic orbifold uniformized by the triangle group G,,.

We report on numerical corroboration of this latter conjecture in § and also prove the
case when n = 3.

Theorem 9. Conjecture[8, and therefore also Conjecture [, holds when n = 3.

Conventions Throughout, we will allow ourselves the minor abuse of using adjectives such as
injective, surjective and bijective to mean in each case up to measure zero, and thus similarly
where we speak of disjointness and the like we again will assume the meaning being taken to
include the proviso “up to measure zero” whenever reasonable. For legibility, we suppress various
subscripts, trusting that this causes no confusion for the reader. We interchangeably use our old
term “synchronization” and the now more standard “matching”. Finally, it is convenient to refer
to the complement of the closure of the synchronization intervals as the “non-synchronization”
points.

1.2. Overarching questions. We undertook the project of which this is the third paper mo-
tivated by a desire to gather more information to hopefully contribute to eventual answers to
the following questions.

Our core motivation springs from the connection between Diophantine approximation and
metric number theory. The central result is that of Lévy [22], which can be seen as relating the
entropy value of the regular continued fractions map to a value determined by the convergents
to = of almost every z. See say [3, 28] for explicit formulations of this. Thus, for any continued
fraction-like map, we desire to know its entropy. For any family of such maps, we desire to know
properties such as continuity of the function that gives the entropy values of the maps.

The question presents itself: Are their properties of a family of interval maps which ensure
that the associated entropy map is continuous? To date, it seems that only direct argumentation,
as we give here, has resulted in proofs of such continuity. We are most familiar with the proofs
of continuity of this function in the setting of the Nakada [27] a-continued fractions which are
directly related to the modular group, and in the setting of their generalizations to similar
maps related to each of the Hecke groups, [I4] 2I]. The proofs there center on planar natural
extensions for the interval maps; with the following Steps: (1) the natural extensions vary nicely
as geometric objects on ‘certain’ parameter intervals, (2) the natural extensions (2 in fact vary
continuously on the full parameter space, (3) the normalizing constant p(£2) for the mass of each
of these natural extensions then varies continuously, (4) the product of the entropy h(T) of each
map with the normalizing constant for the measure of the natural extension defines a constant
function on the parameter space: h(T)u(f2) is constant.

The ‘certain’ parameter intervals mentioned above have to date been intervals on which
‘matching’ (or, synchronization, cycle property, etc.) occurs. On such an interval, for each map
the orbits of endpoints of the interval of definition meet one another in finitely many steps.
A second question arises: Are their properties of a family of interval maps, parametrized by
an interval, which ensure that matching intervals exist? That they are of full measure? We
ourselves tend towards the use of the technique of ‘quilting’ [21], which directly shows Step (1)
at least locally. In general, Step (2) requires refined analysis (in the case of ‘small o’ our very
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detailed analysis is contained in three sections, beginning with §. Upon showing finiteness of
the normalizing constants, Step (3) follows. Step (4) results from successful use of Abramov’s
formula for entropy, for example see §

Alternately, if the family of maps is associated to a Fuchsian group uniformizing a hyperbolic
surface (or orbifold) of finite volume, one can hope to show that each of the interval maps has an
extension given by the return to a cross section by the geodesic flow on the unit tangent bundle
of the surface. It then follows from the ergodicity of this flow with respect to the standard
measure that the integral which appears in Rohlin’s formula is equal to the quotient of the
volume of the unit tangent bundle by the normalizing constant. We first saw this in Arnoux’s
[3] (to be precise, in that setting of the regular continued fractions, due to the presence of Mobius
transformations of negative determinant, an extra factor of two belongs in the quotient that we
just mentioned). A third question presents itself: Which interval maps have extensions given
by the return of the geodesic flow to a cross section in the unit tangent bundle of a hyperbolic
surface/orbifold?

Our favorite technique for showing that the first return system to a cross section to the
geodesic flow gives an extension of a given interval map uses “Arnoux’s transversal”, see ([9],
Section 2.5) for a brief overview. For this, the interval map itself must be expansive. However,
for each of our infinitely many groups there is a nonempty parameter subinterval along which
our maps are non-expansive. For each of these, there is a region in the cross section of the
corresponding tangent bundle where our image unit tangent vectors point so that their geodesics
flow backwards; see p. [64] for details. Still, experimentation led us to conjecture that all of our
maps are such that the product of their entropy with the normalizing constant of Step (3)
above is equal to the volume of the unit tangent bundle of the orbifold uniformized by the
group generated by their set of Mobius transformations. Thus our Conjecture [§] see above. In
particular, we realized that there is a way to pointwise “accelerate” any eventually expansive
map so as to obtain a candidate for having an extension given by the first return map of the
geodesic flow to a cross section. This we defined as the first pointwise expansive power of the
map, and Theorem [7] presented itself to us. Having proved it, we have Conjecture[6] Of course,
we also ask for a proof of the conjectures.

In [8] we also defined a one parameter family of interval maps related to each of the groups
denoted there as G, , with n > m > 3. We fully expect that for each of these that matching
occurs on a full measure subset of the parameter interval, as for the case of m = 3 proven in
[8], and even that the tree of words V defined in that paper can play an analogous central role
in the description of the matching intervals. As m increases, the direct analog of the set of
small « occupies an ever decreasing portion of the parameter interval; for large m and large
o, computer experimentation indicates that the dynamics of Tj, o is quite complicated. We
mention in passing that one can also define families of interval maps for each of these groups
where the interval maps also involve Mdébius transformations which are orientation-reversing.
Vaguely, we ask: Can one obtain the analog of the results here for these other families?

1.3. Terse review of notation and terminology. We give a quick review of some of the
notation and terminology from [§]. In fact, we simplify some of that notation as throughout this
paper the index m there is set here to equal 3.

1.3.1. Groups, maps, digits, cylinders, parameter interval partition, “small” «. For integer n >
3 we let v = v, = 2cosm/n and

t:=t,=142cos7/n.
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We use the projective group G,, generated by

1t -1 1
1) a=(y 1)e= (0 )
(We will have no direct use of the matrix B = A~'C of [§].)

Fix n > 3. For each a € [0,1], let fo(cr) = (v — 1)t, () = ot and Iy =1, o = [fo(), T0()).
Our interval maps are piecewise Mobius, of the form

2 Ty =Tho: o), ro(a)] = I, x— AFC'. z
(2) ot

where ¢ € {1,2} is minimal such that C' - 2 ¢ I, and k is the unique integer such that then
AFCY. z € 1,. We call b,(z) = (k,1) the a-digit of such an z, and say that z lies in the cylinder
A, (k,1). To each element of I, we then associate the sequence of its a-digits. The T,-orbits of
the endpoints ¢o(a), ro(cx) are of extreme importance in our discussions, one writes

:[)i,oo) = (kla ll)(kz, l2) .

for the a-digits of £p(«) and replaces the lower bar by an upper bar, E[QLOO) for ro(a). We also
label entries in these orbits by ¢y, #1,... and rg,71,.... The collection of all finite words in the
(k,1) which arise in the expansions of any z € I, form the language L, for T,; any word in
L, is called a-admissible. There is an order, < on the words in the (k,!) such that given «,
for any x1,zo € I, one has 1 < x5 if and only if their a-digits sequences are similarly related
under <. From this, a word is in £, if and only if it lies between b} ) and Eﬁm). See ([8],
Subsection 1.6) for more about this order.

The parameter interval is naturally partitioned, (0, 1] = (0, v,)U[Vn, €n)U[€n, 1], where o < 7,
if Vo € [lo(a), ro(a)] the a-digit (k,1) of x has I =1 and « > €, if and only if both o > ~,, and
the a-digit of £y(a) equals (k,1) with k > 2, see ([§], Figure 4.1) for plots indicating dynamical
behavior related to this partition. We informally refer to the set of o < =, as the small «,
and all others as large a. For small «, we use simplified digits: since [ = 1 we only report the
exponent of A; in this setting we use dﬁ,m),aﬁm) in place of b[oi,oo)?gﬁ,oo)v respectively.

1.3.2. Expansions given words, synchronization intervals, tree of words; for small . For small
a, we define parameter intervals on which an initial portion of the expansion of the ro(«) are
fixed. That is, there is a common prefix of the d[al’oo). Given a word v = ¢1dy -+ -ds_1¢s Of

positive integers, let S(v) = Y7, ¢ + Zj;i d; and for each k € N let
(3) d(k,v) =k, (k+ 1%, (k+1)%-1 k%, when v=cid;---ds_ics.

The corresponding subinterval of parameters is I, = {a | E[al’g(v)] = d(k,v) }; in words, this
is the set of o for which the a-expansion (in simplified digits) of ro(«) has d(k,v) as a prefix.
Thus, setting

(4) Ryp = (ARC) (AFFIC) T2 (ARC) ot - (AP O) (AR O),

for a € Iy, one has T&g(v)(ro(a)) = Ry - ro(a). The left endpoint of I, is denoted (g, one
finds that Ry, - 70(Ckw) = Lo(Ckw). We define Jy » = [Ckw, M) Where with Ly, = C"1ACRy ,
we have Ly, - 70(Mk,v) = ro(Nk,w). Confer ([§], Figure 4.2).

A main result of [§] is that each Jy ., is a synchronization interval: for all « in the interior of
Jkv, the Ty-orbits of ¢o(a) and of ro(a) meet and do so in a common fashion. We furthermore
showed that the complement in (0,7,) of the union of the Jj , is of measure zero. Key to
this was determining a maximal common prefix of the cflﬁm) for o € Jy,. For that, we used

w=w, = (=1)""2 -2 (=1)""3, -2 and for k fixed, we let C = Cx = (—1)"73, -2, w*~! and
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D = Cyy1, and defined d(k,v) = w*,cr=1D% ... Dds—1C¢ (—1)"~2, This is the common prefix,
and also

(5) dﬁk;’o) = wky(/’clflpdl e Dds,lccs’ (71),1,3’ -,

where the overline indicates a period. We denote the length as a word in {—1, —2} of d(k, v) by
S(k,v). There is an expression for Ly, related to d(k,v) in a manner similar to how (4)) relates
Ry to d(k,v). The aforementioned synchronization is of the form

(6) T3+ (rg(a)) = TEO(fo(a)).

The words v that we use form a tree, V. For general v € V and nonnegative integers ¢, we
define a new word ©4(v) = v(v')%"” where v’ is defined — see below — so that any dﬁ’i;’o)

equals d(k,v(v')> ) using the obvious extension of our notation, and v” is an appropriate suffix
of v. The tree is rooted at v = 1, and for words of particularly short length there are special
details of the definition of the O, see ([8], §4.2). There is also a type of self-similarity of V
which allows the explicit definition of the derived words operator 2 such that (again for general
V) P 00,4(v) =040 Z(v). In general 7 decreases the length of words while preserving various
properties, and hence assists in induction proofs. For example, we applied it to prove that every
v € V is a palindrome.

Very similar structures were used in [8] for the large values of a. We will remind the reader
of any of those used in this work, nearer to where they are employed; see §

1.3.3. Two-dimensional maps. The standard number theoretic planar map associated to a Mobius
transformation M is

Tu(z,y) == <M~x,N~y> = (M~x,RMR1 y> for z €Iy, y e R\ {(RMR™')"!. 0},

where R = <(1) _01> Thus, Ta(z,y) = (M -2,—-1/(M - (—=1/y))). An elementary Jacobian
matrix calculation verifies that the measure p on R? given by

dx dy
7 dp = —

is (locally) Tps-invariant.
Fixing n, each T, is piecewise Mdbius, so that there is some partition of its domain into
subintervals, I, = Ug K3, such that T, (z) = Mg - « for all € K3. We thus set

To(z,y) = (MB'JS,RMgR_l-y) for x € Kg, yeR\{N‘l.oo},

We thus consider 7, as being defined on the infinite cylinder fibering over I, and seek a subset
on which this map is bijective.

1.4. Outline of remainder of paper. The bulk of this paper is devoted to explicitly describing
the domains Q0 = Q, = Q, o, and then proving that each is a bijectivity domain, up to measure
zero, for the corresponding two dimensional map. We give the theorem announcing this in §
We collect some main background results in § [3|

In §[4 and 5] we verify that the proposed domains are bijectivity domains, in the case of small
a in synchronization intervals. In § [f] we treat the remaining small «; the section ends with
the proof of the continuity of the function sending small o to the pu-measure of the associated
bijectivity domain.
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§ [7] tersely reviews notation and terminology for the setting of large «. § [§] and [J] are the
analogs of § |4/ and [b| but now for the more challenging setting of large o in the left portion of
synchronization intervals (see § for the notion of the left- and right-portions). § treats
the case of large « in the right portion of synchronization intervals. §[I1]and § [[2] together form
the analog of § [6] for large a.

In § [L3| we rely on results of [9] to prove: our maps are eventually expansive; the systems on
the bijectivity domains give natural extensions of the interval maps; and, these are all ergodic.
In §[14] we use Abramov’s formula for the entropy value of an induced system to prove that the
function assigning to a the product of the entropy and p-measure is constant on (0, 1).

Finally, in § we treat the setting of the conjectures, by way of a connection between
Rohlin’s integral formula for entropy of an interval map and the volume of the unit tangent
bundle of the hyperbolic surface/orbifold associated to the map.

1.5. Thanks. The last named authors thankfully acknowledge the kind hospitality extended
by the Mathematics and Statistics Department of Vassar College during a visit where this work
was furthered.

2. BIJECTIVITY DOMAINS

The bulk of this paper is involved in providing explicit bijectivity domains for our maps.

For parameter « in the closure of synchronization intervals the behavior of the associated two-
dimensional map leads to a partitioning of the domain into an upper 2%, and a lower portion
Q.
2.1. Two dimensional bijectivity domain associated to every map. The overall shape
of these upper and lower portions of these domains depends upon whether « is in the interior,
or is an endpoint of its synchronization interval; in the case of large «, synchronization intervals
naturally divide into two portions, as we recall in § [7.1] In each case, we give the domain in
detail. In order to announce this fundamental result, here we simply point forward to where
these corresponding portions are defined.

‘ o in Interior of Jj, , ‘ o= (v ‘ o =Ny
Qr Definition [11 Definition [11] [ Proposition [60]
Q- Definition |12 Proposition Definition

TABLE 1. Location of definitions of Q% for small a in the closure of a synchro-
nization interval.

Nk << 5719,1) ‘ 57’(},1} <a< ka,v ‘ Q=1 _kuv a = C*k,v ‘ a = 57’6,’0
Qt Definition |80, Deﬁnition Definition [80] | Proposition [109| | Definition [80
O Definition |81 Definition M Definition |81| | Definition [106| | Definition [81

TABLE 2. Location of definitions of QF for large « in the closure of a synchro-
nization interval.

Compare the following with Figures [T} [7] and [§] for small « values; and with [I0] [15] for large

« values.
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Theorem 10. Fizn >3 and « € (0,1). If « is in the closure of a synchronization interval, let

Qo = QT UQ™ where OF are given according to the locations pointed to in Tables or. For

all other a, let Q, , be given as in Propositions @ or|116| according to whether o < 7y, or not.
Then Ty o is bijective on Qy, o, up to p-measure zero.

(€4,5) (r0,5) (r0,5)

(C2,93

(3, 92) % 3 r) (€3,2)

(to.1n) ¢—

(o,y1)

I ‘ (roy-t) [T ]; 77777777777777 ﬁ'(m‘yql

(lo,y-2) ‘ (r1,y-2) (fo,y—2) (r1,y-2)

FIGURE 1. The domain 3014, with blocks B; (see Subsection , and
their images, both denoted by i. Here Ry, = AC and Ly, =
ATICA2CA2CAT'CA™Y, and « is an interior point of Ji ;.

For « in a synchronization interval, the surjectivity of 7, requires that the upper boundary of
Q7T surjects onto itself, and the lower boundary of 2~ does as well; this imposes certain relations
on the heights of their constituent rectangles. Using these relations, we solved for the heights,
and thus simply define QF appropriately. Surjectivity also requires that the top and bottom
heights satisfy what we call lamination relations, see Subsection [3.2] Section {| is devoted to
verifying that these relations do indeed hold for small « lying in any synchronization interval
Jkv. We treat the remaining cases of a in subsequent sections.

2.2. Definition of (2, for small « in synchronization interval. We define our domains 2,
as the union of an upper and lower region. Compare each of the following two definitions with

both Figures
Definition 11. Fixn > 3,v € V,k € Nand o € ((x v, i) and let § = S(k,v).
i.) The upper region is the union of rectangles. We let

S+1
(8) ot = U Ko % [ana}a
a=1
where K, and y, are defined below.
ii.) for 1 <a < S we let
K, = [éia,véia+1)a
after having labelled as ¢;,,{;,, ..., ;s , the first S+ 1 elements of the T,,-orbit of £o(@)
in increasing real order.
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iii.) Ordering and labelling the elements of the T¢,  -orbit of £o((x,,) in exactly the same way,
also let 7 : {0,...,S} — {1,...,S + 1}, be defined by 7(j) = a exactly when i, = j.
And, ﬁnally, for 1€{0,... ,ﬁ}, set

y‘r(z) = _gﬁfi(Ck,v)

The ordering of the ¢;(a) is the same as that of the ¢;(x ) because the initial S simplified
digits of £y(c) are constant on Jy,, and by Lemma [32] below.

(bs;ys+1)  (T0,Ys+1)

(Kiivyi) 4
k+1 k

(gﬁ—lv yT(i—l))

(o, 1) 3

(ro,y-1)

(r5-1:Yp-1))

(T§a y7§71) (Tu yﬁ(b))

-1
(ZO, y_§_1)

-2

FIGURE 2. Schematic representations showing the most important vertices of
the tops and bottoms of blocks, for general o € (Ck,y,Mk,v). Labels in part
justified by Lemmas [37] and B8 See Definitions and [2§ for notation at
vertices. Interior label ¢ denotes partitioning block B;, see Subsection [5.1] for
definitions.

The lower region is also a union of rectangles. (In the following we will use singly subscripted
L to denote subintervals, we trust that there will be no confusion with our notation for certain
group elements.)
Definition 12.
i.) Let
-S-1

(9) 0 = | Ly .0

b=—1
where the L, and 3 in the following items.

ii.) For =S <b < —1 we let

Ly = [rj,_,7j)
and L_g_, = [lo, 5], after having labelled as r;_,,7;_,,...,7;__ | thepointsrg,r1,...,rg
in decreasing order as real numbers.
(Lemma [37] below guarantees that there is no nontrivial intersection of the various

Ly.)
iii.) Ordering and labelling the elements of the T;,  -orbit of ro(nx,) in exactly the same
way, also let 8 : {0,...,S} — {—1,...,—S — 1}, be defined by (i) = b exactly when

J» = i. And, finally, for j € {0,...,S}, set
Yp) = —T's— j(nk u)
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| C11 | approx. value || 71,1 | approx. value

T (5 —+/21)/2 0.209 (—1++/21)/2 0.358

e (1—-+/21)/2 —1.791 (5 —+/21)/2 0.209

4o (1—+/21)/2 —1.791 (—21++/21)/10 ~1.642

0| (=94 +/21)/10 —0.442 (—21 ++/21)/42 —0.391

by | (—9+21)/6 —0.736 (=9 ++/21)/10 —0.442

l3 | (=21 ++/21)/10 —1.642 (-9 ++/21)/6 —0.736

Oy | (=21 ++/21)/42 —0.391 lo(n11)

s 01(¢i1)

TABLE 3. Endpoint orbits for o« = (;; and aw =1;,; when n = 3.

\ approx. value H \ approx. value ‘

Us 1.791 Y_1 —0.209

Ya 1.642 Y_o —0.358
Ys 0.736

Yo 0.442

Y1 0.391

TABLE 4. The horizontal boundary values, the “heights”, of Q3 , for « € ((1,1,m1,1)-

Example 13. Fix n = 3, k = 1, v = 1. As indicated in the caption to Figure [T, we have
Ri1 = AC and L1 = AT'1CA2CA2CA 'CA~'. In general, ARy, fixes 79((kv) = Crot;
here, we find (31 = (5 — V/21)/4 ~ 0.104. Similarly, Ly, fixes ro(ng,) and thus here n; 1 =
(—1++/21)/20 ~ 0.179. Table 3| gives the initial portions of the orbits of each of the endpoints
of the interval of definition for both o = (;,; and oo = 1.

Since S(1,1) = 4 and S(1,1) = 1, the various y,,a > 0 and 3,,b < 0 for the Q, with
a € (¢1,1,m1,1) can now be determined, see Table In particular, this second table gives the
values of the various “heights” of rectangles shown in Figure

3. ELEMENTARY IDENTITIES AND ANOTHER ORDER ON WORDS

We collect a few basic tools for use in proving that the images of regions under the various
two-dimensional maps Tj; are as we claim. We imagine that the reader will initially skip this
section and return to it as its results are applied.

3.1. Relating y-coordinate action of 7,; to z-coordinate action. In what follows, a left
arrow over a word indicates the word taken in reverse order. Recall from Subsection [.3.3] that
our two-dimensional maps are defined using the matrix R.

Lemma 14. If X is a word in {APC, p € Z,} and x1,29 € R, then
RXR™' . (—z1)

In particular, for real x,

—x2 if and only if x1 = ? - Xg .

(RAPOCR™M™! . (—z) = — (APC - x).
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Proof. We prove the statements in opposite order. First, observe that APC is of the form

(ab 8) And therefore, using M* to denote the transpose of a matrix M, (APC)! - (—z) =

— (APC - ) for any real z. Since for any M € SLy(R), RMR™' = (M*)~! (projectively), we
have that (RAPCR™1)~!. (—x) = — (APC - z) for any real .

Now, RXR™! . (—x1) = —ay if and only if —z; = (RXR™1)~! . (—23). Writing X =
Xy X|x,wehave (RXR™)~! = (RX|x | R™!)~'--- (RX;R~')~!, and induction gives RX R~ -
(—x1) = —x9 if and only if 7 = X - xo. O
3.2. Relations for lamination. The simplest manner for regions to have images under 7, o
that abut one another, thus to laminate, occurs when regions fibering above two distinct cylinders

are mapped to lie directly one above the other. We give the simple formulas that imply such
behavior in the special cases that arise in this work.

Lemma 15. For anyn > 3 the matrices A and CR commute. Furthermore, RAR™! = C~1AC.

0 1
follows. 0

Proof. First, CR = (1 1> and thus clearly commutes with A. The stated equality then easily

Lemma 16. Fizn > 3 and « € [0,1]. Suppose that a < b,c < d are real numbers. The rectangle
Ay (k1) x [a,b] is mapped by T, o below the image of Ay (k+1,1) x [c,d] so as to share a common
horizontal line segment if and only if

b=R'C'AC'R-c.
In particular, if l = 1 then this holds if and only if b =c+t.

Proof. The second coordinate of Ty, o (z,y) for x € A(k, 1) is given by RA*C'R~1.y, and similarly
when © € A(k + 1,1). Since all of the matrices here are of positive determinant, the images of
the first rectangle highest horizontal edge of y-value RA¥C'R~1 . b, while the second will have
lowest horizontal edge RA*T1C'R™1 . ¢, respectively. Setting these equal and solving gives the
first result.

The second result follows since CR and A commute, and R? acts as the identity. ]

Lemma 17. The rectangle A(k,1) % [a, b] is mapped by Tp, o above the image of A(k,141) x[e, f]
so as to share exactly a common horizontal line if and only if
a=RCR™'.f.
Proof. Here we simply solve for a in the equation RA*C'R™1 . a = RA*C'H1R™1 . f. O
The next lemma is also immediate.

Lemma 18. The rectangle A(k,1) x [a,b] is mapped by Ty, below the image of A(k+1,141) x
[g,h] so as to share exactly a common horizontal line if and only if

b=RC'AC"IR™!.g.

3.3. An order on words. The order on words mentioned in Subsection [1.3.1] agrees with the
standard ordering of real numbers, and since each T, takes on only values less than ro(c), this
leads to a corresponding order on words of V. This is what might be called an alternating
dictionary order. In fact, we made use this order in ([8], Lemmas 4.16 and 6.7) without giving
it a distinct notation, including stating, without proof, a variant of our Lemma [20] below.
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Definition 19. Let < be the dictionary order on words a = ajas - - - a,, in natural numbers
induced by a dictionary ordering extending (for all words a,b and any i,7 € N): ag;—1 < bo;j—1
if ag;_1 < bzifl; az; < bgj if ag; > sz; b2j71 < a9;.

The following result justifies our introduction of the second word order; recall that d(k,v) is
given in .
Lemma 20. Fiz n,k. Suppose a,b €V, then d(k,a) = d(k,b) if and only if a < b.

Proof. The word order on simplified digits is such that k& + 1 < k and hence d(k,a) < d(k,b)
if and only if there is some ¢ such that 3(1@,(1)[1,2»,1] = 3(1@‘,())[1,1-,1] and 3(k‘,b)[i,i] = k while
d(k, a)ii,;] = k + 1. In particular, either (1) d(k, a)i—1,i—1] = d(k, b)i—1,i—1] = k and thus there
is some j such that bg;_1 > as;—1 + 1; or, (2) d(k, a)i-1,i—1] = d(k, b)i—1,i—1] = k + 1 and thus
there is some j such that as; > bg; 4+ 1. In either case, we find that a < b. The case of equality
is easily verified. |

A proof of the following can be given by use of the derived words map 2. We let o be the
left-shift on letters, thus o(c1dy -+ - ds—1¢5) =dy -+ - ds_1¢s.

Lemma 21. Each v € V is self-dominant in the sense that o’ (v) 2 v for all 1 < j < |v.

Recall that ([8], Definition 4.8) defines

,{1(01—1)102~-~165 if o #£1,

(10) .
(dy +1)1---ds_11 otherwise,

and that we show in [8] that when ¢; > 1 then for all i, ¢; € {c1,¢1 — 1} as well as that when
c1 =1, each d; € {d1,d1 +1}. In ([§], Definition 4.10), we give ©,4(v) for short words, and then
recursively define values of the operators ©,: whenever v = ©,(u) = uv” for some p > 0 and
some suffix v/, we let ©4(v) = v(v")".

Lemma 22. Suppose that v € V. Then v’ < o’ (v) for any j < |v].

Proof. Note that if v is such that no ¢; = ¢; — 1 or no d; = dy + 1 then it is immediate that
every v’ < 07 (v). Furthermore, for v of length one that the result holds is easily verified. We
therefore proceed by induction, assuming our result for a given v and proving that it holds for
O4(v).

Now suppose that v/ < o7 (v) holds for all j < |v|. Since, ©,(v) = v(v')%" we have (O, (v)) =
(v")7 10", We aim to show that ((O4(v)) )™ < 07(0,(v)) for all j < |©,4(v)|]. From our
hypothesis, if j < |v] then (©4(v))" < 7(O,(v)). Also by this hypothesis we have v’ < v”, and
hence (0, (v)) < 07(O4(v)) when j = |v| +p|v’|, with 0 < p < q. The inequality for the values
j = 1+ |v]|+p|v'| holds due to the form of v'. For j = r+ |v|+p[v'], with 2 < 7 < |v|, 07 (O4(v))
begins with a suffix of v, and thus our induction hypothesis shows that the inequality holds for
all of these values. |

Combined with the property of the self-dominance of v, the following result aids in determin-
ing explicit orbit elements with extremal value. See for instance the proof of Lemma

Lemma 23. Suppose that v € V is of length greater than one. The parent of v is the longest
proper suffiz of v that is also a prefiz.

Proof. We have that v = u(u')%u” with ¢ > 0 and u the parent of v. Since every word in V is a
palindrome, certainly w is a suffix of v. Any longer suffix/prefix must of course admit u as both
a prefix and a suffix. In particular, it suffices to show that there are no internal appearances of
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RLy ,AR™"
71 P1 Ps-2 — A
Yr(0) Yr(1) to Yr(s—1) ? Yr(8)
—2
n Ys+1

FIGURE 3. Relations on the top heights of rectangles comprising Q% for
o € [CkvsMkw). Here —1 denotes RA'CR™!, and —2 denotes RA“2CR™!,
similarly each p; denotes RAPiCR~! with notation as in Definition The
leftmost vertical equality sign is due to Definition [IT} the rightmost is due to
Lemma Note that up to relabeling vertices and arrows, the top row is the
reverse diagram of that for the orbit of ¢y((x,); see Figure

u within v. Since this sort of containment is a property preserved by the derived words operator
2, it suffices to check this in the setting of the shortest possible v. But for these short v, the
result is clear. O

4. RELATIONS ON HEIGHTS OF RECTANGLES, FOR SMALL «

Throughout this section, unless otherwise stated, we assume that « is a fixed value in the
interior of some synchronization interval Jj ,. Recall that a review of definitions and notation
is given in Subsection

We state and prove the main results on the heights of the rectangles of Definitions [T1] and [12]
whose union gives . For larger values of «, see Subsection [8.3] and Section

4.1. Heights of rectangles, top half.

Definition 24. Considering d(k,v) as a word in {—1,—2}, for ¢ € {0,...,S} let p; be the first
letter of o*(d(k,v) ), where o is the left-shift on letters. That is, p; is the first simplified digit
of ¢; = ¢;(«); equivalently, £; € A, (p;, 1).

Compare the following with Figures and [4

Lemma 25. The following hold:
i.) Forallie€{0,...,8 =1}, yr(iy1) = RAPICR™! “Yr(i);
ii.) yr(s) = RLrkwAR™ - (—Ls(Chw) );

FIGURE 4. The orbit of ¢y = ly((x,v) under Ty, ¢, ,. Here —1 denotes A~'C,
and —2 denotes A~2C. Compare with Table
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iii.) RAT2CR™ - yr(s—1) = Yr(0) ;
iV.) Y1 = RAilRil . (_EO(Ck,v) )

Proof. Deﬁnitiongives Yri) = —Ls—i(Crw) and Yr(i41) = —Ls—i—1(Cr,0). Of course, APS—i-1C-
ls_i—1(Crpw) = €s—i(Ckv). Since v € V is a palindrome, it follows that d(k,v) is a palindrome as
a word in {—1, —2}; in particular, p; = ps—i—1. Hence, —y ;) = —AP C - (=yr(it1))- Lemma
now implies yr(j41) = RAP! CR™'. Yr(i)-

That y,(s) = RLyvAR™ - (—{s(Ck,v) ) follows by elementary induction.

By (8], Lemma 4.5), see also (8], Lemma 4.33), A=2C - £5(Ck.v) = l1(Ckv)- Lemmayields
Yr0) = RAT2CR™ -y (51 -

Finally, since d(k,v) ends with a —1, we find y1 = y, () = RAT2C(A71O)1R™! “Yr(s), and
thus y1 = RAT'R™ - (—Lo(Cr,o) )- U

Lemma 26. We have p(Q7) < co.

Proof. To show that u(Q%) < oo, we show that for each negative z € I, the fiber in QT
above it, say {z} x [0,y,], lies below the curve y = —1/x. Set ( = (k.; by Lemma

= RAT'R-(—£y(¢)) = 1/(t —1/£y(¢)) and thus y; < —1/£o(¢) holds if £y(¢) lies between the
roots of 2 4+ tx — 1 = 0. Since this interval has left endpoint less than —t and has a positive
right endpoint, this condition holds and hence y; < —1/4y(¢). Thus, all of the line segment
{€i, (Q)} x [0,41] lies below y = —1/x.

Recall that ¢;, = ¢p. Lemma|25|shows that for each a, there is an M € G,, sending (¢, (), y1)
to (4;, (), ya); compare Figuresand A simple check confirms that any M is such that 7Ty,
sends the locus y = —1/z to itself (and since M ~! exists this is the only preimage of the locus).
Since every Tps is both orientation preserving and p-mass preserving, each {¢;, (¢)} x [0, yq4)
lies below y = —1/x. For each a € Jy,, one has ¢; ({) < ¢;,(a) and it follows that each
{l;, ()} x [0,y,] lies below y = —1/x (whenever ¢;_ («) < 0), and thus all of K, x [0,y,] does
also. Thus, the result holds. O

4.2. Heights of rectangles, bottom half.

Definition 27. Considering d(k,v) as a word in {k,k + 1}, for each j € {~1,...,—S} let
q; be the first letter of o7 (d(k,v)). That is, g; is the first simplified digit of r;; equivalently,
r; € Ag;,1).

To simplify typography, we define the following.

Definition 28. If u € V is the parent of v, let
L= [d(k, ),
where the length of d(k,u) is as a word in {k,k + 1}. When v = 1, let + = 0.

Compare the following with Figures and [6] Recall that the details of the construction of
Q™ are given in Definition
Lemma 29. The following hold:

i.) Forallje {-1,..., -5 - 2}, Yp(i+1) = RA%CR™L. Y85
) Ys(5) = RRk,vRil “Yp(0)s

iii.) yg(0) = RAFTICR™. YsE-1)

iv.) if v has parent u, then yg) = RRy  R™! “YB(0);

v.) Ypo) = RAR™" - (=ro(ne,w))-
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RRy ,R™!

k k k k
Yp(0) Yp(1) o Ys(0) T Yp(5-1) " Yp(

Ll

k+1

F1GURE 5. Relations on the bottom heights of rectangles comprising {2~ for
@ € (Ck.vsMkvw), when v has parent u. Arrow label k denotes RA*CR™!, and
k + 1 denotes RA*1CR™1.

Proof. As in the proof of Lemma the first two statements follow from Lemma By ([8],
Lemma 4.5), A" C - rg(nk.) = 71(7k,0), and thus Lemmayields the third statement. Since
v is palindromic and has prefix u, it also has suffix u (itself a palindrome). From this, Lemma
yields the fourth statement. Finally, due to the palindromic nature of v, we know that the
final digit of d(k,v) is k and hence from (i), y5 = RA*CR™" - ys ). Thus, (iii) gives that
Yg(0) = RAR™'. Ya(5-1)- The result holds, since by definition Ya3) = —1r0(Mk,0)- O

Lemma 30. We have pu(27) < oo.

Proof. To show that p(£27) < oo, we show that for each positive = € I, its fiber {z} X [yp,0]
lies above the curve y = —1/x. Set 1o = ro(n,»); simplifying in Lemma 29| (v) gives yz(0) =
—7ro/(tro + 1). Since the interval between the roots of 22 — tx — 1 = 0 contains all positive
numbers up to at least ¢, it easily follows that yz) > —1/r¢. The proof of Lemma 26 can be
further adjusted mutatis mutandis. O

4.3. Ordering the /;; top heights increase. To further simplify typography, we define the
following.

Definition 31. Let d,(z) denote the sequence of simplified a-digits of x. Similarly, set S =
S(k,v) and for all 7 let ¢; denote ¢;(c).

Lemma 32. Fizxn >3 and k € N and o € Ji,. We have that
i)
ls = Jnax. ;.

Equivalently, 7(S) =S+ 1 and ig+1 =S

ii.) Moreover,

do(lis) =
(bis) =2, (=1)"3 =2, " 1(d(k,u)), do(ls) ifuis the parent of v.

{27 (71)n737 72? (71)’”72’ da(gs) va = 15
Proof. Since £g(a) > €s((k.v) for any a € Ji,, and our order of words agrees with the usual
order on real numbers, it suffices to show that o7 (d(k,v))da(ls(a)) < do(Ls(Ckw)) for all
0<j<S5.
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Letting ¢ = (v, ([8], Lemma 4.33) gives

d[CLOO) = —1,(—1)"=3, =2, (=1)"=3, =2, wk—1,C1—1Dd ... Dds-1Ccs (—1)n—2, -2

(1)
= d(k7 U)a 72, (71)”4733 727C61’Dd1 e Dd571C657 (71)7172'

Hence, for the first result, it is sufficient to prove that
(12) ol (d(k,v)) =< =2,(=1)"3, =2, ¢, D ... (—1)"2
forall0 < j < S.

Temporarily viewing d(k,v) as a word in a := (—1)""2,b:= (=1)""3,c := —2, and letting *
denote the expansion of /g,
dil ) = aclbe(ache)* 1 [be(ache)*]? - -+ [be(ache)*]%= =1 [be(ache) 1% a x .

We may use a < b < ¢ % * and easily determine that the greatest subword of d(k,v) in two
of these letters is cb, in three is cbc and so forth (of course, if n = 3 special considerations
are necessary). Thus, when v = 1 we find that the greatest suffix of dﬁ,oo) is cbcax. For the
remainder of the proof, we no longer explicitly refer to the letters a, b, ¢, x, but the reader may
still find them of use.

Due to the maximality of ¢; and the self-domination of v, we find that when ¢; appears only
as the initial and final letter of v, 07 (d(k,v) ) has maximal value —2, (—1)"=3, =2 C (—1)""2.
Such appearances of ¢; implies that v = O,4(c1) for ¢ > 1. These cases are also easily confirmed.

For all other v, due to Lemma|21} the maximal value of o7 ( d(k, v) ) occurs when o/~ (d(k,v) )
equals some prefix of ¢, D% ... C% (—1)"~2. Of course, by its very definition, o7t ~1(d(k,v))
is a suffix of d(k,v). From this simultaneous prefix/suffix property, there is an ancestor u € V
of v such that ¢/~ 1(d(k,v)) = c" *(d(k,u) ). Maximality combined with Lemma [23|implies
that u is in fact the direct parent of v. We have thus proved the second statement.

Of course, d(k,u) ends with w,C, (—1)""2. But, v is strictly longer than u, and hence the
prefix corresponding to u, in ™! applied to the period of l5(¢y.,) is followed by a —173 2.
Therefore, inequality holds, and the result is proven. O

Lemma 33. The T,-image of the set of £; in Ay(—1,1) with ¢ < S lies to the right of the
T -tmage of the set of £;,i < S in Ay(—2,1). In particular, 7(1) =1+ 7(1 +ig).

Proof. Certainly £, is the smallest ¢; in A,(—1,1) with ¢ < S. By definition, ¢;, is the largest
; with i < S; it certainly lies in Ay (—2,1). Since each APC' is an order preserving function, it
suffices to show that ¢; > f1;;. We thus refer to Lemma our inequality when v = ¢; can
be directly verified. For general v, since the expansion of /;, begins with a —2, inequality
implies that ¢;,4; has expansion less than the expansion of ¢;. The result thus holds. ]

Lemma 34. Forall0<i< S,
T(@)+7(8—1)=85+2.

Proof. Since certainly 7(0) = 1, Lemma yields the result when i = 0.

Lemma (33| implies that 7(¢ + 1) — 7(¢) is determined by the simplified digit of ¢;. Indeed,
if 4; € Ay(—1,1), then 7(i + 1) = 7(i) + (7(1) — 7(0)). Similarly, if ¢; € Ay(—2,1), then
i+ 1) =70)+ (r(1 +ig) — 7(ig)).

Due to the palindromic nature of d(k,v), the expansions of ¢g_;_1 and ¢; share the same
initial digit. Therefore, 7(S — i) —7(S —i—1) = 7(i + 1) — 7(¢). The result thus follows from
induction. g
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Lemma 35. For1<a <3S,

Ya+1 > Ya -
Proof. By definition, there is an ¢ such that y, = y,u) = —£s—i(Ck,v). Due to the negative sign,
this is the S + 2 — 7(S — i)*™® of the values in {—£;(Cx.,) |7 < S} ordered as increasing real

numbers. Lemma yields that this is the 7(i)"" value. But, a = 7(i), and thus the position in
this ordered set increases with a. ]

Corollary 36. We have
Ys = —Li; (Cio)-

Proof. The lemma yields that ys is the second largest height. Since these heights are the various
—4;(Ck,v), this second largest height is indeed negative one times the second smallest ¢;((x ). O

4.4. Ordering the r;; bottom heights increase.

Lemma 37. We have that

’I"§ = m}nﬁ 7"j .
0<j<8

Equivalently, 3(S) = —S — 1.

Proof. To show that rg is the minimal value in the initial portion of the orbit of ry for each
o € Jiw = [Chws Miyw), it suffices to show that o7 (d(k,v)) = dj1,00)(rg) for all j < S, where
dj1,00) (%) denotes the sequence of simplified digits of x. Since rg(ny,,) is larger than rg(a) for
all « € Ji 4, and Eﬁk,’;o) = d(k,v(v")*), it in fact suffices to show the o7 (d(k,v)) = d(k, (v/)>).
But, Lemma [20| shows that this is equivalent to the result of Lemma O

We can also identify the second smallest r;. Recall that ¢ = S(u), when v = O,4(v) and ¢ = 0
when v = 1.

Lemma 38. We have

7, = min_r;.
0<j<5
Equivalently, 3(1) = —S.
Proof. The statement for v = 1 is trivial.
Due to Lemma we can repose the statement for v # 1 as 0(O4(u)e) < (O, (u)e) for
all j < |v], where € is any word such that € < 07(©,(u)e) for all j < |v|. (That is, € is simply
any sufficiently small word, allowing comparisons to accord with the minimality of rg(v).)

Now, this reformulated statement is easily verified for v and for any Of 0 ©,(v) when v is of
length one. We can thus apply the morphism 2 and deduce that it is true for all v € V. ]

Lemma 39. We have that B(1+¢) =1+ 5(1).
Proof. The argument here is the exact analog of the proof of Lemma ]
Lemma 40. For -1 <b< -8 +1,
Yo—1 < Yp -
Proof. The proof here is the exact analog of that for Lemma |
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k+1

FIGURE 6. The T, ,-orbit of ro(1),,) contains the initial S elements of the
T¢, ,-orbit of 7(Ck,»), see Proposition Here 7, ¢ denote 1y 4, (k. v, respec-
tively. Arrow labels k,k + 1 denote A*C, A¥+1(C, respectively.

4.5. Meeting of T¢,  -orbits with T}, -orbits. We now explore a phenomenon that already
can be noticed in the setting of Example see in particular Table

In the following, note that although in general for different values of «, a fixed sequence of
(simplified) digits determines distinct real values, (after having fixed n) purely periodic digit
sequences correspond to fixed points of well defined elements of the group G,,, independent of
choice of a.

Recall from Definition 28] that if w is the parent of v in V and k € N are fixed, then ¢ is short
hand notation for |d(k,u)|. Compare the following with Figure @

Proposition 41. Fizn > 3,k € N;v € V. Then T,,  -orbit of ro(nk.) contains the initial S
elements of the T¢, ,-orbit of ro(Crw)-
In particular,
i.) For any length one v, we have m1(Nkv) = 10(Ckv);
ii.) For |v] > 1,
Tg(nk,v) = rL(Ck,U)'

Proof. We first prove the enumerated statements. For all v, (|8], Lemma 4.5) implies that
AMHLORy, , (ARC) ™ fixes 71 (nk.v), while ARy, fixes ro(Ckp). When v = ¢, we have Ry, =
(A*C)er and thus 7 (Mk.v),70(Ck,v) are fixed by the same element of G,. Both 71 (g v), 70(Ckw)
and their respective orbits are certainly positive and less than ro(y,) which in turn is less than
one; in this interval each A7C defines an expansive map. Therefore, both r; (Mkw), 70(Ch,vp) must
be the repulsive fixed point of the hyperbolic ARy, , and hence equality does hold.

For longer length v, let u be the parent of v. Then r<(nk,,) is fixed by Ry ,(AFC)~1AM1C
and 7,(Ck,0) by RiuARko(Ry) . With mild abuse of notation, the first of these is Ry ., the
second is R, < . (Recall that v’ is given in (10).) Now, ([8], Remark 4.14) gives v = uaz,

’ —

/

%;
with v, u, a, z and z’a all being palindromes. Thus, v' = (zau)' = 2’au = u(z’'a) = uz’a. Hence,
%

u™ ' u = 2'au = v/, and therefore rg(nk,») = r,(Cx,») does hold.
Again by the palindromic nature of v, one easily sees that 7’§_L+¢(77k,v) =7;(Cpp) for 0 <i <y
and 7 (Me,v) = 745 () for 1 <4 < S—1—1. O

Corollary 42. Fizn >3,k € Nyv e V. Then lo(nk,) is in the T¢, -orbit of £o(Ck,v)-
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More precisely,
L) L (Cr,1) = Lo(Mr,1);
ii.) Forv#1,
Cageu) (Crw) = Lo(M,v)-

Proof. From ([5]) and we have d?l’i’;o) =wk (—1)"=3 —2 and gl[gf";o)
The case of v = 1 thus visibly holds.

We now suppose that u is the parent of v. In order to apply the results of the previous proposi-
tion, we use the relation Ly, = C"'ACRy, ,. Note that in general La(e,u)| (@) = A7 Ly Al (@),
instead of what might be naively expected. Indeed, the definition of the L, in general,
see ([8], Definition 4.32), is such that the prefix of (A71C)"~2 of Lj, must be replaced by
A72C(A71C)™3 in order to achieve an admissible suffix of Ly ,.

First suppose that v = ¢; with ¢; > 1, thus of parent u = (c; — 1). Then £g(; )| (C.c,) =
A Loy 1A - Lo(Cyey) = ATTCTYACR ¢ 1 - 70(Chyey) = AT'CTPACRg i —1 - T1(Myey) =
AT'CTYACRyc, - T0(Mkey) = A7 Ly A~ Lo(ke) = A7 70(Mhey ) = Lo (e, )-

From Proposition LA lo(Chw) = L - 70(Chw) = CTYACRy 4 - 70(Chw) = CTLAC -
7 (Crw) = CTTAC - rg(nke) = CTACRE, - 1o(Mkw) = Liw - To(Mkw) = 7o(Mkw). Thus,
€|¢(k,u)|(<k,'u) =A"t. TO(T/k,v) = gO(nk,v)~ O

Proposition 43. Fizn > 3,k € N;v € V. Then ly(ny,) is the second smallest element of the
T¢,.,-orbit of £o(Ck,v). That is,

= whtl (=1)n=3, -2 wk.

Lo (nk,v) = gig (Ck,v)~

Proof. Suppose that |v| > 1. The previous result implies that the T¢, ,-orbit of £(x ) not only
reaches €o(ny,,) but also thereafter agrees with the T;,  -orbit of fo(ﬂk,v)- Suppose that 7 is such
that €;(Ck,v) < Lo(nk,v). Since every element of the T,, -orbit of £y(7,,) is greater than or equal
to Lo(nk.»), we must have i < |d(k,u)|. Now, the first |d(k,v)| — 1 simplified digits of £o(Cx.»)
agree with those of £o(7k,,), and of course £o(Cxn) < 4i(Crw). Thus, the simplified digits of
;(Ckw) begin wk cer=1pd ... pdsages (—1)"=3 ... Recall that D = Cw = (—1)"73, =2, wk.

If 4 > 0, then in light of , the digit sequence of ¢;(.,) begins with the final w* obtained
by factoring some D% in the prefix d(k,u) of d(k,v) as D~'T% (~1)"=3 —2 w*. But then
i (n—2)(Ck,») corresponds to factoring instead as D% = D~1*4 D. Indeed, in light of the
digits of £;(Ck,v), the expansion of £;_(,_9)((kv) is associated with a copy of v/, refer to .
But, this copy of v/ begins within the prefix u of the word v = u(u/)%u”. This in turn implies
that there is a copy of u’ contained in v, beginning within the prefix u. However, Lemma
shows that this is impossible. Therefore, the case of i > 0 is void.

Finally, the case of |v| = 1 is argued similarly, but is more straightforward. O

k,v

Corollary 44. We have
ys = —Lo(k.v)-

Proof. By definition, yg is the second largest of the values —¢;(Cx,,). Thus, ys = ¢;,(Ck,) and
by the proposition this equals —fo (7. )- a

4.6. Differing by ¢: two paired top/bottom heights.
Lemma 45. We have ys41 =t+y_3.

Proof. By Lemma —S = B(1). By definition, yg(,) = —rg_, (1k,v). Proposition 41 now gives

Ys() = —T0(Crw)-
From Lemma S+1 = 7(8). By definition, y(s) = —fo(Ck,v), and thus the result holds. [
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Lemma 46. We have ys =t+y_g_; .

Proof. By Corollary ys = —Lo(Nk»). On the other hand, from Lemma Y_5-1 = Yg(s)
which by definition has the value —ro(ng,,). The result thus holds. O

5. BIJECTIVITY OF T, ON (), FOR SYNCHRONIZING SMALL «

In this section, we prove Theorem 10| for « € (0,7,). This bijectivity of 7, on , follows
from: (i) the upper boundary of QT surjects onto itself; (i4) the lower boundary of 2~ surjects
onto itself; (#i7) the images of the “blocks”, defined directly below, laminate.

5.1. Partitioning , by blocks 5;. Recall that the upper and lower parts of €2, are given in
and @
For each i € {—1,—2,---}U{k,k+1,...}, let the block B; be the closure of the set {(z,y) €
Q|x € Ay(i,1) }. Thus the blocks partition © up to p-measure zero, confer Figures [1| and
Since T is invertible, it is clear that for the values of a under consideration, Theorem [I0]
follows from the following two results.

Proposition 47. The union of the T(B;) taken over all negative i equals QT up to p-measure
zero.

This holds because: the various blocks appropriately laminate (proven in Subsection ;
their image includes the upper boundary of QF(proven in Subsection ; and, it is directly
verified that the limit as i - —oo of T(B;) is I, x {0}.

Proposition 48. The union of the T(B;) taken over all positive i > k equals Q7 , up to u-
measure zero.

This follows similarly from the results of Subsections[5.2]and along with the easily verified
fact that the limit as ¢ — oo of T(B;) is I x {0}.

5.2. Blocks laminate one above the other. As an initial step to proving these two results,
we have the following results.

Lemma 49. Let s denote the first simplified digit of rg. Then for all i ¢ {k + 1,k}, the lower
boundary of the block B; has height given by

Y="Y_5 if s =i
Y=y 35 )U=y_3) if s=1i;
Y=Y_3 if s<1.

Proof. Recall that L _g_, = [ly,rg]. Hence, the leftmost piece in the partition defining Q2 is
L <5, x[y_g_;,0]. Therefore, we certainly find that whenever s > i, the lower boundary of
the block B; is given by y = y_g_,. Since the next partition piece to the right is J_g x [y_z, 0],
and for all j < S we have r; € A, (k+1,1) U A, (k, 1), the rest of the statement follows. O

Lemma 50. Let u denote the first simplified digit of {g. Then for all i ¢ {—1,—2}, the top
boundary of the block B; has height given by

Y =Ys+1 if u>i;
(y=vys+1)U(y=ys) if u=1;
Y=Ys if u<i.
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Proof. Due to Lemma [32] Kg1 = [(s,70]. Hence, the rightmost piece in the partition defining
QF is Kg,, x [0,ys4+1]. With this, one argues as for the bottoms of the blocks. 0

Lemma 51. Suppose that i ¢ {—1,k+ 1,k}. Then To(B;) laminates above T (Bi—1).

Proof. Since Ly, = C~*AC Ry, ([8], Lemma 4.2) and its proof show that rg € A, (u+1,1) if
and only if £g € A, (u,1).

Case: s > i. Here, B; has bottom boundary height y_g_;. Also, u =s—1 > ¢—1, and hence
B;—1 has top boundary height yg. Lemma @ states that ys =t +y_35_,, and thus Lemma
yields the result in this case.

Case: s < 4. Here, B; has bottom boundary height y_g. And, u =s—1 <14 — 1, gives that
B;—1 has top boundary height yg;1. Lemma [45] and Lemma yield the result in this case.

Case: s = i. Since T, (rg) = To(¢s) and the corresponding two pieces of each of the bottom
boundary of B; and top boundary of B;_; are sent to the same height (by the arguments for the
previous two cases), the result holds in this final case as well. O

Lemma 52. The T,-image of the block B_1 laminates above a portion of To(B_2).

Proof. We have that B_; has bottom height y 5 , if rg ¢ A,(—1,1), and both heights
Y_5_1,Y_g otherwise. The block B_; has multiple heights along its upper boundary, with
its rightmost height being either yg if £g ¢ Ay(—2,1) and otherwise its two rightmost heights
being ys, ys+1. In either case, the corresponding portion of the upper boundary fibers above an
interval whose left endpoint is ¢;.

Arguments as in the proof of the previous lemma, combined with Lemma show that
the lower boundary of B_; has image equalling the image of a rightmost portion of the upper
boundary of B_s. |

Lemma 53. A portion of To(Br+1) laminates above T, (Bg).

Proof. Here Lemma [39] combines with the above arguments to imply the result. O

5.3. Upper boundary is in image.
Lemma 54. There is a partition
Krs-1) = Krsoy UK (s

such that
Ailc'K;_(ﬁ_l) :K§+1, Aizc'K;_/(§_1) :Kl.

Furthermore, T sends Kr(s—1) X {yrs—1)} to (K1 x {y1}) U (Ks41 X {ys+1}).

Proof. Since o € Ji, certainly ¢g < 1o, and since d(k,v) ends with —1, it follows that £g_,
lies in the interior of A,(—1,1). Furthermore, Lemma yields that fg_; is the largest ¢;
lying in Ay (—1,1). By definition, K (g_1) = [{r(s—1),{14-(s—1)], and it follows that ¢, (s_1)
is the smallest ¢; € Ay(—2,1). Thus, K, (g_1) is partitioned into two pieces, which we define
as K;(g—l) U K;'(ﬁ_l), where the first of these is mapped by A7'C to [(s,70] = Kg4+1 and the
second is mapped by A~2C to [fy(a), ¢;] for some i. Since there is certainly at least one sequence
—2,(=1)""2 in d(k,v), surely the smallest ¢; € A,(—2,1) has image under A~2C that is larger
than any A=1C - £ for i’ € A,(—1,1), as these latter images have digits starting at least (in
the sense of our ordering) with (—1)"~3. Therefore, A=2C sends K 51 to [lo, i,] = K.
Finally, Lemma 25 implies the result on images of the top height. O
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Lemma 55. Let K¢ be the closure of Kg N Ay(—2,1). Then

A-20 . Kkl — D Erais) if ls € Aa(—2,1);
= K 14ig) Ulitig,m0]  otherwise.
Furthermore, T correspondingly sends Kgx{ys} to Kr(11ig) X{Yr(14ig)}, respectively (K (14ig) ¥

{yr(1+z’§)}) U ( [51+z'§, To] X {Z/T(1+i§)})-

Proof. The first simplified digit of £g is at least —2 (in our usual ordering). On the other hand,

all ¢; with ¢ < S are contained in A, (—1,1)UA,(—2,1), and there do exist ¢ with ¢; € Ay (—2,1).
Thus certainly, Ks N A, (—2,1) # (0. This intersection is all of Kg if £g € Ay(—2,1); otherwise,
this intersection includes the right endpoint of A, (—2,1). The first statement thus holds. The
second statement is an immediate consequence of the first. O

Recall that the various p; are defined in Definition
Lemma 56. For each 1 < a < S with a # 7(S — 1),
T(Ka x{ya}) = Kr(iut1) X {Ur(in+1) }-

In particular,
S+1

T(Kax {ya}) D |J Ko x {va}-
a=1

Cm

Il
-

a

Proof. If a < S+ 1 and a # 7(S+1), then K, C Ay(ps,, 1). Thus, T( Ko X {ya}) = Kr(i,+1) X

{y‘r(iaJrl)}'
Lemmas [54] and [55] show that a € {7(S + 1), S} account for images indexed by a € {1,7(1 +

is),S+1}. An elementary counting argument shows that the remaining values of a account for
images indexed by the remaining S — 2 values. O

5.4. Lower boundary is in image.

Lemma 57. Let

%(?—1) = Lﬂ(g—l) n Aa(k + 1, 1)
and
" _ .
8(E-1) = L[i‘(S—l) NAL(k,1).
Then
k+1 ! k " =L =
AT C - L5(§71) >DL_,, A°C- L5(§71) =L 5 ;.

Furthermore, T applied to Lgg_1) < {yz@_1)} contains (L1 x{y-1})U(L_g_1) x{y_z_1)})-

Proof. Since d(k,v) ends with a k, Lemmaimplies that rg_, is the least 7 in Ay (k,1). If v #
. . . oy ! 1 H

c1, there exist r; € Ay (k+1,1). In this case, LB(E—l) is partitioned as Lﬁ(§—1) UL5(§_1)' Since

Llﬁ(§—1) contains the right endpoint of A, (k+1,1), it easily follows that AkHC-L’B(g_l) =L_;.

Similar considerations show A*C - L L_5_,. The rest of the proof follows easily in this

case.

If v = ¢q, then L/B(E—l) = [rg,r5_,) and here A’”‘lC-L’ﬁ(gil) D L_; (with equality in general

not holding). Once again, the rest of the proof follows easily. O

1"

B(S-1) —

The following now easily follows.
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Lemma 58. We have
—-5-1
U T(Lox{w}) 2> | Lo x{m}.

b=-1 b=—1

5.5. Left endpoint values: a = (j,. Recall that for any v and with k£ € N, when a = (j,
one has rg = £y and A~ 2C. Ls = {1. The first of these equations shows that the interval L _5_,
of Deﬁnltlon“ degenerates to a pomt in this case; correspondingly, £2_ will now have one fewer
lower height. As well, Lemma {45| gives ys11 = —lo(Ck,v) and yg() = —70(Ck,w). Note that
Lemma [39] implies that A**1C sends 7, to the right of ;. Thus the various preceding sections
now easily imply the following, see Figure [7]

(Us,ys+1) (ro, —4o)
J | | 1] Ck+10 ok
(55_1,%@_1)) | | 3 3 3
| | | ! ! ! (ro,y-1)
(€o,y1) 3 3 3 l | r (r5-1,Y83-1))
-1 -2 Ck
! ! ! (o, —70) (e Yp())

FIGURE 7. Schematic representations (not to scale) showing the most impor-
tant vertices of the tops and bottoms of blocks, for o = (., (and |v] > 1).
See Proposition Interior label i denotes partitioning block B;, see Subsec-
tion for definitions. Thick line segments of same color have equal images
under 7y ¢, ,, where the bottommost thick red segment has right endpoint at
(Ak+10)—1

Proposition 59. Fizn >3,k € Nyv eV and a = (. Let QF be as in Definition |11} Let Q~
be as in Deﬁm’tz’on except that we redefine L _< to be [{y,r,], and set

_ —-S
= Ub=_1 Lb X [ybao]
Then Tp o is bijective on Qo := QT UQ™, up to p-measure zero. Furthermore, j1(2)5.o) <
00.

5.6. Right endpoint values: « = 7. Fix n > 3, and v € V. Although when a = 7y, ,, the
T,,-obits of £y(a),ro(a) do not synchronize, we still can precisely describe the domain on which
the associated two-dimensional maps is bijective.

Recall that ls = lo(nk,n) and rg,  (Mk,0) = Akt1cr. r5(Mk,v) = 71(1k,0). Furthermore, from
Lemmas 46| and ys = —lo(Nk,y) and y_g_, = Ys(5) = —70(Mk.w). In particular, here Q1 has
one less height than the general case.

Thus the various preceding sections now easily imply the following results, see Figure

Proposition 60. Fizn >3,k € Nv eV and o = n,,. Let Q7 be as in Deﬁmtwnn Let QF
be as in Deﬁmtzon except that we redefine Kg to be [l;g, o], and QT = U 1 Ko < [0,yq].
Then Tp, o is bijective on Q, o := QTUQ™, up to p-measure zero. Furthermore, 1(na) < 00.
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(lis,ys) (ro, —4o)

> ' '
J ! -1 E+1

o1 ymis F ! | | |
(§ LY (§ 1)) : : : : (ro,y_l)
| | | | | (r5-1,Yp3-1))
(o, y1) | l l 3 4
-1 -2 k
! ! ! (o, —10) (r5,9_5-1)

FIGURE 8. Schematic representations (not to scale) showing the most impor-
tant vertices of the tops and bottoms of blocks, for & = ., (and |v] > 1).
See Proposition Interior label ¢ denotes partitioning “block” B;, see Sub-
section for definitions. Thick line segments of same color have equal images
under 7, ,, ,; the topmost thick blue segment in the left figure has left endpoint
at ( (AiQC)il <Ly, —fo).

Corollary 61. Fiz n > 3,k € N,v € V. Then the union of §,, , with the line segment
70(Mk,w) X [—lo(Mk,0)s —Lo(Crw)] is the limit, with respect to the Hausdorff metric topology on
compact subsets of R?, of Q4 as « tends to ny., from the left.

Proof. When evaluating the limit from the left as o — n;,, we can assume that a € Jg,.
Recall that we define both €24, 2, , as the union of a top piece and a bottom piece: in simple
notation O U Q™. The bottom piece of each is defined as in Definition In particular,
each is the union of the same number of rectangles; the vertices of these rectangles are such
that their first coordinates clearly vary continuously in «, while their second coordinates are
fixed throughout the closure of Jj ,. The top pieces are similarly defined, however for o € Jj, ,,
the number of rectangles is greater by one, with the “extra” rectangle being [(;,, , (), 70(r)] x
[0, —lo(Ck,v)]. Since £ig, (a) and 7o() both converge to ro(ng,»), the limit of this rectangle is
simply a vertical line segment. The remaining rectangles comport themselves continuously in
the manner discussed above for the rectangles comprising the bottom portion. The result thus
holds. g

6. CONTINUITY OF MASS, FOR SMALL «

We aim to show that the bijectivity domains vary continuously at points of non-synchronization.
Since these are limit points of sequences of the types of a which we have already considered, we
bootstrap on the above work.

We prove Proposition giving in particular the ergodicity for the systems indexed by
endpoints of synchronization intervals, the ¢, and 7., by applying a main result of [9]. After
establishing prerequisite results, we use this to show Lemma [72} For these values of a, reversing
words is a bijection on the sublanguage formed by the admissible words whose letters are only
{—1,—2} and similarly for the sublanguage formed by restricting to {k,k + 1}. A limiting
argument then shows that this is also true for the systems of the non-synchronization a-values.
This bijection is key in the proof of Proposition [65] which states that the domain we define there
for each non-synchronization « is a domain of bijectivity for its associated 2-dimensional map.
The reversal of words is naturally required in that argument as it is related to the piecewise
action on y-values, see Lemma
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This section closes with its main result, Theorem [79] the continuity of the function taking a
to the mass of its associated planar domain.

6.1. Ergodicity at endpoints of synchronization intervals. Here and later, we rely on
([9], Main Theorem 1), one of whose hypotheses is that the interval map in question satisfy the
“bounded non-full cylinders” condition.

Remark 62. The bounded non-full cylinders condition of [9] is that the orbits of the endpoints
of all non-full cylinders avoid the interior of some full cylinder. All of our maps have infinitely
many full cylinders. Hence, the condition is certainly satisfied by any of our maps whose non-
full cylinders have endpoints with expansions involving only finitely many digits. Recall, see
([8], § 1.6.2), that for any of our maps, the only possible non-full cylinders are those containing
one of: ro(a); fo() or (for large «) b,. Furthermore, the remaining endpoint of each of these
possible non-full cylinders always meets the orbit of one of the endpoints.

Recall that our underlying two-dimensional measure is u, see .

Proposition 63. Fizn > 3,k € Nv € V and @ € {Cow,Mkv}- Let uo be the normalization
of u to a probability measure on S, o, and A, denote the Borel sigma algebra on Q. Then
the system (To, Qo Blyy pi) 18 ergodic. Furthermore, this two dimensional system is the natural
extension of (To, Lo, Ba,va), where vy, is the marginal measure of pe and B, the Borel sigma
algebra on . In particular, the one dimensional system is ergodic.

Sketch. For the given values of «, the digits of E[Oi’oo) and dﬁ)oo) are contained in {—1,—-2 k, k+
1}. In particular the non-full cylinders of T, are bounded in range. Due to this and the finiteness
of 1(Qy) and of its vertical fibers, the hypotheses of ([9], Main Theorem 1) are met, thus giving
the result here. O

We will use the ergodicity to argue that a subsystem gives rise to another description of the
Q, when a = (j, oOr 7. This will then be key to showing continuity of a — €, as we will
define the two-dimensional domain for non-synchronizing a analogously.

6.2. Bijectivity domain for non-synchronizing «. In this subsection, we announce the
bijectivity domain for non-synchronizing c.

We introduce some more notation and introduce basic sets for our construction. For legibility,
we suppress various subscripts, trusting that this causes no confusion for the reader.

Definition 64. Fixn > 3,k € N and a < ~,. Let £L = L, denote the language of admissible
(simplified) digits. For finite length u € £, as usual let A, (u) be the corresponding T, -cylinder.
Let Ay, pu, denote the left- and right endpoints, respectively of A, (u).

We then define

® = [—rp, —lo], @ = [~19, —A_3], and @ = [—pi12, —Lo],
H=T,x (®" NdT)
and
Z=[lo,A_3) x " U [A_3,pp12) X ® U [pra2,70) X T,
see Figure [0} Note that Z D H.

For each non-synchronizing «, we determine a bijectivity domain for its two dimensional
map. Recall that we allow ourselves the freedom to write set equalities (strict inclusion, disjoint
unions, etc) when in fact these only hold up to p-measure zero (and usually, the measure zero
exceptional set is easily found). As usual, for any finite set S of digits, we let S* denote the set
of finite words in S.
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(A3, —Lo) (0, —to)

(I>+

(o, —A-3)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N

(Toq *Pk+2)

(o, —70) - (pr+2,—70)

FIGURE 9. Schematic representation of Z = Z,,, see Definition [64] For o < ,,
non-synchronizing or the endpoint of a synchronization interval, the central
“vertical” region [A_s, pry2) X @ is sent by Ty, to the (gray) “horizontal” region
H="H, =1, x (P~ N®*+) while the complementary pieces are sent by powers
of T, to fill in a region that strictly includes the complement of H, in Z,.

Proposition 65. Fix a non-synchronizing a with o < 7y,. With notation as above, let T = T,
and define

Q=Ux,T/(Z2).
Then Q D Z and T is bijective up to p-measure zero on 2. Furthermore,

(13) Q=H| |Uper1 - ne. TM(Aaw) x @) || Unegrri g ne, T (Aa(u) x &F).

The surjectivity of 7 on Q follows from the definition of Q. Key to proving the remaining
statements of the proposition is to show that each x € I, of y-fiber ® in Z have exactly that
same fiber in 2. Our choice of the basic shapes of Z and H is motivated by Lemma [68| below,
which also begins the proof of . Together, Lemmas [74] and |75| establish the key step. From
this, both injectivity and then follow.

We first introduce notation.

Definition 66. Given any simplified digit d, we let My = AYC. For any finite word u =
UL UL -« Uy with the u; € Z, we let M,, = Mu‘u‘ -+ M,,. We also define & to be the reversed
word of u, thus u = Uy - - U2 UL

We have the following immediate implication of Lemma (Temporarily, we allow intervals
to include oo.)

Lemma 67. Let u be a finite length word in nonzero integers and x € R. Then RM,R™1-(—x) =
—(Mg)™t -z

Lemma 68. Fizn > 3,k € N and o < v,. Suppose that finite length u is in L, and a,b € 1,
with a < b. Then

T Aa(w) % [=b,=a] ) = [Ma - day Ma - pu) % [=(Mip) ™+ b, —(Msr) - al.
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Proof. For & € Ay (u), we have that T!*/(z) = M, - z. Since each M, defines an increasing
function, the image of A, (u) under T4l is the interval [ M, - Ay, M, - py ). Similarly, the image
of the y-coordinates is given by y — RM,R™! -y. Lemma [67| shows that our result holds. [

Lemma 69. For each full cylinder A, (j), we have that
Ta(As(g) x @) =1, x —AL()).
Furthermore,
Ta([A=3, pr42) x @) =H.

Proof. The interval [A_3, pg42) is the union of the full cylinders A, (j),k 4+ 2 = j = —3. Since
Aj = (M;)™' 4y and p; = (M;)~! - rq, we find that 7, sends A, (j) x @ to I, x —A,(j). Taking
the union over the various j gives To([A—s, pry2) X @) = I, X —[A_3, pg+2). The result now
follows. O

When applying Lemma [68] the following is a natural aid.

Lemma 70. Fizn > 3, and either a non-synchronizing o < v, or & € {ChwsMew} with k € N
andv € V. Then

[60’)‘—3] = |—|u€{71,72}*ﬁﬁcx [/\u,—37 pu)
and

(Pr+2,70] = Uuefht 1.k} nLa [PAus Puk+2) -

Proof. We consider the first equality. Note first that [fp, A_3) = Ay(—1) U Ay(—2). Fix any
u € {-1, —2}* N Ly. Then u,—2 is also an admissible word, and of course, p, —2 = A, —3. It
follows that
Ag(u) = Ag(u, —1) U Ay (u, —2) U [Ay,—3; pu)s
where by definition A, (u,—1) is empty whenever u, —1 ¢ L.
Thus, we can iterate the partitioning of A, (u) beginning with each of u = —1,u = —2.
By the (eventual) expansiveness of the accelerated T, map, any infinite admissible word of

simplified digits in {—1, —2} corresponds to a unique point. Therefore, A, (—1) U A,(—=2) =
Uyef—1,-2}*nc. [Au,—3, pu) and our equality holds.
The veracity of the second equation is similarly argued. O

6.3. Sweeping out (2, for a an endpoint of a synchronization interval.

Lemma 71. Fizn >3,k€ Nyv €V and o € {Cevs M} Then Qo D 24 and
Qo :U]O‘il Toz(za)

up to H-measure Zero.

Proof. The containment follows from Propositions and Since U372 Td( 2) is To-invariant,
the ergodicity, shown in Proposition implies the equality. O

Lemma 72. Fizn > 3,k € Njv € V and o € {Cew,Mkv}. The map u — U defines a self-
bijection on each of {—1,-2} N Ly and {k+1,k} NL,.

Proof. Reversed admissible words are admissible. Certainly taking the reversed word has
no effect on the set of digits appearing in a word, and also defines a bijective function on the
set of words. Since whenever u is of length one we trivially have S also in Lo, and also the
admissibility of any word implies the admissibility of any of its subwords (that is, of any of
its factors), we prove that the reverses of admissible words are admissible by induction on the



28 KARIANE CALTA, COR KRAAIKAMP, AND THOMAS A. SCHMIDT

lengths of words. Thus, we suppose that for u given every admissible word of length less than
that of u (satisfying our digit restrictions) has its reversed word also admissible.

We first consider v € {—1, —2}* NLy. For u =wuq---u, with s > 1, we let v/ = ug - - - us.
Step 1: Reduction to special case. Were w inadmissible, then there is some suffix of this
word, of say length j, which is less than df; ;; (see [§], Lemma 1.5). Invoking our induction
hypothesis, we find that it must be the word itself which has this property; that is, =< d[l 5]

(_
On the other hand, v’ > 4[1’5711, but since we are using a ‘dictionary order’ u’ = Q[I’#l] and

(since only digits —1, —2 are involved()_ul —1 while d; ;, = —2.
Thus, we can and do assume that ' = d[l,sfl] and u; = —1.

We remind the reader that the expansion for 7 , is given above in and that of ( = (i,
in .
Step 2: Special case is void. Since appearances of —2 in dﬁ,oo) are separated by either
(=1)"=2 or (—=1)"3, but the admissible u cannot begin with (—1)"~!, it must be the case that
dfy 4 has suffix =2, (=1)"7?, =2 and u thus has prefix (—1)"2, 2. (It is easily seen that shorter
u do have admissible W as we proceed other “short” possibilities will similarly arise, but these

also are easily seen to give admissible % and thus we will not mention them. )
Now, the admissible u cannot begin (—1)""2 —2,(—1)""2,—~2 and hence dfj ) has suffix

—2,(=1)"73,—-2,(=1)""3, —2 and u has prefix w. We now note that for any j € N

(14) _27 (_l)n_Sa _2a wj7 (_l)n_2 = wj+1'

This then gives —2,C,(—=1)""2 = w* and thus —2,D,(-1)""2 = w**!. Since w**! is not
admissible, we see that df} ,; cannot be of suﬁix —2,D, (-1)""3, -2,

Appearances of —2, (—1)"73, -2, (=1)"73, —2in di occur only when the suffix (— -2
of some final w of a C or D is followed by the prefix ( ) 3. —2 of again some C or D. (When
k = 1 there is also the possibility of consecutive C giving this.) Hence we must have that d[l s has
suffix —2,C, (—1)"~3, —2, and u has prefix w*. (The identity D = [C (—1)"72], =2, (=1)"3, -2

shows that we have yet to find an inadmissible ﬂ) Equation (14)) gives that —2,C% (—1)""2 =
wkC*1 for any positive i. Since ¢, = ¢; = maxc¢; and D < C, admissibility of u entails that
dfy ) has suffix —2,C, (=1)"7%, =2 = =2,C%, (—=1)"%, -2.

Recall from [8] that either all ¢; equal one and each d; € {dy,d; + 1}, or all d; equal one and
each ¢; € {c1,¢1— 1} Since ([14) gives that the reverse of any —2, D71, C% ... DIr Cir (—1)""2
is wkCir=1, Dir ... C" DI we next see that dj ) has suffix -2, Ddl CCl (— )”*3,—2. We
now do mention a short possibility: If the ¢; are all one and do = dy + 1 then u of the form
wk, Car—Iph o2 DP2-1 is admissible, however as usual S is admissible. With appropriate
generalization of this, we can continue our arguments and find that (under our restrictions on
u) no finite length u gives an inadmissible . That is, this case is empty and thus for all
ue {—1,-2} N L, we have also S € {~1,-2} N L,.

)n73

)

Involution shows onto. Since any admissible w is the reverse of its own reverse, we now have
that u — % defines an involution on {—1, -2} N L,.

The proof in the case of u € {k +1,k} N L, is given mutatis mutandis. O

6.4. Finishing the proof of bijectivity, and finite mass for non-synchronizing a.
Throughout this subsection, we again fix n > 3,k € N and a non-synchronizing a < ~,.
Together, Lemma [69] above, and Lemmas [74] and [75] show the statement of Proposition [65] that
Q D Z. The latter two lemmas rely on the following corollary to Lemma
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Corollary 73. The map u — w defines a self-bijection on each of {—1,—-2} N Ly and {k +
LEY NL,.

Proof. Lemma, @ holds directly for the various 7y ,. Any other non-synchronizing « is such

that there is a sequence of v; € V and ¢; € Z>o such that v;1; = 0;(v;) with Qﬁm) =

lim; o0 d(k,v;) and E‘ﬁm) = lim;, 0 d(k, v;) (with the usual metric on sequences). Furthermore,
o = lim; o0 N0, and hence for each L € N, there is some ¢ such that for any word u with

lul = L, we have u € L, if and only if u € L, , . Therefore the symmetry for {—1, -2V NL,

and {k+1, k} N L, follows from the symmetry for each of the corresponding sets of words for
every Ny, - O

The following two results provide the heart of the justification of injectivity.
Let 2 = sup; {{;(a)}. Note that & < A_3.
Lemma 74. We have that
Uneq1, -2y ne. Ta(Aa(u) x @=) N {(z,y) | 2 € [L,70) } = [L,70) x @\ ™.
Proof. Since df} ) € {—1,-2}" whereas d? )y € {k+ 1,-k}, for all u € {—1,-2} N L,

[1,00

Toléu‘(Aa) has some some ¢;(),7 > 0 as its left endpoint and has right endpoint equal to ro. In
particular, T(llu‘(Aa) D [Z, rg). Furthermore, RM,R™" - &~ = —[\iz 3, p7)-

Since ® \ &~ = —[lp, A_3), it remains to show that ({y, A_3) is the union over all u €
{-1,-2}" N Lo of [\ _5,p%). By Lemma (los A—3) = Uyeq—1,-2y*ne, [Mu,—3,pu) and
hence Corollarynow implies (o, A\—3) = Uyeg_1,-21"nz,, [M7,—3: 0% )- O

The next result is proven analogously. Let Z = inf; {r;(«)} and note that Z > pjyo.
Lemma 75. We have that
Uuetrsrayng, Ta' (Balw) x 85) 0 {(@,9) | 2 € [lo, #) } = [lo, #) x @\ @

Although not necessary for the proof of bijectivity, more can be shown about the vertical
fibers.

Lemma 76. For each x € 1, let F, be the vertical fiber of Q above x. Then for all x € I,
the fiber F, is an interval. In particular, Fo, = [~ro, —L] where L = sup; {{;(a)} and Fy, =
[—Z, —{o] where # = inf; {r;(a)}. Furthermore, (i) if x < &' < pgt2 then F, C Fys, and (i)
if prao <z <’ then Fp D Fy.

Proof. The arguments for “left” versus “right” sides of our setting are completely analogous.
We thus only give the arguments for the latter case.

We first show containment of fibers. For L < & < pgy2, we have that F, = ®. For x < L, we
have F, =&~ J U RM,R~1 . ®—, thus certainly if z < 2’ < L then F, C F.

ue{—1,-2} NLa
=>T* (A,
Now, Fy, = - U U1, -9y men — [Az.—3,p47). Tt is easily confirmed that Lemma
Aq (u) full
with Propositions and implies that when « is replaced by any o equal to some (j , or
Nk, then the leftmost fiber equals [—r¢(’), —L(a’)] where L(a/) is the largest element of the
T,-orbit of £o(a’).
We thus now aim to argue that dﬁ 00) = lim; o, d(k,v;) leads to the result holding here. It

is easily established that ®~ is the limit of the corresponding interval for each 7y ,, and also L
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is the limit from below of the L(n ,,). For any u € {—~1,—2} N L, there is some iy (depending
only on |ul) such that for all i > iy we have u € £, , . The non-full cylinders are given by those
u of suffix d[oi Jl for some j € N. For each such j, there is some ¢; such that for all i > i; we

have dﬁ iq= d?lk;’f Thus, each “full” u is such that Anmi (u) is full for all ¢ sufficiently large.

On the other hand, again since dﬁ)oo) = lim;_, d(k, v;), for each i every u € E,,,mi of length
less than d(k,v;) is a-admissible and if A, , () is full then also A, (u) is full. Thus, Fy, is the
limit of ever increasing subsets of the Fy,(,, , ) = [~ro(a’), —=L(a/)] from which the result now
follows.

Finally, since F, is an interval so also is each J,. Since any left non-full cylinder A, (u) has

its left endpoint equal to some ¢; by T(Lu‘, the fibers are constant (and hence intervals) between
the various ¢;.
We repeat that the analogous arguments succeed for the remaining cases. g

6.5. Ergodic natural extension for non-synchronizing a. The proof of Theorem [l for
small, non-synchronizing « relies on ([9], Main Theorem 1). The following verifies one of the
hypotheses of that theorem for such a.

Proposition 77. With Q as in Proposition [65, n(Q) < cc.

Proof. Let Qt = {(z,y) € Q| y > 0} and Q™ = {(z,y) € Q| y < 0}.

Since dﬁm) € {—1, =2} the T,,-orbit of £y(c’) agrees with the Ty-orbit of this same value. The
vertical fiber in QF above {g is —[Z, 0], where £ = sup; {{;(a)}. Now, —Z = lim; 00 —ls(¢, ) =
lim; oo RATIR™Y - —0o(Cw,) = RATIR™Y - —4y. Since —t < {y, we have RATIR™! . —{ <
RA-'R~1.t. Direct computation shows RA“'R™! .t =1/(t + 1/t). This value is certainly less
than 1/¢, and hence it follows that the fiber F, lies inside Qq, see [10]. That is, the Tgp-orbit
of the vertical fiber lies strictly inside €. But, Q¢ touches the locus y = —1/x, the locus of
non-finiteness for du = (1 + 2y) 2 dz dy, only at its vertices. Since the vertical fibers of QF are
constant between the various ¢;(a) we find that all of QF N {z < 0} lies within a set of finite
p-measure. Elementary considerations show that all of QT has finite u-mass.

With # = inf; {r;(«)}, Lemma Proposition and an elementary calculation give that
—%# = lim; 0o RAR™' - —ro(kv;) = RAR™' - —1rg = —r¢/(1 + trg). Clearly, (ro,—%), and
hence all of F,, lies above the locus y = —1/x. Since the locus is invariant under Ty, for any
M € SL(R), we find every fiber F,., also lies above this locus. Since the fibers are increasing
with respect to > 0 we find that Q~N{z > 0} lies within a set of finite u-measure. Elementary
considerations show that all of 2~ has finite p-mass. O

Proposition 78. With «a as in the notation of Pmposition@ the system (To, Qas Blyy o) 18
the natural extension of (Ta,la, Ba,Va), where vy is the marginal measure of 11, and B, the
Borel sigma algebra on I,. Finally, both systems are ergodic.

Proof. From Proposition Q% = Q is a bijectivity domain for 7. From Proposition [77]
this domain has finite measure. From its description in Proposition [65| the domain has fibers of
bounded Lebesgue measure. Since « is a non-synchronizing value, it corresponds to a limit under
a sequence ©4, applied to a word in V; the digits which enter the expansion of the endpoints
of such sequences form a finite set. In light of Remark T, satisfies the bounded non-full
cylinders hypothesis for ([9], Main Theorem 1) and indeed all other hypotheses are then also
easily verified. That is, the proof of the proposition is then complete. O

6.6. Continuity of a — u(,). We can now prove the main aim of this section.

Theorem 79. The function a — p(q) is continuous on (0,7y).
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Proof. Since the both top and bottom heights are constant along any synchronization interval
Jk,v, with fibers constant between the various r;(«),¢;(a), continuity and indeed smoothness,
of a — p(4) in the interior of the interval is clear. Propositions [59| and [60| easily imply that
the continuity holds on the closed interval.

Now fix k. To show continuity throughout I := U,cy Ii ,, it only remains to show that
1(Qr) = () when o is non-synchronizing or (for the remaining one sided limits to) some 7y, ,,
or (g, with all values in Ij. Fix one such value a € Ij, it suffices to show that p(Qq) = ()
when the o' are non-synchronizing or various 7y, or (., also in Ij. Such o’ have

Qar = Har |_||—|u€{—1,—2}*ﬂ£a/ Zl?‘(Aa'(U) X q);’)uuue{k—&-l,k}*ﬁﬁa/ 7;lf‘(Ao/(u) X ‘I)Z/ )-

Now, as &’ — a we have u(Zy \ Z4) = 0, u(Ho \ Ho) — 0. Furthermore both d‘ﬁloo) —df )

and Eﬁloo) — Eﬁ 50)" In particular, there are b,/,co € N each going to infinity as o’ — « such
that for all u € {—1, -2}  with |u| < by, one has u € L if and only if u € L, and similarly
for all u € {k+1,k}" with |u| < cos we have u € L, if and only if u € L,. For these u, we have
also Ay (u) = Ay (u). Since €, is of finite p-measure, as |u| — oo we have u(Aqy(u) x @) — 0
and similarly u(A,(u) x @F) — 0. Taken all together, we find that u(Qa) — u(2,) as o — a.

It only remains to show continuity at the boundary of each of the various Ip. Fix k, we
must show continuity from the left at o = (j,1, we do so by considering the limit given by
Cht1,n — Ck,1 a8 h — 00, As in , with D = (—1)"73, =2, wk+!

A =(=1)""2,-2D and dFN = (-1)""2 -2, D" w

H1,00) = Hlo0) ~
Therefore, in terms of the argument of the previous paragraph, here also there is agreement
among ever greater length words of {—1, -2} N L, with those of {—1, -2} N L,. That is, the
arguments above apply and give ;L(Qg’k“ L) = M(Qa )

Note that that the only words in L, ; which contain the letter k are the prefixes of E[Cl"’;o) ;in
each, k occurs only as the initial letter. Complementing this, words consisting of k + 1 repeated
any number of times are admissible. On the other hand, in each L, ,, , there is no word with
the letter k, and the words consisting of k + 1 repeated up to h of times are admissible. Thus,
the arguments from above apply to show that ”(Qac+1,h) — ,u(Qac)l). Therefore, continuity of
a — 1(Qq) holds on all of (0,7,,). O

7. INTERMEZZO: PREPARATION FOR THE TREATMENT FOR LARGER VALUES OF «

7.1. Terse review of further notation and terminology. We complement Subsection [I.3]
with reminders to the reader of further terminology and notation from [§]. For the following,
confer ([§], Figures 4.1 and 1.3).

Fix n > 3. For each a, let
(15) bo = C~ 1 lo(a).

Then the right endpoint v, of the set of small « is the value of « such that b, = ro(a). The
left endpoint of the set of large « is €,, the value of a such that A=1C - £y(a) = ro(c). Thus,
the large « are exactly the values such that the first a-digit of £o(a) is (—k,1) for some integer
k> 2.

For large o, we use exactly the same tree of words V as for small a. For the following, confer
(8], Figure 6.1). For each k € N,k > 2 we let

(16) d(*kvv) = (*k)q? (*k - 1)d1a' B (*k - 1)d5717 (7]{;)05,
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and so that the corresponding subinterval of parameters is I_g, = {a\da W] = d(—k,v)}.
Thus, (using redundant notation) set S(—k,v) to be the sum of the ¢; and d; of v, and

(17) L o= (ATFO) (A7F10) (A ROy (AT IO) (AP A7

then for o € I_j, one has Eﬁ(,kﬂ))(a) = L_j A lo(«). The right endpoint of Iy, is denoted
C_kv; one finds L_g A - lo((—kw) = 70(C—kw). Set Ry, = CAT'CL_ , and define J_j , =
[1—k,v, C—k,w) Where Ry o - To(N-k,0) = by

Each J_g, is partitioned into two left-closed subintervals, whose common endpoint, d__,,
is characterized by ¢g(a) = b, when a = §_,,. We will refer to these as the left portion and
right portion of the interval. Recall that synchronization occurs after one step further in the
T,-orbit of rg(a) for a in the right portion as opposed to in the left portion. To be precise, the
synchronication is given by

lys(a)=r gla) ifa<d_p,
(18)
biys(@) = ray5(@) iTa>d g,

Key to proving the synchronization results for large a was the determination of a maximal
common prefix of the bﬁ,m) for o € J_j . For that, we set u = u, = (1,2)"72,(1,1) and for
k>2 =& = (1,1)uf"%(1,2)"3 and F = 1. The common prefix is

(19) b(—k,v) = (1,2)" 2 Fh g2 Fla ... g0t Filomr g0

denote its length as a word in the a-digits by S(—k,v). There is an expression for R_j ., related
to b(—k,v) similar to how relates L_j , to b(—k,v); see (20).

Finally, in the case of intermediate sized parameters, that is for « € [y, €, ), one has as for
small o that the first a-digit of £y(a) is (—1, 1) and thus k = 1; however, the dynamics are mainly
of the type of the large a.. To see this, first note that v,, = 71 ,—2 and furthermore, there exists
« € J_1 5o such that (A71C)"2 - fy(a) = C~1-£y(a). For this value of o, AC?-1g(a) = fo(a).
Arguing as in ([§], Section 6), it follows that (1,2) is the initial digit of r¢ for all parameter
values at least as large as this a. Thus for a to the right of J_; ,,_2, the dynamics are indeed
of the type of the large . On the other hand, see Subsection [8.2] synchronization holds on
J_1n—2 with S(—=1,n —2) = 0 and hence the fact that there are o € J_1 ,,_2 whose digit of g
is less than (1,2) is insignificant for our discussions.

Therefore to describe the dynamics for the intermediate sized parameters, we restrict to words
in the subtree V C V defined by (v=cidy--cs € V,, is such that ¢; < n—2, and (i) the only
word in V,, with prefix n—2is v = n—2 itself. As discussed in ([8], Section 7) we can still use
since the implied appearances of u¥~2 = 4! turn out to always have neighboring appearances
of u to positive powers. Thus, we treat the two-dimensional maps for the cases of @ > ~, all
at the same time. We give various examples with intermediate sized «, see Subsection [8.2] and

Examples

8. THE CASE OF LARGE « IN LEFT PORTION OF SYNCHRONIZATION INTERVAL

Devoted to a > ,, this section and the next parallel Sections [ and The relationships
between the various rectangle heights in this current are more intricate, see Figure [I3] for an
indication of this.
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(ro,y2)
(€1, y2)9—
(o) [ :
(72.1)3 (-2,2)
S e “3 (2.2) 3
1) (1,2)
I
b 1 (ry-2) (r0,y-1)
(€o,y-3) (r1,9-3)

33

”””””””””””””””””””” (2,1)
N ¢ )
(1,2) (k+1,1+1)
(k1)

FIGURE 10. The domain 23 8. Blocks B; ; and their images, both denoted
by (i,7). Here L_j, = A72CA~! and R_j, = AC AC?, and « is an interior
point of J_z 1 lying to the left of §_5 ;. Also, hints as to the lamination ordering

given in small boxes.

8.1. Definition of €2, for large « in left portion of synchronization interval. Fix n >
3,k eN. If £ > 2, fix v € V, and otherwise fix v € V. Finally, fix a in the interior of J_j ,.
Compare the following definition with Figures [10] and

Definition 80. Let S = S(—k,v) and define Q7 as in Definition [11| except that

For all i € {0,...,S5}, we set y.(;)

(bs—1,¥rs-1))

(fo, 1)
(—k—1,1)
(=k,1)

b

(ro,ys41)

(to,y-51)

= _gﬁ—i(n—k,v)-

(1,2) ’—,J

(ro,y-1)

(rvti s rsp3)

(r5:Us(3))

(ri s y5.0)

FI1GURE 11. Schematic representations showing the most important vertices of
the tops and bottoms of blocks (not to scale), for o € (n_gv,0—k»). Blocks

B(;,jy denoted by (4, 7).

Definition 81. Let S = S(—k,v) and define Q™ as in Definition [12| except that we let

T (btet1)

Yo

T (bre+sH2)

if —1>

b> —e;

otherwise,
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where for 0 < i < S,

P C-ri(n-kw), ifri(n-r.) € An—k,v(172);
ri(N—kw), otherwise,

and e = e(—k, v) is the number of occurrences of (1,2) in b(—k, v). See Figurefor an indication
of these values.

Note that since b(—k,v) only has digits {(1,2), (1,1)}, each #; < b,_, , with equality exactly
when i = S. Furthermore, e(—k,v) = #{i | #; = C - 7;}.

I : I
I X I
| An—k,v(l’ 1) | | An_km(l,2)

I | I
I | I
| | |
| | |
' —=YB(0) Y1486 TYs(E) i !
bl | | |
: —Y-1 —Y-e —Y—e—-1 —Y_3 —Y_s5.1 :
| |

—L o o - o o o o o0 o 4 4, | o e - o e

’,:j—e 7:_7—1 Tj7§71 T]7672 ijefl r]—e T] 1
[ [ [
C - To ’I“§ 70
T z—C-x

FIGURE 12. Bottom heights are of the form —#;, see Definition For
ri(Mko) € Ay, (1,2), we have 75 = C - rj(no). That 75, < rj o (k)
is shown in Lemma

The following result gives a hint of the use of the 7.

Lemma 82. Considering b(—k,v) as a word in {(1,2),(1,1)}, let q; be the first letter of
ol (b(k,v)), and set M; = ACYi where q; = (1,1;) for 0 <j < S. Then
P i 1< q.
RM;R™' - —7; = 7:] 1.Zf‘ <J<S;
—ro if j=0
and RACR™! - —re =TS .
Proof. Since the initial digit of b(—k,v) is (1,2), using Lemma (14 we evaluate
RAC?’R™' - —g = —(CAC)™ - (C - ro(n—-)) = —(AC) ' - 1o (N—k.0)
=-Cc! Lo(M-kw) = —b, ., = _Tg(nfk,v) = _72?

Similarly, we treat the four possible cases when 1 < j < S. If M; = AC and 7;_1(1-k.) €
Ay, (1,1), then

RACR71 . *fj = 7(AC)71 . rj(n—k,v) = *Tj—Q(n—k,v) = 77A'j_1.
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RL_j ,AR™!

—k —k —k—1 —k A
YI=Yr0) — 7 Yr(1) — 7 " T2 Yr() TYS — > 0 T Yr(5-1) — 7 Yr(S) = YS+1

RAC’R_ e, (R
Yos) S Yes-u T Ty Y-s-1 Ty Yies®) PO Taa s e T
8))

FIGURE 13. Relations on the heights of rectangles for general k,v and
& € (N—kw,0—kw). The equality 7(¢) = S is Lemma The red paths are
used to prove that lamination occurs; the red arrows are due to Proposition [04]
and Corollary [84] The blue dotted arrow is due to Lemma The highest
solid arrow is due to Lemma [91] the lowest solid arrow is due to Corollary [84]
The lowest dotted arrow is due to Corollary The top horizontal arrows are
as for the small « setting, the lower horizontal arrows follow mainly from the
definition of the y, combined with Lemma The top two dotted arrows are
implied by definitions, in direct analogy with the case of small «.

Whereas if instead 7;_1(n_x) € A, , ,(1,2), then

RACR™ - —#; = —(AC)™ ' - (AC? - 1j_1(—w) ) = —C - 1j_1(N—-p) = —7j_1.
If M; = AC? and rj_1(1—k,) € A,_, ,(1,1), then

RAC?*R™ - —#; = —(CAC)™ - C - rj(_p) = —Tj-1(N—kw) = —Fj_1.
And, if instead 7j_1(n-k,0) € Ay, ,(1,2), then
RACQR_l . —fj = —(CAC)_l -C - Tj(n—k,v) =-C- ’I"j_l(n—k,v) = —’Iﬁj_l.
Finally,
RACR™ - —¢_= —(AC) ™" r_(n_pp) = —F

by considering the two possibilities for l5_;. O

8.2. Examples with ‘intermediate’ values. Recall from ([§], Example 7.4) that R_q ,,_2 =
CA~IC (A710)"2A~1 =1d holds for all n > 3; thus S(—1,n — 2) = 0. Recall that 71,2 =
Vn, from whose definition it easily follows that the initial digit of ro(~,) is (—1,2). Thus, on
J_1,n—2 we have a single bottom height of y_1 = —r¢(yy).

We now fix n = 3. Here n_11 = 73 = ¢°/2 where g = G — 1 and G = (1 + v/5)/2. Thus
ro(n-1.1) = g%; one easily verifies that the T2 j9-orbit of lo(g?/2) is periodic of length one with
preperiod —G — —g?. Therefore, for all o € (73,0-1,1) we have y; = g%,y = G and y_; = —g°.
That is, we find a “backwards L”-shape:

Q3.0 = ([lo(a), (r(a)] x [=g,g%]) U ([a(a), mo(@)] x [=g%, G]) Va € (v3,0-1.1)-
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8.3. Relations on heights of rectangles, for large « in left portion of synchronization
interval. The main aim of this subsection is to establish the relations needed to show that 7, «
is bijective up to measure zero on €2, . Other than the result that the vertices have the correct
images (see Lemma below), these relations are all indicated in Figure We also show that
Qo has the expected shape — the vertices increase in y-value as their z-coordinates increase.
See Lemma [90] for the bottom vertices, the similar behavior of top vertices follows directly from
arguments of the small « setting.

Note that since Subsection[8.2]directly establishes that the lower boundary of €2, is of constant
height when o € J_1 ,,—2, in what follows we will occasionally tacitly assume that o > (_1 ,,—2.

Lemma 83. For o € [N_k,4,0_k,v), we have

i.) rg(a) > by with equality only for o = n_p o,
ii.) rg(a) lies to the left of An(1,2),
iii.) B(S) = —1—e(—k,v),

iv.) B(=1+j_5_,) = —e(=k,v).

Proof. For all k € N and v € V, the definition of n_j, results in rg(n_i.) = by_.- The
commonality of the initial digits along the synchronization interval then leads to the inequality.

For o € (n—_ v, 0—k,v) We have £g(a) < by, and hence C7*AC™! - rg(a) < C~'-4y(a), whence
AC™ - rg(a) < lo(a). Since C~ acts as C?, each rg(a) lies to the left of A, (1,2).

We thus have that there are e(—k,v) orbit entries larger than rg(a), and hence 5(S) =
—1 —e(—k,v).

We certainly have that r; _ is the leftmost 7; (j < S) in the cylinder Ay(1,1). Since all

r; with j < S are in Ay(1,1) U Ay (1,2) while rg lies between these cylinders, it follows that
T_14+j_4_, is the image of the leftmost r; in A, (1,2). That is, B(-1+j_g_,) = —e(~k,v). O

Compare the following with Figures [[3] and

Corollary 84. The following hold:
i) RC?°R™'y 5 | =ys+1,

i) y g, =RAC’R™ -y, 45,
iii.) ys41 = ROTVAC?R™ y 45,

iV.) Yy-1 = RACR_I . yﬁ(?) .

Proof. By definition, y 5, = —#;___, . The lemma then implies that y_5_; = —r5(N—k,v)-
By definition, this equals —b,_, . Lemma gives RC*R™' - (=b,_, ) = —C - b, , =

—0o(N—k,»). This final value equals yg41.

From the lemma, 3(S) +1 = —e(—k,v). Hence Yi+p(3) = —Tj_.- Since j_1 = 0 we have that
Y145(35) = —To and Lemma 82| gives RAC?R™! - (—79) = —i'g. From the above, this value is
indeed ys41.

The third equality follows directly from the first two.
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Finally, from Definition 81} Lemma [82] Lemma [83] and again Definition 81} we have
RACRil . yﬂ(g) = RACRil . (—fj_g_l) = —72,1+j - = —f’j_c =Y_1.

—S—-1

O

Recall from [8] that U = AC(AC?)"~2, £ = (AC?)"3U*2AC, and F = (AC?)"3U+TAC.
And,

(20) Ry =EFdet £t Floa ga Fhger(AC?) 2,

Recall also that r;__  is the least element in the initial Ti,-orbit of oy = ro(a); from § when
(k,v) = (1,n — 2) that initial orbit consists only of r( itself. In the following, we temporarily
use s to also denote a word in V.

Lemma 85. Suppose that (k,v) # (1,n —2). Then
(AC?)n=3=¢.p, fv=ck=1;

i . = (AC?)"=2UF=2.ry  ifv=ck>1;

S—1

ACQR,kV(_)q_l(S) ‘o if v=0}00,(s), withq>1,h>0.

Proof. We first treat the case of k > 2. We can uniquely express b(—k,v) as a word in the
letters that we temporarily use: a := (1,1),b := (1,2)"73, ¢ := (1,2)" "2, where we view these
letters as having increasing value (of course, when n = 3 we suppress b). We introduce a fourth

symbol, x to represent the expansion of rg, so that B? can be viewed as a word of length

1,00)
S(—k,v) + 1 in these four letters, with the final symbol appearing only as a suffix. Of course,
7j_<_, has expansion given by the least suffix of this word.

In terms of these letters, u = ca, £ = a(ca)*~2b, F = a(ca)*~'b. By Lemma a<*x=<b<ec
and thus £ < F < u.

Since gives the expression for cancelling the initial digits of Eﬁm),

(21) 5? )= cla(ca)*=2b] [a(ca) 0] - - - [a(ca)®2b)%1 [a(ca)*1b]%1 [a(ca)®~2b]% .

1,00
If v =1, then Bﬁm) = c(ac)k~2ab*. The least suffix is visibly abx and we find
[(Ac2)n—2Ac]k—2(A02)n—2 o (Ac2)n—2Uk—2 70 .

Similarly, if v = ¢1,¢1 > 1 or |v| > 1 then the least three letter word (when n > 3) is aba (when
n = 3 then this is the least two letter word). Thus, when v = ¢; we find that the least suffix
begins with the letters ab found at the end of the first copy of £. (Indeed, all other suffixes
beginning with an ab reach x at a length at which this suffix reaches a copy of a.) That is, here
alsor; . = (AC?)"2U%2 . rg.

When |v| > 1, recall that ¢; = ¢; = max{c;} and d; = min{d,;}. There are no internal
occurrences of ¢; = ¢; in v exactly when v is of the form v = ©4(c1). In this case, the minimal
suffix is ab [a(ca)*~2b]¢ . Note that AC2E - F = (1,1)(1,2)"~3. Hence, depending on whether
c1 = 1 or not, we find M = AC2EFI~1E(AC?)"2 or M = AC?E [~ 1 F]9E4 (AC)™~? sends
ro to rj_. . Therefore,

rj—§71 =

Tj7§71 = A02 R_k?a@qfl(cl) “To -
If there are internal occurrences of ¢; = ¢;, then arguing as in in the proof to Lemma@ , We
find that the minimal word, up to its suffix of x and prefix ab, corresponds to the parent of v.
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Thus, when v = Ogy(s), we find r; _ = (1,1),(1,2)" ", 06" 2(b(—k, s) ), *. Following again the
proof of Lemma [32, we find AC*R_; 6, ,(s) - T0 = AC?E - F o™ 2(b(—Fk,s) ), Thus, this case
holds as well.

We turn to the case k = 1. Recall that the only v € V containing the letter n — 2 is the one
letter word v = n — 2 itself, thus the case n = 3 here is excluded by hypothesis. For n > 3, the
brief discussion at the end of § [7] can be shown to imply that in fact

R—l,v _ (AC«2)n73chAC ]}71+ds_1 (AC’Q)"f‘?’*CS‘lAC’ ‘/—:~71+d5_2

. (ACQ)n—S—czACj:—l+d1 (ACQ)H_Q_Cl.
Equivalently, using x as above,
D100y = (1,2)" 7270 (1L,D[(1,2)" (1, 1)) (1,2)" 78702 (1, 1)[(1,2)" (1, 1))
o (1L,2) T (1L, )[(1,2)" (1, 1)) T (1,2) R
If v=cwith1l <c¢<n-—2,then E[QLOO) = (1,2)""27“x and we find that our extremal suffix is
given by (AC?)"~3=¢.ry. For all other words, arguing as above we find that the extremal suffix

begins with (1, 1) and continues with the digits corresponding to the longest suffix/prefix. That
is, the argument for k > 1 succeeds in this case as well. O

b—b+e

b—b+e—S-1

FIGURE 14. Dynamics of the initial portion of the T,-orbit of ro(«).
Recall that 5(j) = j, means that r; is the j,-th real value of this orbit, from
the right. Indicated below the z-axis are the values of b, above it a few corre-

sponding 3(j). See Corollaries |86| and

Compare the following with Figures [T1], and
Corollary 86. We have 1 + (1) = 3(1+j_g_,)-
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Sketch. We treat only the main case of v = ©g4(s). The proof of the lemma implies that
g o, = (1,2)"73,0"72(b(—k,s)),* We easily find that ry = (1,2)"2, 0" 2(b(—k,v) ), *.
Now, (1,2)"73, 0" 2(b(—k, s)) is a prefix of (1,2)"73, 0" 2(b(—k,s))(1,2)"3,0"2(b(—k,v))
which is followed by a digit of (1,1). Since (mixing notation and temporary notation), (1,1) < x
we have r14; > Asrp is the rightmost of the AC? - r; while r14; _ | is the leftmost of
the AC - r;, the statement holds. O

A second direct result of the previous lemma gives the basic dynamics of the T,-orbit of r¢(a)
in terms of the indices for the real ordering. See Figure

Corollary 87. The position of the successor of r;, is given by
b+e if b<—e—2;

B+ ) =
b+e—S—1 if b> —e.

Proof. The r;,j < S in the cylinder A,((1,2)" %) are ry = r;_, and the images of the larger
75,7 < Sin Ay(1,1). In particular, the largest of these latter values, r; . ,, is sent to r; ,. On
the other hand, we have that the smallest of the r;,j < S in A,(1,1) has image greater than
r1. Hence, the image of A, ((1,2)""2) lies to the left of the image of A,(1,1). It follows that
B(1+jp) =b+eforall rj, € Ay(1,1). This is the set of r;, with b < —e —2.

Since there are e values 7;, in A,(1,2) and the one value, rg outside of A, (1,1) UA,(1,2),
the set {b | rj, € As(1,1)} has cardinality S — e. Hence,

(22) B(l)=—-S+e—2.
Therefore for all 7, € A, (1,2), we have B(1+j,) =b+e— 85 — 1. |
Lemma 88. For 0<j < S, let M; be as in Lemma . For each b we have

Taty, (T, Y6) = (P14 YB(1440))-

Proof. We treat the setting where n > 3 and hence (1,1) appears only as an isolated letter
in b(—k,v)). (When n = 3, it is (1,2) that appears as an isolated letter, allowing analogous
arguments.)

Case 1. —1 > b > —e: From Corollary we have 3(1 + j,) = b+e— S — 1. Thus,
Definition [81] gives

i pynesry if —e€>B(1+ )
Y8(1+4) =
_fjf(b+2e7§) otherwise.
Deﬁnitionalso gives yp = —Tj_, .., - Note that M;, =M;_, ., = AC? here. If b = —e,

then y, = —7p and Lemmagives in this case RM;, R~' -y, = —g. Here YB(144s) = —Tj_eoy =
—7g; the result holds for b = —e.
For —1 > b > —e, Lemma [82] combines with Corollary 87 to give

_fj—(b+2e+1) if B(_l + j—(b+e+1)) < —e-— 2,
RMjbR_l “Yp =
_rf‘j,(bJrZe,g) if —1 > ﬁ(_l +j7(b+e+1)) > —e.

We see that the result holds whenever B(—1 + j_(y4et1)), B(1 + jp) are both at least, or are
both less than, —e.
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In this first case, it remains to show that the two remaining possible combinations of inequal-
ities on the values of 3(—1+ j_(p1e41)) and S(1 + jp) can never be fulfilled. For this, note that
the cardinality of the set {r; | r; € Ay((1,2)(1,1)),j < S} equals S — e, as the set has image
consisting of all of the r; in A,(1,1). Therefore, the corresponding indices j are such that the
real ordering gives —e < 3(j) < S — 2e — 1.

Thus, if B(1+j,) < —e—1, then —1 > —(b+e+1) > —S+e. From (22), —(b+e+1) > B(1).
Therefore, B(—1 + j_(p4et1)) < —€ — 1. Now, if =1 > B(—1 4 j_(p4e+1)) = —e, then (as also
—(b+e+1) > —e), we have —(b+ e+ 1) < 5(1); but then (1 + j,) > —e — 1. The result thus
holds in this first case.

Of course —S —1<b
= AC here; as well

Case 2. —e >b: In this (iase, Definition gives Yp = —fji(bﬂgﬁ).
and thus we find —(b+ e+ S +2) < —e. Therefore, M;, = M;
“1>B(=14J_(hreq5i2) = —€

Hence, Lemma [82] combines with Corollary [87 to give

RM; R™" -y,

—(b+e+5+2)

= _,ﬁj—(b+2e+1)'
From Corollary we have (1 + j,) = b+ e, which must be at least —e (assuming n > 3)
Thus,

Y8(1+5) = Vi (b42et1)"

Corollary 89. We have Ya(s) = RR_j ,R™* “YB(0)-

Proof. Since R_j, = Mg--- My, while for each j < S we have M;j--- My -7y = r;, this does
follow from the lemma. O

Lemma 90. The values of the y,,b < 0 increase with b.

Proof. By Definition y = —C-rj ., ,(N—kwn) when b € {—e,---,—1}. By definition,
i (Megw) < -+ <7, (N—kw). The map b — —e — 1 — b is order reversing, the action of C
is order preserving, and finally multiplication by —1 is order reversing. Thus, b — 1, increases
with b for these values of b.

Since r11; ., > 71, we deduce that the e number of values C'-7;_,_,_,(n-x.) all lie to the
left of the values of any of the 7;(n_k.),0 < j < S. In particular, those iy, with —1 > b > —e
are larger than the remaining values.

For these remaining values, y, = —7; e = TG (n—k,) increases with b be-
—(b+et5+2) —(e+5+2)-b ,

cause the multiplication by —1 reverses the decreasing nature of the 7; <e+§+2>_b(77*k,v)' The

result thus holds, we have: y_5_; <--- <y_;. O

We give a result that could have been stated directly after the definition of the set of the
various yr(;)-
Lemma 91. We have
RA_k_lcR_l 'y'r(ifl) =Y1-

Proof. By definition, y;(s—1) = —f1(7-k,»). By Lemma RA*=1CR™! sends this to —x
where z satisfies £ = A=*=1C - z. Now, by (8], Lemma 6.3), x = £5(1_x ). Since y; = Yr(0)s
by definition this has the value —¢g(n_g ), and the result holds.
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Since d(—Fk,v) differs only slightly from d(k,v), we use notation as in Section |4, We also
revert to using u to denote a word in V. (We trust that the reader can easily distinguish this
from our other standard usage of w.)

Definition 92. Just as for a < v, we let

0 ifv=1,
L=
S(—k,u) ifv=04u).

Recall from ([§], Lemma 6.7) that v < w if and only if d(—k,v) > d(—k,w). Lemma [3§ thus
implies the following.

Lemma 93. We have

{, = max /;.
0<i<S

Equivalently, (1) = S.

Compare the following with Figure
Proposition 94. We have
2 A2 p—1
ys = RCTACTR™" - yg3)-

Sketch. We treat the main case of v = ©4(u), ¢ > 1. From Corollary [84] combining Lemma
with Lemma [85] and Corollary

y,@(g) = RR—k,v [AC2R—k,@q,1(u)]7ICR71 cYS+1-

Using R’ , to denote R} ,,[(AC?)" %" (for general words w) as well as the notation of
the proof of ([8], Proposition 4.13), we have
R—k,u [ACZR_k7@q71(u)]7IC = R—k,u’u”R;/} (A02)7IC
—1 _
= RLk,a’aBagR/ag (ACQ) 10
Y /=1 2\—1
= R_ha;—,suaR o (ACH)C
R o R;7(ACH)~'C
—k,3' u
=R, JFEACHC
=R, JFEACHIC
= R, ,(AC*)"PU[(AC?)"?] "1 (AC?) IO
= lek,u(ACYZ)n_2
=R_ju.
Therefore, y5) = RR_j R ysi1. Hence, RC*AC?*R™! YpE) = RLy R ysi1.
On the other hand, by Lemma Ys = Yr()- Therefore, from the definition of the y,, we
have that yg = RLgAR™" -y (o). Arguing as for Lemma one has RA™"1CR™ -y, (s_1) =

Yr(0) and RA*CR™! “Yr(5—1) = Yr(s)- Since yr(s) = ys, one finds that ys also is equal to
RLp R ysi1. O
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9. BLIJECTIVITY OF 7:)[ ON (), FOR LARGE « IN LEFT PORTION OF SYNCHRONIZATION
INTERVAL

9.1. Partitioning Q by blocks B;. For each i € {—k,—k+1,...} UN and j € {1, 2}, let the
block B; ; be the closure of the set {(z,y) € Q|z € Ay(4,7) }. Thus the blocks partition € up
to p-measure zero.

Since 7 is invertible, it is clear that Theorem |10| when o € (19— v, 0—k,) follows from the
following two results, the proofs of which are given by combining the results of the ensuing three
subsections.

Proposition 95. The union of T(B; ;) taken over all i € {—k,—k+1,...} and j € {1,2}
equals Ot up to p-measure zero.

Proposition 96. The union of T (B, ;) taken over all i € N and j € {1,2} equals Q= up to
[-measure zZero.

9.2. Blocks laminate one above the other. The arguments for the case of a < ~,, give also
the following.

Lemma 97. Let (c,d) denote the first digit of {s. Then for all (i,7) ¢ {(—k,1),(—k —1,1)},
the top boundary of the block B, ; is given by

Y =Ys+1 if (e,d) < (4,5);
(y=ys+1)U(y=ys) if (c,d)=(,));
Yy=19s Zf (Cvd)>_(ivj)'

Lemma 98. Let (a,2) denote the first digit of rg. Then for all (i,7) ¢ {(1,1),(1,2)}, the lower
boundary of the block B; ; is given by

Y=Y 54 ifj=1;

Y =Ys(5) if j=2and(a,2) > (i,]);
(y = i‘/g(?)) Uy = y1+5(§)) if (a,2) = (i,5);

Y =U1+48@3) if (a,2) < (4,5)-

Proof. Since all of the r;, with j < S, lie in or to the right of A,(1,1), the result for j = 1
holds. All of the r; with j < S lie in A,(1,1) UA,(1,2), and thus the bottom heights of B; »
for i # 1 are one or both Y5(5)> Y144(3) 85 determined by the location of 75 as per the remaining
statements. g

Lemma 99. Suppose that (i,7) ¢ {(1,1),(1,2), (—k,2)}. Then To(B; ;) laminates above To,(Bir 1),
where
(4,2) ifj =1,
(ilvj/) =
(i —1,1) otherwise.

Proof. We first prove the result in the case of j = 1. By Lemma @ B;.1 has lower boundary
height y_5_,. Similarly, since {s(a) < by, Lemma gives that for any ¢, B; 2 has upper
boundary height yg41. From Lemma Y g1 = RCR™'-ygy1. All cylinders are full with the
possible exception of those of index (—k, 1), (—k,2),(1,2), and the T,-images of the cylinders of
index (—k,1),(—k,2) agree. Therefore, the T,,-images of the respective A, (7,j) and A, (¢, 5")
agree. Lemma [I7] thus gives the result in this case.
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We now treat the case of j = 2. The proof of ([§], Lemma 6.2) shows that 5 € A,(a,2)
(with @ > 2 because a € (_g,v,0-k,)) if and only if g € Ay(a —1,1). Thus, if j = 2 and
(a,2) > (i,7) then also (c,d) = (i — 1,1) (with the notation of Lemma[97); in this case, the top
of B;_1,1 is ys and the bottom of B; 2 is Ya(3)- Both A, (i —1,1) and A,(,2) are full cylinders,
thus as Proposition [94] shows that the hypothesis for Lemma [1§]is fulfilled, the result holds in
this subcase.

When j = 2 and (a,2) < (4, j) we have also (c,d) < (i—1,1); Lemmas[97} [08|and Corollary [84]
show that the hypothesis for Lemma [18]is fulfilled, and the result also holds in this subcase.

Finally, in the case where B; » has two heights at its bottom, we find that B;_;; has two
heights on its top, with the pairs of heights fulfilling the hypothesis of Lemma Because of
synchronization, the images of the pairs of boundary pieces indeed match perfectly. |

Lemma 100. The T,-image of the block B_j o laminates above a portion of To(B_k—11).

Proof. The cylinder A, (—k,2) is right full, with image having left endpoint ¢; (). The cylinder
Ay(—k —1,1) is full. Otherwise, the lamination is as above. O

Lemma 101. The T,-image of the block By 1 laminates above a portion of To(Bi2).

Proof. The cylinder A,(1,2) is left full, with image having right endpoint r;(«). The cylinder
Ay(1,1) is full. Otherwise, the lamination is as above. O

9.3. Upper boundary is in image. The statements and proofs in the case of a < 7, see
Subsection go through here with only minor adjustments.

9.4. Lower boundary is in image. Using the definition of the y;, and Corollary the
arguments for the case of a < ~,, see Subsection [5.4] succeed here.

9.5. Bijectivity and ergodicity at left endpoints. Whereas the left endpoint of a synchro-
nization interval for small a is determined by the orbit of 75 being at the left end of I, (and
thus there is one less rectangle in 2~ than for the values in the interior of its synchronization in-
terval), that of J_j , is announced by rg = b. Thus, see , we have C-rg(n_rv) = Lo(N—kv)-
Hence, rg, 1 (n-kv) = A7RC? - rg(n_k,w) = €1(n—k,»). That is, here the synchronization is of the
same form as for the rest of (7_g v, dk,»). Thus, there is no change necessary to the definitions
of QF.

Proposition 102. Fizn>3,keNveV (withveV ifk=1) and a = N—kw- Let QT be as
n Deﬁnition and Q= be as in Definition .
Then Tn,o is bijective on §y, o = QT UQ™, up to p-measure zero.

Example 103. Recall the setting of Subsection n=3k=1,v=1. Since g?/2 = 3 =
1-1,1, we find
Q3922 = ([-G, —¢°] x [=¢°,8°]) U ([-¢%, 9°] x [-¢°,G]).

Proposition 104. With o = n_g,, as in the previous proposition, The system (To, Qo By, 1)
is ergodic.

Furthermore, this two dimensional system is the natural extension of (Ta,la, Pa,Va), where
Vo 18 the marginal measure of po and B, the Borel sigma algebra on 1. In particular, the one
dimensional system is ergodic.

Sketch. From ([8], Lemma 6.3), £o(c) has a periodic a-expansion. Thus, ro(a) and b, are also
all of finitely many a-digits. In view of Remark it follows that the non-full cylinders of T,
are bounded in range. Due to this and the finiteness of u(£,) and of its vertical fibers, the
hypotheses of ([9], Main Theorem 1) are met, thus giving the result here. O
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10. BIJECTIVITY FOR LARGE « IN RIGHT PORTION OF SYNCHRONIZATION INTERVAL

This section treats the right portion of synchronization intervals for large « in a completely
analogous manner to that of §[§ and § [0 for the left portions.

10.1. Bijectivity on the interior. Suppose now that o € (§_k 4, (k). We define Q with
“one more” rectangle than for the left portion, and sketch the proof that bijectivity of 7T, on
), then holds here as well.

(7“07?/2)
(617?/2) I I I I
| | | |
(Lo, 31) - ‘ ‘ —J | | |
5 o AL I
o b Bozo 11 o |
(- X X o e (3,2) (2,2) (1,2)
o o BN o |
| | : : B_3z2 11 | | |
[ | | (I | | )
— " ) H o | ) |
ot L I
\ | (2,1 (1,1) Lo : ! !
Boas |4 | ol e
o o b 1
o I (r2,y—2)
b L
: L 1 1
L
(o, y-4) (r3,y—4) (r1,y-3)

FIGURE 15. The domain 30s7. Blocks B;; also denoted by (i,5). Here
L j,=A"2CA""1 and R_;, = AC AC?, and « is an interior point of J_ o
lying to the right of d_5 ;. Compare with Q3 .5s, of Figure Since both
0.86,0.87 give a values in J_o 1, the heights y1,y2,y—1,y—2,y—3 are the same.
Highlighted in gray: rectangle of lower height not seen on left portion of J_j, ,;
here, y_4 =y g _, = RAC*R™ . Ys(s)> as per Definition m

As a first step, we show that 7, 5 lies to the left of the initial portion of the orbit of ro.

Lemma 105. We have ry g(a) <r; - ().

Proof. Here, {s(a) > b,. The proof of Lemma [83| shows that here also rg(a) € Ay(1,2), and
that now synchronization occurs with £, s(a) = 7, g(«). Furthermore, ([§], Lemma 6.2) shows
that in this setting we have {g(a) € Aq(s,2) if and only if 7, g(o) = ASCAC? - rg(a). In
particular, rg(a) lies to the right of A,(1,1) and to the left of all values in A,(1,2) whose
images are also in A,(1,2); thus, the proof of Lemma succeeds also in this setting. When
o gle) = A*CAC? - rg(a) with (s,1) = (2,1), we certainly have that r, g(a) < r;__  (a).
We must consider the extreme case when s = 1. Since rg(a) = CA™'C - lg(a) and l5(a) <
ro(), we have that r g(a) < AC? . (CA™'C -ro(a)). That is, r,,g(a) < C - ro(e) and
therefore, AC' - r| g(a) < ri(a). In terms of expansions, using the notation of the proof of
Lemma riygla) < (1,1),(1,2)"3,0"2(b(—k,v) ),* which one easily finds is less than
(1,1),(1,2)"73,0" 2(b(—k,u) ), . That is, r, ,g(a) <r; . (a). O
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We must “update” Definition BT} confer Figure [I5]
Definition 106. Define L_g_; = [r1+§7r§], and let L_5_, = [{o, r1.3) Set
Y 5.9=RAC’R™! -y,
Let
)
V= U Ly x [yb,()].

b=-1

The following is necessary to show that the leftmost blocks B; ; continue to laminate above
Bi’Q.

Lemma 107. We havey_35_, = RCR™! “Ys.
Proof. This follows directly from the definition of y_<_, and Proposition |

We must be sure that lamination, thus Lemma still holds. The only change is that now
there are blocks B; 1 whose bottom height is y_g_,. For each such B; 1, due to the relation
between /s and r; | 5, the block B; » has top height ys (or this and ys1). Therefore, Lemma
shows that Lemma continues to apply (in the two bottom heights case, synchronization yields
that the z-coordinates are correct for lamination). The remainder of the proof goes through
directly.

Example 108. As in Subsection [8:2] and Example [I03] let n = 3, k = 1, v = 1; thus, y; =
g% y2 = G, y_1 = —g*>. We now consider o € (6_11,(-1,1) = (6_1,1,€3). From its definition,
we find y_o = RAC?R™' - (—¢?) = —(5 ++/5)/10. From the proof of Lemma and the fact
that A, (s,2) lies to the right of A, (s, 1), we certainly have that rg , < £g. Thus here we find
that for all & € (6_1,1,€3), one has

0 = ([lo, 1] ¥ [=(5+V5)/10, %)) U ([r1, 1] x [=¢°, ¢°] ) U (€1, 70] % [~9%, G]).

10.2. Bijectivity and ergodicity at right endpoints. Although for k € N,v € V, the (_j
are values of « for which the T,-obits of £y(«),ro(a) do not synchronize, we still can precisely
describe domains on which their associated two-dimensional maps are bijective. Indeed, one has
¢s = {p and thus the various preceding sections now easily imply the following results.

Proposition 109. Fizn >3,k Nv eV (withv €V ifk =1) and a = (_y,,. Let Q™ be as
in Definition . Let QT be as in Deﬁnition except that we redefine Kg to be [(;z, o], and
Qf = U§=1 K, x [ana}'

a
Then Tn.q is bijective on Qo := QT UQ™, up to u-measure zero.

Example 110. We continue the examples with n = 3, k = 1, v = 1; since G/2 = €3 = (_1.1,
we find
Va2 = ([-9°,6°] x [-(5+V5)/10,4%]) U ([6*,G] x [-4°, 4°] ).

Proposition 111. With o = (_., as in the previous proposition, the system (To, oy By, lha)
is ergodic.

Furthermore, this two dimensional system is the natural extension of (Ta,lo, Pa,Va), where
Vo 1S the marginal measure of o and B, the Borel sigma algebra on 1. In particular, the one
dimensional system is ergodic.
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Proof. From ([§], Lemma 6.3), both ¢y(a) and ro(a) have periodic a-expansions. From the first
of these, b, also has of finitely many a-digits. In view of Remark it follows that the non-full
cylinders of T, are bounded in range. Due to this and the finiteness of 1(£2,) and of its vertical
fibers, the hypotheses of ([9], Main Theorem 1) are met, thus giving the result here. O

10.3. Bijectivity and ergodicity at division point between portions: a =0d_j,. At § =
0—_k,v, we will find that the “extra” rectangle in Q, for a > ¢ (as opposed for a < ¢ in the same
synchronization interval) has width zero and thus can be ignored. From the proof of Lemma
one has that for the value of s such that ¢, (§) = A*C-£y(6) we also have AC?-l5(5) = ¢1(J) and
A*Crg,1(0) = £1(5). (Of course, here s = —k.) That is, rg,,(5) = £o(d). Thus, Deﬁnitionm
reverts back to Definition [81] and the bijectivity of 75 on the resulting 5 holds as above.

Example 112. We continue the examples with n = 3, k =1, v = 1, as in Subsection [8:2] and
Examples We have §_1 1 = (5 — /5)/4 and thus £5(6_1,1) = —g. We find

9375—1,1 - ( [7‘9;9} X [792392]) U ([Q,G} X [7923G] )

Proposition 113. With a = d_y, , as in the previous proposition, let ., denote the Borel sigma
algebra on Q. The system (To,Qa, P, 1ha) is ergodic. Furthermore, this two dimensional
system is the natural extension of (Ta,lo, Ba,Va), where vy is the marginal measure of e and
B, the Borel sigma algebra on 1. In particular, the one dimensional system is ergodic.

Proof. Since {y(a) has a periodic a-expansion and synchronization holds, in view of Remark
it follows that the non-full cylinders of T,, are bounded in range. Due to this and the finiteness
of 1(Q,) and of its vertical fibers, the hypotheses of ([9], Main Theorem 1) are met, thus giving
the result here. O

11. LIMIT VALUES FOR LARGER «

The main result of this section are Propositions and [132] giving a bijectivity domain for 7,
and then showing this to be an ergodic natural extension of T, for each large non-synchronizing
a. As in §[6 due to the piecewise ‘twisted’ action on y-values, the proof of surjectivity requires
that certain reversed words are admissible. Here also, we prove this admissibility by showing
the admissibility of such words for the systems of endpoints of synchronization intervals and
then arguing by taking limits.

Convention Just as in Subsection [6] where we used u as a general word in the setting of small
« values, here we use w as a general word.

11.1. Domain for non-synchronizing values. We introduce some more notation and define
basic sets for our construction. For legibility, we suppress various indications of dependence on
a and the like, trusting that this causes no confusion for the reader.

Definition 114. Fix n > 3,k € Nand a > 7,. Let £ = £, denote the language of admissible
digits. For finite length v € £, as usual let A, (u) be the corresponding T,-cylinder. Let A, p,,
denote the left- and right endpoints, respectively of A, (u); note that p1 1 = A_g2 = b. For any
deN,let p_g1=(A"2C)"t b

We then define vertical fibers, see Figure

@y = [-b, —p—r-1.1], P2 =[-b,—p_r1],
O3 =[—b,—4y], P4 =[-C - ro, 4], and &5 = [—p2.1, —Lo],
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(/\71%2,17 —fo) = = = (7’07 —fo)
(oM D, D5
(€1, —p—k,1) | 3 3
\ 1 1 3 ® (ro,—p—r1)
(lo, —p——1,1) 1 | : 3 i :
: : vV : i
3 3 3 - 3 (ro, —A1,1)
3 3 i . (A1,2,=C - 1)
1 1 (b,~C - 1o)
LT | ’
(€0, —b) = = = (A1,1,—b)

FIGURE 16. Schematic representation of W, see Definition [114] For large
o = 1)_j, or for non-synchronizing c, Lemma shows that the image of
the regions in W, fibering over all cylinders other than those of the digits
(=k,1),(=k=1,1),(1,1), (1,2) gives the (gray) region J = J, (of two connected
components). Proposition shows that the complementary pieces are sent
by powers of 7, to fill in a region that strictly includes the complement of 7,
in W,.

and regions
J =1a x [=p2,1, —p—r—1,1] U [l1,70] X [=p—k,1, —ph—k,1]
and
W = [lo,l1] X @1 U [l1,A\p—21) X Do U [A_g_21,p21] X P3
U [p2,1,p2,2) X Pa U [p2,2,70) X 5.
Note that W D J.

Lemma 115. Fix a non-synchronizing o with o > ~,. Then

Jo = U1 (—k—1,1) Ta(Dali, 1) x O3) U Ug,2)<(1,2) Ta(Aal(i, 2) x @5).
il

Proof. From Lemma [T4] for each i € Z,

RA'CR™—ty = —\;1, RA'CR™—b = —j;; = RA'C?*R™—4y, RA'C?’R™"-(—C"rg) = pi 1.

Since adjacent cylinders share a common endpoint, and (—k,2) is the only non-full cylinders
considered in the right hand side of the expression, the result follows. O

Proposition 116. Fiz a non-synchronizing o with a > (_1 n—2. With notation as above, let
T = Ta and define
Q=Ux, TI(W).
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Then Q D W and T is bijective up to pu-measure zero on 2. Furthermore, letting
o ={(~k,1),(=k - 1,1)} NLs, #B={(1,1),(1,2)} NL,
and
DY = Do \ (—p—pp—1,1, —P—k,1)
we have that Q is the closure of

T [ 0wes TM(Aa(w) x @1) [ |Uwew T"(Aa(w) x ®))

Pw <t w >0

(23) |0 T (Aa(bfs.g) x ®1) U [lo,m0) x RMyy R4\ &)

s]

| | Buemne., TI(Aa(w) x ®4).

Furthermore, the system (Ta, Qo B, 1) 18 the natural extension of (Ty, oy BayVa), where vy,
is the marginal measure of o and B, the Borel sigma algebra on 1. Finally, both systems are
ergodic.

The surjectivity of 7 on € follows from the definition of Q2. Key to proving the remaining
statements of the proposition is to show that each « € 1, of first digit other than {(—k, 1), (—k—
1,1),(1,1),(1,2)} has the same y-fiber in 2 as in W.

11.2. Agreement of fibers on lower portions of W, (.
Lemma 117. For
w=(1,1)"(1,2)" - (1,1)*(1,2)" € Lo,
Tl Ay (w) x ®4) has y-fiber equal to
[~ (M5 AC)™ - 4y, —((AC) "1 M AC) ™1 - 4] if a1 >0

[—(MgAC)™Y - 4y, —(AC(AC?*) ' Mg AC)™t - rg] if a1 =0
Proof. We have M, = (AC?)%(AC)% --- (AC?)*1(AC)*, and for any real x Lemma |14| gives
RM,R™" - —z = —((AC)" (CAC)" --- (AC)* (CAC)" )" - =

Independent of the vanishing of a1, one finds that RM,, R~!- —z equals —((AC)"* M4 AC) ™1 -z
When z = A\ ;1 = (AC)™! - 4y, this value equals —(Ms AC) ™! - £y. When a; = 0, the expression
(AC)~tMy; factors as a C followed by a product of powers of AC? and AC; replacing ¢y by
rg = A - £y results in an expression which is a word in our matrices, while giving the formula
indicated for the largest value in the image of the fiber. O

The previous result shows that corresponding to w are fibers that, upon using a negative ex-
ponent to indicate cancelling a letter in a word, one might express as [~y 1y, —A(1,1)5(1,1)-1 |
and [=A(1 1)%>, —P1,1)%(1,2)-1(1,1) |- For these expressions to be valid, we must then also prove
that each of the subscripts is given by an admissible word. The next two lemmas give us this
result.

Lemma 118. Fiz n > 3, and either a non-synchronizing a > 7y, or a = n_j, with k € N and
veV. Then

Aa(1,1) = Uper,1){(1,1),(1,2)}* nLa [Aws Aw,(1,1)) U [Pw,(1,1)s Aw,(1,2))-
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Proof. By definition in the union, we include w = (1,1). Note that any w € {(1,1),(1,2)}  is
in L, if and only if w < Eﬁ,ooﬁ in particular, whenever w € L, so is also w, (1,1).
For any w € (1,1){(1,1),(1,2)} N L,, we have

Ao (w) = s Aw,a,1) UAa(w, (1,1)) Ulpw,a,1)s Aw,1.2)) UAa(w, (1,2)),

where by definition A, (w, (1,2)) = 0 if w, (1,2) ¢ L,. From this, by beginning with w = ( )
it follows that A,(1,1) does equal the closure of the union over all w € (1,1){(1,1), (1,2)} N
of [)\w, )\w7(171)) U [Pw,(1,1)7 )\w,(lvg)).

We have tacitly used the fact that each admissible infinite word in {(1,1),(1,2)} represents
a unique point, this holds due to the dynamics of the T, 1; see ([§], § 3) and ([9], § 3.6). O

Lemma 119. Fiz n > 3, and either a non-synchronizing oo > vy, or o = n_p, with k € N and
veV. Letwe (1,1){(1,1),(1,2)} NLy. Then (1,1)W € Ly and so are (1,1)w(1,1)"" if w
has prefiz (1,1) and (1,1)%(1,2)71(1,1) otherwise.

Proof. For w of digits in {(1,1),(1,2)}, we have w is admissible if and only if it and all its
suffixes are smaller or equal to the expansion of r¢(«), thus than E[QLOO). In particular, w
is admissible if and only if w,(1,1) is. Furthermore, W € L, if and only if the various
(1,1)%,(1,1)%(1,1)~1,(1,1)%(1,2)(1,1) are (with cases depending again on whether w has
prefix (1,1) or not).

We thus aim to show that w € L, implies W € L,. For this, we argue by contradiction and

can assume that w is of minimal length such that w ¢ L,. We can now argue as in the proof
of Lemma [72] and Corollary O

Lemma 120. With « as above, each x € 1, of first digit other than {(1,1),(1,2)} has the same
y-fiber in QN {y <0} as in WnN {y <0}.

Proof. Lemmas and combine to show that each x less than the infimum of the
elements of the Tj,-orbit of ro(e) has y fiber in Q, meeting {y < 0} in exactly [b, —A11]. Thus
equality of fibers holds for all such z.

It remains to show the equality when = € [b, A1 ). For this, it suffices to show that [—b, —C'"7¢]
equals the closure of the union of the images of ®4 corresponding to the cylinders A, (w) such
that T1*!(p,) = r; for some j and such that r; € A,(1,1). Let us say that such a word w is of
(1,1) right value (with respect to «).

We first note that for any 7_j , this equality holds due to Proposition Let a be a non-
synchronizing value, then there there is a fixed k and a branch of V such that taking v along the

branch gives values of the form 7_j , converging to o from the right, and such that the b? . 7;

agree to ever greater length with b[l,oo)' Given w € (1,1){(1,1),(1,2)} NL,, since in particular
w = E[QLOO) the finiteness of w implies that for all v sufficiently far along the branch of V that
also w € L,_, . Furthermore, if w is of (1, 1) right value with respect to c then it is also for all
for all v sufficiently far along the branch.

The convergence of the various n_j, to a gives that RM,R™' - —lo(n_k.) — RM,R™*
—lo(a) and also —C - 19(n—g,») — —C - ro(a). Since for each w of (1,1) right value RM,, R~ -
—lo(n—kw) is below —C' - ro(n—k.»), we conclude that also RM,,R™1 - —{y(a) < —C - ro(a). For
any other w € (1,1){(1,1),(1,2)} N L,, we argue similarly to find that RM,, R~ - —fy(a) >
—C - ro(a). We conclude that [—b, —C' - ro] equals the closure of the union of the images of ®4
corresponding to the cylinders indexed by words of (1, 1) right value. The result thus holds. O

11.3. Agreement of fibers on upper portions of W, (.
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11.3.1. Statement and beginning results. We announce the main result of this subsection.

Proposition 121. With o as above, each x € 1, of first digit other than {(—k,1),(=k —1,1)}
has the same y-fiber in QN {y > 0} as in WnN{y > 0}.

Convention. The arguments in this subsection mainly involve the digits (—k, 1) and (—k—1, 1),
thus we will use simplified digits. (In particular, we consider Qﬁm) to be equal to dﬁ_’m).)

For further typographic ease, for w € L, let v, be the point of simplified digit expansion
w, (—k — 1).

The following is proved just as in the small « setting, see Lemma [72] and its corollary.
Lemma 122. With o as above, if w € {—k,—k —1}* N L, then also W € L.
11.3.2. Images of fibers. We begin by collecting images of ®;.
Lemma 123. With « as above, if w € {—k,—k —1}* N L, then
U0 RMy (—p—1)s R™H- @1 = —(vig, pig]-

Proof. Given w € {—k,—k — 1}* N L, from the previous result we have that % € £,. Further-
more, for words of digits —k, —k — 1 admissibility is determined by being not less than bﬁm)
and thus (since —k < —k — 1) appending (or prepending) any power of —k — 1 to such an ad-
missible word results in an admissible word. Thus, the right hand side of the displayed equation
is sensical.

When w is a word in simplified digits, Lemma [14] gives that RM, R~ - —x = (M4;)~ ! - 2.
Thus, for w € {—k,—k — 1}* N L, we find that RM,R™" - ®; = —[ug 1, p45]. The result
easily follows. O

Definition 124. For w € {—k,—k — 1}* N L, of length at least two and with suffix —k, let
I
W= Wi w1

Lemma 125. With o as above, the function w — w gives a one-to-one correspondence between
the set of w € {—=k,—k — 1}* N L, of length at least two and with suffic —k and the set of
w € {—k,—k —1}" N Lo with @ = by -

Proof. We first note that the function w — w is clearly injective into the set {—k, —k — 1}*.

If we {—k,—k—1}*N L, of length at least two and with suffix —k, then we know that also
W e L. and in particular W = bﬁhoo)' Hence, w > b‘ﬁ?m), since w is of finite length we have
that w > b‘[)ém).

On the other hand, if w € {—k, —k — 1}* N L,, is such that w > b‘ém), then —k,w > bﬁm)

<—
and thus —k,w € L. From this, —k,w € L, is of length at least two and has —k as a suffix. O
Lemma 126. With o as above,

_[:uunpw) = RMﬁR_l((I)é \ (31 )

Proof. Since @4\ &1 = —[u_g,p—k), using Lemma we find that RMgR (@5 \ &) =
—[1w; pw)- O
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11.3.3. Partitioning an x-interval related to the upper portion of fibers @3, Py, Ps.

Definition 127. Suppose that w € {—k, —k — 1}* N L,. Since every w, (—k — 1)¢ € L, there
is a minimal d > 0 such that w, (—k — 1), —k is admissible. The children of w are the words
w, (—k —1)%, —k with i > d.

Lemma 128. With a as above and w € {—k,—k — 1}* N L,, all of the children of w are
admissible. Furthermore, for each child w' of w, we have py < vy. Finally, if © € [Ay, V)
then there is a largest child w' of w such that © € A, (w').

Proof. Recall that for any w € {—k, —k — 1}* N L, we have that every w, (—k — 1)’ with i € N
is admissible. Admissibility for words in {—k, —k — 1}* is a matter of being at least as large as
bﬁm), thus the requirement that j be at least as large as the minimal d with w, (—k — 1)¢, —k
admissible does imply that all of the children are admissible.

Let w’ be a child of w. For any = € A, (w’), there some ¢ such that the simplified digits z
has prefix w’ since v, is the point of simplified digits w, (—k — 1)*° we find that @ < v,,. By
continuity we find that p,s < v, and by induction on i one finds that strict inequality holds.

For any j > 0, we have w, (—k — 1)/, -k < w, (=k — 1), —k. Given x € [\, ), there
is a largest ¢ > 0 such that the simplified digits of 2 begin w, (—k — 1)+ —k. Hence with
w' = w, (—k — 1)"1 —k we have both that * € A,(w’) and that w’ is the largest child of w
with this property. (|

Recall that the final letter of a word w is denoted wy_y;.
Lemma 129. With o as above,

[Cos poie] U [Aci—1, prop—1] = (veis k] U (i1, prp—1] U U (Vaw, pw) -
we{—k,—k—1}"NL,
lw|>2
wi_1)=—k
Proof. Since £y = A_j, we have that each x € [lo, p—_g| U [A_g—1, k1] 18 In [Ay, V) U [Va, o)
for one w € {—k,—k —1}. If © ¢ [vy, ftw] then there is a largest child w’ such that x €
[Aw s V') U [V s o] Since every child w’ is in the set {—k, —k — 1}* N £, with |w| > 2 and
w1} = —k, the result follows by induction. O

11.3.4. Proof that fibers agree: reaching top. Recycling notation, let % = sup; {¢;}. Note that
Z < )\,kfg}l.

Lemma 130. The intersection of [£,ro) X [—pi—k—1,00) with the closure of
|| Uwes T (Aa(w) x 1) | | U wear TI(Aa(w) x )

pw<ti Aw >0

|02 T (Db ) % ®1) U [£aro) x RMyy R\ @)

equals [£,10) x —([lo, p—i] U [A—k—1, pi—r—1]).
Proof. Since {1 € [Ay, pw) exactly for w of the form bfé’s], and ®, D Py, we can rewrite the
displayed quantity as

|| Uneer TH(Ag(w) x 1)

L Cwesr T Aalw) x @5\ @1)) | L2, [6.m0) x RMpg, [ R™(®5\ ®1).

Aw >l
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By Lemma [I25] this equals
L e T A0(w) x ®1) | U wew  TI(Aa(@) x (8 @1)),

wi—1=—Fk
orw=—k—1

which we can of course rewrite as
| | Uwew T (Aa(w)) x RMuR™H(®1)) | U wewr  TP(An(@)) x RMgR™ (®5\ ®1),

wi—y=—Fk
orw=—k—1

Since the image of the left endpoint of every cylinder lies to the left of Z, we find that the
y-fiber in Q above any x € [.Z, 1) includes

Fl=U wew RMgR Y&\ ),

w[,u:fk

orw=—k—1
For all w and all i, we have vy, (1) = vy, and thus applying Lemmas [I23] and [126] and
then Lemma [129] shows that Ff = —([lo, fi—x) U [A—p—1, p—k—1])- O

11.3.5. Proof that fibers agree: filling in gap. It remains to show that for = € [¢1,.%) that
®, \ @) is contained in the y-fiber of Q over z. Since RM_j, 1R~ (®3) = [~p—p_1, —A_p_1]
and of course A\_j_; = p_; we must simply show that (A=*=1C)~!. ¢ > 2.

Just as Lemma (93| follows from Lemma so also for any a = n_j, we have that /g is
maximal by arguing analogously to Lemma For such a, we also have A=*~1C'- {5 = {1, and
thus our results holds for these values of a. By taking limits, we find that it holds for all of the
values of o which we are considering. O

11.4. Ergodic natural extension for non-synchronizing large «.

Proposition 131. Fizn and a non-synchronizing o with o > . With Q as in Proposition|116
w(2) < 0.

Proof. As in the proof of Proposition [77] we can show the finiteness of the measure of the
upper portion of € by comparing with €2, . Similarly, here one can show the finiteness of the
measure of the lower portion of by comparing with €, 1, see ([9], Proposition 12). See also
([@], Figure 3). O

The following is proven as is Proposition mutatis mutandis.

Proposition 132. With « as in the notation of Pmposition the system (Ta, Qo B, o)
is the natural extension of (T, Lo, Ba,Va), where v, is the marginal measure of p and B the
Borel sigma algebra on 1. Finally, both systems are ergodic.

12. CONTINUITY OF MASS FOR LARGER «; COMPLETING PROOF OF THEOREM [3]
In view of Theorem the results of this section complete the proof of Theorem
Theorem 133. The function o — p(Qy) s continuous on (yn,1).

Proof. Since the both top and bottom heights are constant along any synchronization interval
J_k,v, with fibers constant between the various ¢;(c), 7;(a), continuity and indeed smoothness,
of a — p(Qy) in each of (N_g,0-k) and (0_k .y, N—k,) is clear. Propositions and
along with Subsection then imply that continuity holds on the closed interval.

Continuity throughout I_j, := Uyey I, for fixed k is shown as in the proof of Theorem @
using that we can express every €, _, ~and Q¢_, =~ as the union of regions of the type of W
similar to the result of Proposition [116
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Continuity at the boundaries of the various I_j follows from arguing analogously to the proof
of Theorem Indeed, the right endpoint of I_, is (.1, and one argues that Q¢_, _, , — Q¢_,

as h — oo. For this, ([8], Lemma 6.6) gives d° %! = —k — 1 while d* """ = (—k)h~1, "k — 1

[1700) 7[1’00)
(in simplified digits) from which also the E[Cf(';l) and E[C[g )1"‘ sufficiently agree to deduce both
the convergence of the Qg_k_l , to er_k . and similarly for the lower portions. O

There is only one remaining « value at which we must prove continuity.
Lemma 134. Fiz n. The function o pu( Q) is continuous at o = 7y,

Proof. Recall that vy, = 1n_1,,—2, thus we have already shown continuity from the right.

Since 71, converges from the left to 7, by Theorem [79|it suffices to show that (8, ,) —
w(2y_, ,_,) as h — co. By Lemma for each h we have that €2, , is swept out by the T, -
orbit of Z, Furthermore, a version of holds for these values as well. That is, £, , is the

M,h "
union of the image of Z,, , with pieces of the form T1“/( A, (u) x ®*), with signs depending
upon whether u € {—1,-2}* or u € {2,1}* (in simplified digits).

Now, the only admissible words in £, , ,_, of digit not of the form (a,1) are prefixes of
57[71*7;’0")“2. Thus we can temporarily delete these from the language and use simplified digits. One
can then extend the definition of Z, in Definition @ to include o = n_; 2, and easily find that
(upon taking closures) here also a partition of the type described in holds for oo = n_1 5—2.
Therefore, we can once again argue as in Theorem [79] and conclude that continuity does hold

here. O

13. ERGODICITY AND NATURAL EXTENSIONS; PROOF OF THEOREM [I]

In [9], we gave theoretical tools which can be applied to show main dynamical properties of
systems of the type studied here. (Indeed, we placed several theoretical tools in that paper so
as to retain the brevity of this section.) There, the “bounded non-full range” condition is a
key hypothesis to prove ergodicity of a planar system associated to interval maps such as our
own, as well as to show that the planar system is the natural extension. See Remark [62] for a
reminder of this condition. As recalled in the proof of Theorem [I] see page [68| below, we have
already proven the theorem in various cases. This was done invoking ([9], Main Theorem 1).
In § [I3:3] we show the denseness of the set of parameter values indexing maps which satisfy
the bounded non-full range condition. This dense set hence parametrizes maps whose planar
natural extensions are ergodic.

A second result in [9] is that the properties of ergodicity and being a natural extension of
a planar system are induced onto sufficiently nearby systems by way of our quilting. In §
establish that every « for which the bounded non-full range condition fails is contained in an
open neighborhood of parameter values all of which are sufficiently nearby so that ergodicity
and being a natural extension of a planar system could be shared with its system by way of
quilting. The aforementioned denseness result than allows the section to end with a completion
of the proof of Theorem

We begin the section by proving that all of our maps are eventually expansive.

13.1. Eventual expansivity; Proof of Proposition [2, We show eventual expansiveness for
all of our maps follows from results of ([9].

Proof of Proposition [2} Fix n,a. We must show that the hypotheses (a)—(c) of ([9], Propo-
sition 9), listed in the statement of ([9], Main Theorem 1), are fulfilled. We have already
established that for any n,a the domain €, , has all vertical fibers being intervals of finite
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length. In the case of a ¢ {0,1} we have also established that these fibers are a bounded dis-
tance from the locus of y = —1/xz. Finally, we have also showed that every block of €2, , is such
that its vertical fibers are intervals such that the ratio of the Lebesgue measure of the image by
Tn,o-image to that of the receiving vertical fiber is bounded away from zero and one. That is,
the proposition holds for all of our maps. O

13.2. Close neighbors: shared properties and related entropy. We aim to invoke a result
from ([9], which depends on the use of “matching exponents” (there denoted m,n — here we
will use eg, e;). In our setting, if a < 7, is in some synchronization interval J , then we let
e, =5S41and e, =S +1;if a > v, is in the left hand portion of some synchronization interval
J_ thenlet e =S+ 1 and e, = S + 1; finally, if o > 7, is in the left hand portion of some
synchronization interval J_j , then let e, = S+ 1 and e, = S + 2. Then equations @,
show that for all such «,
T (fo(a)) = T (ro(a) )-

Furthermore, in [§], we show that for all but finitely many « in any synchronization interval
that these exponents are appropriately minimal for such an equality to hold.

Now consider n > 3 fixed and suppose that o’ # «. Denote the orbits of the respective
endpoints of the intervals of definition by £, r} for each ¢;(a), r;(a’), and similarly simply ¢;,r;
for each ¢;(a),r;(x), respectively. For the ease of the reader we include the following direct
translation of ([9], Definition 4).

Definition 135. Suppose that J is a matching interval with corresponding matching exponents
ev,er. We say that o, o’ € J are close neighbors if Z;,&,T;,rj el NI, forall 1 <i¢< e and
1<j<e.
Recall from § that b, () gives the a-digit of x. We let
C={(z,y) €V |z elyNly, bo(z) # by (x)}.
Compare the following with Figure

Proposition 136. Fiz n. Suppose that a, o, with o < «a < 7y, are close neighbors. Then both
of Qur, Qo can be finitely quilted from each other. In particular,

S+1

S+1 '
(21 0 = (2 \ IT 7200 )1 IT 700

Furthermore, if T, is the natural extension of T,, then the entropy of Ty is

W) = (1 (S~ 5) valrhorol )) ORI,

where vy, is Ty-invariant probability measure induced from p on Qq. Finally, since we always
have S > S, the entropy is a monotonically increasing continuous function in o/ (for fized o).

Proof. This follows from combining ([9], Proposition 20) with ([9], Main Theorem 2 and its
associated propositions). O
Given large «, o, their respective digits of an x € I, N1, can differ in two basic ways.

Definition 137. Fix n and suppose a > o’ > v, are as above. We define the two sets
Cr={(z,y) €Qa|x€laNly, bo(x) = (i,7), bar (z) = (7', ) withi # 4},
Co={(z,y) € Q| xelaNly, bo(x) = (i,7), bor(z) = (¢, j") withj # 5" }.
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(1, ys) (70:Y5)

T2(0) 74(C) (¢4, y3)

CD=Ta(C)
(Chy1) o 3 1

oo (D)= Tul€) — | .
} ; (ro-9-1)

(fo,y72) (7'1,y72)

FIGURE 17. Quilting for close neighbors. Quilting from the Q3014 to
Q30.135, with blocks B;,i = —1, —2, —3 indicated (not fully to scale); compare
with Figure[l] The forward T4-orbit of C is deleted, while the forward 7,/-orbit
of C is added, until the “hole” created by excising 7.2(C) is “patched” in by
T.8(C). See Proposition m

Compare the following with Figure [I§]

Proposition 138. Suppose that o,/ are close neighbors in the synchronization interval J_j ,
for some k,v, with & < a < d_j,. Then both of Qor, Qe can be finitely quilted from each other.
In particular,

S+1 S+1 ‘ S .
(25) Qo — (Qa\ﬂ 7';'(0)) m ] 7 ] 7).
i=1 =1 =1

Furthermore, if T, is the natural extension of Ty, then entropy of Ty is

-1
(L) = (14 (8= 5) vl = vl T 8a]) ) BT,
where vy, 15 Ty -itnvariant probability measure induced from p on Q. Finally, the entropy is a

monotonically decreasing continuous function in o (for fized o).

Proof. This follows from combining ([9], Proposition 21) with ([9], Main Theorem 2 and its
associated propositions). O

We now treat the case of a, @’ close neighbors in the right portion of some J_j ,. We have
C1,Cs as above.
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T.2(C1)
N Co
S (L) | (ro,y2)
T (C2) A 1 | ! !
(th. 1) : 4 A :
! b A ‘ D =
| e | A B C O — TaCr)
Ta1(Dy) = B2 o an o] } )
T (C1) — | | | : | I | | =
) | o e ] @)
3 b 1 (ra.y-2) (rhyy-1)
| o )
(fo,y-3) (r1,y-3)

FIGURE 18. Quilting for close neighbors, large a. Quilting from €25 ¢ g6 to
03,0.855 (not fully to scale); compare with Figure Blocks B; j, also denoted
by (i,7). The forward T,-orbit of C = C; Uy is deleted, while the forward
Tor-orbit of C is added, until synchronization causes a “hole” excised due to
the first of these, but to be “patched” due to the second (not shown here, but
compare with Figure [17)). See Proposition [138]

Proposition 139. Suppose that «, o’ are close neighbors in the synchronization interval J_y, ,,
for some k,v, with 6_y,, < &' < a. Then both of Qur, Qe can be finitely quilted from each other.
In particular,

S+2 S+1 S
o = (2 T[T 720) ) 1 IT Tocen) 1w [T (e,
i=1 j=1 j=1

Furthermore, if T, is the natural extension of Ty, then entropy of Ty is

W(T) = (1 LU+ 5~ 5) vl o)) — vl [bar, ba] >)_ W(T),

where vy, 1s Ty -itnvariant probability measure induced from p on Q.. Finally, the entropy is a
monotonically decreasing continuous function in o (for fized o).

Proof. This again follows from combining ([9], Proposition 21) with ([9], Main Theorem 2 and
its associated propositions). O

13.3. Bounded non-full range values are dense.

Proposition 140. If T,, is not of bounded non-full range, then there is an open neighborhood
of a within which every o is a close neighbor of a.

Proof. All endpoints of synchronization intervals, all d_y ,,, and all non-synchronizing « are such
that T, is of bounded non-full range. We thus fix ag in the interior of some interval J of the
form Ji v, (N—k,050—kw) OF (0—kvs C—kyvs)- B

On J, each o — £;(a) with 0 < ¢ < S and o +— 7 () with 0 < j < 5 is continuous. Similarly,
letting A(a,b) = Uqeo,1) Aal(a,b), we have that the left and right boundaries A\, »(a) and pq ()
also give continuous functions (at least for those (a, b) which are admissible for all of .J), compare
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J

Y = pa(@)

" (o0p) i _—

Y= Aap(a)

Bror a0 b2 B, Ba

FIGURE 19. Determining the open set N(p) of o with agreement of a- and
ap-digits for both p and corresponding T,-image of endpoint, where p is in the
Tuo-orbit of an endpoint of I,, (one possible configuration), see the proof of

Proposition [T40]

this with ([8], Figure 1.4), where such boundaries are plotted over all of [0,1] in the setting of
n=3.

Fix p € {{;(ag) | 1 < i < S}U{rj(ag) |1 <5< S}, and thus also fix the value of i or
j corresponding to p. We now solve for those « for which the T,-digit of p agrees with its
T,,-digit, confer Figure Denote the T,,-digit of p by (a,b). Let 81,52 be the endpoints
of the subinterval of J where all ¢;(a) (respectively, r;(c)) have a-digit equal to (a,b). Thus,
B1 < ag < fB2. Let B3, 84 be defined by p,5)(83) = p and A4 4)(B4) = p. Then B3 < ag < f4.
Now let M (p) be the open interval whose left endpoint is the greatest of 51, 53 and whose right
endpoint is the least of fa, 84. Then for all « € M (p), the a-digit of p is also (a,b). Thus, for
all « € M(p), both p € I,, N1, and T,,(p) = A*C® - p = T,(p).

Now let ¢; be defined by A, p(ag) = Ci(¢p1) and ¢2 by pap(ao) = £i(¢2) (respectively,
ri(¢1),7;(p2) ). Let N(p) be the open interval whose left endpoint is the greatest of 81, 53, ¢1 and
whose right endpoint is the least of 2, B4, 2. Then for all @ € N(p), T, (¢;(a)) = A2CP-4;()) =
To(4i(c)) (respectively, with r; appropriately replacing ;).

We now let N(ap) = N, N(p). Then every « in the open set N () is a close neighbor of
Q. O

For our purposes, we only need that in every open set A («) of close neighbors there is some
o' with T, of bounded non-full range. We show a stronger result.

Proposition 141. The set of a with T, of bounded non-full range is dense in [0, 1].

Proof. The bounded non-full range condition is fulfilled by the maps indexed by: the endpoints
of synchronization intervals, see the proofs of Propositions[63] and the division points of
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synchronization intervals for large , see the proof of Proposition[I13} and, in light of Remark[62]
also at all non-synchronization points: for each such «a, both endpoints of the interval of definition
have only finitely many distinct digits in their a-expansions.

Fix any « with T, not of bounded non-full range. From the above, « lies in the interior of
some synchronization interval; the T,-orbits of £(«) and 7¢(«) meet. Since T}, is not of bounded
non-full range, the T,-orbit of ¢y(«) must visit every full cylinder at least once. Choose an
increasing subsequence of ij, j > 1 with i; > S such that /;, () is in a full cylinder. Zero is
clearly included in the T, -image of the corresponding rank 4; cylinder, for each j . Set z; = Qﬁ’ij]
and let a; = M;l - 0. For each sufficiently large j, there is an «; such that ¢y(c;) = a; and
such that «; is in the same synchronization interval as ag. If M., is aj-admissible, then the
T,;-orbit of £o(a;), and hence that of ro(a;), reaches zero in finitely many steps. In particular,
these T, are all of bounded non-full range.

Since the o certainly converge to a, we are done unless in fact we cannot find an infinite
subsequence along which each M, is aj-admissible. If this obstruction exists, then it must be
that for all i; sufficiently large there is some ¢ < i; such that M, - a; ¢ [a;,t + a;), where M;
corresponds to by ;1. For each such pair (i, ), either M;-a; < a; or M;-a; > t+a;. In the first
case, M; - a; < a; < €o(a) < M; - lo(a) and hence M; has a fixed point in (a;, fo(a) ). Recall
that A-x =z +t for any z; in the second case, A~ M; - a; < a; < lo(a) < A71M; - £y(«) and
it is A=!'M; that has a fixed point in (a;, fo(a) ).

We now define a new subsequence of indices, (iy)r>o such that the distance of a fixed point
of M;, or of A7'M;, to fo(c) is less than all such distances for all 0 < i < ;. Let by be the
fixed point defining iy, and let ay be such that ¢y(ay) = b. By construction, each M;,i < iy is
a-admissible, and T2 fixes fo(ay). In particular, the Ty, -orbit of £o() meets only finitely
many cylinders. We can and so assume that i;, > S holds for all k, and hence each T,, is of
bounded non-full range. The result holds. (|

Proof of Theorem [Il We have already shown that the result holds for: any endpoint of a
synchronization interval, by Propositions [63], and all of the d_, by Proposition [T13}
and, also all non-synchronizing values of o by Propositions and It thus remains to
consider the case of « in an interval J of the form J ,, or (N—gw,0—kw), OF (0—kw,C—kw). By
Proposition m , either « already satisfies the hypotheses of (9], Main Theorem 1) and the
result holds, or else the set of close neighbors of « is an open neighborhood. Thus, the denseness
of the set of o/ with T,/ of bounded non-full range implies that we can apply the results of
Subsection [[3.2] to conclude that our statements hold for this value of o as well. (|

14. ENTROPY CHANGES CONTINUOUSLY

As in ([23], proof of Theorem 2), we employ one of the key tools for proving statements about
change of entropy: Abramov’s formula relates entropy values of systems which have a common
subsystem to which the respective first return maps agree. We show such common first returns
to subsystems of the a = 0 system for a leftmost parameter subinterval, and similarly use o = 1
for a rightmost parameter subinterval. With this in hand, continuity of entropy on each of these
subintervals does hold; fortunately enough, the subintervals overlap and the continuity holds on
the entire parameter interval.

14.1. Common first returns. For each a < 1, we seek a subset of ), contained in g for
which 7, and Ty have common first returns. Due to the shape of g, such a subset must surely
have negative z-values and positive y-values; this leads to the following set N, confer Figures I]

and [10]



CONTINUITY OF ENTROPY AND NATURAL EXTENSIONS 59

Lemma 142. Suppose that 1/t,, > o > 0 and set N = ;e Da(—4,1) U An(—4,2). Suppose
x € 1, is negative and that there exists m > 0 such that both T/ (z) € N and T/"1(z) < 0.
Then there is some k € N such that Ty (z) = T/t Y(x). Furthermore, for any y one has
T (@) = T (@, y).

Proof. Note that some of the cylinders in the expression defining N may be empty for any given
a.

We can and do assume that m is minimal with respect to the hypotheses. From the definition
of our maps, we can write

T;n+1(x) = A%m+1(Cm+1 AGm (JCm ... A1 (1, x,

with ¢; = 1 and both a;,,+1, a1 negative. If mm = 0, then A**C° . ¢ = Ty(x) and k = 1. We now
assume that m > 0 and perform word processing on A%m+1(Cm+1 A4m(Ccm ... A% C with the
goal to achieve an expression for this element of the group G,, that is in an admissible form for
To.

We process from right to left, using the following substitution rules. Here “;” is placed so
that the processed portion lies to its right.
Substitution rules:

(1) a <0, A*C, — A AIC
(44) a>0, A°CA; —  CAWe
(i) AC?A; = ATle; (Ao
(iv) a>0,b<0, A%C;AC — CA;WeAb 1O
(v) b <0, A*C? A°C = Ao (Ao A e
Recall from ([8], Equation 2.1) that
(26) W=A2C(A o)y 3A2Cc(A e 2,

After a rule is applied, we either treat the A~ 'C; which has been defined, or we multiply on
the left by the next unprocessed A% (C°, and continue until only the empty word is to the left
of the demarcating “;”.

We claim that this process ends with a successful conversion of the element of GG,, factored
into a Ty-admissible form. Note first that each rule, up to ignoring the separation marker “;”, is
the result of applying a group identity. The first of these is obvious; the second and fourth result
from induction and the simple identity ACA = CAW see ([8], Equation 2.2) and compare with
(8], Lemma 5.1); finally, the third and fifth result from C?A4 = C~14 = (A71C)"~ 1. We now
argue that there is exactly one way to apply the rules. First note that no two rules are possible
for any situation. It remains to show that there is always is a rule to apply at any (non-final) step.

First assume that a < ~,,. Hence, there is no occurrence of ¢; = 2. Since z < 0, we have
a1 < 0. Since m > 0, there are no consecutive a;, a;4+1 which are both negative. Thus, we apply
the first rule immediately, and the second rule is always applied only after the first rule is. Both
the second and the fourth result in a step where the third rule must be applied. The third and
fifth result in a step where the first or fourth rule must be applied, unless in either case a = 1
when both result in the fifth rule being applied. It follows that there is always an applicable rule
at each step. Since a,,4+1 < 0 we have a,, > 0 and thus the final step occurs with an application
of the third or fifth rule; at this point, we can disregard the semi-colon, and have rewritten the
original element of the group. The main requirements for Tj-admissibility of a word in letters
of the form A*C with each a < 0 come from the fact that —t = £,(0) is sent to itself by the
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admissible word W. These requirements are that A~!C' cannot appear more than n— 2 times in
a row, and appearances of A=2C (A~1(C)"~2 are isolated. It is easily checked that our processed
word meets these requirements. The process fully succeeds in this case.

Now suppose 1/t, > «a > v,. Note that the complement of N in I, is [0, b,). We of course
can again assume m > 0, and also observe that at most one rule can be applied at any step of
the word processing. Since z < 0 and we cannot have consecutive occurrences of (a;,1) with
a; negative, the first rule is again applied immediately. It then is followed by an application
of the second or third rule. Both the second and the fourth result in a step where the third
rule must be applied, unless the next unprocessed portion is of the form A% C2. In this case,
a simplification gives A% C2CA; W = A%~1C; (A71C)"3A72C(A1C)"2W*~! and (assum-
ing processing is not yet complete) either rule i or rule iv is applied, unless a; = 1 in which
case similar considerations are applied with A%+1C¢+1C;-.-. As well, there are further, easily
determined, possibilities after either the third of fifth rule is applied and a; = 1. That is, here
also the process fully succeeds.

Finally, with M = A%m+1Cem+1 Adm Cem ... A1 G both TF(x,y) = Tar(x,y) and T (2, y) =

We now wish to find a region for which the first return under 7y agrees with that of 7,. To
this end, we restrict N and the region to which we return, so that {—1, —2} digits introduced
in the word processing could never index an ‘early return’ of a Ty-orbit.

a(i, 1)U

Lemma 143. Suppose that1/t, > « > 0. Let d = min{—4, —2+d,(lo()) }, Ng = Ugd
=y}

Aa(i,2) and Of = Qo N{(z,y) |y > 0,2 < 0,2 € Ny and 2’ € Ny, where T, *(z,y)
The first return maps of To and of Ta to Q agree.

Proof. Since QF is of finite u-mass, it follows that jS' C €y and hence both return maps are
defined. Suppose that (z,y) € QF and T""!(z,y) is its first T,-return. From the previous
lemma, we can deduce that this first return map is also some return under 7.

If m = 0 then certainly T, (z) = Tp(z), and the first return of the two-dimensional maps also
agree. Now assume that m > 0. Suppose

Tt (z) = ASmt1 Comst AGm Cm - AN OO g

Of course, if for all 4 both ¢; = 1 and a; are negative, then the orbits are the same and the result
clearly holds. In general, there may be intermediate consecutive appearances of this type. We
thus add a special case to the first rule:

(i) AYCAC; — AYC; AC ifa < 0,d <0,

and process so as to achieve an admissible T expression. Whenever any of our substitution rules
inserts Tp-steps, these insertions are always of corresponding simplified 0-digits in {—1,—2}. Of
course, any x-value with either of these as its simplified 0-digit cannot have simplified a-digit
less than or equal to d.

On the other hand, our rules also make changes in the exponents of appearances of A.
However, any such exponent is changed at most once throughout the process, and if it is changed
then it is decreased exactly by one. Since each substitution realizes a group identity, it follows
that any element in Ny that is in the Ty-orbit segment of x but not already present in the T,-
orbit segment is either (1) isolated (with respect to this property), or (2) is sent by Ty to T2 (x)
while its Tp-orbit predecessor is not in Ng. But, by hypothesis, 7" (z,y) ¢ Q;‘. Therefore the
result holds. g
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We now treat the case of large o. Note that @ = 1 gives a system defined on positive z, but
importantly each digit is then of the form (i,1) or (i,2) with 7 positive.
Lemma 144. Let v, < a < 1 and set P = |J,cy Aa(i, 1) U Au(4,2). Suppose x € P is such

that there exists m > 0 such that both T (z) and T/"*1(x) are in P. Then there is some k € N
such that TF(x) = T+ (x). Furthermore, for any y one has T (x,y) = T (z,vy).

Proof. We argue as in the case of small a. Here also the case of m = 0 is trivial, and we now
suppose that m > 0 and minimal.

Recall that U = AC(AC?)"~2. The relation given in (|8], Lemma 8.1) directly implies that
for any © € N we have

AficAfl _ 02(AC2)n72Ui71.
Suppose
T () = At Comia A Con .. ABCE
with the right hand side being the a-admissible factorization.

We process M = A%m+1(Ccm+1 A9m(Cm ... A% (C by the following rules. Note that if co = 2
then as < 0 and T, () € [ba,1). Tt is easily verified that [b,,1) C A;(1,1) and hence the 1-
word retains A% Ct and continues by the result of a processing of - - - A%2C?(AC)~LAC. Similar
considerations apply whenever some intermediate ¢; = 2.

C?(AC?) =2 y-e-lAtaca  if ¢ =1
C?(AC?)"=2, U2~ LACAmC  otherwise.
C2(ACH" 2, U~%"TAC(ACH)"3  if ¢; =1
C?(AC*H)"=2, U~ ~1A2C?(AC?)"~3  otherwise.
; Adm+1C(AC?)—2 if epy1 =2

s AlTam+t1C2(AC?)" =3 otherwise.

Once again, upon suppressing the semi-colon of demarcation, each rule is an identity. The
processed word is 1-admissible, and the result holds. O

A% 2 AMC {
A% Oci 02(A02)n—2; — {

Aam-*—l Ccm_H CZ(ACQ)n—Q; — {

Lemma 145. Suppose that v, < a < 1, set Q = Ui24 Aq(i,1) U AL(i,2), and let Q9 =
Qo N{(z,y) |y < 0;2,2' € Q, where T, (z,y) = (a',y') }. The first return maps of T, and of
T to Q9 agree.

Proof. We have that Q29 C Q; and hence the return maps are defined. Suppose that (z,y) € Q9
and T 1(x,y) is its first T,-return. From the previous lemma, we can deduce that this first
return map is also some return under 7;.

If m = 0 then certainly T, (z) = T1(z), and the first return of the two-dimensional maps also
agree. Now assume that m > 0. Suppose

T;n+1(x) — A%m+1(Cm+1 AGm (YCm ... A9 L .

Of course, if this z-orbit stays within @), then it certainly stays within the positive reals and
we find that this gives also the Tj-orbit and the result holds. In general, we process as in the
previous lemma each subword corresponding to a return to a consecutive pair in @ (including the
possibility of the use of the “m = 0 case”). Note that our rules insert only steps corresponding
to one of AC,A2C, AC?%, A2C? and cause one-time changes of the form (a;,c;) replaced by
(1+a;,1),(1 4+ a4,2) for certain positive a;. These one time changes can only occur at the end
of a return to a consecutive pair in @, or at the beginning of an excursion from such a pair. In
the latter case, the value of the point at the beginning of the excursion is unchanged. When



62 KARIANE CALTA, COR KRAAIKAMP, AND THOMAS A. SCHMIDT

such an increase to 1 + a; is made at the end of an excursion, the Ti-predecessor of the return
lies in Ay(1 4+ a4, 2); in all cases its own Tj-predecessor lies in Ay (1,1) U Aq(1,2) (with only the
case of n = 3 and a;—; = —1 at all complicated).

Since the left endpoint of A1(2,2) is sent by A2C? to 0, we find that A;(2,2) UA(1,2) C
Ay (2,2)UAL(1,2)U[ro(), t). One similarly finds that Aq(2,1)UA1(1,1) C An(2,1)UAL(1, 1)U
[64,1). Thus, U7, Ay(i,1)UA;(4,2) does not intersect Q. Thus, our 1-admissible word is such
that it gives the first return under 7. O

14.2. Entropy times mass is constant; Proofs of Theorems We now argue by way
of Abramov’s formula, as in [9], that the following holds.

Proposition 146. The function a — h(T,)(Qa) is constant on each of the intervals (0,1/t,)
and (Yn, 1).

Proof. Let a, o’ both belong to one of the parameter intervals being considered. In the respective
cases, the subset Qj or QF of Q, is of positive p-mass, and similarly for when o/ replaces .
Let Q. o be the intersection of these respective subsets. From Lemmas and we deduce
that the first return map of 7, and 7,  agree. These hence define the same dynamical system,
and Abramov’s formula yields that their entropy can be expressed as

h(%) M(Qa) _ h(']:)/) /jf(Qa’) )

/’L(Qa,a’) N(Qa,a’)

Since the entropy of a dynamical system equals the entropy of the natural extension system, the
result holds. O

Since the two parameter subintervals of the proposition overlap, that is 1/t, > v, Theorem
is proven. Recall that from this, and Theorem [3] Theorem [] follows. a

15. CONJECTURE: ENTROPY TIMES H-MASS EQUALS VOLUME OF UNIT TANGENT BUNDLE

The volume of the unit tangent bundle of the hyperbolic orbifold uniformized by the triangle
group G, is

2(2n — 3)n2
3n '

This is easily checked, as the hyperbolic area of the base orbifold is twice the hyperbolic area
of any hyperbolic triangle of angles 7/3,7/n,0, and vol,, is this times 7, see say [3] for this
calculation when G, is replaced by the standard modular group. From this, Conjecture [8| can
be restated as the following.

(27) vol,, =

Conjecture 147. For alln > 3 and for all a € (0,1) we conjecture that
h(Ty) u(Qy) = vol,, .

In § [15.1] we relate Rohlin’s formula for entropy to volumes of unit tangent bundles. This
reduces the above conjecture to the computation of an integral. §[I5.2] shows that the conjec-
ture holds when n = 3. § gives in particular the proof of Theorem [7| (which implies the
equivalence of Conjectures 6| and . Finally, in § we report on computational confirmation
for 4 <n <12.
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15.1. Rohlin’s formula and the volume of unit tangent bundles. We show that for each
n, the conjecture can be reduced to an integral computation, involving either g or €.

Definition 148. Fix n > 3. For « € [0, 1] and for each z € I, let 7, (2) = —21log |cz + d| where
To(z) = (ax +b)/(cx + d). Of course, this is simply 7, (z) = log |T%(x)|.

We now show that the integral of 7,(x) over Q, with respect to dyu gives the product of
h(T,) with ©(Q,). Furthermore, these integrals are constant with respect to «, including at the
endpoints, this although both p(o) and p(£2;) are infinite.

Lemma 149. Fizn > 3. For a € [0,1] and for each x € 1, let 7o(x) = —2log |cx + d| where
To(z) = (ax +b)/(cx +d). Then for 0 < a <1,

MT) () = [ ralwydi= [ i) du= [ ) du.
Qa Qo 221
Proof. For 0 < a < 1, Rohlin’s formula (see [15]) gives

fQ To()dp

! e

hTy) / log |T7,(z)| dve /Ha Ta(2)dVq PO

where the last equality holds because v, is the marginal measure for the probability measure
on 2, induced by p. Since u(Q,) < oo, our first equality holds. We now show the remaining
two equalities hold by showing that each holds for « in a certain subinterval; these subintervals
overlap, from this the result itself holds.

Assume first that o < 1/t. We employ a tower construction, with base Qj. For this, note that
Poincaré recurrence for each of 7! to this positive measure subspace of €, implies bijectivity
of the first return of 7, to Qj. For each k € N we define Ry, C Qj as the set of points whose first
return to Qj is given by applying 7.*, thus the Rj partition Qj. We have that 7, bijectively
maps the tower formed by the disjoint union of the sets of the form 7 (Ry) for all k and 0 < i < k
to itself. By the ergodicity of 7T,, we deduce that this union gives €2, up to measure zero.

Let p denote projection onto the z-coordinate of the first return map on Q;‘. Due to the
logarithm turning the multiplication appearing in the Chain Rule to addition — in the sense
that: For any reasonable map 7', we have log |(T*)'(z)| = Zf;ol log |T'(T%(z))| — and the
additivity of integration, one deduces that

/ To) dp = / log | (x)] d.
Qq Qf

Due to the infinite measure of €y, we cannot simply repeat this argument to directly achieve
the equality with Qg replacing Q,. However, the proof of Lemma [143| can easily be adapted to
show that the first return map itself also agrees with the first return map for the accelerated
system that [I0] associates to To. This system is again a finite p-measure ergodic dynamical
system and thus one finds that fﬂa To () dp equals the integral of the logarithm of the absolute
value of the first derivative of the accelerated one-dimensional map. Next, one can show that
by taking the union of that accelerated two-dimensional domain with the forward 7y orbits
of its points fibering over the subinterval where acceleration occurs (denoted [—7,¢eq) in [10],
note that their 7 is our ¢) gives Qy up to zero measure. Putting this together, we do find that
Jo, Ta(@)dp = [o To(x)dp.

We can now argue completely analogously, beginning with a@ > ~,,, using Lemma and
the acceleration for the a = 1 setting given in ([9], Lemma 13), to find that an To(x)dp =

Jo, Ti(z) dp. O

o4
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15.2. Proof of Conjecture [8 when n = 3. In light of the previous subsection, the following
result proves Conjecture |8 when n = 3.

Lemma 150. Let n = 3. We have
/ 71(x) dp = vols .
1951

Proof. Restricting ([9], Proposition 12) to our case of n = 3, one has
O = ([0,1] x [-1,0]) U ([1,2] x [-1/2,0]).

For x < 1,T1(z) = A=*C - x for some k € Z and in particular, 7;(z) = —2logz. Similarly, for
2 > x > 1 we have 71 (z) = —2log |z — 1|. Recall that for any M € SLo(R) that Ty locally
(1) 1) is such that Tps sends [0,1] x [-1,0] to
[1,2] x [-1/2,0], and hence a change-of-variables calculation gives

/ —210gxdu:/ —2log |z — 1| du.
[0,1]x[—1,0] [1,2]x[—1/2,0]

That is, [, 7i(z)dp =2 f[o,l]x[q,o] —2logx dp. The following lemma thus implies our result.
O

preserves dyu. One easily verifies that M = (

Note that specializes to volg = 272 /3.
Lemma 151. We have
/ —2logx dp = 72 /3.
[0,1]x[~1,0]

Proof. Tt is an exercise to show that the by-excess map on [—1,0) to itself defined by = —
—1/x — |1 — 1/x| has as planar natural extension domain exactly [—1,0] x [0,1]. (Recall
that this is the a = 0 Nakada-continued fraction, see say [23].) Arguing as in [4] shows
that f[—1,0}><[0,1] —2log |z| du = 7*/3. (Again, see say [3] for related discussion.) Since du =
(14 2y) 2 dx dy, the measure is preserved under the map (z,y) — (—x, —y) and hence a change-
of-variables calculation gives our result. (|

15.3. First expansive power maps, Proofs of Theorems [7}, [0l We show that under Con-
jecture [8| every one of our maps can be appropriately accelerated so as to define an interval map
which is naturally given by a geometric system.

15.3.1. Cross sections for geodesic flow: n = 3, > 1/2. We now show that the results of the
previous subsection imply that each of infinitely many of our maps has its natural extension given
by the geodesic flow returning to a cross section in the unit tangent bundle of the hyperbolic
orbifold uniformized by Gs. See, say, [25] for related background.

Corollary 152. Forn = 3 and each o > 1/2 there is a cross section in the unit tangent bundle
of G3\H which when equipped with the first return map under geodesic flow gives the natural
extension of the interval map T3 4.

Sketch. For any n > 3 and « € [0,1], Arnoux’s transversal as in [4 5], see also ([9], Sec-
tion 2.5), allows for the map v : Q4 — T'(G,\H) given by (z,y) — [M -1]g, where M =
(m —1/(1 + zy)

L y/(L+ay)
by the usual action, and [M - %]Gn denotes the projection to the quotient orbifold of the unit

), 7 is the upwards directed unit tangent vector based at i € H, M -7 is given
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tangent vector M -i. Thus, the cross section here is v(Qq ). From the cited works, the map v is in-
jective up to measure zero. Furthermore, the map vo7,, ,ov~! has p as invariant measure. (Note
that the cited works have Lebesgue measure as invariant measure, but (z,y) — (z,y/(1 + zy))
pushes forward u to Lebesgue measure. See ([9], Section 2.2). Since 7, o on Q, gives the natural
extension for the interval map, so does the conjugate map on the cross section.

For any n > 3 and « € [0,1], the derivative of T}, o (z) equals 72 if z < b, and (x — 1)72
otherwise. Thus, T;, o(x) is expansive exactly when both (i) fo(a) > —1 and (i7) ro(a) < 2.
Since 1o(a) = £o(a) + t = at, these conditions are (i) o > 1 — 1/t and (i) o < 2/t.

We now fix n = 3, thus ¢ = 2, and restrict to 1 > « > 1/2. Here each interval map T, = T3 4
is expansive. It follows, again from the cited works, that at each v(x,y) the map vo T, ov™1 is
given by some return of the positively oriented geodesic flow to the cross section. Key to this is
that there is a geodesic arc connecting the basepoint of v(x,y) to that of v o Ty (x,y), whose
length is in fact 7,(z); see ([5], Theorem 1 and its proof). By definition, the geodesic segments
determined by each v(z,y) and the first return under the flow to the cross section form a flow
invariant set. The ergodicity of the flow implies that this set is all of the unit tangent bundle;
the integral over the cross section of the lengths of the geodesic segments defined by the first
return is hence equal to the volume of this bundle. (See, [25, 4] for details of the measures
involved in this.) Since an 7o () dpn = volg holds here, one finds that vo T, ov™! agrees almost
everywhere with the first return of the geodesic flow. |

15.3.2. First expansive power maps and geodesic flow, under the conjecture.

Definition 153. Let T be a function on an interval I, with an invariant probability measure v
which is equivalent to Lebesque measure. Suppose that T is eventually expansive, thus there is
some r € N such that T" is expansive. By the Well Ordering Principle of the integers, for each
x € I there is a least £(x) € N such that T%®)(z) is expansive in the sense that the derivative
here is greater than 1 in absolute value. We define the first pointwise expansive power of T as
the map U : I — I sending each x to T®)(z).

Of course, ¢(x) < r for all € I and also U(x) = T'(x) for all z € E, where FE is the maximal
subset of I on which T itself is expansive. For each k < r, let Ey C I be the set on which
{(z) = k. Of course, the Ej, give a finite partition of I. We have that |(T*)'(z)| > 1 for all
r € Ej; by the Chain Rule, |(T*)'(x)| = Hf;ol |T"(T%(z))|. The minimality of ¢(z) hence
implies both T(Ey) C UF"! E; for k > 2 and T*—1(E},) C E; for all k.

Note that in the setting where I is an interval and T is given piecewise by Mobius transfor-
mations, then also U is so given.

We now identify the natural extension of the first pointwise expansive power of T as an
induced system within the natural extension of 7.

Proposition 154. Suppose T as above is eventually expansive. Let now T, u be the usual
aspects of the natural extension of the system of T, and for each k let & C Q be the portion
which projects to Ey, C I. Set

r k—1
F=o\{J U T&n.
k=2 j=1
Suppose that there is a full T-cylinder contained in E1. Then the system on F C § induced
by T, in other words the first return system of T on F, gives a natural extension for U.

Proof. We can and do assume that r > 1.
Since there is a full cylinder contained in F17, there is positive measure subset of € consisting
of points in & whose 7 ~!-orbit segments of length r remain in &£;. Since this set is contained in
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F, we find that F has positive measure and furthermore F C () projects surjectively to I. Let
R : F — F be the first return map of 7. Since the & give a partition of 2 and 7T is bijective
on €2, the fact that one deletes at least T#~1(&;) for k > 2 shows that F C T(&;).

We now show that R on each F N &,k > 1 is given by 7%. Given the definition of the set
F, certainly within this subset the first return map R is given by 77 with j > k. It suffices to
show that T*(F N &) C F.

Consider first & > 2. We thus show that for each 2 < ¢ < r and 1 < j < 7 we have
THFNE)NTI(E) = 0. We discern three cases. If k < j then F N T77%(&;) = () implies the
result. Suppose j < k; if # € T#*~7(E}) then we must have that [(77)'(z)| > 1 but since j < i
this implies that ¢ E;. Should j = k then since the 77(&;),1 < i < r partition 2; we find that
i =k but j < ¢ =k allows the previous argument to apply. Therefore, R on F N &,k > 2 is
given by TF.

Finally, if k& = 1 there are two cases. When j = 1, since & N &; = () the result holds.
Otherwise, 1 < j < i and F N T771(&;) = 0 implies the result. Thus, we have shown that R on
each F N &, k > 1 is given by TF.

It is now clear that the system of R on F is an extension of the system of U on I. (Note that
u and v remain the respective invariant measures, up to normalization.) Since 7 on ) gives
the natural extension of 1" on I, the induced system on F inherits in particular the property of
being a minimal extension. O

We can now show that under certain conditions, an interval map can be appropriately accel-
erated so as to define an interval map which is naturally given by a geometric system.

Proof of Theorem [Tl Arguing as in the proof of Corollary [I52] we need only show that
h(U) u(F) = h(T) p1(€2). But, this is immediate from Abramov’s formula. O

Combining the above results and arguments yields Theorem [0

15.4. Computational confirmation for 4 < n < 12. In view of Subsection we discuss
Ja, T0(x) du for fixed n.

Let s : (z,y) — (—y, —z) and note that for any reasonable region £ in the plane one has
/ —2log |xy|du = / —2log |x|dp +/ —2log |x|dp.
% @ (%)

Now, for each n, the domain €y is symmetric under s, see [I0]. We could thus integrate
—2log |xy| with respect to p over half of the domain; indeed, it seems easier for Mathematica
to evaluate integrals of this type. A further improvement is reached by noting that each €
contains the square S = [—1,0] x [0,1]; using Lemma the integral of —2log|z|du over S
equals 72/3. We thus let Z(n) denote the integration of —2log|zy|du over the portion of
projecting to x-values less than —1.

Using Mathematica, we numerically approximated the values Z(n) = vol, — (Z(n) + 72/3)
for 4 < n < 12. Clearly, each Z(n) is a real number, and our conjecture states that each Z(n)
equals zero. The approximated values of Z(n),4 < n < 6 were real numbers of absolute value
less than 10~%. The approximated values of Z(n),7 < n < 11 were complex (!) numbers whose
real parts were of absolute value less than 1078 and imaginary parts less than 107'2. The same
code run for n = 12 gave a complex number of large norm; however, upon using virtually the
same code to separately recalculate one of constituent integrals, the reported value of Z(12) was
a complex number of real part less than 10~* and imaginary part less than 1076.
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We have the impression that as n increases the computational difficulty of evaluating Z(n)
increases due to both the increasing number of constituent integrals and also the increasing
algebraic degree of the numbers defining the limits of integration.

15.5. Remarks on the conjecture. In the setting of expansive piecewise Mdbius interval maps
appropriately given by elements of some Fuchsian group that uniformizes a surface (or orbifold)
of finite hyperbolic area, one can reasonably expect a result as conjectured above. Indeed, there
is a long history of these matters, going back at least to E. Artin’s [6] coding by way of regular
continued fractions of the geodesic flow on the unit tangent bundle of the hyperbolic orbifold
uniformized by the modular group; some 60 years later Series [31] determined a cross section to
this flow for which the first return map has as a factor the interval map defining these continued
fractions. For related work see [2], [I8] and in particular the overview [I7]. We ourselves learned
of these matters from Arnoux, see [3] and also the discussion of ‘Arnoux’s transversal’ in [4].

Some caution is necessary. First, an example of an expansive piecewise Mdbius interval map,
given by elements of the modular group PSL(2,7Z), with a nice planar natural extension but
which is not of “first return type” is given in [4]. To be of first return type, see [B], a map
must be such that the induced function on Arnoux’s cross section in the unit tangent bundle of
the surface/orbifold agrees with the first return map of the geodesic flow. Under this property,
again see [5], one has an equality of the form of our conjectures, but in the setting of expansive
maps.

Various approaches to proving the conjectures naturally present themselves. First, by direct
integration. The integrals which appear are naturally related to dilogarithmic functions and
hence are notoriously difficult to evaluate exactly. See [16] for discussion of the appearance of
the dilogarithm in a related setting. Secondly, one could attempt to prove that each of our
continued fractions gives a coding for the geodesic flow on the corresponding orbifold and then
argue as in [18]. Closely related to this, one could follow [26] to determine a natural extension
for the interval maps as a cross section to the geodesic flow consisting of unit tangent vectors
(mainly) along the boundary of a particular fundamental domain for the Fuchsian group in
consideration. With this in hand, one could hope to use Bonahon’s [7] geodesic current formula
as in [I] to obtain the integral value. Thirdly, given any of our explicit planar natural extensions,
Arnoux’s transversal provides an easily determined cross section. When the cross section is lifted
to the upper half-plane, each (z,y) in the planar natural extension is associated to an inward
pointing unit tangent vector on a horocycle tangent to x. One could hope to determine if the
interval map is of first return type by consideration of the flow in this model. We would very
much like to see a method to pass from this cross section to one consisting of unit tangent vectors
along the boundary of some fundamental domain for the Fuchsian group at hand.
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