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ABSTRACT. In this article, we explore the boundedness properties of pseudo-differential
operators on radial sections of line bundles over the Poincaré upper half plane, even when
dealing with symbols of limited regularity in the spatial variable. We first prove the bound-
edness of these operators when the symbol is smooth. To achieve this, we establish a
connection between the operator norm of the local part of our pseudo-differential operators
and the corresponding Euclidean pseudo-differential operators. Additionally, we introduce
a class of rough symbols that lack any regularity conditions in the space variable and in-
vestigate the boundedness properties of the associated pseudo-differential operators. As a
crucial component of our proof, we provide asymptotic estimates and functional identities
for certain matrix coefficients of the principal and discrete series representations of the group
SL(2,R).

1. INTRODUCTION

The study of pseudo-differential operators can be traced back to the 1960s, with pioneering
works by Hérmander [24, 25] and Kohn-Nirenberg [32]. Motivated by the deep connection
between pseudo-differential operators and elliptic and hypoelliptic equations, they exten-
sively studied the boundedness properties of pseudo-differential operators in classical spaces,
which played a pivotal role in determining the regularity of solutions to related equations.
By introducing the concept of symbol class and utilizing Fourier analysis, Hérmander pro-
vided a powerful framework for analyzing these operators on Euclidean space. Consequently,
the study of pseudo-differential operators on R%, as well as in various other spaces, flour-
ished, becoming an important and active research area in modern harmonic analysis and
partial differential equations. In this article, we aim to explore the boundedness properties
of pseudo-differential operators on radial sections of line bundles over the Poincaré upper
half plane SL(2,RR)/SO(2), and establish their connection to the classical Euclidean space.
We begin by providing some essential background information to facilitate a mathematically
rigorous discussion.

A pseudo-differential operator on R? associated with a symbol a(z, £) is an operator defined
using the Fourier inversion formula:

ola D)f(a) = [ " al, ) F 1) de
R

where f is a function in C>®(R?Y), Ff is the Fourier transform of f, and the symbol a(z, £)

belongs to an appropriate class of functions that encodes the behavior of the operator. One
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of the most widely used classes of symbols is S} introduced by Hérmander [26]. This class
consists of all a € C®(R? x R?) with

0708 a(w, €)| < Cap(1 + [y aellA,

for all multi-indices «, 5, where m € R and 0 < p,6 < 1. Hormander’s work established
the boundedness of operators with symbols belonging to Si(f_l)/ >on LP(RY) for 1 < p < oo,
where 0 < § < p < 1; see [26]. In 1993, E. M. Stein further investigated the weak type and
LP-boundedness problems of pseudo-differential operators on R?. Specifically, he considered
cases where the symbol belongs to the class 89,05 see [56, Chap VI, Theorem 1]. Moreover, by
closely following the calculations, the aforementioned result can be extended to the following
version in the one-dimensional case:

Theorem 1.1. Let a(x, D) be the pseudo-differential operator associated with the symbol a,
which satisfies the following conditions for all o, € {0,1,2}:

|000¢ a(x,€)| < Cap (14 [€])7 (1.1)
Then, for 1 < p < oo, a(x, D) extends to a bounded operator from LP(R) to itself.
Remark 1.2. If the symbol a(z,§) is independent of the x variable, say a(z,£) = m(§),

then the associated operator is called a multiplier operator. If the multiplier m : R¢ — C
satisfies the following Hormander-Mikhlin differential inequalities:

dgo""

for all ¢ € R4\ {0} and for all multi indices o with 0 < |a| < [d/2]+1, then the corresponding
multiplier operator is a bounded operator on LP(R%), 1 < p < oo. We remark that for a
pseudo-differential operator, one cannot weaken the regularity assumption on the symbol
a(z,§), having singularity near £ = 0. Particularly if the symbol a satisfies the following
simpler-looking condition

‘ o

<§>\ < Afel e,

|070¢al@, )] < Caplé]™,
then the corresponding operator may not be bounded; see [56, p. 267].

It is well known that pseudo-differential operators with symbols belonging to the class SRO
are generalized Calderéon-Zygmund operators, meaning that their kernels satisfy Hormander’s
condition, which imposes smoothness conditions on the space variable of the symbol. This
naturally raises the question of investigating the boundedness problem of pseudo-differential
operators with limited regularity in the space variable of the symbol. In this direction, several
authors, including H. Kumano-go [35], Hormander [27], Nagase [43], and R. Coifman and Y.
Meyer [10] have studied the LP-boundedness problem with limited regularity. More recently,
in 2007, Kenig and Staubach [31] introduced the class of W-pseudo-differential operators,
where the symbols have no regularity assumptions in the space variable. This opens up
new possibilities for exploring the boundedness properties of pseudo-differential operators
without the usual smoothness conditions on the symbol.

Let ), be the class of symbols consisting of all a(z,-) € C*(R{) such that z — a(z,§)
is a measurable function in x and

10ga(z, €) ||z < Call +[€])m 2
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for all multi indices o, where m € R, o < 1, and C,’s are constants. The authors Kenig
and Staubach [31] established the following result concerning the LP-boundedness problem
of pseudo-differential operators with non-regular symbols.

Theorem 1.3 ([31, Theorem 2.7]). Let a € S}, 0 < o < 1. Suppose that m < n(o—1)/2,
then a(x, D) is a bounded operator from LP(RY) to itself for all p € [2,00]. For o =1 and

m < 0 the range of p for which the operator is LP bounded is p € [1,00].

Over the past few decades, the theory of pseudo-differential operators on various Lie groups
has gained significant popularity and has become a rich field of study with vast literature.
For instance, the second author and his collaborators explored a noncommutative analog of
the Kohn—Nirenberg quantization [32] for operators on compact Lie groups [50, 51, 49, §]
and introduced the corresponding Hérmander symbol class [52, 53, 14]. Moreover, research
on the LP-boundedness of pseudo-differential operators in the context of compact Lie groups
has been undertaken; see [54, 19, 15]. Bernicot and Frey [4] have delved into the study of
pseudo-differential operators on homogeneous spaces. Additionally, the theory of pseudo-
differential operators has been extended to graded Lie groups, with the authors in [16, 18, 7]
introducing the symbol class based on a positive Rockland operator. Further research on
pseudo-differential operators in the context of nilpotent Lie groups can be found in [17, 41].

In recent times, there has been a growing interest in the theory of pseudo-differential
operators on discrete spaces, primarily due to its connections with quantum ergodicity prob-
lems and the discretization of continuous problems; see [5, 36, 47]. Moreover, other note-
worthy works on pseudo-differential operators in non-Euclidean settings can be found in
6, 40, 42, 13].

The study of pseudo-differential operators has predominantly occurred in the doubling
setting, which relies on suitable covering lemmas. However, when dealing with the Poincaré
upper half plane or more general noncompact type symmetric spaces, these spaces exhibit
exponential volume growth, leading to the absence of analogues for the Calderon-Zygmund
decomposition or useful covering lemmas. Despite these challenges, Clerc and Stein addressed
the multiplier problem in their seminal work [9] on general noncompact type symmetric
spaces. In the context of the rank one symmetric space X, the authors observed that for a
given multiplier m, if the associated multiplier operator T, is to be bounded on L?(X) for
some p € (1,00) \ {2}, then m must necessarily extend to a bounded holomorphic function
in the interior of the strip S, with

2

Sy ={A e C:|ImA| <,lp|}, where ~,:= P 1|, forpe[l,00), (1.2)

and p is half the sum of all positive roots with multiplicity. Subsequently, the endeavor to
extend the classical Hormander-Mikhlin multiplier theorem to symmetric spaces of noncom-
pact type has attracted the attention of several authors [55, 2, 58, 1, 20, 37, 38]. In 1990,
Anker, in his remarkable work [1], improved and generalized the previous results of Clerc
and Stein [9], Stanton and Tomas [55], Anker and Lohoue [2], and Taylor [58] by proving
the following analogue of the Hormander-Mikhlin multiplier theorem on noncompact type
symmetric spaces of arbitrary rank. However, to avoid introducing additional notation, we
present the results here in the context of rank one symmetric spaces.

Theorem 1.4 ([1, Theorem 1]). Let X be a rank one symmetric space of noncompact type,

l<p<oo,v= |% — 3| and N = [vdimX] + 1. Assume that m : R — C extends to an even
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holomorphic function on S, %m (¢ =0,1,--- ,N) extend continuously to S, and satisfy
sup (14 [A)* | om (3] < o,
AES, oA

forallaa=0,1,--- ,N. Then the associated multiplier operator T,, is a bounded operator on

LP(X) for all p € (1,00).

We note that Anker also proved the weak type (1, 1)-boundedness of the multiplier operator
by imposing certain regularity assumptions on the boundary. However, Anker suggested
that it might be possible to relax these assumptions and allow m to have a singularity at
the boundary points +iv,|p| while still being an L” multiplier on X. Later, Ionescu [29, 30]
made further improvements to the theorem by replacing the continuity requirement of the
multiplier m on the boundary with a condition related to the singularity at +iv,|p|. This
condition is the best-known sufficient condition of the Hérmander-Mikhlin type on X.

Theorem 1.5 ([29, Theorem 8]). Let X be a rank one symmetric space of noncompact type
and 1 < p < co. Assume that m : R — C extends to an even holomorphic function on S,
and satisfies

] ee
SWWiWWDEFWw<%,
AESS
foralla=0,1,---, [%] + 2. Then, the associated multiplier operator T,, is a bounded

operator on LP(X).

Motivated by the works of Anker [1] and Ionescu [29, 30], the authors Ricci and Wrébel [48]
studied the LP-boundedness (1 < p < oco) of multiplier operators on the radial sections of line
bundles over the Poincaré upper half plane SL(2,R)/SO(2). More precisely, they focused on
the group G = SL(2,R), and instead of considering K = SO(2)-biinvariant functions, they
explored the problem of the LP-boundedness for the multiplier operator defined on functions
on G satisfying the property:

f(kogks) = €™ f(g), (1.3)
for all g € G, kg, ky € K, where n € Z is fixed and

ky = ( cos 6 Siﬂ@)
' —sinf cosf )’
The functions satisfying (1.3) are called (n,n) type functions on G. In the special case where
n = 0, their result [48, Theorem 5.3] aligns with the multiplier theorems on symmetric spaces
obtained by Anker [1] and Stanton and Tomas [55] in the K-biinvariant case. Moreover, the
authors [48] extended the result of Clerc and Stein [9, Theorem 1] in this setting by providing
a necessary condition on the multiplier m for the associated multiplier operator to be LP-
bounded for p € (1,00) \ {2}. For more details, please see Theorem 3.1.

Given the progress in studying multiplier operators, the present article continues the
research trend by introducing pseudo-differential operators on radial sections of line bundles
over the Poincaré upper half plane and investigating their boundedness properties.

In this study, we establish a sufficient condition on the symbol that ensures the LP-
boundedness of the corresponding pseudo-differential operator for (n,n) type functions on
G; see Theorem 3.3. This result not only extends the findings in [48] for the multiplier case
but also presents an analogous version of Theorem 1.1 in the context of Euclidean space.
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Additionally, we present a weak-type version of the generalized transference principle
by Coifmann-Weiss. By employing this principle, we establish a connection between the
operator norm of the local part of our pseudo-differential operators and the corresponding
Euclidean pseudo-differential operators.

Furthermore, we delve into the boundedness problem of pseudo-differential operators as-
sociated with non-smooth symbols in the space variables in our setting; see Theorem 3.5.
This result is a natural analogue of the boundedness of rough pseudo-differential operators
established by Kenig and Staubach in Fuclidean spaces Theorem 1.3. To further investigate
this area, inspired by the works of Kenig and Staubach [31], we introduce the class 87", (.5,)
of rough symbols with no regularity conditions in the space variable and analyze the bound-
edness properties of the associated pseudo-differential operators for (n,n) type functions on
G.

Before we proceed into the specifics of the paper, let us compare our analysis of pseudo-
differential operators with that of multiplier operators for (n,n) type functions on G.

In the context of multipliers, the associated operator can be represented as a convolution
operator, which allows one to make use of various convolution inequalities like the Kunze-
Stein phenomenon and Herz majorizing principle available on the group G. However, dealing
with pseudo-differential operators does not provide the same convenience of employing these
mentioned methods, marking a crucial distinction between the two cases. Additionally, in
this group setting, there is an extra discrete component of the Plancherel measure, leading
us to decompose our pseudo-differential operator W, into discrete and continuous parts;
see (6.1). Addressing the discrete part poses a new challenge, where we use an asymptotic
estimate of the spherical functions (¢;"), departing from the Kunze-Stein phenomenon used
in the multiplier case [48]. In fact, we establish a characterization of the matrix coefficients of
discrete series representation lying in weak LP spaces; see Lemma 5.9. This characterization
represents the weak-type version of Mili¢i¢’s result [39, Corollary, p.84] in the context of
SL(2,R), which we employed to establish the boundedness of the discrete part of W,,.

Moving to the continuous part of ¥,, we first use a functional identity of the spherical
functions (¢Z;) to rewrite the operator as a kernel integral operator on G. However, con-
sidering the exponential growth of the measure on the group, we further decompose the
continuous part of ¥, into two parts, namely the local part (¥1°°) and the global part (¥&°);
see Section 6.1.

Proving the boundedness of the local part (V¢) constitutes a major challenge. In the
case of multipliers, the availability of a transference principle for convolution operators leads
to their boundedness. On the other hand, for pseudo-differential operators, we utilize a
generalized Coifman-Weiss transference principle for singular integral operators to establish
a relation between the operator norm of the local part of our pseudo-differential operators
and the corresponding Fuclidean pseudo-differential operators. This relation helps us derive
the derivative condition on the space variable of the symbol.

The situation is entirely different for the global part (W&°), where the analysis of the
Poincaré upper half-plane becomes crucial. While multiplier theory in [48] relies on the Herz
majorizing principle to prove the boundedness, we need to adopt a different approach. We
use the global expansion of the spherical function and the holomorphicity condition on the
dual variable of the symbol to obtain a quantitative estimate of the kernel away from the
origin. Finally, by employing a property of the Abel transform and a duality argument, we
establish the LP-boundedness of W&l
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A critical element in proving the boundedness of ¥, for a rough symbol ¢ (Theorem 3.5)
is the established relation between the local part of a pseudo-differential operator on radial
sections of line bundles over the Poincaré upper half-plane and the corresponding operator
in the Euclidean space. Specifically, using the generalized Coifmann-Weiss transference
principle, we reduce the LP-boundedness of the local part of ¥!°° to the LP-boundedness
of certain Euclidean pseudo-differential operators whose symbols depend on o (as shown in
Section 8). This enables us to apply the result of Kenig and Staubach (Theorem 3.5) in our
setting and, consequently, establish the boundedness of the operator U'°°. The boundedness
of W4 and W&l follows similarly, as these operators do not require any smoothness condition
on the space variable of the symbol o.

We conclude this section by providing an outline of this article.

In the next section, we present the necessary background on the group SL(2,R) and
establish some results relevant to our study. Then, in Section 3, we introduce pseudo-
differential operators for (n,n)-type functions on G' and present our main results. In the
same section, we introduce the class S} (.S,).

In Section 4, we delve into the generalized Coifman-Weiss transference principles. Follow-
ing that, in Section 5, we prove some functional identities and derive asymptotic estimates
of the spherical functions, which are crucial for our study.

Next, in Section 6, we represent ¥, as singular integral operators. The subsequent sections,
namely Sections 7, 8, and 9, are dedicated to stating and proving the boundedness results of
Ydis gloc and We respectively. The proofs in these sections will lead to the establishment
of Theorem 3.3.

Finally, in Section 10, we prove Theorem 3.5, concluding our investigation.
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2. PRELIMINARIES

2.1. Generalities. The letters N, Z, R, and C will respectively denote the set of all natural
numbers, the ring of integers, and the fields of real and complex numbers. We denote the
set of all non-negative integers and nonzero integers by Z, and Z*, respectively. For z € C,
we use the notations Re z and Im z for real and imaginary parts of z, respectively. We shall
follow the standard practice of using the letters C, C;, C5, etc., for positive constants, whose
value may change from one line to another. Occasionally, the constants will be suffixed to
show their dependencies on important parameters. We will use X <Y or Y 2 X to denote
the estimate X < CY for some absolute constant C' > 0. We shall also use the notation
X ~Y for X SY and Y < X. For any Lebesgue exponent p € [1,00), let p’ denote the
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conjugate exponent p/(p — 1). Throughout this article, we denote

Sp,={z€C:|Imz| <~} and ~,=

2
]—9—1‘, for p € [1, 00). (2.1)

From the above definitions it is evident that v, = 7, and S, = Sy for all p € [1,00). We
shall henceforth write S; and 95, to denote the usual topological interior and the boundary
of S, respectively.

2.2. Lorentz spaces. Let (X, m) be a o-finite measure space. For f : X — C a measurable
function on X, the distribution function d; defined on [0, 00) is given by

d(a) =m({z € X | [f(z)] > a}).

For p € [1,00),q € [1, 0], the Lorentz spaces LP9(X) consist of all measurable functions f
on X for which || f]|,, is finite, where || f||,, is the Lorentz space norm defined as follows, as
in [21, Prop.1.4.9]

(2.2)
sup oPdg(o) when ¢ = oc.

2.3. The group SL(2,R). From this section onwards, G will always denote the group
SL(2,R). The Iwasawa decomposition for G gives a diffeomorphism between K x A x N and
G, where K = SO(2),

t
A:{at::<% egt):teR}, and N:{nvzz((l) T):UER}.

That is, by the Iwasawa decomposition any x € G can be written uniquely as x = kga;n,;
using this, we write

K(x)=ky, H(x)=t, and N(z)=w.
b

. a
In fact, if z = <c d

) € SL(2,R), then 6,t and v are given by

. —1 b+ cd
e =a’+ % e = 2 ando = u. (2.3)

Va2 + va?+c?
We also have another Iwasawa decomposition

G = NAK,

v foe (1 %) ver).

Next, let AT = {a; | t > 0}; then the Cartan decomposition for G gives
G=KATK.

where

Using this we define g™ as the RT™ component in the Cartan decomposition, of the element
g € G, that is we denote a,+ as the unique element such that

g = kiag+ ko, for some ki, ky € K.
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A function f: G — C is said to be of (n,n) type if
f(kg&?k‘g) = en(kg)f(a:)en(/w) (2.4)

for all kg, ky € K and = € G, where e, (kg) := ™. If n = 0, we refer to such functions as
K-biinvariant functions.

By the Cartan decomposition we can extend a function f defined on A+ to an (n,n) type
function on G by

f(kgarky) = en(ko) far)en(ky), for all kg, ky € K. (2.5)

It is known that the following groups G, N, and K are unimodular, and we will denote the
(left or equivalently right) Haar measures of these groups as dz, dv and dk, where [, dk = 1.
Then we have the following integral formulae corresponding to the Iwasawa and Cartan
decompositions, which hold for any integrable function f:

/ fx)dz = /N /]R /K f(vak)e dvdtdk, (2.6)
G

/G f(z)dz = /K /R ) /K Fkracks) A(t)dky dtdks, (2.7)

where A(t) = 2sinh 2¢. We recall the following integration formula on K from [22, Lemma
5.19, p.197].

and

Lemma 2.1. Let © € G. The mapping T, : k — K(zk) is a diffeomorphism of K onto itself
and

/ F(K(zk))dk = / F(k)e e g F e C(K). (2.8)

We require a connection between the Iwasawa decomposition of G = NAK and the Cartan
decomposition. Strémberg [57] previously employed a similar relation for noncompact-type
symmetric spaces. In this context, Ionescu established the following result:

Lemma 2.2. ([29, Lemma 3]) If v € N and r > 0, then
[va,]" =r+ H@)+ E(v,r), (2.9)

where
0< E(v,r) <2 . (2.10)

From the formula (2.3), we have

O = (140%), forallveR,

and so
H(w) >0, forallve N. (2.11)
Also, it is easy to see for any ¢y > 0 that
/ e~ U @ g5 — € < 0. (2.12)
N

It is well known that the abelian group A acts as a dilation on N, by the mapping

n— ana ' € N.
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Moreover, if 6, is the dilation of N, defined by
6, (m) :== a,na_,, (2.13)

then the following is true
[ vténm)an = [ om)an (2.14)
N N

for any integrable function h on N. We equip the set N A with the binary operation induced
by this conjugation 6, and refer to it as the semi-direct product N x A. With the Iwasawa
decomposition, as shown in (2.6), we can establish an identification between K-right invariant
functions on G and functions on NA, and it is known that the corresponding LP-norms
coincide. Additionally, we will make use of the fact that the Abel transform

Ap(r) = eT/ o(na,)dn (2.15)
N
takes a K-biinvariant function ¢ to an even function on R (see [23, p. 381]).

2.4. Spherical analysis of (n,n) type functions. We are going to define Fourier trans-
forms of suitable (n,n) functions using representations of G' (see Chapter 9 of [3]). Let M
denote the equivalence classes of irreducible representations of M = {41}, where I is the
identity matrix. Then

M= {r,7_},

where 7, (+1) =1 and 7_(£I) = £1. For each 7 € M, 7" stands for the set of even integers
for 7 = 7, the set of odd integers for 7 = 7. and —7 will denote the opposite parity of 7.
We define

Fn:{{k:0<k<nandkEZ_}1fn>0 (216)

{k:n<k<Oand keZ "} ifn<0.

For A€ C and 7 € M , let (., H;) be the principal series representation of G given by

(Tra(@)en) (k) = e DHE e, (K@ k)™

(2.17)
for all z € G,k € K, where H, is the subspace of L*(K) generated by the orthonormal
set {e, : n € Z™}. This representation is unitary if and only if A € R. For A = 0,
the representation 7, o has two irreducible subrepresentations, the so called mock discrete
series. We will denote them by D, and D_. The representation spaces of D, and D_
contain e, € L?(K) respectively for positive odd n’s and negative odd n’s. For each k € Z*
(set of nonzero integers), there is a discrete series representation m;y,, which occurs as a
subrepresentation of 7 ;x, k € Z \ Z7 (see [3, p.19]). We define for k € Z*

Z(k) = {meZ -m>k+1}ifk>1
)l {meZm<k-1}ifk < -1

For n € Z7, the canonical matrix coefficient for the principal series

¢7T”;(w) = (T (T)en, en) = / e_(i’\H)H(M)en(kfl)en(K(:L’k:)*l)dk, (2.18)
K
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are functions of (n,n) type. For k € Z* and n € Z(k) the canonical matrix coefficient of the
discrete series representation is

%én(@“) = <7rik(x)e’:w €Z>k7

where e; are the renormalized basis and (, ), is the renormalized inner product for m;, see [3,
p. 20] for more details. These functions (bT L and ;" are also known as spherical functions
of (n,n) type. We will denote Hy as the Hilbert space generated by {e* :m € Z(k)}. Tt is
known [3, Prop. 7.3] that

k

" =00 = O (2.19)

where 7 € M is determined by k € Z7". Additionally, it is worth noting that qb "y corre-
sponds to the elementary spherical functlon commonly denoted as ¢,.

Let €2 denote the Casimir element on G (see [3, (2.6)]), which acts as a biinvariant differ-
ential operator on G. As stated in [3, (4.7)], the smooth eigenfunctions ¢\ of €2 satisfy the
differential equation:

Azi'lf. (2.20)

Furthermore, the spherical functions gb have the following well-known properties:
(1) We have from [46, Section 4.1]

gb?”f(at) = (b;;’in(at) = ¢:—L:;L<a7t), for all t € R.

(2) For any fixed x € G, A = ¢"\'(z) is an entire function.
(3) By utilizing the Cartan decomposition of G, it is easy to see that

Son @) =¢rN(2) and ¢nY = ¢nn, (2.21)
forallz € G, € R.

We remark that we use a different parameterization of the representations and spherical
functions from Barker [3]. According to our definition in (2.17), the unitary dual of SL(2, R)
is R, while according to Barker’s convention, the unitary dual of SL(2,R) is iR. As a result,
our my corresponds to his 7_;, and similarly, ¢7*\ and 1;;" are reparametrized accordingly.
This choice of parametrization offers a clearer analogy with the general semisimple Lie groups
case, making our analysis more transparent.

Let n € Z7. Then for a smooth compactly supported (n,n) type function f on G, the
principal series Fourier transform of f is defined by

) = /G F(@)dm @ ),

for all A € R, and the discrete series Fourier transform is defined by

Falik) = /G @) (Y,

for all k£ € I';,. Then the inversion formula is given by [3, Theorem 10.4]):

/fH D) WA+ o 3 Falik) (@) k], (2.22)

kel'n

Of = -
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where 7 € M is determined by n € Z7, and cM™(\) is given by [3, (6.2)]
L TR

2

NG 1+iA—|n| 1+idt|n[ )’
Vi () r ()

for all A € C. The functions ¢’ are regarded as meromorphic functions on the complex
plane. In the following, we identify the singular points and discuss the estimates of the
function ™" (—\)~L.

() =

T

(2.23)

Lemma 2.3. Let 7 € M andn € Z". The function X — c¢»"(—=\)"! is meromorphic on the
complex plane and exhibits the following properties:

(i) The zeros of ¢™"(—-)"' are simple and occur at X\ € iZ™ such that Tm X < 0.
(ii) The function ¢ (—)~' has simple poles at X € iZ™" such that Im\ < —|n| or
0<ImA < |n|.
(iii) For p>1 and a firzed N € N, following estimate holds

dCl{
n n A —1
el (=)
for all integers « = 0,1,... N, and for all A € C with 0 <Im A\ < .
(iv) Furthermore, if p = 1 and n € Z7, then (2.24) holds true. However, if n € 77+,
then (2.24) is valid for all A € C\ B(i) with 0 < Im A < 1, where B(i) is any compact
neighbourhood of i in the complex plane.

< Ca(L+ A2, (2.24)

Proof. We have (i) and (ii) according to [3, Proposition 6.1]. Now, considering p > 1, we
observe from (2.23) that we may assume n > 0. Consequently, using the property of the
Gamma function, we can write from (2.23):

)\+Z(n_ 1) n—2n—2
‘— C K
A—i(n—1) 7
Hence, for n > 2, using the above formula, we obtain

(= (H pi( ) (=N

kel

Cn’n(—)\)_l _

T

(=N

where pp(A) = 3%, and m = 0if 7 =7, m = 1 if 7 = 7_. Using the Leibniz rule, we can

easily see that py(A) satisfy the following inequalities for all A, with 0 < Im A < ,:

— < C (14|
)] < Cal1+ 3]
for all integers v = 0,1, ... N. With this inequality in mind, it is sufficient to prove (2.24) for
AA9(=X)"1 and ¢! (—X)~!. Finally, the required estimates of ¢»°(—X)~! and its derivatives

’d =N < Cal+ ANV,

e
follow from [29, (4.2)] (see also [28, (A.2)]), the estimates of ¢2'(—\)~! follows similarly
using the Stirling formula [59, Chapter 4]. This, in turn, completes the proof of (iii).

To prove (iv), we note that for p = 1, the same proof is applicable when n € Z™ since,
in this situation, the meromorphic function p;(\) does not occur, and thus, there is no
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singularity at A = 7. However, when n € Z™, we exclude a neighborhood of 7 in the complex

plane to address the singularity of p;(\) at A = 7, and obtain (2.24). O
Lemma 2.4 ([55, Lemma 4.2]). Let N be any fized natural number. Then we have
da
el < Gl 2.29

for all X € R and o € [0, N].

Proof. The lemma above follows from the explicit formula of |[¢™"(\)|~2,

>\_ﬂ- 1 =
(2= 2 tanh(\m/2), '1f T =Ty (2.26)
% coth(Am/2), if 7= 171_,

which can be found in [3, (10.1)]. O

|c

2.5. Hormander norm of symbols. Consider an open subset U of the complex plane
C. We use H>*(U) to denote the space of bounded holomorphic functions in U, which is
equipped with the supremum norm. Now, let m be a bounded holomorphic function defined
on U, which is continuous on the closure U, including its derivatives up to the kth order. In
[18], the authors introduced the Mikhlin-Hérmander norm at infinity of order k on U, which
is given by the following expression:

Il = s, s+ ) | Sm) 227)

~~~~~ Y aer o

Now, let us consider a smooth function ¢ : R x U — C such that, for each fixed s € R, the
map A — o(s, A) defines a bounded holomorphic function on U and remains continuous on
its closure U. In this context, we define the Hérmander norm of such symbols ¢ at infinity
of order (j, k) on R x U as follows:

Y] lo%
oo = e, sup (L A |57 oo, ) (229
Be{0,..3} '
Slightly abusing this notation, we also write:
.| 0% 0
Ilss = sy 0 4+ 0" e eto: 9] (2.20)
Be{0,....j

We say o belongs to H(U, j, k), if ¢ : R x U — C is a smooth function and oll2@ ) < o0

3. MAIN RESULTS

In this section, we will present our main results concerning the pseudo-differential operators
for (n,n) type functions on G = SL(2,R). Before doing so, we first recall the multiplier
results of Ricci and Wrébel in this setting.

Throughout this article, we assume that n € Z is a fixed integer. Let m : Ru:l', - C
be a bounded measurable function. Then the associated Fourier multiplier operator 7,,, for
(n,n) type functions on G is defined through the inversion formula (see (2.22)) as follows:

T (@) = 35 [ mOFaER @I W20+ 5= 3 () ok @Ik (1)

kel
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In their work [48], the authors observe that if 7}, is bounded on LP(G),, for some p €
(1,00) \ {2}, then the multiplier m, which was initially defined on R x iI',;, must necessarily
extend to a bounded even holomorphic function in S;. Moreover, they demonstrated that
([48, Proposition 5.2])

Imllsessy) < Tl

With the notations introduced in Section 2.5, the authors proved the following analogue of
the Hormander-Mikhlin multiplier theorem.

Theorem 3.1 ([48, Theorem 5.3]). Fiz 1 < p < oo, p # 2. Assume that the multiplier
m S, Uil', = C is a function satisfying the following properties:

(i) The multiplier m is a bounded even holomorphic function in Sj.

(i1) [l arecs, 2y < o0
Then the corresponding Fourier multiplier operator T, is bounded on LP(QG),, ,,. Furthermore,
there exists a constant C,,, > 0 such that

1T fll o (@ < G <||m||MH<sp,2) <ocot ) || Im(’ik)!) 1f 1]z,

kely
for all f € LP(G)pn-

Remark 3.2. It is well-known that multiplier theorems are valuable tools for estimating
the LP behavior of differential operators. As an example in this setting, let us consider the
following multiplier

AQ 1 w
m()\):( Z) , forall A e S,uil,,

where 1 < p < oo and v € R. We note that the associated multiplier operator for the
(n,n) type function is (—)", where we recall that Q (see (2.20)) is the Casimir element of
G. Using the aforementioned theorem, we can conclude that this operator is bounded from
LP(G),,p to itself for all p € (1, 00). However, this result does not provide information about
the case p = 1. To address this, we observe that the multiplier m has a zero at A =i € 5.
Building upon this observation, we establish a sufficient condition for a multiplier (or symbol)
that guarantees the weak type (1, 1)-boundedness of the corresponding multiplier operator
T.n; please see Theorem 3.5 (2).

Inspired by the results on multipliers discussed above, our interest naturally shifts to
exploring the implications of substituting multipliers with symbols of broader generality.
Specifically, we aim to determine the conditions on the symbol under which the associated
pseudo-differential operator remains bounded. In the Euclidean space, these conditions often
involve considering the regularity of the symbol o(z, \) with respect to both x and A, its
growth properties, and its behavior at infinity. Thus, finding the appropriate conditions
on o(x,\) becomes a fundamental aspect of our analysis. Within this context, we formally
introduce pseudo-differential operators in our framework to present our results.

Let 0 : G x RUil', = C be a suitable function. We define the associated pseudo-
differential operator ¥, for (n,n) type functions on G through the inversion formula (see
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(2.22)) as follows:

1 — 1 —
¥ fl0) = 35 [ o NS @IE" W2t 5 3 ol ) alik 0 @Ik, (:2)
kel'n

where 7 is determined by n € Z7. We now present one of our main results on pseudo-
differential operators alluded to in the introduction.

Theorem 3.3. Let p € (1,00) \ {2}. Suppose that o : G x S, Uil', = C is a function
satisfying the following properties:
(i) Foreach A € S,Uil'y,, x — o(x, A) is a K-bitnvariant function on G and ||o || Lo (Gxir,)
18 finite.
(ii) For each v € G, A+ o(z,)) is an even holomorphic function on the strip S;.
(iii) For each® € N, the function (s,\) — o5(s, \) := o(vag, \) belongs to H(S,,2,2) and

SU.B ||0-i||7‘l(spv272) < 00,
vEN

where ||o|3(s,,22) is defined as in (2.28).

Then the operator ¥, extends to a bounded operator on LP(G), . to itself. Moreover, there
exists a constant Cp,, > 0 such that

1WofllLre) < Cpn (SUPHUUHH(SP,M) + HU|’L°°(GXZ‘Fn)> 1 llze ),
veN

for all f € LP(G)pn.

Remark 3.4. (1) We recall that in the case of multipliers, the holomorphic extension
property of the multiplier is necessary for the multiplier operator to be bounded
on LP(G), . Taking this into account, along with the results on pseudo-differential
operators in Euclidean spaces, it is natural to assume that the symbol satisfies the
holomorphicity condition stated in Theorem 3.3 to establish the boundedness of the
associated pseudo-differential operator. In particular, when the symbol ¢ is indepen-
dent of the space variable, Theorem 3.3 recovers the result for the multiplier case as
presented in [48, Theorem 5.3].

(2) Next, we compare Theorem 3.3 with the corresponding result on rank one symmetric
spaces of noncompact type. In [45, Theorem 1.6], the authors established the LP-
boundedness (for p € (1,00) \ {2}) of the pseudo-differential operators on symmetric
spaces by assuming, among other things, the following condition:

ok o~

ds” ON
for all g € G,s € R and A € S, where the order of the mixed partial derivatives is
up to a prescribed order. In our case, due to the K-biinvariant hypothesis on the
symbol, we can observe that the corresponding condition (3.3) for the symbol in the
symmetric space simplifies to hypothesis (iii) of Theorem 3.3. However, there is a
difference in the behavior of our integral kernel K of the operator ¥, compared to
the one in symmetric spaces. Our kernel K is no longer a K-biinvariant function with
respect to the second variable, which means that the argument used in [45] cannot
be directly applied in our setting.

o(gas; N)| < Cap(1+ (A7, (3.3)
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(3) We only need a regularity condition on the space variable of the symbol o(x, A) when
A lies on the real line. There is no need for any regularity condition on the space
variable x for all A € S, \ R. Please see Remark 9.2.

(4) As the spherical functions are of (n,n) type, we observe from (3.2) that for any
given f € C®(G)pn, if o(-, ) is any fixed K-type function then ¥, (f) cannot be
of (n,n) type unless o(-, \) is a K-biinvariant function. This demonstrates that the
K-biinvariant nature of the symbol is necessary to establish the boundedness of ¥,
in LP(G)pn-

We now shift our focus to the boundedness problem of the pseudo-differential operator
U, associated with non-smooth symbols in the space variables. Building upon the works of
Kenig and Staubach [31], we introduce the symbol class S} (.S,) for rough symbols in our
context.

The symbol class S, (Sp), where 1 < p < oo, m € R, and 0 < ¢ < 1, includes all
functions o : G x S, U1l',, = C, that satisfy the following properties:

(1) For each A € S, U, the function x — o(x, \) is K-biinvariant, measurable on G
and [|o|| e (@xir,) < 00.
(2) For each x € G, the function A +— o(x, A) is an even holomorphic function on S; and
satisfies the differential inequalities:
P o] <oy (3.4)
O\ Lo
for all A € S, o € N, where C, > 0 are constants.
Additionally, we define the symbol class 87, (.S1), which consists of functions o : Gx S — C
that satisfy properties (1) and (2) for p = 1, and further have the property 2= (z, \)[x=; = 0,
for all o € {0,1,2}.

Example 3.1. Let 1 < p < 0co. For v € C, let us define
o(gN) = (W2 + 1) geq e s,uir,

where we recall that [g]T denotes the RT component of ¢ in the Cartan decomposition (see
Section 2.3). By a simple computation, it follows that o, satisfies (3.4). Now, to check
the other condition, we observe that g — [g]T is a K-biinvariant function. Thus, we have
o€ 8;mv(S,), for all p € (1,00) \ {2}. More generally, one can consider the following class
of symbols of the form

alg,\) = (N +1)"7  geq Ae S, Uil
where 7 is any real-valued K-biinvariant function on G.

Example 3.2. Let 1 < p < co. For a fixed real number ¢ < 0, let us define

<
oc(g, )= (N +1+n(9)*, geG e S,Uily,,

where 7 is any non-negative K-biinvariant function on . Then by using n > 0 and ¢ < 0,
it follows that o, € Slc,oo(Sp).

We now present our boundedness result for the associated pseudo-differential operator ¥,
when o € S, (S,), which serves as an analogue of Theorem 1.3 established by Kenig and
Staubach [31] in the Euclidean spaces.
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Theorem 3.5. Let p € [1,2) U (2,00). Suppose that m < 0 and 0 = o(x,A) € ST (Sp).
Then we have the following:

(1) The operator ¥, is a bounded operator from LP(G),, to itself for all p € (1,2) U
(2, 00).

(2) When p =1 and n € Z7- U {0}, then ¥, is a bounded operator from L'(G),, to
itself. If n € Z™ \ {0}, ¥, is a weak type (1,1)-bounded operator from L*(G),., to
LY (@) -

Remark 3.6. (1) We note that similar to Theorem 1.3, the number of derivatives needed
in the dual variable is not infinite. In fact, by following the proof of Theorem 3.5, one
can demonstrate that the required number of derivatives is finite, although it does
depend on the value of m as in (3.4).

(2) Let p € (1,00) \ {2}. Suppose o : G x S, is a function satisfying all the hypotheses
of Theorem 3.3 or Theorem 3.5. Then the operator ¥, is bounded from L?(G),.,
to itself and from L”/(G)nyn to itself. By interpolation, it follows that the operator
U, is also bounded on L?*(G),,,,. However, the condition imposed on the symbol o
for this result, particularly the holomorphicity, is not natural for establishing L>-
boundedness. Further investigation is required to prove the L2-boundedness of ¥,
under the assumption that o satisfies only the smoothness condition (without holo-
morphicity) on the real line.

4. GENERALIZED COIFMAN-WEISS TRANSFERENCE PRINCIPLES

Let {X,m} be a measure space. An operator B on LP(X,m) is said to be of weak-type
(p,p) if it maps ¢ € LP(X, m) into a measurable function defined on a measure space (Y, v)
in such a way that for each s > 0,

vy e Y [(Bo)(y)l > s} < [CllollLrx)/s],

where C is independent of ¢ € LP(X).

Let G be a locally compact group satisfying the following property: Given a compact
subset B of G and € > 0, there exists an open neighborhood V' of the identity e having finite
measure such that

p(B~V)
(V)
where p is, say, left Haar measure on the group G. Let us suppose, further, that R is a

representation consisting of measure-preserving transformations of the space X. Since R, is
measure-preserving

<1+e, (4.1)

J 1iRua)pam(a) = [ 15)dm(a) (42)
X X
for all © € G. The transformation we will consider is of the form
(Tf)(x) = / ke, Rus ) f(Ruz)dp(u), (4.3)
G

where k(z,y,u) is a measurable function on X x X x G which is 0 if u does not belong to a
compact set B C G. Moreover, we assume that for each x € X, the kernel

ky(v,u) == k(Ryz, Ry-1Ryx,u) = k(Ryx, Ry-1,2, u)
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satisfies

(/G /ka(v,u)h(ulv)du(u) pdu(v)); <C (/G I(w)[” du(u)>; , (4.4)

for all h € LP(G), where C is independent of z € X. Then the authors in [11, p. 292, (2.7) |
proved that the operator 7" is bounded from LP(X) to itself with norm not exceeding C that

(f ITf(x)|pdx);§C( / |f<x>|pdx)’1’, (45)

for all f € LP(X). We present the following weak-type version of the transference princi-
ple mentioned above. This version also extends the result of [12, Theorem 2.6] and is of
independent interest.

Theorem 4.1. Letp € [1,00). Assume that k(z,y,u) is a measurable function on X x X xG
as in (4.3), and also satisfies the following for all s > 0,

P
w{ve | [ ke untoa)| > sh < Sinte, (46)
G

where C is not depending on “x” and h € LP(G). Then the operator T defined in (4.3) is of
weak type (p,p). Moreover, the following is true,

cr
miz € X [(T)@)] > s} < 1 flkox), (4.7)
for all f € LP(X).
Proof. Let us define

f(s)—{xeX:

/k(x,Rulx,u)f(Rulx)du
€

>s},
s},

/ E(Roz, Ry-1,x,u) f(Ry-1,2)du
G

e X:

/ E(Ryz, Ry-1,2,u) f(Ry-1,x)du
G

{
F(s) = {(v,:)j) eEGxX:

s}

Observe that £(s) = &.(s) and moreover, since R, is measure preserving, we have

m(§(s)) = m(Ru&(s)) = m(&u(s)). (4.8)

Let x(v,x) be the characteristic function on F(s) and ¢ be the characteristic function of
BV (thus ¢(u~'v) = 1 when v € B and v € V). We note that if we fix v, then x(v,z) is
the characteristic function on £,(s). Now, integrating both sides of the equation above and
using the Fubini theorem, we get

1
m(e(e)) = o /V w(&, (s) dp(w)

—ﬁ/‘//)(x(v,x) dm(z) du(v)
— ﬁ/xﬂ{v eGNV: /Gk:(Rv:v,Ru1vx,u)f(7€u1vil7)dﬂ(“)

> 3} dm(x)
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1
= —/ {v eGNV: / E(Row, Ru-107, u) f(Ry-1,2)0 (u™ 0)dp(u)
n(V) Jx G
~dm(z)

/G (RoZ, Ru-107, 1) f(Ry-1,2)00(u™ 0)dp(u)

>

> 3} dm(x)

|/\
\
/—/H
4
m
Q

| /\
/_\
><\
V2]
"B
q
Z)
a
=
i
EZ
=
=
Q’/
QL
2
=
z
=
[0}
~
=

du(w)  (since R,, is measure-preserving)

|/\
m(‘ﬁ
\
S
E

o)

@

1
- u(B

<(1+ e>8—p|rfu’zp<X)

where we used (4.6) by taking h(u"'v) = f(R,-1,2)¢(u"'v). Since € > 0 is arbitrary, this
concludes the proof of Theorem 4.1. [l

5. PROPERTIES OF SPHERICAL FUNCTIONS

In this section, we will derive some functional identities and asymptotic estimates of the
spherical functions.

5.1. Functional identities for the spherical functions. We start with the following
formula.

Proposition 5.1. We have

¢:j\1(3/ a:) /e(i)\+1)H(y1k)e(i)\1)H(x1k)en(K($1k)1)6n(K(y1k)1)dk’
K

for all z,y € G and X € C.

Proof. We recall from the Twasawa decomposition and use it for 2k = K (zk) exp(H (xk))n,
We can write

y ok =y 'K (zk)exp(H (zk))ny

= K(y 'K (zk)) exp(H(y 'K (xk)))ng exp(H (zk))n, (5:1)
Since A normalizes N, we get from (5.1),
y ok = K(y 'K (zk))exp (H(y 'K (zk)) + H(zk)) ns,
which in turn implies
H(y 'ak) = H(y 'K (zk)) + H(zk), (5.2)
and
Ky 'zk) = K(y 'K (xk)). (5.3)

Plugging (5.2) and (5.3) in (2.18), we get

Oralyx) = / e (DI, (171) e (K (y k) 1) b
K
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= [ e R ) () & TR TR () )
K

But again by (5.2) and (5.3) (putting y = z), we get
H(zk) = —H(z 'K (zk)) and k= K(z 'K(zk)), (5.4)
whence we obtain
¢T,\(y 1$)
= / e (AHD(HGT K@) -HET K@) o (K (27 K (k) ) (K (y 1K (k) 1) dk.
K

Now we apply Lemma 2.1 to get

O a) = [ T ) o)) (R e e
K

_/ e—(z‘,\+1)H(y—1k)e(i,\—l)H(m—lk)en<K<I—1k)—1) en(K(y—lk)—l) dk:,
K

which concludes the proof of our lemma. O

Lemma 5.2. The spherical function gbf;f satisfies the following identity

/ G gk )en (k1) d = 677 ()6 (1), (5.5)

forall X e R and z,y € G.

Proof. We can write from Proposition 5.1,

I (ykx) = / e~ ATDH(kk) ((A-DHE M) e (K (7 )Y e, (K (ykikey) L) dk.
K

Using the formula above, the left-hand side of (5.5) transforms to

/ (/ e DR (DRG0, (K (2 ey ) ™ e (K (yhkr) ) d/ﬂ) ea(k™") dk.
K K

We now apply Fubini’s theorem, followed by the change of variable kk; — k in the expression
above, to get

/ ( / e AMDHWK o (E=De (K (yk)~ )dkz) A-DHE k) e (K (27 k)Y en(ky) diy
K K

— gzs::;l(y)/ 6(72)\—1)H(z*1k1)6n (K(x_ll{/j)_l) en(kl)dkl
K

= o (y)e, " (@)

= ¢\ (y) o (x)

where in the last step, we used (2.21). This completes the proof of the lemma O
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5.2. Asymptotic estimates of spherical functions. In this section, we will discuss the
asymptotic estimate of the spherical functions. We begin by presenting the local and global
expansions of ¢Zf in terms of well-known special functions. It is important to note that
the spherical functions exhibit different behaviors near and away from the identity, and this
distinction will be evident in the expansions.

Let J,(z) be the Bessel functions of the first kind, and let
Jull2) 1

S D+ —)F(1)2“‘1. (5.6)

ju<z> = 9 9

Using this definition, we present the asymptotic expansion of the spherical function qbfj\l near
the identity. To deduce this result, we will follow the approach in [48, Lemma 4.5] (see also
[55, Theorem 2.1]).

Lemma 5.3. For 0 <t <1, the spherical function ¢\ can be decomposed as

(t)

where by (t) = bo is a constant independent of n, while |b}(t)] < C(1+|n|)*, j = 1,2, and

NI
o) = (535) L EHOZN B, A0
=0

/ |E,(\)IAdN < C(1+ |n|)®,  uniformly in 0 <t < 1.
1

Proof. We recall that ¢\" is a solution of the following differential equation

(A2 +1)
B

where f is a (n,n) type function on G. Since () preserves the types of a function and an
(n,n) type function is uniquely determined by its restriction to (0, 00), we obtain an operator
I1,,.,(€2) on (0, 00) which satisfies

Qf(ar) = Wy (Q)(f |a+)(ar).

The operator 11, ,,(€2), known as the (n,n)-th radial component of the Casimir, is a second-
order differential operator, and its expression is given by [3, Theorem 13.1]:

1 d? 1 d 1 n?

Of = -

Mon()flar) = 25 flar) + 5 coth 2t f(ar) + me(at)> t>0.
We substitute f(t) = (cosht)"g(t) in
N +1
m,,()f = -2y (5.7

to obtain the following,

d*g dg 2 2

E—i—((?n—i—l)tanht%—cotht)%—i—(/\ +(n+1)")g=0. (5.8)
After performing the change of variable z := —sinh®t, the ODE (5.8) simplifies to the
hypergeometric differential equation

d*g dg 1
2(1 - z)@ +(c—(a+b+ I)Z)E - Z&bg =0,
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with parameters a = ”T“ — %’\, b= "TH + %, ¢ = 1. Hence, using the expression from [34,
(2.2)], we find that the Jacobi function (pg\o,n) is the unique solution satisfying regularity
conditions and equaling 1 at z = 0. By employing the integral representation of the Jacobi
function from [33, (2.21)], we deduce from (5.7) the following:

3

22 (! 1
O (ar) = —/ cos(As) (cosh 2t — cosh 28)_; o F} (n, —n;1/2;
7 /7T 0

cosht — cosh s J
2cosht iy

Subsequently, by performing similar calculations as presented in [48, (4.12)], we can arrive
at our lemma. O

The following lemma is a counterpart of lonescu’s result [28, Propositin A.2 (c)] in our
context. It provides an estimate for the spherical function away from the identity, which will
be utilized in the large-scale analysis of W, .

Lemma 5.4. Suppose that t > 1/10 and N € N. Then ¢\ (a;) can be written in the
following form

oralar) = e (™" (V)(1+a(A 1) + e " (=N (1 +a(=A1))) (5.9)

where the function a(\,t) satisfies the following inequalities,

el
for all integers a € [0, N|, and for all X in the region 0 < Im A <1+ 1/10.

A< Can(L4[A)T, (5.10)

Remark 5.5. We note that, unlike the local estimate of the spherical function gbff in Lemma
5.3, we are unable to maintain the polynomial dependence on n in (5.10). Specifically,
following the proof of Lemma 5.4, it can be shown that the constant in (5.10) grows at a
rate controlled by T'(C,n?) for some constant C, independent of n. For further details on

how the constants involved in inequality (5.10) grow with n, we refer the reader to [48, p.
568).

Proof. From [3, (13.1)], we have for all ¢ > 0,
or(ar) = e [eTMEM N (1 + a(A 1) + M (=) (1 +a(=A1))]

where
o0

a(A\t) = aZ’n()\)e’%t,
k=1

and the functions a;" satisfy the following recursion relation for A € C\ iZ,

k E
n,n 1 n,n .92 n,n . . . 9
" (A) = _k(k—i/\) ( Z ap";(A)jn® — Z ap (M) (1 — A + 2k — 25 + jn ))

j=1,odd Jj=2,even
(5.11)
with ay" = 1. We define
jn’
—————, whenjisoddand 1 <5<k
’ 1 1+1+k—2j+jn2 hen 7 is even
k k— i\ o WS '
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Our aim is to show that for all 5 € [0, N], there exists constants C,, and Ag such that

aﬁ n n
EA

for all kK > 1 and all A € C, with 0 <Im A\ <1+ 1/10. Using the following inequality above
|k —iA\? =]k +ImA—iReA]* = (k+Im\)? + Re\? > max{k, |Re \|}?,

()\)' < Cok™ (14 |Re X)) (5.12)

we can directly say that

((“)ﬁ k Cn Cn

— o\ < <

8)\5%( )' T klk —iXP T E(1+|ReA|)s
for all integers k > 1,7 <k —1, € [0, N] and for all A € C, with 0 <Im A <1+ 1/10.
We now prove (5.12) for 8 = 0 by induction over k > 1. For k =1,

n2
lay" (N)] = o (V)] < Y < C,, (depending on n).

(5.13)

Next, we assume (5.12) holds for all 1 < j < k — 1. Then using (5.11), (5.13) and (5.12) we
get,

jay " (V)] < ( Dol Mllagl+ Y lat(llad !)

j=1,0dd j=2,even
. k
e ( S i+ Y |azzz<»|)
j=1,0dd Jj=2,even
Co = Cag™
=% A
k = 0
Ag+1
< %C"L = C’nk:AO%,
k Ay Ay
where we used the fact for all £ > 2, A > 4,

kA+1

k—
Now if we choose Ay = C,,, then by induction, we have proved (5.12) for § = 0 and for all
k > 1. Next, to prove (5.12) for arbitrary integer § < N, we assume by induction that we

found suitable powers Ag, such that (5.12) holds for all 0 < o < f — 1 and for all k£ > 1.
We can also assume Ay < A; < --- < Ag_ 4. Again we apply induction over k for fixed 3.

Its obvious that ‘88; ay’ ()\)‘ < Cp(1+|Re)|)™”. We assume (5.12) holds for 3 and for all
j€{1,2.---k —1}. Then again (5.11), (5.13) and (5.12) imply
85 k=1 f aﬂ o' o
_- g a’™ k
‘a)‘ﬁa ‘ i ( 1 oNF-a ke ]O\)‘ ‘a)‘aaj
J: a=0
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(03
9 k

28 ;
Z(;k +|ReA\M >\an>
Ch, i C,, max{j, 1}
k(1 + [ReA)F2 \ & (1 + |ReA|)
7j=1

CokiAs
1+ \ Re)\] As

5Ca2°(B+ 1)
Ag '

| /\

25

IN

Mm I Mm

| /\

:0

< Cuk™ (14 |ReAJ)
By taking A > max{Az_1,C,2%(3 + 1)}, the proof follows by induction. In fact one can
set Ag = C,2°(B + 1) for all integers 3 € [0, N]. O

We now focus on the estimate of the canonical discrete series matrix coefficients ¢;,". We
recall the following uniform growth properties of ;" from [3, Theorem 8.1].

Theorem 5.6. Fix |l € N. There exist constants C, 11,719,173 > 0 such that
i ()] < O+ n)™ (1 + (kD™= (1 4 2 7)Y () (5.14)
for all k € Z* for which |k| > 1, and for all n € Z(k), for all t > 0.

We remark that the estimate above is a consequence of a more general result by Trombi
and Varadarajan, where they found a necessary condition on a discrete series representation
having the K-finite matrix coefficient with a certain rate of decay; see [60, Theorem 8.1].
Later, in 1977, Milici¢ proved that their condition was sufficient, too, which, in turn, provided
a precise characterization of discrete series representations whose K-finite matrix coefficients
lie in LP(G’) for 1 < p < 2, where GG’ is a connected semisimple Lie group with finite center;
see [39, Theorem, p.60] for more details. In the setting of SL(2,R) group, the result can be
stated as follows:

Corollary 5.7 ([39, Corollary, p.84]). Let 0 < p < 2 and v, = (2/p) — 1. If (m, Hi) is a
discrete series representation corresponding to k € 7%, and i is a K-finite matrix coefficient
of mi, then the following conditions are equivalent:

(1) k| >,
(2) ¥ € LP(G).

Remark 5.8. It also follows from the estimate in [3, (3.2)] for ¢Sf o» Which exhibits expo-
nential decay, and (5.14), that the matrix coefficients of the discrete series representation
belong to LI(G) for all ¢ > 1. More precisely, for ¢ > 1,k € Z*, and n € Z(k), we have

103" [La@y < Co(1+ [n))™ (1 + [K])". (5.15)

The previous result illustrates that, given a k € Z* and p € (0,2], how we can examine
whether a K-finite matrix coefficient of 7, belongs to LP(G) or not. However, it does not
say anything about the case |k| = 7,. So, to accommodate the case |k| = ~,, we provide
the following weak-type version of the result [39, Corollary, p. 84] for the (n,n)-th matrix
coefficient of ;.
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Lemma 5.9. Let0 < p <2 and vy, = (2/p)—1. If (mix, Hy) is a discrete series representation
corresponding to k € Z*, and n € Z(k), then the following conditions are equivalent:

(1) k| = 7,
(2) vy € LP>(G).

Moreover, if |k| = ~,, then ;" € LPU(G), if and only if ¢ = co.

Before we give the proof of the lemma above, let us first provide an asymptotic estimate
for the discrete series coefficient.

Lemma 5.10. Given k € Z*, n € Z(k), we have

" (ar)] e > 0, (5.16)
Proof. Suppose k € Z* and n € Z(k), then from [3, (12.2), Chap. 12] we have
V" (ag) = 2e”HFEN gt () e > 0. (5.17)
1=0

Using the fact that o = ¢, (see 2.19), Barker showed that the coefficient d;"" (k) as in

)

(5.17) satisfies the following relation (see [3, Proposition 14.2])

(k) = arm(k)a " (k) if k>0,
: e (—k)a " (—k) if k<0,

T

where a,""(k)’s are defined in (5.11). We note that the poles of A — ¢™(\) occur only at
A €477, Im A > 0, where o is determined by n € Z7 (see Lemma 2.3). Therefore, using [3,
Proposition 13.5], we can say that for a given k € Z*, n € Z(k), and for any r > 0 there
exists a constant C;, > 0 such that for all [ € N

4" (k)] < Cye
Utilizing the inequality above for r < 1, it follows from (5.17) that,
Tim [0 (0,) — 245 (k)| = 0,

whence we obtain
" (ar)| =~ e (HIEDE  for all ¢ > 0.

Proof of Lemma 5.9. Let us define for k € N,
fi(t) = e ®E for t >0,

and extend it as a (n,n)-type function on G as shown in (2.5). Then in view of (5.16), the
asymptotic estimate of ¢[;", it is sufficient to prove that f, € L»*(G//K) if and only if
k > ~,. To establish this, we will first determine the distribution function of f;. Taking into
account that m is the Haar measure on GG in the polar decomposition and observing that fj
is a K -biinvariant function, we arrive at the following expressions:

1 1
.o (k — .
dg, () =m{t € [0,00) : € (+1)t>04}—m{t€[0,oo).t< k+1loga}.
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Clearly, if a > 1 dfk( ) = 0, hence we only need to consider @ € (0,1). Let 0 < a <

e~(+1/2 then k—+1 log > 1/2. Thus in this range of «, using the asymptotic behaviour of

A(t) we can write

dy (a / tdt—l—/ Tt~ o (5.18)

When e~ **+1/2 < o < 1, we can show similarly
2

1\ &1
dys, () =~ log (a) :

Thus, from the definition of Lorentz space (2.2), it follows that
||f||LP*°° = sup of dfk(a) ~ sup ap_ki-uj
a>0 0<a<1

which in turn implies || fi||zre < 00 if and only if p — 25 > 0, that is, k > v,. Finally,
we will complete the proof of the lemma by contradiction. Let us assume that for a given
k =, fr € LP(G) for some ¢ € (0,00). Then we have from (5.18) and the definition of
Lorentz space (2.2),

191~ [ :

which contradicts our assumption f; € LP9(G), for g € (0,00), concluding the lemma. [

(k+1)/2 e—(k+1)/2

_ __2q _ _
a® o P<k+1>da:/ a? tada = oo,
0

Remark 5.11. By following a similar calculation as presented in Lemma 5.9, we can estab-
lish that any matrix coefficient ;" of my,, where m,n € Z(k) (see [3, (5.1)] for definition),
satisfies the following asymptotic estimate:

" ()| == e CHIDE g >0, (5.19)

Since any K-finite matrix coefficient 1) of 7;; can be represented as a finite linear combina-
tion of {¢;"" : m,n € Z(k)}, the matrix coefficients of m; (see [3, Corollary 5.5]), we can
combine the arguments from the proof of Lemma 5.9 with the estimate in (5.19), to establish
the following theorem. This theorem offers a precise characterization of discrete series rep-
resentations whose K-finite matrix coefficients belong to the space LP*(G) for 0 < p < 2.
This characterization serves as a weak-type analog of Mili¢i¢’s result [39, Corollary, p.84] in
the context of SL(2, R); see also [3, Theorem, 5.3]. For 0 < p < 2, let £, .o(G) denote the set
of equivalence classes of irreducible representations of G whose K-finite matrix coefficient
belongs to LP>°(G).

Theorem 5.12. Let 0 < p < 2 and v, = (2/p) — 1. If (mu, Hi) is a discrete series
representation corresponding to k € Z*, then the following conditions are equivalent:

(1) [k = 2,
(2) (Wk,Hk) 18 1N EHOO(G).

6. SINGULAR INTEGRAL REALIZATION OF W,

In studying the boundedness of the pseudo-differential operator ¥, on symmetric spaces, it
is customary to analyze the local and global components of the operator separately. However,
in this group setting, there is an additional discrete component of the Plancherel measure.
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To address this, we will decompose the operator ¥, into continuous and discrete parts. To
deal with the continuous part, we will first represent it as a singular integral kernel operator.

Let f be a smooth, compactly supported (n,n) type function on G. Then we recall the
definition of ¥, from (3.2)

¥, f0) = 15 [ e NS @IE" W2+ 5 3 ol )ik @)l

= T () + I f (), (6.1)

By substituting the expression of fH ) in the above expression of W f | we get

Vo) = 15 [ o) ( [ sweze dy)¢ (@) ()]
- L [ty (/ PRy ) 6 )

By applying the formula for the spherical function gbﬂ)\ from Lemma 5.2, the expression
above simplifies to:

e f () = / o(z, ) (/f /¢ ke, (k~ )dkdy) ™ (A)|2dA.

Using Fubini’s theorem, followed by the change of variable y — ky, and taking into account
that f is a (n,n) type function on G and [ Ak =1, we can further simplify this expression
as follows:

T f () = / S,y )y,

where

Ko, y) = 5 [ ola, MR ()l (V] 2dA. (6.2)

47T2 R
Similarly, for 95 £ we can write

V(@) = [ FK ey
where

K5, y) = o S ol ik ) K]

kel

In Section 5, we observed that the spherical function ¢"{ '\ behaves differently near the
identity element compared to its behavior away from it. To account for this distinction and
handle the exponential volume growth of G, we will decompose V&" into a sum of local
and global parts. To achieve this decomposition, we introduce a smooth, even function
n° : R — [0, 1], which is supported on [—1, 1] and satisfies 7°(¢) = 1 if [t| < 1/2. We define
another function 7(t) = 1 — n°(t). By utilizing the Cartan decomposition, we extend the
functions 7° and 7 to become K-biinvariant functions on G, by

n°(z) =n°(z%) and n(x)=n(z*), forallzed. (6.3)

Then we can write,

e f(a) = Uge f(x) + UE° f (), (6.4)
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where
T f () / e (o) K=,y ) dy,
(6.5)
- / F)K (2, y~ ) dy,
and
we f( / Fn(y o) a,y~ ' x)dy,
(6.6)

= / F)KE(z,y~ " x)dy.
G

The decomposition of ¥,, as given by (6.1) and (6.4), simplifies the task of proving the
boundedness of ¥,. It reduces the problem to demonstrating the boundedness of the individ-
ual operators WS Wloc and Wsle each of which requires a distinct approach to establish their
boundedness. In the remamder of this article, we will examine and discuss the boundedness
properties of these operators, Udis Wloc and Wele separately.

7. DISCRETE ANALYSIS OF U,

In this section, we will demonstrate the boundedness of ¥, While the authors [48,
Lemma 4.4] employed the convolution estimate from the Kunze-Stein phenomenon to estab-
lish the LP-boundedness of multipliers, our approach utilizes the uniform growth properties
of the canonical discrete series matrix coefficients ;" near infinity (Theorem 5.6). This
property of ¢;;" enables us to show that for all &k € Z* and n € Z(k), ¢;;" € LP(G) for any
p € (1,00) (see (5.15)), leading to the LP-boundedness of the U operator.

However, the situation is different for p = 1. Corollary 5.7 indicates that a similar tech-
nique will not work in this case, as ;" does not belong to L*(G) when k =1 (then n > 0
is even). Nevertheless, we utilize Lemma 5.9 to establish the weak type (1, 1)-boundedness
of Wdis,

Theorem 7.1. Let 1 < p < oo and V¥ be the operator defined in (6.1). Assume that

ol (@xiry) = sup |o(z,ik)| < cc.
zeG, kel

Then the following are true
(1) The operator W% is a bounded operator from LP(G),., to itself for all p € (1,00).
(2) When p =1 and n € Z™ U {0}, then V¥ is a bounded operator from L*(G)n., to
itself. If n € Z™+ \ {0}, W% is a weak type (1,1)-bounded operator from L*(G),.. to
LY (@) -
Proof. First, let us proceed with the case 1 < p < co. Let f € LP(G),», then using Hélder’s
inequality and (5.15), we obtain

/ F@pen (@ )da

for all £ € T',,. Therefore, using the inequality above, we can write the following.

1SS F 112y < Com D \5(ik)] / o (a, ik )" () k[P dx

kel'y

‘fB Z/f‘—

<Nl 1"l e
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< Cpnllolmiry 3 W 10y [ 105"

kel
< Cpm“”“iw(amm)“f” LP(G) Z 3" v (G)’W HLP(G)
keln
< Opn”UHLw(zeF HfHLp(G)
This establishes the LP(G),, ,-boundedness of ¥4 for 1 < p < co. In the case of p = 1 and
n € Z7~ U {0}, the proof for the L'(G), ,-boundedness of ¥4 follows the same procedure

as in the previous case. Lastly, for p = 1 and n € Z™ \ {0}, by utilizing Holder’s inequality
and Lemma 5.9, we obtain the following for f € L'(G),,:

WSS fllproeiy < Cu Y |F(ik)[llo (- k)05 (k]| o)

kel'y

< Gullollz=@xirny D Il V5" =@ 145" |11~ @)

kel

< Cullo||zos@xiran) | f 1@ Z KBl

kel'n
< Cullol|zos@xira) | f 1@

whence we obtain the weak type (1, 1)-boundedness of Wdis, O

@l Lo

Remark 7.2. Utilizing the LP(G) norm estimates of ¢;" for p > 1, we observe that the
L?(G) . operator norm of ¥4 can be bounded by a polynomial dependence on n. In fact,
using a similar calculation as in [48, (4.8)], it follows that

1G=Fll oGy < o1+ [nl) (Z \k\sup\a(w,ik)!) 1A 2r(@)nn

kel,  €C

where C), is a constant independent of n. However, for the endpoint case p = 1, the depen-
dence of || W& f|| 1.00(c),,., 0N 7 may not be explicit, as our method in Lemma 5.10 does not
explicitly determine the n-dependence for the L'*>°(G) estimate of ¢};".

8. LOCAL ANALYSIS OF ¥,

In the case of the multiplier operator, the local part can be expressed as a convolution
with a compactly supported function. By using a Coifmann-Weiss transference principle for
convolution, the authors in [28, 48] related the multiplier operator to the Euclidean multi-
plier. Then, the boundedness of the multiplier operator follows from the Mikhlin multiplier
theorem on R. However, a fundamental difference arises between the multiplier case and
our current situation with the pseudo-differential operator. In the case of the multiplier
operator, writing it as a convolution operator plays a crucial role, but the presence of an
extra variable x in the symbol o(x, A) of the pseudo-differential operator prevents us from
using the theory of multipliers.

We establish the boundedness of ¥U'°° by employing a generalized Coifman-Weiss trans-
ference principle in Section 4 for the kernel integral operator. This principle allows us to
establish a connection between the LP-boundedness of ¥!°¢ and Euclidean pseudo-differential
operators. Our analysis of the local part of ¥, leads to the following result.
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Theorem 8.1. Let W¢ be the operator defined in (6.5). Assume that 0 : G x R+~ C is a
function satisfying the following properties:

(1) For each A € R, x — o(x,\) is a K-biinvariant function on G.
(2) For each x € G, A — o(x, \) is an even function on R.
(3) For each© € N, the function (s, \) — og(s, \) := o(va,, \) € H(R,2,2) and

sup lozllm 2,2 < o0, (8.1)
veN

where ||o||yr2,2) is defined in (2.29).

Then, for 1 < p < oo, WY is bounded from LP(G),, to itself. Moreover, there exists a
constant Cp, > 0 such that

107 fllzriy < CplL + In])° (SUPHUUHH(R,z,z)) 1f1ler (), (8.2)
vEN

for all f € LP(G)pn-

Remark 8.2. We note that the norm of oy in (8.2) is considered in H(R, 2,2) rather than
in H(S,,2,2). Furthermore, (8.2) illustrates how the bound on the L?(G),, operator norm
of W'°c exhibits a polynomial dependence on n.

Before delving into the proof of Theorem 8.1, let us first obtain a quantitative estimate
of | Wk f||1o(q) for f € C(G),n and p € [1,00). We will use this estimate to establish the
LP-boundedness of the operator U'¢. Let us recall the definition (6.5) of W!° and proceed
with a change of variable, leading to the following expression:

P\
d:z:)

195° fllzoe) = </G pdx); N </G’

By writing the integral formula (2.7) corresponding to the Cartan decomposition, the right-

hand side of the equation above transforms into
» 1
/ / Fleka) K (2, (kag) )| A ()| dkdt d:c)
K JR

( |
L O

where in the last step, we employed Minkowski’s integral inequality and used the fact that
x — K'°(z,y) is an (n,n) type function on G. Next, by the change of variable zk — z,
and utilizing the fact that K is a compact subgroup of G with ||  dk =1, we obtain the

following;:
P \¥
10 fll oy < (/G dx) , (8.3)

where {R; : t € R} are the representations consisting of measure-preserving transformations
of the space GG, defined by

/G K (z,y " x)dy

/G Flazy)K(z, y~")dy

/R F(akad) Ko (2, a)| A (6)|dt

/R F(Ruw) K, a) | A ()]t

Rix :=xa;,, z€G.
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In particular, the representations {R; : t € R} preserve the LP norm of any function on G,
that is for any f € LP(G), we have

1f(Rex)l| o) = [[f v, for all ¢ € R.

Next, we will apply the generalized Coifman-Weiss transference principle to the integral
operator on the right-hand side of (8.3) in order to establish the LP(G), ,-boundedness of
the operator Wloc,

8.1. Application of generalized Coifman-Weiss transference principle. The proof of
Theorem 8.1 follows as a consequence of the generalized Coifman-Weiss transference principle
in Section 4 and the following corollary. This corollary plays a crucial role in applying
the Coifman-Weiss transference principle in our specific context, as it provides the explicit
estimate required to use (4.4) in our setting. Let us define the Coifman-Weiss kernel KXW :
GxGxR— C by

K (@, y,t) = K (2, y~ ) (] AD)]. (8.4)

Corollary 8.3. For x € G, let us recall Rax = was, s € R. Assume that there exists a
constant C > 0 such that for 1 < p < oo,

(/

for all h € LP(R). Then we have

195 fllrcy < Cllf e,
for all f € LP(G)nn, where C is the same constant as in (8.5).

1
P o\»
)" < Cltlure (55)

/ KY(Rex, R_Rsx,t)h(s — t)dt
R

Proof. Let us define the operator

(TF)(z) = / K (2, Rz, ) f (Ru) b, for f € C(Cn. (8.6)
R

As the function ¢t — KWV(x, R,z,t) is compactly supported, we can compare (8.6) with the

Coifmann-Weiss transference operator in (4.3). Furthermore, equation (8.5) indicates that

the kernel of the operator T satisfies (4.4) and the hypothesis of Theorem 4.1. Thus, in

view of (8.3) and by applying the generalized Coifman-Weiss transference principle (4.4), we

establish our corollary. O

8.2. Kernel of the Coifman-Weiss transference operator. The corollary above sim-
plifies the proof of Theorem 8.1, since we now only need to focus on establishing (8.5) with

C =C(1+ |n])°sup [los[lsuma22)-
TN

The remaining part of this section will be dedicated to proving the inequality (8.5), assuming
the hypotheses of Theorem 8.1. We observe from the definition (8.4) of the Coifman-Weiss
kernel ¢V that

KV (Rex, R_Ryx,t) = K(zas, a))n° () A(t), t>0.
By recalling the expression (6.2) of K" we get

KOY(Rex, R_Rex,t) = no(at)A(t)/Rcr(xas,A)¢f”f(at)]cﬁ’”()\)]_Qd)\. (8.7)
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It is not immediately evident from the given hypotheses that KW exists other than in a

distributional sense. Throughout the rest of the paper, we will consistently assume that the
symbol satisfying estimates as in Theorem 3.3 are, in fact, rapidly decreasing, although our
estimates will not depend on the rate of decrease. Explicitly, we assume o (-, A) is multiplied
with a factor of the form e, where 0 < e < 1. This assumption will enable us to define
pointwise functions and perform various formal manipulations, such as integration by parts.
Our estimates are uniform in €. Once we prove suitable uniform estimates, standard limiting
arguments allow us to pass to the general case.

We will prove (8.5) in the following steps:

Step 1: Expansion of the Kernel X W. We will utilize the asymptotic expansion of

+\ near the identity to express KW in terms of simpler or well-behaved functions.

Let @ is a smooth even function on R, with 0 < & < 1; ¢ = 1 when |[A\| > 2; &(\) =0
when |A] < 1. By extending the approach from [55, Proposition 4.1] and applying Lemma
5.3, we can derive an equivalent result to [45, Proposition 4.3] within our framework. This
will enable us to decompose KW as follows:

KWV ( Rz, R Rz, t) = Ko(xas, t) + Ken(zas, t), (8.8)
satisfying the following:
(i) There is some constant C' > 0 (independent of n) and x € L'(R), such that

[Kere(2,8)] < C(1 +In])° <SUP||%HH(R,0,2>) K(1), (8.9)

vEN

for all z € GG, and
2
(i) Ko(zan 1) = Cn(a) A1) (sh5) " 5~ @N)olwan, NI(AD[em ()| 2dx

where we recall 7 is the generalized Bessel function defined as in (5.6).

Step 2: Connection with Euclidean pseudo-differential operator. From (8.9),
we notice that we can bound |[Key(zas, )| with an integrable function s in R that remains
independent of ‘z’ and ‘s’. Consequently, it’s evident that ICe,, satisfies (8.5). To establish the
assumptions of Corollary 8.3, our task is to prove that Ky also fulfills (8.5). To achieve this,
we will demonstrate that the functions {Ko(zas,t) : @ € G} can act as kernels for Euclidean
pseudo-differential operators corresponding to a family of symbols {a.(s,¢) : © € G}. These
symbols will satisfy the conditions outlined in Theorem 1.1. By doing so, we can employ
Theorem 1.1 to conclude that Ky satisfies (8.5). In summary, our objective is to prove the
following:

o0

oo [ hatan, i < C (swlodusay ). (510
o z€

for all z € G, s,£ € R, and «, 5 € {0, 1,2}, where the constant C' is independent of n and

x € G. Now for a given xy € G, utilizing the Iwasawa decomposition and the fact that the

abelian group A acts as a dilation on N, we can find ky € K,7 € N, and sy € R such that

xo = koUag,. Since by hypothesis of Theorem 8.1, z — o(x,\) is a K-biinvariant function

on G, we observe that it suffices to prove (8.10) for all z =7 € N.

Step 3: Estimate of the Kernel ;. We recall the definition of Ky from (8.8):

1/2 oo
Kalvan ) = Cr@) A0 (505) [ P00 NZOOK WA, (s.1)
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where we have the following formula from [44, Eq. 10.9.12, p.224|
2 o0
Jo(At) = —/ (€2 — \)~V2gin &t de.
T JX
Let us define
S(w,A) = (O - (1/N)) D2 ((N)a(a, N]ep™ (N[ 7?)
for all z € G and A\ € R. Then using integration by parts we have,

Ko(Tas,t) = CP(ar) _ﬁ_ " / $(Tas, N Jo(M)dA
L | R
r 13 3
= Cn°(a) @ t/Rsingt/O S(Tas, ) (€2 — A2) V2 dA de
TA(H)] 3 d €
=orta) |52 fesetge [ @m0 e

Let us define

3
g(x,§) = / (€2 = XNV, N d\, €G>0
. - (8.12)
_ 5/ (1= X)125(z A N z €@, when € >0,

1

and
M6 = (g0) €. €em
We obtain
1/2 poo
Ko(vas, t) = —Cn°(ay) [%t)] /0 %g(m,g) cos &t d€
1/2 poo
= —COn°(ay) [%’5)] /_ h(vas, )e d.
Let v(t) = =Cn°(ay) [@} 1/2, t € R. Then
F(Ko(vas, ))(§) = (F(v) *r h(vas,-)) (§). (8.13)

First, we claim that
Sgleng (WSBh(Uas,g)} + ‘(1 + 5)0§8§h(6a8,§)}) <C <§2£\|0U||H(R,272)) for all g € {0, 1,2},
where the constant C' is independent of 7 € N. From (8.12) we have
h(Tas, ) = %/_1 (1-— AZ)‘l/Q)\LZ(E, M) dA  for € > 0.

1 I(AE)
Then using Lemma 2.4 and the hypothesis in (8.1) we get
aﬁaaz_ N <C 1+ |A)' for all 0,1,2
55 Boa (vas, \)| < sup [|ozl|nw,22) | (1+|A) or all o, 8 € {0,1,2}.

vEN
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Hence
9° — ! 2\—1/2
SOl < C (supllonleas | [ (=227 2xd
s TEN 0
<C (sup ||%HH<R,2,2>) :
vEN
Also,
9% 0 ! A2
1 < - 1 D ) Il Ve e A—; )
(1+855 057 O¢ (vas,§)|_C<sup|lav||H<R,z7z> ( +|§|)/0( ) )

sl
)

<C (sup o lln®22)
veEN

(/1(1 — A2)72)\20)\
0
-1/2 7% A d)\)
+'5'/ €

<C (sup H%HH(RM)) :
veN

Similarly, we can prove that

’(1 + §)0‘8§8§“h(6a3,§)} <C <sup HUUHH(RQ,Q)) for all o, 8 € {0,1,2}.

veEN

By applying the inequality above and taking into account that F(v) is a Schwartz function,
we can deduce from (8.13) that Ky satisfies (8.10). Consequently, This also concludes the
proof of our Theorem 8.1.

9. LARGE-SCALE ANALYSIS OF VU,

In the previous section, we observed how the kernel K!°¢ exhibits similar behavior to the
kernel of an Euclidean pseudo-differential operator. By using the transference method, we
successfully obtained a bound for the LP operator norm of the local part of ¥,. However,
the analysis of the global part undergoes significant changes due to the exponential volume
growth of the group G and the entirely different local and global behavior of Qﬁﬁf

In multiplier theory, the authors in [48] utilized the Herz majorizing principle theorem for
the convolution operator. For cases involving noncompact type symmetric spaces, lonescu
[29] further employed the same principle to estimate the LP norm of the multiplier operator.
In this section, we will establish the L? bound of W&°. To achieve this, we will use the
expansion of spherical functions ¢,y away from the identity, and we will see that the global
analysis of ¥, has no Fuclidean analogue. Our approach in this section follows the general
outline of [28]. Finally, Theorem 3.3 will be completed as a consequence of the following

theorem. Before stating the main result in this section, let us recall the definition (6.6) of
\IJ§;‘107

glof /f glo (x,y~ '2Ydy, z€d, (9.1)
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where
(™ a) =y o) [ ol NG Dl )] i (9:2)
R
We will complete the proof of Theorem 3.3 by establishing the following theorem.

Theorem 9.1. Let p € [1,2)U (2, 00). Suppose that o : G x Sy — C is a function satisfying
the following properties:

(i) For each A € Sy, x + o(x, ) is a K-biinvariant function on G.

(i4) For each x in G, X = a(x,\) is an even holomorphic function on S5 and

Sug o (, )| mrcs,.2) < oo (9.3)
fAS
(iii) Additionally, forp =1 andn € Z+\{0}, =0 (x,\)|rzi =0, for alla € {0,1,2},z €

G.

Then the operator W9 defined as in (9.1), is a bounded operator from LP(G),., to itself.
Moreover, there exists a constant C,, > 0 such that

92 Flircy < Con (300 o, Mavncs, ) 1 s

for all f € LP(G)p -

Remark 9.2. (1) We would like to mention that for p = 1 case whenn =0orn € Z™,
we obtain an improvement on the L' case. More precisely, for n = 0 or n € Z™,
it suffices to assume conditions (i) and (ii) of the theorem above to establish the
L*-boundedness of W&,

(2) When examining the proof of the boundedness of ¥&° and W it becomes apparent
that these operators do not rely on any regularity conditions concerning the space
variable of the symbol o. The requirement for a derivative condition on the space
variable is solely necessary to establish the boundedness of the local part ¥l°c. In
fact, to address the boundedness of ¥¥¢, we needed sup, x ||05|nra22) < 0o (see
(8.2)). Hence, the regularity condition on the space variable of the symbol o(x, \) is
essential, but only when A is along the real line, not for the whole strip S,,.

(3) We would like to remark that, similar to the observation made by the authors in the
multiplier case (see [48, (5.18)]), we are unable to preserve the explicit polynomial
dependence on n for the LP(G),,,, operator norm of the global part W& of the pseudo-
differential operator W,. This contrasts with the discrete and local parts of ., where
such polynomial dependence is maintained. One possible way to achieve a norm
estimate for the global part that grows polynomially or remains uniformly bounded
in n is to improve the estimate in inequality (5.10) (see Remark 5.5).

9.1. Estimate of the global kernel K8°. As in the Euclidean setting, the estimate of
K& plays a crucial role in establishing the boundedness of the pseudo-differential operator.
However, unlike in Euclidean space, we will observe the exponential decay instead of poly-
nomial decay in our estimates. This exponential decay is essential to handle the exponential
volume growth of the group SL(2,R). In the following lemma, we will explore how the
holomorphicity of the symbol is responsible for the decay property mentioned above.

Lemma 9.3. Let K9 be as in (9.2). Assume that o satisfies the hypothesis of Theorem 9.1.
Then the kernel K9 satisfies the following estimates
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(1) For 1 <p <2, one has
-1

n(y ) ey~ tal®) (9.4)

nglo,I" 1, <Cn<811 o(x,- )
K @,y 2)| < Con | S0 flo(@,)llvoucs, ) A+ [y 2] )

(2) For 2 < p < oo, one has
o~ (™ talh)
(1+ [y~ta]t)*

where C,,, > 0 is a constant depending only on the symbol and n € Z°.

Kz, 52| < Cy (sgg o, ->||MH<SP,2>) n(y~'a) (0.5)

Proof. To begin, we will prove the lemma for 1 < p < 2. We observe from (9.2) that the
function y — K&°(-,y) is supported away from identity, as 7 is a K-biinvariant function
supported on the set

{klath it Z 1/2,]€1,]€2 S K}

This allows us to apply the Harish-Chandra series expansion of the spherical function (bfj\l

from Lemma 5.4. Substituting the explicit expression of ¢"{'(y~'x) from (5.9) and using the

fact that | (N[> = ¢»"(N)c™™(—\) for all A € R, we obtain

T

K,y ) =n(y~ta)e (/ o(2, N (1 + a(\, [y~ta] ) (—n) el e gy
R

+ /R oz, \)(1+ a(=, [ylxr))czm)1eM<[y‘1zl+>dA>.

After the change of variable A — —A\ in the second integral and using the fact that A —
o(x, A) is an even function, we get

Koo (x, 1) :Cn(y_lx)e_[ylxﬁ/a(:v, /\)cﬁ’"(—A)_lei’\([yflxmd)\
R

+ Oy w)e T / oz, Na(X, [y~ e ) (=A) e gy

R
=K5° (™ ) + K8 (2, y ).

First, we will demonstrate that K8°(x, y'z) satisfies the estimate (9.4). We observe that the
above integrand is a holomorphic function on S;. Therefore, by applying Cauchy’s integral
theorem, we move the integration with respect to A from R to R + (v, — v,/2[y " 'z]™),
obtaining

K (z,y~x) = Cp(y ta)e 2P 'a) / (@, A+ iy — v/ ly 2] )N aN (9.6)
R

where v(z, A) is defined as follows
v(z,\) = oz, \)c™(=\) "

Consequently, integrating by parts the inner integral of (9.6), we deduce that

2l g2

(ly=tz]*)? Jr ON

IC%IO(% ylr)=Cny ') v(z, A\ +i(y, — 7p/[y—1$]+))€i>\([y*1w]+)d)\.
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Taking modulus on both sides, using hypothesis (9.3), and the estimate (2.24) of ¢™™(—\)~!
we get,

(70| = o (10 o s ) 15700 ey |
x, )| = Cpyp | sup|lo(z,- - x —
0y v\ Sep MIED | I TG Je (U AP

o—2/p(ly~1al*)

([y'a]t)?

Next, we shall estimate K82 (z,y). Proceeding in a similar way as in the proof of K§°, we
get

< G (s0p o avucs, ) 72)
T

o~ 2/o(ly~'x

K& (z,y 'z) = Cnly 'z)

1) 2
([y~tz]*)2 /R aa)\z (v(z, A +ilvp —w/ly "2]™))
ca(A iy — /Iy 2], [y ) )) Gl gy

We recall from (5.10) that the function A — a(\, ) satisfies a favorable symbol-type estimate
for t > 1/10. Moreover, by the Leibniz rule, one has

“98; (U%"i)(i(;) t>>‘ =0 +C|j;\)3/2 (9.7)

for all A € C with 0 <Im\ < ~,, ¢t > 1/10 and z € G. By (9.7) in the expression of K89

error?

we obtain the required estimate of K8° (x,y~'z). This settles the lemma for 1 < p < 2.
Now, we handle the p = 1 case. We recall from Lemma 2.3, for n € Z™ \ {0}, the function
A — »™(—X\)"! has a simple pole at A = 4 within the boundary of S;. This prevents us from
directly using the estimate (2.24) of ¢®™"(—X)~! near A = i. To overcome this obstacle, we
will utilize the hypothesis on the symbol o(z, A), which has a zero at A = i. Exploiting this

and the Leibniz rule, we obtain that

o (%) | < T 09

With this inequality in hand and repeating the previous argument, we can complete the
proof of (9.4). When n € Z™ U {0}, A — ¢™"(—\)~! does not have any pole in Sj, so the
proof follows similarly as in 1 < p < 2 case, this also concludes the proof for p = 1.

Next, we address the case 2 < p < oo, which follows a similar approach. We note that
Y = 2/p—1)] = (2/p' — 1) for all p > 2, where 1/p’ = 1 — 1/p. Applying the same
argument as before, we obtain (9.6) with e~2/2("'#1") yeplaced by e 2#(v"'#")  Then,
proceeding analogously to the previous case, we can establish (9.5). 0

We now employ the lemma above to establish the LP-boundedness of ¥&° and, conse-
quently, complete the proof of Theorem 3.3. Before that, we express W&° as a sum of two
integral operators on the NA group. We then proceed to find their L norm estimates.

Let f and ¢ be two smooth compactly supported (n,n) type functions on the group G.
Using the Iwasawa integration formula (2.6), we can write from (9.1) the expression for W&l
with y = mask; and x = nayksy as follows:
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(Ef, ) = [ U (@i
G
Z////f(mas)cp(ﬁat)nglo(ﬁat,a_sm_lﬁat)e2(s+t)dsdmdtdﬁ (9.9)
N JNJr JR
= / / / / f(mas)p(Ra) KB (Ray, 6 (M 'R)a,_s)e* ) ds dm dt dn,
NJNJrJR

where we recall that J_, is the dilation on the group N defined in (2.13).

We observe that the integrations over the ky variable are canceled due to the right K-
invariance of the symbol o with respect to the space variable. If we assume that z — o(z, \)
is any other right [ (# 0)-type, then the above integral will be always zero.

Now, let x* and y~ be the characteristic functions of the intervals [0, 00) and (—o0,0),
respectively. We can now express the above operator as follows:

(VB f,0) = (T, f,0) + (TS f.0)  (say),

where ZF f are the operators defined on N A group by the following formulae

= f(nay) == // f(mas) K& (Tay, 0—s (7 a_s ) x = (t — s)e** ds dm, (9.10)
v Jr
and
<Iaif7 90> B /N/]R; /J‘V/R f(mas)gp(ﬁat)lcglo(ﬁat, 578(m71ﬁ)at78)xi(t - 8)62(S+t) ds dm Citgdln_1>

Consequently, the LP(G), ,-boundedness of W& follows from that of the operators Z+ on
LP(NA), which we shall take up separately in the rest of this section.

9.2. L? operator norm estimates of ZX. We first shall establish the LP-boundedness of
the operator Z by proving the following lemma:

Lemma 9.4. Let p € [1,2) U (2,00). Suppose that o satisfies the hypothesis of Theorem 9.1
and I be as in (9.10). Then we have I is bounded from LP(NA) to itself. Moreover, there
exists a constant Cp,, > 0 such that

1Zs flleway < Con (Sgg lo(z, ')”MH(SP,Q)) £l e a) (9.12)

for all f € LP(NA).

Proof. To get the desired result, it suffices to prove that for any smooth compactly supported
functions f,¢ : NA — C, one has

(22 0 < Con (500 ot M) Wl Iy (913
We recall the expression of (Z f, h) from (9.11)

(I, f. ) = /N/R/R/Nf(ﬁas)mﬁglo(ﬁat,5_s(m_1ﬁ)at_s)x_(t—5)62(S+t) ds dm dt dm,
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which after a change of variable 7 — m ' yields

(Z; f,0) = ////fmas o(mmna) K (mnay, 6_s(M)a_,)x~(t — 8)e>Tdn ds dt dm,

We recall that the map 7 + §_,(7) is a dilation of N. Hence by using (2.14), we get

(T, f,0) = /N /R /N /]R F(may)p(mo,(m)ay) K& (Mo, (M) ag, Mia,_ )X~ (t — s)edn ds dt drm.

Next, by using Fubini’s theorem and the change of variable ¢ — s —r (for fixed s), it follows
that

Lo fr0) = /N/ /N OO 10 (8 (M)t K (70, (W) i1, )2 mﬁ)

To make use of the estimates of K9°, we divide the proof into two parts. First, we will
prove the lemma for 1 < p < 2. Taking modulus on both sides of the above expression and
plugging the estimate (9.4) of K9 for 1 < p < 2, gives us

(Z5 f.0)] < Cpn (itelglla( M, 2)[0///|f i) || o (30 (W) s, )|

—2([ma_,]")

-n(na_,) (1 n [na_r]ﬂze C=Mdmdndsdr. (9.15)

-| [17mapam] '

Now let us define,

N (9.16)
9= [ tetma.)pam|”
Applying Holder’s inequality in (9.15) and using (9.16), we get
(2 2} < Con (sl s, ) [ [ [ Fejots =)
' 2 ([ma—r]™)
-n(ma_,) (1 " [m_rmg 2 drdsdr. (9.17)
Since the Abel transform of a K-biinvariant function is even, from (2.15) it follows that
- L R S (I
/n(na_r) 0t a7 dn=e /n(nar) W dn, forr >0. (9.18)
N N

Putting (9.18) the formula above in (9.17), we obtain

(Z, fso>}<0pn(sup||a< ||MH32)[0// (s—1)

(1 + [ma,]*)?

—2([ma,]*)

-n(na,) e*dm ds dr.



PSEUDO-DIFFERENTIAL OPERATOR ON SL(2,R) OF K-TYPE 39

Substituting the explicit expression of [ra,]™ (for » > 0) from Lemma 2.2 in the inequality
above yields

|<I f, 90>‘ < Cpm (SUPHU Iar(s,.2 ) /0/ b(s—r)

e—;H(n)
/77 na,) i 2e2sdﬁds dr
N (14+ H(m) +r)
< Cpn (sup||0 )N s, 2) ( (/F 612’ D(s —r)el’(s T)ds)
R

Here we are using this fact H(m) > 0 for all m > 0 (see (2.11)). Finally using (2.12) with
1 < p < 2, and applying Holder’s inequality, we conclude that

[(Zs f.0)] < Cpn (Sgg lo(, -)HMH(sp,z)) 1 oy [0 o .4y

We next turn to prove the estimate (9.13) for p > 2, which will complete the proof of this
lemma. After taking modulus on both sides of (9.14) and plugging the estimate, (9.5) of
K9t for 2 < p < oo, we can write

(Z; f@>}<0pn(supl|0( vencs, )[D///\fm o5, (7))

oo (a—r]7)

na_ 2= dimy dm ds dr-.
)

Then again, after an application of Holder’s inequality, we use (9.18) to get

(Z; f.0)| < Cpn (ilelgHa( M ar(s, 2 )/0/ B(s —r)

. / n(na,) A se**dnds dr
N (1+H(m)+r)

Since 2 < p < 00, so we have p’ < 2. Thus we can use (2.12) and write

(2 . 0)| < Cpn (sup oz, ~>HMH<SP,2>) ( / ( / F(s)eh*d(s — r)er %)
zeG r—0 R

'/esz(n)dﬁ dr )

N (1+7)?

< Cpn (SEIG) lo(z, ')HMH(SP,2)) ||f||Lp(NA) ||‘:0HLP'(WA)7

completing the proof. O
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Lemma 9.5. Let p € [1,2) U (2,00). Suppose that o satisfies the hypothesis of Theorem 9.1
and I} be as in (9.10). Then Z} is bounded from LP(NA) to itself. Moreover, there exists
a constant Cp, > 0 such that

IZS e way < Com (Sgg lo(z, ')”MH(SP,Q)) £l e a) (9.19)

for all f € LP(NA).

Proof. Analysis similar to that in the proof of the previous lemma shows that it is enough to
prove (ZF f, ) satisfies the estimate in (9.13) for 1 < p < 2, where we recall the expression
of (ZF f, ) from (9.11)

(Zrf,e) = / // /f as)p(Tay) K8 (Tay, 0o () a_s) x T (t — 5)e*t) ds dm dt d,

for all smooth compactly supported functions f, o on NA. Applying the same change of
variables as in the previous lemma, we obtain

(I f,0) = /N /R /N /R f(as) (Mo, (7)ay) K& (M6 (7)) ag, iay—s ) X~ (t — s)e*dm ds dt drm.

Next, by using Fubini’s theorem and the change of variable ¢ +— 7+ s (for fixed s), it follows
that

(I f.@) = /N/R /N f(Mas) (05 (7) ary ) KE® (M0, (7)ay, Ta, )" dr d ds dim.
r=0

Taking modulus on both sides of the above expression and plugging the estimate (9.4) of
e, we get

(2200 < Con (s0p o Mavnas, ) [~ [ [ [ 1smanliotms.ma,..)

—~2( [a,]*)
: ﬁ(ﬁar) (f{_ﬁeﬂrﬁ-s)m dndsdr. (920)
+ na,

Plugging the explicit expression of [fia,|™ from Lemma 2.2 in the inequality above gives us

(200 < oo (sl amis,r) [ [ [ [ smatma.ma,..

) = H(n)
-n(na,) 677" ‘ 2 dm dm ds dr
H(m) +r)

+
2 (s+r)
pn(supna( s, o ) / / B (s 1 r)er s
r=0

o~ 2H()
: na,) ——— dndr,

where in the last inequality we used Holder’s inequality and the fact H(m) > 0. Finally,
using (2.12) and another application of Holder’s inequality gives us

(2210 < Con (08 ot s, ) W el
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which concludes our lemma. O

10. ROUGH ANALYSIS OF VU,

This section focuses on extending the boundedness result for pseudo-differential operators
U, in Theorem 3.3 to accommodate rough symbols ¢, which have no regularity condition in
the space variable. Specifically, our goal in this section is to prove Theorem 3.5.

To achieve this, we first recall that the boundedness of ¥&° and U4 does not require any
regularity condition on the space variable of the symbol o, so their proofs follow a similar
approach. In proving the boundedness of the local part W'°¢, we crucially utilize the relation
between it and Euclidean pseudo-differential operators, employing the result of Kenig and
Staubach (Theorem 1.3).

To outline the proof, we start by decomposing the pseudo-differential operator ¥, into
discrete, local, and global parts, using the same argument as in Section 6. The required
boundedness of the operators W4 and W& follows using similar methods as observed in
Section 7 and 9, respectively.

Next, we proceed to prove the corresponding LP(G),, operator norm estimate for the
local part W'°c. By utilizing the generalized transference principle of Coifmann-Weiss and
employing the exact same analysis as in the proof of Theorem 8.1, we observe that it is
sufficient to prove the hypothesis (8.5) in Corollary 8.3.

Let us recall from (8.8) that we can write

KWY(Rox, RO Row, t) = Ko(was, t) + Ker(zas,t), € G, t>0,

such that

(i) There is some constant C' > 0 (depending on n) and x € L'(R), such that

|Kerr(z,t)] < Ck(t), for all z € G,
and

. o ;O\ V2

(i) Ko(was, 1) = Cn(ar) A1) (555 )
Next for each = € GG, we define

S D(N)o(wag, )T (M)]e(N)|-2dA.

0

az(s,§) ::/ Ko(zas, t)e > dt, s,& € R.

o0

By considering the hypothesis o(z, A) € S, (S,), we can deduce from the calculations in the
proof of (8.10) that the family of symbols {a,(s,) : x € G} satisfies the following estimate:

108 (s, )l L < Cam(l +[€))™, (10.1)

where the constants C,,, are independent of z. In other words, a,(s,§) € Sl forallz € G.
Consequently, Theorem 1.3 implies that the hypothesis (8.5) in Corollary 8.3 is satisfied.
This in turn, establishes the LP(G),, ,-boundedness for 1 < p < oo of the operator W'°°. This
completes the proof of Theorem 3.5. O

FINAL REMARKS

In conclusion, we would like to offer some observations and draw attention to few open
questions that, from our perspective, warrant further investigation.
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(1) By employing the Fourier inversion formula [3, (10.4), Theorem 10.4], we can define
multiplier operators, or more generally, pseudo-differential operators, for functions
of (m,n) type on the group G and investigate their boundedness properties. While
we have successfully established the boundedness of both the discrete and global
components of the pseudo-differential operator using a similar analytical approach as
in this article, addressing the local part poses a challenge. By performing a calculation
akin to that in Lemma 5.3, we can express ¢.}" in terms of the Bessel function VESS

unlike the (n,n) type case where it was Jy. Consequently, the argument presented
in Section 8 may not be applicable unless m = n, as \7% (t) introduces a singularity
near ¢ = 0. Therefore, it is necessary to develop an alternative strategy to handle
the local part of the pseudo-differential operator.

(2) Recently, Wrébel [61] presented a multiplier theorem for rank one symmetric spaces,
which improves upon the results of both [55] and [28]. It would be interesting to
investigate whether a similar result can be obtained in our context.

(3) Our current approach has not yet established the L?-boundedness of the pseudo-
differential operator W,. Specifically, the method we use to prove the LP-boundedness
of the global part of ¥, may not be effective for p = 2 when assuming that the symbol
o satisfies only the smoothness condition (without holomorphicity) on the real line.
We view this as an opportunity to explore alternative strategies. In the near future,
we plan to investigate the L?-boundedness of pseudo-differential operators under the
assumption that the symbol satisfies only the smoothness condition (without holo-
morphicity) on the real line, both within our current framework and in the context
of rank-one symmetric spaces of noncompact type.
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