THE SHARP QUANTITATIVE BARYCENTRIC ISOPERIMETRIC
INEQUALITY FOR BOUNDED SETS

C. GAMBICCHIA AND A. PRATELLI

ABSTRACT. We prove the sharp quantitative isoperimetric inequality in the case of the barycen-

tric asymmetry, for bounded sets. This generalizes the 2-D case recently proved in [2].

1. INTRODUCTION

Quantitative isoperimetric inequalities have been attracting a huge interest in the last two
decades. The basic question to be investigated is very simple. Namely, it is known that the set
which minimizes the perimeter among those with fixed volume is the ball. But is true that a set
which minimizes the perimeter up to a small error must be very close to a ball? Of course, one
wants to give an affirmative answer, also providing a quantitative bound which correlates the
perimeter gap of a set with its distance, in a suitable sense, to a ball. To make all this explicit,
we begin by defining in the usual way the isoperimetric deficit of a set E C RN, given by
P(E) — P(B(m))

P(B(m))

Here, by B(m) we denote the ball centered at the origin and with mass m = |E|. We have to

S(E) =

define now the asymmetry of the set E, which is a measure of how much F differs from being
a ball. Notice that, while in the definition of the isoperimetric deficit we can use any ball of
volume m, since they all have the same perimeter, in the definition of asymmetry one has to
select a suitable ball, because of course we can guess that a set with a small deficit is very similar
to some particular ball of volume m, but not necessarily to the one centered in the origin! There
are several possible interesting definitions of asymmetry.

The one which has been more investigated is the so-called Fraenkel asymmetry, defined by

A(E) = inf { ’EA(”“E'B(?”))‘, ze ]RN} :

where we denote by “A” the symmetric difference, that is, AAB = (A\ B) U (B \ A), and

where the above infimum can actually be easily shown to be a minimum. With this notion of

(1.1)

asymmetry, the sharp quantitative isoperimetric inequality reads as
A(E) < Cp(N)/5(E), (1.2)

where C'r(IN) is a geometric constant only depending on the dimension N, and the power 1/2 is
optimal. The above inequality has been proved with several different techniques starting from

2006 and it is now very well known, see for instance [7, 4, 3].
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However, this notion of asymmetry is not the only one which is meaningful, and there are at
least two other ones which have been deeply investigated. A very natural one is the Hausdorff

asymmetry, given by

g (E) = inf { dir (E, (TET B(m)) ,x € RN} ,

where dp is the Hausdorff distance. With this choice of asymmetry, the sharp inequality is
i (B) < C(N)S(BP™) (1.3)

which is valid for all convez sets in RV and where not only the constant Cz(N) but also the
power p(IN) depend on N. This inequality was proved in 1989 by Fuglede, who also found the
exact formula for the sharp exponent p(N), see [5]. It is important to notice that, while the
inequality (1.2) is valid for all subsets of R™V, the inequality (1.3) requires the set to be convex
(or nearly spherical). This is not strange, since the inequality is easily seen to be false in general.
It suffices to take a set F given by a unit ball plus a very tiny ball at very large distance; of
course, the isoperimetric deficit of £ can be made arbitrarily small as soon as the second ball is
chosen small enough, while the Hausdorff asymmetry of E is very close to the distance between
the two balls, which can be made arbitrarily large. Speaking in general, it is more or less obvious
that the Hausdorff distance is meaningful only when dealing with convex sets, or more generally
sets which are known to have a special geometrical structure.

A last notion of asymmetry, which is the one we are interested in for this article, is the
so-called barycentric asymmetry, given by
B |EA(bar(E) 4+ B(m))|

Ao(E) | ;

(1.4)

where bar(FE) is the barycenter of E (which of course cannot be defined for any set, see Defi-
nition 1.3). Before commenting on this asymmetry, we immediately point out that the corre-

sponding sharp inequality, proved by Fuglede in 1993 (see [6]) reads as
Mo(E) < Ci(N)V/3(E), (1.5)

and is again valid for all conver sets in R™Y. Observe that in this case, as in (1.2) and unlike (1.3),
the sharp exponent is again 2.

Let us now discuss the barycentric asymmetry. First of all, we notice that it measures
the distance between the set ' and a ball exactly as the Fraenkel asymmetry, that is, as the
(rescaled) volume of the symmetric difference. The big difference is that, while with the Fraenkel
asymmetry the ball is chosen so to minimise this volume, with the barycentric asymmetry the
ball is simply the one centered in the barycenter. This is a strong and somehow “arbitrary”
choice, but it is reasonable to guess that in most cases, if a set F is very close to some ball, the
center of this ball cannot be too far from the barycenter of £. Working with this asymmetry
is then very handful, because the problem of “choosing the correct ball” is eliminated, and for
instance this asymmetry is the easiest to use for a numerical approximation, since it is of course

computationally much easier to calculate a barycenter and then a single volume of a symmetric
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difference, instead of calculating several such volumes in order to perform a minimization process.
Also from a theoretical point of view, this asymmetry has been used intensively and it had a
crucial role in the literature. Indeed, not only the asymmetry is simple to use as mentioned above
because of the fact that the center of the ball should not be sought but is fixed by definition.
But also, the Fuglede argument to prove (1.5) can be easily repeated and generalised, since it
basically consists in a clever way to reduce the proof to a boring but now standard calculation.
For instance, in the celebrated paper [3] in which the estimate (1.2) for the Fraenkel asymmetry
is shown, the authors are able to reduce themselves to a particular situation of “nearly spherical
sets”, and for these sets they argue as in Fuglede’s proof of (1.5), since for them the obvious
approximation of the Frankel asymmetry from above with the barycentric asymmetry is not too
bad and is strong enough to get the sharp estimate (1.2).

A key observation is now to be done. As with the Hausdorff asymmetry, also with the
barycentric one the inequality (1.5) is surely not valid for all sets. The very same counterexam-
ple can be used. Indeed, putting together a unit ball with a second ball with radius » < 1 and
distance d > 1 is again a set with a very small isoperimetric deficit. However, if wydr > 3,
then the distance between the barycenter bar(F) and the center of the unit ball is bigger than 3,
and then the barycentric ball bar(E) + B(m) has no intersection with E, so that the barycentric
asymmetry is A\g(F) = 2, against the validity of (1.5). However, while for the Hausdorff asym-
metry to be meaningful it is pretty clear that convexity (or something close to it) is needed, the
situation is less clear for the barycentric case. Indeed, the counterexample enlightens the fact
that taking the barycenter in the definition of the asymmetry is not a meaningful choice for a
fully general set. And on the other hand, Fuglede’s proof shows that, instead, this is a smart
choice for a convex set. However, from a geometrical point of view, one can imagine that the
choice can be smart even for a case much more general than simply the convex sets. In other
words, it is reasonable to hope that there is room for improvement.

This crucial observation has been the starting point of the very recent paper [2]. There, the
authors notice that the “obvious counterexample”, which is the one we already described above
with the two balls, is not only not convex, but also not connected. This can be easily removed if
the dimension is N > 3, because connecting the two balls with an incredibly thin cylinder with
length d and diameter much smaller than the radius r of the small ball makes the set connected
and has a negligible effect on the perimeter of E' and on its barycenter, so again A\o(F) ~ 2
while 6(E) ~ 0. But in dimension N = 2 this is no more true, since a “thin cylinder” with
length d and incredibly small radius is actually a rectangle and it gives however a contribution
at least 2d > 1 to the perimeter, so in this case 0(E) > 1. Therefore, it makes sense to ask
oneself whether the barycentric inequality (1.5) is valid for connected sets in R?, and the answer

is actually positive.

Theorem 1.1 (Bianchini-Croce-Henrot, 2023 ([2])). There exists a constant Cpcn such that,

for every connected set E C R?, one has

M(E) < Cpeavo(E).
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This inspiring result was our starting point. Indeed, while as observed above the connect-
edness can be useful only in dimension N = 2, we started wondering whether there is some
other geometrical property, weaker than the convexity, which can make the barycentric asym-
metry meaningful, or in other words, under which the inequality (1.5) is still valid. We ended
up noticing that such a simple geometrical property for any dimension N exists, and it is the
boundedness, which is of course extremely weaker than the convexity. More precisely, our main

result is the following.

Theorem A (Quantitative barycentric isoperimetric inequality for bounded sets). For every
N > 2 and every D > 0 there exists a constant C(N, D) such that, for any set E C RN with
diameter less than D|E|'/N | the inequality

Ao(E) < C(N, D)v/6(E) (1.6)

holds true. In particular, one can take C(N,D) = anDV, see (2.3) for the precise formula.

A couple of quick remarks have to be done. First of all, a trivial rescaling argument ensures
that it is enough to consider the case of sets of unit volume; in other words, the theorem is
equivalent to say that the inequality (1.6) is true for all sets E of unit volume and diameter
less than D. In particular, the fact that the diameter of E must be bounded by D|E|/N and
not simply by D, is obvious; indeed, since we do not fix the volume of F, the diameter must be
considered with respect to the “expected diameter” of the set, which is of order |E|'/V.

Second, the fact that the constant in (1.6) depends on both N and D and not only on N
is again obvious. In fact, the information that E is bounded is of no use without an estimate
on the diameter, and of course the constant C'(N, D) must explode as D — +o00. Notice that,
instead, it makes no sense to consider small values of D, since by the isodiametric inequality
every set of volume |E| has diameter at least ZwX,l/ N\E |'/N  hence it makes no sense to consider
D < 2w;,1/ NoA quick observation about the dependance of C(N,D) on D is contained in
Remark 2.5. Finally, it is interesting to compare Theorem A with the two preceding results
mentioned above. We do this in the brief final Section 3, where we observe that both these

results readily follow from our one, and we comment on this.

The plan of the paper is very simple. In Section 1.1 we collect the notation that we are going
to use, and the few definitions and known results that will be needed later. Then, in Section 2
we present the proof of the main result. Finally, in Section 3, we make a quick comparison
between our result and the other ones on the same question.

We now conclude this introduction with a quick “techcnical” remark.

Remark 1.2. One can observe that, in the paper [2], the authors where considering the
Minkowski perimeter and the topological definition of connectedness, while one might prefer to
use the standard definition of perimeter, and consequently using the measure theoretic definition
of connectedness (see Definition 1.5). However, this makes no practical difference at all; indeed,
one can simply prove the sharp inequality just for smooth sets, for which the two definitions

clearly coincide, and then argue by density.
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1.1. Preliminary definitions and results. Through the paper, for any set £ C RY of locally
finite perimeter, we will denote by 0* E the reduced boundary of E, and by P(E) = #Y"1(0*E)
its perimeter (for these basic definitions one can see for instance [1]). The usual definition of

barycenter of a set E is the following.

Definition 1.3. Let E C RN be a measurable set with strictly positive volume. We will call

barycenter of E the point
bar(E) = ][ xdx
E

whenever the integral is well defined. Notice that, for instance, the barycenter is always defined

if E is (essentially) bounded, so in particular if E is convex and with finite measure.

It is useful to recall also the standard measure theoretic definitions of diameter and of

connectedness.

Definition 1.4 (Diameter of sets). The diameter of a set E C RY is defined as
diam(E) = inf {d >0 %2N({(x,y) EEXE,|y—a > d}) - 0} .
Equivalently, diam(FE) is the supremum of the distances among pairs of Lebesgue points of E.

Definition 1.5 (Connected sets). A finite perimeter set E C RN is said connected if for every
F C E with 0 < |F| < |E| one has

P(E)< P(F)+ P(E\F).
A very well-known, immediate consequence of the above definitions is the following one.
Lemma 1.6. Let E C R? be a planar, connected set. Then, P(E) > 2diam(E).

For our construction, we will need also the notion of k-symmetric sets and a property of

N-symmetric ones.

Definition 1.7 (k-symmetric sets). A set E C RN is said to be symmetric with respect to a
hyperplane 11 if E = Ry(E), where Ry : RN — RN is the reflection across to the hyperplane II.
A set E CRY is said to be k-symmetric for some integer 0 < k < N if there exist k orthogonal

hyperplanes with respect to each of which E is symmetric.

When dealing with the Fraenkel asymmetry and symmetric sets, a simple but very useful

observation is the following, for a proof see for instance [7].

Lemma 1.8. Let E C RY be a bounded, N-symmetric set with strictly positive volume. Then,
the Fraenkel asymmetry of E defined in (1.1) and the barycentric asymmetry of E defined in (1.4)
satisfy the property

AE) < M(E) < 2NA(E).
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We can quickly discuss the meaning of this lemma. The first inequality is obvious for
any set E, since A\(F) is the infimum of the volumes of the rescaled differences between E and
translations of the ball B(m) with |B(m)| = |E|, while Ay corresponds to a particular translation.
The interesting part is then the second inequality; notice that, as the above example with the
union of two balls shows, the second inequality is false for a generic set E. The point of this
lemma is then that considering the barycentric ball bar(E) + B(m) is an optimal choice (up to

a multiplicative constant) in the special case of N-symmetric sets.

2. PROOF OF THE MAIN RESULT

This section is devoted to prove Theorem A. This will be obtained as an immediate conse-

quence of the following technical property.

Proposition 2.1. Let 1 < k < N be given. Assume that, for every D > 2w;,1/N, there exists a
constant Cj,(N, D) > 2NCr(N) (where CF is given by (1.2)) such that the inequality

Ao(E) < Cx(N, D)\/4(E) (2.1)

UN " Then, the same

holds true for every k-symmetric set E with diameter less than D|FE|
property is true also for any (k — 1)-symmetric set E with diameter less than D[E]l/N, having
defined the constant

Cy_1(N, D) = K1Cy(N,3D)D, (2.2)
where K1 = K1(N) is defined in (2.19). Notice that, in particular, also Cy_1(N, D) > 2NCr(N).

Notice that the assumption D > 2w;,1/ N

is not restrictive; indeed, as already noticed, by
the isodiametric inequality a set F cannot have diameter strictly less than 2w;,1/ N|E |1/ N, We

can immediately see that our main result readily follows from the above proposition.

Proof of Theorem A. If E is a N-symmetric set with diameter less than D|E|'/N | then putting
together the standard quantitative isoperimetric inequality (1.2) and Lemma 1.8 we get
M(E) < 2VMNE) < 2NCr(N)WO(E),
thus the inequality (2.1) is true for N-symmetric sets with constant
Cn(N,D) =2NCp(N).

Applying then N times Proposition 2.1, we get the validity of (2.1) for O-symmetric sets with

constant
N(N-1)

Co(N,D) =2NCp(N)KN3— 2 DV, (2.3)

Since any set is 0-symmetric, we have proved (1.6) for a generic set £ C R with diameter less
than D|E|'/N and with constant C(N, D) = Co(N, D). The proof is then concluded. O

The proof of Proposition 2.1 will take this whole section. We start by considering a (k —1)-

1/N

symmetric set E, with diameter less than D|E|"/"". We assume that

E| =1, bar(E) = O, Ru(E)=E YN-k+1<i<N. (24)
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Notice that there is no loss of generality in making these assumptions. Indeed, since the result is
scaling invariant, one is allowed to fix the volume of E, and we have fixed |E| = 1 just for the ease
of notation. Moreover, up to a translation and a rotation, we can assume that the barycenter
is in the origin and that E' is symmetric with respect to the last £ — 1 coordinate hyperplanes
(notice that whenever a set is symmetric with respect to a hyperplane, the barycenter must
belong to such hyperplane).

Our plan is to modify E so to become symmetric also with respect to the hyperplane

IT; = {x1 = 0}, so becoming k-symmetric. To do so, we begin by calling
E+=Eﬂ{$1>0}, E_:Eﬂ{x1<0} (2.5)

the two parts in which E is divided by the hyperplane {z; = 0}, and

5:‘§—|E+| . (2.6)

The number ¢ determines how different are the volumes of the two parts E+ and E~, in particular
€ = 0 only if the hyperplane II; divides E in two parts of equal volume. The diameter constraint

allows to give a simple estimate of ¢ in terms of §(E) as follows.

Lemma 2.2. There exists a constant Ka, only depending on N and defined in (2.9), such that,
taking any set E as above and defining € as in (2.6), one has

e < KyD\/O(E).

Proof. Let us call Bp a “Fraenkel ball”, that is, a ball realizing the infimum in (1.2). The fact
that such a ball exists is very simple; indeed, taking a ball centered in a Lebesgue point of
E ensures that A\(FE) is strictly smaller than 2 (which corresponds to a ball having negligible
intersection with /). We can than take a sequence of points x; with the property that the ratio
|EA(z; + B)|/|E| converges to A(E). This sequence must be bounded since otherwise the ratio
would converge to 2, while A(E) < 2, and then any limit point of the sequence {z;} corresponds

to a Fraenkel ball. Let us now call
1
ERp = }Bpﬂ{x1>0}‘—§ (2.7)

the difference between the volume of Br and 1/2. Then, e = 0 if and only if the center of
Bp lies in the hyperplane {z1 = 0}. More in general, if we call d the distance between this
hyperplane and the center of Bp, since the radius of Bp is 1 /w]lv/N, we have

ep < Ny (2.8)

N
Wy

Let us then call for brevity GT = Br \ E and G~ = E \ B, which are two sets with volume

|BFAE|/2 each, and notice that
= ‘ / Ty dr — / 1 dx
G+ -

N-1
/ xldx:‘/xldx—i-/ J:1d:c—/ x1 dx
BF E G+ G~

N
< D(|G*|+|G|) = D|BrAE| = DA(E),

€F<d:

WN-1
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where we have used (2.8) and the facts that bar(E) = O, the diameter of E is at most D, and
Bpr is a Fraenkel ball for E. We have thus found that

Duwn—
er < L AN(E).
wp

Moreover, notice that by (2.6) and (2.7)
ME) = |EABp| > “Eﬂ {z1 >0} — |Br N {z1 > 0}\‘ > le —er|.

The last two inequalities, together with (1.2) and with the fact that D > 2w;,1/ N by assumption,
imply that

Dwpn_ Dwp_
e<ep+tle—ep| < CLI}VNll)\(E)—F)\(E):)\(E)< uj\f\fll—kl)

Wy wp
Dw w wl/N
SCF(N)< gl +1> VO(E) §CF(N)D<]X,11+];) I(E).
wp wp
This concludes the thesis with
Wy wl/N
Ky = CF(N)( et + g) : (2.9)
~

Wy

Remark 2.3. An obvious consequence of the above lemma is that, if 8 > M\o(E), then (1.6)
is true with 8 K9 D in place of C(N, D). In other words, in proving Theorem A we can assume
for free that ¢ < \o(E)/8 < 1/4. By (2.6), this means that the volumes of EY and E~ are
between 1/4 and 3/4, that is, the hyperplane 11 is not necessarily dividing E in two parts of

equal volume, but they are also not too much different.
We collect now an extremely simple observation, which will be used later.

Lemma 2.4. Let G, H and H be three sets so that |H| = |G| and |HAH| = ‘|H| - |G|‘ Then
~ 2|G| ~
2|GAH| > |GAH| > W‘bar(G) — bar(H)|,
where we call D' the diameter of G U H.

Proof. We notice that, since |H| = |G|, then |HAH| = |[H| — |G|| is equivalent to say that
|HAH| = ’|H| - |ﬁI|‘, which in turn is equivalent to say that either H C H or H C H. The

first inequality of the claim readily follows since

|GAH| < |GAH| +|HAH| = |GAH| + || H| - |G|| < 2|GAH]|.
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Concerning the second inequality, it is sufficient to recall that |G| = |H| and that the distance

between any point of G and any point of H is at most D’ , getting the thesis since

. 1 1 D’ .
— H)| = — — = — - < — H
|bar(G) — bar(H)| a /G;Edm /ﬁz‘dm G /G\fi$d$ /H\Gl‘dx <G |G\ H|
D’ ~
=30 |GAH].

Let us now present the proof of Proposition 2.1

Proof of Proposition 2.1. Let us take any (k — 1)-symmetric set E satisfying (2.4). We restrict

ourselves to consider the case ¢ < \og(F)/8 < 1/4. Indeed, if this is not the case, as noticed in

Remark 2.3 we already have the validity of (1.6) for E' with constant 8 KD, and then also (2.1) is

valid for the (k—1)-symmetric set E with constant C_1(V, D) as soon as Cy_1(N, D) > 8K, D.
Let us call again E*, as in (2.5), the two parts of E in {1 = 0}. Let also

P= / rdr = |ET|bar(ET).
Et+
The point P is of course in the halfspace {z1 > 0}. Moreover, we call
1 ~
n=|P—Prel|= 3 |P + Ru, (P)| = |P|

the distance between the origin and the point ]3, which is the projection of P onto the hyperplane

II;. Let us now define the two sets
E'=ETURp, (EY), E"=E~URu,(E7). (2.10)

Notice that E’ and E” are two sets which are both symmetric with respect to IIy, and by (2.4)
they keep the symmetries with respect to II; for N — k + 1 < ¢ < N, so they are actually

k-symmetric. Moreover, calling P’ = bar(E’), we have

_|P+Rn,(P)| P g ,

fwdx— S,

P'| = |bar(E")| = = = =:
1P1= oer() Bl B
and thanks to the assumption that ¢ < 1/4 we have

4
§n<77’<4n.

To help reading the proof, Figure 1 shows a possible set F in the left side, and the corresponding
set F’ in the right. Notice that, as in the figure, the barycenter P’ of E’ (which by construction
belongs to I1;) has distance 1’ from the origin which is larger than 7 but controlled by it. In the
very same way we define the barycenter P” of E” and the constant 7" € (% n,4n).

We define now B; and By the balls centered in P’ and P” and with volumes |E'| and |E"|,
thus 1 4+ 2e. Moreover, we denote by B’ and B” the two balls centered in P’ and P” with unit
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FIGURE 1. A possible set E in the proof of Proposition 2.1 and the corresponding
set ' with the quantities 7 and 7.

volume, and by B the ball centered in the origin with unit volume. We can then easily calculate,

keeping in mind the definitions and the symmetries of the sets,
N(E') = |E'AB| = 2’ (E'AB)) 0 {21 > 0}\
> 2|(E'AB) 0 {z1 > 0}| — 2| (BAB;) (1 {1 > 0}
—2|(BAB) N {a1 > 0}| - |BAB;| = 2{(EAB) (1 {1 > 0}| - | BAB| - |B'AB|
> 2|(BAB) N {1 > 0} - ov o

N
Wy

Concerning the last inequality, one only has to notice that |§’ AB7’7| = 2¢ by construction, since
they are two balls with the same center, while BAB' is contained in a cylinder of radius w;,l/ N
and height 7’ < 4n. Adding this inequality to the corresponding one obtained with E” in place

of E’, and observing that
‘(EAB) N {a: > 0}‘ + ‘(EAB) N {a < 0}‘ = |EAB| = Ao(E),

we obtain then

= 2 N—-1

N
Wi

n+ 2e,

which, since we are assuming ¢ < \o(F)/8, implies

8wn_
Mo(E) < M(E') + Xo(E") + Z2N=L ) (2.11)

N
Wy
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Now, let us call Br a Fraenkel ball for F/, and call F' its center; moreover, call F and P the

projections of F' and P onto II;. By construction,

P P
/:W7 PIIZ—W. (212)

We assume now that, as shown in Figure 1,
P-F<o, (2.13)

and we will work on the half-space {z1 > 0}. By (2.12), if (2.13) is not true then the very same
construction can be done in the half-space {x; < 0}. Let us now call B the ball centered in F
and such that

|BN{z1> 0} = |En{z: >0}]. (2.14)
We can now apply Lemma 2.4 to the three sets
G=FEn{x >0}, H = Bpn{z; >0}, H=Bn{z, >0}.

Notice that this is admissible because the assumption |H| = |G| is true by (2.14), and the
assumption |[HAH| = ’|H| - ]GH is true because one of the two sets H and H is contained
into the other one, since they are the intersection of an half-space with two balls with the
same center. Putting then together the claim of Lemma 2.4 and the quantitative isoperimetric

inequality (1.2), keeping in mind that Bp is a Fraenkel ball, we get
G ~
Cr(N)\/6(E) > MNE) = |EABE| > ‘(EABF) Nn{z > 0}‘ = |GAH| > ‘D/’|bar(G) — bar(H)|,

where D' is the diameter of GUH. Keep in mind that the diameter of E is less than D|E|Y/N = D,
thus any point of G has distance at most D from the origin. On the other hand, the distance
1
of F' from the origin is at most D +w," < 2D, because otherwise the Fraenkel ball (which has
1

radius w;,ﬁ) has empty intersection with E, and this is impossible. Finally, the radius of Bis
less than 4D, because otherwise H contains a whole ball of radius D, so its volume is more than
wn DN > 1, and this is impossible because this volume equals the volume of ET, that is between
1/4 and 3/4. Summarizing, the diameter D’ of GU H is less than 7D. One can observe that we
have been very rough in doing this estimate, but a more careful estimate would be in any case
of the form D’ < ¢D with ¢ > 1, so the dependence on D would be with the same exponent and

only the multiplicative constant would be smaller than 7. The above estimate gives then
G ~
Cr(N)\O(E) > 7 ‘D| |bar(G) — bar(H)| . (2.15)

Let us now consider the distance between the barycenters of G and of H. Since G = ET, by

definition we have
P

1
bar(G) = rdr = —— rdr = ——.
€)= f,, == 15 [, 2=
Therefore, the projection of bar(G) onto II; coincides with P/|E*|, since P is the projection
of P onto II;. Concerning H , instead, keep in mind that B is a ball centered in F, and

H = Bn{z; > 0}. As a consequence, the projection of bar(H) onto II; is the same as the
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projection of F onto IT;, which is the point F. Since the distance between bar(G) and bar(H)
is larger than the distance between their projections on Iy, and keeping in mind (2.13), we get

|P| n
|E+] T BT

|bar(G) — bar(H

’|E+| ’!Eﬂ

Finally, inserting this estimate into (2.15), and keepind in mind again that G = E*, we get

Cr(N)/O(E) > 7%.

Let now E be the set which maximizes Ao among E' and E”, so E = E' if A\o(E') > Xo(E"), and
otherwise E = E”. Notice that by construction E is a k-symmetric set, and since |E| > 1/2,
then its diameter is less than 2D < 3D|E|YN. Therefore, putting this last estimate into (2.11)
and applying (2.1) on E, we get

Sw Swar_
Mo(E) < Mo(E) + Mo(E") + =25 0 < 2X0(E) + —=t DOp(N)\/3(E)
wNN 7wNN 516
8wN 1 ( ) )

< 2C4(N,3D)\/6(E) + ——= DCr(N)\/4(E).

N
Twy

To conclude, we need now to estimate §(E) in terms of §(E). Since Bj, and By are two balls

with the same volumes as E' and E”, and since these volumes are both larger than 1/2, we have

P(E') - P(B))  P(E") - P(By) P(E) - P(B’) P(E") — P(By)

S(E")+6(E") =

P(By) P(B}) NoXME)T NN B
Co P(E') + P(E") — (JjV(B;) + P(By)
Nw]lv/

Using again that 1 — 2 > 1/2, we get
N-—1 N-—1
P(B,)+ P(B!) = Nuw 1/N(|B 57 4B ) - Nw}V/N<(1 +20) N 4 (1 25)T)

1/N 1 N -1 1+ yynN-1
> Nw /< — 93ty - 2>_2P(B)—23+NN / IRl

Therefore, since P(E') + P(E") < 2P(FE), we can continue the above estimate as

\ 2P(E) — 2P(B) + 22t~ Nw)/N N1

S(E')+8(E") <2 "% N7
Nw]lv/N
:2—¥ (25(E)+23+1 N R > :21/]\75( )+22+2 NN2 62

< (21/N 4 o2E NN ! K2D2)6(E) < K2D*(E)

where we have also used Lemma 2.2, the fact that D > 2w;,1/ N, and where we have set

N —
K3 \/Q—QwN+22+2 —~z Kg. (2.17)

Notice that K3 is a purely geometric constant only depending on N, since so is Ko.
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We are now about to conclude. Indeed, since E is one between E’ and E”, the last estimate
implies
§(E) < K2D?*§(E),

which inserted in (2.16) gives

SwN—1

M(E) < (2C4(N,3D)K3 + ==L Cp(N) ) D\/3(E).

Tw\Y
Keep in mind that this estimate holds under the assumption that ¢ < A\o(E)/8 < 1/4, while
otherwise we have \o(E) < 8 K3D\/d(E). Therefore, we have shown that (2.1) is valid for any

(k — 1)-symmetric set F, as soon as we define

Swn_
Cr_1(N,D) > 8KyD V <2Ck(N, 3D)Ky + ] CF(N)> D. (2.18)

Tw Y

We can then finally set
8K 23_NwN_1 wjlv/N
K= ——— 2K 2.1
= o { gy 28+ T (249
Twy

Also K is a purely geometric constant only depending on N, since so are Ky, K3 and Cp(N).
A quick check, recalling that by assumption Cy, > 2VCp(IV), ensures that the inequality (2.18)
is valid setting Cy_1(N, D) = K1Cx(N,3D)D, according to (2.2). Thus, we have proved the
validity of (2.1) for any (k — 1)-symmetric set defining Cy_1(N, D) according to (2.2).

To conclude, we only have to check the validity of the inequality Cj_1(N, D) > 2NCp(N).
But, since we know by assumption that Cyx(N,3D) > 2NCr(N), this is surely true if KD > 1,
which in turn is true since D > Qw;/N and by (2.19). O

Remark 2.5. As discussed in the Introduction, the constant of Theorem A must depend on
the diameter D, and actually explodes when D — oo (keep in mind that by the isodiametric
inequality it only makes sense to consider D > QM&I/N). Our construction provides an estimate
with C(N,D) < DN, see (2.8). An interesting question might be to find the sharp power of
C(N, D) with respect to D. This power cannot be lower than % In fact, if the set E is made
by a ball of volume 1 — e centered in the origin, plus a second ball of volume e at distance 3 /¢,
then A\o(E) =2, and 6(E) ~ e & D‘¥, where D ~ 3 /¢ is the diameter of E. Therefore,
the sharp value of C(N, D) must surely be at least of order D .

3. COMPARISON WITH THE OTHER RESULTS

In this final section, we briefly comment on the relation between our Theorem A and the
two preceding results mentioned in the Introduction, namely, Theorem 1.1 by Bianchini, Croce
and Henrot, and the Quantitative Inequality (1.5) by Fuglede. Keep in mind that in the first
paper the inequality (1.6), with a purely geometric constant Cpcpy in place of C(N, D), was
proved for every connected set E C R?, while the inequality by Fuglede was proved with a purely
dimensional constant Cg(N) in place of C(N, D) and for all convex sets in R.
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It is easy to see (and we are going to do it in a moment) that our result implies both the
above-mentioned results. However, it is important to remind that the proof by Fuglede was
particularly hard, since he could not use, as we did, the sharp quantitative inequality (1.2),
which is a very strong result; on the other hand, the proof of Theorem 1.1, which also uses (1.2),
is particularly short and clear.

Concerning Theorem 1.1, take a connected set E of unit volume in R? (keep in mind that
all the inequalities are scaling-invariant, so fixing the volume is harmless). Then, there are two
possibilities: either the diameter of E is larger than 2/7, or not. In the first case, the perimeter
of E is at least 41/, hence the isoperimetric deficit satisfies

_ P(E)=P(B(1)) _ P(E)—2/7

)= Thmay . aE oo

and since the barycentric asymmetry always satisfies A\g(E) < 2, we have

M(E) <2< 24/6(F).
In the second case, by Theorem A we have that

Mo(E) < C(2,2V7)Vo(E).

Therefore, we recover Theorem 1.1 with the purely geometric constant max{2, C(2,2+/7)}.

Concerning Fuglede’s Theorem, the situation is very similar. Indeed, take this time a convex
set F of unit volume in R?. Suppose first that the diameter of E is larger than ND, for a
constant D to be precised in a moment, and in particular that the points (0,0,0,...0) and
(ND,0,0,...0) belong to E. Therefore, by convexity we have that for every 0 <t < ND the
section By = {y € RN=1, (t,y) € E} satisfies # ¥ ~1(E;) < 1/D. But then,

ND 1 N-2 1 ND 1
P(E) > / (N — Dy} (SN (Ey))¥=1 > Dl/ (N — Dy 12 Y(Ey)
t=0 0
1 1

=D (N — wi-!.

1/N
N

Since the perimeter of the unit ball is Nwy, ", the above estimate gives 6(E) > 1 as soon as

which is true with the choice

oN \V7! o~
D := (]\7_1> UL)NN wN—l .
Exactly as before, since A\g(E) < 2, we surely have \g(F) < 24/J(F). And exactly as before,
applying our Theorem A with D = ND if the diameter of F is not larger than ND, we recover

Fuglede’s inequality with the purely dimensional constant max {2, C(N,N D)}
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